Science.gov

Sample records for paclitaxel

  1. Paclitaxel Injection

    MedlinePLUS

    ... 3 weeks. When paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat Kaposi's sarcoma, it may be given once every 2 or 3 weeks.Ask your pharmacist or doctor for a copy of the manufacturer's information for the patient.

  2. [Nab-paclitaxel].

    PubMed

    Lopez-Trabada Ataz, Daniel; Dumont, Sarah; Andr, Thierry

    2015-06-01

    Paclitaxel is conventionally used in a wide range of oncology indications. Nab-paclitaxel is synthesized by a process of high pressure homogenization of paclitaxel in the presence of human albumin and it was originally developed to reduce the toxicity usually associated with cremophor in soluble paclitaxel and to increase its penetration in tumor tissues. After the trials that led to its approval in first-line treatment of metastatic pancreatic carcinomas and in second line therapy for metastatic breast cancer, nab-paclitaxel is being tested for many other situations in oncology due to its profile of security and its good tolerance. Different lines of research are being developed about the possible biomarkers that could predict the effect of nab-paclitaxel. This review summarizes the results of trials that led to the approval of the nab-paclitaxel in advanced breast cancer and pancreatic cancer, and also resumes the lines of research to the future development of the drug. PMID:26008630

  3. Paclitaxel for treating KS.

    PubMed

    1997-11-01

    Paclitaxel (Taxol) received Food and Drug Administration (FDA) approval for use as a second-line therapy, in combination with G-CSF growth factor, for treating Kaposi's sarcoma (KS). Paclitaxel study results are highlighted showing that those patients who responded to Paclitaxel did so in about 2 months with a duration of 9 months, and some sustained responses for upwards of 2 years. Chemotherapies encapsulated in fat that appear to be more effective and less toxic than traditional combination chemotherapy regimens are also highlighted. Two such KS therapies, liposomal daunorubicin (DaunoXome) and liposomal doxorubicin (Doxil), have been approved for use. More information can be obtained by contacting the Project Inform Hotline. PMID:11365372

  4. Possible Side Effects of Paclitaxel

    Cancer.gov

    Page of 1Possible Side Effects of Paclitaxel (Table Version Date: August 23, 2013) COMMON, SOME MAY BE SERIOUS In 100 people receiving Paclitaxel, more than 20 and up to 100 may have: Anemia which may cause tiredness, or may require blood transfusions Infection,

  5. Possible Side Effects of Carboplatin and Paclitaxel

    Cancer.gov

    Page of 1Possible Side Effects of Carboplatin and Paclitaxel (Table Version Date: October 8, 2013) COMMON, SOME MAY BE SERIOUS In 100 people receiving Carboplatin and Paclitaxel, more than 20 and up to 100 may have: Hair loss Infection, especially when

  6. How Taxol/paclitaxel kills cancer cells.

    PubMed

    Weaver, Beth A

    2014-09-15

    Taxol (generic name paclitaxel) is a microtubule-stabilizing drug that is approved by the Food and Drug Administration for the treatment of ovarian, breast, and lung cancer, as well as Kaposi's sarcoma. It is used off-label to treat gastroesophageal, endometrial, cervical, prostate, and head and neck cancers, in addition to sarcoma, lymphoma, and leukemia. Paclitaxel has long been recognized to induce mitotic arrest, which leads to cell death in a subset of the arrested population. However, recent evidence demonstrates that intratumoral concentrations of paclitaxel are too low to cause mitotic arrest and result in multipolar divisions instead. It is hoped that this insight can now be used to develop a biomarker to identify the ?50% of patients that will benefit from paclitaxel therapy. Here I discuss the history of paclitaxel and our recently evolved understanding of its mechanism of action. PMID:25213191

  7. Paclitaxel alters sensory nerve biomechanical properties.

    PubMed

    Bober, Brian G; Shah, Sameer B

    2015-10-15

    Paclitaxel is an effective chemotherapeutic that, despite its common use, frequently causes debilitating peripheral sensory neuropathy. Paclitaxel binds to and stabilizes microtubules, and through unknown mechanisms, causes abnormal microtubule aggregation. Given that microtubules contribute to the mechanical properties of cells, we tested the hypothesis that paclitaxel treatment would alter the stiffness of sensory nerves. Rat sural nerves were excised and soaked in Ringer's solution with or without paclitaxel. Nerves were secured between a force transducer and actuator, and linearly strained. Stress-strain curves were generated, from which elastic moduli were calculated. Paclitaxel treated nerves exhibited significantly higher moduli in both linear and transition regions of the curve. A composite-tissue model was then generated to estimate the stiffness increase in the cellular fraction of the nerve following paclitaxel treatment. This model was supported experimentally by data on mechanical properties of sural nerves stripped of their epineurium, and area fractions of the cellular and connective tissue components of the rat sural nerve, calculated from immunohistochemical images. Model results revealed that the cellular components of the nerve must stiffen 12x to 115x, depending on the initial axonal modulus assumed, in order to achieve the observed tissue level mechanical changes. Consistent with such an increase, electron microscopy showed increased microtubule aggregation and cytoskeletal packing, suggestive of a more cross-linked cytoskeleton. Overall, our data suggests that paclitaxel treatment induces increased microtubule bundling in axons, which leads to alterations in tissue-level mechanical properties. PMID:26321364

  8. Paclitaxel Albumin-stabilized Nanoparticle Formulation

    Cancer.gov

    This page contains brief information about paclitaxel albumin-stabilized nanoparticle formulation and a collection of links to more information about the use of this drug, research results, and ongoing clinical trials.

  9. Paclitaxel improves outcome from traumatic brain injury

    PubMed Central

    Cross, Donna J.; Garwin, Gregory G.; Cline, Marcella M.; Richards, Todd L.; Yarnykh, Vasily; Mourad, Pierre D.; Ho, Rodney J.Y.; Minoshima, Satoshi

    2016-01-01

    Pharmacologic interventions for traumatic brain injury (TBI) hold promise to improve outcome. The purpose of this study was to determine if the microtubule stabilizing therapeutic paclitaxel used for more than 20 years in chemotherapy would improve outcome after TBI. We assessed neurological outcome in mice that received direct application of paclitaxel to brain injury from controlled cortical impact (CCI). Magnetic resonance imaging was used to assess injury-related morphological changes. Catwalk Gait analysis showed significant improvement in the paclitaxel group on a variety of parameters compared to the saline group. MRI analysis revealed that paclitaxel treatment resulted in significantly reduced edema volume at site-of-injury (11.92 ± 3.0 and 8.86 ± 2.2 mm3 for saline vs. paclitaxel respectively, as determined by T2-weighted analysis; p ≤ 0.05), and significantly increased myelin tissue preservation (9.45 ± 0.4 vs. 8.95 ± 0.3, p ≤ 0.05). Our findings indicate that paclitaxel treatment resulted in improvement of neurological outcome and MR imaging biomarkers of injury. These results could have a significant impact on therapeutic developments to treat traumatic brain injury. PMID:26086366

  10. Cardiotoxicities of paclitaxel in African Americans.

    PubMed Central

    Kamineni, Padma; Prakasa, Kalpana; Hasan, Syed P.; Akula, Ravi; Dawkins, Fitzroy

    2003-01-01

    PURPOSE: To assess the cardiac disturbances in African-American patients treated with paclitaxel. PATIENTS AND METHODS: One-hundred-nineteen African-American patients received paclitaxel for various cancers at Howard University Hospital during the years 1993-2001. Medical records of 100 patients were available for review. Sixty-seven percent were women and 33% were men. Ages ranged between 26-85 years (mean age 51 years). Medical records were reviewed for demographics, types of cancer, dosage and frequency of paclitaxel and other chemotherapeutic agents, events during paclitaxel infusion, initial and subsequent EKGs, and hospital admissions. We used the Chi-square test to compare EKG changes in patients with and without cardiac risk factors. RESULTS: Ninety patients received paclitaxel as second-line chemotherapy, and 10 patients were treated with paclitaxel as a single agent. Dosage of paclitaxel ranged from 75-200 mg/square meter and was administered every 1-3 weeks. The electrocardiogram readings revealed the following cardiac events: 26% sinus tachycardia, 13% non-specific T-wave changes, 6% myocardial infarction, 4% prolonged QT interval, 4% left-bundle branch block, 3% right-bundle branch block, 3% sinus bradycardia, 2% premature atrial contractions, 2% premature ventricular contractions, 2% atrial flutter, and 1% atrial fibrillation. Eighty percent of the patients had risk factors for coronary artery disease. These cardiac disturbances were observed from day one to a maximum of eight years after receiving the chemotherapy and were independent of dosage of paclitaxel. Sixty percent of our study population had underlying co-morbid conditions, such as dehydration, anemia, sepsis, and hypoxia. The EKG changes observed in patients with underlying cardiac risk factors were statistically significant (p<0.0001). CONCLUSION: Paclitaxel was not associated with significant symptomatic cardiac disturbances during infusion in our study population. Caution should be exercised in patients with underlying cardiac disease and risk factors for coronary artery disease. However more prospective studies with closer follow-up during paclitaxel infusion are needed to assess its cardiotoxicities. Images Figure 1 Figure 2 PMID:14620711

  11. Possible Side Effects of Cyclophosphamide, Doxorubicin, and Paclitaxel

    Cancer.gov

    Page of 1Possible Side Effects of Cyclophosphamide, Doxorubicin, and Paclitaxel (Table Version Date: October 8, 2013) COMMON, SOME MAY BE SERIOUS In 100 people receiving Cyclophosphamide, Doxorubicin, and Paclitaxel, more than 20 and up to 100 may have: Hair

  12. Nab-Paclitaxel Plus Gemcitabine for Metastatic Pancreatic Cancer

    Cancer.gov

    A summary of results from a phase III trial that compared the combination of albumin-bound paclitaxel (nab-paclitaxel [Abraxane®]) and gemcitabine (Gemzar®) versus gemcitabine alone in patients with metastatic pancreatic cancer.

  13. Production of paclitaxel by Fusarium solani isolated from Taxus celebica.

    PubMed

    Chakravarthi, B V S K; Das, Prasanta; Surendranath, Kalpana; Karande, Anjali A; Jayabaskaran, Chelliah

    2008-06-01

    A fungus was isolated from the stem cuttings of Taxus celebica, which produced paclitaxel in liquid-grown cultures. The fungus was identified as Fusarium solani based on colony characteristics, morphology of conidia and the 26S rDNA sequence. Paclitaxel was identified by chromatographic and spectroscopic comparison with authentic paclitaxel and its cytotoxic activity towards Jurkat cells in vitro. PMID:18535360

  14. Herbal Medicine Goshajinkigan Prevents Paclitaxel-Induced Mechanical Allodynia without Impairing Antitumor Activity of Paclitaxel

    PubMed Central

    Bahar, Muh. Akbar; Andoh, Tsugunobu; Ogura, Keisuke; Hayakawa, Yoshihiro; Saiki, Ikuo; Kuraishi, Yasushi

    2013-01-01

    Chemotherapy-induced peripheral neuropathy is a major dose-limiting side effect of commonly used chemotherapeutic agents. However, there are no effective strategies to treat the neuropathy. We examined whether Goshajinkigan, a herbal medicine, would prevent paclitaxel-induced allodynia without affecting the anticancer action in mice. Murine breast cancer 4T1 cells were inoculated into the mammary fat pad. Paclitaxel (10 and 20?mg/kg, intraperitoneal, alternate day from day 7 postinoculation) inhibited the tumor growth, and Goshajinkigan (1?g/kg, oral, daily from day 2 postinoculation) did not affect the antitumor action of paclitaxel. Mechanical allodynia developed in the inoculated region due to tumor growth and in the hind paw due to paclitaxel-induced neuropathy. Paclitaxel-induced allodynia was markedly prevented by Goshajinkigan, although tumor-associated allodynia was not inhibited by Goshajinkigan. These results suggest that Goshajinkigan prevents paclitaxel-induced peripheral neuropathy without interfering with the anti-cancer action of paclitaxel. PMID:24198846

  15. Combining paclitaxel with ABT-263 has a synergistic effect on paclitaxel resistant prostate cancer cells.

    PubMed

    Wang, Chihuei; Huang, Shih-Bo; Yang, Min-Chi; Lin, Yi-Tsen; Chu, I-Hung; Shen, Ya-Ni; Chiu, Yueh-Ho; Hung, Shao-Hung; Kang, Lin; Hong, Yi-Ren; Chen, Chung-Hwan

    2015-01-01

    We assessed the capability of paclitaxel, one of the taxanes, to induce death in two prostate cancer lines, LNCaP and PC3. Paclitaxel drove an apoptotic pathway in LNCaP, but not in PC3 cells, in response to G2/M arrest. An examination of the levels of anti-apoptotic proteins revealed that Bcl-xl was much higher in PC3 cells than in LNCaP cells and Bcl2 could be detected only in PC3 cells, not in LNCaP cells. Knocking down Bcl-xl enhanced paclitaxel-induced apoptosis in LNCaP cells, while we were unable to knock down Bcl-xl efficiently in PC3 cells. Significantly, a comparison of ABT-263, a specific inhibitor of Bcl2 and Bcl-xl, with ABT-199, a Bcl2 selective inhibitor, disclosed that only ABT-263, not ABT-199, could induce apoptosis in LNCaP and PC3 cells. The results indicate that Bcl-xl has a protective role against paclitaxel-induced apoptosis in LNCaP and PC3 cells, and its overexpression causes the paclitaxel resistance seen in PC3 cells. Interestingly, combined paclitaxel with ABT-263 to treat LNCaP and PC3 cells demonstrated synergistic apoptosis activation, indicating that ABT-263 could enhance paclitaxel-induced apoptosis in LNCaP cells and overcome Bcl-xl overexpression to trigger paclitaxel-induced apoptosis in PC3 cells. We also observed that the activation of apoptosis in LNCaP cells was more efficient than in PC3 cells in response to paclitaxel plus ABT-263 or to ABT-263 alone, suggesting that the apoptosis pathway in PC3 cells might have further differences from that in LNCaP cells even after Bcl-xl overexpression is accounted for. PMID:25811469

  16. Combining Paclitaxel with ABT-263 Has a Synergistic Effect on Paclitaxel Resistant Prostate Cancer Cells

    PubMed Central

    Wang, Chihuei; Huang, Shih-Bo; Yang, Min-Chi; Lin, Yi-Tsen; Chu, I-Hung; Shen, Ya-Ni; Chiu, Yueh-Ho; Hung, Shao-Hung; Kang, Lin; Hong, Yi-Ren; Chen, Chung-Hwan

    2015-01-01

    We assessed the capability of paclitaxel, one of the taxanes, to induce death in two prostate cancer lines, LNCaP and PC3. Paclitaxel drove an apoptotic pathway in LNCaP, but not in PC3 cells, in response to G2/M arrest. An examination of the levels of anti-apoptotic proteins revealed that Bcl-xl was much higher in PC3 cells than in LNCaP cells and Bcl2 could be detected only in PC3 cells, not in LNCaP cells. Knocking down Bcl-xl enhanced paclitaxel-induced apoptosis in LNCaP cells, while we were unable to knock down Bcl-xl efficiently in PC3 cells. Significantly, a comparison of ABT-263, a specific inhibitor of Bcl2 and Bcl-xl, with ABT-199, a Bcl2 selective inhibitor, disclosed that only ABT-263, not ABT-199, could induce apoptosis in LNCaP and PC3 cells. The results indicate that Bcl-xl has a protective role against paclitaxel-induced apoptosis in LNCaP and PC3 cells, and its overexpression causes the paclitaxel resistance seen in PC3 cells. Interestingly, combined paclitaxel with ABT-263 to treat LNCaP and PC3 cells demonstrated synergistic apoptosis activation, indicating that ABT-263 could enhance paclitaxel-induced apoptosis in LNCaP cells and overcome Bcl-xl overexpression to trigger paclitaxel-induced apoptosis in PC3 cells. We also observed that the activation of apoptosis in LNCaP cells was more efficient than in PC3 cells in response to paclitaxel plus ABT-263 or to ABT-263 alone, suggesting that the apoptosis pathway in PC3 cells might have further differences from that in LNCaP cells even after Bcl-xl overexpression is accounted for. PMID:25811469

  17. Nonconvulsive status epilepticus secondary to paclitaxel administration.

    PubMed

    Illn-Gala, Ignacio; Daz de Tern, Francisco Javier; Alonso, Pablo; Aguilar-Amat, Mara-Jos

    2015-01-01

    Nonconvulsive status epilepticus (NCSE) can be triggered by metabolic disturbances and drugs in adults without previous epilepsy. We present the case of a 51-year-old woman without previous history of epilepsy and recently diagnosed with infiltrating lobular breast carcinoma. Following the administration of paclitaxel-cremophor, she presented a striking disinhibited behavior with episodic spatial disorientation, emotional indifference, and irritability. Urgent EEG was consistent with NCSE. Clinical improvement and resolution of EEG abnormalities were observed following the administration of intravenous levetiracetam and lacosamide. Other causes of NCSE were ruled out, and antiepileptic drugs were slowly tapered off without new episodes of abnormal behavior after three months of follow-up. We have reported the first case of NCSE secondary to paclitaxel-cremophor. Neurologists and oncologists should consider NCSE as an unusual complication of treatment with paclitaxel-cremophor in patients without a history of epilepsy. PMID:26106578

  18. Nonconvulsive status epilepticus secondary to paclitaxel administration?

    PubMed Central

    Illn-Gala, Ignacio; Daz de Tern, Francisco Javier; Alonso, Pablo; Aguilar-Amat, Mara-Jos

    2015-01-01

    Nonconvulsive status epilepticus (NCSE) can be triggered by metabolic disturbances and drugs in adults without previous epilepsy. We present the case of a 51-year-old woman without previous history of epilepsy and recently diagnosed with infiltrating lobular breast carcinoma. Following the administration of paclitaxelcremophor, she presented a striking disinhibited behavior with episodic spatial disorientation, emotional indifference, and irritability. Urgent EEG was consistent with NCSE. Clinical improvement and resolution of EEG abnormalities were observed following the administration of intravenous levetiracetam and lacosamide. Other causes of NCSE were ruled out, and antiepileptic drugs were slowly tapered off without new episodes of abnormal behavior after three months of follow-up. We have reported the first case of NCSE secondary to paclitaxelcremophor. Neurologists and oncologists should consider NCSE as an unusual complication of treatment with paclitaxelcremophor in patients without a history of epilepsy. PMID:26106578

  19. Six1 mediates resistance to paclitaxel in breast cancer cells.

    PubMed

    Li, Zhaoming; Tian, Tian; Hu, Xiaopeng; Zhang, Xudong; Nan, Feifei; Chang, Yu; Lv, Feng; Zhang, Mingzhi

    2013-11-22

    Paclitaxel resistance remains a major challenge in the treatment of breast cancer. Six1 is a homeodomain-containing transcription factor invloved in the initiation, progression and metastasis of breast cancer. We herein investigate the relationship between Six1 and resistance of paclitaxel in this study. The results indicate that six1 is a mediator of the paclitaxel resistance in breast cancer. The expression level of Six1 in breast cancer cells correlates with their resistance to paclitaxel. On the one hand, forced overexpression of Six1 in Six1-low/paclitaxel-sensitive MCF-7 or HS578T breast cancer cells induce their resistance to paclitaxel treatment directly; On the other hand, knockdown of endogenous Six1 in Six1-high/drug-resistant BT-474 breast cancer cells sensitized these cells to paclitaxel treatment. Besides, Six1 overexpression confers resistance to paclitaxel-mediated apoptosis in breast cancer cells. Furthermore, clinical data and the publicly available breast cancer gene expression datasets display that the association of Six1 expression with paclitaxel sensitivity is clinically relevant. In conclusion, these data suggest that Six1 may function as an important modifier of the paclitaxel response in breast cancer cells, and serve as a potential target for overcoming paclitaxel resistance in breast cancer. PMID:24184484

  20. Initial experience with paclitaxel-coated stents.

    PubMed

    Grube, Eberhard; Büllesfeld, Lutz

    2002-12-01

    Local delivery of immunosuppressive or antiproliferative agents using a drug-eluting stent is a new technology that is supposed to inhibit in-stent restenosis, thus providing a biological and mechanical solution. This technique is a very promising. To date, several agents have been used, including paclitaxel, QP-2, rapamycin, actinomycin D, dexamethason, tacrolimus, and everolimus. Several studies, published recently or still ongoing, have evaluated these drugs as to their release kinetics, effective dosage, safety in clinical practice, and benefit. These studies include: SCORE (paclitaxel derivative), TAXUS I-VI, ELUTES, ASPECT, DELIVER (paclitaxel), RAVEL, SIRIUS (sirolimus), ACTION (actinomycin), EVIDENT, PRESENT (tacrolimus), EMPEROR (dexamethason), and FUTURE (everolimus). Paclitaxel was one of the first stent-based antiproliferative agents under clinical investigation that provided profound inhibition of neointimal thickening depending on delivery duration and drug dosage. The randomized, multicenter SCORE trail (Quanam stent, paclitaxel-coated) enrolled 266 patients at 17 sites. At 6-month's follow-up, a drop of 83% in stent restenosis using the drug-eluting stent could be achieved (6.4% drug-eluting stent vs 36.9% control group), which was attributable to a remarkable decrease in intimal proliferation. Unfortunately, due to frequent stent thrombosis and side-branch occlusions, the reported 30-day MACE rate was 10.2%. The randomized TAXUS-I safety trial (BSC, NIRx, paclitaxel-coated) also demonstrated beneficial reduction of restenotic lesions at 6-month's follow-up (0% vs 10%) but was associated with the absence of thrombotic events presumably due to less drug dosage. The ongoing TAXUS II-VI trials are addressing additional insight regarding the efficacy of the TAXUS paclitaxel-eluting stent. ASPECT and ELUTES evaluated paclitaxel-coated stents (i.e., Cook and Supra G), including subgroups with different drug dosages. With respect to stent restenosis and neointimal proliferation, both studies demonstrated a clear dose response. The RAVEL and the SIRIUS trials evaluated sirolimus-coated stents (i.e., Cordis, Johnson & Johnson, and Bx VELOCITY stents). Results confirmed the beneficial findings regarding reduction of renarrowing using a drug-eluting stent without any major adverse effects. Although parameters such as drug toxicity, optimal drug dosage, or delayed endothelial healing still need to be evaluated, today's clinical experience indicates that drug-coated stents are extremely beneficial in the interventional treatment of coronary lesions. PMID:12476650

  1. Ototoxicity of paclitaxel in rat cochlear organotypic cultures.

    PubMed

    Dong, Yang; Ding, Dalian; Jiang, Haiyan; Shi, Jian-Rong; Salvi, Richard; Roth, Jerome A

    2014-11-01

    Paclitaxel (taxol) is a widely used antineoplastic drug employed alone or in combination to treat many forms of cancer. Paclitaxel blocks microtubule depolymerization thereby stabilizing microtubules and suppressing cell proliferation and other cellular processes. Previous reports indicate that paclitaxel can cause mild to moderate sensorineural hearing loss and some histopathologic changes in the mouse cochlea; however, damage to the neurons and the underlying cell death mechanisms are poorly understood. To evaluate the ototoxicity of paclitaxel in more detail, cochlear organotypic cultures from postnatal day 3 rats were treated with paclitaxel for 24 or 48 h with doses ranging from 1 to 30 ?M. No obvious histopathologies were observed after 24h treatment with any of the paclitaxel doses employed, but with 48 h treatment, paclitaxel damaged cochlear hair cells in a dose-dependent manner and also damaged auditory nerve fibers and spiral ganglion neurons (SGN) near the base of the cochlea. TUNEL labeling was negative in the organ of Corti, but positive in SGN with karyorrhexis 48 h after 30 ?M paclitaxel treatment. In addition, caspase-6, caspase-8 and caspase-9 labeling was present in SGN treated with 30 ?M paclitaxel for 48 h. These results suggest that caspase-dependent apoptotic pathways are involved in paclitaxel-induced damage of SGN, but not hair cells in cochlea. PMID:25181333

  2. Ototoxicity of paclitaxel in rat cochlear organotypic cultures

    SciTech Connect

    Dong, Yang; Ding, Dalian; Jiang, Haiyan; Shi, Jian-rong; Salvi, Richard; Roth, Jerome A.

    2014-11-01

    Paclitaxel (taxol) is a widely used antineoplastic drug employed alone or in combination to treat many forms of cancer. Paclitaxel blocks microtubule depolymerization thereby stabilizing microtubules and suppressing cell proliferation and other cellular processes. Previous reports indicate that paclitaxel can cause mild to moderate sensorineural hearing loss and some histopathologic changes in the mouse cochlea; however, damage to the neurons and the underlying cell death mechanisms are poorly understood. To evaluate the ototoxicity of paclitaxel in more detail, cochlear organotypic cultures from postnatal day 3 rats were treated with paclitaxel for 24 or 48 h with doses ranging from 1 to 30 μM. No obvious histopathologies were observed after 24 h treatment with any of the paclitaxel doses employed, but with 48 h treatment, paclitaxel damaged cochlear hair cells in a dose-dependent manner and also damaged auditory nerve fibers and spiral ganglion neurons (SGN) near the base of the cochlea. TUNEL labeling was negative in the organ of Corti, but positive in SGN with karyorrhexis 48 h after 30 μM paclitaxel treatment. In addition, caspase-6, caspase-8 and caspase-9 labeling was present in SGN treated with 30 μM paclitaxel for 48 h. These results suggest that caspase-dependent apoptotic pathways are involved in paclitaxel-induced damage of SGN, but not hair cells in cochlea. - Highlights: • Paclitaxel was toxic to cochlear hair cells and spiral ganglion neurons. • Paclitaxel-induced spiral ganglion degeneration was apoptotic. • Paclitaxel activated caspase-6, -8 and -8 in spiral ganglion neurons.

  3. Response of choriocarcinoma to paclitaxel. Case report and review of resistance.

    PubMed

    Gerson, R; Serrano, A; Del Carmen Bello, M; Lazaro, M; Kudelka, A P; Kavanagh, J J

    1997-01-01

    Paclitaxel has been reported to inhibit proliferation and to promote differentiation of choriocarcinoma cells. We report a case of a patient with high risk trophoblastic disease who had remission with paclitaxel. The mechanisms of paclitaxel resistance are reviewed. PMID:9105857

  4. Enhanced antitumor effect of novel dual-targeted paclitaxel liposomes

    NASA Astrophysics Data System (ADS)

    Meng, Shuyan; Su, Bo; Li, Wei; Ding, Yongmei; Tang, Liang; Zhou, Wei; Song, Yin; Li, Heyan; Zhou, Caicun

    2010-10-01

    A novel dual-targeted peptide containing an alpha V integrins specific ligand and a neuropilin-1 specific motif was developed which showed an increased specific targeting affinity to tumors. Active dual-targeted liposomes were then produced with this peptide and exhibited greater binding activity than single-targeted liposomes in vitro. Paclitaxel entrapped in this formulation greatly increased the uptake of paclitaxel in the targeting cells and significantly suppressed the growth of HUVEC and A549 cells compared with general paclitaxel injections (Taxol) and single-targeted paclitaxel liposomes. The treatment of tumor xenograft models with dual-targeted paclitaxel liposomes also resulted in better tumor growth inhibition than any other treatment groups. Therefore, the dual-targeted paclitaxel liposomes prepared in the present study might be a more promising drug for cancer treatment. Furthermore, the dual-targeting approach may produce synergistic effects that can be applied in the development of new targeted drug delivery systems.

  5. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro.

    PubMed

    Jin, Cheng; Bai, Ling; Wu, Hong; Tian, Furong; Guo, Guozhen

    2007-09-01

    Paclitaxel and etanidazole are hypoxic radiosensitizers that exhibit cytotoxic action at different mechanisms. The poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing paclitaxel, etanidazole and paclitaxel+etanidazole were prepared by o/w and w/o/w emulsification-solvent evaporation method. The morphology of the nanoparticles was investigated by scanning electron microscope (SEM). The drug encapsulation efficiency (EE) and release profile in vitro were measured by high-performance liquid chromatography (HPLC). The cellular uptake of nanoparticles for the human breast carcinoma cells (MCF-7) and the human carcinoma cervicis cells (HeLa) was evaluated by transmission electronic microscopy and fluorescence microscopy. Cell viability was determined by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical shape with size between 80 and 150 nm. The EE was higher for paclitaxel and lower for etanidazole. The drug release was controlled over time. The cellular uptake of nanoparticles was observed. Co-culture of the two tumor cell lines with drug-loaded nanoparticles demonstrated that released drug effectively sensitized hypoxic tumor cells to radiation. The radiosensitization of paclitaxel+etanidazole nanoparticles was more significant than that of single drug-loaded nanoparticles. PMID:17509678

  6. Prevention of paclitaxel-induced peripheral neuropathy by lithium pretreatment

    PubMed Central

    Mo, Michelle; Erdelyi, Ildiko; Szigeti-Buck, Klara; Benbow, Jennifer H.; Ehrlich, Barbara E.

    2012-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect that occurs in many patients undergoing chemotherapy. It is often irreversible and frequently leads to early termination of treatment. In this study, we have identified two compounds, lithium and ibudilast, that when administered as a single prophylactic injection prior to paclitaxel treatment, prevent the development of CIPN in mice at the sensory-motor and cellular level. The prevention of neuropathy was not observed in paclitaxel-treated mice that were only prophylactically treated with a vehicle injection. The coadministration of lithium with paclitaxel also allows for administration of higher doses of paclitaxel (survival increases by 60%), protects against paclitaxel-induced cardiac abnormalities, and, notably, does not interfere with the antitumor effects of paclitaxel. Moreover, we have determined a mechanism by which CIPN develops and have discovered that lithium and ibudilast inhibit development of peripheral neuropathy by disrupting the interaction between paclitaxel, neuronal calcium sensor 1 (NCS-1), and the inositol 1,4,5-trisphosphate receptor (InsP3R) to prevent treatment-induced decreases in intracellular calcium signaling. This study shows that lithium and ibudilast are candidate therapeutics for the prevention of paclitaxel-induced neuropathy and could enable patients to tolerate more aggressive treatment regimens.Mo, M., Erdelyi, I., Szigeti-Buck, K., Benbow, J. H., Ehrlich, B. E. Prevention of paclitaxel-induced peripheral neuropathy by lithium pretreatment. PMID:22889832

  7. Stathmin Potentiates Vinflunine and Inhibits Paclitaxel Activity

    PubMed Central

    Malesinski, Soazig; Tsvetkov, Philipp O.; Kruczynski, Anna; Peyrot, Vincent; Devred, François

    2015-01-01

    Cell biology and crystallographic studies have suggested a functional link between stathmin and microtubule targeting agents (MTAs). In a previous study we showed that stathmin increases vinblastine (VLB) binding to tubulin, and that conversely VLB increases stathmin binding to tubulin. This constituted the first biochemical evidence of the direct relationship between stathmin and an antimitotic drug, and revealed a new mechanism of action for VLB. The question remained if the observed interaction was specific for this drug or represented a general phenomenon for all MTAs. In the present study we investigated the binding of recombinant stathmin to purified tubulin in the presence of paclitaxel or another Vinca alkaloid, vinflunine, using Isothermal Titration Calorimetry (ITC). These experiments revealed that stathmin binding to tubulin is increased in the presence of vinflunine, whereas no signal is observed in the presence of paclitaxel. Further investigation using turbidity and co-sedimentation showed that stathmin inhibited paclitaxel microtubule-stabilizing activity. Taken together with the previous study using vinblastine, our results suggest that stathmin can be seen as a modulator of MTA activity and binding to tubulin, providing molecular explanation for multiple previous cellular and in vivo studies showing that stathmin expression level affects MTAs efficiency. PMID:26030092

  8. Stathmin potentiates vinflunine and inhibits Paclitaxel activity.

    PubMed

    Malesinski, Soazig; Tsvetkov, Philipp O; Kruczynski, Anna; Peyrot, Vincent; Devred, Franois

    2015-01-01

    Cell biology and crystallographic studies have suggested a functional link between stathmin and microtubule targeting agents (MTAs). In a previous study we showed that stathmin increases vinblastine (VLB) binding to tubulin, and that conversely VLB increases stathmin binding to tubulin. This constituted the first biochemical evidence of the direct relationship between stathmin and an antimitotic drug, and revealed a new mechanism of action for VLB. The question remained if the observed interaction was specific for this drug or represented a general phenomenon for all MTAs. In the present study we investigated the binding of recombinant stathmin to purified tubulin in the presence of paclitaxel or another Vinca alkaloid, vinflunine, using Isothermal Titration Calorimetry (ITC). These experiments revealed that stathmin binding to tubulin is increased in the presence of vinflunine, whereas no signal is observed in the presence of paclitaxel. Further investigation using turbidity and co-sedimentation showed that stathmin inhibited paclitaxel microtubule-stabilizing activity. Taken together with the previous study using vinblastine, our results suggest that stathmin can be seen as a modulator of MTA activity and binding to tubulin, providing molecular explanation for multiple previous cellular and in vivo studies showing that stathmin expression level affects MTAs efficiency. PMID:26030092

  9. Possible Side Effects of 5-Fluorouracil, Oxaliplatin, Paclitaxel

    Cancer.gov

    Page of 2Possible Side Effects of 5-Fluorouracil, Oxaliplatin, Paclitaxel (Table Version Date: October 8, 2013) COMMON, SOME MAY BE SERIOUS In 100 people receiving 5-Fluorouracil, Oxaliplatin, Paclitaxel, more than 20 and up to 100 may have: Hair loss Redness,

  10. Possible Side Effects of Carboplatin, 5-Fluorouracil, and Paclitaxel

    Cancer.gov

    Page of 1Possible Side Effects of Carboplatin, 5-Fluorouracil, and Paclitaxel (Table Version Date: October 8, 2013) COMMON, SOME MAY BE SERIOUS In 100 people receiving Carboplatin, 5-Fluorouracil, and Paclitaxel, more than 20 and up to 100 may have: Hair

  11. Possible Side Effects of Cisplatin, 5-Fluorouracil, and Paclitaxel

    Cancer.gov

    Page of 1Possible Side Effects of Cisplatin, 5-Fluorouracil, and Paclitaxel (Table Version Date: October 8, 2013) COMMON, SOME MAY BE SERIOUS In 100 people receiving Cisplatin, 5-Fluorouracil, and Paclitaxel, more than 20 and up to 100 may have: Diarrhea,

  12. Combinatorial influences of paclitaxel and strain on axonal transport.

    PubMed

    Bober, Brian G; Gutierrez, Edgar; Plaxe, Steven; Groisman, Alex; Shah, Sameer B

    2015-09-01

    Paclitaxel is an effective chemotherapeutic agent that, despite its common use, often causes peripheral sensory neuropathy. In neurons, paclitaxel binds to and stabilizes microtubules, and through unknown mechanisms, bundles microtubules and disrupts their organization. Because microtubules serve as tracks on which a variety of axonal cargoes are transported, a leading hypothesis for the etiology of paclitaxel-induced neuropathy is that these changes to microtubule organization impair axonal transport. In addition to supporting transport, microtubules also serve a structural role, accommodating axonal extension occurring during axonal growth or joint movement. In light of this dual role for microtubules, we tested the hypothesis that axonal stretch amplified the effects of paclitaxel on axonal transport. Embryonic rat dorsal root ganglia were cultured on stretchable silicone substrates, and parameters describing the axonal transport of three distinct cargoes--mitochondria, synaptophysin, and actin--were measured with and without paclitaxel treatment and axonal strain. Paclitaxel treatment, particularly in combination with stretch, led to severe perturbations in several transport parameters, including the number, velocity, and travel distance of cargoes in the axon. Our results suggest that mechanical loading of neurons can exacerbate transport deficits associated with paclitaxel treatment, raising the interesting possibility that paclitaxel influences neuronal function in a multi-factorial manner. PMID:26143110

  13. Possible Side Effects of Paclitaxel Protein-Bound Particles

    Cancer.gov

    Page of 1Possible Side Effects of Paclitaxel Protein-Bound Particles (Table Version Date: October 24, 2013) COMMON, SOME MAY BE SERIOUS In 100 people receiving Paclitaxel protein-bound particles, more than 20 and up to 100 may have: Anemia, which may

  14. Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance.

    PubMed

    Khongkow, P; Gomes, A R; Gong, C; Man, E P S; Tsang, J W-H; Zhao, F; Monteiro, L J; Coombes, R C; Medema, R H; Khoo, U S; Lam, E W-F

    2016-02-25

    FOXM1 has been implicated in taxane resistance, but the molecular mechanism involved remains elusive. In here, we show that FOXM1 depletion can sensitize breast cancer cells and mouse embryonic fibroblasts into entering paclitaxel-induced senescence, with the loss of clonogenic ability, and the induction of senescence-associated β-galactosidase activity and flat cell morphology. We also demonstrate that FOXM1 regulates the expression of the microtubulin-associated kinesin KIF20A at the transcriptional level directly through a Forkhead response element (FHRE) in its promoter. Similar to FOXM1, KIF20A expression is downregulated by paclitaxel in the sensitive MCF-7 breast cancer cells and deregulated in the paclitaxel-resistant MCF-7Tax(R) cells. KIF20A depletion also renders MCF-7 and MCF-7Tax(R) cells more sensitive to paclitaxel-induced cellular senescence. Crucially, resembling paclitaxel treatment, silencing of FOXM1 and KIF20A similarly promotes abnormal mitotic spindle morphology and chromosome alignment, which have been shown to induce mitotic catastrophe-dependent senescence. The physiological relevance of the regulation of KIF20A by FOXM1 is further highlighted by the strong and significant correlations between FOXM1 and KIF20A expression in breast cancer patient samples. Statistical analysis reveals that both FOXM1 and KIF20A protein and mRNA expression significantly associates with poor survival, consistent with a role of FOXM1 and KIF20A in paclitaxel action and resistance. Collectively, our findings suggest that paclitaxel targets the FOXM1-KIF20A axis to drive abnormal mitotic spindle formation and mitotic catastrophe and that deregulated FOXM1 and KIF20A expression may confer paclitaxel resistance. These findings provide insights into the underlying mechanisms of paclitaxel resistance and have implications for the development of predictive biomarkers and novel chemotherapeutic strategies for paclitaxel resistance. PMID:25961928

  15. Development of paclitaxel-TyroSpheres for topical skin treatment

    PubMed Central

    Kilfoyle, Brian E.; Sheihet, Larisa; Zhang, Zheng; Laohoo, Marissa; Kohn, Joachim; Michniak-Kohn, Bozena B.

    2012-01-01

    A potential topical psoriasis therapy has been developed consisting of tyrosine-derived nanospheres (TyroSpheres) with encapsulated anti-proliferative paclitaxel. TyroSpheres provide enhancement of paclitaxel solubility (almost 4,000 times greater than PBS) by effective encapsulation and enable sustained, dose-controlled release over 72 hours under conditions mimicking skin permeation. TyroSpheres offer potential in the treatment of psoriasis, a disease resulting from over-proliferation of keratinocytes in the basal layer of the epidermis, by (a) enabling delivery of paclitaxel into the epidermis at concentrations >100 ng/cm2 of skin surface area and (b) enhancing the cytotoxicity of loaded paclitaxel to human keratinocytes (IC50 of paclitaxel-TyroSpheres was approximately 45% lower than that of free paclitaxel). TyroSpheres were incorporated into a gel-like viscous formulation to improve their flow characteristics with no impact on homogeneity, release or skin distribution of the payload. The findings reported here confirm that the TyroSpheres provide a platform for paclitaxel topical administration allowing skin drug localization and minimal systemic escape. PMID:22732474

  16. Development and Evaluation of Transferrin-Stabilized Paclitaxel Nanocrystal Formulation

    PubMed Central

    Lu, Ying; Wang, Zhao-hui; Li, Tonglei; McNally, Helen; Park, Kinam; Sturek, Michael

    2014-01-01

    The aim of the present study was to prepare and evaluate a paclitaxel nanocrystal-based formulation stabilized by serum protein transferrin in a non-covalent manner. The pure paclitaxel nanocrystals were first prepared using an antisolvent precipitation method augmented by sonication. The serum protein transferrin was selected for use after evaluating the stabilizing effect of several serum proteins including albumin and immunoglobulin G. The formulation contained approximately 55~60% drug and was stable for at least 3 months at 4 °C. In vivo antitumor efficacy studies using mice inoculated with KB cells demonstrate significantly higher tumor inhibition rate of 45.1% for paclitaxel-transferrin formulation compared to 28.8% for paclitaxel nanosuspension treatment alone. Interestingly, the Taxol® formulation showed higher antitumor activity than the paclitaxel-transferrin formulation, achieving a 93.3% tumor inhibition rate 12 days post initial dosing. However, the paclitaxel-transferrin formulation showed a lower level of toxicity, which is indicated by steady increase in body weight of mice over the treatment period. In comparison, treatment with Taxol® resulted in toxicity issues as body weight decreased. These results suggest the potential benefit of using a serum protein in a non-covalent manner in conjunction with paclitaxel nanocrystals as a promising drug delivery model for anticancer therapy. PMID:24378441

  17. Identification of pathways involved in paclitaxel activity in cervical cancer.

    PubMed

    Qiao, Wen-Juan; Cheng, Hai-Yan; Li, Chun-Quan; Jin, Hong; Yang, Shan-Shan; Li, Xia; Zhang, Yun-Yan

    2011-01-01

    Paclitaxel is one of the key chemotherapeutic drugs widely used to treat various types of cancer. Many cervical cancer patients exhibit selectivity in response to thereapy, however, which is considered to be correlated with drug-gene-pathways. The aim of this study was to identify pathways involved in paclitaxel activity in cervical cancer. Gene expression data was obtained from the NCBI Gene Expression Omnibus and the associations between paclitaxel and genes from DrugBank, MATADOR, TTD, CTD and SuperTarget databases. Differentially expressed genes in cervical cancer were identified using the significance analysis of microarrays (SAM) statistical technique. Pathway analysis was performed according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database using the software package SubpathwayMiner to predict target genes of paclitaxel in cervical cancer and regulated pathways. We found that paclitaxel, which exhibits anticancer activity in cervical cancer, may interact with these differentially expressed genes and their corresponding signaling pathways. Our study presents the first in-depth, large-scale analysis of pathways involved in paclitaxel activity in cervical cancer. Interestingly, these pathways have not been reported to be involved in other tumors. Thus our findings may contribute to the understanding of the mechanisms underlying paclitaxel resistance in cervical cancer. PMID:21517239

  18. Paclitaxel and concurrent radiation for locally advanced pancreatic carcinoma.

    PubMed

    Safran, H; Cioffi, W; Iannitti, D; Mega, A; Akerman, P

    1998-11-01

    An effective local-regional therapy is needed for adenocarcinomas of the pancreas. Paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton NJ) may enhance the effect of radiation therapy. Paclitaxel synchronizes cells at G2/M, a relatively radiosensitive phase of the cell cycle. We have shown that response to paclitaxel and concurrent radiation (paclitaxel/RT) was not affected by p53 mutations in non-small cell lung cancer (NSCLC). This suggested that paclitaxel/RT was a rationale treatment approach for other malignancies which frequently harbor p53 mutations such as upper gastrointestinal malignancies. We have completed a phase I study of paclitaxel/RT for locally advanced pancreatic and gastric cancers. The maximum tolerated dose (MTD) of paclitaxel was 50 mg/m2/week for 6 weeks with abdominal radiation. The dose limiting toxicities were abdominal pain within the radiation field, nausea and anorexia. Twenty-five patients with locally advanced pancreatic cancer have now completed treatment at the phase II dose level of paclitaxel 50 mg/m2/week with 50 Gy concurrent RT. Thus far, the only grade 3/4 toxicities have been hypersensitivity reactions in 2 patients, asymptomatic grade 4 neutropenia in 3 patients, and non-neutropenic biliary sepsis in 1 patient. Of the first 22 assessable patients treated at the phase II study, 8 obtained a partial response (PR) for a preliminary response rate of 36%. These findings demonstrate that paclitaxel/RT is well tolerated with substantial activity for locally advanced pancreatic cancer. PMID:9792903

  19. Paclitaxel-carboplatin induced radiation recall colitis.

    PubMed

    Kundak, Isil; Oztop, Ilhan; Soyturk, Mujde; Ozcan, Mehmet Ali; Yilmaz, Ugur; Meydan, Nezih; Gorken, Ilknur Bilkay; Kupelioglu, Ali; Alakavuklar, Mehmet

    2004-01-01

    Some chemotherapeutic agents can "recall" the irradiated volumes by skin or pulmonary reactions in cancer patients who previously received radiation therapy. We report a recall colitis following the administration of paclitaxel-containing regimen in a patient who had been irradiated for a carcinoma of the uterine cervix. A 63-year-old woman underwent a Wertheim operation because of uterine cervix carcinoma. After 8 years of follow-up, a local recurrence was observed and she received curative external radiotherapy (45 Gy) to the pelvis. No significant adverse events were observed during the radiotherapy. Approximately one year later, she was hospitalized because of metastatic disease with multiple pulmonary nodules, and a chemotherapy regimen consisting of paclitaxel and carboplatin was administered. The day after the administration of chemotherapy the patient had diarrhea and rectal bleeding. Histological examination of the biopsy taken from rectal hyperemic lesions showed a radiation colitis. The symptoms reappeared after the administration of each course of chemotherapy and continued until the death of the patient despite the interruption of the chemotherapy. In conclusion, the probability of recall phenomena should be kept in mind in patients who received previously with pelvic radiotherapy and treated later with cytotoxic chemotherapy. PMID:15237594

  20. [Study of bioavailability of paclitaxel after sublingual administration].

    PubMed

    Samsonia, M; Lesiovskaia, E; Ghibradze, O; Kandelaki, M

    2015-05-01

    The bioavailability of sublingual form of paclitaxel, developed in the pharmacology laboratory of pharmaceutical company - Legion "Provisus" is studied. Sublingual form of paclitaxel is an alcoholic solution of paclitaxel (1 mg/ml) with penetrator - dimethyl sulfoxide (DMSO) addition. Experiments were performed on 180 white mongrel male mice each of 25-30 g. The animals were divided into three groups. The first group served for control. 10 mg/kg of taxol was injected (once) in the lateral tail vein of the first group animals. A solution was prepared by diluting taxol with physiological sodium chloride solution until to a final concentration of paclitaxel to 1 mg/ml. The dose of 10 mg/kg (single dose) was applied under the tongue of the second group animals. Paclitaxel (substance) was extracted with dichloromethane - Taxol (by liquid-liquid extraction) for the manufacturing of a sublingual form. Unlike the second group, the third group animals took the same dose of sublingual form of paclitaxel orally (by gavage). The concentration of paclitaxel in plasma was studied by reversed-phase HPLC with spectrophotometric detection at ? = 227 nm by Woo JS et al. (2003) method. Bioavailability was determined by comparing the concentration of paclitaxel in blood after sublingual and intravenous use of Taxol (as an area under the curve of concentration versus time). It is established that the bioavailability of sublingual forms of paclitaxel was 42.4%, Cmax = 615 73 ng ml(-1) and tmax = 30-35 min. The value of the initial volume of distribution of paclitaxel (Vd = 3,14 0,85 l kg(-1)) also shows its intensive penetration to the organs and tissues. The half-life of the drug on the terminal segment of concentration-time curve was averaged 1,06 0,21 h. The results create the preconditions for further preclinical study of sublingual form of paclitaxel, as the bioavailability of paclitaxel after sublingual application allows to have a systemic effect on the tumor process. PMID:26042449

  1. Equilibrium studies of a fluorescent paclitaxel derivative binding to microtubules.

    PubMed

    Li, Y; Edsall, R; Jagtap, P G; Kingston, D G; Bane, S

    2000-01-25

    A fluorescent derivative of paclitaxel, 3'-N-m-aminobenzamido-3'-N-debenzamidopaclitaxel (N-AB-PT), has been prepared in order to probe paclitaxel-microtubule interactions. Fluorescence spectroscopy was used to quantitatively assess the association of N-AB-PT with microtubules. N-AB-PT was found equipotent with paclitaxel in promoting microtubule polymerization. Paclitaxel and N-AB-PT underwent rapid exchange with each other on microtubules assembled from GTP-, GDP-, and GMPCPP-tubulin. The equilibrium binding parameters for N-AB-PT to microtubules assembled from GTP-tubulin were derived through fluorescence titration. N-AB-PT bound to two types of sites on microtubules (K(d1) = 61 +/- 7.0 nM and K(d2) = 3.3 +/- 0.54 microM). The stoichiometry of each site was less than one ligand per tubulin dimer in the microtubule (n(1) = 0.81 +/- 0.03 and n(2) = 0.44 +/- 0.02). The binding experiments were repeated after exchanging the GTP for GDP or for GMPCPP. It was found that N-AB-PT bound to a single site on microtubules assembled from GDP-tubulin with a dissociation constant of 2.5 +/- 0.29 microM, and that N-AB-PT bound to a single site on microtubules assembled from GMPCPP-tubulin with a dissociation constant of 15 +/- 4.0 nM. It therefore appears that microtubules contain two types of binding sites for paclitaxel and that the binding site affinity for paclitaxel depends on the nucleotide content of tubulin. It has been established that paclitaxel binding does not inhibit GTP hydrolysis and microtubules assembled from GTP-tubulin in the presence of paclitaxel contain almost exclusively GDP at the E-site. We propose that although all the subunits of the microtubule at steady state are the same "GDP-tubulin-paclitaxel", they are formed through two paths: paclitaxel binding to a tubulin subunit before its E-site GTP hydrolysis is of high affinity, and paclitaxel binding to a tubulin subunit containing hydrolyzed GDP at its E-site is of low affinity. PMID:10642187

  2. Paclitaxel inhibits mRNA transport in axons.

    PubMed

    Bobylev, Ilja; Joshi, Abhijeet R; Barham, Mohammed; Ritter, Christian; Neiss, Wolfram F; Hke, Ahmet; Lehmann, Helmar C

    2015-10-01

    Paclitaxel is an integral component of solid tumor treatment. This chemotherapeutic agent provokes an often irreversible peripheral sensory neuropathy with pathological features of distal axonal degeneration. Current pathological concepts assume that polymerization of axonal microtubules and mitochondrial dysfunction contributes to the development of paclitaxel-induced peripheral neuropathy. The relationship, however, between microtubule stabilization, mitotoxicity and axonal degeneration is still not completely understood. To explore the function of axonal mitochondria we treated transgenic mice that harbor cyan fluorescent protein (CFP)-labeled neuronal mitochondria with repeated doses of paclitaxel and assessed neuropathic changes by nerve conduction and histological studies. In addition, mitochondrial content and morphology was determined by ex vivo imaging of axons containing CFP-labeled mitochondria. Using quantitative RT-PCR and fluorescence-labeled mRNA we determined axonal mRNA transport of nuclear encoded mitochondrial proteins. Prolonged treatment with high doses of paclitaxel-induced a predominant sensory neuropathy in mice. Although mitochondrial velocity in axons per se was not altered, we observed significant changes in mitochondrial morphology, suggesting that paclitaxel treatment impairs the dynamics of axonal mitochondria. These changes were caused by decreased levels of nuclear encoded mRNA, including the mitochondrial fusion/fission machinery. Moreover, impaired axonal mRNA transport in vitro resulted in mitochondrial dysfunction and subsequent axonal degeneration. Taken together, our experiments provide evidence that disrupted axonal transport of nuclear derived mRNA plays a crucial role in the pathogenesis of paclitaxel-induced sensory neuropathy. PMID:26188177

  3. Paclitaxel uptake and transport in Taxus cell suspension cultures

    PubMed Central

    Naill, Michael C.; Kolewe, Martin E.; Roberts, Susan C.

    2012-01-01

    The transport of paclitaxel in Taxus canadensis suspension cultures was studied with a fluorescence analogue of paclitaxel (Flutax-2®) in combination with flow cytometry detection. Experiments were carried out using both isolated protoplasts and aggregated suspension cell cultures. Flutax-2® was shown to be greater than 90% stable in Taxus suspension cultures over the required incubation time (24 hours). Unlabeled paclitaxel was shown to inhibit the cellular uptake of Flutax-2®, although structurally similar taxanes such as cephalomannine, baccatin III, and 10-deacetylbaccatin III did not inhibit Flutax-2® uptake. Saturation kinetics of Flutax-2® uptake was demonstrated. These results indicate the presence of a specific transport system for paclitaxel. Suspension cells elicited with methyl jasmonate accumulated 60% more Flutax-2® than unelicited cells, possibly due to an increased cellular storage capacity following methyl jasmonate elicitation. The presence of a specific mechanism for paclitaxel transport is an important first result that will provide the basis of more detailed studies as well as the development of targeted strategies for increased paclitaxel secretion to the extracellular medium. PMID:23180977

  4. Effect of several compounds on biliary excretion of paclitaxel and its metabolites in guinea-pigs.

    PubMed

    Bun, Sok-Siya; Giacometti, Sarah; Fanciullino, Raphalle; Ciccolini, Joseph; Bun, Hot; Aubert, Claude

    2005-07-01

    The objective of this study was to evaluate the in vivo metabolic profile of paclitaxel and to examine the effect of potential co-administered drugs on the biliary secretion of paclitaxel and its metabolites in guinea-pigs. We first investigated in vitro paclitaxel metabolism using liver microsomes obtained from various species to identify the most suitable animal model with a similar metabolism to humans. Then, in vivo paclitaxel metabolism was investigated in male guinea-pigs. The levels of paclitaxel and its metabolites were measured by high-performance liquid chromatography in bile samples from guinea-pigs after paclitaxel i.v. injection (6 mg/kg). We further evaluated the effects of various drugs (quercetin, ketoconazole, dexamethasone, cotrimoxazole) on the biliary secretion of paclitaxel and its metabolites in guinea-pigs. This work demonstrated significant in vitro interspecies differences in paclitaxel metabolism. Our findings showed both in vitro and in vivo similarities between human and guinea-pig biotransformation of paclitaxel. 6alpha-Hydroxypaclitaxel, the main human metabolite of paclitaxel, was found in guinea-pig bile. After paclitaxel combination with ketoconazole or quercetin in guinea-pigs, the cumulative biliary excretion of paclitaxel and its metabolites up to 6 h was significantly decreased by 62 and 76%, respectively. The co-administration of cotrimoxazole or pretreatment with dexamethasone did not alter significantly cumulative biliary excretion. The guinea-pig is a suitable model to study metabolism and biliary excretion of paclitaxel, and to investigate in vivo drug interactions. PMID:15930897

  5. Effect of Ethyl Pyruvate on Paclitaxel-Induced Neuropathic Pain in Rats

    PubMed Central

    Choi, Seong Soo; Koh, Won Uk; Nam, Jae Sik; Shin, Jin Woo; Leem, Jeong Gill

    2013-01-01

    Background Although paclitaxel is a widely used chemotherapeutic agent for the treatment of solid cancers, side effects such as neuropathic pain lead to poor compliance and discontinuation of the therapy. Ethyl pyruvate (EP) is known to have analgesic effects in several pain models and may inhibit apoptosis. The present study was designed to investigate the analgesic effects of EP on mechanical allodynia and apoptosis in dorsal root ganglion (DRG) cells after paclitaxel administration. Methods Rats were randomly divided into 3 groups: 1) a control group, which received only vehicle; 2) a paclitaxel group, which received paclitaxel; and 3) an EP group, which received EP after paclitaxel administration. Mechanical allodynia was tested before and at 7 and 14 days after final paclitaxel administration. Fourteen days after paclitaxel treatment, DRG apoptosis was determined by activated caspase-3 immunoreactivity (IR). Results Post-treatment with EP did not significantly affect paclitaxel-induced allodynia, although it tended to slightly reduce sensitivities to mechanical stimuli after paclitaxel administration. After paclitaxel administration, an increase in caspase-3 IR in DRG cells was observed, which was co-localized with NF200-positive myelinated neurons. Post-treatment with EP decreased the paclitaxel-induced caspase-3 IR. Paclitaxel administration or post-treatment with EP did not alter the glial fibrillary acidic protein IRs in DRG cells. Conclusions Inhibition of apoptosis in DRG neurons by EP may not be critical in paclitaxel-induced mechanical allodynia. PMID:23614074

  6. Paclitaxel Nano-Delivery Systems: A Comprehensive Review

    PubMed Central

    Ma, Ping; Mumper, Russell J.

    2013-01-01

    Paclitaxel is one of the most effective chemotherapeutic drugs ever developed and is active against a broad range of cancers, such as lung, ovarian, and breast cancers. Due to its low water solubility, paclitaxel is formulated in a mixture of Cremophor EL and dehydrated ethanol (50:50, v/v) a combination known as Taxol. However, Taxol has some severe side effects related to Cremophor EL and ethanol. Therefore, there is an urgent need for the development of alternative Taxol formulations. The encapsulation of paclitaxel in biodegradable and non-toxic nano-delivery systems can protect the drug from degradation during circulation and in-turn protect the body from toxic side effects of the drug thereby lowering its toxicity, increasing its circulation half-life, exhibiting improved pharmacokinetic profiles, and demonstrating better patient compliance. Also, nanoparticle-based delivery systems can take advantage of the enhanced permeability and retention (EPR) effect for passive tumor targeting, therefore, they are promising carriers to improve the therapeutic index and decrease the side effects of paclitaxel. To date, paclitaxel albumin-bound nanoparticles (Abraxane®) have been approved by the FDA for the treatment of metastatic breast cancer and non-small cell lung cancer (NSCLC). In addition, there are a number of novel paclitaxel nanoparticle formulations in clinical trials. In this comprehensive review, several types of developed paclitaxel nano-delivery systems will be covered and discussed, such as polymeric nanoparticles, lipid-based formulations, polymer conjugates, inorganic nanoparticles, carbon nanotubes, nanocrystals, and cyclodextrin nanoparticles. PMID:24163786

  7. Albumin-Bound Paclitaxel: A Review in Non-Small Cell Lung Cancer.

    PubMed

    Blair, Hannah A; Deeks, Emma D

    2015-11-01

    Nanoparticle albumin-bound paclitaxel (Abraxane()) [hereafter referred to as nab-paclitaxel] is a taxane developed to avoid some of the toxicities associated with solvent-bound (sb) paclitaxel. Nab-paclitaxel, in combination with carboplatin, is indicated for the first-line treatment of non-small cell lung cancer (NSCLC) in patients who are not candidates for curative surgery and/or radiation therapy. This article summarizes pharmacological, efficacy and tolerability data relevant to the use of nab-paclitaxel in this indication. Compared with sb-paclitaxel plus carboplatin, nab-paclitaxel plus carboplatin significantly improved the objective response rate (ORR), but did not prolong progression-free survival or overall survival (OS), in the overall population of patients with advanced NSCLC in a multinational phaseIII trial. The nab-paclitaxel regimen also provided benefit over the sb-paclitaxel regimen in certain patient subgroups, including patients with squamous cell histology (in terms of ORR) and patients who were elderly (in terms of OS). Nab-paclitaxel plus carboplatin had a manageable tolerability profile with some benefits over sb-paclitaxel plus carboplatin, including lower rates of grade?3 neutropenia, peripheral neuropathy, arthralgia and myalgia, although was associated with more grade?3 anaemia and thrombocytopenia. Given its efficacy and tolerability, intravenous nab-paclitaxel plus carboplatin is a valuable first-line treatment option for patients with advanced NSCLC. PMID:26541764

  8. Paclitaxel delivery to brain tumors from hydrogels: a computational study.

    PubMed

    Torres, Alexis J; Zhu, Charles; Shuler, Michael L; Pannullo, Susan

    2011-01-01

    Malignant gliomas are aggressive forms of primary brain tumors characterized by a poor prognosis. The most successful treatment so far is the local implantation of polymer carriers (Gliadel® wafers) for the sustained release of carmustine. To improve the effectiveness of local drug treatment, new polymer carriers and pharmacological agents are currently being investigated. Of particular interest is a set of novel thermo-gelling polymers for the controlled release of hydrophobic drugs such as paclitaxel (e.g., OncoGel™). Herein, we use computational mass transport simulations to investigate the effectiveness of paclitaxel delivery from hydrogel-forming polymer carriers. We found similar (within 1-2 mm) therapeutic penetration distances of paclitaxel when released from these hydrogels as compared with carmustine released from Gliadel® wafers. Effective therapeutic concentrations were maintained for >30 days for paclitaxel when released from the hydrogel as compared with 4 days for carmustine released from Gliadel® wafers. Convection in brain tissue prevented the formation of a uniform drug concentration gradient around the implant. In addition, the surface area to volume ratio of the gel is an important factor that should be considered to maintain a controlled release of paclitaxel within the degradation lifetime of the polymer matrix. PMID:21786432

  9. Nab-paclitaxel in patients with metastatic melanoma.

    PubMed

    Leon-Ferre, Roberto A; Markovic, Svetomir N

    2015-12-01

    Cutaneous melanoma is one of the most aggressive and resistant malignancies in humans. Until recently, progress in the treatment of metastatic melanoma remained dormant for nearly two decades. However, recent advances in immune and targeted therapeutic approaches have led to dramatic and paradigm-shifting advances in the management of metastatic melanoma, that are now leading the way for other malignancies. With the advent of these new therapeutic options, chemotherapy is no longer favored as a first line strategy in metastatic melanoma, but continues to play a role in the salvage treatment of patients that have become refractory to immune-based or targeted therapies. Nab-paclitaxel, a solvent-free alternative to solvent-based paclitaxel, has shown in several trials to be active in metastatic melanoma. Herein, we summarize the role of nab-paclitaxel in the management of patients with advanced melanoma. PMID:26536477

  10. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity.

    PubMed

    Jiang, Shuai; Pan, Amy W; Lin, Tzu-Yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T; Pan, Chong-Xian

    2015-12-21

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 30 versus 320 120 adducts per 10(8) nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 10(8) nucleotides per hour in carboplatin alone (p = 0.021). This rapid report provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic. PMID:26544157

  11. Self-Assembled Poly(butadiene)-b-Poly(ethylene oxide) Polymersomes as Paclitaxel Carriers

    PubMed Central

    Li, Shuliang; Byrne, Belinda; Welsh, JoEllen; Palmer, Andre F.

    2008-01-01

    In this work, self-assembled poly(butadiene)-b-poly(ethylene oxide) (PB-PEO) polymersomes (polymer vesicles) and worm micelles were evaluated as paclitaxel carriers. Paclitaxel was successfully incorporated into PB-PEO polymersomes and worm micelles. The loading capacity of paclitaxel inside PB-PEO colloids ranged from 6.7-13.7% w/w, depending on the morphology of copolymer colloids and the molecular weight of diblock copolymer. Paclitaxel loaded OB4 (PB219-PEO121) polymersome formulations were colloidally stable for 4 months at 4 C, and exhibited slow steady release of paclitaxel over a 5 week period at 37 C. Evaluation of the in vitro cytotoxicity of paclitaxel-polymersome formulations showed that the ability of paclitaxel-loaded polymersomes to inhibit proliferation of MCF-7 human breast cancer cells was less compared to paclitaxel alone. By increasing the concentration of paclitaxel in polymersomes from 0.02 ?g/mL to 0.2 ?g/mL, paclitaxel-polymersome formulations showed comparable activity in inhibiting the growth of MCF-7 cells. Taken together, these results demonstrate that paclitaxel-polymersomes have desirable restrained release profile and exhibit long-term stability. PMID:17269699

  12. Albumin-bound paclitaxel in solid tumors: clinical development and future directions

    PubMed Central

    Kundranda, Madappa N; Niu, Jiaxin

    2015-01-01

    Albumin-bound paclitaxel (nab-paclitaxel) is a solvent-free formulation of paclitaxel that was initially developed more than a decade ago to overcome toxicities associated with the solvents used in the formulation of standard paclitaxel and to potentially improve efficacy. Nab-paclitaxel has demonstrated an advantage over solvent-based paclitaxel by being able to deliver a higher dose of paclitaxel to tumors and decrease the incidence of serious toxicities, including severe allergic reactions. To date, nab-paclitaxel has been indicated for the treatment of three solid tumors in the USA. It was first approved for the treatment of metastatic breast cancer in 2005, followed by locally advanced or metastatic non-small-cell lung cancer in 2012, and most recently for metastatic pancreatic cancer in 2013. Nab-paclitaxel is also under investigation for the treatment of a number of other solid tumors. This review highlights key clinical efficacy and safety outcomes of nab-paclitaxel in the solid tumors for which it is currently indicated, discusses ongoing trials that may provide new data for the expansion of nab-paclitaxel’s indications into other solid tumors, and provides a clinical perspective on the use of nab-paclitaxel in practice. PMID:26244011

  13. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy

    NASA Astrophysics Data System (ADS)

    Liu, Kuang-Kai; Zheng, Wen-Wei; Wang, Chi-Ching; Chiu, Yu-Chung; Cheng, Chia-Liang; Lo, Yu-Shiu; Chen, Chinpiao; Chao, Jui-I.

    2010-08-01

    A nanoparticle-conjugated cancer drug provides a novel strategy for cancer therapy. In this study, we manipulated nanodiamond (ND), a carbon nanomaterial, to covalently link paclitaxel for cancer drug delivery and therapy. Paclitaxel was bound to the surface of 3-5 nm sized ND through a succession of chemical modifications. The ND-paclitaxel conjugation was measured by atomic force microscope and nuclear magnetic resonance spectroscopy, and confirmed with infrared spectroscopy by the detection of deuterated paclitaxel. Treatment with 0.1-50 µg ml - 1 ND-paclitaxel for 48 h significantly reduced the cell viability in the A549 human lung carcinoma cells. ND-paclitaxel induced both mitotic arrest and apoptosis in A549 cells. However, ND alone or denatured ND-paclitaxel (after treatment with strong alkaline solution, 1 M NaOH) did not induce the damage effects on A549 cells. ND-paclitaxel was taken into lung cancer cells in a concentration-dependent manner using flow cytometer analysis. The ND-paclitaxel particles were located in the microtubules and cytoplasm of A549 cells observed by confocal microscopy. Furthermore, ND-paclitaxel markedly blocked the tumor growth and formation of lung cancer cells in xenograft SCID mice. Together, we provide a functional covalent conjugation of ND-paclitaxel, which can be delivered into lung carcinoma cells and preserves the anticancer activities on the induction of mitotic blockage, apoptosis and anti-tumorigenesis.

  14. Enabling Anticancer Therapeutics by Nanoparticle Carriers: The Delivery of Paclitaxel

    PubMed Central

    Liu, Yongjin; Zhang, Bin; Yan, Bing

    2011-01-01

    Anticancer drugs, such as paclitaxel (PTX), are indispensable for the treatment of a variety of malignancies. However, the application of most drugs is greatly limited by the low water solubility, poor permeability, or high efflux from cells. Nanoparticles have been widely investigated to enable drug delivery due to their low toxicity, sustained drug release, molecular targeting, and additional therapeutic and imaging functions. This review takes paclitaxel as an example and compares different nanoparticle-based delivery systems for their effectiveness in cancer chemotherapy. PMID:21845085

  15. Enabling anticancer therapeutics by nanoparticle carriers: the delivery of Paclitaxel.

    PubMed

    Liu, Yongjin; Zhang, Bin; Yan, Bing

    2011-01-01

    Anticancer drugs, such as paclitaxel (PTX), are indispensable for the treatment of a variety of malignancies. However, the application of most drugs is greatly limited by the low water solubility, poor permeability, or high efflux from cells. Nanoparticles have been widely investigated to enable drug delivery due to their low toxicity, sustained drug release, molecular targeting, and additional therapeutic and imaging functions. This review takes paclitaxel as an example and compares different nanoparticle-based delivery systems for their effectiveness in cancer chemotherapy. PMID:21845085

  16. SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice

    PubMed Central

    Neesse, Albrecht; Frese, Kristopher K; Chan, Derek S; Bapiro, Tashinga E; Howat, William J; Richards, Frances M; Ellenrieder, Volker; Jodrell, Duncan I; Tuveson, David A

    2014-01-01

    Design Pharmacokinetic and pharmacodynamic parameters of cremophor-paclitaxel, nab-paclitaxel (human-albumin-bound paclitaxel, Abraxane) and a novel mouse-albumin-bound paclitaxel (m-nab-paclitaxel) were evaluated in genetically engineered mouse models (GEMMs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), histological and biochemical analysis. Preclinical evaluation of m-nab-paclitaxel included assessment by three-dimensional high-resolution ultrasound and molecular analysis in a novel secreted protein acidic and rich in cysteine (SPARC)-deficient GEMM of pancreatic ductal adenocarcinoma (PDA). Results nab-Paclitaxel exerted its antitumoural effects in a dose-dependent manner and was associated with less toxicity compared with cremophor-paclitaxel. SPARC nullizygosity in a GEMM of PDA, KrasG12D;p53flox/−;p48Cre (KPfC), resulted in desmoplastic ductal pancreas tumours with impaired collagen maturation. Paclitaxel concentrations were significantly decreased in SPARC null plasma samples and tissues when administered as low-dose m-nab-paclitaxel. At the maximally tolerated dose, SPARC deficiency did not affect the intratumoural paclitaxel concentration, stromal deposition and the immediate therapeutic response. Conclusions nab-Paclitaxel accumulates and acts in a dose-dependent manner. The interaction of plasma SPARC and albumin-bound drugs is observed at low doses of nab-paclitaxel but is saturated at therapeutic doses in murine tumours. Thus, this study provides important information for future preclinical and clinical trials in PDA using nab-paclitaxel in combination with novel experimental and targeted agents. PMID:24067278

  17. Novel free paclitaxel-loaded poly(L-?-glutamylglutamine)-paclitaxel nanoparticles.

    PubMed

    Yang, Danbo; Van, Sang; Jiang, Xinguo; Yu, Lei

    2011-01-01

    The purpose of this study was to develop a novel formulation of paclitaxel (PTX) that would improve its therapeutic index. Here, we combined a concept of polymer-PTX drug conjugate with a concept of polymeric micelle drug delivery to form novel free PTX-loaded poly(L-?-glutamylglutamine) (PGG)-PTX conjugate nanoparticles. The significance of this drug formulation emphasizes the simplicity, novelty, and flexibility of the method of forming nanoparticles that contain free PTX and conjugated PTX in the same drug delivery system. The results of effectively inhibiting tumor growth in mouse models demonstrated the feasibility of the nanoparticle formulation. The versatility and potential of this dual PTX drug delivery system can be explored with different drugs for different indications. Novel and simple formulations of PTX-loaded PGG-PTX nanoparticles could have important implications in translational medicines. PMID:21289985

  18. Sunitinib Plus Paclitaxel Versus Bevacizumab Plus Paclitaxel for First-Line Treatment of Patients With Advanced Breast Cancer: A Phase III, Randomized, Open-Label Trial

    PubMed Central

    Robert, Nicholas J.; Saleh, Mansoor N.; Paul, Devchand; Generali, Daniele; Gressot, Laurent; Copur, Mehmet S.; Brufsky, Adam M.; Minton, Susan E.; Giguere, Jeffrey K.; Smith, John W.; Richards, Paul D.; Gernhardt, Diana; Huang, Xin; Liau, Katherine F.; Kern, Kenneth A.; Davis, John

    2015-01-01

    Introduction A multicenter, open-label phase III study was conducted to test whether sunitinib plus paclitaxel prolongs progression-free survival (PFS) compared with bevacizumab plus paclitaxel as first-line treatment for patients with HER2? advanced breast cancer. Patients and Methods Patients with HER2? advanced breast cancer who were disease free for ? 12 months after adjuvant taxane treatment were randomized (1:1; planned enrollment 740 patients) to receive intravenous (I.V.) paclitaxel 90 mg/m2 every week for 3 weeks in 4-week cycles plus either sunitinib 25 to 37.5 mg every day or bevacizumab 10 mg/kg I.V. every 2 weeks. Results The trial was terminated early because of futility in reaching the primary endpoint as determined by the independent data monitoring committee during an interim futility analysis. At data cutoff, 242 patients had been randomized to sunitinib-paclitaxel and 243 patients to bevacizumab-paclitaxel. Median PFS was shorter with sunitinib-paclitaxel (7.4 vs. 9.2 months; hazard ratio [HR] 1.63 [95% confidence interval (CI), 1.182.25]; 1-sided P = .999). At a median follow-up of 8.1 months, with 79% of sunitinib-paclitaxel and 87% of bevacizumab-paclitaxel patients alive, overall survival analysis favored bevacizumab-paclitaxel (HR 1.82 [95% CI, 1.162.86]; 1-sided P = .996). The objective response rate was 32% in both arms, but median duration of response was shorter with sunitinib-paclitaxel (6.3 vs. 14.8 months). Bevacizumab-paclitaxel was better tolerated than sunitinib-paclitaxel. This was primarily due to a high frequency of grade 3/4, treatment-related neutropenia with sunitinib-paclitaxel (52%) precluding delivery of the prescribed doses of both drugs. Conclusion The sunitinib-paclitaxel regimen evaluated in this study was clinically inferior to the bevacizumab-paclitaxel regimen and is not a recommended treatment option for patients with advanced breast cancer. PMID:21569994

  19. Spleen Tyrosine Kinase Confers Paclitaxel Resistance in Ovarian Cancer.

    PubMed

    Wei, Wei; Birrer, Michael J

    2015-07-13

    Adaptive chemoresistance and consequent tumor recurrence present major obstacles to the improvement of the prognosis and quality-of-life of patients with advanced-stage ovarian cancer. In this issue of Cancer Cell, Yu and colleagues describe the critical role of spleen tyrosine kinase (SYK) in paclitaxel resistance by modulating the stability of microtubules. PMID:26175410

  20. Arsenic Trioxide Suppresses Paclitaxel-Induced Mitotic Arrest

    PubMed Central

    Duan, Qing; Komissarova, Elena; Dai, Wei

    2014-01-01

    To human health, arsenic exhibits the property of a double-edged sword. Arsenic compounds such as As2O3 is effective for the treatment of relapsed/refractory acute promyelocytic leukemia, whereas chronic exposure to environmental arsenic is associated with the development of a variety of common cancers. Because As2O3 is capable of inhibiting tubulin polymerization and inducing mitotic arrest, we examined whether there existed any functional interaction between As2O3 and paclitaxel, a well-known microtubule poison. Flow cytometry and fluorescence microscopy revealed that although As2O3 alone caused a moderate level of mitotic arrest, it greatly attenuated paclitaxel-induced mitotic arrest in cells with p53 deficiency. Western blot analysis showed that As2O3 significantly blocked phosphorylation of BubR1, Cdc20, and Cdc27 in cells treated with paclitaxel, suggesting that arsenic compromised the activation of the spindle checkpoint. Our further studies revealed that the attenuation of paclitaxel-induced mitotic arrest by As2O3 resulted primarily from sluggish cell cycle progression at S phase but not enhanced mitotic exit. The clinical efficacy of taxol is associated with its ability to induce mitotic arrest and subsequent mitotic catastrophe. Our observations that As2O3 has a negative impact on the cell cycle checkpoint activation by taxol should have significant clinical implications. PMID:19397590

  1. Evaluation of lercanidipine in Paclitaxel-induced neuropathic pain model in rat: a preliminary study.

    PubMed

    Saha, Lekha; Hota, Debasish; Chakrabarti, Amitava

    2012-01-01

    Objective. To demonstrate the antinociceptive effect of lercanidipine in paclitaxel-induced neuropathy model in rat. Materials and Methods. A total of 30 rats were divided into five groups of six rats in each group as follows: Gr I: 0.9% NaCl, Gr II: paclitaxel?+?0.9% NaCl, Gr III: paclitaxel?+?lercanidipine 0.5??g/kg, Gr IV: paclitaxel?+?lercanidipine 1??g/kg, and Gr V: paclitaxel?+?lercanidipine 2.5??g/kg. Paclitaxel-induced neuropathic pain in rat was produced by single intraperitoneal (i.p.) injection of 1?mg/kg of paclitaxel on four alternate days (0, 2, 4, and 6). The tail flick and cold allodynia methods were used for assessing the pain threshold, and the assessments were done on days 0 (before first dose of paclitaxel) and on days 7, 14, 21, and 28. Results. There was a significant decrease (P < 0.001) in the tail flick and cold allodynia latency in the paclitaxel-alone group from day 14 onward when compared with day 0. In the lercanidipine groups, the decrease in the tail flick and cold allodynia latency was not observed in 1.0 and 2.5??g/kg groups and it was statistically significant (P < 0.01) when compared with paclitaxel-alone group. PMID:22550574

  2. Arsenic Trioxide Promotes Paclitaxel Cytotoxicity in Resistant Breast Cancer Cells.

    PubMed

    Bakhshaiesh, Tayebeh Oghabi; Armat, Marzie; Shanehbandi, Dariush; Sharifi, Simin; Baradaran, Behzad; Hejazi, Mohammad Saeed; Samadi, Nasser

    2015-01-01

    A partial response or resistance to chemotherapeutic agents is considered as a main obstacle in treatment of patients with cancer, including breast cancer. Refining taxane-based treatment procedures using adjuvant or combination treatment is a novel strategy to increase the efficiency of chemotherapy. PPM1D is a molecule activated by reactive oxygen species. whose expression is reported to modulate the recruitment of DNA repair molecules. In this study we examined the impact of arsenic trioxide on efficacy of paclitaxel-induced apoptosis in paclitaxel-resistant MCF-7 cells. We also investigated the expression of PPM1D and TP53 genes in response to this combination treatment. Resistant cells were developed from the parent MCF-7 cell line by applying increasing concentrations of paclitaxel. MTT assays were applied to determine the rate of cell survival. DAPI staining using fluorescent microscopy was employed to study apoptotic bodies. Real-time RT-PCR analysis was also applied to determine PPM1D mRNA levels. Our results revealed that combination of arsenic trioxide and paclitaxel elevates the efficacy of the latter in induction of apoptosis in MCF-7/PAC resistant cells. Applying arsenic trioxide also caused significant decreases in PPM1D mRNA levels (p<0.05). Our findings suggest that arsenic trioxide increases paclitaxel-induced apoptosis by down regulation of PPM1D expression. PPM1D dependent signaling can be considered as a novel target to improve the efficacy of chemotherapeutic agents in resistant breast cancer cells. PMID:26225652

  3. Synthesis of Paclitaxel. 1. Synthesis of the ABC Ring of Paclitaxel by SmI2-Mediated Cyclization.

    PubMed

    Fukaya, Keisuke; Tanaka, Yuta; Sato, Ayako C; Kodama, Keisuke; Yamazaki, Hirohisa; Ishimoto, Takeru; Nozaki, Yasuyoshi; Iwaki, Yuki M; Yuki, Yohei; Umei, Kentaro; Sugai, Tomoya; Yamaguchi, Yu; Watanabe, Ami; Oishi, Takeshi; Sato, Takaaki; Chida, Noritaka

    2015-06-01

    A convergent synthesis of the ABC ring of antitumor natural product paclitaxel (Taxol) is described. SmI2-mediated reductive cyclization of an allylic benzoate possessing an aldehyde function, synthesized from tri-O-acetyl-d-glucal and 1,3-cyclohexanedione, smoothly afforded the highly strained 6-8-6 tricarbocyclic structure in 66% yield. PMID:26010812

  4. Subcutaneous administration of paclitaxel in dogs with cancer: A preliminary study

    PubMed Central

    Silva, Daniella M.; Franciosi, Aline I.; Pezzini, Paula C.F.; Guérios, Simone D.

    2015-01-01

    Intravenous paclitaxel has been underused in dogs due to severe and acute hypersensitivity reactions. Subcutaneous (SC) administration of paclitaxel and its safety are unknown. In this preliminary study, SC administration of paclitaxel was evaluated for hypersensitivity reactions and toxicity in 21 dogs with advanced cancer. Dogs received 1 to 5 paclitaxel doses, ranging from 85 to 170 mg/m2, SC every 14 or 21 days. A total of 40 paclitaxel doses were administered and none of the 21 dogs developed systemic or acute local hypersensitivity reactions. Severe skin lesions at the injection site developed in 2 dogs after the 4th injection at the same location. Grade 4 neutropenia was observed in 50% of the dogs 5 days after the first treatment at 115 mg/m2 (n = 14). Two animals developed Grade 5 diarrhea and died likely due to hemodynamic failure or sepsis. Paclitaxel can be administered SC in dogs with no hypersensitivity reaction. PMID:26246628

  5. Combined Delivery of Paclitaxel and Tanespimycin via Micellar Nanocarriers: Pharmacokinetics, Efficacy and Metabolomic Analysis

    PubMed Central

    Wang, Yingzhe; Teng, Quincy; Tan, Chalet

    2013-01-01

    Background Despite the promising anticancer efficacy observed in preclinical studies, paclitaxel and tanespimycin (17-AAG) combination therapy has yielded meager responses in a phase I clinical trial. One serious problem associated with paclitaxel/17-AAG combination therapy is the employment of large quantities of toxic organic surfactants and solvents for drug solubilization. The goal of this study was to evaluate a micellar formulation for the concurrent delivery of paclitaxel and 17-AAG in vivo. Methodology/Principal Findings Paclitaxel/17-AAG-loaded micelles were assessed in mice bearing human ovarian tumor xenografts. Compared with the free drugs at equivalent doses, intravenous administration of paclitaxel/17-AAG-loaded micelles led to 3.5- and 1.7-fold increase in the tumor concentrations of paclitaxel and 17-AAG, respectively, without significant altering drug levels in normal organs. The enhanced tumor accumulation of the micellar drugs was further confirmed by the whole-body near infrared imaging using indocyanine green-labeled micelles. Subsequently, the anticancer efficacy of paclitaxel/17-AAG-loaded micelles was examined in comparison with the free drugs (weekly 20 mg/kg paclitaxel, twice-weekly 37.5 mg/kg 17-AAG). We found that paclitaxel/17-AAG-loaded micelles caused near-complete arrest of tumor growth, whereas the free drug-treated tumors experienced rapid growth shortly after the 3-week treatment period ended. Furthermore, comparative metabolomic profiling by proton nuclear magnetic resonance revealed significant decrease in glucose, lactate and alanine with simultaneous increase in glutamine, glutamate, aspartate, choline, creatine and acetate levels in the tumors of mice treated with paclitaxel/17-AAG-loaded micelles. Conclusions/Significance We have demonstrated in the current wok a safe and efficacious nano-sized formulation for the combined delivery of paclitaxel and 17-AAG, and uncovered unique metabolomic signatures in the tumor that correlate with the favorable therapeutic response to paclitaxel/17-AAG combination therapy. PMID:23505544

  6. miR-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo

    PubMed Central

    Holleman, Amy; Chung, Ivy; Olsen, Rachelle R.; Kwak, Brian; Mizokami, Atsushi; Saijo, Nagahiro; Parissenti, Amadeo; Duan, Zhenfeng; Voest, Emile E.; Zetter, Bruce R.

    2013-01-01

    Cancer cell resistance to paclitaxel continues to be a major clinical problem. In this study, we utilized miRNA arrays to screen for differentially expressed miRNAs in paclitaxel-resistant cell lines established in vitro. We observed concordant upregulation of miR-135a in paclitaxel-resistant cell lines representing three human malignancies. Subsequently, the role of miRNA-135a was evaluated in an in vivo model of paclitaxel resistance. In this model, mice were inoculated subcutaneously with a non-small cell lung carcinoma cell line and treated with paclitaxel for a prolonged period. In paclitaxel-resistant cell lines, established either in vitro or in vivo, blockage of miR-135a sensitized resistant cell lines to paclitaxel-induced cell death. We further demonstrated a correlation between paclitaxel response and miR-135a expression in paclitaxel-resistant subclones that were established in vivo. The paclitaxel-resistant phenotype of these subclones was maintained upon retransplantation in new mice as shown by decreased tumor response upon paclitaxel treatment compared to controls. Upregulation of miR-135a was associated with reduced expression of the adenomatous polyposis coli gene (APC). APC knockdown increased paclitaxel resistance in parental cell lines. Our results indicate that paclitaxel resistance is associated with upregulation of miR-135a both in vitro and in vivo, and is in part mediated by miR-135a-mediated downregulation of APC. PMID:21552288

  7. Vasodilatation in the rat dorsal hindpaw induced by activation of sensory neurons is reduced by paclitaxel.

    PubMed

    Gracias, N G; Cummins, T R; Kelley, M R; Basile, D P; Iqbal, T; Vasko, M R

    2011-01-01

    Peripheral neuropathy is a major side effect following treatment with the cancer chemotherapeutic drug paclitaxel. Whether paclitaxel-induced peripheral neuropathy is secondary to altered function of small diameter sensory neurons remains controversial. To ascertain whether the function of the small diameter sensory neurons was altered following systemic administration of paclitaxel, we injected male Sprague Dawley rats with 1mg/kg paclitaxel every other day for a total of four doses and examined vasodilatation in the hindpaw at day 14 as an indirect measure of calcitonin gene related peptide (CGRP) release. In paclitaxel-treated rats, the vasodilatation induced by either intradermal injection of capsaicin into the hindpaw or electrical stimulation of the sciatic nerve was significantly attenuated in comparison to vehicle-injected animals. Paclitaxel treatment, however, did not affect direct vasodilatation induced by intradermal injection of methacholine or CGRP, demonstrating that the blood vessels' ability to dilate was intact. Paclitaxel treatment did not alter the compound action potentials or conduction velocity of C-fibers. The stimulated release of CGRP from the central terminals in the spinal cord was not altered in paclitaxel-injected animals. These results suggest that paclitaxel affects the peripheral endings of sensory neurons to alter transmitter release, and this may contribute to the symptoms seen in neuropathy. PMID:20932997

  8. Paclitaxel stimulates chromosomal fusion and instability in cells with dysfunctional telomeres: Implication in multinucleation and chemosensitization

    SciTech Connect

    Park, Jeong-Eun; Woo, Seon Rang; Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705 ; Kang, Chang-Mo; Juhn, Kyoung-Mi; Ju, Yeun-Jin; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun Ran; Park, In-chul; Hong, Sung Hee; Hwang, Sang-Gu; Lee, Jung-Kee; Kim, Hae Kwon; Cho, Myung-Haing; Park, Gil Hong; Lee, Kee-Ho

    2011-01-14

    Research highlights: {yields} Paclitaxel serves as a stimulator of chromosomal fusion in cells in which telomeres are dysfunctional. {yields} Typical fusions involve p-arms, but paclitaxel-induced fusions occur between both q- and p-arms. {yields} Paclitaxel-stimulated fusions in cells in which telomeres are dysfunctional evoke prolonged G2/M cell cycle arrest and delay multinucleation. {yields} Upon telomere erosion, paclitaxel promotes chromosomal instability and subsequent apoptosis. {yields} Chromosomal fusion enhances paclitaxel chemosensitivity under telomere dysfunction. -- Abstract: The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, and eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.

  9. Paclitaxel-induced peripheral neuropathy increases substance P release in rat spinal cord.

    PubMed

    Chiba, Terumasa; Oka, Yusuke; Kambe, Toshie; Koizumi, Naoya; Abe, Kenji; Kawakami, Kazuyoshi; Utsunomiya, Iku; Taguchi, Kyoji

    2016-01-01

    Peripheral neuropathy is a common adverse effect of paclitaxel treatment. The major dose-limiting side effect of paclitaxel is peripheral sensory neuropathy, which is characterized by painful paresthesia of the hands and feet. To analyze the contribution of substance P to the development of paclitaxel-induced mechanical hyperalgesia, substance P expression in the superficial layers of the rat spinal dorsal horn was analyzed after paclitaxel treatment. Behavioral assessment using the von Frey test and the paw thermal test showed that intraperitoneal administration of 2 and 4mg/kg paclitaxel induced mechanical allodynia/hyperalgesia and thermal hyperalgesia 7 and 14 days after treatment. Immunohistochemistry showed that paclitaxel (4mg/kg) treatment significantly increased substance P expression (37.63.7% on day 7, 43.64.6% on day 14) in the superficial layers of the spinal dorsal horn, whereas calcitonin gene-related peptide (CGRP) expression was unchanged. Moreover, paclitaxel (2 and 4mg/kg) treatment significantly increased substance P release in the spinal cord on day 14. These results suggest that paclitaxel treatment increases release of substance P, but not CGRP in the superficial layers of the spinal dorsal horn and may contribute to paclitaxel-induced painful peripheral neuropathy. PMID:26658369

  10. Stopping paclitaxel premedication after two doses in patients not experiencing a previous infusion hypersensitivity reaction

    PubMed Central

    Vargo, Craig; Vincent, Mary; Shaver, Katy; Phillips, Gary; Layman, Rachel; Macrae, Erin; Mrozek, Ewa; Ramaswamy, Bhuvaneswari; Wesolowski, Robert; Shapiro, Charles L.; Lustberg, Maryam B.

    2016-01-01

    Purpose Paclitaxel-based chemotherapy continues to be an integral component of breast cancer treatment. Prolonged use of paclitaxel may result in repeated doses of premedications that can have unwanted side effects. Infusion hypersensitivity reactions occurring beyond the second dose of paclitaxel are infrequent and not well characterized. We previously published the results of a small, prospective pilot trial demonstrating the safety and feasibility of discontinuing premedications in patients who received the first two doses of paclitaxel-based chemotherapy without experiencing an infusion hypersensitivity reaction. In this study, we aimed to retrospectively characterize the incidence of rescue medication using this abbreviated premedication regimen in our institution following the publication of the pilot study. Methods Patients with stages I–IV breast cancer who received paclitaxel from January 2011 through June 2013 were screened for eligibility. Patients who did not experience an infusion hypersensitivity reaction with their first or second dose of paclitaxel and discontinued paclitaxel premedication for subsequent doses were included in this analysis. The primary endpoint was to estimate the incidence of rescue medication use for the treatment of paclitaxel infusion hypersensitivity during doses three to six of paclitaxel in the study population. Results In total, 449 patients received paclitaxel-based chemotherapy for the treatment of breast cancer during the interval time period. After receiving the first two doses of paclitaxel-based chemotherapy without experiencing an infusion hypersensitivity reaction, 234 breast cancer patients had their premedications discontinued for all remaining paclitaxel doses. These patients tolerated future paclitaxel doses without severe or life-threatening complications related to infusion hypersensitivity. The majority of patients did not have any symptoms of an infusion reaction, with only two of these patients requiring rescue medication to treat an infusion hypersensitivity reaction with subsequent paclitaxel doses (0.85; 95% confidence interval (CI), 0.10–3.05%). Conclusions Discontinuation of paclitaxel premedications in breast cancer patients who have not experienced an infusion hypersensitivity reaction with the first two doses of paclitaxel is not associated with increased rate of rescue medication use for infusion hypersensitivity. PMID:25519756

  11. Label-free detection of anticancer drug paclitaxel in living cells by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Derely, L.; Vegh, A.-G.; Durand, J.-C.; Gergely, C.; Larroque, C.; Fauroux, M.-A.; Cuisinier, F. J. G.

    2013-03-01

    Confocal Raman microscopy, a non-invasive, label-free, and high spatial resolution imaging technique is employed to trace the anticancer drug paclitaxel in living Michigan Cancer Foundation-7 (MCF-7) cells. The Raman images were treated by K-mean cluster analysis to detect the drug in cells. Distribution of paclitaxel in cells is verified by calculating the correlation coefficient between the reference spectrum of the drug and the whole Raman image spectra. A time dependent gradual diffusion of paclitaxel all over the cell is observed suggesting a complementary picture of the pharmaceutical action of this drug based on rapid binding of free tubulin to crystallized paclitaxel.

  12. Paclitaxel-coated balloons and aneurysm formation in peripheral vessels.

    PubMed

    Diamantopoulos, Athanasios; Gupta, Yuri; Zayed, Hany; Katsanos, Konstantinos

    2015-11-01

    We report two cases of early aneurysmal vessel dilatation after a paclitaxel-coated balloon (PCB) was used for angioplasty of the peripheral vessels. The first case refers to a failing vein bypass with a tight proximal anastomotic stenosis, whereas the second refers to a distal tibial artery occlusion. A PCB was used to treat both patients. Aneurysmal dilatation of the previously treated segment was noted in both patients during subsequent follow-up imaging. In the absence of other causal factors, we attribute both cases to PCB application. The aneurysms that formed had no detrimental effect on the patients' health and required no further treatment; however, it is important to bear in mind this potential risk of presumed paclitaxel toxicity. PMID:24801552

  13. Bilateral Cystoid Macular Edema Secondary to Paclitaxel Treatment.

    PubMed

    Tezcan, Yilmaz; Surmeli, Mustafa; Tastekin, Didem; Koc, Mehmet

    2015-09-01

     Cystoid macular edema is rarely observed secondary to paclitaxel treatment. A 55-year-old female patient was applied five cures of paclitaxel and carboplatin chemotherapy after being diagnosed with metastatic ovarian cancer. The patient had a normal bilateral vision prior to the chemotherapy treatments. After the fifth cure, the patient complained of bilateral vision loss, which was more severe in the left eye. Ophthalmologic examination revealed that right eye vision was 4/10 blurred without glasses and 7/10 blurred with glasses, left eye vision was 1/10 blurred without glasses and 4/10 blurred with glasses. Pathology was not detected during the biomicroscopic examination. Fundus examination of the patient revealed pigment epithelium irregularity, which was found to be less in the right eye, and it was found a decrease in foveal cavity. For fundus examination, the patient underwent fundus fluorescein angiography (FFA) and optical coherence tomography (OCT). FFA revealed fluorescein leakage and cystoid appearance particularly more apparent in the left eye. Thickening in the macula and cystoid space was observed particularly more in the left eye in the OCT measurement. In conclusion, we presented our case as a rarely observed cystoid macular edema secondary to paclitaxel treatment. PMID:26317603

  14. Metastatic extramammary Paget's disease responding to weekly paclitaxel.

    PubMed

    Phuoc, Vania; Grothey, Axel

    2015-01-01

    Metastatic extramammary Paget's disease (EMPD) is a rare cancer with no validated systemic treatment. Regimens including FECOM 5-fluorouracil (5-FU, epirubicin, carboplatin, vincristine and mitomycin C), 5-FU/cisplatin and single agent docetaxel exhibited varying levels of efficacy in case reports. A 58-year-old man with EMPD diffusely metastatic to bone presented with worsening shortness of breath, significant pancytopenia and disseminated intravascular coagulation (DIC). He was started on low-dose heparin for the DIC and weekly paclitaxel. Initially requiring almost daily transfusions, his shortness of breath improved after two doses of paclitaxel, and he became transfusion-independent after only three doses. Correlating with his disease course, the patient's prepaclitaxel carcinoembryonic antigen level of 62.1?ng/mL decreased to 7.4?ng/mL on 3-month follow-up, and he showed no progression of disease on imaging. With no validated chemotherapy regimen currently, this case can help guide consideration of paclitaxel in future treatment of metastatic EMPD. PMID:25903204

  15. Effect of paclitaxel (TAXOL) alone and in combination with radiation on the gastrointestinal mucosa

    SciTech Connect

    Mason, K.A.; Milas, L.; Peters, L.J.

    1995-07-30

    Paclitaxel is a potentially useful drug for augmenting the cytotoxic action of radiotherapy because it has independent cytotoxic activity against certain cancers and blocks cells in the radiosensitive mitotic phase of the cell cycle. However, all rapidly proliferating tissues, both normal and neoplastic, may be affected by this therapeutic strategy. The aim of this study was to define the in vivo response of rapidly dividing cells of the small bowel mucosa in mice to paclitaxel given alone and in combination with radiation. Paclitaxel blocked jejunal crypt cells in mitosis and induced apoptosis in a dose-dependent manner. Fractionating the paclitaxel dose over 1-4 days did not result in any greater accumulation of mitotically blocked cells than did a single dose. Mitosis peaked 2-4 h after paclitaxel and returned to near normal by 24 h. Apoptosis lagged several hours behind mitosis and peaked about 6 h later than mitosis. Despite these kinetic perturbations, there was little or no enhancement of radiation effect when single doses were delivered 2-4 h after paclitaxel administration. The maximum sensitizer enhancement ratio of 1.07 observed after a single paclitaxel dose of 40 mg/kg is consistent with independent crypt cell killing. Conversely, when radiation was given 24 h after paclitaxel, a significant protective effect of the drug (SER 0.89-0.92), most probably due to a regenerative overshoot induced by paclitaxel, was observed. Stem cells of the jejunal mucosa determining radiation response were not radiosensitized by paclitaxel with the drug concentrations and dose deliver schedules used, although additive cytotoxicity was observed with the highest drug dose. A radioprotective effect was observed when radiation was given 24 h after paclitaxel administration. 33 refs., 4 figs., 3 tabs.

  16. Paclitaxel resistance increases oncolytic adenovirus efficacy via upregulated CAR expression and dysfunctional cell cycle control.

    PubMed

    Ingemarsdotter, Carin K; Tookman, Laura A; Browne, Ashley; Pirlo, Katrina; Cutts, Rosalind; Chelela, Claude; Khurrum, Karisma F; Leung, Elaine Y L; Dowson, Suzanne; Webber, Lee; Khan, Iftekhar; Ennis, Darren; Syed, Nelofer; Crook, Tim R; Brenton, James D; Lockley, Michelle; McNeish, Iain A

    2015-04-01

    Resistance to paclitaxel chemotherapy frequently develops in ovarian cancer. Oncolytic adenoviruses are a novel therapy for human malignancies that are being evaluated in early phase trials. However, there are no reliable predictive biomarkers for oncolytic adenovirus activity in ovarian cancer. We investigated the link between paclitaxel resistance and oncolytic adenovirus activity using established ovarian cancer cell line models, xenografts with de novo paclitaxel resistance and tumour samples from two separate trials. The activity of multiple Ad5 vectors, including dl922-947 (E1A CR2-deleted), dl1520 (E1B-55K deleted) and Ad5 WT, was significantly increased in paclitaxel resistant ovarian cancer in vitro and in vivo. This was associated with greater infectivity resulting from increased expression of the primary receptor for Ad5, CAR (coxsackie adenovirus receptor). This, in turn, resulted from increased CAR transcription secondary to histone modification in resistant cells. There was increased CAR expression in intraperitoneal tumours with de novo paclitaxel resistance and in tumours from patients with clinical resistance to paclitaxel. Increased CAR expression did not cause paclitaxel resistance, but did increase inflammatory cytokine expression. Finally, we identified dysregulated cell cycle control as a second mechanism of increased adenovirus efficacy in paclitaxel-resistant ovarian cancer. Ad11 and Ad35, both group B adenoviruses that utilise non-CAR receptors to infect cells, are also significantly more effective in paclitaxel-resistant ovarian cell models. Inhibition of CDK4/6 using PD-0332991 was able both to reverse paclitaxel resistance and reduce adenovirus efficacy. Thus, paclitaxel resistance increases oncolytic adenovirus efficacy via at least two separate mechanisms - if validated further, this information could have future clinical utility to aid patient selection for clinical trials. PMID:25560085

  17. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different CalciumRegulating Mechanisms Depending on External Calcium Conditions

    PubMed Central

    Pan, Zhi; Avila, Andrew; Gollahon, Lauren

    2014-01-01

    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an Enhanced Calcium Efflux mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxels stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis. PMID:24549172

  18. Tumor-selective peptide-carrier delivery of Paclitaxel increases in vivo activity of the drug

    PubMed Central

    Brunetti, Jlenia; Pillozzi, Serena; Falciani, Chiara; Depau, Lorenzo; Tenori, Eleonora; Scali, Silvia; Lozzi, Luisa; Pini, Alessandro; Arcangeli, Annarosa; Menichetti, Stefano; Bracci, Luisa

    2015-01-01

    Taxanes are highly effective chemotherapeutic drugs against proliferating cancer and an established option in the standard treatment of ovarian and breast cancer. However, treatment with paclitaxel is associated with severe side effects, including sensory axonal neuropathy, and its poor solubility in water complicates its formulation. In this paper we report the in vitro and in vivo activity of a new form of paclitaxel, modified for conjugation with a tumor-selective tetrabranched peptide carrier (NT4). NT4 selectively targets tumor cells by binding to membrane sulfated glycosaminoglycans (GAG) and to endocytic receptors, like LRP1 and LRP6, which are established tumor markers. Biological activity of NT4-paclitaxel was tested in vitro on MDA-MB 231 and SKOV-3 cell lines, representing breast and ovarian cancer, respectively, and in vivo in an orthotopic mouse model of human breast cancer. Using in vivo bioluminescence imaging, we found that conjugation of paclitaxel with the NT4 peptide led to increased therapeutic activity of the drug in vivo. NT4-paclitaxel induced tumor regression, whereas treatment with unconjugated paclitaxel only produced a reduction in tumor growth. Moreover, unlike paclitaxel, NT4-paclitaxel is very hydrophilic, which may improve its pharmacokinetic profile and allow the use of less toxic dilution buffers, further decreasing its general chemotherapic toxicity. PMID:26626158

  19. MiR-125a promotes paclitaxel sensitivity in cervical cancer through altering STAT3 expression.

    PubMed

    Fan, Z; Cui, H; Yu, H; Ji, Q; Kang, L; Han, B; Wang, J; Dong, Q; Li, Y; Yan, Z; Yan, X; Zhang, X; Lin, Z; Hu, Y; Jiao, S

    2016-01-01

    Cervical cancer (CC) is one of the most common malignancies in women. Paclitaxel is the front-line chemotherapeutic agent for treating CC. However, its therapeutic efficacy is limited because of chemoresistance, the mechanism of which remains poorly understood. Here, we used microRNA (miRNA) arrays to compare miRNA expression levels in the CC cell lines, HeLa and CaSki, with their paclitaxel resistance counterparts, HeLa/PR and CaSki/PR. We demonstrate that miR-125a was one of most significantly downregulated miRNAs in paclitaxel-resistant cells, which also acquired cisplatin resistance. And that the upregulation of miR-125a sensitized HeLa/PR and CaSki/PR cells to paclitaxel both in vitro and in vivo and to cisplatin in vitro. Moreover, we determined that miR-125a increased paclitaxel and cisplatin sensitivity by downregulating STAT3. MiR-125a enhanced paclitaxel and cisplatin sensitivity by promoting chemotherapy-induced apoptosis. Clinically, miR-125a expression was associated with an increased responsiveness to paclitaxel combined with cisplatin and a more favorable outcome. These data indicate that miR-125a may be a useful method to enable treatment of chemoresistant CC and may also provide a biomarker for predicting paclitaxel and cisplatin responsiveness in CC. PMID:26878391

  20. Restoration of paclitaxel resistance by CDK1 intervention in drug-resistant ovarian cancer.

    PubMed

    Bae, Taejeong; Weon, Kwon-Yeon; Lee, Jeong-Won; Eum, Ki-Hwan; Kim, Sungchul; Choi, Jin Woo

    2015-12-01

    Epithelial ovarian cancer (EOC) commonly acquires resistance to chemotherapy, and this is the major obstacle to the better prognosis. Elucidating the molecular targets altered by chemotherapy is critically required to understand and overcome drug resistance. As a drug combination including paclitaxel is a prevalent prescription for treatment of EOC, to uncover gene expression altered in paclitaxel-resistant EOC, we analyzed multidirectional microarray profiles in both EOC cell lines and patients with paclitaxel resistance. Cyclin-dependent kinase 1 (CDK1) was found to be a potential target of transcription factors to regulate paclitaxel resistance. As a result of the subsequent pharmacogenomics analysis, CDK1 inhibitor alsterpaullone was also indicated as a promising chemical that may be used in combinatorial therapies to reverse paclitaxel-induced chemoresistance. Although a CDK1 inhibitor has the potential to kill cancer cells, short-term treatment over 2 weeks at sublethal doses effectively induced cell death only upon additional treatment with paclitaxel. A prominent reduction in the tumor growth rate was observed upon paclitaxel subsequent to alsterpaullone treatment in EOC xenograft model. Thus, we suggest that inhibition of CDK1 with alsterpaullone may be a novel therapeutic method to reverse paclitaxel-induced resistance in ovarian cancer cells. PMID:26442525

  1. Preparation and biological activity of a paclitaxel-single-walled carbon nanotube complex.

    PubMed

    Fu, X D; Zhang, Y Y; Wang, X J; Shou, J X; Zhang, Z Z; Song, L J

    2014-01-01

    Single-walled carbon nanotubes (SWCNTs) have unique transmembrane abilities. The huge superficial area and abundance of π electrons confer SWCNTs perfect absorptive capability toward proteins, nucleates, and many drugs. These characteristics make SWCNTs a new and efficient drug carrier. The purpose of this study was to disperse SWCNTs in water and have paclitaxel absorbed onto them in order to construct an asparagine-glycine-arginine (NGR)-SWCNT-Paclitaxel complex as a targeting nanoparticle system. The NGR-SWCNT-Paclitaxel complex was systematically studied, and analytical methods, including spectrophotometry for SWCNTs and high-performance liquid chromatography for paclitaxel, were employed. The preparation and the prescription of the NGR-SWCNT-Paclitaxel complex lyophilized powder were investigated. MCF-7 cancer cells, Sprague-Dawley rats, and S180 tumor-bearing mice were used as experimental subjects to evaluate the in vitro and in vivo activity of NGR-SWCNT-Paclitaxel complex dispersion. The complex dispersion showed obvious inhibition activity against MCF-7 cancer cells. Within 1 h, the NGR-SWCNT-Paclitaxel complex could be transferred to cells, and sustained the release of drugs. In addition, the tumor and liver targeting and improved therapeutic effects of the NGR-SWCNT-Paclitaxel complex were confirmed. PMID:24668633

  2. Localized delivery of paclitaxel using elastic liposomes: formulation development and evaluation.

    PubMed

    Utreja, Puneet; Jain, Subheet; Tiwary, A K

    2011-07-01

    In the present study an elastic liposomes-based paclitaxel formulation was developed with the objective to remove Cremophor EL. Cremophor EL is currently used for solubilizing paclitaxel in the marketed formulation and is known to produce toxic effects. Elastic liposomal paclitaxel formulation was extensively characterized in vitro, ex-vivo, and in vivo. The results obtained were compared against the marketed paclitaxel formulation. The maximum amount of paclitaxel loaded in the elastic liposomal formulation was found to be 6.0 mg/ml, which is similar to the commercial strength of marketed paclitaxel formulation. In vitro skin permeation and deposition studies showed 10.8-fold enhanced steady state transdermal flux and 15.0-fold enhanced drug deposition in comparison to drug solution. These results further confirmed with the vesicle-skin interaction study using FTIR technique. Results of the hemolytic toxicity assay indicate that elastic liposomal formulation induced only 11.2 0.2% hemolysis in comparison to the commercial formulation which showed 38 3.0%. Further, results of the Draize test showed no skin irritation of paclitaxel elastic liposomal formulation. Findings of the study demonstrate that elastic liposomes as a carrier is an attractive approach for localized delivery of paclitaxel. PMID:21428706

  3. Tumor-selective peptide-carrier delivery of Paclitaxel increases in vivo activity of the drug.

    PubMed

    Brunetti, Jlenia; Pillozzi, Serena; Falciani, Chiara; Depau, Lorenzo; Tenori, Eleonora; Scali, Silvia; Lozzi, Luisa; Pini, Alessandro; Arcangeli, Annarosa; Menichetti, Stefano; Bracci, Luisa

    2015-01-01

    Taxanes are highly effective chemotherapeutic drugs against proliferating cancer and an established option in the standard treatment of ovarian and breast cancer. However, treatment with paclitaxel is associated with severe side effects, including sensory axonal neuropathy, and its poor solubility in water complicates its formulation. In this paper we report the in vitro and in vivo activity of a new form of paclitaxel, modified for conjugation with a tumor-selective tetrabranched peptide carrier (NT4). NT4 selectively targets tumor cells by binding to membrane sulfated glycosaminoglycans (GAG) and to endocytic receptors, like LRP1 and LRP6, which are established tumor markers. Biological activity of NT4-paclitaxel was tested in vitro on MDA-MB 231 and SKOV-3 cell lines, representing breast and ovarian cancer, respectively, and in vivo in an orthotopic mouse model of human breast cancer. Using in vivo bioluminescence imaging, we found that conjugation of paclitaxel with the NT4 peptide led to increased therapeutic activity of the drug in vivo. NT4-paclitaxel induced tumor regression, whereas treatment with unconjugated paclitaxel only produced a reduction in tumor growth. Moreover, unlike paclitaxel, NT4-paclitaxel is very hydrophilic, which may improve its pharmacokinetic profile and allow the use of less toxic dilution buffers, further decreasing its general chemotherapic toxicity. PMID:26626158

  4. Enhancement of paclitaxel and carboplatin therapies by CCL2 blockade in ovarian cancers

    PubMed Central

    Moisan, Francois; Francisco, Edgar B.; Brozovic, Anamaria; Duran, George E.; Wang, Yan C.; Chaturvedi, Shalini; Seetharam, Shobha; Snyder, Linda A.; Doshi, Parul; Sikic, Branimir I.

    2016-01-01

    Ovarian cancer is associated with a leukocyte infiltrate and high levels of chemokines such as CCL2. We tested the hypothesis that CCL2 inhibition can enhance chemotherapy with carboplatin and paclitaxel. Elevated CCL2 expression was found in three non-MDR paclitaxel resistant ovarian cancer lines ES-2/TP, MES-OV/TP and OVCAR-3/TP, compared to parental cells. Mice xenografted with these cells were treated with the anti-human CCL2 antibody CNTO 888 and the anti-mouse MCP-1 antibody C1142, with and without paclitaxel or carboplatin. Our results show an additive effect of CCL2 blockade on the efficacy of paclitaxel and carboplatin. This therapeutic effect was largely due to inhibition of mouse stromal CCL2. We show that inhibition of CCL2 can enhance paclitaxel and carboplatin therapy of ovarian cancer. PMID:24816187

  5. In vitro and in vivo targeting effect of folate decorated paclitaxel loaded PLATPGS nanoparticles

    PubMed Central

    Thu, Ha Phuong; Nam, Nguyen Hoai; Quang, Bui Thuc; Son, Ho Anh; Toan, Nguyen Linh; Quang, Duong Tuan

    2015-01-01

    Paclitaxel is one of the most effective chemotherapeutic agents for treating various types of cancer. However, the clinical application of paclitaxel in cancer treatment is considerably limited due to its poor water solubility and low therapeutic index. Thus, it requires an urgent solution to improve therapeutic efficacy of paclitaxel. In this study, folate decorated paclitaxel loaded PLATPGS nanoparticles were prepared by a modified emulsification/solvent evaporation method. The obtained nanoparticles were characterized by Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared (FTIR) and Dynamic Light Scattering (DLS) method. The spherical nanoparticles were around 50nm in size with a narrow size distribution. Targeting effect of nanoparticles was investigated in vitro on cancer cell line and in vivo on tumor bearing nude mouse. The results indicated the effective targeting of folate decorated paclitaxel loaded copolymer nanoparticles on cancer cells both in vitro and in vivo. PMID:26702264

  6. Water-soluble prodrugs of paclitaxel containing self-immolative disulfide linkers.

    PubMed

    Gund, Machhindra; Khanna, Amit; Dubash, Nauzer; Damre, Anagha; Singh, Kishore S; Satyam, Apparao

    2015-01-01

    A new series of disulfide-containing prodrugs of paclitaxel were designed, synthesized and evaluated against 6 cancer cell lines. Some of these prodrugs exhibited nearly equal or slightly better anticancer activity when compared to that of paclitaxel. These prodrugs contain water-soluble groups such as amino, carboxyl, hydroxyl, amino acids, etc., and exhibited 6-140 fold increase in aqueous solubility when compared to paclitaxel. One of these prodrugs exhibited improved water solubility, better in vitro anticancer activity and significantly superior oral bioavailability in mice when compared to those of paclitaxel. Thus, we have identified a very promising lead compound for further optimization and evaluation as a potentially bioavailable water-soluble prodrug of paclitaxel. PMID:25466201

  7. Apoptosis induced by paclitaxel-loaded copolymer PLA-TPGS in Hep-G2 cells

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai Nam; Tran Thi, Hong Ha; Le Quang, Duong; Nguyen Thi, Toan; Tran Thi, Nhu Hang; Huong Le, Mai; Thu Ha, Phuong

    2012-12-01

    Paclitaxel is an important anticancer drug in clinical use for treatment of a variety of cancers. The clinical application of paclitaxel in cancer treatment is considerably limited due to its serious poor delivery characteristics. In this study paclitaxel-loaded copolymer poly(lactide)-d-?-tocopheryl polyethylene glycol 1000 succinate (PLA-TPGS) nanoparticles were prepared by a modified solvent extraction/evaporation technique. The characteristics of the nanoparticles, such as surface morphology, size distribution, zeta potential, solubility and apoptosis were investigated in vitro. The obtained spherical nanoparticles were negatively charged with a zeta potential of about -18 mV with the size around 44 nm and a narrow size distribution. The ability of paclitaxel-loaded PLA-TPGS nanoparticles to induce apoptosis in human hepatocellular carcinoma cell line (Hep-G2) indicates the possibility of developing paclitaxel nanoparticles as a potential universal cancer chemotherapeutic agent.

  8. In vitro and in vivo targeting effect of folate decorated paclitaxel loaded PLA-TPGS nanoparticles.

    PubMed

    Thu, Ha Phuong; Nam, Nguyen Hoai; Quang, Bui Thuc; Son, Ho Anh; Toan, Nguyen Linh; Quang, Duong Tuan

    2015-11-01

    Paclitaxel is one of the most effective chemotherapeutic agents for treating various types of cancer. However, the clinical application of paclitaxel in cancer treatment is considerably limited due to its poor water solubility and low therapeutic index. Thus, it requires an urgent solution to improve therapeutic efficacy of paclitaxel. In this study, folate decorated paclitaxel loaded PLA-TPGS nanoparticles were prepared by a modified emulsification/solvent evaporation method. The obtained nanoparticles were characterized by Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared (FTIR) and Dynamic Light Scattering (DLS) method. The spherical nanoparticles were around 50nm in size with a narrow size distribution. Targeting effect of nanoparticles was investigated in vitro on cancer cell line and in vivo on tumor bearing nude mouse. The results indicated the effective targeting of folate decorated paclitaxel loaded copolymer nanoparticles on cancer cells both in vitro and in vivo. PMID:26702264

  9. Pharmacological Modulation of the Mitochondrial Electron Transport Chain in Paclitaxel-Induced Painful Peripheral Neuropathy

    PubMed Central

    Griffiths, Lisa A.; Flatters, Sarah J.L.

    2015-01-01

    Paclitaxel is an effective first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Mitochondrial dysfunction and oxidative stress have been implicated in paclitaxel-induced painful neuropathy. Here we show the effects of pharmacological modulation of mitochondrial sites that produce reactive oxygen species using systemic rotenone (complex I inhibitor) or antimycin A (complex III inhibitor) on the maintenance and development of paclitaxel-induced mechanical hypersensitivity in adult male Sprague Dawley rats. The maximally tolerated dose (5 mg/kg) of rotenone inhibited established paclitaxel-induced mechanical hypersensitivity. However, some of these inhibitory effects coincided with decreased motor coordination; 3 mg/kg rotenone also significantly attenuated established paclitaxel-induced mechanical hypersensitivity without any motor impairment. The maximally tolerated dose (.6 mg/kg) of antimycin A reversed established paclitaxel-induced mechanical hypersensitivity without any motor impairment. Seven daily doses of systemic rotenone or antimycin A were given either after paclitaxel administration or before and during paclitaxel administration. Rotenone had no significant effect on the development of paclitaxel-induced mechanical hypersensitivity. However, antimycin A significantly inhibited the development of paclitaxel-induced mechanical hypersensitivity when given before and during paclitaxel administration but had no effect when given after paclitaxel administration. These studies provide further evidence of paclitaxel-evoked mitochondrial dysfunction in vivo, suggesting that complex III activity is instrumental in paclitaxel-induced pain. Perspective This study provides further in vivo evidence that mitochondrial dysfunction is a key contributor to the development and maintenance of chemotherapy-induced painful neuropathy. This work also indicates that selective modulation of the electron transport chain can induce antinociceptive effects in a preclinical model of paclitaxel-induced pain. PMID:26142652

  10. Treatment of recurrent and platinum-refractory stage IV non-small cell lung cancer with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) as a single agent.

    PubMed

    Saxena, Ashish; Schneider, Bryan J; Christos, Paul J; Audibert, Lauren F; Cagney, Jennifer M; Scheff, Ronald J

    2016-02-01

    The role of single-agent nab-paclitaxel in relapsed or platinum-refractory advanced non-small cell lung cancer (NSCLC) has not been well reported in Western populations. We reviewed our own institution's experience using nab-paclitaxel in these settings. We analyzed the records of stage IV NSCLC patients with relapsed or platinum-refractory disease treated with single-agent nab-paclitaxel at Weill Cornell Medical College between October 2008 and December 2013. The primary endpoint of the study was treatment failure-free survival (TFFS), defined as the time from the start of nab-paclitaxel therapy to discontinuation of the drug for any reason. The best overall response was recorded for each patient, and overall response and disease control rates were calculated. Thirty-one stage IV NSCLC patients received a median of 4 cycles (range 1-40) of nab-paclitaxel. Dose reduction or drug discontinuation due to toxicity occurred in 10 patients, mainly because of grade 2/3 fatigue or peripheral neuropathy. The overall response rate was 16.1%, and the disease control rate was 64.5%. Median TFFS was 3.5months (95% CI 1.3-5.3months). No statistically significant difference in TFFS based on line of therapy or prior taxane exposure was identified. There was a statistically significant decrease in TFFS for patients with non-adenocarcinoma histology, although there were only five patients in this group. There was a trend toward reduction in the risk of treatment failure with increasing age. One patient remained on nab-paclitaxel therapy for over 3years. Single-agent nab-paclitaxel was well tolerated and demonstrated efficacy in advanced NSCLC patients with relapsed or platinum-refractory disease. Further prospective clinical trials with nab-paclitaxel in these settings are warranted. PMID:26749586

  11. Pharmacokinetics and pharmacodynamics of nab-paclitaxel in patients with solid tumors: Disposition kinetics and pharmacology distinct from solvent-based paclitaxel

    PubMed Central

    Chen, Nianhang; Li, Yan; Ye, Ying; Palmisano, Maria; Chopra, Rajesh; Zhou, Simon

    2014-01-01

    The aim of this study was to characterize population pharmacokinetics and the exposure–neutropenia relationship with nanoparticle albumin-bound (nab)-paclitaxel in patients with solid tumors. Plasma and blood concentrations of paclitaxel and neutrophil data were collected from 150 patients with various solid tumors over the nab-paclitaxel dose range of 80–375 mg/m2. Data were analyzed using nonlinear mixed-effect modeling or logistic regression. Pharmacokinetics of nab-paclitaxel were described by a 3-compartment model with saturable distribution and elimination. The rapid disappearance of circulating paclitaxel was driven by its fast distribution to peripheral compartments; maximum rate for saturable distribution (325000 μg/h) was 40-fold greater than that for saturable elimination (8070 μg/h). Albumin was a significant covariate of paclitaxel elimination (P < .001), while total bilirubin, creatinine clearance, body size, age, sex, and tumor type had no significant or clinically relevant effect. The probability of experiencing a ≥50% reduction in neutrophils was best correlated to the duration above the drug concentration of 720 ng/mL. At a given exposure level, neutropenia development was positively correlated with increasing age but not significantly influenced by hepatic function, tumor type, sex, or dosing schedule. Covariate analyses supports exposure-matched dose adjustments in patients with moderate to severe hepatic impairment. PMID:24719309

  12. Evolving Evidence of the Efficacy and Safety of nab-Paclitaxel in the Treatment of Cancers with Squamous Histologies

    PubMed Central

    Loong, Herbert H.; Chan, Alvita C.Y.; Wong, Ashley C.Y.

    2016-01-01

    Taxanes, such as paclitaxel and docetaxel, are well-established cytotoxic chemotherapeutics used in the treatment of a variety of cancers, including those of squamous histology. In their formulation, both agents require solvents, which have been associated with hypersensitivity reactions, peripheral neuropathy, hepatic toxicities, and impaired drug delivery. nab-Paclitaxel is a novel, albumin-bound form of paclitaxel with improved tolerability, bioavailability, and efficacy compared with solvent-based paclitaxel. Currently, nab-paclitaxel is approved for the treatment of metastatic breast cancer, locally advanced/metastatic non-small cell lung cancer (NSCLC), and metastatic pancreatic cancer. Clinical studies suggest that nab-paclitaxel may be particularly effective in cancers with squamous histology, including NSCLC. This article reviews the emerging evidence supporting nab-paclitaxel as an effective agent in the treatment of malignancies of squamous histology. PMID:26918039

  13. Potentiation of paclitaxel activity by curcumin in human breast cancer cell by modulating apoptosis and inhibiting EGFR signaling.

    PubMed

    Zhan, Yingzhuan; Chen, Yinnan; Liu, Rui; Zhang, Han; Zhang, Yanmin

    2014-08-01

    It has been suggested that combined effect of natural products may improve the treatment effectiveness in combating proliferation of cancer cells. Here, we examined the combined anticancer activities of compounds of three natural origin including baicalein, curcumin, and resveratrol with chemotherapy drug paclitaxel respectively, which showed that combination of paclitaxel with curcumin exhibited synergistic growth inhibition and induced significant apoptosis in MCF-7 cell lines. Treatment of MCF-7 cell lines with paclitaxel and curcumin induced the apoptosis of regulatory protein Bcl-2 but decreased Bax expression. In addition, simultaneous treatment with paclitaxel and curcumin strongly inhibited paclitaxel-induced activities of EGFR signaling. Furthermore, the combination of paclitaxel and curcumin exerted increased anti-tumor efficacy on mouse models. Overall, our data described the promising therapeutic potential and underlying mechanisms of combining paclitaxel with curcumin in treating breast cancer. PMID:24318305

  14. Rescue of tau-induced synaptic transmission pathology by paclitaxel

    PubMed Central

    Erez, Hadas; Shemesh, Or A.; Spira, Micha E.

    2014-01-01

    Behavioral and electrophysiological studies of Alzheimers disease (AD) and other tauopathies have revealed that the onset of cognitive decline correlates better with synaptic dysfunctions than with hallmark pathologies such as extracellular amyloid-? plaques, intracellular hyperphosphorylated tau or neuronal loss. Recent experiments have also demonstrated that anti-cancer microtubule (MT)-stabilizing drugs can rescue tau-induced behavioral decline and hallmark neuron pathologies. Nevertheless, the mechanisms underlying tau-induced synaptic dysfunction as well as those involved in the rescue of cognitive decline by MTs-stabilizing drugs remain unclear. Here we began to study these mechanisms using the glutaminergic sensory-motoneuron synapse derived from Aplysia ganglia, electrophysiological methods, the expression of mutant-human tau (mt-htau) either pre or postsynaptically and the antimitotic drug paclitaxel. Expression of mt-htau in the presynaptic neurons led to reduced excitatory postsynaptic potential (EPSP) amplitude generated by rested synapses within 3 days of mt-htau expression, and to deeper levels of homosynaptic depression. mt-htau-induced synaptic weakening correlated with reduced releasable presynaptic vesicle pools as revealed by the induction of asynchronous neurotransmitter release by hypertonic sucrose solution. Paclitaxel totally rescued tau-induced synaptic weakening by maintaining the availability of the presynaptic vesicle stores. Postsynaptic expression of mt-htau did not impair the above described synaptic-transmission parameters for up to 5 days. Along with earlier confocal microscope observations from our laboratory, these findings suggest that tau-induced synaptic dysfunction is the outcome of impaired axoplasmic transport and the ensuing reduction in the releasable presynaptic vesicle stores rather than the direct effects of mt-htau or paclitaxel on the synaptic release mechanisms. PMID:24574970

  15. Orally Bioavailable Tubulin Antagonists for Paclitaxel-Refractory Cancer

    PubMed Central

    Li, Chien-Ming; Lu, Yan; Chen, Jianjun; Costello, Terrence A.; Narayanan, Ramesh; Dalton, Mara N.; Snyder, Linda M.; Ahn, Sunjoo; Li, Wei; Miller, Duane D.; Dalton, James T.

    2013-01-01

    Purpose To evaluate the efficacy and oral activity of two promising indoles, (2-(1H-indol-3-yl)-1H-imidazol-4-yl)(3,4,5-trimethoxyphenyl)methanone [compound II] and (2-(1H-indol-5-ylamino)-thiazol-4-yl)(3,4,5-trimethoxyphenyl)methanone [compound IAT], in paclitaxel- and docetaxel-resistant tumor models in vitro and in vivo. Methods The in vitro drug-like properties, including potency, solubility, metabolic stability, and drug-drug interactions were examined for our two active compounds. An in vivo pharmacokinetic study and antitumor efficacy study were also completed to compare their efficacy with docetaxel. Results Both compounds bound to the colchicine-binding site on tubulin, and inhibited tubulin polymerization, resulting in highly potent cytotoxic activity in vitro. While the potency of paclitaxel and docetaxel was compromised in a multidrug-resistant cell line that overexpresses P-glycoprotein, the potency of compounds II and IATwas maintained. Both compounds had favorable drug-like properties, and acceptable oral bioavailability (2150%) in mice, rats, and dogs. Tumor growth inhibition of greater than 100% was achieved when immunodeficient mice with rapidly growing paclitaxel-resistant prostate cancer cells were treated orally at doses of 330 mg/kg of II or IAT. Conclusions These studies highlight the potent and broad anticancer activity of two orally bioavailable compounds, offering significant pharmacologic advantage over existing drugs of this class for multidrug resistant or taxane-refractory cancers. PMID:22760659

  16. Changes in radiation survival curve parameters in human tumor and rodent cells exposed to Paclitaxel (TAXOL) (Taxol[reg sign])

    SciTech Connect

    Liebmann, J.; Cook, J.A.; Fisher, J.; Teague, D.; Mitchell, J.B. )

    1994-06-15

    Late G[sub 2] and M are the most radiosensitive phases of the cell cycle. Cells exposed to paclitaxel develop a cell cycle arrest in G[sub 2]/M. These studies were performed to assess the in vitro radiosensitization properties of paclitaxel in human tumor and rodent cell lines. The effect of paclitaxel on the radiation sensitivity of human breast (MCF-7), lung (A549), ovary (OVG-1) adenocarcinoma and Chinese hamster lung fibroblast V79 cells was determined with clonogenic assays. DNA flow cytometry studies were performed to define the cell cycle characteristics of the cells during irradiation. Survival curve parameters for all cell lines were determined with the use of a computer program which represents cell survival after radiation by a linear-quadratic model. All cell lines developed a G[sub 2]/M block after exposure to paclitaxel for 24 h. However, the degree of radiosensitization produced by paclitaxel varied among the cell lines. The maximal sensitizer enhancement ratio (SER) of paclitaxel was 1.8 in MCF-7 cells, 1.6 in OVG-1 cells, and 1.7 in V79 cells. However, no concentration of paclitaxel was able to enhance the radiation sensitivity of A549 cells. Paclitaxel increased the linear ([alpha]) component of the radiation survival curves in all cell lines. The quadratic ([beta]) component was unaffected by paclitaxel in the rodent cells. High concentrations of paclitaxel ([ge] 1000 nM) increased [beta] slightly in the human cell lines but there was considerable variation in the effect of paclitaxel on [beta]. The cells which were sensitized to radiation by paclitaxel had a relatively small baseline [alpha] component, while A549 cells had a large [alpha] component. The authors conclude that paclitaxel is a modest radiosensitizer in some, but not all, human tumor cells. Paclitaxel appears to cause radiosensitization mainly by increasing the [alpha] component of radiation survival curves. 16 refs., 3 figs., 2 tabs.

  17. Nsc23925 prevents the development of paclitaxel resistance by inhibiting the introduction of P-glycoprotein and enhancing apoptosis.

    PubMed

    Yang, Xiaoqian; Shen, Jacson; Gao, Yan; Feng, Yong; Guan, Yichun; Zhang, Zhan; Mankin, Henry; Hornicek, Francis J; Duan, Zhenfeng

    2015-10-15

    Strategies to prevent the emergence of drug resistance will increase the effectiveness of chemotherapy treatment and prolong survival of women with ovarian cancer. The aim of our study is to determine the effects of NSC23925 on preventing the development of paclitaxel resistance in ovarian cancer both in cultured cells in vitro and in mouse xenograft models in vivo, and to further elucidate these underlying mechanisms. We first developed a paclitaxel-resistant ovarian cancer cell line, and demonstrated that NSC23925 could prevent the introduction of paclitaxel resistance by specifically inhibiting the overexpression of P-glycoprotein (Pgp) in vitro. The paclitaxel-resistant ovarian cancer cells were then established in a mouse model by continuous paclitaxel treatment in combination with or without NSC23925 administration in the mice. The majority of mice continuously treated with paclitaxel alone eventually developed paclitaxel resistance with overexpression of Pgp and antiapoptotic proteins, whereas mice remained sensitivity to paclitaxel and displayed lower expression levels of Pgp and antiapoptotic proteins after administered continuously with combination of paclitaxel-NSC23925. Paclitaxel-NSC23925-treated mice experienced significantly longer overall survival time than paclitaxel-treated mice. Furthermore, the combination of paclitaxel and NSC23925 therapy did not induce obvious toxicity as measured by mice body weight changes, blood cell counts and histology of internal organs. Collectively, our observations provide evidence that NSC23925 in combination with paclitaxel may prevent the onset of Pgp or antiapoptotic-mediated paclitaxel resistance, and improve the long-term clinical outcome in patients with ovarian cancer. PMID:25904021

  18. Effects of Goshajinkigan, Hachimijiogan, and Rokumigan on Mechanical Allodynia Induced by Paclitaxel in Mice

    PubMed Central

    Andoh, Tsugunobu; Kitamura, Ryo; Fushimi, Hirotoshi; Komatsu, Katsuko; Shibahara, Naotoshi; Kuraishi, Yasushi

    2014-01-01

    Peripheral neuropathy is a major dose-limiting side effect of the chemotherapeutic agent paclitaxel. This study examined whether the three related traditional herbal formulations, goshajinkigan (GJG; ????? Ni Ch? Shn Q Wn), hachimijiogan (HJG; ????? B? Wi D Hung Wn), and rokumigan (RMG; ??? Li Wi Wn), would relieve paclitaxel-induced mechanical allodynia in mice. A single intraperitoneal injection of paclitaxel (5 mg/kg) induced mechanical allodynia, which peaked on day 14 after injection. On day 14 after paclitaxel injection, oral administration of GJG (0.1-1.0 g/kg) produced a significant inhibition of established allodynia, but HJG and RMG did not affect the allodynia. Repeated oral administration of GJG (0.1-1.0 g/kg) starting from the day after paclitaxel injection did not affect allodynia development, but significantly inhibited allodynia exacerbation. Repeated oral administration of HJG produced a slight inhibition of allodynia exacerbation, but that of RMG did not. These results suggest that prophylactic administration of GJG is effective in preventing the exacerbation of paclitaxel-induced allodynia. The herbal medicines Plantaginis Semen (??? Ch? Qin Z?) and Achyranthis Radix (?? Ni X?), which are present in GJG but not in HJG, may contribute to the inhibitory action of GJG on the exacerbation of paclitaxel-induced allodynia. PMID:25379475

  19. Development of New Lipid-Based Paclitaxel Nanoparticles Using Sequential Simplex Optimization

    PubMed Central

    Dong, Xiaowei; Mattingly, Cynthia A.; Tseng, Michael; Cho, Moo; Adams, Val R.; Mumper, Russell J.

    2008-01-01

    The objective of these studies was to develop Cremophor-free lipid-based paclitaxel (PX) nanoparticle formulations prepared from warm microemulsion precursors. To identify and optimize new nanoparticles, experimental design was performed combining Taguchi array and sequential simplex optimization. The combination of Taguchi array and sequential simplex optimization efficiently directed the design of paclitaxel nanoparticles. Two optimized paclitaxel nanoparticles (NPs) were obtained: G78 NPs composed of glyceryl tridodecanoate (GT) and polyoxyethylene 20-stearyl ether (Brij 78), and BTM NPs composed of Miglyol 812, Brij 78 and D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Both nanoparticles successfully entrapped paclitaxel at a final concentration of 150 ?g/ml (over 6% drug loading) with particle sizes less than 200 nm and over 85% of entrapment efficiency. These novel paclitaxel nanoparticles were stable at 4C over three months and in PBS at 37C over 102 hours as measured by physical stability. Release of paclitaxel was slow and sustained without initial burst release. Cytotoxicity studies in MDA-MB-231 cancer cells showed that both nanoparticles have similar anticancer activities compared to Taxol. Interestingly, PX BTM nanocapsules could be lyophilized without cryoprotectants. The lyophilized powder comprised only of PX BTM NPs in water could be rapidly rehydrated with complete retention of original physicochemical properties, in-vitro release properties, and cytotoxicity profile. Sequential Simplex Optimization has been utilized to identify promising new lipid-based paclitaxel nanoparticles having useful attributes. PMID:19111929

  20. Phase II and pharmacokinetic study of paclitaxel therapy for unresectable hepatocellular carcinoma patients.

    PubMed Central

    Chao, Y.; Chan, W. K.; Birkhofer, M. J.; Hu, O. Y.; Wang, S. S.; Huang, Y. S.; Liu, M.; Whang-Peng, J.; Chi, K. H.; Lui, W. Y.; Lee, S. D.

    1998-01-01

    Hepatocellular carcinoma (HCC) is a common lethal disease in Asia and there is no effective chemotherapy. Identification of new effective drugs in the treatment of inoperable HCC is urgently need. This is a phase II clinical study to investigate the efficacy, toxicity and pharmacokinetics of paclitaxel in HCC patients. Twenty patients with measurable, unresectable HCC, normal serum bilirubin, normal bone marrow and renal functions were studied. Paclitaxel 175 mg m(-2) was given intravenously over 3 h every 3 weeks. No complete or partial responses were observed. Five patients had stable disease. Major treatment toxicities (grade 3-4) were neutropenia (25%), thrombocytopenia (15%), infection (10%) and allergy (10%). Treatment-related deaths occurred in two patients. The median survival was 12 weeks (range 1-36). Paclitaxel is metabolized by the liver and the pharmacokinetics of paclitaxel in cancer patients with liver involvement or impairment may be important clinically. Pharmacokinetic study was completed in 13 HCC patients. The paclitaxel area under the curve was significantly increased (P < 0.02), clearance decreased (P < 0.02) and treatment-related deaths increased (P = 0.03) in patients with hepatic impairment. In conclusion, paclitaxel in this dose and schedule has no significant anti-cancer effect in HCC patients. Paclitaxel should be used with caution in cancer patients with liver impairment. PMID:9662247

  1. Modulation of paclitaxel resistance by annexin IV in human cancer cell lines.

    PubMed

    Han, E K; Tahir, S K; Cherian, S P; Collins, N; Ng, S C

    2000-07-01

    A recurring problem with cancer therapies is the development of drug resistance. While investigating the protein profile of cells resistant to a novel antimitotic compound (A204197), we discovered an increase in annexin IV expression. When we examined the annexin IV protein expression level in a paclitaxel-resistant cell line (H460/T800), we found that annexin IV was also overexpressed. Interestingly a closely related protein, annexin II, was not overexpressed in H460/T800 cells. Immunostaining with either annexin II or IV antibody revealed that annexin IV was primarily located in the nucleus of paclitaxel-resistant H460/T800 cells. Short-term treatment of H460 cells with 10 nM paclitaxel for up to 4 days resulted in induction of annexin IV, but not annexin II expression. In addition, there was an increase in annexin IV staining in the nucleus starting at day 1. Furthermore, cells pretreated with 10 nM paclitaxel for 4 days resulted in cells becoming approximately fivefold more resistant to paclitaxel. Transfection of annexin IV cDNA into 293T cells revealed that there was a threefold increase in paclitaxel resistance. Thus our results indicate that annexin IV plays a role in paclitaxel resistance in this cell line and it is among one of the earliest proteins that is induced in cells in response to cytotoxic stress such as antimitotic drug treatment. PMID:10883672

  2. Adverse drug reaction profile of nanoparticle versus conventional formulation of paclitaxel: An observational study

    PubMed Central

    Brahmachari, Ballari; Hazra, Avijit; Majumdar, Anup

    2011-01-01

    Objectives: Conventional polyethoxylated castor oil (PCO)-based paclitaxel is associated with major adverse drug reactions (ADRs). Nanoxel, a nanoparticle-based formulation, may improve its tolerability by removing the need for PCO vehicle, and also permit its use in a higher dose. We conducted intensive monitoring of the ADR profile of Nanoxel in comparison with conventional paclitaxel in a public tertiary care set-up. Materials and Methods: ADR data were collected from 10 patients receiving Nanoxel and 10 age-matched controls receiving conventional paclitaxel in this longitudinal observational study, conducted in a medical oncology ward over 18 months. Severity was graded as per US National Cancer Institute Common Terminology Criteria for Adverse Events. Results: The groups had comparable demography at baseline. The median disease duration and per cycle median dose of paclitaxel were greater in the Nanoxel arm. Total 119 ADRs were noted with Nanoxel and 123 with conventional paclitaxel. Of these, 25 (21.0%, 95% CI 13.69–28.33%) in the Nanoxel and 20 (16.2%, 95% CI 9.74–22.78%) in paclitaxel group were of grade 3/4 severity. Common events included myalgia, nausea, anemia, paresthesia, alopecia, diarrhea, and vomiting with Nanoxel, and paresthesia, anemia, myalgia, anorexia, alopecia, vomiting, diarrhea, stomatitis, and nausea with paclitaxel. Of the less common events (<5%), grade 2 or 3 arthralgia was seen exclusively with Nanoxel while motor neuropathy with muscular weakness was more frequent and severe with conventional paclitaxel. Hypersensitivity reactions were not encountered in either arm, although no antiallergy premedication was employed for Nanoxel. Conclusions: Despite its ADR profile being statistically comparable to conventional paclitaxel, this observational study suggests that Nanoxel tolerability could be better, considering that a significantly higher dose was employed. This hypothesis needs confirmation through an interventional study. PMID:21572644

  3. Characterization of paclitaxel (Taxol) sensitivity in human glioma- and medulloblastoma-derived cell lines.

    PubMed Central

    Tseng, S. H.; Bobola, M. S.; Berger, M. S.; Silber, J. R.

    1999-01-01

    Paclitaxel (Taxol), a cytotoxic natural product that disrupts microtubule integrity, is being clinically evaluated for use against gliomas. We examined paclitaxel-induced killing in seven cell lines derived from human malignant astrocytic gliomas and medulloblastomas with the goal of characterizing range of sensitivity, contribution of P-glycoprotein 170-mediated drug efflux to resistance, and cross-resistance with alkylating agents. Exposure to paclitaxel for 8 h or less produced biphasic survival curves for all lines, with 40-75% of cells comprising a subpopulation that was 9-26 times more resistant to paclitaxel than the more sensitive fraction. Increasing exposure to 24 h eliminated the resistant subpopulation, increasing sensitivity 50- to 400-fold. The dose producing one log of kill (LD10) after a 24-h exposure ranged from 4 to 18 nM, comparable to concentrations in the cerebrospinal fluid of brain tumor patients given a 3-h infusion of paclitaxel. Concurrent exposure to paclitaxel and either nimodipine or verapamil, inhibitors of P-glycoprotein activity, did not increase sensitivity, demonstrating that the fivefold range in sensitivity was not due to P-glycoprotein-mediated drug efflux. Importantly, there was no correlation between LD10 for paclitaxel and LD10 for 1,3-bis(2-chloroethyl)-1-nitrosourea, streptozotocin, and temozolomide, indicating no expression of cross-resistance to these different classes of tumoricidal agents. Our results suggest that greater clinical efficacy of paclitaxel against malignant brain tumors may be obtained by infusion for 24 h or longer and support the use of paclitaxel in combination with alkylating agents. PMID:11550305

  4. Prostate cancer cell response to paclitaxel is affected by abnormally expressed securin PTTG1.

    PubMed

    Castilla, Carolina; Flores, M Luz; Medina, Rafael; Prez-Valderrama, Begoa; Romero, Francisco; Tortolero, Mara; Japn, Miguel A; Sez, Carmen

    2014-10-01

    PTTG1 protein, the human securin, has a central role in sister chromatid separation during mitosis, and its altered expression has been reported in many tumor types. Paclitaxel is a widely used chemotherapeutic drug, whose mechanism of action is related to its ability to arrest cells in mitosis and the subsequent induction of the intrinsic apoptotic pathway. By using two prostate cancer cell lines with different responses to paclitaxel treatment, we have identified two situations in which PTTG1 influences cell fate differentially. In slippage-prone PC3 cells, both PTTG1 downregulation and overexpression induce an increase in mitotic cells that is associated with diminished apoptosis after paclitaxel treatment. In LNCaP cells, however, PTTG1 downregulation prevents mitotic entry and, subsequently, inhibits mitosis-associated, paclitaxel-induced apoptosis. In contrast, PTTG1 overexpression induces an increase in mitotic cells and apoptosis after paclitaxel treatment. We have also identified a role for Mcl-1 protein in preventing apoptosis during mitosis in PC3 cells, as simultaneous PTTG1 and Mcl-1 silencing enhances mitosis-associated apoptosis after paclitaxel treatment. The finding that a more efficient mitotic arrest alone in PC3 cells is not enough to increase apoptosis was also confirmed with the observation that a selected paclitaxel-resistant PC3 cell line showed an apoptosis-resistant phenotype associated with increased mitosis upon paclitaxel treatment. These findings could contribute to identify putative responsive and nonresponsive cells and help us to approach incomplete responses to paclitaxel in the clinical setting. PMID:25122070

  5. A Review of Paclitaxel and Novel Formulations Including Those Suitable for Use in Dogs.

    PubMed

    Khanna, C; Rosenberg, M; Vail, D M

    2015-01-01

    Paclitaxel is a commonly used chemotherapeutic agent with a broad spectrum of activity against cancers in humans. In 1992, paclitaxel was approved by the U.S. Food and Drug Administration (FDA) as Taxol() for use in advanced ovarian cancer. Two years later, it was approved for the treatment of metastatic breast cancer. Paclitaxel was originally isolated from the bark of the Pacific yew tree, Taxus brevifolia in 1971. Taxanes are a family of microtubule inhibitors. As a member of this family, paclitaxel suppresses spindle microtubule dynamics. This activity results in the blockage of the metaphase-anaphase transitions, and ultimately in the inhibition of mitosis, and induction of apoptosis in a wide spectrum of cancer cells. Additional anticancer activities of paclitaxel have been defined that are independent of these effects on the microtubules and may include the suppression of cell proliferation as well as antiangiogenic effects. Based on its targeting of a fundamental feature of the cancer phenotype, the mitotic complex, it is not surprising that paclitaxel has been found to be active in a wide variety of cancers in humans. This review summarizes the evidence in support of paclitaxel's broad anticancer activity and introduces the rationale for, and the progress in development of novel formulations of paclitaxel that may preferentially target cancers and that are not associated with the risks for hypersensitivity in dogs. Of note, a novel nanoparticle formulation of paclitaxel that substantially limits hypersensitivity was recently given conditional approval by the FDA Center for Veterinary Medicine for use in dogs with resectable and nonresectable squamous cell carcinoma and nonresectable stage III, IV and V mammary carcinoma. PMID:26179168

  6. Possibility of Mller Cell Dysfunction as the Pathogenesis of Paclitaxel Maculopathy.

    PubMed

    Nakao, Shintaro; Ikeda, Yasuhiro; Emi, Yasunori; Ishibashi, Tatsuro

    2016-01-01

    Cystoid macular edema (CME) without leakage is an adverse complication of paclitaxel administration in patients with cancer. However, the mechanism of non-leaking CME has been unclear. The authors report the case of a 66-year-old man who developed non-leaking CME during treatment with paclitaxel for gastric cancer. This case report suggests possible pathogenesis of paclitaxel-induced CME without evidence of leakage at angiography from the data of electroretinogram. [Ophthalmic Surg Imaging Lasers Retina. 2016;47:81-84.]. PMID:26731216

  7. Nanoparticle Albumin Bound Paclitaxel in the Treatment of Human Cancer: Nanodelivery Reaches Prime-Time?

    PubMed Central

    Cucinotto, Iole; Fiorillo, Lucia; Gualtieri, Simona; Arbitrio, Mariamena; Ciliberto, Domenico; Staropoli, Nicoletta; Grimaldi, Anna; Luce, Amalia; Tassone, Pierfrancesco; Caraglia, Michele; Tagliaferri, Pierosandro

    2013-01-01

    Nanoparticle albumin bound paclitaxel (nab-paclitaxel) represents the first nanotechnology-based drug in cancer treatment. We discuss the development of this innovative compound and report the recent changing-practice results in breast and pancreatic cancer. A ground-breaking finding is the demonstration that nab-paclitaxel can not only enhance the activity and reduce the toxicity of chromophore-diluted compound, but also exert activity in diseases considered refractory to taxane-based treatment. This is the first clinical demonstration of major activity of nanotechnologically modified drugs in the treatment of human neoplasms. PMID:23738077

  8. Nanoparticle albumin bound Paclitaxel in the treatment of human cancer: nanodelivery reaches prime-time?

    PubMed

    Cucinotto, Iole; Fiorillo, Lucia; Gualtieri, Simona; Arbitrio, Mariamena; Ciliberto, Domenico; Staropoli, Nicoletta; Grimaldi, Anna; Luce, Amalia; Tassone, Pierfrancesco; Caraglia, Michele; Tagliaferri, Pierosandro

    2013-01-01

    Nanoparticle albumin bound paclitaxel (nab-paclitaxel) represents the first nanotechnology-based drug in cancer treatment. We discuss the development of this innovative compound and report the recent changing-practice results in breast and pancreatic cancer. A ground-breaking finding is the demonstration that nab-paclitaxel can not only enhance the activity and reduce the toxicity of chromophore-diluted compound, but also exert activity in diseases considered refractory to taxane-based treatment. This is the first clinical demonstration of major activity of nanotechnologically modified drugs in the treatment of human neoplasms. PMID:23738077

  9. Promotion of mitotic catastrophe via activation of PTEN by paclitaxel with supplement of mulberry water extract in bladder cancer cells

    PubMed Central

    Chen, Nien-Cheng; Chyau, Charng-Cherng; Lee, Yi-Ju; Tseng, Hsien-Chun; Chou, Fen-Pi

    2016-01-01

    Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. Mulberry fruit is rich in phenolic compounds and flavonoids and exhibits chemopreventive activities. In this study, mulberry water extract (MWE) was used as a supplement to synergize with the effects of paclitaxel in the treatment of the TSGH 8301 human bladder cancer cell line. Treatment with paclitaxel combined with MWE (paclitaxel/MWE) enhanced the cytotoxicity of paclitaxel and induced severe G2/M arrest, mitotic catastrophe and subsequent apoptosis, as shown by MTT assay, HE staining and flow cytometry analyses. Differences in the expression and activation of Aurora A and Plk1between cells treated with paclitaxel/MWE and paclitaxel alone suggested that the combined treatment caused a defect in the early steps of cytokinesis. Paclitaxel/MWE decreased EEA1immunofluorescence staining and increased the expression of PTEN, indicating that the regimen inhibited the formation of the recycling endosome, which is required for cytokinesis. Paclitaxel/MWE also retarded tumor growth in a TSGH 8301 xenograft model via activation of PTEN and Caspase 3. These data demonstrated a synergistic effect on the anticancer efficacy of paclitaxel through MWE supplementation by promoting mitotic catastrophe through the activation of PTEN, providing a novel and effective therapeutic option for bladder cancer treatment strategies. PMID:26838546

  10. Promotion of mitotic catastrophe via activation of PTEN by paclitaxel with supplement of mulberry water extract in bladder cancer cells.

    PubMed

    Chen, Nien-Cheng; Chyau, Charng-Cherng; Lee, Yi-Ju; Tseng, Hsien-Chun; Chou, Fen-Pi

    2016-01-01

    Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. Mulberry fruit is rich in phenolic compounds and flavonoids and exhibits chemopreventive activities. In this study, mulberry water extract (MWE) was used as a supplement to synergize with the effects of paclitaxel in the treatment of the TSGH 8301 human bladder cancer cell line. Treatment with paclitaxel combined with MWE (paclitaxel/MWE) enhanced the cytotoxicity of paclitaxel and induced severe G2/M arrest, mitotic catastrophe and subsequent apoptosis, as shown by MTT assay, HE staining and flow cytometry analyses. Differences in the expression and activation of Aurora A and Plk1between cells treated with paclitaxel/MWE and paclitaxel alone suggested that the combined treatment caused a defect in the early steps of cytokinesis. Paclitaxel/MWE decreased EEA1immunofluorescence staining and increased the expression of PTEN, indicating that the regimen inhibited the formation of the recycling endosome, which is required for cytokinesis. Paclitaxel/MWE also retarded tumor growth in a TSGH 8301 xenograft model via activation of PTEN and Caspase 3. These data demonstrated a synergistic effect on the anticancer efficacy of paclitaxel through MWE supplementation by promoting mitotic catastrophe through the activation of PTEN, providing a novel and effective therapeutic option for bladder cancer treatment strategies. PMID:26838546

  11. Paclitaxel injection concentrate for nanodispersion versus nab-paclitaxel in women with metastatic breast cancer: a multicenter, randomized, comparative phase II/III study.

    PubMed

    Jain, Minish M; Gupte, Smita U; Patil, Shekhar G; Pathak, Anand B; Deshmukh, Chetan D; Bhatt, Niraj; Haritha, Chiramana; Govind Babu, K; Bondarde, Shailesh A; Digumarti, Raghunadharao; Bajpai, Jyoti; Kumar, Ravi; Bakshi, Ashish V; Bhattacharya, Gouri Sankar; Patil, Poonam; Subramanian, Sundaram; Vaid, Ashok K; Desai, Chirag J; Khopade, Ajay; Chimote, Geetanjali; Bapsy, Poonamalle P; Bhowmik, Shravanti

    2016-02-01

    Paclitaxel is widely used in the treatment of patients with metastatic breast cancer (MBC). Formulations of paclitaxel contain surfactants and solvents or albumin derived from human blood. The use of co-solvents such as polyoxyethylated castor oil is thought to contribute to toxicity profile and hypersensitivity reactions as well as leaching of plasticizers from polyvinyl chloride bags and infusion sets. Currently, nab-paclitaxel, an albumin-bound paclitaxel in nanometer range continues to be the preferred taxane formulation used in clinic. This study (CTRI/2010/091/001116) investigated the efficacy and tolerability of a polyoxyethylated castor oil- and albumin-free formulation of paclitaxel [paclitaxel injection concentrate for nanodispersion (PICN)] compared with nab-paclitaxel in women with refractory MBC. The current study was a multicenter, open-label, parallel-group, randomized, comparative phase II/III trial evaluating the efficacy and safety of PICN (260 mg/m(2) [n = 64] and 295 mg/m(2) [n = 58] every 3 weeks) compared with nab-paclitaxel (260 mg/m(2) every 3 weeks [n = 58]) in women 18 and 70 years old with confirmed MBC. Overall response rate (ORR) was assessed with imaging every 2 cycles. An independent analysis of radiologic data was performed for evaluable patients. Progression-free survival (PFS) was a secondary efficacy measure. Independent radiologist-assessed ORRs in the evaluable population of women aged ≥70 years were 35, 49, and 43 % in the PICN 260 mg/m(2), PICN 295 mg/m(2), and nab-paclitaxel 260 mg/m(2) arms, respectively. Median PFS in the evaluable population was 23, 35, and 34 weeks in the PICN 260 mg/m(2), PICN 295 mg/m(2), and nab-paclitaxel 260 mg/m(2) arms, respectively. Adverse events occurred in similar proportions of patients across treatment arms. Hypersensitivity reactions were not frequently observed with the clinical use of PICN across the treatment cohorts. In women with metastatic breast cancer, PICN at 260 and 295 mg/m(2) every 3 weeks was effective and well tolerated and showed similar tolerability compared with nab-paclitaxel 260 mg/m(2) every 3 weeks. Statistically, significant differences were not observed in the PICN and nab-paclitaxel treatment arms for radiologist-assessed ORR or median PFS. The novel paclitaxel formulation, PICN, offers apart from efficacy, potential safety advantage of decreased use of corticosteroid pretreatment and the absence of the risk of transmission of blood product-borne disease. PMID:26941199

  12. Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy

    NASA Astrophysics Data System (ADS)

    Namgung, Ran; Mi Lee, Yeong; Kim, Jihoon; Jang, Yuna; Lee, Byung-Heon; Kim, In-San; Sokkar, Pandian; Rhee, Young Min; Hoffman, Allan S.; Kim, Won Jong

    2014-05-01

    Effective anticancer therapy can be achieved by designing a targeted drug-delivery system with high stability during circulation and efficient uptake by the target tumour cancer cells. We report here a novel nano-assembled drug-delivery system, formed by multivalent host-guest interactions between a polymer-cyclodextrin conjugate and a polymer-paclitaxel conjugate. The multivalent inclusion complexes confer high stability to the nano-assembly, which efficiently delivers paclitaxel into the targeted cancer cells via both passive and active targeting mechanisms. The ester linkages between paclitaxel and the polymer backbone permit efficient release of paclitaxel within the cell by degradation. This novel targeted nano-assembly exhibits significant antitumour activity in a mouse tumour model. The strategy established in this study also provides knowledge for the development of advanced anticancer drug delivery.

  13. Design and synthesis of de novo cytotoxic alkaloids by mimicking the bioactive conformation of paclitaxel

    PubMed Central

    Sun, Liang; Veith, Jean M.; Pera, Paula; Bernacki, Ralph J.; Ojima, Iwao

    2010-01-01

    Novel paclitaxel-mimicking alkaloids were designed and synthesized based on a bioactive conformation of paclitaxel, i.e., REDOR-Taxol. The alkaloid 2 bearing a 5-7-6 tricyclic scaffold mimics REDOR-Taxol best among the compounds designed and was found to be the most potent compound against several drug-sensitive and drug-resistant human cancer cell lines. MD simulation study on the paclitaxel mimics 1 and 2 as well as REDOR-Taxol bound to the 1JFF tubulin structure was quite informative to evaluate the level of mimicking. The MD simulation study clearly distinguishes the 5-6-6 and 5-7-6 tricyclic scaffolds, and also shows substantial difference in the conformational stability of the tubulin-bound structures between 2 and REDOR-Taxol. The latter may account for the large difference in potency, and provides critical information for possible improvement in the future design of paclitaxel mimics. PMID:20800500

  14. Effect of genistein on the pharmacokinetics of paclitaxel administered orally or intravenously in rats.

    PubMed

    Li, Xiuguo; Choi, Jun-Shik

    2007-06-01

    As many anticancer agents paclitaxel is a substrate for ATP-binding cassette (ABC) transporters such as P-glycoprotein-mediated efflux, and its metabolism in humans mainly catalyzed by CYP 3A4 and 2C8. Genistein, an isoflavonoid, is supposed to be an inhibitor of some ABC transporters, and its oxidative metobolism catalyzed by CYP 3A4 and 2C8. The purpose of this study was to investigate the effect of orally administered genistein on the pharmacokinetics of paclitaxel administered through oral and intravenous (i.v.) route in rats. A single dose of paclitaxel administered orally (30 mg/kg) or i.v. (3mg/kg) alone or 30 min after oral administration of genistein (3.3mg/kg or 10mg/kg). The presence of 10mg/kg genistein significantly (p<0.05) increased the area under the plasma concentration-time curve (AUC, 54.7% greater) of orally administered paclitaxel, which was due to the significantly (p<0.05) decreased total plasma clearance (CL/F) of paclitaxel (35.2% lower). Genistein also increased the peak concentration (C(max)) of paclitaxel significantly (p<0.05 by 3.3mg/kg, 66.8% higher; p<0.01 by 10mg/kg, 91.8% higher). Consequently, the absolute bioavailability (F) of paclitaxel in the presence of genistein was 0.020-0.025, which was elevated more than the control group (0.016); and the relative bioavailability (Fr) of orally administered paclitaxel was increased from 1.26- to 1.55-fold. Ten milligrams per kilogram genistein also significantly (p<0.05) increased the AUC (40.5% greater) and reduced the total clearance (CLt, 30% lower) of i.v. administered paclitaxel. The presence of genistein improved the systemic exposure of paclitaxel in this study. The pharmacokinetic interaction between them should be taken into consideration when paclitaxel is used with genistein or the dietary supplements full of genistein. PMID:17267149

  15. Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning.

    PubMed

    Dorman, Stephanie N; Baranova, Katherina; Knoll, Joan H M; Urquhart, Brad L; Mariani, Gabriella; Carcangiu, Maria Luisa; Rogan, Peter K

    2016-01-01

    Increasingly, the effectiveness of adjuvant chemotherapy agents for breast cancer has been related to changes in the genomic profile of tumors. We investigated correspondence between growth inhibitory concentrations of paclitaxel and gemcitabine (GI50) and gene copy number, mutation, and expression first in breast cancer cell lines and then in patients. Genes encoding direct targets of these drugs, metabolizing enzymes, transporters, and those previously associated with chemoresistance to paclitaxel (n = 31 genes) or gemcitabine (n = 18) were analyzed. A multi-factorial, principal component analysis (MFA) indicated expression was the strongest indicator of sensitivity for paclitaxel, and copy number and expression were informative for gemcitabine. The factors were combined using support vector machines (SVM). Expression of 15 genes (ABCC10, BCL2, BCL2L1, BIRC5, BMF, FGF2, FN1, MAP4, MAPT, NFKB2, SLCO1B3, TLR6, TMEM243, TWIST1, and CSAG2) predicted cell line sensitivity to paclitaxel with 82% accuracy. Copy number profiles of 3 genes (ABCC10, NT5C, TYMS) together with expression of 7 genes (ABCB1, ABCC10, CMPK1, DCTD, NME1, RRM1, RRM2B), predicted gemcitabine response with 85% accuracy. Expression and copy number studies of two independent sets of patients with known responses were then analyzed with these models. These included tumor blocks from 21 patients that were treated with both paclitaxel and gemcitabine, and 319 patients on paclitaxel and anthracycline therapy. A new paclitaxel SVM was derived from an 11-gene subset since data for 4 of the original genes was unavailable. The accuracy of this SVM was similar in cell lines and tumor blocks (70-71%). The gemcitabine SVM exhibited 62% prediction accuracy for the tumor blocks due to the presence of samples with poor nucleic acid integrity. Nevertheless, the paclitaxel SVM predicted sensitivity in 84% of patients with no or minimal residual disease. PMID:26372358

  16. Prevention of Paclitaxel-Induced Neuropathy Through Activation of the Central Cannabinoid Type 2 Receptor System

    PubMed Central

    Naguib, Mohamed; Xu, Jijun J.; Diaz, Philippe; Brown, David L.; Cogdell, David; Bie, Bihua; Hu, Jianhua; Craig, Suzanne; Hittelman, Walter N.

    2012-01-01

    Background Peripheral neuropathy is a major dose-limiting toxicity of chemotherapy, especially after multiple courses of paclitaxel. The development of paclitaxel-induced neuropathy is associated with the activation of microglia followed by the activation and proliferation of astrocytes, and the expression and release of proinflammatory cytokines in the spinal dorsal horn. Cannabinoid type 2 (CB2) receptors are expressed in the microglia in neurodegenerative disease models. Methods To explore the potential of CB2 agonists for preventing paclitaxel-induced neuropathy, we designed and synthesized a novel CB2-selective agonist, namely MDA7. The effect of MDA7 in preventing paclitaxel-induced allodynia was assessed in rats and in CB2+/+ and CB2–/– mice. We hypothesize that the CB2 receptor functions in a negative-feedback loop and that early MDA7 administration can blunt the neuroinflammatory response to paclitaxel and prevent mechanical allodynia through interference with specific signaling pathways. Results We found that MDA7 prevents paclitaxel-induced mechanical allodynia in rats and mice in a dose- and time-dependent manner without compromising paclitaxel's antineoplastic effect. MDA7's neuroprotective effect was absent in CB2-/- mice and was blocked by CB2 antagonists, suggesting that MDA7's action directly involves CB2 receptor activation. MDA7 treatment was found to interfere with early events in the paclitaxel-induced neuroinflammatory response as evidenced by relatively reduced Toll-like receptor and CB2 expression in the lumbar spinal cord, reduced levels of extracellular signal regulated kinase 1/2 activity, reduced numbers of activated microglia and astrocytes, and reduced secretion of proinflammatory mediators in vivo and in in vitro models. Conclusions Our findings suggest an innovative therapeutic approach to prevent chemotherapy-induced neuropathy and may permit more aggressive use of active chemotherapeutic regimens with reduced long-term sequelae. PMID:22392969

  17. Effect of Paclitaxel on Antitumor Activity of Cyclophosphamide: Study on Two Transplanted Tumors in Mice.

    PubMed

    Kaledin, V I; Nikolin, V P; Popova, N A; Pyshnaya, I A; Bogdanova, L A; Morozkova, T S

    2015-11-01

    Antitumor effect of paclitaxel used as the monotherapy or in combination with cyclophosphamide was studied on CBA/LacSto mice with transplanted LS and RLS tumors characterized by high (LS) and low (RLS) sensitivity to cyclophosphamide. The therapeutic effects of cyclophosphamide and paclitaxel were summed in animals with drug-resistant RLS tumor, while combined use of these drugs in LS tumor highly sensitive to the apoptogenic effect of cyclophosphamide was no more effective than cyclophosphamide alone. PMID:26597686

  18. Polygenic Inheritance of Paclitaxel-Induced Sensory Peripheral Neuropathy Driven by Axon Outgrowth Gene Sets in CALGB 40101 (Alliance)

    PubMed Central

    Chhibber, Aparna; Mefford, Joel; Stahl, Eli A.; Pendergrass, Sarah A.; Baldwin, R. Michael; Owzar, Kouros; Li, Megan; Winer, Eric P.; Hudis, Clifford A.; Zembutsu, Hitoshi; Kubo, Michiaki; Nakamura, Yusuke; McLeod, Howard L.; Ratain, Mark J.; Shulman, Lawrence N.; Ritchie, Marylyn D.; Plenge, Robert M.; Witte, John S.; Kroetz, Deanna L.

    2014-01-01

    Peripheral neuropathy is a common dose-limiting toxicity for patients treated with paclitaxel. For most individuals there are no known risk factors that predispose patients to the adverse event, and pathogenesis for paclitaxel-induced peripheral neuropathy is unknown. Determining whether there is a heritable component to paclitaxel induced peripheral neuropathy would be valuable in guiding clinical decisions and may provide insight into treatment of and mechanisms for the toxicity. Using genotype and patient information from the paclitaxel arm of CALGB 40101 (Alliance), a phase III clinical trial evaluating adjuvant therapies for breast cancer in women, we estimated the variance in maximum grade and dose at first instance of sensory peripheral neuropathy. Our results suggest that paclitaxel-induced neuropathy has a heritable component, driven in part by genes involved in axon outgrowth. Disruption of axon outgrowth may be one of the mechanisms by which paclitaxel treatment results in sensory peripheral neuropathy in susceptible patients. PMID:24513692

  19. Cost-Benefit Analysis of Nanoparticle Albumin-Bound Paclitaxel versus Solvent-Based Paclitaxel for the Treatment of Metastatic Breast Cancer in the United States

    NASA Astrophysics Data System (ADS)

    Vichansavakul, Kittaya

    Breast cancer is the second leading cause of death among women in the US. Although early detection and treatment help to increase survival rates, some unfortunate patients develop metastatic breast cancer that has no cure. Palliative treatment is the main objective in this group of patients in order to prolong life and reduce toxicities from interventions. In the advancement of treatment for metastatic breast cancer, solvent-based paclitaxel has been widely used. However, solvent-based paclitaxel often causes adverse reactions. Therefore, researchers have developed a new chemotherapy based on nanotechnology. One of these drugs is the Nanoparticle albumin-bound Paclitaxel. This nanodrug aims to increase therapeutic index by reducing adverse reactions from solvents and to improve efficacy of conventional cytotoxic chemotherapy. Breast cancer is a disease with high epidemiological and economic burden. The treatment of metastatic breast cancer has not only high direct costs but also high indirect costs. Breast cancer affects mass populations, especially women younger than 50 years of age. It relates to high indirect costs due to lost productivity and premature death because the majority of these patients are in the workforce. Because of the high cost of breast cancer therapies and short survival rates, the question is raised whether the costs and benefits are worth paying or not. Due to the rising costs in healthcare and new financing policies that have been developed to address this issue, economic evaluation is an important aspect of the development and use of any new interventions. To guide policy makers on how to allocate limited healthcare resources in the most efficient and effective manner, many economic evaluation methods can be used to measure the costs, benefits, and impacts of healthcare innovations. Currently, economic evaluation and health outcomes studies have focused greatly on cost-effectiveness and cost-utility analysis. However, the previous studies had some limitations because they were conducted from a narrow perspective such as payer and provider point of views. The studies also considered only direct costs in their analysis. In fact, conducting economic evaluations from a narrow perspective and leaving out indirect costs might undermine the true benefit of the interventions for society. A cost-benefit analysis measures all costs and benefits in monetary units. It incorporates both health outcomes gained from individuals and the value gained to society in order to maximize the usage of resources effectively. This thesis conducted a cost-benefit analysis to compare nab-paclitaxel and generic paclitaxel in treating metastatic breast cancer from a societal perspective in the United States. The results showed that nab-paclitaxel is a cost-benefit strategy regardless of the different costs and benefits due to the extra 3 years of living it provides. In all models, when nab-paclitaxel was compared to generic paclitaxel, nab-paclitaxel showed cost-benefit to society. However, the results of generic paclitaxel were dependent on the total medical costs. Performing a cost-benefit analysis of nab-paclitaxel from a societal perspective is important to understand the true benefit of interventions. Furthermore, considering both direct and indirect costs, as well as benefits, of this drug is vital because the economic profile of nab-paclitaxel would be improved.

  20. Vaginal delivery of paclitaxel via nanoparticles with non-mucoadhesive surfaces suppresses cervical tumor growth

    PubMed Central

    Yang, Ming; Yu, Tao; Wang, Ying-Ying; Lai, Samuel K.; Zeng, Qi; Miao, Bolong; Tang, Benjamin C.; Simons, Brian W.; Ensign, Laura; Liu, Guanshu; Chan, Kannie W. Y.; Juang, Chih-Yin; Mert, Olcay; Wood, Joseph; Fu, Jie; McMahon, Michael T.; Wu, T.-C.; Hung, Chien-Fu; Hanes, Justin

    2014-01-01

    Local delivery of chemotherapeutics in the cervicovaginal tract using nanoparticles may reduce adverse side effects associated with systemic chemotherapy, while improving outcomes for early stage cervical cancer. We hypothesize drug-loaded nanoparticles must rapidly penetrate cervicovaginal mucus (CVM) lining the female reproductive tract to effectively deliver their payload to underlying diseased tissues in a uniform and sustained manner. We develop paclitaxel-loaded nanoparticles, composed entirely of polymers used in FDA-approved products, which rapidly penetrate human CVM and provide sustained drug release with minimal burst effect. We further employ a mouse model with aggressive cervical tumors established in the cervicovaginal tract to compare paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (conventional particles , or CP) and similar particles coated with Pluronic F127 (mucus-penetrating particles , or MPP). CP are mucoadhesive and, thus, aggregated in mucus, while MPP achieve more uniform distribution and close proximity to cervical tumors. Paclitaxel-MPP suppress tumor growth more effectively and prolong median survival of mice compared to free paclitaxel or paclitaxel-CP. Histopathological studies demonstrate minimal toxicity to the cervicovaginal epithelia, suggesting paclitaxel-MPP may be safe for intravaginal use. These results demonstrate for the first time the in vivo advantages of polymer-based MPP for treatment of tumors localized to a mucosal surface. PMID:24339398

  1. Effect of lipoic acid combined with paclitaxel on breast cancer cells.

    PubMed

    Li, B J; Hao, X Y; Ren, G H; Gong, Y

    2015-01-01

    Breast cancer is the most common gynecologic tumor globally that threatens women's health. Lipoic acid is a type of antioxidant that can alleviate oxidative stress damage. Studies showed that lipoic acid could inhibit the proliferation of tumor cells in cervical cancer and colon cancer. This paper intends to explore the combined effect of lipoic acid and paclitaxel on breast cancer cells. Breast cancer MCF-7 cells were divided into four groups: control group, lipoic acid group, paclitaxel group, and a combination group. MTT was applied to detect the drugs' influence on breast cancer cell proliferation. A colony formation test was used to determine the effects on breast cancer cell clone formation rate. Western blot was performed to detect the effects on nuclear factor (NF)-?B. Lipoic acid alone can inhibit tumor cell proliferation and clone formation with time dependence. Compared with the control, paclitaxel alone can significantly suppress tumor cell proliferation and clone formation (P < 0.05). Lipoic acid and paclitaxel in combination obviously strengthened their individual inhibitory effects on tumor cells (P < 0.05). Compared with the paclitaxel alone group, the combination group exhibited more remarkable inhibitory effect (P < 0.05). Lipoic acid alone or combined with paclitaxel can inhibit NF-?B expression and inhibit breast cancer cell proliferation. PMID:26782439

  2. Anticancer effects on TACC3 by treatment of paclitaxel in HPV-18 positive cervical carcinoma cells.

    PubMed

    Yim, Eun-Kyoung; Tong, Seo-Yun; Ho, Eun-Mi; Bae, Jeong-Hoon; Um, Soo-Jong; Park, Jong-Sup

    2009-02-01

    Previously, we used proteome analysis to identify transforming acidic coiled coil (TACC) 3 as a protein that is down-regulated upon paclitaxel treatment in cervical cancer cells. TACC3 mRNA and protein levels decreased after paclitaxel treatment in a time- and dose-dependent manner, and the transactivation of TACC3 promoter was dramatically diminished by paclitaxel. Importantly, paclitaxel treatment and knockdown of TACC3 by siRNA led to a synergistic enhancement of significant G2/M phase arrest and apoptosis in HeLa cells. In contrast to TACC3-deficient cells, paclitaxel treatment of mTACC3-overexpressing cells failed to induce G2/M phase arrest, cell growth inhibition, and apoptotic cell death. We studied the associated gene in mTACC overexpressed cells using microarray. From these results, numerous genes have been identified as being associated with tumor progression (Ppia, TMSB10, Annexin A2, rab31, prostaglandin E2-EP2, UHRF1), chemoresistance (Akt, Plk-1, MAP kinase) and metastasis (MMP9, PECAM-1) in mTACC3 overexpressed HeLa cells. Thus, TACC3 is thought to be the critical molecule in mediating the anticancer mechanisms of paclitaxel in p53 inactivated cells by inducing G2/M arrest and apoptosis. And our data suggested that the overexpression of TACC3 may be associated with the mechanisms of chemoresistance, tumor progression, cell proliferation and metastasis. PMID:19148534

  3. Human Mesenchymal Stem Cells Are Resistant to Paclitaxel by Adopting a Non-Proliferative Fibroblastic State

    PubMed Central

    Bosco, Dale B.; Kenworthy, Rachael; Zorio, Diego A. R.; Sang, Qing-Xiang Amy

    2015-01-01

    Human mesenchymal stem cell (hMSC) resistance to the apoptotic effects of chemotherapeutic drugs has been of major interest, as these cells can confer this resistance to tumor microenvironments. However, the effects of internalized chemotherapeutics upon hMSCs remain largely unexplored. In this study, cellular viability and proliferation assays, combined with different biochemical approaches, were used to investigate the effects of Paclitaxel exposure upon hMSCs. Our results indicate that hMSCs are highly resistant to the cytotoxic effects of Paclitaxel treatment, even though there was no detectable expression of the efflux pump P-glycoprotein, the usual means by which a cell resists Paclitaxel treatment. Moreover, Paclitaxel treatment induces hMSCs to adopt a non-proliferative fibroblastic state, as evidenced by changes to morphology, cellular markers, and a reduction in differentiation potential that is not directly coupled to the cytoskeletal effects of Paclitaxel. Taken together, our results show that Paclitaxel treatment does not induce apoptosis in hMSCs, but does induce quiescence and phenotypic changes. PMID:26029917

  4. A Rare Case of Paclitaxel and/or Trastuzumab Induced Acute Hepatic Necrosis.

    PubMed

    Mandaliya, Hiren; Baghi, Pinky; Prawira, Amy; George, Mathew K

    2015-01-01

    Paclitaxel induced mild derangement of liver functions including bilirubin, alkaline phosphatase, and AST has been infrequently noticed in clinical trials. Contrary to Paclitaxel, hepatocellular injury, hepatitis, and liver tenderness are common laboratory and clinical findings with Trastuzumab. However, hepatic failure/necrosis secondary to Paclitaxel or Trastuzumab has never been reported in literature. A 62-year-old lady, previously healthy, was treated with adjuvant therapy for left breast stage II, high grade invasive ductal carcinoma which was node negative, oestrogen receptor negative, progesterone receptor positive, and HER2 receptor positive. After modified radical mastectomy and axillary clearance, she finished four cycles of Doxorubicin/Cyclophosphamide chemotherapy and then commenced on Paclitaxel/Trastuzumab combination chemotherapy. Within twelve hours of first dose of Paclitaxel/Trastuzumab therapy, patient required hospital admission for acute onset respiratory failure. Patient died within 36 hours of therapy and autopsy was suggestive of acute hepatic necrosis without any other significant findings. Detailed investigations were not carried out as event was quick with rapid deterioration. There was no history of prior liver pathology/injury and preliminary investigations for major organ involvement were unremarkable. As per our knowledge, Paclitaxel and/or Trastuzumab induced acute hepatic necrosis has never been reported in literature before, hence difficult to predict. PMID:26605100

  5. Human mesenchymal stem cells are resistant to Paclitaxel by adopting a non-proliferative fibroblastic state.

    PubMed

    Bosco, Dale B; Kenworthy, Rachael; Zorio, Diego A R; Sang, Qing-Xiang Amy

    2015-01-01

    Human mesenchymal stem cell (hMSC) resistance to the apoptotic effects of chemotherapeutic drugs has been of major interest, as these cells can confer this resistance to tumor microenvironments. However, the effects of internalized chemotherapeutics upon hMSCs remain largely unexplored. In this study, cellular viability and proliferation assays, combined with different biochemical approaches, were used to investigate the effects of Paclitaxel exposure upon hMSCs. Our results indicate that hMSCs are highly resistant to the cytotoxic effects of Paclitaxel treatment, even though there was no detectable expression of the efflux pump P-glycoprotein, the usual means by which a cell resists Paclitaxel treatment. Moreover, Paclitaxel treatment induces hMSCs to adopt a non-proliferative fibroblastic state, as evidenced by changes to morphology, cellular markers, and a reduction in differentiation potential that is not directly coupled to the cytoskeletal effects of Paclitaxel. Taken together, our results show that Paclitaxel treatment does not induce apoptosis in hMSCs, but does induce quiescence and phenotypic changes. PMID:26029917

  6. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity

    PubMed Central

    2014-01-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery. PMID:24685243

  7. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Chang; Gould, Stephen; Nannini, Michelle; Qin, Ann; Deng, Yuzhong; Arrazate, Alfonso; Kam, Kimberly R.; Ran, Yingqing; Wong, Harvey

    2014-04-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.

  8. Reversible Posterior Leukoencephalopathy Syndrome Due to Carboplatin and Paclitaxel Therapy

    PubMed Central

    Kandemir, Melek; Kkkaya, Belgin; Tepe, Muzaffer Sava?; Yal?ner, Zehra Betl; Salepi, Nedret Taflan

    2015-01-01

    Background: Reversible posterior leukoencephalopathy syndrome (RPLS) is a clinicoradiologic syndrome characterized by headache, decreased alertness, seizures, visual abnormalities, and white matter changes indicative of cerebral edema. Although the pathogenesis remains poorly understood, several etiological causes have been described. RPLS is a common complication of chemotherapeutics because of its toxic effect on the central nervous system. This syndrome is frequently associated with seizures but rarely seen with status epilepticus and periodic lateralized epileptiform discharges (PLEDs). Case Report: We present a case with metastatic lung cancer that developed RPLS after carboplatin and paclitaxel therapy. Our case was admitted to the hospital with status epilepticus and her electroencephalography showed PLEDs. Conclusion: It is important to closely monitor blood pressure and electrolyte levels in patients who take chemotherapeutic agents, especially when there is no previous history of hypertension. It should be kept in mind that RPLS is a causative factor of status epilepticus and PLEDs. PMID:26740904

  9. Alteration of the mitochondrial apoptotic pathway is key to acquired paclitaxel resistance and can be reversed by ABT-737

    PubMed Central

    Kutuk, Ozgur; Letai, Anthony

    2008-01-01

    Paclitaxel is a microtubule-targeting antineoplastic drug widely used in human cancers. Even when tumors are initially responsive, progression of disease despite continued taxane therapy is all too common in the treatment of many of the most common epithelial cancers, including breast cancer. However, the mechanisms underlying paclitaxel resistance in cancer cells are not completely understood. Our hypothesis is that changes in the intrinsic (or mitochondrial) cell death pathway controlled by the BCL-2 family are key to the development of acquired paclitaxel resistance. Here we show that paclitaxel activates the mitochondrial apoptosis pathway, which can be blocked by BCL-2 overexpression. Treatment with ABT-737, a small molecule BCL-2 antagonist, restores sensitivity to paclitaxel in BCL-2 overexpressing cells. To investigate the importance of changes in the intrinsic apoptotic pathway in the absence of enforced BCL-2 expression, we generated two independent breast cancer cell lines with acquired resistance to apoptosis induced by paclitaxel. In these lines, acquired resistance to paclitaxel is mediated either by increased antiapoptotic BCL-2 proteins or decreased proapoptotic BCL-2 proteins. In both cases, ABT-737 can engage the mitochondrial apoptosis pathway to restore sensitivity to paclitaxel to cell lines with acquired paclitaxel resistance. In summary, these findings suggest that alterations in the intrinsic apoptotic pathway controlled by BCL-2 protein family members may be crucial to causing paclitaxel resistance. Furthermore, our results suggest that combining small molecule BCL-2 antagonists with paclitaxel may offer benefit to patients with paclitaxel-resistant tumors, an oncologic problem of great prevalence. PMID:18829556

  10. Mechanism of synergy of BH3 mimetics and paclitaxel in chronic myeloid leukemia cells: Mcl-1 inhibition.

    PubMed

    Song, Ting; Chai, Gaobo; Liu, Yubo; Xie, Mingzhou; Chen, Qingbin; Yu, Xiaoyan; Sheng, Hongkun; Zhang, Zhichao

    2015-04-01

    Paclitaxel is an alternative chemotherapeutic agent for chronic myelogenous leukemia (CML) when primary or secondary resistance of tyrosine kinase inhibitors (TKI) is emerging, because paclitaxel could bypass the apoptotic deficiencies linked to p53 and fas ligand pathways in CML. However, high levels of Bcl-2 family proteins in CML could resist paclitaxel-induced apoptosis. Herein, we utilized two BH3 mimetics ABT-737 and S1 to study the potential of BH3 mimetics in combination with paclitaxel in treatment of CML cells and illustrated the mechanism by which BH3 mimetics synergize with paclitaxel. As a single agent, S1 could induce apoptosis in CML-derived cell line K562, whereas ABT-737 was largely ineffective. However, both of the two agents could efficiently synergize with paclitaxel through intrinsic apoptosis pathway. By using Bcl-2 siRNA, Bcl-XL siRNA or Mcl-1 siRNA, we found although each of the three members exhibited activities to block paclitaxel-induced apoptosis, Mcl-1 was the determinant for the synergistic effect between paclitaxel and ABT-737 or S1. Furthermore, paclitaxel/ABT737 synergized to drastically upregulate Bim to displace Bak from Mcl-1, whereas S1 directly binds Mcl-1 to release both Bim and Bak. As such, ABT-737 and S1 sensitized CML to paclitaxel by Mcl-1 inhibition, indirect inhibition through Bim antagonizing Mcl-1, or direct inhibition through binding to Mcl-1 itself. Finally, activation of JNK/Bim pathway was identified as the apical mechanism for ABT-737/paclitaxel synergism. Together, our results demonstrated potent synergy between BH3 mimetics and paclitaxel in the killing of CML cells and revealed an important role for Mcl-1 in mediating synergism by these agents. PMID:25596561

  11. Paclitaxel inhibits cell proliferation and collagen lattice contraction via TGF-β signaling pathway in human tenon's fibroblasts in vitro.

    PubMed

    Chen, Ninghong; Guo, Dadong; Guo, Yuanyuan; Sun, Yuanyuan; Bi, Hongsheng; Ma, Xiaohua

    2016-04-15

    As an anti-microtubule agent, paclitaxel has been widely applied clinically. However, the effects of paclitaxel on human tenon's fibroblast (HTF) proliferation and migration in vitro was still unclear. In the present study, we explored the influences of paclitaxel on HTF cell proliferation, cell viability, cell cycle phase distribution under various concentrations of paclitaxel (i.e., 0, 10(-8), 10(-7), 10(-6)mol/l) via real-time cell electronic system and flow cytometry, further determined the expression of TGF-β1 and connective tissue growth factor (CTGF) after treatment with different concentrations of paclitaxel. Moreover, extra cellular matrix production and collagen lattice contraction assay were also explored. The results indicate that paclitaxel could apparently inhibit the cell viability, induces the elevation of S and G2/M phases of HTFs, and downregulates the expression of both TGF-β1 and CTGF. Meanwhile, the levels of fibronectin extra domain A (EDA), collagen and collagen lattice contraction were apparently reduced after treatment with paclitaxel. Overall, paclitaxel could apparently inhibit the proliferation of HTFs and leads to cell cycle arrest at both S and G2/M phases, attenuates the generation of collagen and collagen lattice contraction, decreases the expressions of TGF-β1, CTGF and fibronectin EDA. The inhibitory mechanism of paclitaxel on HTFs is involved in TGF-β1 signaling pathway. PMID:26930229

  12. Rationalization of paclitaxel insensitivity of yeast ?-tubulin and human ?III-tubulin isotype using principal component analysis

    PubMed Central

    2012-01-01

    Background The chemotherapeutic agent paclitaxel arrests cell division by binding to the hetero-dimeric protein tubulin. Subtle differences in tubulin sequences, across eukaryotes and among ?-tubulin isotypes, can have profound impact on paclitaxel-tubulin binding. To capture the experimentally observed paclitaxel-resistance of human ?III tubulin isotype and yeast ?-tubulin, within a common theoretical framework, we have performed structural principal component analyses of ?-tubulin sequences across eukaryotes. Results The paclitaxel-resistance of human ?III tubulin isotype and yeast ?-tubulin uniquely mapped on to the lowest two principal components, defining the paclitaxel-binding site residues of ?-tubulin. The molecular mechanisms behind paclitaxel-resistance, mediated through key residues, were identified from structural consequences of characteristic mutations that confer paclitaxel-resistance. Specifically, Ala277 in ?III isotype was shown to be crucial for paclitaxel-resistance. Conclusions The present analysis captures the origin of two apparently unrelated events, paclitaxel-insensitivity of yeast tubulin and human ?III tubulin isotype, through two common collective sequence vectors. PMID:22849332

  13. Lentinan exerts synergistic apoptotic effects with paclitaxel in A549 cells via activating ROS-TXNIP-NLRP3 inflammasome.

    PubMed

    Liu, Wei; Gu, Jun; Qi, Jun; Zeng, Xiao-Ning; Ji, Juan; Chen, Zheng-Zhen; Sun, Xiu-Lan

    2015-08-01

    Paclitaxel is generally used to treat cancers in clinic as an inhibitor of cell division. However, the acquired resistance in tumours limits its clinical efficacy. Therefore, the aim of this study was to detect whether co-treatment with lentinan enhanced the anti-cancer effects of paclitaxel in A549 cells. We found that the combination of paclitaxel and lentinan resulted in a significantly stronger inhibition on A549 cell proliferation than paclitaxel treatment alone. Co-treatment with paclitaxel and lentinan enhanced cell apoptosis rate by inducing caspase-3 activation. Furthermore, co-treatment with paclitaxel and lentinan significantly triggered reactive oxygen species (ROS) production, and increased thioredoxin-interacting protein (TXNIP) expression. Moreover, co-treatment with paclitaxel and lentinan enhanced TXNIP-NLRP3 interaction, and activated NLRP3 inflammasome whereat interleukin-1? levels were increased and cell apoptosis was induced. In addition, combination of paclitaxel and lentinan could activate apoptosis signal regulating kinase-1 (ASK1)/p38 mitogen-activated protein kinase (MAPK) signal which also contributed to cell apoptosis. Taken together, co-treatment with paclitaxel and lentinan exerts synergistic apoptotic effects in A549 cells through inducing ROS production, and activating NLRP3 inflammasome and ASK1/p38 MAPK signal pathway. PMID:25858687

  14. Is a reduction in radiation lung volume and dose necessary with paclitaxel chemotherapy for node-positive breast cancer?

    SciTech Connect

    Taghian, Alphonse G. . E-mail: ataghian@partners.org; Assaad, Sherif I.; Niemierko, Andrzej; Floyd, Scott R.; Powell, Simon N.

    2005-06-01

    Purpose: To evaluate and quantify the effect of irradiated lung volume, radiation dose, and paclitaxel chemotherapy on the development of radiation pneumonitis (RP) in breast cancer patients with positive lymph nodes. Methods and Materials: We previously reported the incidence of RP among 41 patients with breast cancer treated with radiotherapy (RT) and adjuvant paclitaxel-containing chemotherapy. We recorded the central lung distance, a measure of the extent of lung included in the RT volume, in these patients. We used this measure and the historical and observed rates of RP in our series to model the lung tolerance to RT in patients receiving chemotherapy (CHT) both with and without paclitaxel. To evaluate the risk factors for the development of RP, we performed a case-control study comparing paclitaxel-treated patients who developed RP with those who did not, and a second case-control study comparing patients receiving paclitaxel in addition to standard CHT/RT (n = 41) and controls receiving standard CHT/RT alone (n 192). Results: The actuarial rate of RP in the paclitaxel-treated group was 15.4% compared with 0.9% among breast cancer patients treated with RT and non-paclitaxel-containing CHT. Our mathematical model found that the effective lung tolerance for patients treated with paclitaxel was reduced by approximately 24%. No statistically significant difference was found with regard to the dose delivered to specific radiation fields, dose per fraction, central lung distance, or percentage of lung irradiated in the case-control study of paclitaxel-treated patients who developed RP compared with those who did not. In the comparison of 41 patients receiving RT and CHT with paclitaxel and 192 matched controls receiving RT and CHT without paclitaxel, the only significant differences identified were the more frequent use of a supraclavicular radiation field and a decrease in the RT lung dose among the paclitaxel-treated patients. This finding indicates that the major factor associated with development of RP was paclitaxel treatment. Conclusions: The use of paclitaxel chemotherapy and RT in the primary treatment of node-positive breast cancer is likely to increase the incidence of RP. In patients treated with paclitaxel, reducing the percentage of lung irradiated by 24% should reduce the risk of RP to 1%, according to our calculations of lung tolerance. Future clinical trials using combination CHT that includes paclitaxel and RT should carefully evaluate the incidence and severity of RP and should also accurately monitor the extent of lung included within the RT volume to develop safe guidelines for the delivery of what is becoming standard therapy for node-positive breast cancer.

  15. ?-Tocopheryl succinate potentiates the paclitaxel-induced apoptosis through enforced caspase 8 activation in human H460 lung cancer cells

    PubMed Central

    Choi, Moon Kyung; Kim, Min Jung; Kim, Joo Kyoung

    2009-01-01

    Paclitaxel is one of the chemotheraputic drugs widely used for the treatment of nonsmall cell lung cancer (NSCLC) patients. Here, we tested the ability of ?-tocopheryl succinate (TOS), another promising anticancer agent, to enhance the paclitaxel response in NSCLC cells. We found that sub-apoptotic doses of TOS greatly enhanced paclitaxel-induced growth suppression and apoptosis in the human H460 NSCLC cell lines. Our data revealed that this was accounted for primarily by an augmented cleavage of poly(ADP-ribose) polymerase (PARP) and enhanced activation of caspase-8. Pretreatment with z-VAD-FMK (a pan-caspase inhibitor) or z-IETD-FMK (a caspase-8 inhibitor) blocked TOS/paclitaxel cotreatment-induced PARP cleavage and apoptosis, suggesting that TOS potentiates the paclitaxel-induced apoptosis through enforced caspase 8 activation in H460 cells. Furthermore, the growth suppression effect of TOS/paclitaxel combination on human H460, A549 and H358 NSCLC cell lines were synergistic. Our observations indicate that combination of paclitaxel and TOS may offer a novel therapeutic strategy for improving paclitaxel drug efficacy in NSCLC patient therapy as well as for potentially lowering the toxic side effects of paclitaxel through reduced drug dosage. PMID:19561399

  16. A novel biosensor for quantitative monitoring of on-target activity of paclitaxel

    NASA Astrophysics Data System (ADS)

    Townley, H. E.; Zheng, Y.; Goldsmith, J.; Zheng, Y. Y.; Stratford, M. R. L.; Dobson, P. J.; Ahmed, A. A.

    2014-12-01

    This study describes a system for quantifying paclitaxel activity using the C-terminus of ?-tubulin as a biomarker. Following stabilization of microtubules with paclitaxel, a specific detyrosination reaction occurs at the C-terminus of ?-tubulin which could be used to assess efficacy. A fluorescence resonance energy transfer (FRET) based biosensor was synthesized comprising a short peptide that corresponded to the C-terminus of ?-tubulin, a fluorophore (Abz), and a quencher (Dnp). The fluorophore added to the end of the peptide can be released upon enzymatic detyrosination. In addition, a single fluorophore-tagged peptide was also conjugated to mesoporous silica nanoparticles to examine the feasibility of combining the drug with the peptide biomarker. As a proof of concept, we found that the degree of peptide cleavage, and therefore enzymatic activity, was directly correlated with exogenous bovine carboxypeptidase (CPA) an enzyme that mimics endogenous detyrosination. In addition, we show that cell lysates obtained from paclitaxel-treated cancer cells competed with exogenous CPA for biosensor cleavage in a paclitaxel dose-dependent manner. Our work provides strong evidence for the feasibility of combining paclitaxel with a novel biosensor in a multi-load nanoparticle.This study describes a system for quantifying paclitaxel activity using the C-terminus of ?-tubulin as a biomarker. Following stabilization of microtubules with paclitaxel, a specific detyrosination reaction occurs at the C-terminus of ?-tubulin which could be used to assess efficacy. A fluorescence resonance energy transfer (FRET) based biosensor was synthesized comprising a short peptide that corresponded to the C-terminus of ?-tubulin, a fluorophore (Abz), and a quencher (Dnp). The fluorophore added to the end of the peptide can be released upon enzymatic detyrosination. In addition, a single fluorophore-tagged peptide was also conjugated to mesoporous silica nanoparticles to examine the feasibility of combining the drug with the peptide biomarker. As a proof of concept, we found that the degree of peptide cleavage, and therefore enzymatic activity, was directly correlated with exogenous bovine carboxypeptidase (CPA) an enzyme that mimics endogenous detyrosination. In addition, we show that cell lysates obtained from paclitaxel-treated cancer cells competed with exogenous CPA for biosensor cleavage in a paclitaxel dose-dependent manner. Our work provides strong evidence for the feasibility of combining paclitaxel with a novel biosensor in a multi-load nanoparticle. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01105h

  17. Paclitaxel Drug-Eluting Stents in Peripheral Arterial Disease: A Health Technology Assessment

    PubMed Central

    2015-01-01

    Background Peripheral arterial disease is a condition in which atherosclerotic plaques partially or completely block blood flow to the legs. Although percutaneous transluminal angioplasty and metallic stenting have high immediate success rates in treating peripheral arterial disease, long-term patency and restenosis rates in long and complex lesions remain unsatisfactory. Objective The objective of this analysis was to evaluate the clinical effectiveness, safety, cost-effectiveness and budget impact of Zilver paclitaxel self-expanding drug-eluting stents for the treatment of de novo or restenotic lesions in above-the-knee peripheral arterial disease. Data Sources Literature searches were performed using Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), and EBM Reviews. For the economic review, a search filter was applied to limit search results to economics-related literature. Data sources for the budget impact analysis included expert opinion, published literature, and Ontario administrative data. Review Methods Systematic reviews, meta-analyses, randomized controlled trials, and observational studies were included in the clinical effectiveness review, and full economic evaluations were included in the economic literature review. Studies were included if they examined the effect of Zilver paclitaxel drug-eluting stents in de novo or restenotic lesions in above-the-knee arteries. For the budget impact analysis, 3 scenarios were constructed based on different assumptions. Results One randomized controlled trial reported a significantly higher patency rate with Zilver paclitaxel drug-eluting stents for lesions ≤ 14 cm than with angioplasty or bare metal stents. One observational study showed no difference in patency rates between Zilver paclitaxel drug-eluting stents and paclitaxel drug-coated balloons. Zilver paclitaxel drug-eluting stents were associated with a significantly higher event-free survival rate than angioplasty, but the event-free survival rate was similar for Zilver paclitaxel drug-eluting stents and paclitaxel drug-coated balloons. No economic evaluations compared Zilver paclitaxel drug-eluting stents with bare metal stents or angioplasty for peripheral arterial disease. A budget impact analysis showed that the cost savings associated with funding of Zilver paclitaxel drug-eluting stents would be $470,000 to $640,000 per year, assuming that the use of the Zilver paclitaxel drug-eluting stent was associated with a lower risk of subsequent revascularization. Conclusions Based on evidence of low to moderate quality, Zilver paclitaxel drug-eluting stents were associated with a higher patency rate than angioplasty or bare metal stents, and with fewer adverse events than angioplasty. The effectiveness and safety of Zilver paclitaxel drug-eluting stents and paclitaxel drug-coated balloons were similar. PMID:26719778

  18. Quantitative proteomic analysis of mitochondria from human ovarian cancer cells and their paclitaxel-resistant sublines

    PubMed Central

    Chen, Ming; Huang, Hong; He, Haojie; Ying, Wantao; Liu, Xin; Dai, Zhiqin; Yin, Jie; Mao, Ning; Qian, Xiaohong; Pan, Lingya

    2015-01-01

    Paclitaxel resistance is a major obstacle for the treatment of ovarian cancer. The chemoresistance mechanisms are partly related to the mitochondria. Identification of the relevant proteins in mitochondria will help in clarifying the possible mechanisms and in selecting effective chemotherapy for patients with paclitaxel resistance. In the present study, mitochondria from two paclitaxel-sensitive human ovarian cancer cell lines (SKOV3 and A2780) and their corresponding resistant cell lines (SKOV3-TR and A2780-TR) were isolated. Guanidine-modified acetyl-stable isotope labeling and liquid chromatography-hybrid linear ion trap Fourier-transform ion cyclotron resonance mass spectrometry (LC-FTICR MS) were performed to find the expressed differential proteins. Comparative proteomic analysis revealed eight differentially expressed proteins in the ovarian cancer cells and their paclitaxel-resistant sublines. Among them, mimitin and 14-3-3 ?/? were selected for further research. The effects of mimitin and 14-3-3 ?/? were explored using specific siRNA interference in ovarian cancer cell lines and immunohistochemistry in human tissue specimens. The downregulation of mimitin and 14-3-3 ?/? using specific siRNA in paclitaxel-resistant ovarian cancer cells led to an increase in the resistance index to paclitaxel. Multivariate analyses demonstrated that lower expression levels of the mimitin and 14-3-3 ?/? proteins were positively associated with shorter progression-free survival (PFS) and overall survival (OS) in patients with primary ovarian cancer (mimitin: PFS: P=0.041, OS: P=0.003; 14-3-3 ?/?: PFS: P=0.031, OS: P=0.011). Mimitin and 14-3-3 protein ?/? are potential markers of paclitaxel resistance and prognostic factors in ovarian cancer. PMID:26033570

  19. CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer.

    PubMed

    Swaminathan, Suresh Kumar; Roger, Emilie; Toti, Udaya; Niu, Lin; Ohlfest, John R; Panyam, Jayanth

    2013-11-10

    Expression of the membrane protein CD133 marks a subset of cancer cells with drug resistant phenotype and enhanced tumor initiating ability in xenotransplantation assays. Because drug resistance and tumor relapse are significant problems, approaches to eliminate these cells are urgently needed. As a step towards achieving this goal, we developed polymeric nanoparticles targeting CD133 by conjugating an anti-CD133 monoclonal antibody to nanoparticles formulated using poly(D,L lactide-co-glycolide) polymer. Nanoparticles were loaded with paclitaxel, a microtubule-stabilizing anticancer agent, as well as with 6-coumarin, a fluorescent probe. CD133-targeted nanoparticles (CD133NPs) were efficiently internalized by Caco-2 cells, which abundantly express CD133 (>9-fold higher uptake than non-targeted control nanoparticles). The effectiveness of CD133NPs in reducing tumor initiating cell (TIC) fraction was investigated using mammosphere formation and soft-agar colony formation assays. Free paclitaxel treatment was not effective in decreasing the TIC population relative to untreated control, whereas CD133NPs effectively decreased the number of mammospheres and colonies formed. In vivo studies in the MDA-MB-231 xenograft model showed that free paclitaxel was initially effective in inhibiting tumor growth but the tumors rebounded rapidly once the treatment was stopped. Tumor regrowth was significantly lower when paclitaxel was delivered through CD133NPs (tumor volume was 518.6228 vs. 1370.9295mm(3) for free paclitaxel at 63days; P<0.05). Our studies thus show that encapsulation of paclitaxel in CD133NPs results in a significant decrease in the TIC population and improved therapeutic efficacy compared to that with free paclitaxel treatment. These results indicate the potential of targeting anticancer therapeutics to CD133+ cells for reducing tumor recurrence. PMID:23871962

  20. Cellular senescence induced by aberrant MAD2 levels impacts on paclitaxel responsiveness in vitro

    PubMed Central

    Prencipe, M; Fitzpatrick, P; Gorman, S; Mosetto, M; Klinger, R; Furlong, F; Harrison, M; O'Connor, D; Roninson, I B; O'Sullivan, J; McCann, A

    2009-01-01

    Background: The mitotic arrest deficiency protein 2 (MAD2) is a key component of the mitotic spindle assembly checkpoint, monitoring accurate chromosomal alignment at the metaphase plate before mitosis. MAD2 also has a function in cellular senescence and in a cell's response to microtubule inhibitory (MI) chemotherapy exemplified by paclitaxel. Methods: Using an siRNA approach, the impact of MAD2 down-regulation on cellular senescence and paclitaxel responsiveness was investigated. The endpoints of senescence, cell viability, migration, cytokine expression, cell cycle analysis and anaphase bridge scoring were carried out using standard approaches. Results: We show that MAD2 down-regulation induces premature senescence in the MCF7 breast epithelial cancer cell line. These MAD2-depleted (MAD2?) cells are also significantly replicative incompetent but retain viability. Moreover, they show significantly higher levels of anaphase bridges and polyploidy compared to controls. In addition, these cells secrete higher levels of IL-6 and IL-8 representing key components of the senescence-associated secretory phenotype (SASP) with the ability to impact on neighbouring cells. In support of this, MAD2? cells show enhanced migratory ability. At 72?h after paclitaxel, MAD2? cells show a significant further induction of senescence compared with paclitaxel naive controls. In addition, there are significantly more viable cells in the MAD2? MCF7 cell line after paclitaxel reflecting the observed increase in senescence. Conclusion: Considering that paclitaxel targets actively dividing cells, these senescent cells will evade cytotoxic kill. In conclusion, compromised MAD2 levels induce a population of senescent cells resistant to paclitaxel. PMID:19935801

  1. Dasatinib enhances antitumor activity of paclitaxel in ovarian cancer through Src signaling

    PubMed Central

    XIAO, JUAN; XU, MANMAN; HOU, TENG; HUANG, YONGWEN; YANG, CHENLU; LI, JUNDONG

    2015-01-01

    Src family tyrosine kinase (SFK) activation is associated with ovarian cancer progression. Therefore, SFKs are targets for the development of potential treatments of ovarian cancer. Dasatinib is a tyrosine kinase inhibitor that targets SFK activity, and is used for the treatment of B cell and Abelson lymphomas. At the present time, the potential effect of dasatinib on ovarian cancer is not clear. The aim of the present study was to investigate the antitumor activity of dasatinib, alone and in combination with paclitaxel, in ovarian cancer in vitro and in vivo. In the present study, the expression of Src and phospho-Src-Y416 (p-Src) was measured in six ovarian cancer cell lines using western blotting and immunohistochemistry. In addition, cell viability and apoptosis were measured using an MTT assay and annexin V-fluorescein isothiocyanate staining. An ovarian cancer murine xenograft model was established, in order to evaluate the antitumor effect of dasatinib alone and in combination with paclitaxel in ovarian cancer. High levels of p-Src protein expression were observed in all cell lines, as compared with healthy cells, which indicated activation of the Src signaling pathway. p-Src expression increased in ovarian cancer cells following paclitaxel treatment. Dasatinib treatment demonstrated anti-ovarian cancer properties, by downregulating p-Src expression and by inducing cancer cell apoptosis. Combined treatment with dasatinib and paclitaxel markedly inhibited proliferation and promoted apoptosis of ovarian cancer cells, compared with control cells. Combined dasatinib and paclitaxel treatment exhibited antitumor activities in vivo and in vitro (combination indices, 0.250.93 and 0.310.75; and tumor growth inhibitory rates, 76.7% and 58.5%, in A2780 and HO8910 cell lines, respectively), compared with paclitaxel treatment alone. Dasatinib monotherapy demonstrated anti-ovarian cancer activities. The effects of dasatinib and paclitaxel treatments on ovarian cancer cells appeared to be mediated by the Src pathway. PMID:25975261

  2. Dasatinib enhances antitumor activity of paclitaxel in ovarian cancer through Src signaling.

    PubMed

    Xiao, Juan; Xu, Manman; Hou, Teng; Huang, Yongwen; Yang, Chenlu; Li, Jundong

    2015-09-01

    Src family tyrosine kinase (SFK) activation is associated with ovarian cancer progression. Therefore, SFKs are targets for the development of potential treatments of ovarian cancer. Dasatinib is a tyrosine kinase inhibitor that targets SFK activity, and is used for the treatment of B cell and Abelson lymphomas. At the present time, the potential effect of dasatinib on ovarian cancer is not clear. The aim of the present study was to investigate the antitumor activity of dasatinib, alone and in combination with paclitaxel, in ovarian cancer in vitro and in vivo. In the present study, the expression of Src and phospho?Src-Y416 (p?Src) was measured in six ovarian cancer cell lines using western blotting and immunohistochemistry. In addition, cell viability and apoptosis were measured using an MTT assay and annexin V?fluorescein isothiocyanate staining. An ovarian cancer murine xenograft model was established, in order to evaluate the antitumor effect of dasatinib alone and in combination with paclitaxel in ovarian cancer. High levels of p?Src protein expression were observed in all cell lines, as compared with healthy cells, which indicated activation of the Src signaling pathway. p?Src expression increased in ovarian cancer cells following paclitaxel treatment. Dasatinib treatment demonstrated anti?ovarian cancer properties, by downregulating p?Src expression and by inducing cancer cell apoptosis. Combined treatment with dasatinib and paclitaxel markedly inhibited proliferation and promoted apoptosis of ovarian cancer cells, compared with control cells. Combined dasatinib and paclitaxel treatment exhibited antitumor activities in vivo and in vitro (combination indices, 0.25?0.93 and 0.31?0.75; and tumor growth inhibitory rates, 76.7% and 58.5%, in A2780 and HO8910 cell lines, respectively), compared with paclitaxel treatment alone. Dasatinib monotherapy demonstrated anti?ovarian cancer activities. The effects of dasatinib and paclitaxel treatments on ovarian cancer cells appeared to be mediated by the Src pathway. PMID:25975261

  3. Bridging Converts a Noncytotoxic nor-Paclitaxel Derivative to a Cytotoxic Analog by Constraining it to the T-Taxol Conformation

    PubMed Central

    Tang, Shoubin; Yang, Chao; Brodie, Peggy; Bane, Susan; Ravindra, Rudravajhala; Sharma, Shubhada; Jiang, Yi; Snyder, James P.; Kingston, David G. I.

    2008-01-01

    The synthesis of the bridged A-nor-paclitaxel 4 has been achieved from paclitaxel in a key test of the T-Taxol conformational hypothesis. Although the unbridged A-nor-paclitaxel 3 is essentially non-cytotoxic, the bridged analog 4 is strongly cytotoxic. This result provides strong evidence for the T-Taxol conformation as the bioactive tubulin-binding conformation of paclitaxel. PMID:16928054

  4. Rapamycin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and induction of apoptosis1

    PubMed Central

    Shafer, Aaron; Zhou, Chunxiao; Gehrig, Paola A.; Boggess, John F.; Bae-Jump, Victoria L.

    2009-01-01

    mTOR inhibitors modulate signaling pathways involved in cell cycle progression, and recent phase II trials demonstrate activity in endometrial cancer patients. Our objective was to examine the effects of combination therapy with rapamycin and paclitaxel in endometrial cancer cell lines. Paclitaxel inhibited proliferation in a dose-dependent manner in both cell lines with IC50 values of 0.1–0.5 nM and 1–5 nM for Ishikawa and ECC-1 cells, respectively. To assess synergy of paclitaxel and rapamycin, the combination index (CI) was calculated by the method of Chou and Talalay. Simultaneous exposure of cells to various doses of paclitaxel in combination with rapamycin (1 nM) resulted in a significant synergistic anti-proliferative effect (CI <1, range 0.131–0.920). Rapamycin alone did not induce apoptosis, but combined treatment with paclitaxel increased apoptosis over that of paclitaxel alone. Treatment with rapamycin and paclitaxel resulted in decreased phosphorylation of S6 and 4E-BP1, two critical downstream targets of the mTOR pathway. Rapamycin decreased hTERT mRNA expression by real-time RT-PCR while paclitaxel alone had no effect on telomerase activity. Paclitaxel increased polymerization and acetylation of tubulin, and rapamycin appeared to enhance this effect. Thus, in conclusion, we demonstrate that rapamycin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation, induction of apoptosis and potentially increased polymerization and acetylation of tubulin. This suggests that the combination of rapamycin and paclitaxel may be a promising effective targeted therapy for endometrial cancer. PMID:19688827

  5. Co-administration of GF120918 significantly increases the systemic exposure to oral paclitaxel in cancer patients

    PubMed Central

    Malingr, M M; Beijnen, J H; Rosing, H; Koopman, F J; Jewell, R C; Paul, E M; Huinink, W W Ten Bokkel; Schellens, J H M

    2001-01-01

    Oral bioavailability of paclitaxel is very low, which is due to efficient transport of the drug by the intestinal drug efflux pump P-glycoprotein (P-gp). We have recently demonstrated that the oral bioavailability of paclitaxel can be increased at least 7-fold by co-administration of the P-gp blocker cyclosporin A (CsA). Now we tested the potent alternative orally applicable non-immunosuppressive P-gp blocker GF120918. Six patients received one course of oral paclitaxel of 120 mg/m2 in combination with 1000 mg oral GF120918 (GG918, GW0918). Patients received intravenous (i.v.) paclitaxel 175 mg/m2 as a 3-hour infusion during subsequent courses. The mean area under the plasma concentrationtime curve (AUC) of paclitaxel after oral drug administration in combination with GF120918 was 3.27 1.67 ?M.h. In our previously performed study of 120 mg/m2 oral paclitaxel in combination with CsA the mean AUC of paclitaxel was 2.55 2.29 ?M.h. After i.v. administration of paclitaxel the mean AUC was 15.92? 2.46 ?M.h. The oral combination of paclitaxel with GF120918 was well tolerated. The increase in systemic exposure to paclitaxel in combination with GF120918 is of the same magnitude as in combination with CsA. GF120918 is a good and safe alternative for CsA and may enable chronic oral therapy with paclitaxel. 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11139311

  6. Paclitaxel-induced endothelial dysfunction in living rats is prevented by nicorandil via reduction of oxidative stress.

    PubMed

    Serizawa, Ken-Ichi; Yogo, Kenji; Aizawa, Ken; Tashiro, Yoshihito; Takahari, Yoko; Sekine, Kaori; Suzuki, Toshihiko; Ishizuka, Nobuhiko; Ishida, Hideyuki

    2012-01-01

    Paclitaxel-eluting stents dramatically reduce rates of in-stent restenosis; however, paclitaxel is known to lead to endothelial dysfunction. Protective effects of nicorandil on paclitaxel-induced endothelial dysfunction by examining flow-mediated dilation (FMD) were investigated in anesthetized rats. After 7-day osmotic infusion of paclitaxel (5 mg/kg per day), FMD was measured by high-resolution ultrasound in the femoral artery of living rats. Paclitaxel significantly reduced FMD (21.6% 3.2% to 7.1% 1.7%); this reduction was prevented by co-treatment with nicorandil (15 mg/kg per day), while paclitaxel did not affect nitroglycerin-induced vasodilation. Diazoxide and tempol, but not isosorbide dinitrate, had an effect similar to nicorandil in preventing paclitaxel-induced decrease in FMD. Nicorandil significantly prevented paclitaxel-induced reduction in acetylcholine-induced vasodilation. On the underling mechanisms, paclitaxel increased reactive oxygen species (ROS) production (dihydrorhodamine 123, DCF fluorescence intensity) and NADPH oxidase (p47(phox), gp91(phox) mRNA) in arteries and human coronary artery endothelial cells (HCAECs), while paclitaxel reduced nitric oxide (NO) release (DAF-2 fluorescence intensity), but not endothelial NO synthase (eNOS) phosphorylation in HCAECs. Nicorandil prevented the increased ROS production in arteries and HCAECs, which was 5-hydroxydecanoate (5-HD)-sensitive but 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ)-resistant, without significant effect on the reduced NO release. In conclusion, nicorandil prevents paclitaxel-induced endothelial dysfunction, which may be brought by improved NO bioavailability due to the reduction of oxidative stress via K(ATP) channel activation. PMID:22850598

  7. The small molecule tyrosine kinase inhibitor NVP-BHG712 antagonizes ABCC10-mediated paclitaxel resistance: a preclinical and pharmacokinetic study.

    PubMed

    Kathawala, Rishil J; Wei, Liuya; Anreddy, Nagaraju; Chen, Kang; Patel, Atish; Alqahtani, Saeed; Zhang, Yun-Kai; Wang, Yi-Jun; Sodani, Kamlesh; Kaddoumi, Amal; Ashby, Charles R; Chen, Zhe-Sheng

    2015-01-01

    Paclitaxel exhibits clinical activity against a wide variety of solid tumors. However, resistance to paclitaxel significantly attenuates the response to chemotherapy. The ABC transporter subfamily C member 10 (ABCC10), also known as multi-drug resistance protein 7 (MRP7) efflux transporter, is a major mediator of paclitaxel resistance. Here, we determine the effect of NVP-BHG712, a specific EphB4 receptor inhibitor, on 1) paclitaxel resistance in HEK293 cells transfected with ABCC10, 2) the growth of tumors in athymic nude mice that received NVP-BHG712 and paclitaxel systemically and 3) the pharmacokinetics of paclitaxel in presence or absence of NVP-BHG712. NVP-BHG712 (0.5 ?M), in HEK293/ABCC10 cells, significantly enhanced the intracellular accumulation of paclitaxel by inhibiting the efflux activity of ABCC10 without altering the expression level of the ABCC10 protein. Furthermore, NVP-BHG712 (25 mg/kg, p.o., q3d x 6), in combination with paclitaxel (15 mg/kg, i.p., q3d x 6), significantly inhibited the growth of ABCC10-expressing tumors in athymic nude mice. NVP-BHG712 administration significantly increased the levels of paclitaxel in the tumors but not in plasma compared to paclitaxel alone. The combination of NVP-BHG712 and paclitaxel could serve as a novel and useful therapeutic strategy to attenuate paclitaxel resistance mediated by the expression of the ABCC10 transporter. PMID:25402202

  8. The small molecule tyrosine kinase inhibitor NVP-BHG712 antagonizes ABCC10-mediated paclitaxel resistance: a preclinical and pharmacokinetic study

    PubMed Central

    Anreddy, Nagaraju; Chen, Kang; Patel, Atish; Alqahtani, Saeed; Zhang, Yun-Kai; Wang, Yi-Jun; Sodani, Kamlesh; Kaddoumi, Amal; Ashby, Charles R.; Chen, Zhe-Sheng

    2015-01-01

    Paclitaxel exhibits clinical activity against a wide variety of solid tumors. However, resistance to paclitaxel significantly attenuates the response to chemotherapy. The ABC transporter subfamily C member 10 (ABCC10), also known as multi-drug resistance protein 7 (MRP7) efflux transporter, is a major mediator of paclitaxel resistance. Here, we determine the effect of NVP-BHG712, a specific EphB4 receptor inhibitor, on 1) paclitaxel resistance in HEK293 cells transfected with ABCC10, 2) the growth of tumors in athymic nude mice that received NVP-BHG712 and paclitaxel systemically and 3) the pharmacokinetics of paclitaxel in presence or absence of NVP-BHG712. NVP-BHG712 (0.5 ?M), in HEK293/ABCC10 cells, significantly enhanced the intracellular accumulation of paclitaxel by inhibiting the efflux activity of ABCC10 without altering the expression level of the ABCC10 protein. Furthermore, NVP-BHG712 (25 mg/kg, p.o., q3d 6), in combination with paclitaxel (15 mg/kg, i.p., q3d 6), significantly inhibited the growth of ABCC10-expressing tumors in athymic nude mice. NVP-BHG712 administration significantly increased the levels of paclitaxel in the tumors but not in plasma compared to paclitaxel alone. The combination of NVP-BHG712 and paclitaxel could serve as a novel and useful therapeutic strategy to attenuate paclitaxel resistance mediated by the expression of the ABCC10 transporter. PMID:25402202

  9. Combined-modality therapy for advanced non-small cell lung cancer: paclitaxel and thoracic irradiation.

    PubMed

    Choy, H; Yee, L; Cole, B F

    1995-12-01

    Despite advances in the modalities used to treat non-small cell lung cancer (NSCLC), the frequency of locoregional and distant relapses necessitates further enhancement of the therapeutic program. Paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton, NJ) has demonstrated clinical efficacy against NSCLC and in vitro studies support its role as a radiation potentiator at concentrations achievable in vivo. Thus, a phase I study of weekly paclitaxel and daily concurrent thoracic radiation was conducted in patients with advanced NSCLC to determine (1) the maximum tolerated dose of paclitaxel administered on an outpatient basis for 6 consecutive weeks with daily radiation and (2) the toxicities of the paclitaxel/radiation combination. Paclitaxel was administered as a 3-hour infusion, repeated weekly for 6 weeks with the usual premedication regimen for hypersensitivity prophylaxis. The starting dose of paclitaxel was 10 mg/m2/wk, which was increased by 10 mg/m2 in successive cohorts of three new patients, as tolerated. Radiation therapy was delivered as 40 Gy in 20 fractions to the original volume with a boost of 20 Gy in 10 fractions to the primary tumor. Doses were escalated from 10 to 70 mg/m2/wk. Of the 23 patients evaluable for response, one had stage II NSCLC, four had stage IIIA, 17 had stage IIIB, and one had stage IV. Severe esophagitis (grade 4) occurred in two of the three patients treated at 70 mg/m2 and was dose limiting. One patient discontinued therapy due to hypersensitivity, two developed grade 3 neutropenia, and one developed radiation pneumonitis. With a median follow-up of 7 months, 15 of the 23 patients remain alive. Four had a complete response and 13 had a partial response, for an overall response rate of 74% (95% confidence interval, 52% to 90%). The schedule of weekly paclitaxel and daily thoracic radiation appears active in NSCLC and can be delivered safely in the outpatient setting. The principal dose-limiting toxicity is esophagitis, and the maximum tolerated dose of paclitaxel for this schedule is 60 mg/m2/wk. A phase II trial of weekly paclitaxel 60 mg/m2 and radiation has been initiated in patients with NSCLC. PMID:8643969

  10. Paclitaxel sensitivity in relation to ABCB1 expression, efflux and single nucleotide polymorphisms in ovarian cancer.

    PubMed

    Gao, Bo; Russell, Amanda; Beesley, Jonathan; Chen, Xiao Qing; Healey, Sue; Henderson, Michelle; Wong, Mark; Emmanuel, Catherine; Galletta, Laura; Johnatty, Sharon E; Bowtell, David; Haber, Michelle; Norris, Murray; Harnett, Paul; Chenevix-Trench, Georgia; Balleine, Rosemary L; deFazio, Anna

    2014-01-01

    ABCB1 (adenosine triphosphate-binding cassette transporter B1) mediates cellular elimination of many chemotherapeutic agents including paclitaxel, which is commonly used to treat ovarian cancer. A significant association between common single nucleotide polymorphisms (SNPs) in ABCB1 and progression-free survival has been reported in patients with ovarian cancer. Variable paclitaxel clearance due to genotype specific differences in ABCB1 activity in cancer cells and/or normal tissues may underlie the association. Using cell-based models, we evaluated the correlations between ABCB1 expression, polymorphisms, transporter activity and paclitaxel sensitivity in ovarian cancer (n = 10) and lymphoblastoid (n = 19) cell lines. Close associations between ABCB1 expression, transporter function and paclitaxel sensitivity were found in lymphoblastoid cell lines, although we could not demonstrate an association with common SNPs. In ovarian cancer cell lines, ABCB1 expression was low and the association between expression and function was lost. These results suggest that ABCB1 related survival difference in ovarian cancer patients is more likely to be due to differential whole body paclitaxel clearance mediated by normal cells rather than a direct effect on cancer cells. PMID:24810093

  11. IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel.

    PubMed

    Wee, Zhen Ning; Yatim, Siti Maryam J M; Kohlbauer, Vera K; Feng, Min; Goh, Jian Yuan; Yi, Bao; Lee, Puay Leng; Zhang, Songjing; Wang, Pan Pan; Lim, Elgene; Tam, Wai Leong; Cai, Yu; Ditzel, Henrik J; Hoon, Dave S B; Tan, Ern Yu; Yu, Qiang

    2015-01-01

    Metastatic tumour recurrence due to failed treatments remains a major challenge of breast cancer clinical management. Here we report that interleukin-1 receptor-associated kinase 1 (IRAK1) is overexpressed in a subset of breast cancers, in particular triple-negative breast cancer (TNBC), where it acts to drive aggressive growth, metastasis and acquired resistance to paclitaxel treatment. We show that IRAK1 overexpression confers TNBC growth advantage through NF-?B-related cytokine secretion and metastatic TNBC cells exhibit gain of IRAK1 dependency, resulting in high susceptibility to genetic and pharmacologic inhibition of IRAK1. Importantly, paclitaxel treatment induces strong IRAK1 phosphorylation, an increase in inflammatory cytokine expression, enrichment of cancer stem cells and acquired resistance to paclitaxel treatment. Pharmacologic inhibition of IRAK1 is able to reverse paclitaxel resistance by triggering massive apoptosis at least in part through inhibiting p38-MCL1 pro-survival pathway. Our study thus demonstrates IRAK1 as a promising therapeutic target for TNBC metastasis and paclitaxel resistance. PMID:26503059

  12. Paclitaxel Through the Ages of Anticancer Therapy: Exploring Its Role in Chemoresistance and Radiation Therapy.

    PubMed

    Barbuti, Anna Maria; Chen, Zhe-Sheng

    2015-01-01

    Paclitaxel (Taxol()) is a member of the taxane class of anticancer drugs and one of the most common chemotherapeutic agents used against many forms of cancer. Paclitaxel is a microtubule-stabilizer that selectively arrests cells in the G2/M phase of the cell cycle, and found to induce cytotoxicity in a time and concentration-dependent manner. Paclitaxel has been embedded in novel drug formulations, including albumin and polymeric micelle nanoparticles, and applied to many anticancer treatment regimens due to its mechanism of action and radiation sensitizing effects. Though paclitaxel is a major anticancer drug which has been used for many years in clinical treatments, its therapeutic efficacy can be limited by common encumbrances faced by anticancer drugs. These encumbrances include toxicities, de novo refraction, and acquired multidrug resistance (MDR). This article will give a current and comprehensive review of paclitaxel, beginning with its unique history and pharmacology, explore its mechanisms of drug resistance and influence in combination with radiation therapy, while highlighting current treatment regimens, formulations, and new discoveries. PMID:26633515

  13. Paclitaxel Through the Ages of Anticancer Therapy: Exploring Its Role in Chemoresistance and Radiation Therapy

    PubMed Central

    Barbuti, Anna Maria; Chen, Zhe-Sheng

    2015-01-01

    Paclitaxel (Taxol®) is a member of the taxane class of anticancer drugs and one of the most common chemotherapeutic agents used against many forms of cancer. Paclitaxel is a microtubule-stabilizer that selectively arrests cells in the G2/M phase of the cell cycle, and found to induce cytotoxicity in a time and concentration-dependent manner. Paclitaxel has been embedded in novel drug formulations, including albumin and polymeric micelle nanoparticles, and applied to many anticancer treatment regimens due to its mechanism of action and radiation sensitizing effects. Though paclitaxel is a major anticancer drug which has been used for many years in clinical treatments, its therapeutic efficacy can be limited by common encumbrances faced by anticancer drugs. These encumbrances include toxicities, de novo refraction, and acquired multidrug resistance (MDR). This article will give a current and comprehensive review of paclitaxel, beginning with its unique history and pharmacology, explore its mechanisms of drug resistance and influence in combination with radiation therapy, while highlighting current treatment regimens, formulations, and new discoveries. PMID:26633515

  14. IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel

    PubMed Central

    Wee, Zhen Ning; Yatim, Siti Maryam J. M.; Kohlbauer, Vera K; Feng, Min; Goh, Jian Yuan; Yi, Bao; Lee, Puay Leng; Zhang, Songjing; Wang, Pan Pan; Lim, Elgene; Tam, Wai Leong; Cai, Yu; Ditzel, Henrik J; Hoon, Dave S. B.; Tan, Ern Yu; Yu, Qiang

    2015-01-01

    Metastatic tumour recurrence due to failed treatments remains a major challenge of breast cancer clinical management. Here we report that interleukin-1 receptor-associated kinase 1 (IRAK1) is overexpressed in a subset of breast cancers, in particular triple-negative breast cancer (TNBC), where it acts to drive aggressive growth, metastasis and acquired resistance to paclitaxel treatment. We show that IRAK1 overexpression confers TNBC growth advantage through NF-κB-related cytokine secretion and metastatic TNBC cells exhibit gain of IRAK1 dependency, resulting in high susceptibility to genetic and pharmacologic inhibition of IRAK1. Importantly, paclitaxel treatment induces strong IRAK1 phosphorylation, an increase in inflammatory cytokine expression, enrichment of cancer stem cells and acquired resistance to paclitaxel treatment. Pharmacologic inhibition of IRAK1 is able to reverse paclitaxel resistance by triggering massive apoptosis at least in part through inhibiting p38-MCL1 pro-survival pathway. Our study thus demonstrates IRAK1 as a promising therapeutic target for TNBC metastasis and paclitaxel resistance. PMID:26503059

  15. Characterization of PEG-iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery.

    PubMed

    Meenach, Samantha A; Shapiro, Jenna M; Hilt, J Zach; Anderson, Kimberly W

    2013-01-01

    Hyperthermia, the heating of tissue from 41 to 45?C, has been shown to improve the efficacy of cancer therapy when used in conjunction with irradiation and/or chemotherapy. In this work, hydrogel nanocomposites have been developed that can control the delivery of both heat and a chemotherapeutic agent (e.g. paclitaxel). The nanocomposites studied involve a stealth, poly(ethylene glycol) (PEG)-based system comprised of PEG (n?=?1000) methyl ether methacrylate and PEG (n?=?400) dimethacrylate with iron oxide nanoparticles physically entrapped within the hydrogel matrices. The capability of the hydrogel nanocomposites to be heated in an alternating magnetic field was demonstrated. The heating of the hydrogel systems was dependent on the crosslinking of the hydrogel network where hydrogels with lower swelling ratios were found to heat to a greater extent than those with higher ratios. In addition, paclitaxel was shown to exhibit non-Fickian release from the hydrogel systems, with the amount of drug released dependent on the hydrogel network structure. Three cell lines: M059K (glioblastoma), MDA MB 231 (breast carcinoma), and A549 (lung adenocarcinoma) were exposed to paclitaxel only, hyperthermia only, and both paclitaxel and hyperthermia to determine if a synergistic cytotoxic effect was possible for these cell lines. The efficacy of paclitaxel was greater with hyperthermia for the A549 cells; however, the M059K and MDA MB 231 did not show the same response. PMID:23683041

  16. A novel biosensor for quantitative monitoring of on-target activity of paclitaxel.

    PubMed

    Townley, H E; Zheng, Y; Goldsmith, J; Zheng, Y Y; Stratford, M R L; Dobson, P J; Ahmed, A A

    2015-01-21

    This study describes a system for quantifying paclitaxel activity using the C-terminus of ?-tubulin as a biomarker. Following stabilization of microtubules with paclitaxel, a specific detyrosination reaction occurs at the C-terminus of ?-tubulin which could be used to assess efficacy. A fluorescence resonance energy transfer (FRET) based biosensor was synthesized comprising a short peptide that corresponded to the C-terminus of ?-tubulin, a fluorophore (Abz), and a quencher (Dnp). The fluorophore added to the end of the peptide can be released upon enzymatic detyrosination. In addition, a single fluorophore-tagged peptide was also conjugated to mesoporous silica nanoparticles to examine the feasibility of combining the drug with the peptide biomarker. As a proof of concept, we found that the degree of peptide cleavage, and therefore enzymatic activity, was directly correlated with exogenous bovine carboxypeptidase (CPA) an enzyme that mimics endogenous detyrosination. In addition, we show that cell lysates obtained from paclitaxel-treated cancer cells competed with exogenous CPA for biosensor cleavage in a paclitaxel dose-dependent manner. Our work provides strong evidence for the feasibility of combining paclitaxel with a novel biosensor in a multi-load nanoparticle. PMID:25483994

  17. Modulation of paclitaxel resistance by annexin IV in human cancer cell lines

    PubMed Central

    Han, E Kyu-Ho; Tahir, S K; Cherian, S P; Collins, N; Ng, S-C

    2000-01-01

    A recurring problem with cancer therapies is the development of drug resistance. While investigating the protein profile of cells resistant to a novel antimitotic compound (A204197), we discovered an increase in annexin IV expression. When we examined the annexin IV protein expression level in a paclitaxel-resistant cell line (H460/T800), we found that annexin IV was also overexpressed. Interestingly a closely related protein, annexin II, was not overexpressed in H460/T800 cells. Immunostaining with either annexin II or IV antibody revealed that annexin IV was primarily located in the nucleus of paclitaxel-resistant H460/T800 cells. Short-term treatment of H460 cells with 10 nMpaclitaxel for up to 4 days resulted in induction of annexin IV, but not annexin II expression. In addition, there was an increase in annexin IV staining in the nucleus starting at day 1. Furthermore, cells pretreated with 10 nMpaclitaxel for 4 days resulted in cells becoming ~fivefold more resistant to paclitaxel. Transfection of annexin IV cDNA into 293T cells revealed that there was a threefold increase in paclitaxel resistance. Thus our results indicate that annexin IV plays a role in paclitaxel resistance in this cell line and it is among one of the earliest proteins that is induced in cells in response to cytotoxic stress such as antimitotic drug treatment. 2000 Cancer Research Campaign PMID:10883672

  18. Contribution of taxane biosynthetic pathway gene expression to observed variability in paclitaxel accumulation in Taxus suspension cultures

    PubMed Central

    Patil, Rohan A.; Kolewe, Martin E.; Normanly, Jennifer; Walker, Elsbeth L.; Roberts, Susan C.

    2012-01-01

    Variability in product accumulation is one of the major obstacles limiting the widespread commercialization of plant cell culture technology to supply natural product pharmaceuticals. Despite extensive process engineering efforts, which have led to increased yields, plant cells exhibit variability in productivity that is poorly understood. Elicitation of Taxus cultures with methyl jasmonate (MeJA) induces paclitaxel accumulation, but to varying extents in different cultures. In this work, cultures with different aggregation profiles were established to create predictable differences in paclitaxel accumulation upon MeJA elicitation. Expression of known paclitaxel biosynthetic genes in MeJA-elicited cultures exhibiting both substantial (15-fold) and moderate (2-fold) differences in paclitaxel accumulation was analyzed using qRT-PCR. Each population exhibited the characteristic large increase in paclitaxel pathway gene expression following MeJA elicitation; however, differences in expression between populations were minor, and only observed for the cultures with the 15-fold variation in paclitaxel content. These data suggest that although upregulation of biosynthetic pathway gene expression contributes to observed increases in paclitaxel synthesis upon elicitation with MeJA, there are additional factors that need to be uncovered before paclitaxel productivity can be fully optimized. PMID:22095859

  19. Phase II and pharmacological study of oral paclitaxel (Paxoral) plus ciclosporin in anthracycline-pretreated metastatic breast cancer

    PubMed Central

    Helgason, H H; Kruijtzer, C M F; Huitema, A D R; Marcus, S G; ten Bokkel Huinink, W W; Schot, M E; Schornagel, J H; Beijnen, J H; Schellens, J H M

    2006-01-01

    Paclitaxel is an important chemotherapeutic agent for breast cancer. Paclitaxel has high affinity for the P-glycoprotein (P-gp) (drug efflux pump) in the gastrointestinal tract causing low and variable oral bioavailability. Previously, we demonstrated that oral paclitaxel plus the P-gp inhibitor ciclosporin (CsA) is safe and results in adequate exposure to paclitaxel. This study evaluates the activity, toxicity and pharmacokinetics of paclitaxel combined with CsA in breast cancer patients. Patients with measurable metastatic breast cancer were given oral paclitaxel 90?mg?m?2 combined with CsA 10?mg?kg?1 (30?min prior to each paclitaxel administration) twice on one day, each week. Twenty-nine patients with a median age of 50 years were entered. All patients had received prior treatments, 25 had received prior anthracycline-containing chemotherapy and 19 had three or more metastatic sites. Total number of weekly administrations was 442 (median: 15/patient) and dose intensity of 97?mg?m?2?week?1. Most patients needed treatment delay and 17 patients needed dose reductions. In intention to treat analysis, the overall response rate was 52%, the median time to progression was 6.5 months and overall survival was 16 months. The pharmacokinetics revealed moderate inter- and low intrapatient variability. Weekly oral paclitaxel, combined with CsA, is active in patients with advanced breast cancer. PMID:16969354

  20. Polyelectrolyte multilayer nanoshells with hydrophobic nanodomains for delivery of Paclitaxel

    PubMed Central

    Jing, Jing; Guillot, Raphael; Paintrand, Isabelle; Auzely-Velty, Rachel; Picart, Catherine

    2014-01-01

    Efficient and effective delivery of poorly water-soluble drug molecules, which constitute a large part of commercially available drugs, is a major challenge in the field of drug delivery. Several drugs including paclitaxel (PTX) which are used for cancer treatment are hydrophobic, exhibit poor aqueous solubility and need to be delivered using an appropriate carrier. In the present work, we engineered Taxol-loaded polyelectrolyte films and microcapsules by pre-complexing PTX with chemically modified derivative of hyaluronic acid (alkylamino hydrazide) containing hydrophobic nanocavities, and subsequent assembly with either poly(L-lysine) (PLL) or quaternized chitosan (QCHI) as polycations. The PTX loading capacity of the films was found to be dependent on number of layers in the films as well as on the initial concentration of PTX pre-complexed to hydrophobic HA, with a loading capacity up to 5000-fold the initial PTX concentration. The films were stable in physiological medium and were degraded in the presence of hyaluronidase. The PTX-loaded microcapsules were found to decrease the viability and proliferation of MDA MB 231 breast cancer cells, while unloaded microcapsules did not impact cell viability. All together, our results highlight the potential of hyaluronan-based assemblies containing hydrophobic nanodomains for hydrophobic drug delivery. PMID:22300622

  1. Targeting of albumin-embedded paclitaxel nanoparticles to tumors

    PubMed Central

    Karmali, Priya Prakash; Kotamraju, Venkata Ramana; Kastantin, Mark; Black, Matthew; Missirlis, Dimitris; Tirrell, Matthew; Ruoslahti, Erkki

    2010-01-01

    We have used tumor-homing peptides to target abraxane, a clinically approved paclitaxel-albumin nanoparticle, to tumors in mice. The targeting was accomplished with two peptides, CREKA, and LyP-1 (CGQKRTRGC). Fluorescein (FAM)-labeled CREKA-abraxane, when injected intravenously into mice bearing MDA-MB-435 human cancer xenografts, accumulated in tumor blood vessels, forming aggregates that contained red blood cells and fibrin. FAM-LyP-1-abraxane co-localized with extravascular islands expressing its receptor, p32. Self-assembled mixed micelles carrying the homing peptide and the label on different subunits accumulated in the same areas of tumors as LyP-1-abraxane, showing that Lyp-1 can deliver intact nanoparticles into extravascular sites. Untargeted, FAM-abraxane was detected in the form of a faint meshwork in tumor interstitium. LyP-1-abraxane produced a statistically highly significant inhibition of tumor growth compared to untargeted abraxane. These results show that nanoparticles can be effectively targeted into extravascular tumor tissue and that targeting can enhance the activity of a therapeutic nanoparticle. PMID:18829396

  2. Programmed Hydrolysis in Designing Paclitaxel Prodrug for Nanocarrier Assembly

    PubMed Central

    Fu, Q.; Wang, Y.; Ma, Y.; Zhang, D.; Fallon, J. K.; Yang, X.; Liu, D.; He, Z.; Liu, F.

    2015-01-01

    Nanocarriers delivering prodrugs are a way of improving in vivo effectiveness and efficiency. For therapeutic efficacy, the prodrug must hydrolyze to its parent drug after administration. Based on the fact that the hydrolysis is impeded by steric hindrance and improved by sufficient polarity, in this study, we proposed the PTX-S-S-VE, the conjugation of paclitaxel (PTX) to vitamin E (VE) through a disulfide bridge. This conjugate possessed the following advantages: first, it can be encapsulated in the VE/VE2-PEG2000/water nanoemulsions because of favorable hydrophobic interactions; second, the nanoemulsions had a long blood circulation time; finally, the concentrated glutathione in the tumor microenvironment could cleave the disulfide bond to weaken the steric hindrance and increase the polarity, promoting the hydrolysis to PTX and increasing the anticancer activity. It was demonstrated in vitro that the hydrolysis of PTX-S-S-VE was enhanced and the cytotoxicity was increased. In addition, PTX-S-S-VE had greater anticancer activity against the KB-3-1 cell line tumor xenograft and the tumor size was smaller after the 4th injection. The present result suggests a new way, use of reduction, to improve the in vivo anticancer activity of a prodrug for nanocarrier delivery by unshielding the ester bond and taking off the steric block. PMID:26166066

  3. Delivery of paclitaxel using PEGylated graphene oxide as a nanocarrier.

    PubMed

    Xu, Zhiyuan; Zhu, Shaojia; Wang, Mingwei; Li, Yongjun; Shi, Ping; Huang, Xiaoyu

    2015-01-21

    Paclitaxel (PTX) is an extensively used potent chemotherapy drug; however, low water solubility, poor bioavailability, and emergence of drug resistance in patients limited its biological application. In this report, we proposed a new drug delivery system for cancer therapy based on graphene oxide (GO), a novel 2D nanomaterial obtained from the oxidation of natural graphite, to improve the utilization rate of PTX. PTX was first connected to biocompatible 6-armed poly(ethylene glycol), followed by covalent introduction into the surface of GO sheets via a facile amidation process under mild conditions, affording the drug delivery system, GO-PEG-PTX (size 50-200 nm). GO-PEG nanosized carrier could quickly enter into human lung cancer A549 and human breast cancer MCF-7 cells verified by inverted fluorescence microscope using fluorescein isothiocyanate as probe. This nanocarrier was nontoxic to A549 and MCF-7 cells without linking with PTX. Nevertheless, GO-PEG-PTX showed remarkably high cytotoxicity to A549 and MCF-7 cells in a broad range of concentration of PTX and time compared to free PTX. This kind of nanoscale drug delivery system based on PEGylated GO may find widespread application in biomedicine. PMID:25546399

  4. Paclitaxel-loaded poly(D,L-lactide-co-glycolide) nanoparticles for radiotherapy in hypoxic human tumor cells in vitro.

    PubMed

    Jin, Cheng; Bai, Ling; Wu, Hong; Liu, Junye; Guo, Guozhen; Chen, Jingyuan

    2008-06-01

    Radioresistant hypoxic cells may contribute to the failure of radiation therapy in controlling certain tumors. Some studies have suggested the radiosensitizing effect of paclitaxel. The poly (D,L-lactide-co-glycolide)(PLGA) nanoparticles containing paclitaxel were prepared by o/w emulsification-solvent evaporation method. The physicochemical characteristics of the nanoparticles (i.e., encapsulation efficiency, particle size distribution, morphology, in vitro release) were studied. The morphology of the two human tumor cell lines: a carcinoma cervicis (HeLa) and a hepatoma (HepG(2)), treated with paclitaxel-loaded nanoparticles was photomicrographed. Flow cytometry was used to quantify the number of the tumor cells held in the G(2)/M phase of the cell cycle. The cellular uptake of nanoparticles was evaluated by transmission electronic microscopy. Cell viability was determined by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical in shape with size between 200 nm and 800 nm. The encapsulation efficiency was 85.5%. The release behaviour of paclitaxel from the nanoparticles exhibited a biphasic pattern characterised by a fast initial release during the first 24 h, followed by a slower and continuous release. Co-culture of the two tumor cell lines with paclitaxel-loaded nanoparticles demonstrated that the cell morphology was changed and the released paclitaxel retained its bioactivity to block cells in the G(2)/M phase. The cellular uptake of nanoparticles was observed. The free paclitaxel and paclitaxel-loaded nanoparticles effectively sensitized hypoxic HeLa and HepG(2) cells to radiation. Under this experimental condition, the radiosensitization of paclitaxel-loaded nanoparticles was more significant than that of free paclitaxel. PMID:18367873

  5. [Results of a drug use investigation of nanoparticle albumin-bound Paclitaxel for breast cancer].

    PubMed

    Nakamura, Seigo; Iwata, Hiroji; Funato, Yuya; Ito, Kunio; Ito, Yoshinori

    2015-04-01

    A drug use investigation of nanoparticle albumin-bound paclitaxel was conducted based on conditions for approval. A total of 963 patients were enrolled in this study from September 24, 2010 to February 14, 2011. Twenty-nine patients were excluded, and a total of 934 patients were evaluated for determining the safety of nanoparticle albumin-bound paclitaxel. Adverse drug reactions were observed in 92.8%of the patients, and major adverse drug reactions included myelosuppression and peripheral sensory neuropathy, both of which are characteristic adverse reactions of paclitaxel treatment. Both adverse drug reactions were observed at a high frequency after the second course of treatment, resulting in these reactions being primary causes for discontinuation. Increase in the rates of continuous drug administration may be accomplished by carrying out laboratory tests and noting the medical history in order to prevent myelosuppression from becoming serious and to perform earlier countermeasures for peripheral sensory neuropathy, leading to improved therapeutic effects. PMID:25963691

  6. Molecular analysis of interactions between a PAMAM dendrimer-paclitaxel conjugate and a biomembrane.

    PubMed

    He, XiaoCong; Lin, Min; Lu, TianJian; Qu, ZhiGuo; Xu, Feng

    2015-11-28

    Understanding the underlying mechanism of nanomedicine-biomembrane interactions is important for the design and optimization of payload delivery systems. This study investigates the interactions between polyamidoamine (PAMAM) dendrimer-paclitaxel conjugates and biomembranes using coarse-grained molecular dynamics simulations. We found that acidic conditions (e.g., pH ? 5) and membrane asymmetry can improve the conjugate penetration. Paclitaxel (PTX) distributions on a G4 PAMAM dendrimer can affect interactions via the penetration mechanism, although they have no significant effect on interactions via the adsorption mechanism. The random distribution of PTX can enhance the ability of PTX molecules to pass through asymmetric membranes. Furthermore, the penetration process becomes more difficult with increasing paclitaxel loading ratios. These results provide molecular insights into the precise translocation mechanism of dendrimer-drug conjugates and thus provide suggestions for drug design and delivery. PMID:26256278

  7. Paclitaxel (Taxol): a success story with valuable lessons for natural product drug discovery and development.

    PubMed

    Cragg, G M

    1998-09-01

    The discovery and development of paclitaxel, which covered a time span of some 30 years, has provided some important lessons for those involved in natural product drug discovery and development. These include the adoption of novel screens as they become available, the elucidation of mechanisms of action, and addressing the supply issue at an early stage of development. These issues, as applied to paclitaxel, are illustrated. The development of the NCI human cancer cell line screen, and its application to mechanistic studies through use of COMPARE analyses, are discussed, as is the production of the marine-derived anticancer agent, bryostatin 1, which provides another illustration of a successful approach to solving a supply issue. The history of the development of paclitaxel also illustrates the importance of multidisciplinary collaboration, and the various mechanisms used by the NCI Developmental Therapeutics Program for promoting such collaboration are presented. PMID:9735872

  8. Dermatomyositis and Paclitaxel-Induced Cutaneous Drug Eruption Associated with Metastatic Breast Cancer

    PubMed Central

    Kim, Youngji; Jung, Woojin

    2015-01-01

    Dermatomyositis (DM) is an idiopathic autoimmune connective disease characterized by muscles and skin inflammation of and a well-recognized association with several human malignancies, especially breast cancer. Paclitaxel is a taxane antineoplastic agent with therapeutic effects against a wide range of cancers including breast cancer. This drug is well known for neurotoxicity and hypersensitivity reactions. However, cutaneous drug eruptions, especially those of grade III or higher, are not frequent. Here, we describe the case of a 55-year-old woman with metastatic breast cancer who developed paraneoplastic DM and a paclitaxel-induced exanthematous drug eruption. This case report emphasizes the importance of evaluating internal malignancies, such as advanced breast cancer, in newly developed DM patients. In addition, it presents a rare case of paclitaxel-induced exanthematous drug eruption. The purpose of this case report highlights the immunological pathogenic mechanism of DM and drug eruption in underlying advanced breast cancer. PMID:26155297

  9. Dermatomyositis and Paclitaxel-Induced Cutaneous Drug Eruption Associated with Metastatic Breast Cancer.

    PubMed

    Kim, Youngji; Jung, Woojin; Park, Yeon Hee

    2015-06-01

    Dermatomyositis (DM) is an idiopathic autoimmune connective disease characterized by muscles and skin inflammation of and a well-recognized association with several human malignancies, especially breast cancer. Paclitaxel is a taxane antineoplastic agent with therapeutic effects against a wide range of cancers including breast cancer. This drug is well known for neurotoxicity and hypersensitivity reactions. However, cutaneous drug eruptions, especially those of grade III or higher, are not frequent. Here, we describe the case of a 55-year-old woman with metastatic breast cancer who developed paraneoplastic DM and a paclitaxel-induced exanthematous drug eruption. This case report emphasizes the importance of evaluating internal malignancies, such as advanced breast cancer, in newly developed DM patients. In addition, it presents a rare case of paclitaxel-induced exanthematous drug eruption. The purpose of this case report highlights the immunological pathogenic mechanism of DM and drug eruption in underlying advanced breast cancer. PMID:26155297

  10. Dual Metronomic Chemotherapy with Nab-Paclitaxel and Topotecan Has Potent Antiangiogenic Activity in Ovarian Cancer.

    PubMed

    Previs, Rebecca A; Armaiz-Pena, Guillermo N; Lin, Yvonne G; Davis, Ashley N; Pradeep, Sunila; Dalton, Heather J; Hansen, Jean M; Merritt, William M; Nick, Alpa M; Langley, Robert R; Coleman, Robert L; Sood, Anil K

    2015-12-01

    There is growing recognition of the important role of metronomic chemotherapy in cancer treatment. On the basis of their unique antiangiogenic effects, we tested the efficacy of nab-paclitaxel, which stimulates thrombospondin-1, and topotecan, which inhibits hypoxia-inducible factor 1-?, at metronomic dosing for the treatment of ovarian carcinoma. In vitro and in vivo SKOV3ip1, HeyA8, and HeyA8-MDR (taxane-resistant) orthotopic models were used to examine the effects of metronomic nab-paclitaxel and metronomic topotecan. We examined cell proliferation (Ki-67), apoptosis (cleaved caspase-3), and angiogenesis (microvessel density, MVD) in tumors obtained at necropsy. In vivo therapy experiments demonstrated treatment with metronomic nab-paclitaxel alone and in combination with metronomic topotecan resulted in significant reductions in tumor weight (62% in the SKOV3ip1 model, P < 0.01 and 96% in the HeyA8 model, P < 0.03) compared with vehicle (P < 0.01). In the HeyA8-MDR model, metronomic monotherapy with either cytotoxic agent had modest effects on tumor growth, but combination therapy decreased tumor burden by 61% compared with vehicle (P < 0.03). The greatest reduction in MVD (P < 0.05) and proliferation was seen in combination metronomic therapy groups. Combination metronomic therapy resulted in prolonged overall survival in vivo compared with other groups (P < 0.001). Tube formation was significantly inhibited in RF-24 endothelial cells exposed to media conditioned with metronomic nab-paclitaxel alone and media conditioned with combination metronomic nab-paclitaxel and metronomic topotecan. The combination of metronomic nab-paclitaxel and metronomic topotecan offers a novel, highly effective therapeutic approach for ovarian carcinoma that merits further clinical development. Mol Cancer Ther; 14(12); 2677-86. 2015 AACR. PMID:26516159

  11. Metronomic oral paclitaxel shows anti-tumor effects in an orthotopic mouse model of ovarian cancer

    PubMed Central

    Hahn, Ho-Suap; Lee, Ki-Heon; Lee, In-Ho; Lee, Jae-Ho; Whang, Chang-Sung; Jo, Yeong-Woo

    2014-01-01

    Objective The purpose of this study was to compare the in vivo anti-tumor efficacy of a mucoadhesive, lipid-based, oral paclitaxel formulation (DHP107) with traditional, intraperitoneal (IP) paclitaxel using an orthotopic mouse model of chemotherapy-sensitive SKOV3ip1 ovarian cancer. Methods To determine the optimal therapeutic dose of oral paclitaxel, DHP107 was administered per os to female athymic nude mice at 0, 25, or 50 mg/kg twice per week. Control mice received 100 µL saline once per week. IP injections of paclitaxel at 5 mg/kg once per week were used for comparison. To evaluate the potential therapeutic effect of metronomic DHP107 chemotherapy, mice received DHP107 50 mg/kg once per week per os, which was compared with 25 mg/kg twice per week and with vehicle-treated controls. Results Low-dose DHP107 (25 mg/kg) twice per week was as effective as IP paclitaxel (5 mg/kg once a week) but high-dose DHP107 (50 mg/kg once per week) was less effective at inhibiting tumor growth in an orthotopic mouse model (88%, 82%, and 36% decrease in tumor weight, respectively). Mice that received 25 mg/kg DHP107 twice per week or 50 mg/kg DHP107 once per week per os had a significant decrease in tumor weight compared with vehicle-treated controls (p<0.01, both doses). Conclusion Metronomic oral chemotherapy with DHP107 showed anti-tumor efficacy in vivo similar to IP paclitaxel in an orthotopic mouse model. PMID:24761217

  12. Lipid-dendrimer hybrid nanosystem as a novel delivery system for paclitaxel to treat ovarian cancer.

    PubMed

    Liu, Yuanjie; Ng, Yiwei; Toh, Ming R; Chiu, Gigi N C

    2015-12-28

    Combining lipids and dendrimers into one formulation is an emerging platform in the drug delivery field. This study aims to (i) develop and characterize a lipid-dendrimer hybrid (LDH) nanosystem for the hydrophobic anticancer drug paclitaxel, and (ii) evaluate its in vitro and in vivo anti-cancer activity in ovarian cancer models. The LDH nanosystems were prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and poly (amidoamine) (PAMAM) G4.0. The size and zeta potential of the LDH nanosystem were 37.66.1nm and +2.90.1mV, respectively, with vesicular morphology observed under cryo-TEM. The encapsulation efficiency of paclitaxel in the LDH system was 78.02.1%. The potency of paclitaxel could be significantly improved by 37-fold when presented in the LDH nanosystem as compared to free drug, whereby paclitaxel and PAMAM G4.0 acted synergistically in killing the ovarian cancer cells. As shown by fluorescence confocal microscopy, majority of the lipids in the LDH nanosystem were located in the plasma membrane, while the dendrimers were distributed intracellularly upon uptake. Despite the use of a 10-fold lower paclitaxel dose, the survival of IGROV-1 ovarian tumor-bearing animals could be significantly prolonged by the paclitaxel-loaded LDH nanosystem, as reflected by a 50% increase in the median survival time. Such hybrid nanosystem emerged from combining two established drug delivery platforms could pave way for the development of multifunctional delivery systems for potential theranostic applications. PMID:26551345

  13. Paclitaxel and radiotherapy: sequence-dependent efficacy--a preclinical model.

    PubMed

    Niero, A; Emiliani, E; Monti, G; Pironi, F; Turci, L; Valenti, A M; Marangolo, M

    1999-08-01

    The optimal sequence of a paclitaxel-radiation combination was investigated in vitro in two human colon adenocarcinoma cell lines, HT29 and LoVo. Three schedules of combined treatment were tested by clonogenic and flow cytometric assays. Paclitaxel was given 24 h prior to a single radiation shot (first schedule) or 24 h (second schedule) or 48 h (third schedule) before 3 days of concomitant radiation. Dose-response data were fit to a linear quadratic model, and mean inactivation dose and sensitizer enhanced ratio were calculated. In HT29 cells, the first and second schedule resulted in an additive effect, whereas a supraadditive interaction was observed with the third combination schedule. This effect was obtained with amounts of paclitaxel lower than IC50, which did not result in cell cycle perturbation, and with low radiation dose (2 Gy) that may be given in a clinical setting. LoVo cells were less sensitive to combined treatment than HT29 cells, switching from infraadditive (first and second schedule) to additive interaction (third schedule). Posttreatment recovery studies of third schedule showed a loss of cell survival in HT29 cells but not in LoVo cells. In contrast to LoVo cells, the third schedule in HT29 cells was able to induce perturbation of cell cycle kinetics, an effective impairment of DNA repair, and apoptotic cell death. HT29 and LoVo cells showed constitutional different characteristics: HT29 cells were more sensitive to paclitaxel exposure, less radiosensitive, and had a different cell cycle redistribution after radiation exposure than LoVo cells; moreover, HT29 cells showed a major propensity to undergo apoptosis. These results suggest that the radiosensitizing effect of paclitaxel was strictly schedule dependent, and the inhibition of DNA repair, cell cycle redistribution, and apoptosis could be the mechanisms for the induction of radiosensitization by paclitaxel. PMID:10473108

  14. Fatal outcome of a hypersensitivity reaction to paclitaxel: a critical review of premedication regimens.

    PubMed

    Kloover, J S; den Bakker, M A; Gelderblom, H; van Meerbeeck, J P

    2004-01-26

    Hypersensitivity reactions (HSRs) to paclitaxel are frequently encountered in patients receiving this antitumour drug. Administration of histamine H1- and H2-receptor antagonists and corticosteroids has been shown to reduce significantly the risk of developing an HSR in patients receiving taxanes. In this case report, we describe the fatal outcome of an HSR in a patient receiving paclitaxel despite short-course premedication. The level of evidence supporting the short-course i.v. premedication schedule is challenged, as it is not compatible with the pharmacokinetic properties of dexamethasone. PMID:14974481

  15. Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-?-mediated signaling

    PubMed Central

    Peng, X; Gong, F; Chen, Y; Jiang, Y; Liu, J; Yu, M; Zhang, S; Wang, M; Xiao, G; Liao, H

    2014-01-01

    Paclitaxel is one of the most effective chemotherapy drugs for advanced cervical cancer. However, acquired resistance of paclitaxel represents a major barrier to successful anticancer treatment. In this study, paclitaxel-resistant HeLa sublines (HeLa-R cell lines) were established by continuous exposure and increased autophagy level was observed in HeLa-R cells. 3-Methyladenine or ATG7 siRNA, autophagy inhibitors, could restore sensitivity of HeLa-R cells to paclitaxel compared with parental HeLa cells. To determine the underlying molecular mechanism, differentially expressed proteins between HeLa and HeLa-R cells were identified by two-dimensional gel electrophoresis coupled with electrospray ionization quadrupole time-of-flight MS/MS. We found glycolysis-associated proteins were upregulated in HeLa-R cell lines. Inhibition of glycolysis by 2-deoxy-D-glucose or koningic acid could decrease autophagy and enhance sensitivity of HeLa-R cells to paclitaxel. Moreover, glycolysis could activate HIF1-?. Downregulation of HIF1-? by specific siRNA could decrease autophagy and resensitize HeLa-R cells to paclitaxel. Taken together, a possible Warburg effect activated HIF1-?-mediated signaling-induced autophagic pathway is proposed, which may provide new insight into paclitaxel chemoresistance. PMID:25118927

  16. Transferrin-Targeted Polymeric Micelles Co-Loaded with Curcumin and Paclitaxel: Efficient Killing of Paclitaxel-Resistant Cancer Cells

    PubMed Central

    Abouzeid, Abraham H.; Patel, Niravkumar R.; Sarisozen, Can

    2014-01-01

    Purpose The ability to successfully treat advanced forms of cancer remains a challenge due to chemotherapy resistance. Numerous studies indicate that NF-?B, a protein complex that controls the expression of numerous genes, as being a key factor in producing chemo-resistant tumors. In this study, the therapeutic potential of transferrin (TF)-targeted mixed micelles, made of PEG-PE and vitamin E co-loaded with curcumin (CUR), a potent NF-?B inhibitor, and paclitaxel (PCL), was examined. Methods The cytotoxicity of non-targeted and TF-targeted CUR and PCL micelles as a single agent or in combination was investigated against SK-OV-3 human ovarian adenocarcinoma along with its multi-drug resistant (MDR) version SK-OV-3-PCL-resistant (SK-OV-3TR) cells in vitro. Results Our results indicated that the TF-targeted combination micelles were able to improve the net cytotoxic effect of CUR and PCL to clear synergistic one against the SK-OV-3 cells. In addition, even though the non-targeted combination treatment demonstrated a synergistic effect against the SK-OV-3TR cells, the addition of the TF-targeting moiety significantly increased this cytotoxic effect. While keeping CUR constant at 5 and 10 ?M and varying the PCL concentration, the PCL IC50 decreased from ~ 1.78 and 0.68 ?M for the non-targeted formulations to ~ 0.74 and 0.1 ?M for the TF-targeted ones, respectively. Conclusion Our results indicate that such co-loaded targeted mixed micelles could have significant clinical advantages for the treatment of resistant ovarian cancer and provide a clear rational for further in vivo investigation. PMID:24522815

  17. The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4.

    PubMed

    Li, Yan; Adamek, Pavel; Zhang, Haijun; Tatsui, Claudio Esteves; Rhines, Laurence D; Mrozkova, Petra; Li, Qin; Kosturakis, Alyssa K; Cassidy, Ryan M; Harrison, Daniel S; Cata, Juan P; Sapire, Kenneth; Zhang, Hongmei; Kennamer-Chapman, Ross M; Jawad, Abdul Basit; Ghetti, Andre; Yan, Jiusheng; Palecek, Jiri; Dougherty, Patrick M

    2015-09-30

    Peripheral neuropathy is dose limiting in paclitaxel cancer chemotherapy and can result in both acute pain during treatment and chronic persistent pain in cancer survivors. The hypothesis tested was that paclitaxel produces these adverse effects at least in part by sensitizing transient receptor potential vanilloid subtype 1 (TRPV1) through Toll-like receptor 4 (TLR4) signaling. The data show that paclitaxel-induced behavioral hypersensitivity is prevented and reversed by spinal administration of a TRPV1 antagonist. The number of TRPV1(+) neurons is increased in the dorsal root ganglia (DRG) in paclitaxel-treated rats and is colocalized with TLR4 in rat and human DRG neurons. Cotreatment of rats with lipopolysaccharide from the photosynthetic bacterium Rhodobacter sphaeroides (LPS-RS), a TLR4 inhibitor, prevents the increase in numbers of TRPV1(+) neurons by paclitaxel treatment. Perfusion of paclitaxel or the archetypal TLR4 agonist LPS activated both rat DRG and spinal neurons directly and produced acute sensitization of TRPV1 in both groups of cells via a TLR4-mediated mechanism. Paclitaxel and LPS sensitize TRPV1 in HEK293 cells stably expressing human TLR4 and transiently expressing human TRPV1. These physiological effects also are prevented by LPS-RS. Finally, paclitaxel activates and sensitizes TRPV1 responses directly in dissociated human DRG neurons. In summary, TLR4 was activated by paclitaxel and led to sensitization of TRPV1. This mechanism could contribute to paclitaxel-induced acute pain and chronic painful neuropathy. Significance statement: In this original work, it is shown for the first time that paclitaxel activates peripheral sensory and spinal neurons directly and sensitizes these cells to transient receptor potential vanilloid subtype 1 (TRPV1)-mediated capsaicin responses via Toll-like receptor 4 (TLR4) in multiple species. A direct functional interaction between TLR4 and TRPV1 is shown in rat and human dorsal root ganglion neurons, TLR4/TRPV1-coexpressing HEK293 cells, and in both rat and mouse spinal cord slices. Moreover, this is the first study to show that this interaction plays an important role in the generation of behavioral hypersensitivity in paclitaxel-related neuropathy. The key translational implications are that TLR4 and TRPV1 antagonists may be useful in the prevention and treatment of chemotherapy-induced peripheral neuropathy in humans. PMID:26424893

  18. Investigation of the release behavior of DEHP from infusion sets by paclitaxel-loaded polymeric micelles.

    PubMed

    Kim, Sung Chul; Yoon, Hye Jeong; Lee, Jang Won; Yu, Jaewon; Park, Eun-Seok; Chi, Sang-Cheol

    2005-04-11

    The current clinical formulation of paclitaxel (Taxol) contains 1:1 blend of Cremophor EL (polyethoxylated castor oil) and dehydrated ethanol. Cremophor EL and dehydrated ethanol are well known to leach di-(2-ethylhexyl) phthalate (DEHP) from polyvinyl chloride (PVC) infusion bags and PVC administration sets. DEHP is a possible hepatotoxin, carcinogen, teratogen and mutagen. Long-term exposure to DEHP may cause health risks. As an alternative formulation for paclitaxel, paclitaxel-loaded polymeric micelles (PLPM), made of monomethoxy poly(ethylene glycol)-block-poly(d,l-lactide) (mPEG-PDLLA) diblock copolymer, has demonstrated clear advantages over Taxol in pharmacokinetics and therapeutic index. Paclitaxel in either PLPM or Taxol formulations, diluted in 0.9% sodium chloride injection, was stable in the PVC infusion bags. The PLPM formulation significantly reduced the amount of DEHP extracted from PVC infusion bags and PVC administration sets. For PLPM diluted in 0.9% sodium chloride injection, the total amount of DEHP delivered over the simulated infusion period was 0.7 mg for 3h and 2.0 mg for 24 h, which was less than 2.9% of the DEHP extracted by Taxol. These results confirmed that there is negligible risk of DEHP exposure from diluted PLPM i.v. infusion using PVC infusion bags and PVC administration sets. PMID:15778068

  19. Gemcitabine in combination with paclitaxel for advanced soft-tissue sarcomas

    PubMed Central

    SONNENBLICK, AMIR; ELEYAN, FERAS; PERETZ, TAMAR; OSPOVAT, INNA; MERIMSKY, OFER; SELLA, TAMAR; PEYLAN-RAMU, NILI; KATZ, DANIELA

    2015-01-01

    A limited number of chemotherapeutic agents have been found to be active against advanced soft-tissue sarcomas (STSs), particularly sarcomas that have progressed following doxorubicin treatment. The aim of this retrospective study was to determine the response to treatment with gemcitabine plus paclitaxel in patients with STSs. Data were collected on all patients with advanced non-resectable STS who were treated with a fixed dose 700 mg/m2 gemcitabine in combination with 70 mg/m2 paclitaxel on days 1 and 8 every 3 weeks. A total of 30 patients were included, with a median age of 56.4 years (range, 4070 years). The gemcitabine/paclitaxel combination was well tolerated, with an overall response in 27% and a clinical benefit in 57% of the patients. The median progression-free survival was 6.1 months and the overall survival was 14.3 months. In conclusion, gemcitabine plus paclitaxel was found to be tolerable and effective in patients with advanced STSs. PMID:26171190

  20. Designing Paclitaxel Drug Delivery Systems Aimed at Improved Patient Outcomes: Current Status and Challenges

    PubMed Central

    Surapaneni, Madhu S.; Das, Sudip K.; Das, Nandita G.

    2012-01-01

    Paclitaxel is one of the most widely used and effective antineoplastic agents derived from natural sources. It has a wide spectrum of antitumor activity, particularly against ovarian cancer, breast cancer, nonsmall cell lung cancer, head and neck tumors, Kaposi's sarcoma, and urologic malignancies. It is a highly lipophilic compound with a log P value of 3.96 and very poor aqueous solubility of less than 0.01?mg/mL. In addition, the compound lacks functional groups that are ionizable which could potentially lead to an increase in its solubility with the alteration in pH. Therefore, the delivery of paclitaxel is associated with substantial challenges. Until the introduction of Abraxane, only commercial formulation was solution of paclitaxel in cremophor, which caused severe side effects. However, in recent years, a number of approaches have been reported to solubilize paclitaxel using cosolvents and inclusion complexes. In addition, innovative approaches have been reported for passive targeting of tumors using nanoparticles, nanosuspensions, liposomes, emulsions, micelles, implants, pastes and gels. All approaches for delivery of improved therapeutic outcome have been discussed in this paper. PMID:22934190

  1. In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid–polymeric nanoparticles

    PubMed Central

    Chan, Juliana M.; Drum, Chester L.; Bronson, Roderick T.; Golomb, Gershon; Langer, Robert; Farokhzad, Omid C.

    2011-01-01

    Following recent successes with percutaneous coronary intervention (PCI) for treating coronary artery disease (CAD), many challenges remain. In particular, mechanical injury from the procedure results in extensive endothelial denudation, exposing the underlying collagen IV-rich basal lamina, which promotes both intravascular thrombosis and smooth muscle proliferation. Previously, we reported the engineering of collagen IV-targeting nanoparticles (NPs) and demonstrated their preferential localization to sites of arterial injury. Here, we develop a systemically administered, targeted NP system to deliver an antiproliferative agent to injured vasculature. Approximately 60-nm lipid–polymeric NPs were surface functionalized with collagen IV-targeting peptides and loaded with paclitaxel. In safety studies, the targeted NPs showed no signs of toxicity and a ≥3.5-fold improved maximum tolerated dose versus paclitaxel. In efficacy studies using a rat carotid injury model, paclitaxel (0.3 mg/kg or 1 mg/kg) was i.v. administered postprocedure on days 0 and 5. The targeted NP group resulted in lower neointima-to-media (N/M) scores at 2 wk versus control groups of saline, paclitaxel, or nontargeted NPs. Compared with sham-injury groups, an ∼50% reduction in arterial stenosis was observed with targeted NP treatment. The combination of improved tolerability, sustained release, and vascular targeting could potentially provide a safe and efficacious option in the management of CAD. PMID:22087004

  2. Exploration of paclitaxel (Taxol) as a treatment for malignant tumors in cats: a descriptive case series.

    PubMed

    Kim, Jennifer; Doerr, Mary; Kitchell, Barbara E

    2015-02-01

    Paclitaxel, an effective chemotherapeutic agent in human oncology, has received little evaluation in feline patients. The diluent used to solubilize paclitaxel, polyoxyethylated castor oil (Cremophor EL), causes anaphylactoid reactions in human and dogs, which limits enthusiasm for use of this agent in veterinary oncology. Nine feline patients with measurable malignant tumors were treated with paclitaxel at a dosage of 80 mg/m(2) intravenously every 21 days for up to two doses. Adverse effects, including evidence of toxicity and anaphylactoid reactions, were assessed. Tumor response, progression and patient time to progression (TTP) were also recorded. Adverse effects included grade III and IV thrombocytopenia, grade III gastrointestinal signs (vomiting and constipation) and hypersensitivity reactions, seen in a total of five patients. Anaphylactoid reactions resolved with appropriate management. Stable disease and partial response were observed in 56% of feline patients. Median TTP was 28 days (range 15-45 days). Intravenous paclitaxel is a safe treatment option for feline malignant tumor patients. Future investigation is warranted to explore the effectiveness and appropriate application of this agent for specific tumor types. PMID:24820996

  3. Muscarinic activation enhances the anti-proliferative effect of paclitaxel in murine breast tumor cells.

    PubMed

    Espaol, Alejandro Javier; Jacob, Guillermina; Dmytrenko, Ganna; Sales, Mara Elena

    2013-10-01

    Muscarinic acetylcholine receptors (mAChR) are expressed in cells without nervous origin. mAChR are up-regulated in tumor cells and their stimulation can modulate tumor growth. In this work we investigated the ability of mAChR activation to induce tumor cell death. We studied the action of a combination of low doses of the muscarinic agonist carbachol plus paclitaxel, a chemotherapeutic agent frequently used in breast cancer treatment, in terms of effectiveness. Long term treatment with carbachol exerted anti-proliferative actions on LM2 and LM3 murine mammary adenocarcinoma cells, similarly to paclitaxel. The combination of carbachol with paclitaxel at submaximal concentrations, added during 20 h decreased tumor cell proliferation in a more potent manner than each drug added separately. This effect was reverted by the muscarinic antagonist atropine, and was due to a potentiation of tumor cell apoptosis tested by TUNEL assay. This treatment did not affect the proliferation of the non tumorigenic mammary cell line NMuMG. In conclusion, the combination of a muscarinic agonist plus paclitaxel should be tested as a useful therapeutic tool in breast cancer treatment. PMID:23293886

  4. Tumor-targeted delivery of paclitaxel using low density lipoprotein-mimetic solid lipid nanoparticles.

    PubMed

    Kim, Jin-Ho; Kim, Youngwook; Bae, Ki Hyun; Park, Tae Gwan; Lee, Jung Hee; Park, Keunchil

    2015-04-01

    Water-insoluble anticancer drugs, including paclitaxel, present severe clinical side effects when administered to patients, primarily associated with the toxicity of reagents used to solubilize the drugs. In efforts to develop alternative formulations of water-insoluble anticancer drugs suitable for intravenous administration, we developed biocompatible anticancer therapeutic solid lipid nanoparticles (SLNs), mimicking the structure and composition of natural particles, low-density lipoproteins (LDLs), for tumor-targeted delivery of paclitaxel. These therapeutic nanoparticles contained water-insoluble paclitaxel in the core with tumor-targeting ligand covalently conjugated on the polyethylene glycol (PEG)-modified surface (targeted PtSLNs). In preclinical human cancer xenograft mouse model studies, the paclitaxel-containing tumor-targeting SLNs exhibited pronounced in vivo stability and enhanced biocompatibility. Furthermore, these SLNs had superior antitumor activity to in-class nanoparticular therapeutics in clinical use (Taxol and Genexol-PM) and yielded long-term complete responses. The in vivo targeted antitumor activities of the SLN formulations in a mouse tumor model suggest that LDL-mimetic SLN formulations can be utilized as a biocompatible, tumor-targeting platform for the delivery of various anticancer therapeutics. PMID:25686010

  5. Chemotherapy with cisplatin and paclitaxel in patients with locally advanced, recurrent or metastatic oesophageal cancer.

    PubMed Central

    Petrasch, S.; Welt, A.; Reinacher, A.; Graeven, U.; Knig, M.; Schmiegel, W.

    1998-01-01

    Single-agent therapy with paclitaxel is effective against both squamous cell carcinoma and adenocarcinoma of the oesophagus. However, only limited data are available on the combination of paclitaxel with other cytotoxic drugs in this entity. Patients with unresectable stage III, recurrent or metastatic tumours were treated in a multicentre setting with paclitaxel 90 mg m(-2) given over 3 h intravenously, followed by cisplatin 50 mg m(-2). The courses were repeated every 14 days. Twenty patients with squamous cell carcinoma or adenocarcinoma of the oesophagus were evaluable for response. The overall remission rate was 40% (8/20), including 15% (3/20) clinically complete responses. Clinical benefit response, defined as relief of dysphagia and/or significant gain in weight, was achieved in 70% of the patients. Neutropenia of CTC grade 3 occurred only in 10% of the patients; no grade 4 neutropenia and no severe thrombocytopenia was encountered. CTC grade 4 neurotoxicity was seen in 5% of patients. Cisplatin/paclitaxel administered every 14 days, was effective in patients with poor prognosis oesophageal cancer and toxicity was acceptable. PMID:9716036

  6. Hybrid films from blends of chitosan and egg phosphatidylcholine for localized delivery of paclitaxel.

    PubMed

    Grant, J; Blicker, M; Piquette-Miller, M; Allen, C

    2005-07-01

    Chitosan and egg phosphatidylcholine (ePC) were used as a unique combination to prepare composite films for localized drug delivery. In comparison to other phospholipids analyzed, ePC was found to produce chitosan-based films with minimal swelling and a high degree of stability. The properties of the chitosan-ePC films were characterized and found to be dependent on the ratio of chitosan:ePC present. FTIR analysis of chitosan-ePC films revealed that their high stability may be attributed to interactions present between these two biomaterials. In vitro evaluation of the cytotoxicity and protein adsorption properties of the films were used to provide a preliminary indication of their biocompatibility. The chitosan-ePC film was also evaluated as a matrix for the localized delivery of the anti-cancer agent, paclitaxel. Nanoparticles containing paclitaxel were dispersed throughout the chitosan-ePC film to result in a drug:material ratio of 1:8 (wt/wt). The film was found to provide a sustained release of paclitaxel over a 4-month period in biologically relevant media. The biological activity of paclitaxel loaded in the chitosan-ePC film was confirmed in SKOV-3 human ovarian cancer cells. PMID:15920770

  7. [Effect of Scutellaria baicalensis root extract on cytogenetic damage induced by paclitaxel and cisplatin in mice].

    PubMed

    Neupokoeva, O V; Voronova, O L; Churin, A A; Suslov, N I; Shilova, I V; Kuzovkina, I N

    2013-01-01

    The effect of root extract of Baikal skullcap (Scutellaria baicalensis) cultivated in vitro, on the gene structure of CBA/CaLac mice bone marrow cells damaged by anticancer drugs paclitaxel and cisplatin has been studied. It is established that the root extract exhibits gene protective property upon both single and chronic administration. PMID:24605424

  8. Phase II trial of weekly nab-paclitaxel and carboplatin treatment with or without trastuzumab as nonanthracycline neoadjuvant chemotherapy for locally advanced breast cancer

    PubMed Central

    Huang, Liang; Chen, Sheng; Yao, Ling; Liu, Guangyu; Wu, Jiong; Shao, Zhiming

    2015-01-01

    Background Neoadjuvant chemotherapy has become standard treatment for women with locally advanced breast cancer. The aim of this study was to compare the efficacy and safety of nanoparticle albumin-bound paclitaxel (nab-paclitaxel) versus paclitaxel combined with carboplatin. Methods Thirty patients were treated with neoadjuvant nab-paclitaxel (125 mg/m2, days 1, 8, and 15) and carboplatin (area under the curve =2; days 1, 8, and 15) every 21 days for four cycles. Ninety matched patients received paclitaxel (80 mg/m2, days 1, 8, and 15) and carboplatin every 21 days for four cycles. Weekly trastuzumab is recommended for overexpression of human epidermal receptor-2. The primary endpoint was pathologic complete response (defined as ypT0/is ypN0). Matching was conducted according to six variables: body mass index, clinical tumor stage, clinical lymph node status, estrogen receptor status, HER2 status, and trastuzumab receiving rate. Results Ninety percent of patients in the nab-paclitaxel group and 80% of patients in the paclitaxel group experienced a clinical objective response (complete response or partial response; P=0.450). Eight patients in the nab-paclitaxel group and 23 patients in the paclitaxel group had a pathologic complete response in the breast and axillary nodes (26.7% versus 25.6%; P=0.904). Nab-paclitaxel showed a beneficial effective trend on clinical tumor stage II (36.8% versus 15.8%; P=0.051). When trastuzumab was added to nab-paclitaxel, the pathologic complete response rate was not significantly improved more than with trastuzumab and paclitaxel (43.6% versus 39.6%; P=0.769). Carboplatin plus nab-paclitaxel or paclitaxel had similarly low pathologic complete response rates (7.7% versus 10.5%) for the luminal molecular subtype. One (50%) triple-negative patient achieved a pathologic complete response. The nab-paclitaxel regimen caused more grade 4 neutropenia than the paclitaxel regimen (56.7% versus 21.1%; P<0.001). Conclusion Our study shows that weekly nab-paclitaxel and carboplatin with or without trastuzumab resulted in a pathologic complete response rate that was not superior to the matched cohorts. Future, larger trials are needed to validate that nab-paclitaxel is beneficial for clinical tumor stage II and the triple-negative subgroup. PMID:25792830

  9. Thermosensitive and Mucoadhesive Sol-Gel Composites of Paclitaxel/Dimethyl-β-Cyclodextrin for Buccal Delivery

    PubMed Central

    Kang, Bong-Seok; Ng, Choon Lian; Davaa, Enkhzaya; Park, Jeong-Sook

    2014-01-01

    The purpose of this study was to develop a buccal paclitaxel delivery system using the thermosensitive polymer Pluronic F127 (PF127) and the mucoadhesive polymer polyethylene oxide (PEO). The anticancer agent paclitaxel is usually used to treat ovarian, breast, and non-small-cell lung cancer. To improve its aqueous solubility, paclitaxel was incorporated into an inclusion complex with (2,6-di-O-methyl)-β-cyclodextrin (DMβCD). The formation of the paclitaxel inclusion complex was evaluated using various techniques, including x-ray diffractometry (XRD), Fourier-transform infrared (FT-IR) spectrophotometry, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Hydrogels were prepared using a cold method. Concentrations of 18, 20, and 23% (w/v) PF127 were dissolved in distilled water including paclitaxel and stored overnight in a refrigerator at 4°C. PEO was added at concentrations of 0.1, 0.2, 0.4, 0.8, and 1% (w/v). Each formulation included paclitaxel (0.5 mg/mL). The sol-gel transition temperature of the hydrogels was measured using the tube-inverting method. Drug release from the hydrogels was measured using a Franz diffusion cell containing pH 7.4 phosphate-buffered solution (PBS) buffer at 37°C. The cytotoxicity of each formulation was measured using the MTT assay with a human oral cancer cell (KB cell). The sol-gel transition temperature of the hydrogel decreased when PF127 was present and varied according to the presence of mucoadhesive polymers. The in vitro release was sustained and the release rate was slowed by the addition of the mucoadhesive polymer. The cytotoxicity of the blank formulation was low, although the drug-loaded hydrogel showed acceptable cytotoxicity. The results of our study suggest that the combination of a PF 127-based mucoadhesive hydrogel formulation and inclusion complexes improves the in vitro release and cytotoxic effect of paclitaxel. PMID:25275485

  10. Polymeric nanoparticles for the intracellular delivery of paclitaxel in lung and breast cancer

    NASA Astrophysics Data System (ADS)

    Zubris, Kimberly Ann Veronica

    Nanoparticles are useful for addressing many of the difficulties encountered when administering therapeutic compounds. Nanoparticles are able to increase the solubility of hydrophobic drugs, improve pharmacokinetics through sustained release, alter biodistribution, protect sensitive drugs from low pH environments or enzymatic alteration, and, in some cases, provide targeting of the drug to the desired tissues. The use of functional nanocarriers can also provide controlled intracellular delivery of a drug. To this end, we have developed functional pH-responsive expansile nanoparticles for the intracellular delivery of paclitaxel. The pH-responsiveness of these nanoparticles occurs due to a hydrophobic to hydrophilic transition of the polymer occurring under mildly acidic conditions. These polymeric nanoparticles were systematically evaluated for the delivery of paclitaxel in vitro and in vivo to improve local therapy for lung and breast cancers. Nanoparticles were synthesized using a miniemulsion polymerization process and were subsequently characterized and found to swell when exposed to acidic environments. Paclitaxel was successfully encapsulated within the nanoparticles, and the particles exhibited drug release at pH 5 but not at pH 7.4. In addition, the uptake of nanoparticles was observed using flow cytometry, and the anticancer efficacy of the paclitaxel-loaded nanoparticles was measured using cancer cell lines in vitro. The potency of the paclitaxel-loaded nanoparticles was close to that of free drug, demonstrating that the drug was effectively delivered by the particles and that the particles could act as an intracellular drug depot. Following in vitro characterization, murine in vivo studies demonstrated the ability of the paclitaxel-loaded responsive nanoparticles to delay recurrence of lung cancer and to prevent establishment of breast cancer in the mammary fat pads with higher efficacy than paclitaxel alone. In addition, the ability of nanoparticles to migrate up to 40 cm through lymphatic channels to local lymph nodes was demonstrated using near infrared imaging in a large animal model. Continued investigation of functional nanoparticles, like the system described here for lung and breast cancer, will facilitate the development of new materials that meet the varied and demanding needs in chemotherapy, and may afford new treatment options for the local and metastatic control of many forms of cancer.

  11. Folate-decorated hybrid polymeric nanoparticles for chemically and physically combined paclitaxel loading and targeted delivery.

    PubMed

    Wang, Jinfeng; Liu, Wenming; Tu, Qin; Wang, Jianchun; Song, Na; Zhang, Yanrong; Nie, Nan; Wang, Jinyi

    2011-01-10

    In this study, folate-functionalized hybrid polymeric nanoparticles (NPs) were prepared as carriers of low water solubility paclitaxel for tumor targeting, which were composed of monomethoxy-poly(ethylene glycol)-b-poly(lactide)-paclitaxel (MPEG-PLA-paclitaxel) and d-?-tocopheryl polyethylene glycol 1000 succinate (TPGS)-folate (TPGS-FOL). NPs with various weight ratios of MPEG-PLA-paclitaxel and TPGS-FOL were prepared using a solvent extraction/evaporation method, which can also physically encapsulate paclitaxel. The size, size distribution, surface charge, and morphology of the drug-loaded NPs were characterized using a Zetasizer Nano ZS, scanning electron microscope (SEM), and atomic force microscopy (AFM). The encapsulation and drug loading efficiencies of these polymeric NPs are analyzed using high-performance liquid chromatography (HPLC) at 227 nm. The combination of covalent coupling and physical encapsulation is found to improve the loading of paclitaxel in NPs greatly. The in vitro antitumor activity of the drug-loaded NPs is assessed using a standard method of transcriptional and translational (MTT) assays against HeLa and glioma C6 cells. When the cells were exposed to NPs with the same paclitaxel weights, cell viability decreases in relation to the increase in TPGS-FOL in drug-loaded NPs. To investigate drug-loaded NP cellular uptake, the fluorescent dye coumarin-6 is utilized as a model drug and enveloped in NPs with 0 or 50% TPGS-FOL. Confocal laser scanning microscopy (CLSM) analysis shows that cellular uptake is lower for coumarin-6-loaded NPs with 0% TPGS-FOL than those with 50% TPGS-FOL. However, no difference for NIH 3T3 cells with normally expressed folate receptors is found. Results from in vitro antitumor activity and cellular uptake assay demonstrate that folic acid promotes drug-loaded NP cellular uptake through folate receptor-mediated endocytosis (RME). All of these results demonstrate that folate-decorated hybrid polymeric NPs are potential carriers for tumor-targeted drug delivery. PMID:21158381

  12. Safety and pharmacology of paclitaxel in patients with impaired liver function: a population pharmacokineticpharmacodynamic study

    PubMed Central

    Joerger, M; Huitema, A D R; Huizing, M T; Willemse, P H B; de Graeff, A; Rosing, H; Schellens, J H M; Beijnen, J H; Vermorken, J B

    2007-01-01

    What is already known about this subject There are few data about the safety of paclitaxel in patients with clinically significant liver impairment. A study by Venook and colleagues (J Clin Oncol 1998; 16: 181119) studied paclitaxel pharmacokinetics (PK) and pharmacodynamics (PD) in patients with liver impairment. The results were mainly descriptive, as detailed PKPD data were available for only a subgroup of patients. Another study by Wilson and colleagues found a correlation between tumour involvement of the liver, aspartate aminotransferase and total bilirubin concentrations and reduced paclitaxel clearance in 48 patients with advanced breast cancer in an early combined Phase I/II study (J Clin Oncol 1994; 12: 16219). Finally, the study by Huizing and colleagues (Ann Oncol 1995; 6: 699704) described two advanced breast cancer patients with liver impairment who experienced higher paclitaxel AUC concentrations and more severe neuropathywhen exposed to paclitaxel 250 mg m?2 as a 3-h infusion. Liver impairment has been studied as a covariate within population models of paclitaxel in patients with normal or mildly impaired liver function (Henningsson et al. Eur JCancer 2003; 39: 110514; Joerger et al. Clin Cancer Res 2006; 12: 21507). Both studies found a negative correlation between total bilirubin concentrations and paclitaxel elimination. What this study adds A direct relationship between liver impairment, paclitaxel elimination and susceptibility to neutropenia/thrombopenia. As a result of PKPD simulations, suggestions could be made for (further) dose adaptations for patients with more severe liver impairment. Aims To assess quantitatively the safety and pharmacology of paclitaxel in patients with moderate to severe hepatic impairment. Methods Solid tumour patients were enrolled into five liver function cohorts as defined by liver transaminase and total bilirubin concentrations. Paclitaxel was administered as a 3-h intravenous infusion at doses ranging from 110 to 175 mg m?2, depending on liver impairment. Covariate and semimechanistic pharmacokineticpharmacodynamic (PKPD) population modelling was used to describe the impact of liver impairment on the pharmacology and safety of paclitaxel. Results Thirty-five patients were included in the study, and PK data were assessed for 59 treatment courses. Most patients had advanced breast cancer (n = 22). Objective responses to paclitaxel were seen in four patients (11%). Patients in higher categories of liver impairment had a significantly lower paclitaxel elimination capacity (R2 = ?0.38, P = 0.05), and total bilirubin was a significant covariate to predict decreased elimination capacity with population modelling (P = 0.002). Total bilirubin was also a significant predictor of increased haematological toxicity within the integrated population PKPD model (P < 10?4). Data simulations were used to calculate safe initial paclitaxel doses, which were lower than the administered doses for liver impairment cohorts IIIV. Conclusions Total bilirubin is a good predictor of paclitaxel elimination capacity and of individual susceptibility to paclitaxel-related myelosuppression in cancer patients with moderate to severe liver impairment. The proposed, adapted paclitaxel doses need validation in prospective trials. PMID:17935602

  13. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine

    PubMed Central

    Von Hoff, Daniel D.; Ervin, Thomas; Arena, Francis P.; Chiorean, E. Gabriela; Infante, Jeffrey; Moore, Malcolm; Seay, Thomas; Tjulandin, Sergei A.; Ma, Wen Wee; Saleh, Mansoor N.; Harris, Marion; Reni, Michele; Dowden, Scot; Laheru, Daniel; Bahary, Nathan; Ramanathan, Ramesh K.; Tabernero, Josep; Hidalgo, Manuel; Goldstein, David; Van Cutsem, Eric; Wei, Xinyu; Iglesias, Jose; Renschler, Markus F.

    2015-01-01

    BACKGROUND In a phase 12 trial of albumin-bound paclitaxel (nab-paclitaxel) plus gemcitabine, substantial clinical activity was noted in patients with advanced pancreatic cancer. We conducted a phase 3 study of the efficacy and safety of the combination versus gemcitabine monotherapy in patients with metastatic pancreatic cancer. METHODS We randomly assigned patients with a Karnofsky performance-status score of 70 or more (on a scale from 0 to 100, with higher scores indicating better performance status) to nab-paclitaxel (125 mg per square meter of body-surface area) followed by gemcitabine (1000 mg per square meter) on days 1, 8, and 15 every 4 weeks or gemcitabine monotherapy (1000 mg per square meter) weekly for 7 of 8 weeks (cycle 1) and then on days 1, 8, and 15 every 4 weeks (cycle 2 and subsequent cycles). Patients received the study treatment until disease progression. The primary end point was overall survival; secondary end points were progression-free survival and overall response rate. RESULTS A total of 861 patients were randomly assigned to nab-paclitaxel plus gemcitabine (431 patients) or gemcitabine (430). The median overall survival was 8.5 months in the nab-paclitaxelgemcitabine group as compared with 6.7 months in the gemcitabine group (hazard ratio for death, 0.72; 95% confidence interval [CI], 0.62 to 0.83; P<0.001). The survival rate was 35% in the nab-paclitaxelgemcitabine group versus 22% in the gemcitabine group at 1 year, and 9% versus 4% at 2 years. The median progression-free survival was 5.5 months in the nab-paclitaxelgemcitabine group, as compared with 3.7 months in the gemcitabine group (hazard ratio for disease progression or death, 0.69; 95% CI, 0.58 to 0.82; P<0.001); the response rate according to independent review was 23% versus 7% in the two groups (P<0.001). The most common adverse events of grade 3 or higher were neutropenia (38% in the nab-paclitaxelgemcitabine group vs. 27% in the gemcitabine group), fatigue (17% vs. 7%), and neuropathy (17% vs. 1%). Febrile neutropenia occurred in 3% versus 1% of the patients in the two groups. In the nab-paclitaxelgemcitabine group, neuropathy of grade 3 or higher improved to grade 1 or lower in a median of 29 days. CONCLUSIONS In patients with metastatic pancreatic adenocarcinoma, nab-paclitaxel plus gemcitabine significantly improved overall survival, progression-free survival, and response rate, but rates of peripheral neuropathy and myelosuppression were increased. (Funded by Celgene; ClinicalTrials.gov number, NCT00844649.) PMID:24131140

  14. Chronic cannabinoid CB2 activation reverses paclitaxel neuropathy without tolerance or CB1-dependent withdrawal

    PubMed Central

    Deng, Liting; Guindon, Josée; Cornett, Benjamin L.; Makriyannis, Alexandros; Mackie, Ken; Hohmann, Andrea G.

    2014-01-01

    Background Mixed cannabinoid CB1/CB2 agonists such as Δ9-tetrahydrocannabinol (Δ9-THC) can produce tolerance, physical withdrawal, and unwanted CB1-mediated central nervous system side effects. Whether repeated systemic administration of a CB2-preferring agonist engages CB1 receptors or produces CB1-mediated side effects is unknown. Methods We evaluated anti-allodynic efficacy, possible tolerance, and cannabimimetic side effects of repeated dosing with a CB2-preferring agonist AM1710 in a model of chemotherapy-induced neuropathy produced by paclitaxel using CB1KO, CB2KO, and WT mice. Comparisons were made with the prototypic classical cannabinoid Δ9-THC. We also explored the site and possible mechanism of action of AM1710. Results Paclitaxel-induced mechanical and cold allodynia developed equivalently in CB1KO, CB2KO, and WT mice. Both AM1710 and Δ9-THC suppressed established paclitaxel-induced allodynia in WT mice. Unlike Δ9-THC, chronic AM1710 did not engage CB1 activity or produce antinociceptive tolerance, CB1-mediated cannabinoid withdrawal, hypothermia, or motor dysfunction. Anti-allodynic efficacy of systemic AM1710 was absent in CB2KO mice or WT mice receiving the CB2 antagonist AM630, administered either systemically or intrathecally. Intrathecal AM1710 also attenuated paclitaxel-induced allodynia in WT but not CB2KO mice, implicating a possible role for spinal CB2 receptors in AM1710 anti-allodynic efficacy. Finally, both acute and chronic treatment with AM1710 decreased mRNA levels of tumor necrosis factor alpha and monocyte chemoattractant protein-1 in lumbar spinal cord of paclitaxel-treated WT mice. Conclusions Our results highlight the potential of prolonged use of CB2 agonists for managing chemotherapy-induced allodynia with a favorable therapeutic ratio marked by sustained efficacy and absence of tolerance, physical withdrawal, or CB1-mediated side effects. PMID:24853387

  15. Paclitaxel Loaded Nanoliposomes in Thermosensitive Hydrogel: A Dual Approach for Sustained and Localized Delivery.

    PubMed

    Mahajan, Mohit; Utreja, Puneet; Jain, Subheet Kumar

    2016-01-01

    In an attempt to improve the localized paclitaxel delivery, carrier based thermoresponsive chitosan hydrogel was exploited in the present study. Nanoliposomes as carrier for paclitaxel were prepared and optimized in strength of 6 mg/ml similar to marketed paclitaxel formulation. The chitosan solution (2% w/v) mixed with different concentrations of dibasic sodium phosphate (DSP) was evaluated as thermoresponsive systems in terms of gelling temperature and time. Finally, the drug loaded nanoliposomes were incorporated in optimized chitosan- DSP hydrogel base to form nanoliposomal in situ thermosensitive hydrogel formulations having dual mechanism of protection and release. The optimal formulation containing DSP was selected on the basis of minimal gelation temperature (37±0.8 ºC) and time (6.7±0.3 min). In vitro drug release experiment illustrated that developed formulation manifested sustained release action in which drug release was extended for more than 72 h compared to marketed formulation. In addition, optimized nanoliposomal hydrogel demonstrated enhanced biological half-life of 15.7±1.5h, depicting maintenance of constant plasma concentration in contrast to marketed formulation that showed the half-life (t1/2) of 3.6±0.4h. The in vivo anti tumor activity tested using EAC model also corroborated the above findings that developed formulation was having significant higher anti-tumor activity and reduced toxicity than the marketed formulation. Tumor volume was found to reduce upto 89.1±3.5% by treatment with in situ hydrogel formulation. The histopathological study of tumor also demonstrated the better safety and efficacy of developed formulation in comparison to marketed paclitaxel formulation. Our results suggest that carrier based chitosan hydrogel could be an efficacious vehicle for sustained and localized delivery of paclitaxel. PMID:26255673

  16. C-MYC modulation induces responsiveness to paclitaxel in adrenocortical cancer cell lines.

    PubMed

    Cerquetti, Lidia; Sampaoli, Camilla; De Salvo, Maria; Bucci, Barbara; Argese, Nicola; Chimento, Adele; Vottari, Sebastiano; Marchese, Rodolfo; Pezzi, Vincenzo; Toscano, Vincenzo; Stigliano, Antonio

    2015-05-01

    C-MYC is overexpressed in many types of cancer linked to poor prognosis. We examined the c-Myc protein expression in adrenocortical cancer (ACC) cells to investigate the role of this protein in the neoplasm, its involvement in chemotherapy and finally to determine whether c-Myc could be considered a prognostic factor in patients with ACC. H295R and SW13 cell lines were treated with paclitaxel. c-Myc overexpressing cell clones were achieved by transfecting the H295R cell line with the pcDNA3-hMYC plasmid expressing the full-lengh C-MYC coding sequence. The SW13 cell line was transfected with siRNA oligonucleotides for C-MYC. Cell cycle analysis was evaluated by flow cytometry. c-Myc, cyclin B1 and pro caspase expression levels were evaluated by western blot analysis. We found that expression of c-Myc was highly expressed in the SW13 cells, whereas the protein was undetectable in the H295R cells. Different doses of paclitaxel were required in the two ACC cell line to induce a block in the G2 phase, characterized by increased cyclin B1 levels and to induce apoptosis by pro-caspase-3 activation. Interestingly, the silencing of C-MYC mRNA prevented paclitaxel induced apoptosis in SW13 cells, whereas in the H295R cells the overexpression of C-MYC rendered the cells more prone to growth inhibition after paclitaxel exposure. The present study directly demonstrates that C-MYC plays a central role in controlling proliferation in ACC cells after paclitaxel treatment and that c-Myc could be considered as a marker for predicting response to chemotherapeutic agents in ACC cell lines. PMID:25708932

  17. Role of Transient Receptor Potential Channels in Paclitaxel- and Oxaliplatin-induced Peripheral Neuropathy.

    PubMed

    Taguchi, Kyoji

    2016-01-01

    Peripheral neuropathy is a common adverse effect of paclitaxel and oxaliplatin treatment. The major dose-limiting side effect of these drugs is peripheral sensory neuropathy. The symptoms of paclitaxel-induced neuropathy are mostly sensory and peripheral in nature, consisting of mechanical allodynia/hyperalgesia, tingling, and numbness. Oxaliplatin-induced neurotoxicity manifests as rapid-onset neuropathic symptoms that are exacerbated by cold exposure and as chronic neuropathy that develops after several treatment cycles. Although many basic and clinical researchers have studied anticancer drug-induced peripheral neuropathy, the mechanism is not well understood. In this review, we focus on (1) analysis of transient receptor potential vanilloid 1 (TRPV1) channel expression in the rat dorsal root ganglion (DRG) after paclitaxel treatment and (2) analysis of transient receptor potential ankyrin 1 (TRPA1) channel in the DRG after oxaliplatin treatment. This review describes that (1) paclitaxel-induced neuropathic pain may be the result of up-regulation of TRPV1 in small- and medium-diameter DRG neurons. In addition, paclitaxel treatment increases the release of substance P, but not calcitonin gene-related peptide, in the superficial layers of the spinal dorsal horn. (2) TRPA1 expression via activation of p38 mitogen-activated protein kinase in small-diameter DRG neurons, at least in part, contributes to the development of oxaliplatin-induced acute cold hyperalgesia. We suggest that TRPV1 or TRPA1 antagonists may be potential therapeutic lead compounds for treating anticancer drug-induced peripheral neuropathy. PMID:26831807

  18. Raman confocal microscopy and AFM combined studies of cancerous cells treated with Paclitaxel

    NASA Astrophysics Data System (ADS)

    Derely, L.; Collart Dutilleul, P.-Y.; Michotte de Welle, Sylvain; Szabo, V.; Gergely, C.; Cuisinier, F. J. G.

    2011-03-01

    Paclitaxel interferes with the normal function of microtubule breakdown, induces apoptosis in cancer cells and sequesters free tubulin. As this drug acts also on other cell mechanisms it is important to monitor its accumulation in the cell compartments. The intracellular spreading of the drug was followed using a WITEC 300R confocal Raman microscope equipped with a CCD camera. Hence Atomic force microscopy (an MFP3D- Asylum Research AFM) in imaging and force mode was used to determine the morphological and mechanical modifications induced on living cells. These studies were performed on living epithelial MCF-7 breast cancer cells. Paclitaxel was added to cell culture media for 3, 6 and 9 hours. Among the specific paclitaxel Raman bands we selected the one at 1670 cm-1 because it is not superposed by the spectrum of the cells. Confocal Raman images are formed by monitoring this band, the NH2 and the PO4 band. Paclitaxel slightly accumulates in the nucleus forming patches. The drug is also concentrated in the vicinity of the cell membrane and in an area close to the nucleus where proteins accumulate. Our AFM images reveal that the treated cancerous MCF-7 cells keep the same size as the non treated ones, but their shape becomes more oval. Cell's elasticity is also modified: a difference of 2 kPa in the Young Modulus characterizes the treated MCF-7 mammary cancerous cell. Our observations demonstrate that paclitaxel acts not only on microtubules but accumulates also in other cell compartments (nucleus) where microtubules are absent.

  19. Comparative Effects of Ibandronate and Paclitaxel on Immunocompetent Bone Metastasis Model

    PubMed Central

    Chung, Yoon-Sok; Kang, Ho Chul

    2015-01-01

    Purpose Bone metastasis invariably increases morbidity and mortality. This study compares the effects of ibandronate and paclitaxel on bone structure and its mechanical properties and biochemical turnover in resorption markers using an immunocompetent Walker 256-Sprague-Dawley model, which was subjected to tumor-induced osteolysis. Materials and Methods Seventy rats were divided equally into 4 groups: 1) sham group (SHAM), 2) tumor group (CANC), 3) ibandronate treated group (IBAN), and 4) paclitaxel treated group (PAC). Morphological indices [bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp)] and mechanical properties (failure load, stiffness) were evaluated after thirty days of treatment period. Bone resorption rate was analysed using serum deoxypyridinoline (Dpd) concentrations. Results Morphological indices showed that ibandronate (anti-resorptive drug) had a better effect in treating tumor-induced architectural changes in bone than paclitaxel (chemotherapeutic drug). The deterioration in bone architecture was reflected in the biomechanical properties of bone as studied with decreased failure load (Fx) and stiffness (S) of the bone on the 30th day post-surgery. Dpd concentrations were significantly lower in the IBAN group, indicating successful inhibition of bone resorption and destruction. Conclusion Ibandronate was found to be as effective as higher doses of paclitaxel in maintaining stiffness of bone. Paclitaxel treatment did not appear to inhibit osteoclast resorption, which is contrary to earlier in-vitro literature. Emphasis should be placed on the use of immunocompetent models for examining drug efficacy since it adequately reflects bone metastasis in clinical scenarios. PMID:26446649

  20. Redirecting Transport of Nanoparticle Albumin-Bound Paclitaxel to Macrophages Enhances Therapeutic Efficacy against Liver Metastases.

    PubMed

    Tanei, Tomonori; Leonard, Fransisca; Liu, Xuewu; Alexander, Jenolyn F; Saito, Yuki; Ferrari, Mauro; Godin, Biana; Yokoi, Kenji

    2016-01-15

    Current treatments for liver metastases arising from primary breast and lung cancers are minimally effective. One reason for this unfavorable outcome is that liver metastases are poorly vascularized, limiting the ability to deliver therapeutics from the systemic circulation to lesions. Seeking to enhance transport of agents into the tumor microenvironment, we designed a system in which nanoparticle albumin-bound paclitaxel (nAb-PTX) is loaded into a nanoporous solid multistage nanovector (MSV) to enable the passage of the drug through the tumor vessel wall and enhance its interaction with liver macrophages. MSV enablement increased nAb-PTX efficacy and survival in mouse models of breast and lung liver metastasis. MSV-nAb-PTX also augmented the accumulation of paclitaxel and MSV in the liver, specifically in macrophages, whereas paclitaxel levels in the blood were unchanged after administering MSV-nAb-PTX or nAb-PTX. In vitro studies demonstrated that macrophages treated with MSV-nAb-PTX remained viable and were able to internalize, retain, and release significantly higher quantities of paclitaxel compared with treatment with nAb-PTX. The cytotoxic potency of the released paclitaxel was also confirmed in tumor cells cultured with the supernatants of macrophage treated with MSV-nAB-PTX. Collectively, our findings showed how redirecting nAb-PTX to liver macrophages within the tumor microenvironment can elicit a greater therapeutic response in patients with metastatic liver cancer, without increasing systemic side effects. Cancer Res; 76(2); 429-39. 2016 AACR. PMID:26744528

  1. Oral microemulsions of paclitaxel: in situ and pharmacokinetic studies.

    PubMed

    Nornoo, Adwoa O; Zheng, Haian; Lopes, Luciana B; Johnson-Restrepo, Boris; Kannan, Kurunthachalam; Reed, Rachel

    2009-02-01

    The overall goal of this study was to develop cremophor-free oral microemulsions of paclitaxel (PAC) to enhance its permeability and oral absorption. The mechanism of this enhancement, as well as characteristics of the microemulsions relevant to the increase in permeability and absorption of the low solubility, low permeability PAC was investigated. Phase diagrams were used to determine the macroscopic phase behavior of the microemulsions and to compare the efficiency of different surfactant-oil mixtures to incorporate water. The microemulsion region on the phase diagrams utilizing surfactant-myvacet oil combinations was in decreasing order: lecithin: butanol: myvacet oil (LBM, 48.5%)>centromix CPS: 1-butanol: myvacet oil (CPS, 45.15%)>capmul MCM: polysorbate 80: myvacet oil (CPM, 27.6%)>capryol 90: polysorbate 80: myvacet oil (CP-P80, 23.9%)>capmul: myvacet oil (CM, 20%). Oil-in-water (o/w) microemulsions had larger droplet sizes (687-1010 nm) than the water-in-oil (w/o) microemulsions (272-363 nm) when measured using a Zetasizer nano series particle size analyzer. Utilizing nuclear magnetic resonance spectroscopy (NMR), the self-diffusion coefficient (D) of PAC in CM, LBM and CPM containing 10% of deuterium oxide (D(2)O) was 2.24x10(-11), 1.97x10(-11) and 0.51x10(-11) m(2)/s, respectively. These values indicate the faster molecular mobility of PAC in the two w/o microemulsions (CM and LBM) than the o/w microemulsion--CPM. The in situ permeability of PAC through male CD-IGS rat intestine was 3- and 11-fold higher from LBM and CM, respectively, than that from the control clinical formulation, Taxol (CE, cremophor: ethanol) in a single pass perfusion study. PAC permeability was significantly increased in the presence of the pgp/CYP3A4 inhibitor cyclosporine A (CsA). This enhancement may be attributed to the pgp inhibitory effect of the surfactants, oil and/or the membrane perturbation effect of the surfactants. The oral disposition of PAC in CM, LBM and CPM compared to CE was studied in male CD-IGS rats after a single oral dose (20 mg/kg). The area-under-the-curve of PAC in CM was significantly larger than LBM, CPM and CE. Oral microemulsions of PAC were developed that increased both the permeability and AUC of PAC as compared to CE. PMID:18793723

  2. PEG-derivatized octacosanol as micellar carrier for paclitaxel delivery.

    PubMed

    Chu, Bingyang; Qu, Ying; Huang, Yixing; Zhang, Lan; Chen, Xiaoxin; Long, Chaofeng; He, Yunqi; Ou, Caiwen; Qian, Zhiyong

    2016-03-16

    In this study, PEG-derivatized octacosanol copolymer was successfully developed to improve the anti-tumor activity and eliminate toxicity of the commercial formulation of paclitaxel (PTX). MPEG2K-C28, the conjugation of monomethoxy Poly(ethylene glycol) 2000 and octacosanol, was readily soluble in aqueous solution and self-assembled to form micelles with small sizes (<20nm) that are efficient in encapsulating PTX with a drug loading of 9.38±0.18% and an encapsulation efficiency of 93.90±2.12%. Meanwhile, octacosanol is very safe for humans and amazingly exhibits antitumor activity through inhibition activity of matrix metalloproteinases (MMPs) and translocation of the transcription factor (nuclear factor-kappa B, NF-κB) to the nucleus, which may be able to promote synergistic effects with PTX. A sustained and slower in vitro release behavior was observed in the (PTX micelles) than that of Taxol. PTX micelles exhibited more potent cytotoxicity than Taxol in the 4T1 breast cancer cell line. More interestingly, MPEG2K-C28 selectively inhibited the growth of 4T1 cells rather than the normal cells (HEK293 and L929 cell lines), indicating the antitumor activity of octacosanol remained after conjugation with MPEG. Acute toxicity evaluations indicated that MPEG2K-C28 was a safe drug carrier. Pharmacokinetic study revealed that PTX micelles improved the T1/2 and AUC of PTX (compared with Taxol) from 1.910±0.139h and 13.999±1.109mg/l×h to 2.876±0.532h and 76.462±8.619mg/l×h in vivo, respectively. The maximal tolerated dose (MTD) for PTX micelles (ca. 120mg PTX/kg) in mice was significantly higher than that for Taxol (ca. 20mg PTX/kg). PTX micelles exhibited slightly better antitumor activity than Taxol but safer in 4T1 breast cancer model in vivo. The cell apoptosis in the immunofluorescent studies and the cell proliferation in the immunohistochemical studies also proved the results. In conclusion, MPEG2K-C28 is a simple, safe and effective drug delivery carrier for PTX, and has some therapeutic effects in 4T1 cells in vitro. PTX micelles showed significant antitumor activity in vivo with low systemic toxicity in 4T1 breast cancer. MPEG2K-C28 micelles entrapping PTX deserve more studies in the future. PMID:26794876

  3. In vitro and in vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, G Devanand; Ramasamy, S; Reddy, G Pramod; Kumar, J

    2013-08-01

    Targeted drug delivery using nanocrystalline materials delivers the drug at the diseased site. This increases the efficacy of the drug in killing the cancer cells. Surface modifications were done to target the drug to a particular receptor on the cell surface. This paper reports synthesis of hydroxyapatite and titanium dioxide nanoparticles and modification of their surface with polyethylene glycol (PEG) followed by folic acid (FA). Paclitaxel, an anticancer drug, is attached to functionalized hydroxyapatite and titanium dioxide nanoparticles. The pure and functionalised nanoparticles are characterised with XRD, TEM and UV spectroscopy. Anticancer analysis was carried out in DEN induced hepatocarcinoma animals. Biochemical, hematological and histopathological analysis show that the surface modified paclitaxel attached nanoparticles have an higher anticancer activity than the pure paclitaxel and surface modified nanoparticles without paclitaxel. This is due to the targeting of the drug to the folate receptor in the cancer cells. PMID:23615724

  4. Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment.

    PubMed

    Westedt, Ulrich; Kalinowski, Marc; Wittmar, Matthias; Merdan, Thomas; Unger, Florian; Fuchs, Jutta; Schller, Susann; Bakowsky, Udo; Kissel, Thomas

    2007-05-14

    Catheter-based local delivery of biodegradable nanoparticles (NP) with sustained release characteristics represents a therapeutic approach to reduce restenosis. Paclitaxel-loaded NP consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) (PVA-g-PLGA) with varying PLGA chain length as well as poly(lactide-co-glycolide) (PLGA), were prepared by a solvent evaporation technique. NP of <180 nm in diameter characterized by photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) are spherical and show smooth surfaces. Yields typically range from 80 to 95% with encapsulation efficiencies between 77 and 87%. The extent of initial in vitro paclitaxel release was affected by the PVA-g-PLGA composition. Blank nanoparticles from PVA(300)-g-PLGA(30) and PVA(300)-g-PLGA(15) showed excellent biocompatibility in rabbit vascular smooth muscle cells (RbVSMC) at polymer concentrations of 0.37 mg/ml. Paclitaxel-loaded NP have an increased antiproliferative effect on cells in comparison to free drug. Confocal laser scanning microscopy of RbVSMC confirmed cellular uptake of nanoparticles composed of fluorescently labeled PVA(300)-g-PLGA(15) loaded with Oregon Green labeled paclitaxel. Cells showed a clearly increased fluorescence activity with a co-localization of paclitaxel and polymer nanoparticles during incubation with particle suspension. To evaluate the antirestenotic effect in vivo, paclitaxel-loaded nanoparticles were administered locally to the wall of balloon-injured rabbit iliac arteries using a porous balloon catheter. As a result a 50% reduction in neointimal area in vessel segments treated with paclitaxel-loaded nanoparticles compared to control vessel segments could be observed (local paclitaxel nanoparticle treated segments 0.80+/-0.19 mm(2), control segments 1.58+/-0.6 mm(2); p<0.05). PMID:17346845

  5. Effects of stathmin 1 silencing by siRNA on sensitivity of esophageal cancer cells Eca-109 to paclitaxel.

    PubMed

    Zhu, H W; Jiang, D; Xie, Z Y; Zhou, M H; Sun, D Y; Zhao, Y G

    2015-01-01

    We investigated the effects of stathmin 1 (STMN1) silencing by small interfering (siRNA) on the sensitivity of esophageal cancer cells Eca-109 to paclitaxel. STMN1 siRNA was transiently transfected into Eca-109 cells. The effects of transfection were detected by quantitative polymerase chain reaction and western blotting. The effects of STMN1 silencing by siRNA on the sensitivity of esophageal cancer cells Eca-109 to paclitaxel was tested by MTT and colony formation assays. Hoechst 33258 nuclear staining was used to investigate the differences in Eca-109 cell apoptosis induced by paclitaxel. STMN1 siRNA was successfully transfected and the expression of STMN1 was inhibited. The sensitivity of STMN1 siRNA-transfected Eca-109 cells to paclitaxel was significantly increased (P < 0.01). The apoptosis of Eca-109 cells significantly increased following treatment with paclitaxel (P < 0.01). STMN1 silencing by siRNA may enhance the sensitivity of esophageal cancer cells Eca-109 to paclitaxel and induce apoptosis. PMID:26782519

  6. A combination of the telomerase inhibitor, BIBR1532, and paclitaxel synergistically inhibit cell proliferation in breast cancer cell lines.

    PubMed

    Shi, Yi; Sun, Lin; Chen, Ge; Zheng, Dongyan; Li, Li; Wei, Wanguo

    2015-12-01

    Breast cancer is one of the most significant causes of female cancer death worldwide. Paclitaxel, an extensively used breast cancer chemotherapeutic has limited success due to drug resistance. 2-[(E)-3-naphtalen-2-yl-but-2-enoylamino]-benzoic acid (BIBR1532), a small molecule pharmacological inhibitor of telomerase activity, can inhibit human cancer cell proliferation as well. Thus, to enhance breast cancer treatment efficacy, we studied the combination of BIBR1532 and paclitaxel in breast cancer cell lines. Cell viability assays revealed that BIBR1532 or paclitaxel alone inhibited proliferation in a dose-dependent manner, and combining the drugs synergistically induced growth inhibition in all breast cell lines tested independent of their p53, ER, and HER2 status. The drug combination also synergistically inhibited colony formation of MCF-7 cells in a dose-dependent manner. Annexin V-PI staining and Western blot assays on PARP cleavage and caspase-8 and caspase-3 revealed that BIBR1532 in combination with paclitaxel was more potent than either agent alone in promoting MCF-7 cell apoptosis. Cell cycle analysis indicated that BIBR1532 induced a G1 phase arrest and paclitaxel arrested cells at the G2/M phase. The drug combination dramatically blocked S cells from entering the G2/M phase. Our results suggest the potential of telomerase inhibition as an effective breast cancer treatment and that used in conjunction with paclitaxel; it may potentiate tumor cytotoxicity. PMID:25916999

  7. (-)-Epigallocatechin-3-gallate decreases thrombin/paclitaxel-induced endothelial tissue factor expression via the inhibition of c-Jun terminal NH2 kinase phosphorylation

    SciTech Connect

    Wang, Huang-Joe; Division of Cardiology, Department of Medicine, China Medical University Hospital, No. 2, Yuh-Der Road, Taichung 40447, Taiwan ; Lo, Wan-Yu; Graduate Integration of Chinese and Western Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan ; Lu, Te-Ling; Huang, Haimei

    2010-01-01

    Patients with paclitaxel-eluting stents are concerned with stent thrombosis caused by premature discontinuation of dual antiplatelet therapy or clopidogrel resistance. This study investigates the effect of (-)-epigallocatechin-3-gallate (EGCG) on the expression of thrombin/paclitaxel-induced endothelial tissue factor (TF) expressions in human aortic endothelial cells (HAECs). EGCG was nontoxic to HAECs at 6 h up to a concentration of 25 {mu}mol/L. At a concentration of 25 {mu}mol/L, EGCG pretreatment potently inhibited both thrombin-stimulated and thrombin/paclitaxel-stimulated endothelial TF protein expression. Thrombin and thrombin/paclitaxel-induced 2.6-fold and 2.9-fold increases in TF activity compared with the control. EGCG pretreatment caused a 29% and 38% decrease in TF activity on thrombin and thrombin/paclitaxel treatment, respectively. Real-time polymerase chain reaction (PCR) showed that thrombin and thrombin/paclitaxel-induced 3.0-fold and 4.6-fold TF mRNA expressions compared with the control. EGCG pretreatment caused an 82% and 72% decrease in TF mRNA expression on thrombin and thrombin/paclitaxel treatment, respectively. The c-Jun terminal NH2 kinase (JNK) inhibitor SP600125 reduced thrombin/paclitaxel-induced TF expression. Furthermore, EGCG significantly inhibited the phosphorylation of JNK to 49% of thrombin/paclitaxel-stimulated HAECs at 60 min. Immunofluorescence assay did not show an inhibitory effect of EGCG on P65 NF-{kappa}B nuclear translocation in the thrombin/paclitaxel-stimulated endothelial cells. In conclusion, EGCG can inhibit TF expression in thrombin/paclitaxel-stimulated endothelial cells via the inhibition of JNK phosphorylation. The unique property of EGCG may be used to develop a new drug-eluting stent by co-coating EGCG and paclitaxel.

  8. Nanoparticle albumin-bound paclitaxel in a patient with locally advanced breast cancer and taxane-induced skin toxicity: a case report

    PubMed Central

    2014-01-01

    Introduction Taxanes have demonstrated effectiveness in the treatment of breast cancer, the most common type of cancer in women. The toxicity profile of taxanes (including skin toxicities) induces dose adjustment, delay, or discontinuation, which prevents a sufficient dose intensity to achieve a response. Nanoparticle albumin-bound paclitaxel, a solvent-free form of paclitaxel, prevents toxicities and reduces the pharmacokinetic interferences between paclitaxel and other drugs. Case presentation We describe the case of a 55-year-old Caucasian woman with locally advanced breast cancer treated with neoadjuvant therapy who developed secondary skin toxicity due to delayed hypersensitivity to taxanes. She received Adriamycin (doxorubicin), cyclophosphamide and docetaxel and developed toxicity that promoted treatment delay and a switch to weekly paclitaxel. After the third and fourth weeks of treatment, paclitaxel toxicities also induced treatment delay and paclitaxel was switched to nanoparticle albumin-bound paclitaxel. She completed the five planned nanoparticle albumin-bound paclitaxel cycles with acceptable tolerability (including persistent grade 2 neuropathy) and without dose delay or adjustments. Clinical response was achieved although pathological response was not good. Conclusions Nanoparticle albumin-bound paclitaxel treatment is a good option for patients with breast cancer with taxanes-related skin toxicity. This drug allows the treatment to be completed with acceptable tolerance in our case. PMID:24386978

  9. Combinatorial TGF-β attenuation with paclitaxel inhibits the epithelial-to-mesenchymal transition and breast cancer stem-like cells

    PubMed Central

    Park, So-Yeon; Kim, Min-Jin; Park, Sang-A; Kim, Jung-Shin; Min, Kyung-Nan; Kim, Dae-Kee; Lim, Woosung; Nam, Jeong-Seok; Sheen, Yhun Yhong

    2015-01-01

    Distant relapse after chemotherapy is an important clinical issue for treating breast cancer patients and results from the development of cancer stem-like cells (CSCs) during chemotherapy. Here we report that blocking epithelial-to-mesenchymal transition (EMT) suppresses paclitaxel-induced CSCs properties by using a MDA-MB-231-xenografted mice model (in vivo), and breast cancer cell lines (in vitro). Paclitaxel, one of the cytotoxic taxane-drugs such as docetaxel, increases mesenchymal markers (Vimentin and Fibronectin) and decreases an epithelial marker (Zo-1). Blocking TGF-β signaling with the TGF-β type I receptor kinase (ALK5) inhibitor, EW-7197, suppresses paclitaxel-induced EMT and CSC properties such as mammosphere-forming efficiency (MSFE), aldehyde dehydrogenase (ALDH) activity, CD44+/CD24− ratio, and pluripotency regulators (Oct4, Nanog, Klf4, Myc, and Sox2). The combinatorial treatment of EW-7197 improves the therapeutic effect of paclitaxel by decreasing the lung metastasis and increasing the survival time in vivo. We confirmed that Snail is increased by paclitaxel-induced intracellular reactive oxygen species (ROS) and EW-7197 suppresses the paclitaxel-induced Snail and EMT by attenuating paclitaxel-induced intracellular ROS. Knock-down of SNAI1 suppresses paclitaxel-induced EMT and CSC properties. These data together suggest that blocking the Snail-induced EMT with the ALK5 inhibitor attenuates metastasis after paclitaxel-therapy and that this combinatorial approach could prove useful in treating breast cancer. PMID:26462028

  10. Macitentan (ACT-064992), a tissue-targeting endothelin receptor antagonist, enhances therapeutic efficacy of paclitaxel by modulating survival pathways in orthotopic models of metastatic human ovarian cancer.

    PubMed

    Kim, Sun-Jin; Kim, Jang Seong; Kim, Seung Wook; Brantley, Emily; Yun, Seok Joong; He, Junqin; Maya, Marva; Zhang, Fahao; Wu, Qiuyu; Lehembre, François; Regenass, Urs; Fidler, Isaiah J

    2011-02-01

    Potential treatments for ovarian cancers that have become resistant to standard chemotherapies include modulators of tumor cell survival, such as endothelin receptor (ETR) antagonist. We investigated the therapeutic efficacy of the dual ETR antagonist, macitentan, on human ovarian cancer cells, SKOV3ip1 and IGROV1, growing orthotopically in nude mice. Mice with established disease were treated with vehicle (control), paclitaxel (weekly, intraperitoneal injections), macitentan (daily oral administrations), or a combination of paclitaxel and macitentan. Treatment with paclitaxel decreased tumor weight and volume of ascites. Combination therapy with macitentan and paclitaxel reduced tumor incidence and further reduced tumor weight and volume of ascites when compared with paclitaxel alone. Macitentan alone occasionally reduced tumor weight but alone had no effect on tumor incidence or ascites. Immunohistochemical analyses revealed that treatment with macitentan and macitentan plus paclitaxel inhibited the phosphorylation of ETRs and suppressed the survival pathways of tumor cells by decreasing the levels of pVEGFR2, pAkt, and pMAPK. The dose of macitentan necessary for inhibition of phosphorylation correlated with the dose required to increase antitumor efficacy of paclitaxel. Treatment with macitentan enhanced the cytotoxicity mediated by paclitaxel as measured by the degree of apoptosis in tumor cells and tumor-associated endothelial cells. Collectively, these results show that administration of macitentan in combination with paclitaxel prevents the progression of ovarian cancer in the peritoneal cavity of nude mice in part by inhibiting survival pathways of both tumor cells and tumor-associated endothelial cells. PMID:21403842

  11. Paclitaxel-exposed ovarian cancer cells induce cancer?specific CD4+ T cells after doxorubicin exposure through regulation of MyD88 expression.

    PubMed

    Kim, Jee-Eun; Jang, Min Ja; Jin, Dong-Hoon; Chung, Yoon Hee; Choi, Byung-Sun; Park, Ga Bin; Kim, Yeong Seok; Kim, Seonghan; Hur, Dae Young; Hung, Chien-Fu; Kim, Daejin

    2014-05-01

    Ovarian cancer has the highest mortality rate among gynecological malignancies due to high chemoresistance to the combination of platinum with taxane. Immunotherapy against ovarian cancer is a promising strategy to develop from animal-based cancer research. We investigated changes in the immunogenicity of paclitaxel-exposed ovarian cancer cells following exposure to other chemotherapeutic drugs. Murine ovarian surface epithelial cells (MOSECs) showed some resistance to paclitaxel, a first-line therapy for ovarian cancer. However, MOSECs pre-exposed to paclitaxel died through apoptosis after incubation with doxorubicin or cisplatin for 2 h. Injected into mice, the paclitaxel-exposed MOSECs post-treated with doxorubicin induced more MOSEC-specific CD4(+) T cells and extended survival for a greater time than MOSECs treated with paclitaxel alone; and bone marrow-derived dendritic cells (BMDCs) expressed higher levels of co-stimulatory molecules and produced IL-12 after co-culture with paclitaxel-exposed MOSECs treated with doxorubicin. We also observed that in paclitaxel-exposed MOSECs treated with doxorubicin, but not cisplatin, the expression of MyD88 and related target proteins decreased compared to paclitaxel-exposed MOSECs only, while in BMDCs co-cultured with these MOSECs the expression of myeloid differentiation primary response gene 88 (MyD88) increased. These findings suggest that paclitaxel pre-exposed cancer cells treated with doxorubicin can induce significant apoptosis and a therapeutic antitumor immune response in advanced ovarian cancer. PMID:24573741

  12. Nab-paclitaxel-associated photosensitivity: report in a woman with non-small cell lung cancer and review of taxane-related photodermatoses

    PubMed Central

    Beutler, Bryce D.; Cohen, Philip R.

    2015-01-01

    Background: Taxanes [paclitaxel, nab-paclitaxel (Abraxane, Celgene Corp, USA), and docetaxel]used in the treatment of lung, breast, and head and neck cancershave been associated with cutaneous adverse effects, including photodermatoses. Purpose: We describe a woman with non-small cell lung cancer who developed a photodistributed dermatitis associated with her nab-paclitaxel therapy and review photodermatoses in patients receiving taxanes. Materials and methods: The features of a woman with a nab-paclitaxel-associated photodistributed dermatitis are presented and the literature on nab-paclitaxel-associated photosensitivity is reviewed. Results: Our patient developed nab-paclitaxel-associated photodistributed dermatitis on the sun-exposed surfaces of her upper extremities, which was exacerbated with each course of nab-paclitaxel. Biopsies revealed an interface dermatitis and laboratory studies were negative for lupus erythematosus and dermatomyositis. Her condition improved following topical corticosteroid cream application and strict avoidance of sunlight. Conclusion: Chemotherapy can be associated with adverse mucocutaneous events, including dermatoses on sun-exposed areas of the skin. Paclitaxel and nab-paclitaxel have both been associated with photodermatoses, including dermatitis, erythema multiforme, onycholysis, and subacute cutaneous lupus erythematosus. Strict avoidance of sun exposure, topical or oral corticosteroids, and/or discontinuation of the drug results in improvement with progressive resolution of symptoms and skin lesions. Development of photodermatoses is not an absolute contraindication to continuing chemotherapy, provided that the cutaneous condition resolves with dermatosis-directed treatment and the patient avoids sun exposure. PMID:26114068

  13. Combinatorial TGF-β attenuation with paclitaxel inhibits the epithelial-to-mesenchymal transition and breast cancer stem-like cells.

    PubMed

    Park, So-Yeon; Kim, Min-Jin; Park, Sang-A; Kim, Jung-Shin; Min, Kyung-Nan; Kim, Dae-Kee; Lim, Woosung; Nam, Jeong-Seok; Sheen, Yhun Yhong

    2015-11-10

    Distant relapse after chemotherapy is an important clinical issue for treating breast cancer patients and results from the development of cancer stem-like cells (CSCs) during chemotherapy. Here we report that blocking epithelial-to-mesenchymal transition (EMT) suppresses paclitaxel-induced CSCs properties by using a MDA-MB-231-xenografted mice model (in vivo), and breast cancer cell lines (in vitro). Paclitaxel, one of the cytotoxic taxane-drugs such as docetaxel, increases mesenchymal markers (Vimentin and Fibronectin) and decreases an epithelial marker (Zo-1). Blocking TGF-β signaling with the TGF-β type I receptor kinase (ALK5) inhibitor, EW-7197, suppresses paclitaxel-induced EMT and CSC properties such as mammosphere-forming efficiency (MSFE), aldehyde dehydrogenase (ALDH) activity, CD44+/CD24- ratio, and pluripotency regulators (Oct4, Nanog, Klf4, Myc, and Sox2). The combinatorial treatment of EW-7197 improves the therapeutic effect of paclitaxel by decreasing the lung metastasis and increasing the survival time in vivo. We confirmed that Snail is increased by paclitaxel-induced intracellular reactive oxygen species (ROS) and EW-7197 suppresses the paclitaxel-induced Snail and EMT by attenuating paclitaxel-induced intracellular ROS. Knock-down of SNAI1 suppresses paclitaxel-induced EMT and CSC properties. These data together suggest that blocking the Snail-induced EMT with the ALK5 inhibitor attenuates metastasis after paclitaxel-therapy and that this combinatorial approach could prove useful in treating breast cancer. PMID:26462028

  14. Peptidergic intraepidermal nerve fibers in the skin contribute to the neuropathic pain in paclitaxel-induced peripheral neuropathy.

    PubMed

    Ko, Miau-Hwa; Hu, Ming-E; Hsieh, Yu-Lin; Lan, Chyn-Tair; Tseng, To-Jung

    2014-06-01

    Paclitaxel in chemotherapy-induced peripheral neuropathy (CIPN) is predominantly with a dose-limiting effect on neuropathic pain in clinical strategy. In the present study, the relationship between the neuropathic pain and nerve degeneration in paclitaxel CIPN was investigated. Adult male Sprague-Dawley (SD) rats were divided into three paclitaxel groups (0.5, 1.0, 2.0mg/kg) and a vehicle group with four intraperitoneal (i.p.) injections on alternating days. Our results demonstrated that the paclitaxel groups significantly exhibited the reductions of thermal hyperalgesia and mechanical allodynia. The neurotoxicity of paclitaxel conveyed the degeneration of intraepidermal nerve fibers (IENFs) in hindpaw glabrous skin. Nevertheless, the influence of paclitaxel to the peptidergic IENFs are even unknown. The skin innervation of protein gene product 9.5 (PGP 9.5)-immunoreactive (IR) IENFs in paclitaxel groups revealed the decreasing levels of density (73.540.72%, 63.171.77%, 61.792.68%, respectively; vs. vehicle group, p<0.05) throughout the entire experimental period. Additionally, the diminishing levels of density for peptidergic substance P (SP)-IR IENFs in paclitaxel groups were significantly shown (48.841.74%, 30.021.69%, 30.140.37%, respectively; vs. vehicle group, p<0.05). On the contrary, the density for peptidergic calcitonin gene-related peptide (CGRP)-IR IENFs in paclitaxel groups were revealed the similar decreasing levels (82.750.91%, 84.343.20%, 81.990.25%, respectively; vs. vehicle group, p<0.05). Linear regression analyses exhibited that densities of IENFs for PGP 9.5, SP, CGRP were correlated with withdrawal latencies (r(2)=0.77, p<0.0001; r(2)=0.75, p<0.0001; r(2)=0.28, p=0.0001, respectively) and mechanical thresholds (r(2)=0.43, p<0.0001; r(2)=0.73, p<0.0001; r(2)=0.40, p<0.0001, respectively). Therefore, the present results suggested that the development of neuropathic pain following paclitaxel injection induced the progressive degeneration of IENFs in skin and gave the evidence that the peptidergic IENFs may play an important role in therapeutic strategy of paclitaxe CIPN. PMID:24630273

  15. Efficacy and toxicity of paclitaxel (Taxol) for the treatment of canine malignant tumors.

    PubMed

    Poirier, V J; Hershey, A E; Burgess, K E; Phillips, B; Turek, M M; Forrest, L J; Beaver, L; Vail, D M

    2004-01-01

    Paclitaxel (Taxol) was administered to 25 dogs with histologically confirmed malignant tumors at a dosage of 165 mg/m2 i.v. over 3-6 hours every 3 weeks. Dogs received premedication with antihistimines and corticosteroids to reduce hypersensitivity reactions. However, 64% of the dogs still experienced allergic reactions. Six dogs (24%) had grade 3 or 4 neutropenia, 6 dogs (24%) required hospitalization and 3 dogs (12%) died of sepsis. Five dogs (20%) had a partial response (osteosarcoma [2 dogs] mammary carcinoma [2 dogs] and malignant histiocytosis [1 dog]) for a median duration of 53 days. The overall toxicity was unacceptable at the 165 mg/m2 dose. Therefore, subsequent evaluations of paclitaxel in tumor-bearing dogs should a starting dose of 132 mg/m2 i.v. every 3 weeks. PMID:15058774

  16. Complete response to second line Paclitaxel every 2 weeks of eyelid kaposi sarcoma: a case report.

    PubMed

    Brunetti, Anna Elisabetta; Guarini, Attilio; Lorusso, Vito; Minoia, Carla; Sabatelli, Angela; Marech, Ilaria; Silvestris, Nicola

    2013-01-01

    A 77-year-old male patient presented to our attention with violaceous nodular lesions on the skin of his hands and lower extremities. Clinical and histologic examination supported the diagnosis of Kaposi sarcoma. A first-line systemic chemotherapy based on liposomal doxorubicin at a dosage of 40 mg/m2 every 3 weeks for 5 cycles was carried out, resulting in partial resolution of skin lesions. However, 1 year later, a relapse of the disease in the lower limbs and a new lesion of the left eyelid were found, therefore the patient began a second-line therapy with 100 mg/m2 paclitaxel every 2 weeks. After 8 cycles of therapy, we observed a complete remission of eyelid tumor and a partial response of lower limbs lesions up to 6 months of follow up. In conclusion, eyelid Kaposi sarcoma was successfully treated with paclitaxel every 2 weeks, obtaining a complete response. PMID:23247036

  17. [A Case of Gastrointestinal Metastases of Breast Cancer Effectively Treated with Gemcitabine and Paclitaxel Combination Chemotherapy].

    PubMed

    Watanabe, Motonobu; Ishibashi, Osamu; Maeda, Masamitsu; Kondo, Tadashi; Watanabe, Muneaki; Dai, Yuichi; Ohkohchi, Nobuhiro

    2015-08-01

    A 55-year-old woman was admitted to our hospital complaining of constipation and abdominal distention. She had a history of right breast surgery for cancer at the age of 48 years. An abdominalCT scan revealed tumors at the antrum of the stomach and the ascending colon, and the tumor at the ascending colon caused obstruction of the colon. She was diagnosed with breast cancer recurrence and was administered combination chemotherapy consisting of gemcitabine and paclitaxel. Ileus improved after this treatment, and she was discharged from the hospital and was able to receive outpatient chemotherapy. After 8 months, she experienced symptoms of ileus again, and conservative treatment was considered impossible. Therefore, she underwent distal gastrectomy and right hemicolectomy. Histological and immunohistological analyses confirmed that the tumors were breast cancer metastases. Chemotherapy with gemcitabine and paclitaxel helped our patient to return to daily life and improved her prognosis. PMID:26321714

  18. Detection of apoptosis caused by anticancer drug paclitaxel in MCF-7 cells by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Middendorp, E.; Vgh, A.-G.; Ramakrishnan, S.-K.; Gergely, C.; Cuisinier, F. J. G.

    2013-02-01

    Confocal Raman Microscopy, a non-invasive, label free imaging technique is used to study apoptosis in living MCF-7 cells. The images are based on Raman spectra of cells components. K-mean clustering was used to determine mitochondria position in cells and cytochrome c distribution inside the cells was based on correlation analysis. Cell apoptosis is defined as cytochrome c diffusion in cytoplasm. Co-localization of cytochrome c is found within mitochondria after three hours of incubation with 10 ?M paclitaxel. Our results demonstrate that the presence of paclitaxel at this concentration in the culture media for 3 hours does not induce apoptosis of MCF7 cells via a caspase independent pathway.

  19. Confocal Raman data analysis enables identifying apoptosis of MCF-7 cells caused by anticancer drug paclitaxel

    NASA Astrophysics Data System (ADS)

    Salehi, Hamideh; Middendorp, Elodie; Panayotov, Ivan; Dutilleul, Pierre-Yves Collard; Vegh, Attila-Gergely; Ramakrishnan, Sathish; Gergely, Csilla; Cuisinier, Frederic

    2013-05-01

    Confocal Raman microscopy is a noninvasive, label-free imaging technique used to study apoptosis of live MCF-7 cells. The images are based on Raman spectra of cells components, and their apoptosis is monitored through diffusion of cytochrome c in cytoplasm. K-mean clustering is used to identify mitochondria in cells, and correlation analysis provides the cytochrome c distribution inside the cells. Our results demonstrate that incubation of cells for 3 h with 10 ?M of paclitaxel does not induce apoptosis in MCF-7 cells. On the contrary, incubation for 30 min at a higher concentration (100 ?M) of paclitaxel induces gradual release of the cytochrome c into the cytoplasm, indicating cell apoptosis via a caspase independent pathway.

  20. 2-Behenoyl-Paclitaxel Conjugate Containing Lipid Nanoparticles for the Treatment of Metastatic Breast Cancer

    PubMed Central

    Ma, Ping; Benhabbour, S. Rahima; Feng, Lan; Mumper, Russell J

    2012-01-01

    The aim of these studies was to develop a novel 2-behenoyl-paclitaxel (C22-PX) conjugate nanoparticle (NP) formulation for the treatment of metastatic breast cancer. A lipophilic paclitaxel derivative C22-PX was synthesized and incorporated into lipid-based NPs. Free C22-PX and its NP formulation were evaluated in a series of in-vitro and in-vivo studies. The results demonstrated that C22-PX NPs were much better tolerated and had significantly higher plasma and tumor AUCs compared to Taxol at the maximum tolerated dose (MTD) in a subcutaneous 4T1 mouse mammary carcinoma model. These benefits resulted in significantly improved antitumor efficacy with the NP-based formulation. PMID:22902506

  1. Effect of the paclitaxel vehicle, Cremophor EL, on the pharmacokinetics of doxorubicin and doxorubicinol in mice.

    PubMed Central

    Webster, L. K.; Cosson, E. J.; Stokes, K. H.; Millward, M. J.

    1996-01-01

    The effect of the paclitaxel vehicle Cremophor on the pharmacokinetics of doxorubicin and doxorubicinol was studied in two groups of mice given intravenously either 2.5 ml kg-1 Cremophor or saline followed 5 min later by 10 mg kg-1 doxorubicin. In each group three mice were sacrificed at ten time points and doxorubicin and doxorubicinol were measured in plasma by high-performance liquid chromatography (HPLC). With Cremophor present, doxorubicin AUC increased from 1420+/-440 to 2770+/-660 ng h ml(-1) (P<0.05) and doxorubicinol AUC increased from 130+/-76 to 320+/-88 ng h ml(-1) (p<0.05). Neither the terminal elimination half-lives nor the doxorubicinol-doxorubicin AUC ratio changed in the presence of Cremophor, suggesting a lack of a direct effect on drug metabolism. The possibility exists the Cremophor may change the pharmacokinetics of both paclitaxel and other drugs given concurrently. PMID:8595168

  2. Phase behavior study of paclitaxel loaded amphiphilic copolymer in two solvents by dissipative particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Guo, Xin Dong; Tan, Jeremy Pang Kern; Zhang, Li Juan; Khan, Majad; Liu, Shao Qiong; Yang, Yi Yan; Qian, Yu

    2009-05-01

    DPD simulations were employed to study the phase behavior of paclitaxel loaded PEO 11- b-PLLA 9 in water and N, N-Dimethylformamide. Different ordered structures were observed in water-rich solvents. All the structures were greatly affected by solvents compositions. By varying the fractions of each component, a phase diagram of paclitaxel loaded PEO 11- b-PLLA 9 in water and DMF was mapped. For all ordered structures, bicontinuous, lamella, rod, and spherical structures with different sizes could be easily observed for their wide distribution in the phase diagram. While the HPL, dumbbell, and spherical structures with uniform size were difficult to be obtained, due to their narrow distribution.

  3. Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in human breast carcinoma cell lines

    SciTech Connect

    Ho, T.-F.; Peng, Y.-T.; Chuang, S.-M.; Lin, S.-C.; Feng, B.-L.; Lu, C.-H.; Yu, W.-J.; Chang, J.-S. Chang, C.-C.

    2009-03-01

    Prodigiosin is a bacterial metabolite with potent anticancer activity, which is attributed to its proapoptotic effect selectively active in malignant cells. Still, the molecular mechanisms whereby prodigiosin induces apoptosis remain largely unknown. In particular, the role of survivin, a vital inhibitor of apoptosis, in prodigiosin-induced apoptosis has never been addressed before and hence was the primary goal of this study. Our results showed that prodigiosin dose-dependently induced down-regulation of survivin in multiple breast carcinoma cell lines, including MCF-7, T-47D and MDA-MB-231. This down-regulation is mainly regulated at the level of transcription, as prodigiosin reduced the levels of both survivin mRNA and survivin promoter activity but failed to rescue survivin expression when proteasome-mediated degradation is abolished. Importantly, overexpression of survivin rendered cells more resistant to prodigiosin, indicating an essential role of survivin down-regulation in prodigiosin-induced apoptosis. In addition, we found that prodigiosin synergistically enhanced cell death induced by paclitaxel, a chemotherapy drug known to up-regulate survivin that in turn confers its own resistance. This paclitaxel sensitization effect of prodigiosin is ascribed to the lowering of survivin expression, because prodigiosin was shown to counteract survivin induction by paclitaxel and, notably, the sensitization effect was severely abrogated in cells that overexpress survivin. Taken together, our results argue that down-regulation of survivin is an integral component mediating prodigiosin-induced apoptosis in human breast cancer cells, and further suggest the potential of prodigiosin to sensitize anticancer drugs, including paclitaxel, in the treatment of breast cancer.

  4. Nab-paclitaxel for the management of triple-negative metastatic breast cancer: a case study

    PubMed Central

    De Placido, Sabino; De Angelis, Carmine

    2015-01-01

    The optimal sequence of systemic chemotherapy in metastatic breast cancer (MBC) is unknown. We report the case of a woman who was successfully treated with nanoparticle albumin-bound (nab)-paclitaxel for triple negative MBC in our institution. In November 2008, a 48-year-old woman underwent surgical treatment for a triple negative invasive ductal breast cancer and subsequently received adjuvant chemotherapy with fluorouracil/epirubicin/cyclophosphamide and radiotherapy. Sixteen months after surgery, she presented with a left chest wall metastatasis. The patient received combination therapy with conventional paclitaxel (90mg/m weekly for 3 out of 4 weeks [QW 3/4]) and bevacizumab (10mg/kg every 2 weeks [Q2W]) as first-line treatment for MBC (six cycles; March to September 2010) and achieved a partial response at the metastatic site. Bevacizumab monotherapy was continued until disease progression (April 2011) with the development of a single infraclavicular lymph node metastasis and an increase in the dimensions of the left chest wall lesion. From May to December 2011, the patient received nab-paclitaxel 260mg/m every 3 weeks (Q3W) as second-line treatment (11 cycles). After three cycles, the left chest wall lesion and the infraclavicular lymph node metastasis were undetectable and the patient was considered to have achieved a complete response. Treatment was well tolerated with no significant toxicity or need for dose reduction. Given our case, here we review the clinical evidence and discuss the potential role of nab-paclitaxel for the treatment of triple negative MBC, a subgroup typically characterized as having aggressive disease and limited treatment options. PMID:25115342

  5. Targeted Delivery of Paclitaxel to EphA2-Expressing Cancer Cells

    PubMed Central

    Wang, Si; Noberini, Roberta; Stebbins, John L.; Das, Swadesh; Zhang, Ziming; Wu, Bainan; Mitra, Sayantan; Billet, Sandrine; Fernandez, Ana; Bhowmick, Neil A.; Kitada, Shinichi; Pasquale, Elena B.; Fisher, Paul B.; Pellecchia, Maurizio

    2012-01-01

    Purpose YSA is an EphA2-targeting peptide that effectively delivers anti-cancer agents to prostate cancer tumors (1). Here, we report on how we increased the drug-like properties of this delivery system. Experimental Design By introducing non-natural amino acids, we have designed two new EphA2 targeting peptides: YNH, where norleucine and homoserine replace the two methionine residues of YSA, and dYNH, where a D-tyrosine replaces the L-tyrosine at the first position of the YNH peptide. We describe the details of the synthesis of YNH and dYNH paclitaxel conjugates (YNH-PTX and dYNH-PTX) and their characterization in cells and in vivo. Results dYNH-PTX showed improved stability in mouse serum and significantly reduced tumor size in a prostate cancer xenograft model and also reduced tumor vasculature in a syngeneic orthotopic allograft mouse model of renal cancer compared to vehicle or paclitaxel treatments. Conclusion This study reveals that targeting EphA2 with dYNH drug conjugates could represent an effective way to deliver anti-cancer agents to a variety of tumor types. Translational Relevance Overexpression of the EphA2 positively correlates with tumor malignancy and poor prognosis. For this reason, EphA2 is an attractive target for cancer cell specific drug delivery. In this study, we report on the development of dYNH, an EphA2 targeting peptide that when coupled to paclitaxel (PTX) has favorable pharmacological properties and possesses powerful anti-tumor activity in vivo. dYNH-PTX may allow for an expanded therapeutic index of paclitaxel as well as precluding the need for complex formulations and long infusion times. PMID:23155185

  6. The role of Six1 signaling in paclitaxel-dependent apoptosis in MCF-7 cell line

    PubMed Central

    Armat, Marzieh; Bakhshaiesh, Taiebeh Oghabi; Sabzichi, Mehdi; Shanehbandi, Dariush; Sharifi, Simin; Molavi, Ommoleila; Mohammadian, Jamal; Hejazi, Mohammad Saeid; Samadi, Nasser

    2016-01-01

    The resistance of cancer cells to chemotherapeutic agents represents the main problem in cancer treatment. Despite intensive research, mechanisms of resistance have not yet been fully elucidated. Six1 signaling has an important role in the expansion of progenitor cell populations during early embryogenesis. Six1 gene overexpression has been strongly associated with aggressiveness, invasiveness, and poor prognosis of different cancers. In this study, we investigated the role of Six1 signaling in resistance of MCF-7 breast cancer cells to taxanes. We first established in vitro paclitaxel-resistant MCF-7 breast cancer cells. Morphological modifications in paclitaxel-resistant cells were examined via light microscopic images and fluorescence-activated cell sorting analysis. Applying quantitative real-time polymerase chain reaction, we measured Six1, B-cell lymphoma/leukemia(BCL-2), BAX, and P53 mRNA expression levels in both non-resistant and resistant cells. Resistant cells were developed from the parent MCF-7 cells by applying increasing concentrations of paclitaxel up to 64 nM. The inhibitory concentration 50% value in resistant cells increased from 3.5 ± 0.03 to 511 ± 10.22 nM (p = 0.015). In paclitaxel-resistant cells, there was a significant increase in Six1 and BCL-2 mRNA levels (p = 0.0007) with a marked decrease in pro-apoptotic Bax mRNA expression level (p = 0.03); however, there was no significant change in P53 expression (p = 0.025). Our results suggest that identifying cancer patients with high Six1 expression and then inhibition of Six1 signaling can improve the efficiency of chemotherapeutic agents in the induction of apoptosis. PMID:26773176

  7. Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer.

    PubMed

    Kampan, Nirmala Chandralega; Madondo, Mutsa Tatenda; McNally, Orla M; Quinn, Michael; Plebanski, Magdalena

    2015-01-01

    Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound. PMID:26137480

  8. B7-H3 silencing increases paclitaxel sensitivity by abrogating Jak2/Stat3 phosphorylation

    PubMed Central

    Liu, Hao; Tekle, Christina; Chen, Yih-Wen; Kristian, Alexandr; Zhao, Yuhua; Zhou, Ming; Liu, Zixing; Ding, Yan; Wang, Bin; Mlandsmo, Gunhild Mari; Nesland, Jahn Marthin; Fodstad, Oystein; Tan, Ming

    2012-01-01

    In many types of cancer, the expression of the immunoregulatory protein B7-H3 has been associated with poor prognosis. Previously, we observed a link between B7-H3 and tumor cell migration and invasion, and in present work we have investigated the role of B7-H3 in chemoresistance in breast cancer. We observed that silencing of B7-H3, via stable shRNA or transient siRNA transfection, increased the sensitivity of multiple human breast cancer cell lines to paclitaxel as a result of enhanced drug-induced apoptosis. Overexpression of B7-H3 made the cancer cells more resistant to the drug. Next, we investigated the mechanisms behind B7-H3 mediated paclitaxel resistance, and found that the level of Stat3 Tyr705 phosphorylation was decreased in B7-H3 knockdown cells, along with the expression of its direct downstream targets Mcl-1 and Survivin. The phosphorylation of Jak2, an upstream molecule of Stat3, was also significantly decreased. In contrast, reexpression of B7-H3 in B7-H3 knockdown and low B7-H3- expressing cells increased the phosphorylation of Jak2 and Stat3. In vivo animal experiments showed that B7-H3 knock down tumors displayed a slower growth rate than the control xenografts. Importantly, paclitaxel treatment showed a strong anti-tumor activity in the mice with B7-H3 knockdown tumors, but only a marginal effect in the control group. Taken together, our data demonstrate that in breast cancer cells B7-H3 induces paclitaxel resistance, at least partially by interfering with Jak2/Stat3 pathway. These results provide novel insight into the function of B7-H3 and encourage the design and testing of approaches targeting this protein and its partners. PMID:21518725

  9. Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer

    PubMed Central

    Kampan, Nirmala Chandralega; Madondo, Mutsa Tatenda; McNally, Orla M.; Quinn, Michael; Plebanski, Magdalena

    2015-01-01

    Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound. PMID:26137480

  10. Nab-paclitaxel for the management of triple-negative metastatic breast cancer: a case study.

    PubMed

    Arpino, Grazia; De Placido, Sabino; De Angelis, Carmine

    2015-01-01

    The optimal sequence of systemic chemotherapy in metastatic breast cancer (MBC) is unknown. We report the case of a woman who was successfully treated with nanoparticle albumin-bound (nab)-paclitaxel for triple negative MBC in our institution. In November 2008, a 48-year-old woman underwent surgical treatment for a triple negative invasive ductal breast cancer and subsequently received adjuvant chemotherapy with fluorouracil/epirubicin/cyclophosphamide and radiotherapy. Sixteen months after surgery, she presented with a left chest wall metastatasis. The patient received combination therapy with conventional paclitaxel (90 mg/m weekly for 3 out of 4 weeks [QW 3/4]) and bevacizumab (10 mg/kg every 2 weeks [Q2W]) as first-line treatment for MBC (six cycles; March to September 2010) and achieved a partial response at the metastatic site. Bevacizumab monotherapy was continued until disease progression (April 2011) with the development of a single infraclavicular lymph node metastasis and an increase in the dimensions of the left chest wall lesion. From May to December 2011, the patient received nab-paclitaxel 260 mg/m every 3 weeks (Q3W) as second-line treatment (11 cycles). After three cycles, the left chest wall lesion and the infraclavicular lymph node metastasis were undetectable and the patient was considered to have achieved a complete response. Treatment was well tolerated with no significant toxicity or need for dose reduction. Given our case, here we review the clinical evidence and discuss the potential role of nab-paclitaxel for the treatment of triple negative MBC, a subgroup typically characterized as having aggressive disease and limited treatment options. PMID:25115342

  11. Paclitaxel-Based Chemoradiotherapy in the Treatment of Patients With Operable Esophageal Cancer

    SciTech Connect

    Kelsey, Chris R. Chino, Junzo P.; Willett, Christopher G.; Clough, Robert W.; Hurwitz, Herbert I.; Morse, Michael A.; Bendell, Johanna C.; D'Amico, Thomas A.; Czito, Brian G.

    2007-11-01

    Purpose: To compare a neoadjuvant regimen of cisplatin/5-fluorouracil (5-FU) and concurrent radiation therapy (RT) with paclitaxel-based regimens and RT in the management of operable esophageal (EC)/gastroesophageal junction (GEJ) cancer. Methods and Materials: All patients receiving neoadjuvant chemotherapy (CT) and RT for EC/GEJ cancer at Duke University between January 1995 and December 2004 were included. Clinical end points were compared for patients receiving paclitaxel-based regimens (TAX) vs. alternative regimens (non-TAX). Local control (LC), disease-free survival (DFS), and overall survival (OS) were estimated using the Kaplan-Meier method. Chi-square analysis was performed to test the effect of TAX on pathologic complete response (pCR) rates and toxicity. Results: A total of 109 patients received CT-RT followed by esophagectomy (95 M; 14 F). Median RT dose was 45 Gy (range, 36-66 Gy). The TAX and non-TAX groups comprised 47% and 53% of patients, respectively. Most (83%) TAX patients received three drug regimens including platinum and a fluoropyrimidine. In the non-TAX group, 89% of the patients received cisplatin and 5-FU. The remainder received 5-FU or capecitabine alone. Grade 3-4 toxicity occurred in 41% of patients receiving TAX vs. 24% of those receiving non-TAX (p = 0.19). Overall pCR rate was 39% (39% with TAX vs. 40% with non-TAX, p = 0.9). Overall LC, DFS, and OS at 3 years were 80%, 34%, and 37%, respectively. At 3 years, there were no differences in LC (75% vs. 85%, p = 0.33) or OS (37% vs. 37%, p = 0.32) between TAX and non-TAX groups. Conclusions: In this large experience, paclitaxel-containing regimens did not improve pCR rates or clinical end points compared to non-paclitaxel-containing regimens.

  12. Time-staggered inhibition of JNK effectively sensitizes chemoresistant ovarian cancer cells to cisplatin and paclitaxel.

    PubMed

    Seino, Manabu; Okada, Masashi; Sakaki, Hirotsugu; Takeda, Hiroyuki; Watarai, Hikaru; Suzuki, Shuhei; Seino, Shizuka; Kuramoto, Kenta; Ohta, Tsuyoshi; Nagase, Satoru; Kurachi, Hirohisa; Kitanaka, Chifumi

    2016-01-01

    Ovarian cancer is the most lethal gynecological malignancy, for which platinum- and taxane-based chemotherapy plays a major role. Chemoresistance of ovarian cancer poses a major obstacle to the successful management of this devastating disease; however, effective measures to overcome platinum and taxane resistance are yet to be established. In the present study, while investigating the mechanism underlying the chemoresistance of ovarian cancer, we found that JNK may have a key role in the resistance of ovarian cancer cells to cisplatin and paclitaxel. Importantly, whereas simultaneous application of a JNK inhibitor and either of the chemotherapeutic agents had contrasting effects for cisplatin (enhanced cytotoxicity) and paclitaxel (decreased cytotoxicity), JNK inhibitor treatment prior to chemotherapeutic agent application invariably enhanced the cytotoxicity of both drugs, suggesting that the basal JNK activity is commonly involved in the chemoresistance of ovarian cancer cells to cisplatin and paclitaxel in contrast to drug?induced JNK activity which may have different roles for these two drugs. Furthermore, we confirmed using non-transformed human and rodent fibroblasts that sequential application of the JNK inhibitor and the chemotherapeutic agents did not augment their toxicity. Thus, our findings highlight for the first time the possible differential roles of the basal and induced JNK activities in the chemoresistance of ovarian cancer cells and also suggest that time?staggered JNK inhibition may be a rational and promising strategy to overcome the resistance of ovarian cancer to platinum- and taxane-based chemotherapy. PMID:26534836

  13. Confirmed Activity and Tolerability of Weekly Paclitaxel in the Treatment of Advanced Angiosarcoma

    PubMed Central

    Apice, Gaetano; Pizzolorusso, Antonio; Di Maio, Massimo; Grignani, Giovanni; Gebbia, Vittorio; Buonadonna, Angela; De Chiara, Annarosaria; Fazioli, Flavio; De Palma, Giampaolo; Galizia, Danilo; Arcara, Carlo; Mozzillo, Nicola; Perrone, Francesco

    2016-01-01

    Background. In several prospective and retrospective studies, weekly paclitaxel showed promising activity in patients with angiosarcoma. Patients and Methods. Our study was originally designed as a prospective, phase II multicenter trial for patients younger than 75, with ECOG performance status 0–2, affected by locally advanced or metastatic angiosarcoma. Patients received paclitaxel 80 mg/m2 intravenously, at days 1, 8, and 15 every 4 weeks, until disease progression or unacceptable toxicity. Primary endpoint was objective response. Results. Eight patients were enrolled but, due to very slow accrual, the trial was prematurely stopped and further 10 patients were retrospectively included in the analysis. Out of 17 evaluable patients, 6 patients obtained an objective response (5 partial, 1 complete), with an objective response rate of 35% (95% confidence interval 17%–59%). Of note, five responses were obtained in pretreated patients. In the paper, details of overall survival, progression-free survival, and tolerability are reported. Conclusions. In this small series of patients with locally advanced or metastatic angiosarcoma, weekly paclitaxel was confirmed to be well tolerated and active even in pretreated patients.

  14. Bioresorbable copolymer of L-lactide and ?-caprolactone for controlled paclitaxel delivery.

    PubMed

    Musia?-Kulik, Monika; G?barowska, Katarzyna; Kasperczyk, Janusz; Pastusiak, Ma?gorzata; Janeczek, Henryk; Dobrzy?ski, Piotr

    2014-01-01

    Bioresorbable, aliphatic polyesters are known in medicine where serve as orthopedic devices (e.g., rods, pins and screws) or sutures and staples in wound closure. Moreover, such materials are extensively stud- ied as scaffolds--three-dimensional structures for tissue engineering but also drug delivery systems (DDS). The aim of this study was to determine the release profile of paclitaxel, one of the anti-inflammatory, antiprolifera- tive and anti-restenotic agent, from biocompatible copolymer of L-lactide and ?-caprolactone that seems to be very attractive especially for minimally invasive surgery due to its potential shape-memory property. The influ- ence of drug on copolymer hydrolytic degradation was also analyzed. Three types of matrices (3%, 5% of PTX and without drug) were prepared by solvent-casting method and degraded in vitro. The physicochemical changes of copolymer were analyzed by means of nuclear magnetic resonance spectroscopy (NMR), gel per- meation chromatography (GPC) and differential scanning calorimetry (DSC). The amount of drug released into media was monitored with the use of high-pressure liquid chromatography (HPLC). Similar drug release pro- files were obtained for matrices with paclitaxel. The drug-containing matrices degraded slightly slower than drug free matrices, regardless PTX content. Results of this work may be helpful in designing new bioresorbable paclitaxel delivery system applied in anti-cancer therapy or drug-eluting stents technology. PMID:25745774

  15. Paclitaxel-induced lung injury and its amelioration by parecoxib sodium

    PubMed Central

    Liu, Wen-jie; Zhong, Zhong-jian; Cao, Long-hui; Li, Hui-ting; Zhang, Tian-hua; Lin, Wen-qian

    2015-01-01

    To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac?+?Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p?

  16. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer

    PubMed Central

    Miele, Evelina; Spinelli, Gian Paolo; Miele, Ermanno; Tomao, Federica; Tomao, Silverio

    2009-01-01

    Breast cancer is the most common type of malignancy diagnosed in women. In the metastatic setting this disease is still uncurable. Taxanes represent an important class of antitumor agents which have proven to be fundamental in the treatment of advanced and early-stage breast cancer, but the clinical advances of taxanes have been limited by their highly hydrophobic molecular status. To overcome this poor water solubility, lipid-based solvents have been used as a vehicle, and new systemic formulations have been developed, mostly for paclitaxel, which are Cremophor-free and increase the circulation time of the drug. ABI-007 is a novel, albumin-bound, 130-nm particle formulation of paclitaxel, free from any kind of solvent. It has been demonstrated to be superior to an equitoxic dose of standard paclitaxel with a significantly lower incidence of toxicities in a large, international, randomized phase III trial. The availability of new drugs, such as Abraxane, in association with other traditional and non-traditional drugs (new antineoplastic agents and targeted molecules), will give the oncologist many different effective treatment options for patients in this setting. PMID:19516888

  17. Ab initio conformational study of the phenylisoserine side chain of paclitaxel.

    PubMed

    Milanesio, M; Ugliengo, P; Viterbo, D; Appendino, G

    1999-01-28

    Paclitaxel (Taxol) and related compounds are important antitumor drugs, currently used for the treatment of several types of cancer. The flexible amino acidic C13 side chain is a key element of the taxoid pharmacophore, and the identification of the bioactive conformation is a top priority for a better understanding of the mode of action of these anticancer agents. The conformational features of the side chain have been investigated by Hartree-Fock ab initio and semiempirical PM3 calculations. To gain a better understanding of solvent effects, different molecular models of paclitaxel were used in the calculations. The gas-phase calculations confirm that only one conformation, named ch1 (very similar to the one found in the crystal structure of docetaxel), is present in apolar environments. The preference for this conformer has been rationalized in terms of its L shape, which minimizes steric and Coulombic interactions, and of a favorable arrangement of the glycolate moiety. When a polar solvent was simulated by different methods, a greater conformational variability was found, with different conformations differing by less than 1.5 kcal/mol. Among these conformations, only one (ch5', similar to molecule B of the crystal structure of paclitaxel) is particularly apt to interact with solvent molecules. In light of these data, it seems reasonable to assume that, when the drug is bound to the lipophilic pocket of the tubuline receptor, the C13 amino acidic side chain assumes a conformation close to ch1. PMID:9925734

  18. Model-Based Meta-Analysis for Quantifying Paclitaxel Dose Response in Cancer Patients

    PubMed Central

    Lu, D; Joshi, A; Li, H; Zhang, N; Ren, M M; Gao, Y; Wada, R; Jin, J Y

    2014-01-01

    Model-based meta-analysis of dose response is a sophisticated method to guide dose and regimen selection. In this report, the effects of paclitaxel dose and regimen (weekly or every 3 weeks) on the efficacy and safety in cancer patients were quantified by model-based meta-analysis of 29 monotherapy trials. Logistic regression models were developed to assess the relationship between dose and objective response rate or neutropenia rate. Survival models were developed to assess the relationship between dose and overall survival or progression-free survival. Paclitaxel efficacy (e.g., objective response rate, median overall survival, and progression-free survival) is correlated with average dose per week (mg/m2/week), whereas safety (e.g., neutropenia rate) is correlated with dose per administration (mg/m2). Weekly paclitaxel regimen at 6580?mg/m2 is supported to have comparable to better efficacy and lower neutropenia incidence than an every-3-week regimen at 175?mg/m2. PMID:24850445

  19. Development and validation of the HPLC method for simultaneous estimation of Paclitaxel and topotecan.

    PubMed

    Jain, Ankit; Gulbake, Arvind; Jain, Ashish; Shilpi, Satish; Hurkat, Pooja; Kashaw, Sushil; Jain, Sanjay K

    2014-08-01

    A simple, rapid, accurate and precise high performance liquid chromatography (HPLC) method for simultaneous analysis of Paclitaxel and Topotecan was developed. Different analytical parameters, such as linearity, accuracy, precision, specificity with intentional degradation, limit of detection and limit of quantification (LOQ), were determined according to the ICH guidelines. Acetonitrile-water (70:30, 0.1% trifluoroacetic acid) was run on a Phenomenex Luna C-18(2) column in isocratic mode at a flow rate of 1.2 mL/min for simultaneous analysis of the two drugs using a UV detector set at 227 nm. The proposed method showed a retention time (Rt) of 14.56 min for Topotecan and 23.81 min for Paclitaxel with a continuous run up to 30 min. The linearity of the calibration curves for each analyte in the desired concentration range was found to be good (r(2) > 0.9995). The recovery ranged from 97.9 to 101% for each drug with a relative standard deviation (%RSD) of <2%. Peaks corresponding to each of the drugs exhibited positive values for the minimum peak purity index over the entire range of integrated chromatographic peak indicating high purity of the peaks. Stability analysis revealed that the drugs remained stable for sufficient time. Thus, the developed method was found to be robust and it can be employed to quantify Paclitaxel and Topotecan in commercial sample and rat blood/serum. PMID:23843442

  20. Biomodulation of capecitabine by paclitaxel and carboplatin in advanced solid tumors and adenocarcinoma of unknown primary.

    PubMed

    Mikhail, Sameh; Lustberg, Maryam B; Ruppert, Amy S; Mortazavi, Amir; Monk, Paul; Kleiber, Barbara; Villalona-Calero, Miguel; Bekaii-Saab, Tanios

    2015-11-01

    Paclitaxel and carboplatin upregulate thymidine phosphorylase and thus may provide synergistic antitumor activity in combination with capecitabine (CTX). We, therefore, performed a phase I/II study of CTX. In the phase I study, patients with advanced solid tumors received carboplatin on day 1, paclitaxel on days 1, 8, 15 and capecitabine orally twice a day on days 8-21, every 4 weeks. Phase II patients with advanced adenocarcinoma of unknown primary (ACUP) were treated at the maximal tolerable dose. The phase I study enrolled 29 patients evaluable for dose limiting toxicity. The recommended phase II dose was capecitabine 750 mg/m(2) bid, paclitaxel 60 mg/m(2)/week and carboplatin AUC of 6. There were 9 confirmed responses, 5 partial responses and disease stabilization >3 months in 14 patients. The phase II study was prematurely terminated at 25 patients due to cessation of funding. The objective response rate was 32 % (95 % CI 0.15-0.54), the median progression-free survival 5.5 months (95 % CI 2.8-10.8 months) and the median overall survival 10.8 months (95 % CI 6.0-32.0 months). CTX demonstrated acceptable tolerability and antitumor activity. At the recommended dose level in patients with ACUP, this regimen showed encouraging preliminary activity. PMID:26416564

  1. [Two advanced gastric cancer cases with peritoneal metastases successfully treated by s-1/paclitaxel combination therapy].

    PubMed

    Ina, Kenji; Furuta, Ryuichi; Kataoka, Takae; Nishio, Tomoko; Nagao, Seiji; Kayukawa, Satoshi; Masaki, Ayako; Ando, Takafumi; Goto, Hidemi

    2009-06-01

    Two unresectable advanced gastric cancer cases with peritoneal metastases were successfully treated by the combination therapy of S-1 and paclitaxel. S-1 (1.25m(2): 80 mg/day, 1.25m(2)-1.50m(2)<:120 mg/day) was administered orally for 14 consecutive days followed by 14 days rest and a 2-hour infusion of paclitaxel (50 mg/m(2)) was administered on day 1 and 15 of each course. Treatment was repeated every 4 weeks unless disease progression or severe adverse effects were observed. Case 1: 65-year-old male (performance status: PS 3) with type 1 gastric cancer with malignant ascites. Case 2: 66-year-old male (PS3) with peritoneal metastases whose primary gastric lesion was surgically resected. Partial response was obtained in the former and complete response in the latter. Combination therapy of S-1 and paclitaxel can be highly recommended for patients with inoperable gastric cancer with poor PS. PMID:19542719

  2. Combination of Rotational Atherothrombectomy and Paclitaxel-Coated Angioplasty for Femoropopliteal Occlusion

    PubMed Central

    Scheer, F; Ldtke, CW; Kamusella, P; Wiggermann, P; Vieweg, H; Schlricke, E; Lichtenberg, M; Andresen, R; Wissgott, C

    2014-01-01

    OBJECTIVE The rotational atherothrombectomy with Straub Rotarex is a safe and efficient treatment of acute/subactute vascular occlusions. The purpose of this study was to evaluate the benefit of paclitaxel-coated angioplasty after rotational atherothrombectomy over an observation period of six months. MATERIALS AND METHODS Overall, 29 patients were treated with the Rotarex catheter in combination with paclitaxel-coated angioplasty. All patients had acute/subacute and chronic occlusions of the superficial femoral artery (SFA) and/or popliteal arteries. The ankle-brachial index (ABI) was detected before the intervention, after the procedure, and after six months. Also clinical examination and ultrasound scans were done in the observation period. RESULTS There were no technical failures. The ABI shows a significant increase from 0.52 0.17 to 0.91 0.25 in the follow-up. By ultrasound examination, there were found two (6.9%) restenoses during the follow-up. There was one dissection during the intervention (3.5%). CONCLUSION The rotational atherothrombectomy in combination with paclitaxel-coated angioplasty might be an effective and safe method with a promising low rate of restenosis at six months. PMID:25983558

  3. Microtubule-Binding Proteins as Promising Biomarkers of Paclitaxel Sensitivity in Cancer Chemotherapy.

    PubMed

    Xie, Songbo; Ogden, Angela; Aneja, Ritu; Zhou, Jun

    2016-03-01

    Microtubules, tirelessly animated and highly dynamic structures, are vital for most cellular processes and their intricacies are still being revealed even after a century since their discovery. The importance of microtubules as chemotherapeutic targets cannot be overstated, and their clinical role is unlikely to abate in the near future. Indeed, improved understanding of microtubule biology could herald a new epoch of anticancer drug design by permitting fine-tuning of microtubule-targeting agents, the clinical utility of which is presently often limited by primary or acquired resistance. Paclitaxel, one such agent belonging to the taxane family, has proven a resoundingly successful treatment for many cancer patients; however, for too many others with paclitaxel-refractory tumors, the drug has offered nothing but side effects. Accumulating evidence suggests that microtubule-binding proteins (MBPs) can regulate paclitaxel sensitivity in a wide range of cancer types. Improved understanding of how these proteins can be assayed to predict treatment responses or manipulated pharmacologically to improve clinical outcomes could transform modern chemotherapy and is urgently awaited. PMID:26332739

  4. Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment.

    PubMed

    Chirio, Daniela; Gallarate, Marina; Peira, Elena; Battaglia, Luigi; Muntoni, Elisabetta; Riganti, Chiara; Biasibetti, Elena; Capucchio, Maria Teresa; Valazza, Alberto; Panciani, Pierpaolo; Lanotte, Michele; Annovazzi, Laura; Caldera, Valentina; Mellai, Marta; Filice, Gaetano; Corona, Silvia; Schiffer, Davide

    2014-11-01

    Paclitaxel loaded solid lipid nanoparticles (SLN) of behenic acid were prepared with the coacervation technique. Generally, spherical shaped SLN with mean diameters in the range 300600 nm were obtained. The introduction of charged molecules, such as stearylamine and glycol chitosan into the formulation allowed to obtain positive SLN with Zeta potential in the 8-20 mV range and encapsulation efficiency in the 2590% range.Bloodbrain barrier (BBB) permeability, tested in vitro through hCMEC/D3 cells monolayer, showed a significantly increase in the permeation of Coumarin-6, used as model drug, when vehicled in SLN. Positive-charged SLN do not seem to enhance permeation although stearylamine-positive SLN resulted the best permeable formulation after 24 h.Cytotoxicity studies on NO3 glioblastoma cell line demonstrated the maintenance of cytotoxic activity of all paclitaxel-loaded SLN that was always unmodified or greater compared with free drug. No difference in cytotoxicity was noted between neutral and charged SLN.Co-culture experiments with hCMEC/D3 and different glioblastoma cells evidenced that, when delivered in SLN, paclitaxel increased its cytotoxicity towards glioblastoma cells. PMID:25445304

  5. A phase I study of dasatinib and weekly paclitaxel for metastatic breast cancer

    PubMed Central

    Fornier, M. N.; Morris, P. G.; Abbruzzi, A.; D'Andrea, G.; Gilewski, T.; Bromberg, J.; Dang, C.; Dickler, M.; Modi, S.; Seidman, A. D.; Sklarin, N.; Chang, J.; Norton, L.; Hudis, C. A.

    2011-01-01

    Background: SRC plays an important role in the pathogenesis of metastatic breast cancer (MBC). In preclinical models, paclitaxel and the oral SRC inhibitor dasatinib showed greater antitumor activity than either agent. To determine the maximum tolerated dose of this combination, we conducted a phase I study. Patients and methods: Patients with MBC; Eastern Cooperative Oncology Group performance status of zero to one; normal hepatic, renal and marrow function were eligible. Paclitaxel 80 mg/m2 was given 3 weeks of 4. The starting dasatinib dose was 70 mg and was increased, using a standard 3?+?3 dose-escalation scheme. Results: Fifteen patients enrolled (median age 54 years, range 3574). No dose-limiting toxic effects (DLTs) occurred at dasatinib doses of 70120 mg. One DLT (grade 3 fatigue) occurred in the dasatinib 150-mg cohort, which was expanded (six patients) with no further DLTs. However, due to cumulative toxic effects (rash, fatigue, diarrhea), the recommended phase II dose is dasatinib 120 mg. Of 13 assessable patients, a partial response was seen in 4 patients (31%), including 2 patients previously treated with taxanes; all received ?120 mg dasatinib. An additional five patients (29%) had stable disease. Conclusion: In combination with weekly paclitaxel, the recommended phase II dose of dasatinib is 120 mg daily and preliminary activity has been seen in patients with MBC. PMID:21406471

  6. Bevacizumab in combination with paclitaxel for HER-2 negative metastatic breast cancer: an economic evaluation.

    PubMed

    Dedes, Konstantin J; Matter-Walstra, Klazien; Schwenkglenks, Matthias; Pestalozzi, Bernhard C; Fink, Daniel; Brauchli, Peter; Szucs, Thomas D

    2009-05-01

    The addition of bevacizumab to weekly paclitaxel as primary chemotherapy for HER-2 negative metastatic breast cancer (MBC) prolongs progression-free survival without a substantial increase of toxicity. A Markov cohort simulation was used to follow the clinical course of typical patients with MBC. Information on response rates and major adverse effects was derived, and transition probabilities were estimated, based on the results of the E2100 clinical trial. Direct costs were assessed from the perspective of the Swiss health system. The addition of bevacizumab to weekly paclitaxel is estimated to cost an additional 40,369euro and to yield a gain of 0.22 quality-adjusted life years (QALYs), resulting in an incremental cost-effectiveness ratio of 189,427euro/QALY gained. Probabilistic sensitivity analysis showed that the willingness-to-pay threshold of 60,000euro was never reached. The addition of bevacizumab to paclitaxel in MBC patients is expensive given the clinical benefit in terms of QALYs gained. PMID:19147344

  7. Chemosensitizing activities of cyclotides from Clitoria ternatea in paclitaxel-resistant lung cancer cells.

    PubMed

    Sen, Zhang; Zhan, Xiao Kai; Jing, Jin; Yi, Zhang; Wanqi, Zhou

    2013-02-01

    Cyclotides comprise a family of circular mini-peptides that have been isolated from various plants and have a wide range of bioactivities. Previous studies have demonstrated that cyclotides have antitumor effects and cause cell death by membrane permeabilization. The present study aimed to evaluate the cytotoxicity and chemosensitizing activities of cyclotides from Clitoria ternatea in paclitaxel-resistant lung cancer cells. In this study, a total of seven cyclotides were selected for colorimetric cell viability assay (MTT assay) to evaluate their anticancer and chemosensitizing activities in the lung cancer cell line A549 and its sub-line A549/paclitaxel. Results suggested that certain cyclotides had significant anticancer and chemosensitizing abilities; such cyclotides were capable of causing multi-fold decreases in the half maximal inhibitory concentration (IC(50)) value of cliotides in the presence of paclitaxel. More importantly, their bioactivities were found to be correlated with their net charge status. In conclusion, cyclotides from C. ternatea have potential in chemosensitization application. PMID:23419988

  8. Microtubule-Binding Proteins as Promising Biomarkers of Paclitaxel Sensitivity in Cancer Chemotherapy

    PubMed Central

    Xie, Songbo; Ogden, Angela; Aneja, Ritu; Zhou, Jun

    2016-01-01

    Microtubules, tirelessly animated and highly dynamic structures, are vital for most cellular processes and their intricacies are still being revealed even after a century since their discovery. The importance of microtubules as chemotherapeutic targets cannot be overstated, and their clinical role is unlikely to abate in the near future. Indeed, improved understanding of microtubule biology could herald a new epoch of anticancer drug design by permitting fine-tuning of microtubule-targeting agents, the clinical utility of which is presently often limited by primary or acquired resistance. Paclitaxel, one such agent belonging to the taxane family, has proven a resoundingly successful treatment for many cancer patients; however, for too many others with paclitaxel-refractory tumors, the drug has offered nothing but side effects. Accumulating evidence suggests that microtubule-binding proteins (MBPs) can regulate paclitaxel sensitivity in a wide range of cancer types. Improved understanding of how these proteins can be assayed to predict treatment responses or manipulated pharmacologically to improve clinical outcomes could transform modern chemotherapy and is urgently awaited. PMID:26332739

  9. Chemosensitizing activities of cyclotides from Clitoria ternatea in paclitaxel-resistant lung cancer cells

    PubMed Central

    SEN, ZHANG; ZHAN, XIAO KAI; JING, JIN; YI, ZHANG; WANQI, ZHOU

    2013-01-01

    Cyclotides comprise a family of circular mini-peptides that have been isolated from various plants and have a wide range of bioactivities. Previous studies have demonstrated that cyclotides have antitumor effects and cause cell death by membrane permeabilization. The present study aimed to evaluate the cytotoxicity and chemosensitizing activities of cyclotides from Clitoria ternatea in paclitaxel-resistant lung cancer cells. In this study, a total of seven cyclotides were selected for colorimetric cell viability assay (MTT assay) to evaluate their anticancer and chemosensitizing activities in the lung cancer cell line A549 and its sub-line A549/paclitaxel. Results suggested that certain cyclotides had significant anticancer and chemosensitizing abilities; such cyclotides were capable of causing multi-fold decreases in the half maximal inhibitory concentration (IC50) value of cliotides in the presence of paclitaxel. More importantly, their bioactivities were found to be correlated with their net charge status. In conclusion, cyclotides from C. ternatea have potential in chemosensitization application. PMID:23419988

  10. Selection suitable solvents to prepare paclitaxel-loaded micelles by solvent evaporation method.

    PubMed

    Jiao, Zhen; Liu, Na; Chen, Zhiming

    2012-01-01

    Amphiphilic block copolymer micelle is one of the most important drug delivery systems to improve the water-solubility of lipophilic drugs. Blank micelles were prepared by solvent evaporation method in order to choose the suitable solvents for PBMA-b-PMPC (poly(n-butyl methacrylate)-b-poly(2-methacryloyloxyethyl phosphorylcholine)) copolymer micelles. The selected solvents, which include chloroform/ethanol mixture and ScCO(2), were used to prepare the paclitaxel-loaded micelles. The micelles with high drug encapsulation efficiency and drug-loading content showed both narrow size distribution and regularly spherical shape. In vitro drug release studies indicated that paclitaxel could be slowly and continuously released from the micelles. More than 50% incorporated drug was released within 132 h from the micelles prepared using ScCO(2) as solvent while only 20% was released at the same period from those prepared using chloroform/ethanol mixture. In addition, the environmentally-friendly solvent, ScCO(2), was used for the first time to prepare the paclitaxel-loaded micelles during the solvent evaporation process. PMID:20977318

  11. Dose-Dense Epirubicin and Cyclophosphamide Followed by Weekly Paclitaxel in Node-Positive Breast Cancer

    PubMed Central

    Mirzaei, Hamid Reza; Mohammadi Yeganeh, Ladan; Jafari Naeini, Sepideh; Bikdeli, Pegah; Hajian, Parastoo

    2014-01-01

    Background. Adding taxanes to anthracycline-based adjuvant chemotherapy has shown significant improvement in node-positive breast cancer patients but the optimal dose schedule has still remained undetermined. Objectives. The feasibility of dose-dense epirubicin in combination with cyclophosphamide (EC) followed by weekly paclitaxel as adjuvant chemotherapy in node-positive breast cancer patients was investigated. Methods. All patients were treated with epirubicin (100?mg/m2) and cyclophosphamide (600?mg/m2) every two weeks for four cycles with daily Pegfilgrastim (G-CSF) that was administered 310 days after each cycle of epirubicin and cyclophosphamide infusion which followed by (80?mg/m2) paclitaxel for twelve consecutive weeks. Results. Sixty consecutive patients were analyzed, of whom 57 patients (95%) completed the regimen and no case of toxicity-related death was observed. Grade 3/4 hematologic toxicity was uncommon and the most common grade 3/4 nonhematological adverse event was neuropathy disorders. Conclusions. Dose-dense epirubicin and cyclophosphamide followed by weekly paclitaxel with G-CSF support is a well-tolerated and feasible regimen in node-positive breast cancer patients without serious complications. PMID:25276426

  12. Overexpression of SOX2 is involved in paclitaxel resistance of ovarian cancer via the PI3K/Akt pathway.

    PubMed

    Li, Yang; Chen, Kangdong; Li, Lei; Li, Rui; Zhang, Juxin; Ren, Wu

    2015-12-01

    Paclitaxel is recommended as a first-line chemotherapeutic agent against ovarian cancer, but drug resistance becomes a major limitation of its success clinically. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Sex-determining region Y-box 2 (SOX2) is of vital importance in the regulation of stem cell proliferation and carcinogenesis. The aim of this study was to evaluate the role of SOX2 in ovarian cancer tumorigenesis and paclitaxel resistance. In the present study, the expression of SOX2 was examined by immunohistochemistry (IHC) and real-time PCR in 40 clinical samples and in SKOV3 cells and SKOV3/TAX cells (paclitaxel-resistant human ovarian adenocarcinoma cell line). The effects of SOX2 knockdown on ovarian cancer cell proliferation, migration, and invasion were also studied. The IHC and real-time PCR results showed that the difference of SOX2 expression between ovarian cancer and the adjacent non-tumorous ovarian tissues was statistically significant. Western blot analysis revealed that the PI3K/Akt signaling pathway was inhibited in cells overexpressing SOX2. Western blot analysis showed that the SOX2 protein was overexpressed in paclitaxel-resistant cells and weakly detectable in paclitaxel-sensitive cells. SOX2 silencing significantly potentiated apoptosis induced by paclitaxel in SKOV3-TR with SOX2 knockdown compared to SKOV3-TR transfected with control small interfering RNA (siRNA). Our work indicates SOX2 will become both a rational indicator of ovarian cancer prognosis and a promising target for ovarian cancer gene therapy. PMID:26159849

  13. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy.

    PubMed

    Eloy, Josimar O; Petrilli, Raquel; Topan, José Fernando; Antonio, Heriton Marcelo Ribeiro; Barcellos, Juliana Palma Abriata; Chesca, Deise L; Serafini, Luciano Neder; Tiezzi, Daniel G; Lee, Robert J; Marchetti, Juliana Maldonado

    2016-05-01

    Paclitaxel and rapamycin have been reported to act synergistically to treat breast cancer. Albeit paclitaxel is available for breast cancer treatment, the most commonly used formulation in the clinic presents side effects, limiting its use. Furthermore, both drugs present pharmacokinetics drawbacks limiting their in vivo efficacy and clinic combination. As an alternative, drug delivery systems, particularly liposomes, emerge as an option for drug combination, able to simultaneously deliver co-loaded drugs with improved therapeutic index. Therefore, the purpose of this study is to develop and characterize a co-loaded paclitaxel and rapamycin liposome and evaluate it for breast cancer efficacy both in vitro and in vivo. Results showed that a SPC/Chol/DSPE-PEG (2000) liposome was able to co-encapsulate paclitaxel and rapamycin with suitable encapsulation efficiency values, nanometric particle size, low polydispersity and neutral zeta potential. Taken together, FTIR and thermal analysis evidenced drug conversion to the more bioavailable molecular and amorphous forms, respectively, for paclitaxel and rapamycin. The pegylated liposome exhibited excellent colloidal stability and was able to retain drugs encapsulated, which were released in a slow and sustained fashion. Liposomes were more cytotoxic to 4T1 breast cancer cell line than the free drugs and drugs acted synergistically, particularly when co-loaded. Finally, in vivo therapeutic evaluation carried out in 4T1-tumor-bearing mice confirmed the in vitro results. The co-loaded paclitaxel/rapamycin pegylated liposome better controlled tumor growth compared to the solution. Therefore, we expect that the formulation developed herein might be a contribution for future studies focusing on the clinical combination of paclitaxel and rapamycin. PMID:26836480

  14. Synergy of Nab-paclitaxel and Bevacizumab in Eradicating Large Orthotopic Breast Tumors and Preexisting Metastases12

    PubMed Central

    Volk, Lisa D; Flister, Michael J; Chihade, Deena; Desai, Neil; Trieu, Vuong; Ran, Sophia

    2011-01-01

    Introduction Patients with metastatic disease are considered incurable. We previously showed that nabpaclitaxel (nanoparticle albumin-embedded paclitaxel) combined with anti-vascular endothelial growth factor A (VEGF-A) antibody, bevacizumab, eradicates orthotopic small-sized breast tumors and metastasis. Here, we assessed this therapy in two models of advanced (450600 mm3) breast tumors and delineated VEGF-A-dependent mechanisms of tumor resistance. Methods Mice with luciferase-tagged advanced MDA-MB-231 and MDA-MB-435 tumors were treated with saline, nab-paclitaxel (10 or 30 mg/kg), bevacizumab (4 mg/kg), or combined drugs. Lymphatic and lung metastases were measured by luciferase assay. Proinflammatory and survival pathways were measured by ELISA, Western blot and immunohistochemistry. Results Nab-paclitaxel transiently suppressed primary tumors by 70% to 90% but had no effect on metastasis. Coadministration of bevacizumab increased the response rate to 99%, including 71% of complete responses in MDA-MB-231-bearing mice treated concurrently with 30 mg/kg of nab-paclitaxel. This combinatory regimen significantly reduced or eliminated preexisting lymphatic and distant metastases in MDA-MB-231 and MDA-MB-435 models. The mechanism involves paclitaxel-induced NF-?B pathway that upregulates VEGF-A and other tumor prosurvival proteins. Conclusions Bevacizumab prevents tumor recurrence and metastasis promoted by nab-paclitaxel activation of NF-?B pathway. Combination therapy with high-dosed nab-paclitaxel demonstrates the potential to eradicate advanced primary tumors and preexisting metastases. These findings strongly support translating this regimen into clinics. PMID:21472137

  15. Increased Spinal Cord Na+-K+-2Cl− Cotransporter-1 (NKCC1) Activity Contributes to Impairment of Synaptic Inhibition in Paclitaxel-induced Neuropathic Pain*

    PubMed Central

    Chen, Shao-Rui; Zhu, Lihong; Chen, Hong; Wen, Lei; Laumet, Geoffroy; Pan, Hui-Lin

    2014-01-01

    Microtubule-stabilizing agents, such as paclitaxel (Taxol), are effective chemotherapy drugs for treating many cancers, and painful neuropathy is a major dose-limiting adverse effect. Cation-chloride cotransporters, such as Na+-K+-2Cl− cotransporter-1 (NKCC1) and K+-Cl− cotransporter-2 (KCC2), critically influence spinal synaptic inhibition by regulating intracellular chloride concentrations. Here we show that paclitaxel treatment in rats significantly reduced GABA-induced membrane hyperpolarization and caused a depolarizing shift in GABA reversal potential of dorsal horn neurons. However, paclitaxel had no significant effect on AMPA or NMDA receptor-mediated glutamatergic input from primary afferents to dorsal horn neurons. Paclitaxel treatment significantly increased protein levels, but not mRNA levels, of NKCC1 in spinal cords. Inhibition of NKCC1 with bumetanide reversed the paclitaxel effect on GABA-mediated hyperpolarization and GABA reversal potentials. Also, intrathecal bumetanide significantly attenuated hyperalgesia and allodynia induced by paclitaxel. Co-immunoprecipitation revealed that NKCC1 interacted with β-tubulin and β-actin in spinal cords. Remarkably, paclitaxel increased NKCC1 protein levels at the plasma membrane and reduced NKCC1 levels in the cytosol of spinal cords. In contrast, treatment with an actin-stabilizing agent had no significant effect on NKCC1 protein levels in the plasma membrane or cytosolic fractions of spinal cords. In addition, inhibition of the motor protein dynein blocked paclitaxel-induced subcellular redistribution of NKCC1, whereas inhibition of kinesin-5 mimicked the paclitaxel effect. Our findings suggest that increased NKCC1 activity contributes to diminished spinal synaptic inhibition and neuropathic pain caused by paclitaxel. Paclitaxel disrupts intracellular NKCC1 trafficking by interfering with microtubule dynamics and associated motor proteins. PMID:25253692

  16. Phase II study of preoperative paclitaxel/cisplatin with radiotherapy in locally advanced esophageal cancer

    SciTech Connect

    Kim, Dong W.; Blanke, Charles D.; Wu, Huiyun; Shyr, Yu; Berlin, Jordan; Beauchamp, R. Daniel; Chakravarthy, Bapsi . E-mail: bapsi.chak@vanderbilt.edu

    2007-02-01

    Purpose: Preoperative paclitaxel-based chemoradiotherapy may improve the response rates and survival in patients with localized esophageal cancer. We evaluated paclitaxel-based induction chemoradiotherapy in patients with localized esophageal cancer to determine its feasibility, clinical response, pathologic response, and overall survival. Methods and Materials: Between 1995 and 1998, 50 patients were enrolled in this study. At study entry, patients were categorized as either resectable or unresectable according to evaluation by an experienced thoracic surgeon. All patients were treated with paclitaxel 175 mg/m{sup 2} and cisplatin 75 mg/m{sup 2} on Day 1, 29 with radiotherapy to 3,000 cGy in 15 fractions. Resectable patients underwent esophagectomy 4 weeks later. Postoperatively, patients received two cycles of paclitaxel 175 mg/m{sup 2} on Day 1 and 5-fluorouracil 350 mg/m{sup 2} and leucovorin 300 mg on Days 1-3, given every 28 days. Patients who were deemed unsuitable for resection from the outset continued radiotherapy to a total dose of 6,000 cGy. Results: Of the 50 patients, all began neoadjuvant chemoradiotherapy, 40 patients underwent surgery, and 25 patients completed postoperative chemotherapy. A pathologic complete response was seen in 7 patients (17.5%). Patients with a pathologic response had a median survival of 32.4 months vs. 14.4 months for nonresponders (p <0.001). Patients with a clinical response had a median survival of 25.2 months compared with 15.6 months for nonresponders (p = 0.002). At a median follow up of 19.8 months (range 2.4-100.8), the median survival was 20.4 months and the 3-year overall survival rate was 23.2%. Conclusion: Although preoperative cisplatin/paclitaxel with 3,000 cGy was tolerable, this multimodality regimen did not appear to be superior to standard cisplatin/5-fluorouracil-containing regimens and its use is not recommended.

  17. Inhibition of Notch Signaling in Combination with Paclitaxel Reduces Platinum-Resistant Ovarian Tumor Growth

    PubMed Central

    Groeneweg, Jolijn W.; DiGloria, Celeste M.; Yuan, Jing; Richardson, William S.; Growdon, Whitfield B.; Sathyanarayanan, Sriram; Foster, Rosemary; Rueda, Bo R.

    2014-01-01

    Introduction: Ovarian cancer (OvCa) is the most lethal gynecologic malignancy in the United States because of chemoresistant recurrent disease. Our objective was to investigate the efficacy of inhibiting the Notch pathway with a γ-secretase inhibitor (GSI) in an OvCa patient-derived xenograft model as a single agent therapy and in combination with standard chemotherapy. Methods: Immunocompromised mice bearing xenografts derived from clinically platinum-sensitive human ovarian serous carcinomas were treated with vehicle, GSI (MRK-003) alone, paclitaxel and carboplatin (P/C) alone, or the combination of GSI and P/C. Mice bearing platinum-resistant xenografts were given GSI with or without paclitaxel. Gene transcript levels of the Notch pathway target Hes1 were analyzed using RT-PCR. Notch1 and Notch3 protein levels were evaluated. The Wilcoxon rank-sum test was used to assess significance between the different treatment groups. Results: Expression of Notch1 and 3 was variable. GSI alone decreased tumor growth in two of three platinum-sensitive ovarian tumors (p < 0.05), as well as in one of three platinum-sensitive tumors (p = 0.04). The combination of GSI and paclitaxel was significantly more effective than GSI alone and paclitaxel alone in all platinum-resistant ovarian tumors (all p < 0.05). The addition of GSI did not alter the effect of P/C in platinum-sensitive tumors. Interestingly, although the response of each tumor to chronic GSI exposure did not correlate with its endogenous level of Notch expression, GSI did negatively affect Notch signaling in an acute setting. Conclusion: Inhibiting the Notch signaling cascade with a GSI reduces primary human xenograft growth in vivo. GSI synergized with conventional cytotoxic chemotherapy only in the platinum-resistant OvCa models with single agent paclitaxel. These findings suggest inhibition of the Notch pathway in concert with taxane therapy may hold promise for treatment of platinum-resistant OvCa. PMID:25072022

  18. Clinical phase I study of paclitaxel followed by cisplatin in advanced head and neck squamous cell carcinoma.

    PubMed

    Hanauske, A R; Schilling, T; Heinrich, B; Kau, R; Herzog, M; Quasthoff, S; Bochtler, H; Diergarten, K; Rastetter, J

    1995-12-01

    We performed a clinical phase I trial of the combination of paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton, NJ) and cisplatin in patients with recurrent or metastatic squamous cell carcinoma of the head and neck, using a 3-hour infusion of paclitaxel followed by a 1-hour infusion of cisplatin. Treatment with this combination was repeated every 21 days. Patients who had received prior treatment with platinum-containing regimens were excluded. However, patients who had received two or fewer courses of radiochemotherapy not including platinum compounds were eligible. At present, 21 patients have been entered into this ongoing study. Doses ranged from paclitaxel 135 mg/m2 plus cisplatin 75 mg/m2 to paclitaxel 250 mg/m2 plus cisplatin 100 mg/m2. The maximum tolerated dose was reached at paclitaxel 250 mg/m2 and cisplatin 100 mg/m2. The dose-limiting toxicity of this regimen was myelosuppression (leukopenia, granulocytopenia). Clinically, neurosensory toxicity was moderate. However, preliminary analyses of threshold electrotonus studies indicate the presence of subclinical neurotoxicity in most patients. One patient receiving paclitaxel 200 mg/m2 plus cisplatin 100 mg/m2 developed grade 3 motor neurotoxicity. Profound orthostatic hypotension was observed in five patients receiving paclitaxel 200 mg/m2 plus cisplatin 100 mg/m2 or higher. Neurotoxicity was of delayed onset and slowly reversible, and its severity appeared to be dose related. Twelve patients are currently evaluable for response. Of these, three partial remissions were observed (6, 6+, and 3+ months). Five additional patients had stable disease. We conclude that the combination of paclitaxel administered as a 3-hour infusion followed by cisplatin is an active regimen in advanced head and neck cancer. In addition to myelosuppression, orthostatic hypotension may be a potentially significant clinical toxicity. Clinical phase II studies have been initiated, using a dose of paclitaxel 200 mg/m2 and cisplatin 100 mg/m2. PMID:8553082

  19. Folic acid-coupled nano-paclitaxel liposome reverses drug resistance in SKOV3/TAX ovarian cancer cells.

    PubMed

    Tong, Lingxia; Chen, Wei; Wu, Jing; Li, Hongxia

    2014-03-01

    Chemotherapy could be used as an effective treatment for ovarian cancer and subsequent peritoneal metastasis. Administration of chemoagents in a targeted manner may bring the advantage of higher efficiency and lower drug resistance. In the present study, folate receptor (FR)-targeted nano-paclitaxel formulations were generated and tested for cytotoxicity in a peritoneal xenograft model of paclitaxel-resistant ovarian cancer and SKOV3/TAX cell lines. Immunocytochemical staining confirmed the expression of FR in both SKOV3 and SKOV3/TAX cells. The enrichment of the folic acid-coupled PEGylated nano-paclitaxel liposome (FA-NP) in FR-positive cells was visualized with fluorescence. The uptake of the FA-NP peaked at 4 h and was more robust than nontargeted PEGylated nano-paclitaxel liposome (NP). FA-NP but not NP markedly inhibited the growth of ovarian cancer cells and induced a two-fold increase in the doubling time. The cytotoxic effects of FA-NP were more potent than NP in both SKOV3 cells [50% of inhibition concentration (IC50), 5.67 vs. 50.2 ?g/ml, FA-NP vs. NP] and SKOV3/TAX cells (IC50, 0.38 vs. >200 ?g/ml, FA-NP vs. NP). FA-NP caused more G2-M cell cycle arrest and apoptotic changes in ovarian cancer cells than NP or regular paclitaxel. However, these effects were blunted in the presence of free FA, which competitively inhibited the receptor-mediated uptake of FA-NP particles. Intraperitoneal (i.p.) administration of FA-NP but not regular paclitaxel, NP, or vehicle significantly prolonged the survival and reduced tumor nodule number (2.90.3) in BALB/c nude mice. FA-NP also markedly enhanced the percentage of apoptotic cells in peritoneal xenografts of paclitaxel-resistant ovarian cancer cells (44.68.5 vs. 3.21.1% for vehicle, 22.45.9% for regular paclitaxel, and 35.27.7% for NP; P<0.05). However, intravenous administration of FA-NP at the same dose failed to induce apoptosis (20.16.2%; P<0.05) and inhibit tumor nodule number to the same extent as intraperitoneal administration. FA-NP reversed the drug resistance in paclitaxel-resistant SKOV3/TAX ovarian cancer cells both in vitro and in vivo. Localized and targeted administration of the FR-targeted chemoagents might prolong the survival time in patients with drug-resistant ovarian cancer. PMID:24275314

  20. Natural History of Paclitaxel-Associated Acute Pain Syndrome: Prospective Cohort Study NCCTG N08C1

    PubMed Central

    Loprinzi, Charles L.; Reeves, Brandi N.; Dakhil, Shaker R.; Sloan, Jeff A.; Wolf, Sherry L.; Burger, Kelli N.; Kamal, Arif; Le-Lindqwister, Nguyet A.; Soori, Gamini S.; Jaslowski, Anthony J.; Novotny, Paul J.; Lachance, Daniel H.

    2011-01-01

    Purpose The characteristics and natural history of the paclitaxelacute pain syndrome (P-APS) and paclitaxel's more chronic neuropathy have not been well delineated. Methods Patients receiving weekly paclitaxel (70 to 90 mg/m2) completed daily questionnaires and weekly European Organisation for Research and Treatment of Cancer (EORTC) Chemotherapy-Induced Peripheral Neuropathy (CIPN) 20 instruments during the entire course of therapy. Results P-APS symptoms peaked 3 days after chemotherapy. Twenty percent of patients had pain scores of 5 to 10 of 10 with the first dose of paclitaxel. Sensory neuropathy symptoms were more prominent than were motor or autonomic neuropathy symptoms. Of the sensory neuropathy symptoms, numbness and tingling were more prominent than was shooting or burning pain. Patients with higher P-APS pain scores with the first dose of paclitaxel appeared to have more chronic neuropathy. Conclusion These data support that the P-APS is related to nerve pathology as opposed to being arthralgias and/or myalgias. Numbness and tingling are more prominent chronic neuropathic symptoms than is shooting or burning pain. PMID:21383290

  1. [A case of bone marrow carcinomatosis with disseminated intravascular coagulation arising from breast cancer successfully treated with paclitaxel plus bevacizumab].

    PubMed

    Kawai, Hiroshi; Sugimoto, Ryoma; Miyauchi, Syunsaku; Yoshida, Ryosuke; Waki, Naohisa; Hirayama, Shin; Ishizaki, Masahiro; Nishi, Hideyuki; Yamashita, Kazuki

    2014-11-01

    We report a case of bone marrow carcinomatosis with disseminated intravascular coagulation (DIC) originating from metastatic breast cancer that was treated with paclitaxel plus bevacizumab. A woman in her 30s was diagnosed with bone marrow carcinomatosis arising from metastatic breast cancer 2 years previously. Pathologically, estrogen receptor (ER) and progesterone receptor(PgR) / -positive and human epidermal growth factor receptor 2(HER2/neu)-negative scirrhous carcinoma was diagnosed. She improved after treatment with paclitaxel plus bevacizumab and zoledronic acid. Subsequently, she was treated with hormonal therapy(tamoxifen plus luteinizing-hormone-releasing hormone [LH-RH]agonist) for 7 months. Because progressive bone metastasis was identified and tumor markers increased, the patient was administered paclitaxel plus bevacizumab again. Fifteen days after chemotherapy was initiated, DIC developed. Chemotherapy was continued without decreasing the dose, and recombinant human soluble thrombomodulin (rTM) was added. The DIC resolved in 5 days. After 6 courses of paclitaxel plus bevacizumab, improvement of tumor markers and bone metastasis was observed. Paclitaxel plus bevacizumab can be effective for treatment of bone marrow carcinomatosis with DIC originating from metastatic breast cancer. PMID:25731388

  2. Comparison of toxicity profile and tolerability between two standard of care paclitaxel-based adjuvant chemotherapy regimens in breast cancer.

    PubMed

    Alsharedi, Mohamed; Gress, Todd; Dotson, Jennifer; Elmsherghi, Nabiha; Tirona, Maria Tria

    2016-03-01

    In breast cancer, there are two widely used paclitaxel-based adjuvant chemotherapies, either dose dense paclitaxel (ddP) or weekly paclitaxel (wP). To our knowledge, the comparisons of toxicity and tolerability between the two regimens have never been reported in the literature. This is a retrospective single-institution charts review of breast cancer patients who were treated with paclitaxel-based chemotherapy either ddP or wP. In total, 76 and 45 patients with breast cancer received adjuvant standard ddP and wP, respectively. Patient characteristics in both groups were comparable. Our results showed no statistical significant difference in toxicity profile and tolerability between the two regimens. Particularly, chemotherapy-induced peripheral neuropathy (CIPN) was equally observed in both schedules. Furthermore, grade 3 and 4 CIPN was observed in 17 and 18%, respectively (p=0.93). In terms of tolerability, both regimens resulted in similar rates of hospitalization and treatment discontinuation. Our data analysis indicates no significant difference in toxicity profile between the two standard paclitaxel regimens in breast cancer. However, this is a small sample-sized retrospective study and further prospective trial with a larger sample size is warranted. PMID:26883934

  3. Thiamet-G-mediated inhibition of O-GlcNAcase sensitizes human leukemia cells to microtubule-stabilizing agent paclitaxel.

    PubMed

    Ding, Ning; Ping, Lingyan; Shi, Yunfei; Feng, Lixia; Zheng, Xiaohui; Song, Yuqin; Zhu, Jun

    2014-10-24

    Although the microtubule-stabilizing agent paclitaxel has been widely used for treatment of several cancer types, particularly for the malignancies of epithelia origin, it only shows limited efficacy on hematological malignancies. Emerging roles of O-GlcNAcylation modification of proteins in various cancer types have implicated the key enzymes catalyzing this reversible modification as targets for cancer therapy. Here, we show that the highly selective O-GlcNAcase (OGA) inhibitor thiamet-G significantly sensitized human leukemia cell lines to paclitaxel, with an approximate 10-fold leftward shift of IC50. Knockdown of OGA by siRNAs or inhibition of OGA by thiamet-G did not influence the cell viability. Furthermore, we demonstrated that thiamet-G binds to OGA in competition with 4-methylumbelliferyl N-acetyl-?-d-glucosaminide dehydrate, an analogue of O-GlcNAc UDP, thereby suppressing the activity of OGA. Importantly, inhibition of OGA by thiamet-G decreased the phosphorylation of microtubule-associated protein Tau and caused alterations of microtubule network in cells. It is noteworthy that paclitaxel combined with thiamet-G resulted in more profound perturbations on microtubule stability than did either one alone, which may implicate the underlying mechanism of thiamet-G-mediated sensitization of leukemia cells to paclitaxel. These findings thus suggest that a regimen of paclitaxel combined with OGA inhibitor might be more effective for the treatment of human leukemia. PMID:25268318

  4. Synthesis and biological evaluation of a peptide-paclitaxel conjugate which targets the integrin αvβ₆.

    PubMed

    Li, Shunzi; Gray, Bethany Powell; McGuire, Michael J; Brown, Kathlynn C

    2011-09-15

    The integrin α(v)β(6) is an emergent biomarker for non-small cell lung cancer (NSCLC) as well as other carcinomas. We previously developed a tetrameric peptide, referred to as H2009.1, which binds α(v)β(6) and displays minimal affinity for other RGD-binding integrins. Here we report the use of this peptide to actively deliver paclitaxel to α(v)β(6)-positive cells. We synthesized a water soluble paclitaxel-H2009.1 peptide conjugate in which the 2'-position of paclitaxel is attached to the tetrameric peptide via an ester linkage. The conjugate maintains its specificity for α(v)β(6)-expressing NSCLC cells, resulting in selective cytotoxicity. Treatment of α(v)β(6)-positive cells with the conjugate results in cell cycle arrest followed by induction of apoptosis in the same manner as free paclitaxel. However, initiation of apoptosis and the resultant cell death is delayed compared to free drug. The conjugate demonstrates anti-tumor activity in a H2009 xenograft model of NSCLC with efficacy comparable to treatment with free paclitaxel. PMID:21868241

  5. Multidrug resistance reversal by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes

    PubMed Central

    Patel, Niravkumar R.; Rathi, Alok; Mongayt, Dmitriy; Torchilin, Vladimir P.

    2011-01-01

    One of the major obstacles to the success of cancer chemotherapy is the multidrug resistance (MDR) often resulting due to the overexpression of drug efflux transporter pumps such as P-glycoprotein (P-gp). Highly efficacious third generation P-gp inhibitors, like tariquidar, have shown promising results in overcoming the MDR. However, P-gp is also expressed in normal tissues like blood brain barrier, gastrointestinal track, liver, spleen and kidney. To maximize the efficacy of P-gp inhibitor and reduce the systemic toxicity, it is important to limit the exposure of P-gp inhibitors and the anticancer drugs to normal tissues and increase their co-localization with tumor cells. In this study, we have investigated the co-delivery of the P-gp inhibitor, tariquidar, and cytotoxic drug, paclitaxel, into tumor cells to reverse the MDR using long-circulating liposomes. Tariquidar- and paclitaxel-loaded long-circulating liposomes showed significant resensitization of the resistant variant for paclitaxel, which could be correlated with an increased accumulation of paclitaxel in tumor cells. These results suggest that the co-delivery of the P-gp inhibitor, tariquidar, and the cytotoxicity inducer, paclitaxel, looks like a promising approach to overcome the MDR. PMID:21703341

  6. Paclitaxel-loaded microparticles for intratumoral administration via the TMT technique: preparation, characterization, and preliminary antitumoral evaluation.

    PubMed

    Hamoudeh, Misara; Diab, Roudayna; Fessi, Hatem; Dumontet, Charles; Cuchet, Delphine

    2008-07-01

    In our pursuit to develop suitable therapeutic particulate systems for intratumoral delivery by the targeted multi-therapy (TMT) technique, we describe the preparation of paclitaxel-loaded poly(D,L-lactic-co-glycolic) acid (PLGA) microparticles (MPs) (drug loading 35-38%, wt/wt; size 0.7-5 microm). Magnetite (15%, wt/wt) was also incorporated in some preparations for a future magnetic resonance imaging (MRI)-guided delivery. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) experiments showed that paclitaxel was not encapsulated in its initial crystalline form. The paclitaxel in vitro release pattern showed a biphasic tendency with a burst effect followed by a sustained release (28% released amount after 1 month), which was accompanied with MP erosion and degradation signs as confirmed by scanning electronic microscopy (SEM) micrographs. The paclitaxel-loaded MPs demonstrated a dose-dependent antitumor effect on human uterine cancer cells, with an IC(50) value relatively close to that of commercial Taxol. This paclitaxel delivery system represents a potent antiprofilerative and radiosensitizer agent for intratumoral administration via the TMT technique. PMID:18612910

  7. Apoptotic effect of cordycepin combined with cisplatin and/or paclitaxel on MA-10 mouse Leydig tumor cells

    PubMed Central

    Kang, Fu-Chi; Chen, Pei-Jung; Pan, Bo-Syong; Lai, Meng-Shao; Chen, Yung-Chia; Huang, Bu-Miin

    2015-01-01

    Background Chemotherapy is not limited to a single treatment, and the evidence demonstrates that different drug combinations can have positive results in patients. In this study, we sought to determine whether cordycepin combined with cisplatin and/or paclitaxel would have an additive effective on inducing apoptosis in mouse Leydig tumor cells, and the mechanisms were also briefly examined. Methods The additive effects of cordycepin combined with cisplatin and/or paclitaxel on apoptosis in MA-10 cells were investigated by monitoring changes in morphological characteristics and examining cell viability, flow cytometry assays, and Western blot analyses. Results Combination of cordycepin plus cisplatin and/or paclitaxel for 12 and 24 hours induced apoptotic features in MA-10 cells. The MTT assay showed that the combination treatment reduced the viability of MA-10 cells in a dose-dependent manner, with additive effects. Cell cycle analysis showed that combination treatment significantly increased subG1 phase cell numbers in MA-10 cells, indicating apoptosis. Moreover, cordycepin plus cisplatin and/or paclitaxel significantly induced cleavage of caspase-8, caspase-9, caspase-3, and poly ADP-ribose polymerase, and phosphorylation of c-Jun NH2-terminal kinase, extracellular signal-regulated kinase, p38, and p53 proteins in MA-10 cells. Conclusion Cordycepin plus cisplatin and/or paclitaxel can have an additive effect on apoptosis in MA-10 cells, with activation of caspase, mitogen-activated protein kinase, and p53 signal pathways. PMID:26366090

  8. Caffeine inhibits paclitaxel?induced apoptosis in colorectal cancer cells through the upregulation of Mcl?1 levels.

    PubMed

    Mhaidat, Nizar M; Alzoubi, Karem H; Al-Azzam, Sayer I; Alsaad, Alhareth A

    2014-01-01

    Colorectal cancer (CRC) cells have been previously observed to be resistant to paclitaxel?induced apoptosis by activation of the mitogen?activated protein/extracellular signal?regulated kinase (MEK)/ERK signaling pathway and increased expression of glucose?regulated protein78 (GRP78). Caffeine, the most widely used neuroactive compound, has antiproliferative activity and the ability to induce cell cycle arrest and apoptosis. In the current study, the effect of concomitant use of caffeine on paclitaxel?induced apoptosis in CRC cells was investigated. The results revealed that treatment of Colo205 cells with varying caffeine concentrations did not induce apoptosis. Pretreatment of CRC cells with caffeine significantly inhibited paclitaxel?induced cytotoxicity by increasing the levels of the antiapoptotic Bcl?2 family member, Mcl?1. This effect was inhibited by pretreatment of Colo205 cells with the MEK?ERK chemical inhibitor, U0126. In addition to GRP78, these results indicated that Mcl?1 may be a downstream target of the MEK?ERK signaling pathway. Moreover, administration of caffeine may decrease chemotherapeutic responses to paclitaxel by the MEK?ERK mediated upregulation of Mcl?1. In conclusion, coadministration of cell cycle?modifying agents, including caffeine should be avoided in CRC patients treated with paclitaxel. PMID:24173825

  9. Autophagy inhibition re-sensitizes pulse stimulation-selected paclitaxel-resistant triple negative breast cancer cells to chemotherapy-induced apoptosis

    PubMed Central

    Wen, Jian; Yeo, Syn; Wang, Chenran; Chen, Song; Sun, Shaogang; Haas, Michael A.; Tu, Wei; Jin, Feng

    2016-01-01

    Chemotherapy is the mainstay of systemic treatment for triple negative breast cancer (TNBC); however, the development of drug resistance limits its effectiveness. Therefore, we investigated the underlying mechanism for drug resistance and potential approaches to overcome it for a more effective treatment for TNBCs. Using a pulse-stimulated selection strategy to mimic chemotherapy administration in the clinic, we developed a new paclitaxel-resistant MDA-MB-231 cell line and analyzed these cells for changes in autophagy activity, and the role and mechanisms of the increased autophagy in promoting drug resistance were determined. We found that the pulse-stimulated selection strategy with paclitaxel resulted in MDA-MB-231 variant cells with enhanced resistance to paclitaxel. These resistant cells were found to have enhanced basal autophagy activity, which confers a cytoprotective function under paclitaxel treatment stress. Inhibition of autophagy enhanced paclitaxel-induced cell death in these paclitaxel-resistant cells. We further revealed that up-regulated autophagy in resistant cells enhanced the clearance of damaged mitochondria. Last, we showed that the paclitaxel-resistant cancer cells acquired cross resistance to epirubicin and cisplatin. Together, these results suggest that combining autophagy inhibition with chemotherapy may be an effective strategy to improve treatment outcome in paclitaxel-resistant TNBC patients. PMID:25638397

  10. Autophagy inhibition re-sensitizes pulse stimulation-selected paclitaxel-resistant triple negative breast cancer cells to chemotherapy-induced apoptosis.

    PubMed

    Wen, Jian; Yeo, Syn; Wang, Chenran; Chen, Song; Sun, Shaogang; Haas, Michael A; Tu, Wei; Jin, Feng; Guan, Jun-Lin

    2015-02-01

    Chemotherapy is the mainstay of systemic treatment for triple negative breast cancer (TNBC); however, the development of drug resistance limits its effectiveness. Therefore, we investigated the underlying mechanism for drug resistance and potential approaches to overcome it for a more effective treatment for TNBCs. Using a pulse-stimulated selection strategy to mimic chemotherapy administration in the clinic, we developed a new paclitaxel-resistant MDA-MB-231 cell line and analyzed these cells for changes in autophagy activity, and the role and mechanisms of the increased autophagy in promoting drug resistance were determined. We found that the pulse-stimulated selection strategy with paclitaxel resulted in MDA-MB-231 variant cells with enhanced resistance to paclitaxel. These resistant cells were found to have enhanced basal autophagy activity, which confers a cytoprotective function under paclitaxel treatment stress. Inhibition of autophagy enhanced paclitaxel-induced cell death in these paclitaxel-resistant cells. We further revealed that up-regulated autophagy in resistant cells enhanced the clearance of damaged mitochondria. Last, we showed that the paclitaxel-resistant cancer cells acquired cross resistance to epirubicin and cisplatin. Together, these results suggest that combining autophagy inhibition with chemotherapy may be an effective strategy to improve treatment outcome in paclitaxel-resistant TNBC patients. PMID:25638397

  11. The telomere/telomerase binding factor PinX1 regulates paclitaxel sensitivity depending on spindle assembly checkpoint in human cervical squamous cell carcinomas.

    PubMed

    Tian, Xiao-Peng; Qian, Dong; He, Li-Ru; Huang, He; Mai, Shi-Juan; Li, Chang-Peng; Huang, Xiao-Xia; Cai, Mu-Yan; Liao, Yi-Ji; Kung, Hsiang-fu; Zeng, Yi-Xin; Xie, Dan

    2014-10-10

    Paclitaxel is a main ingredient in the combination chemotherapy treatment of advanced human cervical squamous cell carcinomas. We investigated the roles and underlying molecular mechanisms of PinX1 in cervical squamous cell carcinomas (CSCC) cells response to paclitaxel and its clinical significances. The expression dynamics of PinX1 was first examined by immunohistochemistry in 122 advanced CSCC patients treated with cisplatin/paclitaxel chemotherapy. The expression of PinX1 was significantly associated with the effects of cisplatin/paclitaxel chemotherapy in advanced CSCCs (P<0.05). High expression of PinX1 correlated with CSCC's response to cisplatin/paclitaxel chemotherapy, and was an independent predictor of shortened survival (P<0.05). A series of in vivo and in vitro assays were performed to elucidate the function of PinX1 on CSCC cells chemosensitivity to paclitaxel and underlying mechanisms. In CSCC cells, the levels of PinX1 were only associated with the cytotoxicity and sensitivity of paclitaxel, in which knockdown of PinX1 dramatically enhanced paclitaxel cytotoxicity, whereas the reestablishment of PinX1 levels substantially reduced the paclitaxel-induced killing effect. In addition, we identified that the ability of PinX1 to stabilize the tension between sister kinetochores and maintain the spindle assembly checkpoint was the main reason CSCC cells undergo apoptosis when treated with paclitaxel, and further studies demonstrated that shortened distance between sisters kinetochores by nocodazole confers upon PinX1-replenished cells a sensitivity to the death inducing paclitaxel effects. Furthermore, our study of CSCC cells xenografts in nude mice confirmed the role of PinX1 in paclitaxel sensitivity in vivo. Our data reveal that PinX1 could be used as a novel predictor for CSCC patient response to paclitaxel, and the role of PinX1-mediated paclitaxel sensitivity might represent a new direction for the development of a new generation of microtubule drugs. PMID:25045845

  12. Paclitaxel therapy potentiates cold hyperalgesia in streptozotocin-induced diabetic rats through enhanced mitochondrial reactive oxygen species production and TRPA1 sensitization.

    PubMed

    Barrire, David Andr; Rieusset, Jennifer; Chanteranne, Didier; Busserolles, Jrme; Chauvin, Marie-Agns; Chapuis, Latitia; Salles, Jrme; Dubray, Claude; Morio, Batrice

    2012-03-01

    Diabetes comorbidities include disabling peripheral neuropathy (DPN) and an increased risk of developing cancer. Antimitotic drugs, such as paclitaxel, are well known to facilitate the occurrence of peripheral neuropathy. Practitioners frequently observe the development or co-occurrence of enhanced DPN, especially cold sensitivity, in diabetic patients during chemotherapy. Preclinical studies showed that reactive oxygen species (ROS) and cold activate transient receptor potential ankyrin-1 (TRPA1) cation channels, which are involved in cold-evoked pain transduction signaling in DPN. Additionally, paclitaxel treatment has been associated with an accumulation of atypical mitochondria in the sensory nerves of rats. We hypothesized that paclitaxel might potentiate cold hyperalgesia by increasing mitochondrial injuries and TRPA1 activation. Thus, the kinetics of paclitaxel-induced cold hyperalgesia, mitochondrial ROS production, and TRPA1 expression were evaluated in dorsal root ganglia of normoglycemic and streptozotocin-induced diabetic rats. In diabetic rats, paclitaxel significantly enhanced cold hyperalgesia in comparison to normoglycemic paclitaxel-treated control rats. These effects were prevented by N-acetyl-cysteine, a reducing agent, and by HC030031, an antagonist of TRPA1. In diabetic and control rats, paclitaxel treatment was associated with an accumulation of atypical mitochondria and a 2-fold increase in mitochondrial ROS production. Moreover, mRNA levels of glutathione peroxidase 4 and glutathione-S-reductase were significantly lower in diabetic groups treated with paclitaxel. Finally, TRPA1 gene expression was enhanced by 45% in diabetic rats. Paclitaxel potentiation of cold hyperalgesia in diabetes may result from the combination of increased mitochondrial ROS production and poor radical detoxification induced by paclitaxel treatment and diabetes-related overexpression of TRPA1. PMID:22177224

  13. Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mTOR pathway.1

    PubMed Central

    Hanna, Rabbie K.; Zhou, Chunxiao; Malloy, Kimberly M.; Gehrig, Paola A; Bae-Jump, Victoria L.

    2012-01-01

    Objectives To examine the effects of combination therapy with metformin and paclitaxel in endometrial cancer cell lines. Methods ECC-1 and Ishikawa endometrial cancer cell lines were used. Cell proliferation was assessed after exposure to paclitaxel and metformin. Cell cycle progression was assessed by flow cytometry. hTERT expression was determined by real-time RT-PCR. Western immunoblotting was performed to determine the effect of metformin/paclitaxel on the mTOR pathway. Results Paclitaxel inhibited proliferation in a dose-dependent manner in both cell lines with IC50 values of 1–5 nM and 5–10 nM for Ishikawa and ECC-1 cells, respectively. Simultaneous exposure of cells to various doses of paclitaxel in combination with metformin (0.5 mM) resulted in a significant synergistic anti-proliferative effect in both cell lines (Combination Index <1). Metformin induced G1 arrest in both cell lines. Paclitaxel alone or in combination with metformin resulted in predominantly G2 arrest. Metformin decreased hTERT mRNA expression while paclitaxel alone had no effect on telomerase activity. Metformin stimulated AMPK phosphorylation and decreased phosphorylation of the S6 protein. In contrast, paclitaxel inhibited AMPK phosphorylation in the ECC-1 cell line and induced phosphorylation of S6 in both cell lines. Treatment with metformin and paclitaxel resulted in decreased phosphorylation of S6 in both cell lines but only had an additive effect on AMPK phosphorylation in the ECC-1 cell line. Conclusions Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mTOR pathway. This combination may be a promising targeted therapy for endometrial cancer. PMID:22252099

  14. Prevention of Paclitaxel-induced allodynia by Minocycline: Effect on loss of peripheral nerve fibers and infiltration of macrophages in rats

    PubMed Central

    2010-01-01

    Background Although paclitaxel is a frontline antineoplastic agent for treatment of solid tumors, the paclitaxel-evoked pain syndrome is a serious problem for patients. There is currently no valid drug to prevent or treat the paclitaxel-induced allodynia, partly due to lack of understanding regarding the cellular mechanism. Studies have shown that minocycline, an inhibitor of microglia/macrophage, prevented neuropathic pain and promoted neuronal survival in animal models of neurodegenerative disease. Recently, Cata et al also reported that minocycline inhibited allodynia induced by low-dose paclitaxel (2 mg/kg) in rats, but the mechanism is still unclear. Results Here, we investigate by immunohistochemistry the change of intraepidermal nerve fiber (IENF) in the hind paw glabrous skin, expression of macrophage and activating transcription factor 3 (ATF3) in DRG at different time points after moderate-dose paclitaxel treatment (cumulative dose 24 mg/kg; 3 8 mg/kg) in rats. Moreover, we observe the effect of minocycline on the IENF, macrophages and ATF3. The results showed that moderate-dose paclitaxel induced a persisted, gradual mechanical allodynia, which was accompanied by the loss of IENF in the hind paw glabrous skin and up-regulation of macrophages and ATF3 in DRG in rats. The expressions of ATF3 mainly focus on the NF200-positive cells. More importantly, we observed that pretreatment of minocycline at dose of 30 mg/kg or 50 mg/kg, but not 5 mg/kg, prevented paclitaxel-evoked allodynia. The evidence from immunohistochemistry showed that 30 mg/kg minocycline rescued the degeneration of IENF, attenuated infiltration of macrophages and up-regulation of ATF3 induced by paclitaxel treatment in rats. Conclusions Minocycline prevents paclitaxel-evoked allodynia, likely due to its inhibition on loss of IENF, infiltration of macrophages and up-regulation of ATF3 in rats. The finding might provide potential target for preventing paclitaxel-induced neuropathic pain. PMID:21050491

  15. Down-regulated expression of miR-134 contributes to paclitaxel resistance in human ovarian cancer cells.

    PubMed

    Shuang, Ting; Wang, Min; Shi, Cong; Zhou, Yingying; Wang, Dandan

    2015-10-01

    MiR-134 has been reported to have a role in the development and progression of various cancers. In this study, we found that miR-134 expression was significantly decreased in chemo-resistant serous epithelial ovarian cancer (EOC) patients. Over-expression of miR-134 enhanced the sensitivity of SKOV3-TR30 cells to paclitaxel, and increased paclitaxel-induced apoptosis. Further, Pak2 was identified as a direct target of miR-134, and Pak2-specific siRNA increased cell inhibition rate and promoted paclitaxal-induced apoptosis. By regulating Pak2 expression, miR-134 could mediate Bad phosphorylation at Ser112 and Ser136, which affected cell survival and apoptosis. In conclusion, our findings indicate that repression of miR-134 and consequent up-regulation of Pak2 might contribute to paclitaxel resistance. PMID:26363097

  16. Cellular aggregation is a key parameter associated with long term variability in paclitaxel accumulation in Taxus suspension cultures

    PubMed Central

    Patil, Rohan A.; Kolewe, Martin E.; Roberts, Susan C.

    2012-01-01

    Plant cell cultures provide a renewable source for synthesis and supply of commercially valuable plant-derived products, particularly for secondary metabolites. However, instability in product yields over multiple passages has hampered the efficient and sustainable use of this technology. Paclitaxel accumulation in Taxus cell suspension culture was quantified over multiple passages and correlated to mean aggregate size, extracellular sugar level, ploidy, and cell cycle distribution. Paclitaxel levels varied approximately 6.9-fold over the six-month timeframe investigated. Of all of the parameters examined, only mean aggregate size correlated with paclitaxel accumulation, where a significant negative correlation (r = − 0.75, p < 0.01) was observed. These results demonstrate the relevance of measuring, and potentially controlling, aggregate size during long term culture passages, particularly for plant suspensions where industrially relevant secondary metabolites are not pigmented to enable rapid culture selection. PMID:23439858

  17. Low-Dose Paclitaxel Prior to Intratumoral Dendritic Cell Vaccine Modulates Intratumoral Cytokine Network and Lung Cancer Growth

    PubMed Central

    Zhong, Hua; Han, Baohui; Tourkova, Irina L.; Lokshin, Anna; Rosenbloom, Alan; Shurin, Michael R.; Shurin, Galina V.

    2008-01-01

    Purpose The main goal of this study was to provide the proof-of-principle that low-dose paclitaxel is able to change the tumor microenvironment and improve the outcome of intratumoral dendritic cell vaccine in a murine lung cancer model. Experimental Design We evaluated the antitumor potential and changes in the intratumoral milieu of a combination of low-dose chemotherapy and dendritic cell vaccine in the Lewis lung carcinoma model in vivo. Results The low-dose paclitaxel, which induced apoptosis in ~10% of tumor cells, was not toxic to bone marrow cells and dendritic cells and stimulated dendritic cell maturation and function in vitro. Although tumor cells inhibited dendritic cell differentiation in vitro, this immuno-suppressive effect was abrogated by the pretreatment of tumor cells with low-dose paclitaxel. Based on these data, we next tested whether pretreatment of tumor-bearing mice with low-dose paclitaxel in vivo would improve the antitumor potential of dendritic cell vaccine administered intratumorally. Significant inhibition of tumor growth in mice treated with low-dose paclitaxel plus intratumoral dendritic cell vaccine, associated with increased tumor infiltration by CD4+ and CD8+ T cells and elevated tumor-specific IFN-? production by draining lymph node cells, was revealed. Using a novel intratumoral microdialysis technique and Luminex technology for collecting and characterizing soluble factors released within the tumor bed for several days in live freely moving animals, we showed that low-dose paclitaxel altered the cytokine network at the tumor site. Conclusions Our data indicate that low-dose chemotherapy before intratumoral delivery of dendritic cells might be associated with beneficial alterations of the intratumoral microenvironment and thus support antitumor immunity. PMID:17875775

  18. Bevacizumab-Induced Inhibition of Angiogenesis Promotes a More Homogeneous Intratumoral Distribution of Paclitaxel, Improving the Antitumor Response.

    PubMed

    Cesca, Marta; Morosi, Lavinia; Berndt, Alexander; Fuso Nerini, Ilaria; Frapolli, Roberta; Richter, Petra; Decio, Alessandra; Dirsch, Olaf; Micotti, Edoardo; Giordano, Silvia; D'Incalci, Maurizio; Davoli, Enrico; Zucchetti, Massimo; Giavazzi, Raffaella

    2016-01-01

    The antitumor activity of angiogenesis inhibitors is reinforced in combination with chemotherapy. It is debated whether this potentiation is related to a better drug delivery to the tumor due to the antiangiogenic effects on tumor vessel phenotype and functionality. We addressed this question by combining bevacizumab with paclitaxel on A2780-1A9 ovarian carcinoma and HT-29 colon carcinoma transplanted ectopically in the subcutis of nude mice and on A2780-1A9 and IGROV1 ovarian carcinoma transplanted orthotopically in the bursa of the mouse ovary. Paclitaxel concentrations together with its distribution by MALDI mass spectrometry imaging (MALDI MSI) were measured to determine the drug in different areas of the tumor, which was immunostained to depict vessel morphology and tumor proliferation. Bevacizumab modified the vessel bed, assessed by CD31 staining and dynamic contrast enhanced MRI (DCE-MRI), and potentiated the antitumor activity of paclitaxel in all the models. Although tumor paclitaxel concentrations were lower after bevacizumab, the drug distributed more homogeneously, particularly in vascularized, non-necrotic areas, and was cleared more slowly than controls. This happened specifically in tumor tissue, as there was no change in paclitaxel pharmacokinetics or drug distribution in normal tissues. In addition, the drug concentration and distribution were not influenced by the site of tumor growth, as A2780-1A9 and IGROV1 growing in the ovary gave results similar to the tumor growing subcutaneously. We suggest that the changes in the tumor microenvironment architecture induced by bevacizumab, together with the better distribution of paclitaxel, may explain the significant antitumor potentiation by the combination. Mol Cancer Ther; 15(1); 125-35. ©2015 AACR. PMID:26494857

  19. NAC-1, a potential stem cell pluripotency factor, contributes to paclitaxel resistance in ovarian cancer through inactivating Gadd45 pathway.

    PubMed

    Jinawath, N; Vasoontara, C; Yap, K-L; Thiaville, M M; Nakayama, K; Wang, T-L; Shih, I-M

    2009-05-01

    Nucleus accumbens-1 (Nac1 or NAC-1) belongs to the BTB/POZ (Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad complex) transcription factor family and is a novel protein that potentially participates in self-renewal and pluripotency in embryonic stem cells. In human cancer, NAC-1 is upregulated in several types of neoplasms, but particularly in recurrent chemoresistant ovarian carcinomas, suggesting a biological role for NAC-1 in the development of drug resistance in ovarian cancer. We have assessed this possibility and shown a correlation between NAC-1 expression and ex vivo paclitaxel resistance in ovarian serous carcinoma tissues and cell lines. We found that expression of Gadd45-gamma-interacting protein 1 (Gadd45gip1), a downstream target negatively regulated by NAC-1, was reduced in paclitaxel-resistant cells. Ectopic expression of NAC-1 or knockdown of Gadd45gip1 conferred paclitaxel resistance, whereas NAC-1 knockdown or ectopic expression of Gadd45gip1 increased paclitaxel sensitivity. Furthermore, silencing NAC-1 expression or disrupting NAC-1 homodimerization by a dominant negative NAC-1 protein that contained only the BTB/POZ domain induced the expression of Gadd45gamma, which interacted with Gadd45gip1. Reducing Gadd45gamma expression by small hairpin RNAs partially enhanced paclitaxel resistance. Thus, this study provides new evidence that NAC-1 upregulation and homodimerization contribute to tumor recurrence by equipping ovarian cancer cells with the paclitaxel-resistant phenotype through negative regulation of the Gadd45 pathway. PMID:19305429

  20. Effect of sun ginseng potentiation on epirubicin and paclitaxel-induced apoptosis in human cervical cancer cells

    PubMed Central

    Lin, Yingjia; Jiang, Dan; Li, Yang; Han, Xinye; Yu, Di; Park, Jeong Hill; Jin, Ying-Hua

    2014-01-01

    Background Sun ginseng (SG), a specific formulation of quality-controlled red ginseng, contains approximately equal amounts of three major ginsenosides (RK1, Rg3, and Rg5), which reportedly has antitumor-promoting activities in animal models. Methods MTT assay was used to assess whether SG can potentiate the anticancer activity of epirubicin or paclitaxel in human cervical adenocarcinoma HeLa cells, human colon cancer SW111C cells, and SW480 cells; apoptosis status was analyzed by annexin V-FITC and PI and analyzed by flow cytometry; and apoptosis pathway was studied by analysis of caspase-3, -8, and -9 activation, mitochondrial accumulation of Bax and Bak, and cytochrome c release. Results SG remarkably enhances cancer cell death induced by epirubicin or paclitaxel in human cervical adenocarcinoma HeLa cells, human colon cancer SW111C cells, and SW480 cells. Results of the mechanism study highlighted the cooperation between SG and epirubicin or paclitaxel in activating caspase-3 and -9 but not caspase-8. Moreover, SG significantly increased the mitochondrial accumulation of both Bax and Bak triggered by epirubicin or paclitaxel as well as the subsequent release of cytochrome c in the targeted cells. Conclusion SG significantly potentiated the anticancer activities of epirubicin and paclitaxel in a synergistic manner. These effects were associated with the increased mitochondrial accumulation of both Bax and Bak that led to an enhanced cytochrome c release, caspase-9/-3 activation, and apoptosis. Treating cancer cells by combining epirubicin and paclitaxel with SG may prove to be a novel strategy for enhancing the efficacy of the two drug types. PMID:25535473

  1. Comparison of Cell Death-inducing Effect of Novel Taxane SB-T-1216 and Paclitaxel in Breast Cancer Cells

    PubMed Central

    KOV?, JAN; EHRLICHOV, MARIE; MEJKALOV, BARBORA; ZANARDI, ILARIA; OJIMA, IWAO; GUT, IVAN

    2010-01-01

    Background In this study, the effect of novel taxane SB-T-1216 and paclitaxel were compared on drug-sensitive MDA-MB-435 and drug-resistant NCI/ADR-RES human breast cancer cells. Materials and Methods Cell growth and survival were evaluated after 96-hour incubation with tested concentrations of taxanes. The effect on the formation of microtubule bundles was assessed employing fluorescence microscopy and on the cell cycle employing flow cytometric analysis. The activity of caspases was assessed employing commercial colorimetric kits. Results The IC50 (concentration resulting in 50% of living cells in comparison with the control) of SB-T-1216 in drug-sensitive cells was 0.6 nM versus 1 nM for paclitaxel. However, the IC50 of SB-T-1216 in drug-resistant cells was 1.8 nM versus 300 nM for paclitaxel. Both SB-T-1216 and paclitaxel at death-inducing concentrations induced the formation of microtubule bundles in drug-sensitive as well as drug-resistant cells. Cell death induced in drug-sensitive and drug-resistant cells by paclitaxel was associated with the accumulation of cells in the G2/M phase. On the contrary, cell death induced by SB-T-1216 took place without the accumulation of cells in the G2/M phase but with a decreased number of G1 cells and the accumulation of hypodiploid cells. Both SB-T-1216 and paclitaxel activated caspase-3, caspase-9, caspase-2 and caspase-8 in drug-sensitive as well as drug-resistant cells. Conclusion Cell death induced by both paclitaxel and novel taxane SB-T-1216 in breast cancer cells is associated with caspase activation and with the formation of interphase microtubule bundles. Novel taxane SB-T-1216, but not paclitaxel, seems to be capable of inducing cell death without the accumulation of cells in the G2/M phase. PMID:19661300

  2. Encapsulation of paclitaxel into a bio-nanocomposite. A study combining inelastic neutron scattering to thermal analysis and infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Martins, Murillo L.; Orecchini, Andrea; Aguilera, Luis; Eckert, Juergen; Embs, Jan; Matic, Aleksander; Saeki, Margarida J.; Bordallo, Heloisa N.

    2015-01-01

    The anticancer drug paclitaxel was encapsulated into a bio-nanocomposite formed by magnetic nanoparticles, chitosan and apatite. The aim of this drug carrier is to provide a new perspective against breast cancer. The dynamics of the pure and encapsulated drug were investigated in order to verify possible molecular changes caused by the encapsulation, as well as to follow which interactions may occur between paclitaxel and the composite. Fourier transformed infrared spectroscopy, thermal analysis, inelastic and quasi-elastic neutron scattering experiments were performed. These very preliminary results suggest the successful encapsulation of the drug.

  3. Chemotherapy-related amenorrhea after adjuvant paclitaxel-trastuzumab (APT trial).

    PubMed

    Ruddy, Kathryn J; Guo, Hao; Barry, William; Dang, Chau T; Yardley, Denise A; Moy, Beverly; Marcom, P Kelly; Albain, Kathy S; Rugo, Hope S; Ellis, Matthew J; Shapira, Iuliana; Wolff, Antonio C; Carey, Lisa A; Overmoyer, Beth A; Hudis, Clifford; Krop, Ian E; Burstein, Harold J; Winer, Eric P; Partridge, Ann H; Tolaney, Sara M

    2015-06-01

    Chemotherapy-related amenorrhea (CRA) is associated with infertility and menopausal symptoms. Learning how frequently paclitaxel and trastuzumab cause amenorrhea is important. Most other adjuvant breast cancer therapies induce CRA in approximately 50% of all premenopausal recipients [1]. 410 patients enrolled on the APT Trial, a single-arm phase 2 adjuvant study of 12weeks of paclitaxel and trastuzumab followed by nine months of trastuzumab monotherapy. Eligible patients had ?3cm node-negative HER2+breast cancers. Premenopausal enrollees were asked to complete menstrual surveys every 3-12months for 72months. Women who responded to at least one survey at least 15months after chemotherapy initiation (and who did not undergo hysterectomy and/or bilateral oophorectomy or receive ovarian suppressing medications prior to 15months) were included in this analysis. A participant was defined as having amenorrhea in follow-up if her self-reported last menstrual period at last follow-up was greater than 12months prior to the survey. Among the 64 women in the evaluable population (median age at study entry 44years, range 27-52years), the median time between chemotherapy initiation and last menstrual survey was 51months (range 16-79). 18 of 64 women (28%, 95% CI 18-41%) were amenorrheic at that time point. Amenorrhea rates among premenopausal women treated with adjuvant paclitaxel and trastuzumab for early stage breast cancer appear lower than those seen historically with standard alkylator-based breast cancer regimens. Future studies are needed to understand the impact of this regimen on related issues of fertility and menopausal symptoms. PMID:25981899

  4. Analysis of aggregate size as a process variable affecting paclitaxel accumulation in Taxus suspension cultures

    PubMed Central

    Kolewe, Martin E.; Henson, Michael A.; Roberts, Susan C.

    2013-01-01

    Plant cell aggregates have long been implicated in affecting cellular metabolism in suspension culture, yet the rigorous characterization of aggregate size as a process variable and its effect on bioprocess performance has not been demonstrated. Aggregate fractionation and analysis of biomass-associated product is commonly used to assess the effect of aggregation, but we establish that this method is flawed under certain conditions and does not necessarily agree with comprehensive studies of total culture performance. Leveraging recent advances to routinely measure aggregate size distributions, we developed a simple method to manipulate aggregate size and evaluate its effect on the culture as a whole, and found that Taxus suspension cultures with smaller aggregates produced significantly more paclitaxel than cultures with larger aggregates in two cell lines over a range of aggregate sizes, and where biomass accumulation was equivalent prior to elicitation with methyl jasmonate. T. cuspidata P93AF cultures with mean aggregate sizes of 690 μm and 1100 μm produced 22 mg/L and 11 mg/L paclitaxel, respectively, a 2-fold increase for smaller aggregates, and T. cuspidata P991 cultures with mean aggregate sizes of 400 μm and 840 μm produced 6 mg/L and 0.3 mg/L paclitaxel, respectively, an increase of 20-fold for smaller aggregates. These results demonstrate the importance of validating experiments aimed at a specific phenomenon with total process studies, and provide a basis for treating aggregate size as a targeted process variable for rational control strategies. PMID:21692199

  5. Compatibility of Paclitaxel injection diluent with two reduced-phthalate administration sets for the acclaim pump.

    PubMed

    Xu, Q A; Trissel, L A

    1998-01-01

    The purpose of this project was to evaluate the compatibility of paclitaxel admixtures with the two reduced-phthalate administration sets designed for use with the Acclaim Infusion Control Device. The first is a nitroglycerin set composed of polyethylene tubing, while the second is made using tris(2-ethyl-hexyl) trimellitate (TOTM)-plasticized polyvinyl chloride tubing. Both sets utilize a diethylhexyl phthalate (DEHP)-plasicized pumping segment. The potential for extraction of DEHP from the pumping segments and TOTM plasticizer from the plastic matrix by the Cremophor EL surfactant present in the paclitaxel injection was evaluated. Diethylhexyl phthalate and TOTM plasticizer extraction was tested using the paclitaxel diluent at concentrations equivalent to 0.3 and 1.2 mg/mL over three-hour and four-day infusions. All samples were prepared in triplicate in polyolefin bags of 5% dextrose injection and deliverd through the administration sets into glass collection flasks. Both DEHP and TOTM content were determined using high-performance liquid chromatographic methods. None of the admixtures delivered rapidly over three hours or slowly over four days through the TOTM-plasticized set exhibited any detectable TOTM. Similarly, no DEHP was detected in the effluent form either set with the simulated 0.3-mg/mL admixtures delivered over three hours. The simulated 1.2-mg/mL admixture delivered over three hours yielded only a barely detectable, but not quantifiable, trace of DEHP. However, slow delivery of both concentrations over four days through both sets resulted in leached DEHP in concentrations ranging from about 30 to 150 micrograms/mL at both one and four days. The two reduced-phthalate administration sets tested in this study are suitable for the administration of paclitaxel infusions of short duration, for up to three hours. However, the sets cannot be recommended for administration over longer-duration delivery times ranging from one to four days due to leaching of DEHP plasticizer from the pumping segments. PMID:23989703

  6. Synthesis and characterization of polymeric nanospheres loaded with the anticancer drug paclitaxel and magnetic particles

    NASA Astrophysics Data System (ADS)

    Zviov, Vlasta; Konerack, Martina; M?kov, Marta; Kop?ansk, Peter; Tomaovi?ov, Natlia; Lancz, Gbor; Timko, Milan; Ptoprst, Boena; Barto, Peter; Fabin, Martin

    2009-05-01

    We describe the preparation (by nanoprecipitation) and characterization of nanospheres (NPs) for magnetic drug targeting made of a magnetic fluid with poly(ethylene glycol), poly( D, L-lactic- co-glycolic acid) (PLGA), and the anticancer drug paclitaxel (Taxol ). Infrared spectroscopy confirmed the incorporation of the drug in the PLGA NPs, which were also characterized in terms of morphology, size (typical diameter 200-250 nm) and colloidal stability in aqueous solutions of NaCl. Drug release and in vivo toxicity experiments of the prepared samples were performed. Their stability, magnetic properties (superparamagnetism), and lethal dose were found to be acceptable for the proposed application in cancer therapy.

  7. Forkhead box K2 modulates epirubicin and paclitaxel sensitivity through FOXO3a in breast cancer

    PubMed Central

    de Moraes, G Nestal; Khongkow, P; Gong, C; Yao, S; Gomes, A R; Ji, Z; Kandola, N; Delbue, D; Man, E P S; Khoo, U S; Sharrocks, A D; Lam, E W-F

    2015-01-01

    The forkhead transcription factor FOXK2 has recently been implicated in cancer cell proliferation and survival, but a role in cancer chemotherapeutic drug resistance has hitherto not been explored. Here we demonstrate that FOXK2 has a central role in mediating the cytotoxic drug response in breast cancer. Clonogenic and cell viability assays showed that enhanced FOXK2 expression sensitizes MCF-7 breast cancer cells to paclitaxel or epirubicin treatment, whereas FOXK2 depletion by small interfering RNAs (siRNAs) confers drug resistance. Our data also showed that the activation of the tumour suppressor FOXO3a by paclitaxel and epirubicin is mediated through the induction of FOXK2, as depletion of FOXK2 by siRNA limits the induction of FOXO3a by these drugs in MCF-7 cells. Chromatin immunoprecipitation (ChIP) analysis showed that in response to drug treatment, FOXK2 accumulates and binds to the proximal FOXO3a promoter region in MCF-7 cells. Furthermore, we also uncovered that FOXK2 is deregulated and, therefore, can express at high levels in the nucleus of both the paclitaxel and epirubicin drug-resistant MCF-7 cells. Our results showed that ectopically overexpressed FOXK2 accumulates in the nuclei of drug-resistant MCF-7 cells but failed to be recruited to target genes, including FOXO3a. Crucially, we found that FOXO3a is required for the anti-proliferative and epirubicin-induced cytotoxic function of FOXK2 in MCF-7 cells by sulphorhodamine and clonogenic assays. The physiological importance of the regulation of FOXO3a by FOXK2 is further confirmed by the significant correlations between FOXO3a and FOXK2 expression in breast carcinoma patient samples. Further survival analysis also reveals that high nuclear FOXK2 expression significantly associates with poorer clinical outcome, particularly in patients who have received conventional chemotherapy, consistent with our finding that FOXK2 is deregulated in drug-resistant cells. In summary, our results suggest that paclitaxel and epirubicin target the FOXK2 to modulate their cytotoxicity and deregulated FOXK2 confers drug resistance. PMID:26344694

  8. Forkhead box K2 modulates epirubicin and paclitaxel sensitivity through FOXO3a in breast cancer.

    PubMed

    Nestal de Moraes, G; Khongkow, P; Gong, C; Yao, S; Gomes, A R; Ji, Z; Kandola, N; Delbue, D; Man, E P S; Khoo, U S; Sharrocks, A D; Lam, E W-F

    2015-01-01

    The forkhead transcription factor FOXK2 has recently been implicated in cancer cell proliferation and survival, but a role in cancer chemotherapeutic drug resistance has hitherto not been explored. Here we demonstrate that FOXK2 has a central role in mediating the cytotoxic drug response in breast cancer. Clonogenic and cell viability assays showed that enhanced FOXK2 expression sensitizes MCF-7 breast cancer cells to paclitaxel or epirubicin treatment, whereas FOXK2 depletion by small interfering RNAs (siRNAs) confers drug resistance. Our data also showed that the activation of the tumour suppressor FOXO3a by paclitaxel and epirubicin is mediated through the induction of FOXK2, as depletion of FOXK2 by siRNA limits the induction of FOXO3a by these drugs in MCF-7 cells. Chromatin immunoprecipitation (ChIP) analysis showed that in response to drug treatment, FOXK2 accumulates and binds to the proximal FOXO3a promoter region in MCF-7 cells. Furthermore, we also uncovered that FOXK2 is deregulated and, therefore, can express at high levels in the nucleus of both the paclitaxel and epirubicin drug-resistant MCF-7 cells. Our results showed that ectopically overexpressed FOXK2 accumulates in the nuclei of drug-resistant MCF-7 cells but failed to be recruited to target genes, including FOXO3a. Crucially, we found that FOXO3a is required for the anti-proliferative and epirubicin-induced cytotoxic function of FOXK2 in MCF-7 cells by sulphorhodamine and clonogenic assays. The physiological importance of the regulation of FOXO3a by FOXK2 is further confirmed by the significant correlations between FOXO3a and FOXK2 expression in breast carcinoma patient samples. Further survival analysis also reveals that high nuclear FOXK2 expression significantly associates with poorer clinical outcome, particularly in patients who have received conventional chemotherapy, consistent with our finding that FOXK2 is deregulated in drug-resistant cells. In summary, our results suggest that paclitaxel and epirubicin target the FOXK2 to modulate their cytotoxicity and deregulated FOXK2 confers drug resistance. PMID:26344694

  9. Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain.

    PubMed

    Chen, Y; Yang, C; Wang, Z J

    2011-10-13

    Paclitaxel chemotherapy is limited by a long-lasting painful neuropathy that lacks an effective therapy. In this study, we tested the hypothesis that paclitaxel may release mast cell tryptase, which activates protease-activated receptor 2 (PAR2) and, subsequently, protein kinases A and C, resulting in mechanical and thermal (both heat and cold) hypersensitivity. Correlating with the development of neuropathy after repeated administration of paclitaxel, mast cell tryptase activity was found to be increased in the spinal cord, dorsal root ganglia, and peripheral tissues in mice. FSLLRY-amide, a selective PAR2 antagonist, blocked paclitaxel-induced neuropathic pain behaviors in a dose- and time-dependent manner. In addition, blocking downstream signaling pathways of PAR2, including phospholipase C (PLC), protein kinase A (PKA), and protein kinase C? (PKC), effectively attenuated paclitaxel-induced mechanical, heat, or cold hypersensitivity. Furthermore, sensitized pain response was selectively inhibited by antagonists of transient receptor potential (TRP) V1, TRPV4, or TRPA1. These results revealed specific cellular signaling pathways leading to paclitaxel-induced neuropathy, including the activation of PAR2 and downstream enzymes PLC, PKC?, and PKA and resultant sensitization of TRPV1, TRPV4, and TRPA1. Targeting one or more of these signaling molecules may present new opportunities for the treatment of paclitaxel-induced neuropathy. PMID:21763756

  10. The vitamin A family can significantly decrease the expression of ERbeta of ERs positive breast cancer cells in the presence or absence of ER ligands and paclitaxel.

    PubMed

    Czeczuga-Semeniuk, Ewa; Jarzabek, Katarzyna; Lemancewicz, Dorota; Wo?czy?ski, S?awomir

    2009-05-01

    Taxanes have high activity against breast cancer cells either as the single agent or in combination with other anticancer compounds. The aim of the study was to determine the effects of vitamin A compounds on the cytotoxic action of paclitaxel and on the expression of ERs in the MCF-7 breast cancer cells. Retinol and beta-carotene, but not retinoids, added to the culture exerted an effect on paclitaxel activity. However, only beta-carotene significantly reduced the percentage of proliferating cells (40.36% +/- 5.64, p < 0.01). We observed that vitamin A and its derivatives combined with paclitaxel and estradiol decreased the percentage of proliferating cells, but only in comparison to estradiol group, whereas retinol and lycopene administered together with paclitaxel and tamoxifen decrease significantly the percentage of proliferatin cells (36.85% +/- 4.71, p < 0.0001 and 37.22% +/- 1.59, p < 0.0001 respectively, compared with paclitaxel group). We have shown that paclitaxel increases the expression of ERalpha and ERbeta mRNA in MCF-7 line. The strongest effect of transcription inhibition ERalpha (2.5 times) and especially ERbeta (10 times) was observed after addition of 9-cis retinoic acid and paclitaxel. This data suggests a synergistic effect of the compounds on ERbeta down-regulation. Our results support the use of retinoid is treatment of ER positive breast cancer patients. PMID:19340624

  11. [A case of stage IV breast cancer with long-term partial response treated with tri-weekly paclitaxel plus bevacizumab].

    PubMed

    Okamoto, Akiko; Nakatsukasa, Katsuhiko; Fujita, Yoshifumi; Sugimoto, Riho; Sakaguchi, Kouichi; Taguchi, Tetsuya

    2015-03-01

    Paclitaxel combined with bevacizumab yields significantly better progression-free survival (PFS) in patients with metastatic breast cancer than paclitaxel alone. Here, we report a case of stage IV breast cancer with multiple liver, lung, and bone metastases maintaining a long-term partial response (PR) with tri-weekly paclitaxel plus bevacizumab administration. A 46- year-old woman treated with endocrine therapy for 21 months for multiple metastases in her lungs and bones detected 4 years after surgery for left breast cancer was referred to our hospital. New metastases were discovered in her liver. She received paclitaxel (l 90 mg/m/(2)) on days 1, 8, and 15 combined with bevacizumab (10 mg/kg) on days 1 and 15 every 4 weeks. However, during the first 3 courses, the administration of paclitaxel on day 8 was postponed to 1 to 2 weeks because of severe neutropenia. We began tri-weekly administration of paclitaxel plus bevacizumab. She continued receiving the treatment for about 1 year, without severe side effects. The PR state with good performance status was maintained. We suggest that the tri-weekly administration of paclitaxel plus bevacizumab is an effective way to maintain long-term efficacy. PMID:25812504

  12. Integrating Image-Based High-Content Screening with Mouse Models Identifies 5-Hydroxydecanoate as a Neuroprotective Drug for Paclitaxel-Induced Neuropathy.

    PubMed

    Chen, Li-Hsien; Sun, Yuan-Ting; Chen, Yih-Fung; Lee, Mei-Yi; Chang, Lian-Yun; Chang, Jang-Yang; Shen, Meng-Ru

    2015-10-01

    Chemotherapy-induced neurotoxicity is a common adverse effect of cancer treatment. No medication has been shown to be effective in the prevention or treatment of chemotherapy-induced neurotoxicity. This study aimed to discover potential neuroprotective drugs for paclitaxel-induced neurotoxicity. An image-based high-content platform was first developed to screen for potential neuroprotective drugs. The screening system comprised of automated image acquisition and multiparameter analysis, including neuronal viability, neurite outgrowth, and synaptogenesis. By this platform, we obtained a candidate list from compound libraries. In the drug screening from compound libraries of ion channel ligands, REDOX and GABAergic ligands, 5-hydroxydecanoate (5-HD) exhibited the most significant neuroprotective effects against paclitaxel-induced neurotoxicity in both cortical and dorsal root ganglion (DRG) neurons. In mouse behavioral tests, 5-HD restored the thermal sensitivity and alleviated mechanical allodynia induced by paclitaxel. Electron micrographs of sciatic nerve revealed that 5-HD reduced the damages caused by paclitaxel in the nonmyelinated and smaller myelinated fibers. The mechanistic study on DRG neurons suggested that 5-HD rescued the dysregulation of intracellular calcium homeostasis provoked by paclitaxel. Importantly, 5-HD did not jeopardize the antitumor effect of paclitaxel in tumor xenograft models. In conclusion, we established an imaged-based high-content screening platform and a protocol for verifying the neuroprotective effect in vivo, by which 5-HD was identified and validated as a potential neuroprotective drug for paclitaxel-induced neuropathy. PMID:26294744

  13. Lin28 mediates paclitaxel resistance by modulating p21, Rb and Let-7a miRNA in breast cancer cells.

    PubMed

    Lv, Kezhen; Liu, Liqun; Wang, Linbo; Yu, Jiren; Liu, Xiaojiao; Cheng, Yongxia; Dong, Minjun; Teng, Rongyue; Wu, Linjiao; Fu, Peifen; Deng, Wuguo; Hu, Wenxian; Teng, Lisong

    2012-01-01

    Resistance to chemotherapy is a major obstacle for the effective treatment of cancers. Lin28 has been shown to contribute to tumor relapse after chemotherapy; however, the relationship between Lin28 and chemoresistance remained unknown. In this study, we investigated the association of Lin28 with paclitaxel resistance and identified the underlying mechanisms of action of Lin28 in human breast cancer cell lines and tumor tissues. We found that the expression level of Lin28 was closely associated with the resistance to paclitaxel treatment. The T47D cancer cell line, which highly expresses Lin28, is more resistant to paclitaxel than the MCF7, Bcap-37 or SK-BR-3 cancer cell lines, which had low-level expression of Lin28. Knocking down of Lin28 in Lin28 high expression T47D cells increased the sensitivity to paclitaxel treatment, while stable expression of Lin28 in breast cancer cells effectively attenuated the sensitivity to paclitaxel treatment, resulting in a significant increase of IC50 values of paclitaxel. Transfection with Lin28 also significantly inhibited paclitaxel-induced apoptosis. We also found that Lin28 expression was dramatically increased in tumor tissues after neoadjuvant chemotherapy or in local relapse or metastatic breast cancer tissues. Moreover, further studies showed that p21, Rb and Let-7 miRNA were the molecular targets of Lin28. Overexpression of Lin28 in breast cancer cells considerably induced p21 and Rb expression and inhibited Let-7 miRNA levels. Our results indicate that Lin28 expression might be one mechanism underlying paclitaxel resistance in breast cancer, and Lin28 could be a potential target for overcoming paclitaxel resistance in breast cancer. PMID:22808086

  14. The effect of seal oil on paclitaxel induced cytotoxicity and apoptosis in breast carcinoma MCF-7 and MDA-MB-231 cell lines.

    PubMed

    Wang, Zheyu; Butt, Krista; Wang, Lili; Liu, Hu

    2007-01-01

    Some studies have suggested that omega-3 polyunsaturated fatty acids (PUFAs) have an inhibitory effect on the growth of cancer cells and therefore have the potential to increase the efficacy of cancer chemotherapeutic drugs. Considering that omega-3 PUFAs are present abundantly in harp seal oil, we investigated the effect of seal oil on the cytotoxicity and apoptosis induced by paclitaxel in 2 breast cancer cell lines, MCF-7 and MDA-MB-231, respectively. Cytotoxicity evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the concentration of paclitaxel that is required for 50% inhibition of cell growth in the presence of seal oil was significantly lower than that of paclitaxel alone. Apoptosis assessment based on morphological changes and DNA fragmentation results indicated that more cells treated with paclitaxel in combination with seal oil underwent apoptosis than with paclitaxel alone. Western blot analysis showed that the expression of B cell lymphoma-2 (Bcl-2) protein, an apoptosis inhibitory protein, in both cell lines was decreased more significant by paclitaxel in combination with seal oil than by paclitaxel alone. In addition, seal oil alone was found to induce apoptosis in both cell lines tested, which appeared to be due to the increased intracellular lipid peroxides produced. It is therefore concluded that paclitaxel in combination with seal oil demonstrated enhanced cytotoxicity and apoptosis in MCF-7 and MDA-MB-231 cells compared to paclitaxel alone, and the use of seal oil may be beneficial in the treatment of breast cancer. PMID:17640170

  15. Prospective evaluation of concurrent paclitaxel and radiation therapy after adjuvant doxorubicin and cyclophosphamide chemotherapy for Stage II or III breast cancer

    SciTech Connect

    Burstein, Harold J. . E-mail: hburstein@partners.org; Bellon, Jennifer R.; Galper, Sharon; Lu, H.-M.; Kuter, Irene; Wong, Julia; Gelman, Rebecca; Bunnell, Craig A.; Parker, Leroy M.; Garber, Judy E.; Winer, Eric P.; Harris, Jay R.; Powell, Simon N.

    2006-02-01

    Purpose: To evaluate the safety and feasibility of concurrent radiation therapy and paclitaxel-based adjuvant chemotherapy, given either weekly or every 3 weeks, after adjuvant doxorubicin and cyclophosphamide (AC). Methods and Materials: After definitive breast surgery and AC chemotherapy, 40 patients with operable Stage II or III breast cancer received protocol-based treatment with concurrent paclitaxel and radiation therapy. Paclitaxel was evaluated on 2 schedules, with treatment given either weekly x 12 weeks (60 mg/m{sup 2}), or every 3 weeks x 4 cycles (135-175 mg/m{sup 2}). Radiation fields and schedules were determined by the patient's surgery and pathology. The tolerability of concurrent therapy was evaluated in cohorts of 8 patients as a phase I study. Results: Weekly paclitaxel treatment at 60 mg/m{sup 2} per week with concurrent radiation led to dose-limiting toxicity in 4 of 16 patients (25%), including 3 who developed pneumonitis (either Grade 2 [1 patient] or Grade 3 [2 patients]) requiring steroids. Efforts to eliminate this toxicity in combination with weekly paclitaxel through treatment scheduling and CT-based radiotherapy simulation were not successful. By contrast, dose-limiting toxicity was not encountered among patients receiving concurrent radiation with paclitaxel given every 3 weeks at 135-175 mg/m{sup 2}. However, Grade 2 radiation pneumonitis not requiring steroid therapy was seen in 2 of 24 patients (8%) treated in such a fashion. Excessive radiation dermatitis was not observed with either paclitaxel schedule. Conclusions: Concurrent treatment with weekly paclitaxel and radiation therapy is not feasible after adjuvant AC chemotherapy for early-stage breast cancer. Concurrent treatment using a less frequent paclitaxel dosing schedule may be possible, but caution is warranted in light of the apparent possibility of pulmonary injury.

  16. The effect of seal oil on paclitaxel induced cytotoxicity and apoptosis in breast carcinoma MCF-7 and MDA-MB-231 cell lines.

    TOXLINE Toxicology Bibliographic Information

    Wang Z; Butt K; Wang L; Liu H

    2007-01-01

    Some studies have suggested that omega-3 polyunsaturated fatty acids (PUFAs) have an inhibitory effect on the growth of cancer cells and therefore have the potential to increase the efficacy of cancer chemotherapeutic drugs. Considering that omega-3 PUFAs are present abundantly in harp seal oil, we investigated the effect of seal oil on the cytotoxicity and apoptosis induced by paclitaxel in 2 breast cancer cell lines, MCF-7 and MDA-MB-231, respectively. Cytotoxicity evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the concentration of paclitaxel that is required for 50% inhibition of cell growth in the presence of seal oil was significantly lower than that of paclitaxel alone. Apoptosis assessment based on morphological changes and DNA fragmentation results indicated that more cells treated with paclitaxel in combination with seal oil underwent apoptosis than with paclitaxel alone. Western blot analysis showed that the expression of B cell lymphoma-2 (Bcl-2) protein, an apoptosis inhibitory protein, in both cell lines was decreased more significant by paclitaxel in combination with seal oil than by paclitaxel alone. In addition, seal oil alone was found to induce apoptosis in both cell lines tested, which appeared to be due to the increased intracellular lipid peroxides produced. It is therefore concluded that paclitaxel in combination with seal oil demonstrated enhanced cytotoxicity and apoptosis in MCF-7 and MDA-MB-231 cells compared to paclitaxel alone, and the use of seal oil may be beneficial in the treatment of breast cancer.

  17. Synergistic cytotoxicity of oncolytic reovirus in combination with cisplatin-paclitaxel doublet chemotherapy.

    PubMed

    Roulstone, V; Twigger, K; Zaidi, S; Pencavel, T; Kyula, J N; White, C; McLaughlin, M; Seth, R; Karapanagiotou, E M; Mansfield, D; Coffey, M; Nuovo, G; Vile, R G; Pandha, H S; Melcher, A A; Harrington, K J

    2013-05-01

    Oncolytic reovirus is currently under active investigation in a range of tumour types. Early phase studies have shown that this agent has modest monotherapy efficacy and its future development is likely to focus on combination regimens with cytotoxic chemotherapy. Indeed, phase I/II clinical trials have confirmed that reovirus can be safely combined with cytotoxic drugs, including a platin-taxane doublet regimen, which is currently being tested in a phase III clinical trial in patients with relapsed/metastatic head and neck cancer. Therefore, we have tested this triple (reovirus, cisplatin, paclitaxel) combination therapy in a panel of four head and neck cancer cell lines. Using the combination index (CI) method, the triple therapy demonstrated synergistic cytotoxicity in vitro in both malignant and non-malignant cell lines. In head and neck cancer cell lines, this was associated with enhanced caspase 3 and 7 cleavage, but no increase in viral replication. In vitro analyses confirmed colocalisation of markers of reovirus infection and caspase 3. Triple therapy was significantly more effective than reovirus or cisplatin-paclitaxel in athymic nude mice. These data suggest that the combination of reovirus plus platin-taxane doublet chemotherapy has significant activity in head and neck cancer and underpin the current phase III study in this indication. PMID:22895509

  18. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route.

    PubMed

    Muley, Pratik; Kumar, Sunny; El Kourati, Fadoua; Kesharwani, Siddharth S; Tummala, Hemachand

    2016-03-16

    Micellization offers several advantages for the delivery of water insoluble drugs including a nanoparticulate 'core-shell' delivery system for drug targeting. Recently, hydrophobically modified polysaccharides (HMPs) are gaining recognition as micelle forming polymers to encapsulate hydrophobic drugs. In this manuscript, for the first time, we have evaluated the self-assembling properties of a lauryl carbamate derivative of the poly-fructose natural polymer inulin (Inutec SP1(®) (INT)) to form paclitaxel (PTX) loaded micelles. INT self-assembled into well-defined micellar structures in aqueous environment with a low critical micellar concentration of 27.8μg/ml. INT micelles exhibited excellent hemocompatibility and low toxicity to cultured cells. PTX loaded INT micelles exhibited a mean size of 256.37±10.45nm with excellent drug encapsulation efficiency (95.66±2.25%) and loading (8.69±0.22%). PTX loaded micelles also displayed sustained release of PTX and enhanced anti-cancer efficacy in-vitro in mouse melanoma cells (B16F10) compared to Taxol formulation with Cremophor EL as solvent. In addition, PTX loaded INT micelles exhibited comparable in-vivo antitumor activity in B16F10 allograft mouse model at half the dose of Taxol. In conclusion, INT offers safe, inexpensive and natural alternative to widely used PEG-modified polymers for the formulation of micellar delivery systems for paclitaxel. PMID:26792170

  19. Molecular dynamics of paclitaxel encapsulated by salicylic acid-grafted chitosan oligosaccharide aggregates.

    PubMed

    Wang, Xiao-Ying; Zhang, Ling; Wei, Xiao-Hong; Wang, Qi

    2013-02-01

    Chitosan oligosaccharide (COS) derivatives have attracted significant interest in drug delivery systems because of their well-known low toxicity, excellent biocompatibility, and biodegradability. Paclitaxel-loaded nanoparticles based on salicylic acid-grafted chitosan oligosaccharide (COS/SA) were synthesized and characterized. Then, in order to understand the mechanism of the actions of the paclitaxel (PTX) encapsulated by COS/SA, all-atom molecular dynamics simulations were performed to analyze the aggregation of COS/SA molecules. The van der Waals and hydrophobic interactions are the major driving forces for the drug encapsulation process. Electrostatic and hydrogen-bonding interactions also play helpful roles in the COS/SA aggregation. Analyses of the radial distribution function and solvent accessible surface area indicate that the COS/SA nanoparticles are highly hydrosoluble and that the nanoparticles can significantly enhance the aqueous solubility of a hydrophobic drug. Different drug loading systems are also investigated in this work, and the best theoretical drug loading is found to be 10% (w/w). The present work provides insights into the mechanism of the atomic structures of drug-loaded polymeric nanoparticles and presents new perspective for the design of drug delivery systems with desirable properties. PMID:23219327

  20. Endocytosis of fluorescent cyclodextrins by intestinal Caco-2 cells and its role in paclitaxel drug delivery.

    PubMed

    Réti-Nagy, Katalin; Malanga, Milo; Fenyvesi, Éva; Szente, Lajos; Vámosi, György; Váradi, Judit; Bácskay, Ildikó; Fehér, Pálma; Ujhelyi, Zoltán; Róka, Eszter; Vecsernyés, Miklós; Balogh, György; Vasvári, Gábor; Fenyvesi, Ferenc

    2015-12-30

    Cyclodextrins are widely used excipients in pharmaceutical formulations. They are mainly utilized as solubilizers and absorption enhancers, but recent results revealed their effects on cell membranes and pharmacological barriers. In addition to the growing knowledge on their interaction with plasma membranes, it was confirmed that cyclodextrins are able to enter cells by endocytosis. The number of the tested cyclodextrins was limited, and the role of this mechanism in drug absorption and delivery is not known. Our aim was to examine the endocytosis of fluorescently labeled hydroxypropyl-β-cyclodextrin, random methyl-β-cyclodextrin and soluble β-cyclodextrin polymer, and the cellular uptake of the fluorescent paclitaxel derivative-random methyl-β-cyclodextrin complex. The studied cyclodextrin derivatives were able to enter Caco-2 intestinal cells and localized in vesicles in the cytoplasm, while their permeability was very limited through Caco-2 monolayers. We demonstrated for the first time that the fluorescent paclitaxel derivative and rhodamine-labeled random methyl-β-cyclodextrin were detected in the same intracellular vesicles after treating cells with their inclusion complex. These results indicate that the endocytosis of cyclodextrin complexes can contribute to drug absorption processes. PMID:26498369

  1. A Dicarboxylic Fatty Acid Derivative of Paclitaxel for Albumin Assisted Drug Delivery

    PubMed Central

    Hackett, Michael J.; Joolakanti, Shyamsunder; Hartranft, Megan E.; Guley, Patrick C.; Cho, Moo J.

    2013-01-01

    Paclitaxel is a potent chemotherapy for many cancers but it suffers from very poor solubility. Consequently the TAXOL formulation uses copious amounts of the surfactant Cremophor EL to solubilize the drug for injection resulting in severe hypersensitivity and neutropenia. In contrast to Cremophor EL, presented is a way to solubilize paclitaxel (PTX) by conjugation of a dicarboxylic fatty acid for specific binding to the ubiquitous protein, serum albumin. The conjugation chemistry was simplified to a single step using the activated anhydride form of 3-pentadecylglutaric (PDG) acid which is reactive to a variety of nucleophiles. The PDG derivative is less cytotoxic than the parent compound and was found to slowly hydrolyze to PTX (~5% over 72 h) in serum, tumor cytosol, and tumor tissue homogenate. When injected intravenously to tumor bearing mice, [3H]-PTX in the TAXOL formulation was cleared rapidly with a half-life of 7 hours. In the case of the PDG derivative of PTX, the drug is quickly distributed and approximately 20% of the injected dose remained in the vasculature experiencing a 23-h half-life. These improvements from modifying PTX with the PDG fatty acid present the opportunity for PDG to become a generic modification for the improvement of many therapeutics. PMID:22674061

  2. Novel thermo-sensitive core-shell nanoparticles for targeted paclitaxel delivery

    NASA Astrophysics Data System (ADS)

    Li, Yuanpei; Pan, Shirong; Zhang, Wei; Du, Zhuo

    2009-02-01

    Novel thermo-sensitive nanoparticles self-assembled from poly(N,N-diethylacrylamide- co-acrylamide)-block-poly(?-benzyl L-glutamate) were designed for targeted drug delivery in localized hyperthermia. The lower critical solution temperature (LCST) of nanoparticles was adjusted to a level between physiological body temperature (37 C) and that used in local hyperthermia (about 43 C). The temperature-dependent performances of the core-shell nanoparticles were systemically studied by nuclear magnetic resonance (NMR), circular dichroism (CD), fluorescence spectroscopy, dynamic light scattering (DLS), and atom force microscopy (AFM). The mean diameter of the nanoparticles increased slightly from 110 to 129 nm when paclitaxel (PTX), a poorly water-soluble anti-tumor drug, was encapsulated. A stability study in bovine serum albumin (BSA) solution indicated that the PTX loaded nanoparticles may have a long circulation time under physiological environments as the LCST was above physiological body temperature and the shell remained hydrophilic at 37 C. The PTX release profiles showed thermo-sensitive controlled behavior. The proliferation inhibiting activity of PTX loaded nanoparticles was evaluated against Hela cells in vitro, compared with Taxol (a formulation of paclitaxel dissolved in Cremophor EL and ethanol). The cytotoxicity of PTX loaded nanoparticles increased obviously when hyperthermia was performed. The nanoparticles synthesized here could be an ideal candidate for thermal triggered anti-tumor PTX delivery system.

  3. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles

    PubMed Central

    Zhu, Xu; Guo, Jun; He, Cancan; Geng, Huaxiao; Yu, Gengsheng; Li, Jinqing; Zheng, Hairong; Ji, Xiaojuan; Yan, Fei

    2016-01-01

    Paclitaxel (PTX) has been recognized as a promising drug for intervention of vascular reconstructions. However, it is still difficult to achieve local drug delivery in a spatio-temporally controllable manner under real-time image guidance. Here, we introduce an ultrasound (US) triggered image-guided drug delivery approach to inhibit vascular reconstruction via paclitaxel (PTX)-loaded microbubbles (PLM) in a rabbit iliac balloon injury model. PLM was prepared through encapsulating PTX in the shell of lipid microbubbles via film hydration and mechanical vibration technique. Our results showed PLM could effectively deliver PTX when exposed to US irradiation and result in significantly lower viability of vascular smooth muscle cells. Ultrasonographic examinations revealed the US signals from PLM in the iliac artery were greatly increased after intravenous administration of PLM, making it possible to identify the restenosis regions of iliac artery. The in vivo anti-restenosis experiments with PLM and US greatly inhibited neointimal hyperplasia at the injured site, showing an increased lumen area and reduced the ratio of intima area and the media area (I/M ratio). No obvious functional damages to liver and kidney were observed for those animals. Our study provided a promising approach to realize US triggered image-guided PTX delivery for therapeutic applications against iliac restenosis. PMID:26899550

  4. A Paclitaxel-Loaded Recombinant Polypeptide Nanoparticle Outperforms Abraxane in Multiple Murine Cancer Models

    PubMed Central

    Bhattacharyya, Jayanta; Bellucci, Joseph J.; Weitzhandler, Isaac; McDaniel, Jonathan R.; Spasojevic, Ivan; Li, Xinghai; Lin, Chao-Chieh; Chi, Jen-Tsan Ashley; Chilkoti, Ashutosh

    2015-01-01

    Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumor specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60-nm diameter near-monodisperse nanoparticles that increased the systemic exposure of PTX by 7-fold compared to free drug and 2-fold compared to the FDA approved taxane nanoformulation (Abraxane®). The tumor uptake of the CP-PTX nanoparticle was 5-fold greater than free drug and 2-fold greater than Abraxane. In a murine cancer model of human triple negative breast cancer and prostate cancer, CP-PTX induced near complete tumor regression after a single dose in both tumor models, whereas at the same dose, no mice treated with Abraxane survived for more than 80 days (breast) and 60 days (prostate) respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for paclitaxel delivery. PMID:26239362

  5. Optimization of drug loading to improve physical stability of paclitaxel-loaded long-circulating liposomes.

    PubMed

    Kannan, Vinayagam; Balabathula, Pavan; Divi, Murali K; Thoma, Laura A; Wood, George C

    2015-12-01

    The effect of formulation and process parameters on drug loading and physical stability of paclitaxel-loaded long-circulating liposomes was evaluated. The liposomes were prepared by hydration-extrusion method. The formulation parameters such as total lipid content, cholesterol content, saturated-unsaturated lipid ratio, drug-lipid ratio and process parameters such as extrusion pressure and number of extrusion cycles were studied and their impact on drug loading and physical stability was evaluated. A proportionate increase in drug loading was observed with increase in the total phospholipid content. Cholesterol content and saturated lipid content in the bilayer showed a negative influence on drug loading. The short-term stability evaluation of liposomes prepared with different drug-lipid ratios demonstrated that 1:60 as the optimum drug-lipid ratio to achieve a loading of 1-1.3?mg/mL without the risk of physical instability. The vesicle size decreased with an increase in the extrusion pressure and number of extrusion cycles, but no significant trends were observed for drug loading with changes in process pressure or number of cycles. The optimization of formulation and process parameters led to a physically stable formulation of paclitaxel-loaded long-circulating liposomes that maintain size, charge and integrity during storage. PMID:25541107

  6. Cytotoxic and anti-angiogenic paclitaxel solubilized and permeation-enhanced by natural product nanoparticles

    PubMed Central

    Liu, Zhijun; Zhang, Fang; Koh, Gar Yee; Dong, Xin; Hollingsworth, Javoris; Zhang, Jian; Russo, Paul S.; Yang, Peiying; Stout, Rhett W.

    2014-01-01

    Paclitaxel (PTX) is one of the most potent intravenous chemotherapeutic agents to date, yet an oral formulation has been problematic due to its low solubility and permeability. Using the recently discovered solubilizing properties of rubusoside (RUB), we investigated this unique PTX-RUB formulation. Paclitaxel was solubilized by RUB in water to levels of 1.6 to 6.3 mg/mL at 10 to 40% weight/volume. These, nanomicellar, PTX-RUB complexes were dried to a powder which was subsequently reconstituted in physiologic solutions. After 2.5 hrs in gastric fluid 85 to 99% of PTX-RUB remained soluble, while 79 to 96% remained soluble in intestinal fluid. The solubilization of PTX was mechanized by the formation of water-soluble spherical nanomicelles between PTX and RUB with an average diameter of 6.6 nm. Compared with Taxol, PTX-RUB nanoparticles were nearly four times more permeable in Caco-2 cell monocultures. In a side-by-side comparison with DMSO-solubilized PTX, PTX-RUB maintained the same level of cytotoxicity against three human cancer cell lines with IC50 values ranging from 4 nM to 20 nM. Additionally, tubular formation and migration of HUVECs were inhibited at levels as low as 5 nM. These chemical and biological properties demonstrated by the PTX-RUB nanoparticles may improve oral bioavailability and enable further pharmacokinetic, toxicologic, and efficacy investigations. PMID:25243454

  7. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles.

    PubMed

    Zhu, Xu; Guo, Jun; He, Cancan; Geng, Huaxiao; Yu, Gengsheng; Li, Jinqing; Zheng, Hairong; Ji, Xiaojuan; Yan, Fei

    2016-01-01

    Paclitaxel (PTX) has been recognized as a promising drug for intervention of vascular reconstructions. However, it is still difficult to achieve local drug delivery in a spatio-temporally controllable manner under real-time image guidance. Here, we introduce an ultrasound (US) triggered image-guided drug delivery approach to inhibit vascular reconstruction via paclitaxel (PTX)-loaded microbubbles (PLM) in a rabbit iliac balloon injury model. PLM was prepared through encapsulating PTX in the shell of lipid microbubbles via film hydration and mechanical vibration technique. Our results showed PLM could effectively deliver PTX when exposed to US irradiation and result in significantly lower viability of vascular smooth muscle cells. Ultrasonographic examinations revealed the US signals from PLM in the iliac artery were greatly increased after intravenous administration of PLM, making it possible to identify the restenosis regions of iliac artery. The in vivo anti-restenosis experiments with PLM and US greatly inhibited neointimal hyperplasia at the injured site, showing an increased lumen area and reduced the ratio of intima area and the media area (I/M ratio). No obvious functional damages to liver and kidney were observed for those animals. Our study provided a promising approach to realize US triggered image-guided PTX delivery for therapeutic applications against iliac restenosis. PMID:26899550

  8. The enthalpies and kinetic of dissolution of diterpenoid derivativepaclitaxel in aqueous NaCl solutions at 309.5 K

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Zhao, Weiwei; Pu, Xiaohua

    2013-08-01

    The enthalpies of dissolution of paclitaxel in normal saline were measured using a RD496-2000 Calvet Microcalorimeter at 309.65 K under atmospheric pressure. The differential enthalpy (?dif H m ) and molar enthalpy (?sol H m) of dissolution of paclitaxel innormal saline were determined. The corresponding kinetic equation described the dissolution process was elucidated to be d?/ dt = 10-3.57(1 - a)1.15. Moreover, the half-life, ?sol H m , ?sol G m and ?sol S m of the dissolution process were also obtained. This work will provide a potential reference for the clinical application of paclitaxel.

  9. TACC3 depletion sensitizes to paclitaxel-induced cell death and overrides p21WAF-mediated cell cycle arrest.

    PubMed

    Schneider, L; Essmann, F; Kletke, A; Rio, P; Hanenberg, H; Schulze-Osthoff, K; Nürnberg, B; Piekorz, R P

    2008-01-01

    Regulators of the mitotic spindle apparatus are attractive cellular targets for antitumor therapy. The centrosomal protein transforming acidic coiled coil (TACC) 3 is required for spindle assembly and proper chromosome segregation. In this study, we employed an inducible RNA interference approach to downregulate TACC3 expression. We show that TACC3 knock-down in NIH3T3 fibroblasts caused aneuploidy, but failed to overtly impair mitotic progression. TACC3 depletion rather triggered a postmitotic p53-p21(WAF) pathway and led to a reversible cell cycle arrest. Similar effects were induced by low concentrations of paclitaxel, a spindle poison used in antitumor therapy. Interestingly, however, and unlike in TACC3-proficient cells, paclitaxel was able to induce strong polyploidy and subsequent apoptosis in TACC3-depleted cells. Even though paclitaxel treatment was associated with the activation of the survival kinase Akt and an antiapoptotic expression of cytoplasmic p21(WAF) and cyclin D1, this inhibition of cell death was abrogated by depletion of TACC3. Thus, our data identify TACC3 as a potential target to overcome p21(WAF)-associated protection of transformed cells against paclitaxel-induced cell death. PMID:17599038

  10. Coadministration of indomethacin and minocycline attenuates established paclitaxel-induced neuropathic thermal hyperalgesia: Involvement of cannabinoid CB1 receptors

    PubMed Central

    Parvathy, Subramanian S.; Masocha, Willias

    2015-01-01

    Taxanes such as paclitaxel, which are chemotherapeutic drugs, cause dose-dependent painful neuropathy in some patients. We investigated whether coadministration of minocycline and indomethacin produces antinociceptive effects in mice with paclitaxel-induced neuropathic thermal hyperalgesia and if the cannabinoid system is involved. Previously, we reported that coadministration of these two drugs results in antinociception against inflammatory pain at doses where either drug alone lack significant activity. In the current study, we observed that treatment of female mice with indomethacin or minocycline alone did not affect established paclitaxel-induced thermal hyperalgesia, whereas coadministration of the two drugs attenuated it. In male mice indomethacin had some antihyperalgesic activity, whilst minocycline did not. Coadministration of the two drugs had supraadditive antihyperalgesic activity in male mice. Administration of a cannabinoid CB1 receptor antagonist AM 251 blocked the antihyperalgesic effects of the combination of minocycline and indomethacin in both male and female mice. In conclusion our results indicate that coadministration of minocycline and indomethacin abrogates established paclitaxel-induced neuropathic thermal hyperalgesia in mice, and the potentiation of the antinociceptive effects of this combination involves the cannabinoid system. PMID:26085115

  11. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Cai, Shuyu; Zhang, Rongbo; Liu, Peng; Chen, Hongbo; Zheng, Yi; Sun, Leilei

    2013-10-01

    A system of novel nanoparticles of star-shaped cholic acid-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment.

  12. Bisphosphonates Inhibit Stellate Cell Activity and Enhance Antitumor Effects of Nanoparticle Albumin Bound-Paclitaxel in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Gonzalez-Villasana, Vianey; Rodriguez-Aguayo, Cristian; Arumugam, Thiruvengadam; Cruz-Monserrate, Zobeida; Fuentes-Mattei, Enrique; Deng, Defeng; Hwang, Rosa F.; Wang, Huamin; Ivan, Cristina; Garza, Raul Joshua; Cohen, Evan; Gao, Hui; Armaiz-Pena, Guillermo N.; Monroig-Bosque, Paloma del C.; Philip, Bincy; Rashed, Mohammed H.; Aslan, Burcu; Erdogan, Mumin Alper; Gutierrez-Puente, Yolanda; Ozpolat, Bulent; Reuben, James M.; Sood, Anil K.; Logsdon, Craig; Lopez-Berestein, Gabriel

    2014-01-01

    Pancreatic stellate cells (PSCs) have been recognized as the principal cells responsible for the production of fibrosis in PDAC. Recently PSCs have been noted to share characteristics with cells of monocyte-macrophage lineage (MML cells). Thus, we tested whether PSCs could be targeted with the nitrogen-containing bisphosphonates (NBPs) [pamidronate (Pam) or zoledronic acid (ZA)], which are potent MML cell inhibitors. In addition, we tested NBPs treatment combination with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) to enhance antitumor activity. In vitro we observed that PSCs possess α-naphthyl butyrate esterase (ANBE) enzyme activity, a specific marker of MML cells. Moreover NBPs inhibited PSCs proliferation, activation, release of macrophage chemoattractant protein-1 (MCP-1) and type I collagen expression. NBPs also induced PSC apoptosis and cell cycle arrest in the G1 phase. In vivo, NBPs inactivated PSCs; reduced fibrosis; inhibited tumor volume, tumor weight, peritoneal dissemination, angiogenesis, and cell proliferation; and increased apoptosis in an orthotopic murine model of PDAC. These in vivo antitumor effects were enhanced when NBPs were combined with nab-paclitaxel but not gemcitabine (Gem). Our study suggests that targeting PSCs and tumor cells with NBPs in combination with nab-paclitaxel may be a novel therapeutic approach to PDAC. PMID:25193509

  13. In vitro mutagenicity and blood compatibility of paclitaxel and curcumin in poly (DL-lactide-co-glicolide) films.

    PubMed

    Vieira, Iara Lucia Barbosa Fernandes; de Souza, Debora Cristina Passos; da Silva Coelho, Liliane; Chen, Lee Chen; Guillo, Lidia Andreu

    2013-02-01

    Curcumin is considered to be a potential component for drug-eluting stents due to its anti-inflammatory properties. In this study we compared the mutagenicity and blood compatibility of curcumin to first generation drug eluting stent components: paclitaxel and sirolimus. The Ames test was used to assess mutagenicity. Blood compatibility was tested by measuring platelet activation and fibrinogen adsorption on poly (DL-lactide-co-glycolide, PLGA) films. We discovered that there was no significant increase in the number of revertants/plate following treatment with curcumin (up to 0.5mg/plate) or sirolimus (up to 0.5 ?g/plate). However, a significant induction in the frequency of bacterial his(+) revertant colonies by paclitaxel at concentrations of 0.02, 0.05, 0.1, 0.2 and 0.5 ?g/plate was observed. We also discovered a significant reduction in platelet activation by PLGA films containing 30% and 50% by weight curcumin. A similar reduction in platelet activation was also observed for PLGA films containing 1% by weight paclitaxel. In addition, we observed an increase of fibrinogen adsorption to PLGA-films containing curcumin. This would compromise the potential use of curcumin as a component of drug-eluting stents. Moreover, our data challenges the current view that paclitaxel does not significantly induce mutagenesis. PMID:23108037

  14. Modulation of drug resistance by alpha-tubulin in paclitaxel-resistant human lung cancer cell lines.

    PubMed

    Han, E K; Kyu-Ho Han, E; Gehrke, L; Tahir, S K; Credo, R B; Cherian, S P; Sham, H; Rosenberg, S H; Ng, S

    2000-08-01

    Beta(beta)-tubulin isotype variation has recently been implicated in the modulation of resistance to paclitaxel in human lung cancer cells and in primary human ovarian tumour samples. Whether alpha-tubulin is involved in drug resistance has not been reported. We have generated a paclitaxel-resistant cell line (H460/T800) from the sensitive human lung carcinoma parental cell line NCI-H460. The resistant cells are more than 1000-fold resistant to taxol and overexpress P-glycoprotein. Interestingly, H460/T800 cells also overexpress alpha- and beta-tubulin as detected by Western blot analysis. From Northern blot analysis, the mechanism of tubulin overexpression appears to be post-transcriptional. To understand whether alpha-tubulin plays a role in drug resistance, we transfected antisense human kalpha1 cDNA construct into the H460/T800 paclitaxel-resistant cells. The antisense clones displayed a reduced alpha-tubulin expression, and the cells were 45-51% more sensitive to paclitaxel and other known antimitotic drugs, compared with vector transfected controls. Complementary experiments of transfecting the sense kalpha1 cDNA into H460 cells conferred a 1.8- to 3.3-fold increase in the IC(50) of several antimitotic agents. Our study suggests that alpha-tubulin is one of the factors that contributes to drug resistance. PMID:10930805

  15. Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice

    PubMed Central

    Pan, Jia-Hao; Bi, Bing-Tian; Feng, Kun-Yao; Huang, Wan; Zeng, Wei-An

    2015-01-01

    Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC). Aspartate transaminase (AST), alanine aminotransferase (ALT), and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2) of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL) from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided. PMID:26633878

  16. Selective Activation of Cannabinoid CB2 Receptors Suppresses Neuropathic Nociception Induced by Treatment with the Chemotherapeutic Agent Paclitaxel in Rats

    PubMed Central

    Rahn, Elizabeth J.; Zvonok, Alexander M.; Thakur, Ganesh A.; Khanolkar, Atmaram D.; Makriyannis, Alexandros; Hohmann, Andrea G.

    2009-01-01

    Activation of cannabinoid CB2 receptors suppresses neuropathic pain induced by traumatic nerve injury. The present studies were conducted to evaluate the efficacy of cannabinoid CB2 receptor activation in suppressing painful peripheral neuropathy evoked by chemotherapeutic treatment with the anti-tumor agent paclitaxel. Rats received paclitaxel (2 mg/kg i.p. per day) on four alternate days to induce mechanical hypersensitivity (mechanical allodynia). Mechanical allodynia was defined as a lowering of the threshold for paw withdrawal to stimulation of the plantar hind paw surface with an electronic von Frey stimulator. Mechanical allodynia developed in paclitaxel-treated animals relative to groups receiving the cremophor: ethanol: saline vehicle at the same times. Two structurally distinct cannabinoid CB2 agoniststhe aminoalkylindole (R,S)-AM1241 ((R,S)-(2-iodo-5-nitrophenyl)-[1-((1-methyl-piperidin-2-yl)methyl)-1H-indol-3-yl]-methanone) and the cannabilactone AM1714 (1,9-dihydroxy-3-(1?,1?-dimethylheptyl)-6H-benzo[c]chromene-6-one)produced a dose-related suppression of established paclitaxel-evoked mechanical allodynia following systemic administration. Pretreatment with the CB2 antagonist SR144528 (5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-N-(1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl)-1H-pyrazole-3-carboxamide), but not the CB1 antagonist SR141716 (5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide), blocked the anti-allodynic effects of both (R,S)-AM1241 and AM1714. Moreover, (R)-AM1241, but not (S)-AM1241, suppressed paclitaxel-evoked mechanical allodynia relative to either vehicle treatment or pre-injection thresholds, consistent with mediation by CB2. Administration of either the CB1 or CB2 antagonist alone failed to alter paclitaxel-evoked mechanical allodynia. Moreover, (R,S)-AM1241 did not alter paw withdrawal thresholds in rats that received the cremophor vehicle in lieu of paclitaxel whereas AM1714 induced a modest antinociceptive effect. Our data suggest that cannabinoid CB2 receptors may be important therapeutic targets for the treatment of chemotherapy-evoked neuropathy. PMID:18664590

  17. Therapeutic targeting of erbB3 with MM-121/SAR256212 enhances antitumor activity of paclitaxel against erbB2-overexpressing breast cancer

    PubMed Central

    2013-01-01

    Introduction Elevated expression of erbB3 rendered erbB2-overexpressing breast cancer cells resistant to paclitaxel via PI-3K/Akt-dependent upregulation of Survivin. It is unclear whether an erbB3-targeted therapy may abrogate erbB2-mediated paclitaxel resistance in breast cancer. Here, we study the antitumor activity of an anti-erbB3 antibody MM-121/SAR256212 in combination with paclitaxel against erbB2-overexpressing breast cancer. Methods Cell growth assays were used to determine cell viability. Cells undergoing apoptosis were quantified by a specific apoptotic ELISA. Western blot analyses were performed to assess the protein expression and activation. Lentiviral vector containing shRNA was used to specifically knockdown Survivin. Tumor xenografts were established by inoculation of BT474-HR20 cells into nude mice. The tumor-bearing mice were treated with paclitaxel and/or MM-121/SAR256212 to determine whether the antibody (Ab) enhances paclitaxels antitumor activity. Immunohistochemistry was carried out to study the combinatorial effects on tumor cell proliferation and induction of apoptosis in vivo. Results MM-121 significantly facilitated paclitaxel-mediated anti-proliferative/anti-survival effects on SKBR3 cells transfected with a control vector or erbB3 cDNA. It specifically downregulated Survivin associated with inactivation of erbB2, erbB3, and Akt. MM-121 enhances paclitaxel-induced poly(ADP-ribose) polymerase (PARP) cleavage, activation of caspase-8 and -3, and apoptosis in both paclitaxel-sensitive and -resistant cells. Specific knockdown of Survivin in the trastuzumab-resistant BT474-HR20 cells dramatically enhanced paclitaxel-induced apoptosis, suggesting that increased Survivin caused a cross-resistance to paclitaxel. Furthermore, the studies using a tumor xenograft model-established from BT474-HR20 cells revealed that either MM-121 (10mg/kg) or low-dose (7.5mg/kg) paclitaxel had no effect on tumor growth, their combinations significantly inhibited tumor growth in vivo. Immunohistochemical analysis showed that the combinations of MM-121 and paclitaxel significantly reduced the cells with positive staining for Ki-67 and Survivin, and increased the cells with cleaved caspase-3. Conclusions The combinations of MM-121 and paclitaxel not only inhibit tumor cell proliferation, but also promote erbB2-overexpressing breast cancer cells to undergo apoptosis via downregulation of Survivin in vitro and in vivo, suggesting that inactivation of erbB3 with MM-121 enhances paclitaxel-mediated antitumor activity against erbB2-overexpressing breast cancers. Our data supports further exploration of the combinatorial regimens consisting of MM-121 and paclitaxel in breast cancer patients with erbB2-overexpressing tumors, particularly those resistant to paclitaxel. PMID:24168763

  18. Poly (?-glutamic acid) based combination of water-insoluble paclitaxel and TLR7 agonist for chemo-immunotherapy.

    PubMed

    Seth, Anushree; Heo, Min Beom; Lim, Yong Taik

    2014-09-01

    Advanced anti-cancer regimens are being introduced for more effective cancer treatment with improved life expectancy. In this research, immuno-stimulating agent toll-like receptor-7 (TLR-7) agonist-imiquimod and low dose chemotherapeutic agent-paclitaxel were synergized to demonstrate tumor therapy along with anti-tumor memory effect. Both therapeutic agents being water insoluble were dispersed in water with the help of water soluble polymer: poly (?-glutamic acid) (?-PGA) using a co-solvent systems leading to formation of micro-dispersions of drugs. Paclitaxel and imiquimod formed crystalline microstructures in the size range of 2-3?m and were stably dispersed in ?-PGA matrix for more than 6 months. Paclitaxel and combination of paclitaxel and imiquimod had significant tumor killing effect in-vitro on various tumor cell lines, while antigen presenting cells (dendritic cells-DCs) treated with the same concentration of imiquimod along with the combination led to enhanced proliferation (250%). In DCs, enhanced secretion of pro-inflammatory and Th1 cytokines was observed in cells co-treated with paclitaxel and imiquimod dispersed in ?-PGA. When administered by intra-tumoral injection in mouse melanoma tumor model, the treatment with combination exemplified drastic inhibition of tumor growth leading to 70% survival as compared to individual components with 0% survival at day 41. The anti-tumor response generated was also found to have systemic memory response since the vaccinated mice significantly deferred secondary tumor development at distant site 6 weeks after treatment. The relative number and activation status of DCs in-vivo was found to be dramatically increased in case of mice treated with combination. The dramatic inhibition of tumor treated with combination is expected to be mediated by both chemotherapeutic killing of tumor cells followed by uptake of released antigen by the DCs and due to enhanced proliferation and activation of the DCs. PMID:24954733

  19. Expression of thymidine phosphorylase in peripheral blood cells of breast cancer patients is not increased by paclitaxel

    PubMed Central

    Bartsch, Rupert; Steger, Guenther G; Forstner, Birgit; Wenzel, Catharina; Pluschnig, Ursula; Rizovski, Blanka; Altorjai, Gabriela; Zielinski, Christoph C; Mader, Robert M

    2007-01-01

    Background A synergistic cytotoxic effect has been hypothesized for taxanes and capecitabine, a prodrug of 5-fluorouracil. Based on preclinical studies, this synergism has been attributed to an up-regulation of the enzyme thymidine phosphorylase (TP). Beside tumour tissue, TP is highly expressed in white blood cells, possibly causing increased hematotoxicity, when taxanes are combined with capecitabine. So far, this hypothesis has not been investigated in humans. Methods A total of 128 consecutive blood samples were collected from eight patients with advanced breast cancer receiving paclitaxel weekly at a dose of 80 mg/m2. To assess the expression of TP in blood cells, samples were collected prior to first therapy, at the end of infusion, and up to 15 days thereafter. This procedure was repeated during the sixth application of paclitaxel. After isolation of the peripheral mononuclear blood cells, the expression of TP was assessed by ELISA. In parallel, paclitaxel level in plasma was evaluated at three selected time points as pharmacokinetic control parameter. Results Paclitaxel concentrations at the end of infusion did not change significantly from week 1 to week 6. The expression of TP in peripheral mononuclear blood cells decreased significantly after infusion below pretherapeutic values (p = 0.023; n = 8). After the nadir on day 3, the expression of TP increased moderately returning to baseline levels within one week. The overall picture in week 6 was similar to week 1. Using a trend analysis, neither a short-term nor a long-term induction of TP was observed. Conclusion TP in peripheral mononuclear blood cells was hardly regulated under therapy with paclitaxel. Therefore, no increased haematotoxicity due to TP upregulation is expected from the combination of taxanes and capecitabine. PMID:17640356

  20. SU2C Phase Ib Study of Paclitaxel and MK-2206 in Advanced Solid Tumors and Metastatic Breast Cancer

    PubMed Central

    Gonzalez-Angulo, Ana M.; Krop, Ian; Akcakanat, Argun; Chen, Huiqin; Liu, Shuying; Li, Yisheng; Culotta, Kirk S.; Tarco, Emily; Piha-Paul, Sarina; Moulder-Thompson, Stacy; Velez-Bravo, Vivianne; Sahin, Aysegul A.; Doyle, Laurence A.; Do, Kim-Anh; Winer, Eric P.; Mills, Gordon B.; Kurzrock, Razelle

    2015-01-01

    Background: There is preclinical synergism between taxanes and MK-2206. We aim to determine the maximum tolerated dose, safety, and activity of combining MK-2206 and paclitaxel in metastatic cancer. Methods: Patients received weekly doses of paclitaxel at 80mg/m2 on day 1, followed by MK-2206 orally on day 2 escalated at 90mg, 135mg, and 200mg. Treatment continued until progression, excessive toxicity, or patient request. Blood and tissue were collected for pharmacokinetic and pharmacodynamics markers. A cycle consisted of three weeks of therapy. Dose-limiting toxicity (DLT) was defined as unacceptable toxicity during the first cycle. All statistical tests were two-sided. Results: Twenty-two patients were treated, nine in dose escalation and 13 in dose expansion. Median age was 55 years. Median number of cycles was four. Dose escalation was completed with no DLT. CTCAE Grade 3 or higher adverse events were fatigue (n = 2), rash (n = 2), hyperglycemia (n = 1), and neutropenia (n = 7). Four patients in the expansion phase required MK-2206 dose reduction. Phase II recommended dose was established as paclitaxel 80mg/m2 weekly on day 1, and MK-2206 135mg weekly on day 2. Paclitaxel systemic exposure was similar in the presence or absence of MK-2206. Plasma MK-2206 concentrations were similar to data from previous phase I monotherapy. There was a statistically significant decrease in expression of pAKT S473 (P = .01) and pAKT T308 (P = .002) after therapy. PI3K/AKT/mTOR downregulation in tumor tissues and circulating markers did not correlate with tumor response or clinical benefit. There were five objective responses, and nine patients had stable disease. Conclusion: MK-2206 was well tolerated with paclitaxel. Preliminary antitumor activity was documented. PMID:25688104

  1. Weekly paclitaxel plus trastuzumab in metastatic breast cancer pretreated with anthracyclines-a phase II multipractice study

    PubMed Central

    2012-01-01

    Background The 3-weekly combination of trastuzumab and paclitaxel has been approved for the treatment of advanced breast cancer based on a large pivotal study. However, mono and combination chemotherapy trials suggest that weekly paclitaxel has a better therapeutic index, especially in the palliative setting. The present trial examined the efficacy and safety of weekly paclitaxel over a limited duration combined with continued trastuzumab in HER2+ patients. Methods Patients with histologically confirmed metastatic breast cancer overexpressing HER2 were eligible if pretreated with anthracycline in either the adjuvant or palliative setting. Treatment consisted of weekly trastuzumab (2 mg/kg/week for up to one year after a loading dose of 4 mg/kg in week 1) and paclitaxel (90 mg/m, administered in weeks 16 and 813). Results Twenty-seven German centers enrolled 121 patients. The median number of metastatic sites was two (range 15); 38% of patients had received chemotherapy for advanced disease. After a median 42 weeks of trastuzumab treatment, limited by disease progression in roughly half the patients, a best objective response rate (complete response?+?partial response) of 76% was achieved, including complete remissions in 29%. 74% of patients lived without tumor progression at six months. Median progression-free and overall survival were 9.4 (95% confidence interval [CI]: 8.111.3) and 22 months (95% CI: 1746). After alopecia, Common Toxicity Criteria grade ?2 toxicity was predominantly hematological (leukopenia [31%] and anemia [41%]); however, thrombocytopenia occurred in only 5%. Neurotoxicity was remarkably low. Two cardiac events (grades 2 and 3) were presumed treatment-related. Conclusions Weekly paclitaxel plus trastuzumab allows an increased dose density and offers an attractive and effective alternative to the conventional schedule. Limiting the duration of cytotoxic therapy to 3 months seems to be an option to reduce neurotoxicity without impairing long-term outcome. PMID:22559145

  2. A Phase I study of capecitabine, carboplatin, and paclitaxel with external beam radiation therapy for esophageal carcinoma

    SciTech Connect

    Czito, Brian G. . E-mail: czito@radonc.duke.edu; Kelsey, Chris R.; Hurwitz, Herbert I.; Willett, Chris G.; Morse, Michael A.; Blobe, Gerard C.; Fernando, Nishan H.; D'Amico, Thomas A.; Harpole, David H.; Honeycutt, Wanda R.N.; Yu Daohai; Bendell, Johanna C.

    2007-03-15

    Purpose: Concurrent chemotherapy and radiation therapy (RT) are used to treat patients with esophageal cancer. The optimal combination of chemotherapeutic agents with RT is undefined. We evaluated a combination of capecitabine, carboplatin, and paclitaxel with RT in a phase I study. Methods and Materials: Patients with squamous cell carcinoma or adenocarcinoma of the esophagus initially received capecitabine, carboplatin, and paclitaxel with RT (1.8 Gy daily to 50.4 Gy). After completion, patients were restaged and evaluated for surgery. Primary endpoints included determination of dose-limiting toxicities (DLT) and a recommended phase II dose, non-DLT, and preliminary radiographic and pathologic response rates. Results: Thirteen patients were enrolled (10 men, 3 women). All were evaluable for toxicity and efficacy. Two of 3 patients at dose level 1 (capecitabine 825 mg/m{sup 2} twice daily on RT days, carboplatin area under the curve (AUC) 2 weekly, paclitaxel 60 mg/m{sup 2} weekly) had DLT (both Grade 4 esophagitis). Of these 3, 2 underwent esophagectomy and had pathologic complete response (pCR). Ten patients were then enrolled at dose level -1 (capecitabine 600 mg/m{sup 2} twice daily, carboplatin AUC 1.5, paclitaxel 45 mg/m{sup 2}). Overall, 3 of 10 patients at dose level -1 developed DLT (2 Grade 3 esophagitis, 1 Grade 3 hypotension). Esophagectomy was performed in 6 of 10 patients. All patients had pathologic downstaging and 2 of 6 had pCR. Conclusions: The maximally tolerated/recommended phase II doses were capecitabine 600 mg/m{sup 2} twice daily, carboplatin AUC 1.5 weekly, and paclitaxel 45 mg/m{sup 2} weekly with RT to 50.4 Gy. In our small study, this regimen appears active but is accompanied by significant toxicities, primarily esophagitis.

  3. Is there a role of nab-paclitaxel in the treatment of advanced non-small cell lung cancer? The data suggest yes.

    PubMed

    Villaruz, Liza C; Socinski, Mark A

    2016-03-01

    Nab-paclitaxel is a novel therapeutic agent, which was approved in combination with carboplatin in the first-line treatment of advanced non-small cell lung cancer (NSCLC) regardless of histologic subtype in the United States of America by the Food and Drug Administration in 2012 and by the European Commission in 2015. This approval was based on the results of a phase III clinical trial showing superior response rates compared with solvent-based paclitaxel in combination with carboplatin. This review will focus on the early development and clinical data to date supporting the use of nab-paclitaxel in advanced NSCLC. The clinical question central to this review is whether nab-paclitaxel has a place in the current therapeutic landscape of advanced NSCLC. PMID:26875112

  4. Colchitaxel, a coupled compound made from microtubule inhibitors colchicine and paclitaxel

    PubMed Central

    Bombuwala, Karunananda; Kinstle, Thomas; Popik, Vladimir; Uppal, Sonal O; Olesen, James B; Via, Jose; Heckman, Carol A

    2006-01-01

    Background Tumor promoters enhance tumor yield in experimental animals without directly affecting the DNA of the cell. Promoters may play a role in the development of cancer, as humans are exposed to them in the environment. In work based on computer-assisted microscopy and sophisticated classification methods, we showed that cells could be classified by reference to a database of known normal and cancerous cell phenotypes. Promoters caused loss of properties specific to normal cells and gain of properties of cancer cells. Other compounds, including colchicine, had a similar effect. Colchicine given together with paclitaxel, however, caused cells to adopt properties of normal cells. This provided a rationale for tests of microtubule inhibitor combinations in cancer patients. The combination of a depolymerizing and a stabilizing agent is a superior anti-tumor treatment. The biological basis of the effect is not understood. Results A single compound containing both colchicine and paclitaxel structures was synthesized. Colchicine is an alkaloid with a trimethoxyphenyl ring (ring A), a ring with an acetamide linkage (ring B), and a tropolone ring (ring C). Although rings A and C are important for tubulin-binding activity, the acetamide linkage on ring B could be replaced by an amide containing a glutamate linker. Alteration of the C-7 site on paclitaxel similarly had little or no inhibitory effect on its biological activity. The linker was attached to this position. The coupled compound, colchitaxel (1), had some of the same effects on microtubules as the combination of starting compounds. It also caused shortening and fragmentation of the + end protein cap. Conclusion Since microtubule inhibitor combinations give results unlike those obtained with either inhibitor alone, it is important to determine how such combinations affect cell shape and growth. Colchitaxel shows a subset of the effects of the inhibitor combination. Thus, it may be able to bind the relevant cellular target of the combination. It will be useful to determine the basis of the shape reversal effect and possibly, the reasons for therapeutic efficacy of microtubule inhibitor combinations. PMID:16813651

  5. An antimitotic and antivascular agent BPR0L075 overcomes multidrug resistance and induces mitotic catastrophe in paclitaxel-resistant ovarian cancer cells.

    PubMed

    Wang, Xiaolei; Wu, Erxi; Wu, Jun; Wang, Tian-Li; Hsieh, Hsing-Pang; Liu, Xinli

    2013-01-01

    Paclitaxel plays a major role in the treatment of ovarian cancer; however, resistance to paclitaxel is frequently observed. Thus, new therapy that can overcome paclitaxel resistance will be of significant clinical importance. We evaluated antiproliferative effects of an antimitotic and antivascular agent BPR0L075 in paclitaxel-resistant ovarian cancer cells. BPR0L075 displays potent and broad-spectrum cytotoxicity at low nanomolar concentrations (IC50?=?2-7 nM) against both parental ovarian cancer cells (OVCAR-3, SKOV-3, and A2780-1A9) and paclitaxel-resistant sublines (OVCAR-3-TR, SKOV-3-TR, 1A9-PTX10), regardless of the expression levels of the multidrug resistance transporter P-gp and class III ?-tubulin or mutation of ?-tubulin. BPR0L075 blocks cell cycle at the G2/M phase in paclitaxel-resistant cells while equal concentration of paclitaxel treatment was ineffective. BPR0L075 induces cell death by a dual mechanism in parental and paclitaxel-resistant ovarian cancer cells. In the parental cells (OVCAR-3 and SKOV-3), BPR0L075 induced apoptosis, evidenced by poly(ADP-ribose) polymerase (PARP) cleavage and DNA ladder formation. BPR0L075 induced cell death in paclitaxel-resistant ovarian cancer cells (OVCAR-3-TR and SKOV-3-TR) is primarily due to mitotic catastrophe, evidenced by formation of giant, multinucleated cells and absence of PARP cleavage. Immunoblotting analysis shows that BPR0L075 treatment induced up-regulation of cyclin B1, BubR1, MPM-2, and survivin protein levels and Bcl-XL phosphorylation in parental cells; however, in resistant cells, the endogenous expressions of BubR1 and survivin were depleted, BPR0L075 treatment failed to induce MPM-2 expression and phosphorylation of Bcl-XL. BPR0L075 induced cell death in both parental and paclitaxel-resistant ovarian cancer cells proceed through caspase-3 independent mechanisms. In conclusion, BPR0L075 displays potent cytotoxic effects in ovarian cancer cells with a potential to overcome paclitaxel resistance by bypassing efflux transporters and inducing mitotic catastrophe. BPR0L075 represents a novel microtubule therapeutic to overcome multidrug resistance and trigger alternative cell death by mitotic catastrophe in ovarian cancer cells that are apoptosis-resistant. PMID:23762410

  6. Poly(ethylene oxide)-block-polyphosphester-based Paclitaxel Conjugates as a Platform for Ultra-high Paclitaxel-loaded Multifunctional Nanoparticles.

    PubMed

    Zhang, Shiyi; Zou, Jiong; Elsabahy, Mahmoud; Karwa, Amolkumar; Li, Ang; Moore, Dennis A; Dorshow, Richard B; Wooley, Karen L

    2013-01-01

    A new type of degradable, nanoscopic polymer assembly containing ultra-high levels of drug loading via covalent attachment within amphiphilic core-shell nanoparticle morphology has been generated as a potentially effective and safe anti-cancer agent. Poly(ethylene oxide)-block-polyphosphoester-based paclitaxel drug conjugates (PEO-b-PPE-g-PTX) were synthesized by rapid, scalable and versatile approach that involves only two steps: organocatalyst-promoted ring-opening-polymerization followed by click reaction-based conjugation of a PTX prodrug. Variations in the polymer-to-PTX stoichiometries allowed for optimization of the conjugation efficiency, the PTX drug loading and the resulting water solubilities of the entire polymer and the PTX content. The PEO-b-PPE-g-PTX formed well-defined micelles in aqueous solution, with a PTX loading capacity as high as 65 wt%, and a maximum PTX concentration of 6.2 mg/mL in water, which is 25000-fold higher than the aqueous solubility of free PTX. The positive cell-killing activity of PEO-b-PPE-g-PTX against several cancer cell lines is demonstrated, and the presence of pendant reactive functionality provides a powerful platform for future work to involve conjugation of multiple drugs and imaging agents to achieve chemotherapy and bioimaging. PMID:25152808

  7. Poly(ethylene oxide)-block-polyphosphester-based Paclitaxel Conjugates as a Platform for Ultra-high Paclitaxel-loaded Multifunctional Nanoparticles†

    PubMed Central

    Zhang, Shiyi; Zou, Jiong; Elsabahy, Mahmoud; Karwa, Amolkumar; Li, Ang; Moore, Dennis A.; Dorshow, Richard B.; Wooley, Karen L.

    2013-01-01

    A new type of degradable, nanoscopic polymer assembly containing ultra-high levels of drug loading via covalent attachment within amphiphilic core-shell nanoparticle morphology has been generated as a potentially effective and safe anti-cancer agent. Poly(ethylene oxide)-block-polyphosphoester-based paclitaxel drug conjugates (PEO-b-PPE-g-PTX) were synthesized by rapid, scalable and versatile approach that involves only two steps: organocatalyst-promoted ring-opening-polymerization followed by click reaction-based conjugation of a PTX prodrug. Variations in the polymer-to-PTX stoichiometries allowed for optimization of the conjugation efficiency, the PTX drug loading and the resulting water solubilities of the entire polymer and the PTX content. The PEO-b-PPE-g-PTX formed well-defined micelles in aqueous solution, with a PTX loading capacity as high as 65 wt%, and a maximum PTX concentration of 6.2 mg/mL in water, which is 25000-fold higher than the aqueous solubility of free PTX. The positive cell-killing activity of PEO-b-PPE-g-PTX against several cancer cell lines is demonstrated, and the presence of pendant reactive functionality provides a powerful platform for future work to involve conjugation of multiple drugs and imaging agents to achieve chemotherapy and bioimaging. PMID:25152808

  8. Bulleyaconitine A depresses neuropathic pain and potentiation at C-fiber synapses in spinal dorsal horn induced by paclitaxel in rats.

    PubMed

    Zhu, He-Quan; Xu, Jing; Shen, Kai-Feng; Pang, Rui-Ping; Wei, Xu-Hong; Liu, Xian-Guo

    2015-11-01

    Paclitaxel, a widely used chemotherapeutic agent, often induces painful peripheral neuropathy and at present no effective drug is available for treatment of the serious side effect. Here, we tested if intragastrical application of bulleyaconitine A (BLA), which has been approved for clinical treatment of chronic pain in China since 1985, could relieve the paclitaxel-induced neuropathic pain. A single dose of BLA attenuated the mechanical allodynia, thermal hyperalgesia induced by paclitaxel dose-dependently. Repetitive administration of the drug (0.4 and 0.8 mg/kg, t.i.d. for 7 d) during or after paclitaxel treatment produced a long-lasting inhibitory effect on thermal hyperalgesia, but not on mechanical allodynia. In consistency with the behavioral results, in vivo electrophysiological experiments revealed that spinal synaptic transmission mediated by C-fiber but not A fiber was potentiated, and the magnitude of long-term potentiation (LTP) at C-fiber synapses induced by the same high frequency stimulation was ~50% higher in paclitaxel-treated rats, compared to the naïve rats. Spinal or intravenous application of BLA depressed the spinal LTP, dose-dependently. Furthermore, patch clamp recordings in spinal cord slices revealed that the frequency but not amplitude of both spontaneous excitatory postsynaptic current (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs) in lamina II neurons was increased in paclitaxel-treated rats, and the superfusion of BLA reduced the frequency of sEPSCs and mEPSCs in paclitaxel-treated rats but not in naïve ones. Taken together, we provide novel evidence that BLA attenuates paclitaxel-induced neuropathic pain and that depression of spinal LTP at C-fiber synapses via inhibiting presynaptic transmitter release may contribute to the effect. PMID:26376216

  9. A Phase I Study of Oral Paclitaxel with a Novel P-Glycoprotein Inhibitor, HM30181A, in Patients with Advanced Solid Cancer

    PubMed Central

    Lee, Hyun Jung; Heo, Dae-Seog; Cho, Joo-Youn; Han, Sae-Won; Chang, Hye-Jung; Yi, Hyeon-Gyu; Kim, Tae-Eun; Lee, Se-Hoon; Oh, Do-Youn; Im, Seock-Ah; Jang, In-Jin; Bang, Yung-Jue

    2014-01-01

    Purpose The purpose of this study is to determine the maximum tolerated dose (MTD), safety, pharmacokinetics, and recommended phase II dose of an oral drug composed of paclitaxel and HM30181A, which is an inhibitor of P-glycoprotein, in patients with advanced cancers. Materials and Methods Patients with advanced solid tumors received standard therapy were given the study drug at escalating doses, using a 3+3 design. The study drug was orally administered on days 1, 8, and 15, with a 28-day cycle of administration. The dose of paclitaxel was escalated from 60 to 420 mg/m2, and the dose of HM30181A was escalated from 30-210 mg/m2. Results A total of twenty-four patients were enrolled. Only one patient experienced a doselimiting toxicity—a grade 3 neutropenia that persisted for more than 2 weeks, at 240 mg/m2 of paclitaxel. MTD was not reached. The maximum plasma concentration was obtained at a dose level of 300 mg/m2 and the area under the curve of plasma concentration- time from 0 to the most recent plasma concentration measurement of paclitaxel was reached at a dose level of 420 mg/m2. The absorption of paclitaxel tends to be limited at doses that exceed 300 mg/m2. The effective plasma concentration of paclitaxel was achieved at a dose of 120 mg/m2. Responses of 23 patients were evaluated; 8 (34.8%) had stable disease and 15 (65.2%) had progressive disease. Conclusion The study drug appears to be well tolerated, and the effective plasma concentration of paclitaxel was achieved. The recommended phase II dose for oral paclitaxel is 300 mg/m2. PMID:25038758

  10. Phase I study of pazopanib in combination with paclitaxel and carboplatin given every 21 days in patients with advanced solid tumors.

    PubMed

    Burris, Howard A; Dowlati, Afshin; Moss, Rebecca A; Infante, Jeffrey R; Jones, Suzanne F; Spigel, David R; Levinson, Kelly T; Lindquist, Diana; Gainer, Shelby D; Dar, Mohammed M; Suttle, A Benjamin; Ball, Howard A; Tan, Antoinette R

    2012-08-01

    Several phase III trials have shown that the addition of an antiangiogenic agent to conventional chemotherapy can improve clinical benefit in patients with advanced solid tumors. This study examined the feasibility of combining pazopanib (Votrient), an oral antiangiogenic agent, with paclitaxel and carboplatin. This 3 + 3 dose-escalation phase I study evaluated the maximum-tolerated regimen (MTR) of daily pazopanib in combination with paclitaxel 175 mg/m(2) and carboplatin [dosed at area under the curve (AUC) 5 or 6] given every 21 days in patients with advanced solid tumors. Plasma samples were collected to evaluate the effect of pazopanib on the pharmacokinetics of paclitaxel and carboplatin. Thirty-four patients were enrolled. The MTR was paclitaxel 175 mg/m(2) and carboplatin AUC5 with pazopanib 200 mg. The most common dose-limiting toxicities were neutropenia and thrombocytopenia. Two patients with esophageal cancer had a complete response and four patients, one each with breast, small-cell lung, pancreatic, and gastroesophageal junction cancer, had partial responses. Pazopanib at 200 mg increased paclitaxel maximal concentration (C(max)) by 43% and carboplatin (AUC5 or AUC6) C(max) by 54%. Paclitaxel and carboplatin given every 21 days at standard doses was not feasible in combination with the monotherapy pazopanib dose of 800 mg daily because of dose-limiting myelosuppression. Coadministration of pazopanib increased exposure to paclitaxel and carboplatin and likely contributed to this effect. Given the antitumor activity of this regimen, further studies are underway to determine a clinically tolerable schedule of pazopanib with paclitaxel and carboplatin. PMID:22679111

  11. Nonvascular drug-eluting stent coated with sodium caprate-incorporated polyurethane for the efficient penetration of paclitaxel into tumor tissue.

    PubMed

    Jeong, Dooyong; Lee, Don Haeng; Lee, Dong Ki; Na, Kun

    2015-03-01

    To increase the therapeutic potency of nonvascular drug-eluting stents, sodium caprate was employed as a drug-penetration enhancer. A polytetrafluoroethylene-covered drug-eluting stent was coated with a mixture containing sodium caprate, paclitaxel, and polyurethane via the rolling coating technique. The coated stent has a smooth membrane surface with a 40-m membrane thickness. Paclitaxel was released from the coated stent for two months. In the multilayered cell sheet model, sodium caprate in the polyurethane membrane (PUSC10) showed the possibility of enhancing the paclitaxel tissue penetration. The amount of penetrated paclitaxel for the sodium caprate-containing polyurethane membrane (PUSC10) was two times higher than that of sodium caprate-free polyurethane membrane. Additionally, the potential of sodium caprate was confirmed by a tumor-bearing small animal model. PUSC10 incorporated with Nile red (as a model fluorescence dye for visualization of drug penetration; PUSC10-Nile red) or PUSC10 incorporated with paclitaxel (PUSC10-paclitaxel) membrane was implanted at tumor sites in Balb/c mice. In the case of PUSC10-Nile red, the tissue penetration depth of Nile red was significantly increased from 30?m (without sodium caprate) to 1060?m (with sodium caprate). After seven days, an almost four times higher therapeutic area of PUSC10-paclitaxel was observed compared to that of polyurethane-paclitaxel (without sodium caprate) by a terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The results indicate that sodium caprate improves the penetration and therapeutic efficiencies of drugs in drug-eluting stents, and thus, it has potential for local stent therapy. PMID:25252589

  12. Effects of Paclitaxel and Eribulin in Mouse Sciatic Nerve: A Microtubule-Based Rationale for the Differential Induction of Chemotherapy-Induced Peripheral Neuropathy.

    PubMed

    Benbow, Sarah J; Cook, Brett M; Reifert, Jack; Wozniak, Krystyna M; Slusher, Barbara S; Littlefield, Bruce A; Wilson, Leslie; Jordan, Mary Ann; Feinstein, Stuart C

    2016-02-01

    Microtubule targeting agents (MTAs) often lead to treatment limiting and life threatening side effects, including chemotherapy-induced peripheral neuropathy (CIPN). The frequency of severe CIPN varies among different MTAs. Since the microtubule binding interactions and mechanisms of action also vary among MTAs, we hypothesized that these distinct mechanisms may underlie the variability in frequency of severe CIPN. Using a two-week, maximum tolerated dose model, we morphologically and biochemically analyzed sciatic nerves from mice treated with either paclitaxel or eribulin. These drugs differ in their manner of microtubule binding and mechanisms of action and reports indicate paclitaxel also induces a higher frequency of severe CIPN than does eribulin. Morphologically, paclitaxel increased the frequency of observed signs of axon degeneration more significantly than did eribulin. Alternatively, eribulin but not paclitaxel induced occasional myelin "halo" structures. Biochemically, paclitaxel, and eribulin both induced α-tubulin expression (~1.9- and ~2.5-fold, respectively) and tubulin acetylation, a marker for microtubule stability, (~5- and ~11.7-fold, respectively). Eribulin but not paclitaxel-induced EB1 expression ~2.2-fold while paclitaxel but not eribulin mildly suppressed EB3 expression. Both EB proteins are associated with microtubule growth. Eribulin's combination of relatively mild deleterious morphological effects coupled with more potent biochemical changes promoting microtubule stability and growth in mice correlate with lower frequencies of severe CIPN in humans. We suggest that these eribulin-induced effects create a relatively stable microtubule network that compensates, in part, for the toxic anti-cancer effects of the drug, leading to fewer reported incidences of CIPN than for paclitaxel. PMID:26659667

  13. Liquid-Liquid Extraction for Recovery of Paclitaxel from Plant Cell Culture: Solvent Evaluation and Use of Extractants for Partitioning and Selectivity

    PubMed Central

    McPartland, Timothy J.; Patil, Rohan A.; Malone, Michael F.; Roberts, Susan C.

    2012-01-01

    A major challenge in the production of metabolites by plant cells is the separation and purification of a desired product from a number of impurities. An important application of plant cell culture is the biosynthesis of the anti-cancer agent paclitaxel. Liquid-liquid extraction plays a critical role in the recovery of paclitaxel and other valuable plant-derived products from culture broth. In this study, the extraction of paclitaxel and a major unwanted by-product, cephalomannine, from plant cell culture broth into organic solvents is quantified. Potential solvent mixtures show varying affinity and selectivity for paclitaxel over cephalomannine. The partition coefficient of paclitaxel is highest in ethyl acetate and dichloromethane, with measured values of 28 and 25, respectively; however selectivity coefficients are less than 1 for paclitaxel over cephalomannine for both solvents. Selectivity coefficient increases to 1.7 with extraction in n-hexane but the partition coefficient decreases to 1.9. Altering the pH of the aqueous phase results in an increase in both recovery and selectivity using n-hexane, but does not change the results for other solvents significantly. The addition of extractants trioctyl amine (TOA) or tributyl phosphate (TBP) to n-hexane gives significantly higher partition coefficients for paclitaxel (8.6 and 23.7, respectively), but no selectivity. Interestingly, when 20% hexafluorobenzene (HFB) is added to n-hexane, the partition coefficient remains approximately constant but the selectivity coefficient for paclitaxel over cephalomannine improves to 4.5. This significant increase in selectivity early in the purification process has the potential to simplify downstream processing steps and significantly reduce overall purification costs. PMID:22581674

  14. Enhanced Excitability of Primary Sensory Neurons and Altered Gene Expression of Neuronal Ion Channels in Dorsal Root Ganglion in Paclitaxel-Induced Peripheral Neuropathy

    PubMed Central

    Zhang, Haijun; Dougherty, Patrick M.

    2014-01-01

    Background The mechanism of chemotherapy-induced peripheral neuropathy after paclitaxel treatment is not well understood. Given the poor penetration of paclitaxel into central nervous system, peripheral nervous system is most at risk. Methods Intrinsic membrane properties of dorsal root ganglion (DRG) neurons were studied by intracellular recordings. Multiple-gene real-time Polymerase Chain Reaction array was used to investigate gene expression of DRG neuronal ion channels. Results Paclitaxel increased the incidence of spontaneous activity from 4.8% to 27.1% in large and from 0% to 33.3% in medium-sized neurons. Paclitaxel decreased the rheobase (nA) from 1.6 0.1 to 0.8 0.1 in large, from 1.5 0.2 to 0.6 0.1 in medium-sized, and from 1.6 0.2 to 1.0 0.1 in small neurons. After paclitaxel, other characteristics of membrane properties in each group remained the same except that A? neurons showed shorter action potential fall time (ms) (1.0 0.2, n = 10 vs. 1.8 0.3, n = 9, paclitaxel vs. vehicle). Meanwhile, real-time polymerase chain reaction array revealed an alteration in expression of some neuronal ion channel genes including upregulation of HCN1 (fold change 1.76 0.06) and Nav1.7 (1.26 0.02) and downregulation of Kir channels (Kir1.1, 0.73 0.05, Kir3.4, 0.66 0.06) in paclitaxel-treated animals. Conclusions The increased neuronal excitability and the changes in gene expression of some neuronal ion channels in DRG may provide insight into the molecular and cellular basis of paclitaxel neuropathy, which may lead to novel therapeutic strategies. PMID:24534904

  15. In vitro efficacy of paclitaxel-loaded dual-responsive shell cross-linked polymer nanoparticles having orthogonally degradable disulfide cross-linked corona and polyester core domains.

    PubMed

    Samarajeewa, Sandani; Shrestha, Ritu; Elsabahy, Mahmoud; Karwa, Amolkumar; Li, Ang; Zentay, Ryan P; Kostelc, James G; Dorshow, Richard B; Wooley, Karen L

    2013-03-01

    Paclitaxel-loaded shell cross-linked polymeric nanoparticles having an enzymatically and hydrolytically degradable poly(lactic acid) core and a glutathione-responsive disulfide cross-linked poly(oligoethylene glycol)-containing corona were constructed in aqueous solution and investigated for their stimuli-responsive release of the embedded therapeutics and in vitro cytotoxicity. Paclitaxel release from the nanoparticles in PBS buffer was accelerated in the presence of glutathione at both pH 5.5 and pH 7.4, reaching ca. 65% cumulative drug release after 8 d, whereas only ca. 50% and 35% extents of release were observed in the absence of glutathione at pH 5.5 and pH 7.4, respectively. Enzyme-catalyzed hydrolysis of the nanoparticle core resulted in the degradation of ca. 30% of the poly(lactic acid) core to lactic acid within 12 h, with coincidently triggered paclitaxel release of ca. 37%, as opposed to only ca. 17% release from the uncatalyzed nanoparticles at pH 7.4. While empty nanoparticles did not show any inherent cytotoxicity at the highest tested concentrations, paclitaxel-loaded nanoparticles showed IC50 values that were similar to those of free paclitaxel at 72 h incubation with KB cells and were more efficacious at ca. 3-fold lower IC50 value (0.031 μM vs 0.085 μM) at 2 h of incubation. Against human ovarian adenocarcinoma cells, the paclitaxel-loaded nanoparticles exhibited a remarkable ca. 11-fold lower IC50 than a Taxol-mimicking formulation (0.0007 μM vs 0.008 μM) at 72 h of incubation. These tunable dual-responsive degradable nanoparticles show great promise for delivery of paclitaxel to tumor tissues, given their superior in vitro efficacies compared to that of free paclitaxel and Taxol-mimicking formulations. PMID:23421959

  16. Farnesyltransferase inhibitor R115777 (Zarnestra, Tipifarnib) synergizes with paclitaxel to induce apoptosis and mitotic arrest and to inhibit tumor growth of multiple myeloma cells

    PubMed Central

    Zhu, Kuichun; Gerbino, Elvira; Beaupre, Darrin M.; Mackley, Paul A.; Muro-Cacho, Carlos; Beam, Craig; Hamilton, Andrew D.; Lichtenheld, Mathias G.; Kerr, William G.; Dalton, William; Alsina, Melissa; Sebti, Sad M.

    2005-01-01

    Despite major advances, multiple myeloma (MM) remains an incurable malignancy. Recently we have found that disease stabilization was achieved in 64% of patients with advanced MM treated with the farnesyltransferase inhibitor R115777 (Zarnestra) in a phase 2 clinical trial. In order to enhance R115777 antitumor activity in MM, we examined the combination of this novel agent with other anticancer drugs in MM cell lines. In this study, R115777 was found to synergize with paclitaxel and docetaxel, but not with other chemotherapy agents, including doxorubicin, 5-fluorouracil, cisplastin, melphalan, mitoxantrone, and dexamethasone. R115777 synergized with paclitaxel to inhibit MM cell proliferation and to induce apoptosis. Synergism in the induction of apoptosis was accompanied by increase in cytochrome c release and caspase-3 activation. Furthermore, flow cytometry analysis also showed that paclitaxel and R115777 synergized to induce G2/M cell-cycle arrest. Importantly, synergism was observed in taxane- and R115777-resistant MM cells. In the human severe combined immunodeficient (SCID-hu) bone model of myeloma growth, the ability of paclitaxel to inhibit tumor growth in vivo was enhanced by R115777. Combination of paclitaxel or docetaxel with R115777 in the treatment of MM cells from patients with multiple myeloma was more beneficial than treatment with single agents. Our results provide the basis for combination therapy clinical trials with paclitaxel or docetaxel with R115777 in MM patients. (Blood. 2005;105:4759-4766) PMID:15728126

  17. Molecular Mechanism of Local Drug Delivery with Paclitaxel-Eluting Membranes in Biliary and Pancreatic Cancer: New Application for an Old Drug

    PubMed Central

    Bang, Sookhee; Lee, Su Yeon; Baek, Yi-Yong; Yun, Jieun; Oh, Soo Jin; Lee, Chang Woo; Jo, Eun Ae; Yang, Sugeun; Lee, Don Haeng; Lee, Dong Ki

    2015-01-01

    Implantation of self-expanding metal stents (SEMS) is palliation for patients suffering from inoperable malignant obstructions associated with biliary and pancreatic cancers. Chemotherapeutic agent-eluting stents have been developed because SEMS are susceptible to occlusion by tumor in-growth. We reported recently that paclitaxel-eluting SEMS provide enhanced local drug delivery in an animal model. However, little is known about the molecular mechanisms by which paclitaxel-eluting stents attenuate tumor growth. We investigated the signal transduction pathways underlying the antiproliferative effects of a paclitaxel-eluting membrane (PEM) implanted in pancreatic/cholangiocarcinoma tumor bearing nude mice. Molecular and cellular alterations were analyzed in the PEM-implanted pancreatic/cholangiocarcinoma xenograft tumors by Western blot, immunoprecipitation, and immunofluorescence. The quantities of paclitaxel released into the tumor and plasma were determined by liquid chromatography-tandem mass spectroscopy. Paclitaxel from the PEM and its diffusion into the tumor inhibited angiogenesis, which involved suppression of mammalian target of rapamycin (mTOR) through regulation of hypoxia inducible factor (HIF-1) and increased apoptosis. Moreover, implantation of the PEM inhibited tumor-stromal interaction-related expression of proteins such as CD44, SPARC, matrix metalloproteinase-2, and vimentin. Local delivery of paclitaxel from a PEM inhibited growth of pancreatic/cholangiocarcinoma tumors in nude mice by suppressing angiogenesis via the mTOR and inducing apoptosis signal pathway. PMID:25983747

  18. A phase I safety and pharmacokinetic study of ABT-263 in combination with carboplatin/paclitaxel in the treatment of patients with solid tumors.

    PubMed

    Vlahovic, Gordana; Karantza, Vassiliki; Wang, Ding; Cosgrove, David; Rudersdorf, Nikita; Yang, Jianning; Xiong, Hao; Busman, Todd; Mabry, Mack

    2014-10-01

    Bcl-2 family proteins are the key regulators of the intrinsic apoptotic pathway, controlling the point-of no-return and setting the threshold to engage the death machinery in response to chemical damage. Bcl-2 proteins have emerged as attractive targets for anti-cancer drug development. Navitoclax is a selective, potent, orally bioavailable, small molecule Bcl-2 inhibitor. Primary endpoints assessed the safety and pharmacokinetic (PK) interactions between navitoclax in combination with carboplatin/paclitaxel or paclitaxel alone in patients with solid tumors The study comprised two arms, one a combination of navitoclax with paclitaxel and carboplatin, the second with navitoclax and paclitaxel alone. Nineteen patients were enrolled in this study. The most frequently reported treatment-emergent AEs were alopecia (57.9 %), anemia (52.6 %), nausea (52.6 %), constipation (42.1 %), diarrhea (42.1 %), fatigue (42.1 %), neutropenia (36.8 %), thrombocytopenia (36.8 %), vomiting (31.6 %), decreased appetite (31.6 %), dehydration (26.3 %), and hypomagnesaemia (26.3 %). In the light of significant hematological and non-hematological toxicity the study was ended before de-escalation of navitoclax. Only one partial response was obtained at any dose tested, thus lowering doses could not have increased efficacy. It is the combination of toxicity with modest efficacy that led to discontinuation. No apparent PK interaction was observed between navitoclax and carboplatin or paclitaxel and the combination of navitoclax and paclitaxel had modest anti-tumor activity. PMID:24894650

  19. Molecular mechanism of local drug delivery with Paclitaxel-eluting membranes in biliary and pancreatic cancer: new application for an old drug.

    PubMed

    Bang, Sookhee; Jang, Sung Ill; Lee, Su Yeon; Baek, Yi-Yong; Yun, Jieun; Oh, Soo Jin; Lee, Chang Woo; Jo, Eun Ae; Na, Kun; Yang, Sugeun; Lee, Don Haeng; Lee, Dong Ki

    2015-01-01

    Implantation of self-expanding metal stents (SEMS) is palliation for patients suffering from inoperable malignant obstructions associated with biliary and pancreatic cancers. Chemotherapeutic agent-eluting stents have been developed because SEMS are susceptible to occlusion by tumor in-growth. We reported recently that paclitaxel-eluting SEMS provide enhanced local drug delivery in an animal model. However, little is known about the molecular mechanisms by which paclitaxel-eluting stents attenuate tumor growth. We investigated the signal transduction pathways underlying the antiproliferative effects of a paclitaxel-eluting membrane (PEM) implanted in pancreatic/cholangiocarcinoma tumor bearing nude mice. Molecular and cellular alterations were analyzed in the PEM-implanted pancreatic/cholangiocarcinoma xenograft tumors by Western blot, immunoprecipitation, and immunofluorescence. The quantities of paclitaxel released into the tumor and plasma were determined by liquid chromatography-tandem mass spectroscopy. Paclitaxel from the PEM and its diffusion into the tumor inhibited angiogenesis, which involved suppression of mammalian target of rapamycin (mTOR) through regulation of hypoxia inducible factor (HIF-1) and increased apoptosis. Moreover, implantation of the PEM inhibited tumor-stromal interaction-related expression of proteins such as CD44, SPARC, matrix metalloproteinase-2, and vimentin. Local delivery of paclitaxel from a PEM inhibited growth of pancreatic/cholangiocarcinoma tumors in nude mice by suppressing angiogenesis via the mTOR and inducing apoptosis signal pathway. PMID:25983747

  20. Therapy effect of either paclitaxel or cyclophosphamide combination treatment in patients with epithelial ovarian cancer and relation to TP53 gene status.

    PubMed Central

    Smith-Sørensen, B.; Kaern, J.; Holm, R.; Dørum, A.; Tropé, C.; Børresen-Dale, A. L.

    1998-01-01

    Cell death after treatment with chemotherapy is exerted by activation of apoptosis, and the p53 protein has been shown to actively participate in this process. This recent focus on TP53 status as a possible determinant of cancer therapy response has raised the question of whether or not mutations in the TP53 gene have an influence on paclitaxel therapy. The TP53 status has been analysed at the DNA level in tumours from 45 ovarian cancer patients randomized to treatment with paclitaxel and cisplatin or cyclophosphamide and cisplatin. Therapy response was obtained for 38 patients with clinically evaluable disease after initial surgery. The positive response rate to the paclitaxel/cisplatin therapy was 85% vs 61% for the patients who received the cyclophosphamide/cisplatin regimen. A significant difference in relapse-free survival in favour of paclitaxel/cisplatin chemotherapy was found (P = 0.001). A total of 33 tumour samples (73%) had detectable sequence alterations in the TP53 gene. When relapse-free survival was estimated for all patients with TP53 alterations in their tumours, a significant better outcome for the paclitaxel/cisplatin group was found compared with the patient group receiving cyclophosphamide and cisplatin therapy (P = 0.002). We did not observe an association between TP53 tumour status and prognosis for patients who received paclitaxel/cisplatin combination treatment, indicating that the effect of this therapy is not influenced by this parameter. PMID:9703286

  1. Paclitaxel-loaded phosphonated calixarene nanovesicles as a modular drug delivery platform.

    PubMed

    Mo, Jingxin; Eggers, Paul K; Yuan, Zhi-Xiang; Raston, Colin L; Lim, Lee Yong

    2016-01-01

    A modular p-phosphonated calix[4]arene vesicle (PCV) loaded with paclitaxel (PTX) and conjugated with folic acid as a cancer targeting ligand has been prepared using a thin film-sonication method. It has a pH-responsive capacity to trigger the release of the encapsulated PTX payload under mildly acidic conditions. PTX-loaded PCV conjugated with alkyne-modified PEG-folic acid ligands prepared via click ligation (fP-PCVPTX) has enhanced potency against folate receptor (FR)-positive SKOV-3 ovarian tumour cells over FR-negative A549 lung tumour cells. Moreover, fP-PCVPTX is also four times more potent than the non-targeting PCVPTX platform towards SKOV-3 cells. Overall, as a delivery platform the PCVs have the potential to enhance efficacy of anticancer drugs by targeting a chemotherapeutic payload specifically to tumours and triggering the release of the encapsulated drug in the vicinity of cancer cells. PMID:27009430

  2. Fabrication of poly hydroxybutyrate-polyethylene glycol-folic acid nanoparticles loaded by Paclitaxel.

    PubMed

    Rezaei, Fatemeh; Rafienia, Mohammad; Keshvari, Hamid; Sattary, Mansooreh; Naeimi, Mitra; Keyvani, Hossein

    2016-01-01

    In this study drug (paclitaxel)-loaded nanoparticles of poly hydroxybutyrate-polyethylene glycol-folic acid (PHB-PEG-FOL) were prepared by using an oil-in-water (O/W) emulsion-solvent evaporation method. The functionalization and conjugation steps in the chemical synthesis were confirmed using Fourier transform infrared (FTIR) and nuclear magnetic resonance tests ((1)H NMR). Morphology of nanoparticles was evaluated by scanning electron microscopy (SEM). Nanoparticles were characterized by particle size analyzer. Between two samples containing drug, the lower doses showed more homogeneous distribution, and the lowest aggregation. The drug release profiles showed a two-phase release including initial rapid release and a continuous release. MG63 cells were used to evaluate cytotoxicity. The cytotoxicity of PHB-PEG-FOL nanoparticles with drug against cancer cells was much higher and longer than free drug sample. These nanoparticles were successfully synthesized as a novel system for targeted drug delivery against cancer cells. PMID:26234551

  3. Paclitaxel loaded carrier based biodegradable polymeric implants: Preparation and in vitro characterization

    PubMed Central

    Hiremath, Jagadeesh G.; Khamar, Nirav S.; Palavalli, Subhash G.; Rudani, Chetan G.; Aitha, Rajeshkumar; Mura, Prasanthkumar

    2012-01-01

    The objective of this study was to develop paclitaxel (PTX) loaded poly(?-caprolactone) (PCL) based tiny implants. ?-Cyclodextrin (?-CD) and polyethylene glycol (PEG 6000) were used to enhance solubility and release of the drug in the phosphate buffer saline pH 7.4. Implants were evaluated in terms of color, shape, thickness, surface area, weight, drug content. Developed implants were characterized for their surface morphology (SEM analysis), drug physical state by thermal analysis (DSC studies), crystalline nature (XRD studies) and drug excipients compatibility (FT-IR spectroscopy). Macroscopically all the tiny implants were white in color and cylindrical in shape with smooth surfaces. PTX was entrapped within implants in the polymeric amorphous form. In vitro drug release studies showed prolonged and controlled release of PTX with zero order and KorsmeyerPeppas model being exhibited. Excipients and method of preparation did not affect chemical stability of PTX. PMID:23960822

  4. Paclitaxel-loaded phosphonated calixarene nanovesicles as a modular drug delivery platform

    PubMed Central

    Mo, Jingxin; Eggers, Paul K.; Yuan, Zhi-xiang; Raston, Colin L.; Lim, Lee Yong

    2016-01-01

    A modular p-phosphonated calix[4]arene vesicle (PCV) loaded with paclitaxel (PTX) and conjugated with folic acid as a cancer targeting ligand has been prepared using a thin film-sonication method. It has a pH-responsive capacity to trigger the release of the encapsulated PTX payload under mildly acidic conditions. PTX-loaded PCV conjugated with alkyne-modified PEG-folic acid ligands prepared via click ligation (fP-PCVPTX) has enhanced potency against folate receptor (FR)-positive SKOV-3 ovarian tumour cells over FR-negative A549 lung tumour cells. Moreover, fP-PCVPTX is also four times more potent than the non-targeting PCVPTX platform towards SKOV-3 cells. Overall, as a delivery platform the PCVs have the potential to enhance efficacy of anticancer drugs by targeting a chemotherapeutic payload specifically to tumours and triggering the release of the encapsulated drug in the vicinity of cancer cells. PMID:27009430

  5. Enhanced antitumor efficacy of vitamin E TPGS-emulsified PLGA nanoparticles for delivery of paclitaxel.

    PubMed

    Sun, Yanbin; Yu, Bo; Wang, Guoying; Wu, Yongsheng; Zhang, Xiaomin; Chen, Yanmin; Tang, Suoqing; Yuan, Yuan; Lee, Robert J; Teng, Lesheng; Xu, Shun

    2014-11-01

    Nanoparticles are efficient delivery vehicles for cancer therapy such as paclitaxel (PTX). In this study, we formulated PTX into PLGA polymeric nanoparticles. Vitamin E TPGS was used as an emulsifier to stabilize the nanoparticle formulation. PTX was encapsulated in TPGS-emulsified polymeric nanoparticles (TENPs) by a nanoprecipitation method in ethanol-water system. The resultant PTX-TENPs showed a very uniform particle size (?100 nm) and high drug encapsulation (>80%). The cytotoxicity of PTX-TENPs was examined in A549 lung cancer cell line. Preferential tumor accumulation of TENPs was observed in the A549 lung cancer xenograft model. Tumor growth was significantly inhibited by intravenous injection of PTX-TENPs. Our results suggested that the modified nanoprecipitation method holds great potential for the fabrication of the PTX loaded polymeric nanoparticles. TPGS can be used in the manufacture of polymeric nanoparticles for the controlled release of PTX and other anti-cancer drugs. PMID:25456995

  6. Conjugation of paclitaxel to iron oxide nanoparticles for tumor imaging and therapy

    NASA Astrophysics Data System (ADS)

    Liu, Dongfang; Wu, Wei; Chen, Xi; Wen, Song; Zhang, Xizhi; Ding, Qi; Teng, Gaojun; Gu, Ning

    2012-03-01

    A strategy for conjugating an antitumor agent to superparamagnetic iron oxide nanoparticles (SPIONs) via a biocleavable ester binding is reported. Paclitaxel (PTX) was selected as a model drug. Both the in vitro and in vivo performance of the conjugates of SPION-PTX was investigated respectively. PTX can be released slowly through the hydrolysis of the ester bond in a pH-dependent manner and the SPION-PTX has near equal cytotoxity to the clinical PTX injection (Taxol) at the equivalent dose of PTX. Furthermore, the SPION-PTX can accumulate in tumor tissues as demonstrated by MRI and exhibit better tumor suppression effect than Taxol in vivo. The above good performance of the SPION-PTX together with the good biocompatibility of the SPIONs would promote greatly the application of the SPIONs in the biomedicine field.

  7. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    PubMed Central

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  8. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  9. Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co-delivery via liposomes

    PubMed Central

    Gao, Menghua; Xu, Yuzhen; Qiu, Liyan

    2015-01-01

    A novel composite liposomal system co-encapsulating paclitaxel (PTX) with chloroquine phosphate (CQ) was designed for treating PTX-resistant carcinoma. It was confirmed that liposomal CQ can sensitize PTX by means of autophagy inhibition and competitively binding with multidrug-resistance transporters. Furthermore, according to the in vitro cytotoxicity and apoptosis assay, real-time observation of cellular uptake, and in vivo tissue distribution study, co-encapsulation of PTX and CQ in liposomes was validated as superior to the mixture of PTX liposome plus CQ liposome due to the simultaneous delivery and synergetic effect of the two drugs. Consequently, this composite liposome achieved significantly stronger anticancer efficacy in vivo than the PTX liposome plus CQ liposome mixture. This study helps to guide and enlighten ongoing and future clinical trials about the optimal administration modes for drug combination therapy. PMID:26543365

  10. [A case of gastric cancer with peritoneal dissemination successfully treated by S-1/paclitaxel combination chemotherapy].

    PubMed

    Shoji, Teruaki

    2011-02-01

    A 62-year-old woman visited our hospital with diarrhea, bloating, vomiting, and black stool. Borrmann-type 3 gastric cancer with hemorrhaging was revealed by stomach endoscopy. The biopsy showed a poorly-differentiated adenocarcinoma. Moreover, peritoneal dissemination was found by computed tomography and we combined S-1 80 mg/m(4 weeks administration and week rest)with paclitaxel(PTX)50 mg/ m (day 1, 8, 15, 3 weeks rest). After 2 courses, endoscopy showed tumor shrinkage. Therefore, we conducted total gastrectomy with resection of gall bladder and spleen. The final findings were Stage II .We conducted S-1/PTX combination chemotherapy(4 courses)followed by monotherapy as adjuvant chemotherapy. Recently, the woman had been living without relapse four years after operation. PMID:21368499

  11. Silicate Esters of Paclitaxel and Docetaxel: Synthesis, Hydrophobicity, Hydrolytic Stability, Cytotoxicity, and Prodrug Potential

    PubMed Central

    2015-01-01

    We report here the synthesis and selected properties of various silicate ester derivatives (tetraalkoxysilanes) of the taxanes paclitaxel (PTX) and docetaxel (DTX) [i.e., PTX-OSi(OR)3 and DTX-OSi(OR)3]. Both the hydrophobicity and hydrolytic lability of these silicates can be (independently) controlled by choice of the alkyl group (R). The synthesis, structural characterization, hydrolytic reactivity, and in vitro cytotoxicity against the MDA-MB-231 breast cancer cell line of most of these derivatives are described. We envision that the greater hydrophobicity of these silicates (vis--vis PTX or DTX itself) should be advantageous from the perspective of preparation of stable aqueous dispersions of amphiphilic block-copolymer-based nanoparticle formulations. PMID:24564494

  12. Repetitive responses to nanoparticle albumin-bound paclitaxel and carboplatin in malignant pleural mesothelioma.

    PubMed

    Kanai, Osamu; Fujita, Kohei; Nakatani, Koichi; Mio, Tadashi

    2016-03-01

    Malignant pleural mesothelioma (MPM) is a rare tumor with a poor prognosis. Although cisplatin plus pemetrexed is the standard chemotherapy for patients with unresectable MPM, few agents are available for MPM patients who do not tolerate pemetrexed. Here, we report the first case of an MPM patient for whom the combination of nanoparticle albumin-bound paclitaxel and carboplatin (nabPC) repetitively achieved tumor regression. A 76-year-old man was diagnosed with epithelioid MPM. One cycle of carboplatin plus pemetrexed and two cycles of gemcitabine were administered but failed to inhibit tumor progression. By contrast, four cycles of nabPC resulted in a good response. Upon disease progression, four cycles of nabPC were performed again and resulted in a modest response. In conclusion, based on the present case, nabPC is a potential alternative chemotherapeutic agent for MPM, especially for MPM patients who do not tolerate pemetrexed. PMID:26839699

  13. PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells

    PubMed Central

    Su, Wen-Pin; Cheng, Fong-Yu; Shieh, Dar-Bin; Yeh, Chen-Sheng; Su, Wu-Chou

    2012-01-01

    Background: Effective cancer chemotherapy remains an important issue in cancer treatment, and signal transducer and activator of transcription-3 (Stat3) activation leads to cellular resistance of anticancer agents. Polymers are ideal vectors to carry both chemotherapeutics and small interfering ribonucleic acid (siRNA) to enhance antitumor efficacy. In this paper, poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with paclitaxel and Stat3 siRNA were successfully synthesized, and their applications in cancer cells were investigated. Methods: Firstly, paclitaxel was enclosed by PLGA nanoparticles through solvent evaporation. They were then coated with cationic polyethylenimine polymer (PLGA-PEI-TAX), enabling it to carry Stat3 siRNA on its surface through electrostatic interactions (PLGA-PEI-TAX-S3SI). The size, zeta potential, deliver efficacy, and release profile of the PLGA nanocomplexes were characterized in vitro. The cellular uptake, intracellular nanoparticle trajectory, and subsequent cellular events were evaluated after treatment with various PLGA nanocomplexes in human lung cancer A549 cells and A549-derived paclitaxel-resistant A549/T12 cell lines with α-tubulin mutation. Results: A549 and A549/T12 cells contain constitutively activated Stat3, and silencing Stat3 by siRNA made both cancer cells more sensitive to paclitaxel. Therefore, PLGA-PEI-TAX-S3SI was synthesized to test its therapeutic role in A549 and A549/T12 cells. Transmission electron microscopy showed the size of PLGA-PEI-TAX-S3SI to be around 250 nm. PLGA-PEI nanoparticles were nontoxic. PLGA-PEI-TAX was taken up by A549 and A549/T12 cells more than free paclitaxel, and they induced more condensed microtubule bundles and had higher cytotoxicity in these cancer cells. Moreover, the yellowish fluorescence observed in the cytoplasm of the cancer cells indicates that the PLGA-PEI nanoparticles were still simultaneously delivering Oregon Green paclitaxel and cyanine-5-labeled Stat3 siRNA 3 hours after treatment. Furthermore, after the cancer cells were incubated with the synthesized PLGA nanocomplexes, PLGA-PEI-TAX-S3SI suppressed Stat3 expression and induced more cellular apoptosis in A549 and A549/T12 cells compared with PLGA-PEI-TAX. Conclusion: The PLGA-PEI-TAX-S3SI complex provides a new therapeutic strategy to control cancer cell growth. PMID:22904633

  14. Role of microRNAs in the resistance of prostate cancer to docetaxel and paclitaxel.

    PubMed

    Kopczy?ska, Ewa

    2016-01-01

    Taxanes, a group of cancer drugs that includes docetaxel and paclitaxel, have become a front-line therapy for a variety of metastatic cancers, but resistance can develop. There are several docetaxel resistance mechanisms in prostate cancer: unfavorable tumor microenvironment, drug efflux pump, alterations in microtubule structure and/or function, and apoptotic defects (e.g. up regulation of Bcl-2 and clusterin or activation of the PTEN/PI3K/mTOR pathway or activation of the MAPK/ERK pathway). MicroRNAs (miRNAs), small regulatory molecules, could also function as a contributor to the resistance of cancer cells to commonly used anti-cancer drugs. Aberrant expressions of miRNAs that can act as tumor suppressors or oncogenes are closely associated with the development, invasion and metastasis of various cancers including prostate cancer. Nearly 50 miRNAs have been reported to be differentially expressed in human prostate cancer so far, but knowledge concerning the effects of miRNAs on the sensitivity to anti-cancer drugs is still limited. The author of the review focus on probable impact of miRNAs on the resistance to docetaxel and paclitaxel. Overexpression of miR-21 increased the resistance of prostate cancer cells to docetaxel by targeting PDCD4, PTEN, RECK, and BTG2. Nevertheless, decreased expressions of tumor suppressors: miR-34a, miR-143, miR-148a and miR-200 family are involved in resistance of anti-cancer drugs by inhibition of apoptosis and activation of signaling pathways. Conclude miRNAs become very attractive target for potential therapeutic interventions. PMID:26843836

  15. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Lv, Piping; Chen, Zhongke; Ni, Dezhi; Zhang, Lijun; Yue, Hua; Yue, Zhanguo; Wei, Wei; Ma, Guanghui

    2015-02-01

    Combination chemotherapy has been proven promising for cancer treatment, but unsatisfactory therapeutic data and increased side effects slow down the development in the clinic. In this study, we develop an effective approach to co-encapsulate a hydrophilic-hydrophobic chemotherapeutic drug pair (paclitaxel and doxorubicin) into magnetic O-carboxymethyl-chitosan nanoparticles. To endow them with the ability of programmed delivery, these carriers are further camouflaged with an Arg-Gly-Asp anchored erythrocyte membrane. Compared with the traditional polyethylene glycol coating method, this biomimetic decoration strategy is demonstrated to be superior in prolonging circulation time, improving tumor accumulation, facilitating tumor uptake, and tuning intracellular fate. These outstanding properties enable the as-designed nanodevice to exhibit greater tumor growth inhibition ability and much lower side effects than the combined use of commercial formulations.Combination chemotherapy has been proven promising for cancer treatment, but unsatisfactory therapeutic data and increased side effects slow down the development in the clinic. In this study, we develop an effective approach to co-encapsulate a hydrophilic-hydrophobic chemotherapeutic drug pair (paclitaxel and doxorubicin) into magnetic O-carboxymethyl-chitosan nanoparticles. To endow them with the ability of programmed delivery, these carriers are further camouflaged with an Arg-Gly-Asp anchored erythrocyte membrane. Compared with the traditional polyethylene glycol coating method, this biomimetic decoration strategy is demonstrated to be superior in prolonging circulation time, improving tumor accumulation, facilitating tumor uptake, and tuning intracellular fate. These outstanding properties enable the as-designed nanodevice to exhibit greater tumor growth inhibition ability and much lower side effects than the combined use of commercial formulations. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07027e

  16. Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Aravind, Athulya; Nair, Remya; Raveendran, Sreejith; Veeranarayanan, Srivani; Nagaoka, Yutaka; Fukuda, Takahiro; Hasumura, Takahashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.

    2013-10-01

    Controlled and targeted drug delivery is an essential criterion in cancer therapy to reduce the side effects caused by non-specific drug release and toxicity. Targeted chemotherapy, sustained drug release and optical imaging have been achieved using a multifunctional nanocarrier constructed from poly (D, L-lactide-co-glycolide) nanoparticles (PLGA NPs), an anticancer drug paclitaxel (PTX), a fluorescent dye Nile red (NR), magnetic fluid (MF) and aptamers (Apt, AS1411, anti-nucleolin aptamer). The magnetic fluid and paclitaxel loaded fluorescently labeled PLGA NPs (MF-PTX-NR-PLGA NPs) were synthesized by a single-emulsion technique/solvent evaporation method using a chemical cross linker bis (sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. Targeting aptamers were then introduced to the particles through the reaction with the cross linker to target the nucleolin receptors over expressed on the cancer cell surface. Specific binding and uptake of the aptamer conjugated magnetic fluid loaded fluorescently tagged PLGA NPs (Apt-MF-NR-PLGA NPs) to the target cancer cells induced by aptamers was observed using confocal microscopy. Cytotoxicity assay conducted in two cell lines (L929 and MCF-7) confirmed that targeted MCF-7 cancer cells were killed while control cells were unharmed. In addition, aptamer mediated delivery resulting in enhanced binding and uptake to the target cancer cells exhibited increased therapeutic effect of the drug. Moreover, these aptamer conjugated magnetic polymer vehicles apart from actively transporting drugs into specifically targeted tumor regions can also be used to induce hyperthermia or for facilitating magnetic guiding of particles to the tumor regions.

  17. Role of microRNAs in the resistance of prostate cancer to docetaxel and paclitaxel

    PubMed Central

    2016-01-01

    Taxanes, a group of cancer drugs that includes docetaxel and paclitaxel, have become a front-line therapy for a variety of metastatic cancers, but resistance can develop. There are several docetaxel resistance mechanisms in prostate cancer: unfavorable tumor microenvironment, drug efflux pump, alterations in microtubule structure and/or function, and apoptotic defects (e.g. up regulation of Bcl-2 and clusterin or activation of the PTEN/PI3K/mTOR pathway or activation of the MAPK/ERK pathway). MicroRNAs (miRNAs), small regulatory molecules, could also function as a contributor to the resistance of cancer cells to commonly used anti-cancer drugs. Aberrant expressions of miRNAs that can act as tumor suppressors or oncogenes are closely associated with the development, invasion and metastasis of various cancers including prostate cancer. Nearly 50 miRNAs have been reported to be differentially expressed in human prostate cancer so far, but knowledge concerning the effects of miRNAs on the sensitivity to anti-cancer drugs is still limited. The author of the review focus on probable impact of miRNAs on the resistance to docetaxel and paclitaxel. Overexpression of miR-21 increased the resistance of prostate cancer cells to docetaxel by targeting PDCD4, PTEN, RECK, and BTG2. Nevertheless, decreased expressions of tumor suppressors: miR-34a, miR-143, miR-148a and miR-200 family are involved in resistance of anti-cancer drugs by inhibition of apoptosis and activation of signaling pathways. Conclude miRNAs become very attractive target for potential therapeutic interventions. PMID:26843836

  18. Phase I dose escalation safety study of nanoparticulate paclitaxel (CTI 52010) in normal dogs

    PubMed Central

    Axiak, Sandra M; Selting, Kim A; Decedue, Charles J; Henry, Carolyn J; Tate, Deborah; Howell, Jahna; Bilof, K James; Kim, Dae Y

    2011-01-01

    Background Paclitaxel is highly effective in the treatment of many cancers in humans, but cannot be routinely used in dogs as currently formulated due to the exquisite sensitivity of this species to surfactant-solubilizing agents. CTI 52010 is a formulation of nanoparticulate paclitaxel consisting of drug and normal saline. Our objectives were to determine the maximally tolerated dose, dose-limiting toxicities, and pharmacokinetics of CTI 52010 administered intravenously to normal dogs. Methods Three normal adult hound dogs were evaluated by physical examination, complete blood count, chemistry profile, and urinalysis. Dogs were treated with staggered escalating dosages of CTI 52010 with a 28-day washout. All dogs were treated with a starting dosage of 40 mg/m2, and subsequent dosages were escalated at 50% (dog 1), 100% (dog 2), or 200% (dog 3) with each cycle, to a maximum of 240 mg/m2. Dogs were monitored by daily physical assessment and weekly laboratory evaluation. Standard criteria were used to grade adverse events. Plasma was collected at regular intervals to determine pharmacokinetics. Dogs were euthanized humanely, and necropsy was performed one week after the last treatment. Results The dose-limiting toxicity was grade 4 neutropenia and the maximum tolerated dosage was 120 mg/m2. Grade 1–2 gastrointestinal toxicity was noted at higher dosages. Upon post mortem evaluation, no evidence of organ (liver, kidney, spleen) toxicity was noted. Conclusion CTI 52010 was well tolerated when administered intravenously to normal dogs. A starting dosage for a Phase I/II trial in tumor-bearing dogs is 80 mg/m2. PMID:22072863

  19. Delivery of paclitaxel from cobalt–chromium alloy surfaces without polymeric carriers

    PubMed Central

    Mani, Gopinath; Macias, Celia E.; Feldman, Marc D.; Marton, Denes; Oh, Sunho; Agrawal, C. Mauli

    2014-01-01

    Polymer-based carriers are commonly used to deliver drugs from stents. However, adverse responses to polymer coatings have raised serious concerns. This research is focused on delivering drugs from stents without using polymers or any carriers. Paclitaxel (PAT), an anti-restenotic drug, has strong adhesion towards a variety of material surfaces. In this study, we have utilized such natural adhesion property of PAT to attach these molecules directly to cobalt–chromium (Co–Cr) alloy, an ultra-thin stent strut material. Four different groups of drug coated specimens were prepared by directly adding PAT to Co–Cr alloy surfaces: Group-A (PAT coated, unheated, and ethanol cleaned); Group-B (PAT coated, heat treated, and ethanol cleaned); Group-C (PAT coated, unheated, and not ethanol cleaned); and Group-D (PAT coated, heat treated and not ethanol cleaned). In vitro drug release of these specimens was investigated using high performance liquid chromatography. Groups A and B showed sustained PAT release for up to 56 days. A simple ethanol cleaning procedure after PAT deposition can remove the loosely bound drug crystals from the alloy surfaces and thereby allowing the remaining strongly bound drug molecules to be released at a sustained rate. The heat treatment after PAT coating further improved the stability of PAT on Co–Cr alloy and allowed the drug to be delivered at a much slower rate, especially during the initial 7 days. The specimens which were not cleaned in ethanol, Groups C and D, showed burst release. PAT coated Co–Cr alloy specimens were thoroughly characterized using scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. These techniques were collectively useful in studying the morphology, distribution, and attachment of PAT molecules on Co–Cr alloy surfaces. Thus, this study suggests the potential for delivering paclitaxel from Co–Cr alloy surfaces without using any carriers. PMID:20398928

  20. Maackia amurensis agglutinin enhances paclitaxel induced cytotoxicity in cultured non-small cell lung cancer cells.

    PubMed

    Chhetra Lalli, Rakhee; Kaur, Kiranjeet; Dadsena, Shashank; Chakraborti, Anuradha; Srinivasan, Radhika; Ghosh, Sujata

    2015-08-01

    Maackia amurensis agglutinin (MAA) is gaining recognition as the potential diagnostic agent for cancer. Previous studies from our laboratory have demonstrated that this lectin could interact specifically with the cells and biopsy samples of non-small cell lung cancer (NSCLC) origin but not with normal lung fibroblast cells. Moreover, this lectin was also found to induce apoptosis in NSCLC cells. Further, the biological activity of this lectin was shown to survive gastrointestinal proteolysis and inhibit malignant cell growth and tumorigenesis in mice model of melanoma thereby indicating the therapeutic potential of this lectin. Paclitaxel is one of the widely used traditional chemotherapeutic drugs for treatment of NSCLC but it exerts side-effects on normal healthy cells too. Studies have revealed that lectins have potential to act as an adjuvant chemotherapeutic agent in cancer of different origin. Thus, in the present study, an attempt was made to assess the chemo-adjuvant role of MAA in three types of NSCLC cell lines [adenocarcinoma cell line (A549), squamous cell carcinoma cell line (NCI-H520) and large cell carcinoma cell line (NCI-H460)]. We have observed that the non-cytotoxic concentration of this lectin was able to enhance the cytotoxic activity of Paclitaxel even at low dose by inducing apoptosis through intrinsic/mitochondrial pathway in all the three types of NSCLC cell lines, although the involvement of extrinsic pathway of apoptosis in case of NCI-H460 cell line could not be ruled out. Further, this lectin was also found to augment the chemo-preventive activity of this drug by arresting cells in G2-M phase of the cell cycle. Collectively, our results have suggested that Maackia amurensis agglutinin may have the potential to be used as adjuvant chemotherapeutic agent in case of NSCLC. PMID:25978938

  1. Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles.

    PubMed

    Pan, Jie; Feng, Si-Shen

    2008-06-01

    We synthesized nanoparticles (NPs) of the blend of two-component copolymers for targeted chemotherapy with paclitaxel used as model drug. One component is poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate (PLA-TPGS), which is of desired hydrophobic-lipophilic balance, and another is TPGS-COOH, which facilitates the folate conjugation for targeting. The nanoparticles of the two-copolymer blend at various component ratio were prepared by the solvent extraction/evaporation single emulsion method and then decorated by folate, which were characterized by laser light scattering (LLS) for particles' size and size distribution, zeta potential analyzer for surface charge, and X-ray photoelectron spectroscopy (XPS) for surface chemistry. The drug encapsulation efficiency (EE) and in vitro drug release were measured by high performance liquid chromatography (HPLC). The targeting effect was investigated in vitro by cancer cell uptake of coumarin-6-loaded NPs and further confirmed by cytotoxicity of cancer cells treated with the drug formulated in the NPs. We showed that the NP formulation has great advantages vs the pristine drug in achieving better therapeutic effect, which increased 8.68% for MCF-7 breast cancer cells, and that the folate-decoration can significantly promote targeted delivery of the drug into the corresponding cancer cells and thus enhance its therapeutic effect, which increased 24.4% for the NP formulation of 16.7% TPGS-COOH component and 31.1% for the NP formulation of 33.3% TPGS-COOH component after 24h treatment at the same 25 microg/ml paclitaxel concentration. The experiments on C6 glioma cells further confirmed these advantages. PMID:18396333

  2. Influence of Drug Formulation on OATP1B-Mediated Transport of Paclitaxel

    PubMed Central

    Nieuweboer, Annemieke J.M.; Hu, Shuiying; Hagenbuch, Bruno; Moghaddam-Helmantel, Inge Ghobadi; Gibson, Alice A.; de Bruijn, Peter; Mathijssen, Ron H. J.; Sparreboom, Alex

    2014-01-01

    Purpose Taxane antineoplastic agents are extensively taken up into hepatocytes by OATP1B-type transporters prior to metabolism and excretion. Because the biodistributional properties imposed upon these agents by different solubilizers drive clinically-important pharmacodynamic endpoints, we tested the hypothesis that the in vitro and in vivo interaction of taxanes with OATP1B transporters is affected by the choice of drug delivery system. Experimental Design Transport of paclitaxel, docetaxel, and cabazitaxel was studied in vitro using various cell lines transfected with OATP1B1, OATP1B3, or the rodent equivalent Oatp1b2. Pharmacokinetic studies were done in wildtype and Oatp1b2-knockout mice in the presence or absence of polysorbate 80 (PS80) or Kolliphor EL (formerly Cremophor EL; CrEL). Results Paclitaxel and docetaxel, but not cabazitaxel, were transported substrates of OATP1B1, OATP1B3, and Oatp1b2, and these transport processes were strongly reduced in the presence of clinically-relevant concentrations of PS80 and CrEL. In the absence of solubilizers, deficiency of Oatp1b2 in mice was associated with a significantly decreased taxane clearance due to a liver distribution defect (P<0.00001), but these kinetic changes were masked in the presence of PS80 or CrEL (P>0.05). Conclusions Our findings confirm the importance of OATP1B-type transporters in the hepatic elimination of taxanes, and that this process can be inhibited by PS80 and CrEL. These results suggest that the likelihood of drug-drug interactions mediated by these transporters is strongly dependent on the selected taxane solubilizer. PMID:24755470

  3. Adjuvant paclitaxel and carboplatin chemotherapy with involved field radiation in advanced endometrial cancer: A sequential approach

    SciTech Connect

    Lupe, Krystine; Kwon, Janice . E-mail: Janice.kwon@lhsc.on.ca; D'Souza, David; Gawlik, Christine; Stitt, Larry; Whiston, Frances; Nascu, Patricia; Wong, Eugene; Carey, Mark S.

    2007-01-01

    Purpose: To determine the feasibility of adjuvant paclitaxel and carboplatin chemotherapy interposed with involved field radiotherapy for women with advanced endometrial cancer. Methods and Materials: This was a prospective cohort study of women with Stage III and IV endometrial cancer. Adjuvant therapy consisted of 4 cycles of paclitaxel (175 mg/m{sup 2}) and carboplatin (350 mg/m{sup 2}) every 3 weeks, followed sequentially by external beam radiotherapy (RT) to the pelvis (45 Gy), followed by an additional two cycles of chemotherapy. Para-aortic RT and/or HDR vault brachytherapy (BT) were added at the discretion of the treating physician. Results: Thirty-three patients (median age, 63 years) received treatment between April 2002 and June 2005. Median follow-up was 21 months. Stage distribution was as follows: IIIA (21%), IIIC (70%), IVB (9%). Combination chemotherapy was successfully administered to 30 patients (91%) and 25 patients (76%), before and after RT respectively. Nine patients (27%) experienced acute Grade 3 or 4 chemotherapy toxicities. All patients completed pelvic RT; 19 (58%) received standard 4-field RT and 14 (42%) received intensity-modulated radiotherapy. Ten (30%) received extended field radiation. Four patients (12%) experienced acute Grade 3 or 4 RT toxicities. Six (18%) patients developed chronic RT toxicity. There were no treatment-related deaths. Two-year disease-free and overall survival rates were both 55%. There was only one pelvic relapse (3%). Conclusions: Adjuvant treatment with combination chemotherapy interposed with involved field radiation in advanced endometrial cancer was well tolerated. This protocol may be suitable for further evaluation in a clinical trial.

  4. Weekly cisplatin, epirubicin, and paclitaxel with granulocyte colony-stimulating factor support vs triweekly epirubicin and paclitaxel in locally advanced breast cancer: final analysis of a sicog phase III study.

    PubMed

    Frasci, G; D'Aiuto, G; Comella, P; Thomas, R; Botti, G; Di Bonito, M; De Rosa, V; Iodice, G; Rubulotta, M R; Comella, G

    2006-10-23

    The present study aimed at evaluating whether a weekly cisplatin, epirubicin, and paclitaxel (PET) regimen could increase the pathological complete response (pCR) rate in comparison with a tri-weekly epirubicin and paclitaxel administration in locally advanced breast cancer (LABC) patients. Patients with stage IIIB disease were randomised to receive either 12 weekly cycles of cisplatin 30 mg m(-2), epirubicin 50 mg m(-2), and paclitaxel 120 mg m(-2) (PET) plus granulocyte-colony stimulating factor support, or four cycles of epirubicin 90 mg m(-2)+paclitaxel 175 mg m(-2) (ET) every 3 weeks. Overall, 200 patients (PET/ET=100/100) were included in this study. A pCR in both breast and axilla occurred in 16 (16%) PET patients and in six (6%) ET patients (P=0.02). The higher activity of PET was evident only in ER negative (27.5 vs 5.4%; P=0.026), and in HER/neu positive (31 vs 5%; P=0.037) tumours. The two arms yielded similar pCR rate in ER positive (PET/ET=7.5/7.1%) and HER/neu negative (PET/ET=10/6%) patients. At a 39 months median follow-up, 70 patients showed a progression or relapses (PET, 32 vs ET, 38). Anaemia, mucositis, peripheral neuropathy, and gastrointestinal toxicity were substantially more frequent in the PET arm. The PET weekly regimen is superior to ET in terms of pCR rate in LABC patients with ER negative and/or HER2 positive tumours Mature data in terms of disease-free and overall survival are needed to ascertain whether this approach could improve the prognosis of these subsets of LABC patients. PMID:17047649

  5. Fhit Delocalizes Annexin A4 from Plasma Membrane to Cytosol and Sensitizes Lung Cancer Cells to Paclitaxel

    PubMed Central

    Gaudio, Eugenio; Paduano, Francesco; Spizzo, Riccardo; Ngankeu, Apollinaire; Zanesi, Nicola; Gaspari, Marco; Ortuso, Francesco; Lovat, Francesca; Rock, Jonathan; Hill, Grace A.; Kaou, Mohamed; Cuda, Giovanni; Aqeilan, Rami I.; Alcaro, Stefano; Croce, Carlo M.; Trapasso, Francesco

    2013-01-01

    Fhit protein is lost or reduced in a large fraction of human tumors, and its restoration triggers apoptosis and suppresses tumor formation or progression in preclinical models. Here, we describe the identification of candidate Fhit-interacting proteins with cytosolic and plasma membrane localization. Among these, Annexin 4 (ANXA4) was validated by co-immunoprecipitation and confocal microscopy as a partner of this novel Fhit protein complex. Here we report that overexpression of Fhit prevents Annexin A4 translocation from cytosol to plasma membrane in A549 lung cancer cells treated with paclitaxel. Moreover, paclitaxel administration in combination with AdFHIT acts synergistically to increase the apoptotic rate of tumor cells both in vitro and in vivo experiments. PMID:24223161

  6. Effective Drug Delivery, in vitro and in vivo, By Carbon-Based Nanovectors Non-Covalently Loaded With Unmodified Paclitaxel

    PubMed Central

    Berlin, Jacob M.; Leonard, Ashley D.; Pham, Tam T.; Sano, Daisuke; Marcano, Daniela C.; Yan, Shayou; Fiorentino, Stefania; Milas, Zvonimir L.; Kosynkin, Dmitry V.; Katherine Price, B.; Lucente-Schultz, Rebecca M.; Wen, XiaoXia; Gabriela Raso, M.; Craig, Suzanne L.; Tran, Hai T.; Myers, Jeffrey N.; Tour, James M.

    2010-01-01

    Many new drugs have low aqueous solubility and high therapeutic efficacy. Paclitaxel (PTX) is a classic example of this type of compound. Here we show that extremely small (<40 nm) hydrophilic carbon clusters (HCCs) that are PEGylated (PEG-HCCs) are effective drug delivery vehicles when simply mixed with paclitaxel. This formulation of PTX sequestered in PEG-HCCs (PTX/PEG-HCCs) is stable for at least twenty weeks. The PTX/PEG-HCCs formulation was as effective as PTX in a clinical formulation in reducing tumor volumes in an orthotopic murine model of oral squamous cell carcinoma. Preliminary toxicity and biodistribution studies suggest that the PEG-HCCs are not acutely toxic and, like many other nanomaterials, are primarily accumulated in the liver and spleen. This work demonstrates that carbon nanomaterials are effective drug delivery vehicles in vivo when non-covalently loaded with an unmodified drug. PMID:20681596

  7. Resistant metastatic penile carcinoma and response to biochemotherapy with paclitaxel and epidermal growth factor receptor monoclonal antibody, nimotuzumab

    PubMed Central

    Pandey, Avinash; Noronha, Vanita; Joshi, Amit; Tongaonkar, Hemant; Bakshi, Ganesh; Prabhash, Kumar

    2013-01-01

    Carcinoma penis is one of the common malignancies in developing world especially among rural population. Multimodality treatment with surgery, radiation and chemotherapy for advanced penile carcinoma with groin nodal metastasis is crucial to optimise the outcome. Cisplatin, fluorouracil, methotrexate, vinorelbine, bleomycin and paclitaxel are the common chemotherapeutic agents used along with local therapy. Paucity of data to show superiority of one chemotherapeutic regime over another and only modest response to any combination chemotherapy. Progression of disease after surgery, radiation and chemotherapy is associated with poor outcome and quality of life. Nimotuzumab, Anti EGFR monoclonal antibody, along with paclitaxel in our case of resistant metastatic penile carcinoma has shown good symptomatic palliation and clinical response. PMID:23878483

  8. Successful chemotherapy with carboplatin and nab-paclitaxel for thymic large cell neuroendocrine carcinoma: A case report

    PubMed Central

    IGAWA, SATOSHI; YANAGISAWA, NOBUYUKI; NIWA, HIDEYUKI; ISHIHARA, MIKIKO; HIYOSHI, YASUHIRO; OTANI, SAKIKO; KATONO, KEN; SASAKI, JIICHIRO; SATOH, YUKITOSHI; MASUDA, NORIYUKI

    2015-01-01

    Thymic large cell neuroendocrine carcinomas (LCNECs) are rare, and the optimal regimen for second and subsequent lines of chemotherapy for the treatment of LCNECs remains unknown. In the present case study, a 59-year-old male with post-operative recurrent thymic LCNEC was treated with nab-paclitaxel and carboplatin every 4 weeks as third-line chemotherapy, and a partial response was achieved following 4 cycles of this regimen. The patient developed grade 4 neutropenia and grade 3 leukopenia, but none of the other toxicities, including peripheral neuropathy, were severe. Therefore, the patient was able to tolerate this salvage chemotherapy. To the best of our knowledge, the present study is the first case demonstrating clinically meaningful antitumor activity by combination chemotherapy with carboplatin and nab-paclitaxel, resulting in a positive response in a patient with thymic LCNEC.

  9. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel

    PubMed Central

    Hamaguchi, T; Matsumura, Y; Suzuki, M; Shimizu, K; Goda, R; Nakamura, I; Nakatomi, I; Yokoyama, M; Kataoka, K; Kakizoe, T

    2005-01-01

    Paclitaxel (PTX) is one of the most effective anticancer agents. In clinical practice, however, high incidences of adverse reactions of the drug, for example, neurotoxicity, myelosuppression, and allergic reactions, have been reported. NK105, a micellar nanoparticle formulation, was developed to overcome these problems and to enhance the antitumour activity of PTX. Via the self-association process, PTX was incorporated into the inner core of the micelle system by physical entrapment through hydrophobic interactions between the drug and the well-designed block copolymers for PTX. NK105 was compared with free PTX with respect to their in vitro cytotoxicity, in vivo antitumour activity, pharmacokinetics, pharmacodynamics, and neurotoxicity. Consequently, the plasma area under the curve (AUC) values were approximately 90-fold higher for NK105 than for free PTX because the leakage of PTX from normal blood vessels was minimal and its capture by the reticuloendothelial system minimised. Thus, the tumour AUC value was 25-fold higher for NK105 than for free PTX. NK105 showed significantly potent antitumour activity on a human colorectal cancer cell line HT-29 xenograft as compared with PTX (P<0.001) because the enhanced accumulation of the drug in the tumour has occurred, probably followed by its effective and sustained release from micellar nanoparticles. Neurotoxicity was significantly weaker with NK105 than with free PTX. The neurotoxicity of PTX was attenuated by NK105, which was demonstrated by both histopathological (P<0.001) and physiological (P<0.05) methods for the first time. The present study suggests that NK105 warrants a clinical trial for patients with metastatic solid tumours. PMID:15785749

  10. +TIP EB1 downregulates paclitaxel?induced proliferation inhibition and apoptosis in breast cancer cells through inhibition of paclitaxel binding on microtubules.

    PubMed

    Thomas, Geethu Emily; Sreeja, Jamuna S; Gireesh, K K; Gupta, Hindol; Manna, Tapas K

    2015-01-01

    Microtubule plus?end?binding protein(+TIP) EB1 has been shown to be upregulated in breast cancer cells and promote breast tumor growthinvivo. However, its effect on the cellular actions of microtubule?targeted drugs in breast cancer cells has remained poorly understood. By using cellular and biochemical assays, we demonstrate that EB1 plays a critical role in regulating the sensitivity of breast cancer cells to anti?microtubule drug, paclitaxel(PTX). Cell viability assays revealed that EB1 expression in the breast cancer cell lines correlated with the reduction of their sensitivity to PTX. Knockdown of EB1 by enzymatically?prepared siRNA pools(esiRNAs) increased PTX?induced cytotoxicity and sensitized cells to PTX?induced apoptosis in three breast cancer cell lines, MCF?7, MDA MB?231 and T47D. Apoptosis was associated with activation of caspase?9 and an increase in the cleavage of poly(ADP?ribose) polymerase(PARP). p53 and Bax were upregulated and Bcl2 was downregulated in the EB1?depleted PTX?treated MCF?7 cells, indicating that the apoptosis occurs via a p53?dependent pathway. Following its upregulation, the nuclear accumulation of p53 and its association with cellular microtubules were increased. EB1 depletion increased PTX?induced microtubule bundling in the interphase cells and induced formation of multiple spindle foci with abnormally elongated spindles in the mitotic MCF?7 cells, indicating that loss of EB1 promotes PTX?induced stabilization of microtubules. EB1 inhibited PTX?induced microtubule polymerization and diminished PTX binding to microtubulesinvitro, suggesting that it modulates the binding sites of PTX at the growing microtubule ends. Results demonstrate that EB1 downregulates inhibition of PTX?induced proliferation and apoptosis in breast cancer cells through a mechanism in which it impairs PTX?mediated stabilization of microtubule polymerization and inhibits PTX binding on microtubules. PMID:25310526

  11. Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel conjugates with acid-labile linkages as a pH-sensitive and functional nanoscopic platform for paclitaxel delivery.

    PubMed

    Zou, Jiong; Zhang, Fuwu; Zhang, Shiyi; Pollack, Stephanie F; Elsabahy, Mahmoud; Fan, Jingwei; Wooley, Karen L

    2014-03-01

    There has been an increasing interest to develop new types of stimuli-responsive drug delivery vehicles with high drug loading and controlled release properties for chemotherapeutics. An acid-labile poly(ethylene oxide)-block-polyphosphoester-graft-PTX drug conjugate (PEO-b-PPE-g-PTX G2) degradable, polymeric paclitaxel (PTX) conjugate containing ultra-high levels of PTX loading is improved significantly, in this second-generation development, which involves connection of each PTX molecule to the polymer backbone via a pH-sensitive β-thiopropionate linkage. The PEO-b-PPE-g-PTX G2 forms well-defined nanoparticles in an aqueous solution, by direct dissolution into water, with a number-averaged hydrodynamic diameter of 114 ± 31 nm, and exhibits a PTX loading capacity as high as 53 wt%, with a maximum PTX concentration of 0.68 mg mL(-1) in water (vs 1.7 μg mL(-1) for free PTX). The PEO-b-PPE-g-PTX G2 shows accelerated drug release under acidic conditions (≈50 wt% PTX released in 8 d) compared with neutral conditions (≈20 wt% PTX released in 8 d). Compared to previously reported polyphosphoester-based PTX drug conjugates, PEO-b-PPE-g-PTX G1 without the β-thiopropionate linker, the PEO-b-PPE-g-PTX G2 shows pH-triggered drug release property and 5- to 8-fold enhanced in vitro cytotoxicity against two cancer cell lines. PMID:23997013

  12. Genetic variation of CYP3A5 influences paclitaxel/carboplatin-induced toxicity in Chinese epithelial ovarian cancer patients.

    PubMed

    Hu, Lei; Lv, Qiao-Li; Guo, Ying; Cheng, Lin; Wu, Na-Yiyuan; Qin, Chong-Zhen; Zhou, Hong-Hao

    2016-03-01

    Combination chemotherapy with platinum and taxane is the first-line treatment for ovarian cancer. The dose-limiting toxicities of these drugs include neuropathy, leukopenia, and neutropenia, but they exhibit substantial interindividual variability. This study investigated the relationship between CYP3A5 polymorphisms and paclitaxel/carboplatin-induced toxicity in Chinese epithelial ovarian cancer patients. Seventy-five patients with epithelial ovarian cancer were recruited. After combination chemotherapy, genotype analysis was conducted, and toxic effects were evaluated according to the Common Toxicity Criteria. A significant association was found between myelosuppression and the CYP3A5*3 genotype. CYP3A5*3/*1 patients showed a significantly higher risk of developing leukopenia (P?paclitaxel/carboplatin-induced toxicity in Chinese epithelial ovarian cancer patients. Our findings suggest that interindividual variability in paclitaxel/carboplatin-induced myelosuppression can be predicted by CYP3A5*3 genotyping and that incorporation of CYP3A5*3 genetic data in treatment selection could help to reduce myelosuppression events, thereby individualizing paclitaxel/carboplatin pharmacotherapy. PMID:26179145

  13. A STUDY OF PACLITAXEL, CARBOPLATIN, AND BORTEZOMIB IN THE TREATMENT OF METASTATIC MALIGNANT MELANOMA: A PHASE II CONSORTIUM STUDY

    PubMed Central

    Croghan, Gary A.; Suman, Vera J.; Maples, William J.; Albertini, Mark; Linette, Gerald; Flaherty, Lawrence; Eckardt, John; Ma, Cynthia; Markovic, Svetomir N.; Erlichman, Charles

    2010-01-01

    BACKGROUND Chemotherapy has not had significant impact on survival for patients with metastatic melanoma. Bortezomib was shown to have additive/synergistic effect with a number of chemotherapeutic agents including paclitaxel and platinum. A phase I trial of this 3-drug combination reported that 6 of 28 patients treated with bortezomib followed by paclitaxel and carboplatin had a partial response (including 2 of 5 patients with metastatic melanoma). METHODS We conducted a 2-stage phase II clinical trial to assess the anti-tumor activity of this 3-agent combination in patients with metastatic melanoma who had received at most one prior chemotherapy for metastatic disease. Treatment included bortezomib 1.3 mg/m2 IV on days 1, 4, and 8, and paclitaxel 175 mg/m2 and carboplatin AUC 6 on day 2 of a 21 day cycle. The primary endpoint of this trial was tumor response rate. RESULTS Seventeen eligible patients were enrolled. A median of 4 cycles were administered (range 1-7). Three patients discontinued treatment due to persistent grade 4 neutropenia with grade 3 leukopenia (two patients) or grade 4 pulmonary embolism (one patient). Grade ? 3 toxicities included neutropenia (71%), leukopenia (41%), thrombocytopenia (29%), and arthralgia (12%). Two partial responses were observed (TRR 11.8%). Four patients had stable disease > 12 weeks. Median progression free survival (PFS) was 3.2 months and median survival 7.0 months. CONCLUSIONS Due to insufficient clinical efficacy, this trial did not proceed to second stage accrual. The combination of paclitaxel, carboplatin, and bortezomib demonstrated limited clinical benefit and was associated with significant toxicity. PMID:20564112

  14. [Comparative studies of paclitaxel injection "SAWAI" and Taxol Injection on pharmacokinetics in dogs and in vitro/vivo antitumor activities].

    PubMed

    Takahashi, Masato; Hosoda, Mitsuchika; Takahashi, Hiromasa; Todo, Satoru

    2010-09-01

    We performed bioequivalent assessments of the generic (Paclitaxel Injection "SAWAI") and branded (Taxol Injection) formulations of paclitaxel injection on pharmacokinetics in dogs and in vitro/vivo antitumor activities. In the pharmacokinetics study in dogs, the 90% confidence intervals (CIs) for the differences in logarithm of C(max) and AUC(0-48) were log (1.01) to log (1.17) and log (1.01) to log (1.08), respectively. These were within the bioequivalent criteria of log (0.80) to log (1.25). In the in vitro study, both products showed concentration-dependent inhibition of the growth of 5 cultured human cancer cell lines, MCF7 (breast adenocarcinoma), A2780 (ovarian carcinoma), A549 (lung carcinoma), MKN45 (gastric adenocarcinoma) and MKN74 (gastric adenocarcinoma). The 90% CIs for the differences in logarithm of half maximal inhibitory concentration (IC(50)) were log (0.876) to log (1.110), log (0.856) to log (1.097), log (0.977) to log (1.167), log (0.879) to log (1.093) and log (0.936) to log (1.081), respectively. These were within the bioequivalent criteria. In the in vivo study, both products showed concentration-dependent inhibition of the growth of 3 human cancer cells, A2780 (ovarian carcinoma), A549 (lung carcinoma) and MDA-MB-231 (breast adenocarcinoma), xenografted in nude mice. And there are no significant differences between Paclitaxel Injection "SAWAI" and Taxol Injection. These results showed that Paclitaxel Injection "SAWAI" is bioequivalent to Taxol Injection. PMID:20841931

  15. Pathway-dependent inhibition of paclitaxel hydroxylation by kinase inhibitors and assessment of drug-drug interaction potentials.

    PubMed

    Wang, Yedong; Wang, Meiyu; Qi, Huixin; Pan, Peichen; Hou, Tingjun; Li, Jiajun; He, Guangzhao; Zhang, Hongjian

    2014-04-01

    Paclitaxel is often used in combination with small molecule kinase inhibitors to enhance antitumor efficacy against various malignancies. Because paclitaxel is metabolized by CYP2C8 and CYP3A4, the possibility of drug-drug interactions mediated by enzyme inhibition may exist between the combining agents. In the present study, a total of 12 kinase inhibitors were evaluated for inhibitory potency in human liver microsomes by monitoring the formation of CYP2C8 and CYP3A4 metabolites simultaneously. For reversible inhibition, nilotinib was found to be the most potent inhibitor against both CYP2C8 and CYP3A4, and the inhibition potency could be explained by strong hydrogen binding based on molecular docking simulations and type II binding based on spectral analysis. Comparison of K(i) values revealed that the CYP2C8 pathway was more sensitive toward some kinase inhibitors (such as axitinib), while the CYP3A4 pathway was preferentially inhibited by others (such as bosutinib). Pathway-dependent inactivation (time-dependent inhibition) was also observed for a number of kinase inhibitors against CYP3A4 but not CYP2C8. Further studies showed that axitinib had a K(I) of 0.93 ?M and k(inact) of 0.0137 min(-1), and the observed inactivation toward CYP3A4 was probably due to the formation of reactive intermediate(s). Using a static model, a reasonably accurate prediction of drug-drug interactions was achieved by incorporating parallel pathways and hepatic extraction ratio. The present results suggest that potent and pathway-dependent inhibition of CYP2C8 and/or CYP3A4 pathways by kinase inhibitors may alter the ratio of paclitaxel metabolites in vivo, and that such changes can be clinically relevant as differential metabolism has been linked to paclitaxel-induced neurotoxicity in cancer patients. PMID:24476576

  16. Synergistic antitumor effect of ?-pinene and ?-pinene with paclitaxel against non-small-cell lung carcinoma (NSCLC).

    PubMed

    Zhang, Z; Guo, S; Liu, X; Gao, X

    2015-04-01

    The objective of the present research work was to evaluate the synergistic interactions between Paclitaxel (PAC) with ?-pinene and ?-pinene using isobolographic method against non-small-cell lung cancer cells (NSCLC). This type of interaction between an established drug and a new compound is expected to enhance the efficacy of paclitaxel in combination as compared in isolation. Further, cell cycle analysis was carried out using flow cytometric analysis. Phase contrast microscopy was used to assess the effect of paclitaxel, ?-pinene and ?-pinene alone and in combination with each other in order to evaluate the effect of combination on cell apoptosis. Further, mitochondrial membrane potential was monitored in non-small-cell lung cancer cells (NSCLC) when treated with paclitaxel, ?-pinene and ?-pinene alone and in combination. The results revealed that the combination of PAC with ?-pinene or with ?-pinene showed a plotted curve below the straight line, generating a substantial synergistic effect. The effects of the following combinations were examined utilizing isobolograms: PAC and ?-pinene and PAC and ?-pinene. The combination of PAC and ?-pinene as well as of PAC and ?-pinene actually generated a synergistic effect. We also examined the effects of these compounds on the cell cycle distributions of A549 cells by flow cytometric analysis. The percentage of sub-G0/G1-phase cells was decreased on the addition of ?-pinene to PAC, while the population of G0/G1 cells was increased. The morphological changes characteristic of apoptosis like chromatin condensation and fragmentation of the nucleus were seen in PAC+?-pinene and PAC+?-pinene treated NSCLC cells. PMID:25188609

  17. Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene expression during paclitaxel-induced neuropathic pain in mice

    PubMed Central

    2015-01-01

    Spinal astrocyte activation contributes to the pathogenesis of paclitaxel-induced neuropathic pain (PINP) in animal models. We examined glial fibrillary acidic protein (GFAP; an astrocyte marker) immunoreactivity and gene expression of GFAP, glutamate transporters and receptor subunits by real time PCR in the anterior cingulate cortex (ACC) at 7 days post first administration of paclitaxel, a time point when mice had developed thermal hyperalgesia. The ACC, an area in the brain involved in pain perception and modulation, was chosen because changes in this area might contribute to the pathophysiology of PINP. GFAP transcripts levels were elevated by more than fivefold and GFAP immunoreactivity increased in the ACC of paclitaxel-treated mice. The 6 glutamate transporters (GLAST, GLT-1 EAAC1, EAAT4, VGLUT-1 and VGLUT-2) quantified were not significantly altered by paclitaxel treatment. Of the 12 ionotropic glutamate receptor subunits transcripts analysed 6 (GLuA1, GLuA3, GLuK2, GLuK3, GLuK5 and GLuN1) were significantly up-regulated, whereas GLuA2, GLuK1, GLuK4, GLuN2A and GLuN2B were not significantly altered and GLuA4 was lowly expressed. Amongst the 8 metabotropic receptor subunits analysed only mGLuR8 was significantly elevated. In conclusion, during PINP there is astrocyte activation, with no change in glutamate transporter expression and differential up-regulation of glutamate receptor subunits in the ACC. Thus, targeting astrocyte activation and the glutamatergic system might be another therapeutic avenue for management of PINP. PMID:26528412

  18. Pilot neoadjuvant trial in HER2 positive breast cancer with combination of nab-paclitaxel and lapatinib.

    PubMed

    Kaklamani, Virginia G; Siziopikou, Kalliopi; Scholtens, Denise; Lacouture, Mario; Gordon, Jennifer; Uthe, Regina; Meservey, Caitlin; Hansen, Nora; Khan, Seema A; Jeruss, Jacqueline S; Bethke, Kevin; Cianfrocca, Mary; Rosen, Steven; Von Roenn, Jamie; Wayne, Jeffrey; Parimi, Vamsi; Jovanovic, Borko; Gradishar, William

    2012-04-01

    Lapatinib, a dual kinase inhibitor against epidermal growth factor receptor (EGFR) and human epidermal receptor two (HER2) has shown efficacy in treating HER2 positive breast cancer. Nanoparticle albumin bound (nab) paclitaxel was developed to reduce toxicities from paclitaxel and improve its efficacy. Thirty patients with stage I-III HER2 positive breast cancer were treated in the neoadjuvant setting with lapatinib 1,000 mg/day and nab-paclitaxel 260 mg/m(2) every 3 weeks for four cycles. The primary end point of the trial was clinical response rate (cRR) with secondary end points including pathologic complete response rate (pCR), tolerability of the combination, and marker response. The cRR was 82.8% (24 patients) with six (20.7%) patients having complete clinical response, 18 (62.1%) having partial clinical response, and five (17.2%) stable disease. A pCR was observed in five of the 28 patients (17.9%). The most frequent grade 2 toxicities were neuropathy in nine patients (30%), fatigue in seven patients (23.3%), rash in 11 patients (36.7%), and bone pain in 10 patients (33.3%). There was no significant drop in the left ventricular ejection fraction (LVEF). Of the tissue markers examined, we were not able to find a predictor of response. The combination of lapatinib and nab-paclitaxel was well tolerated and provided good efficacy in women with HER2 positive breast cancer. This combination offers an alternative non-anthracycline-containing regimen for women with HER2 positive breast cancer. PMID:21359953

  19. Continuation of bevacizumab and addition of hormone therapy following weekly paclitaxel therapy in HER2-negative metastatic breast cancer

    PubMed Central

    Redondo, Andrs; Martnez, Virginia; Zamora, Pilar; Castelo, Beatriz; Pinto, Alvaro; Cruz, Patricia; Higuera, Oliver; Mendiola, Marta; Hardisson, David; Espinosa, Enrique

    2014-01-01

    Background Bevacizumab plus taxane chemotherapy improves progression-free survival (PFS) versus taxane monotherapy in the first-line treatment of HER2-negative metastatic breast cancer (MBC) and appears promising in the second-line setting. This retrospective analysis evaluated the efficacy and safety of this combination in a real-world setting. Patients and methods Eligible patients received bevacizumab (10 mg/kg days 1 and 15, every 28 days) plus paclitaxel (80 mg/m2 days 1, 8, and 15, every 28 days) as first-line therapy for MBC, or as subsequent lines, including bevacizumab continuation therapy, at La Paz University Hospital between August 2007 and October 2012. End points included objective response rate (ORR), PFS, overall survival (OS), and safety. Results Seventy-eight patients were included. Median PFS was 12.8 months for patients receiving first-line treatment and 9.3 months for subsequent lines. Forty-five patients (57.7%) continued bevacizumab after stopping paclitaxel, and had significantly longer PFS and OS than those who did not (hazard ratio [HR] 0.40, 95% confidence interval [CI] 0.2480.653, P<0.001; HR 0.39, 95% CI 0.2180.710, P=0.002; respectively). In the continuation phase, estrogen receptor-positive patients had longer PFS and OS when receiving hormone therapy plus bevacizumab versus patients receiving only bevacizumab (HR 0.50, 95% CI 0.241.04, P=0.06; HR 0.43, 95% CI 0.161.16, P=0.09; respectively). Thirty-five patients (44.9%) reported grade 34 adverse events. Conclusion Bevacizumab plus paclitaxel was effective in HER2-negative MBC. Continuation of bevacizumab and addition of hormone therapy following paclitaxel therapy could be beneficial. PMID:25473300

  20. Stable phosphatidylcholine-bile salt mixed micelles enhance oral absorption of paclitaxel: preparation and mechanism in rats.

    PubMed

    Zhao, Yanli; Cui, Yanan; Li, Yimu; Li, Lingbing

    2014-12-01

    The aim of this study is to prepare a stable phosphatidylcholine/bile salt micelles with Pluronic F127-polyethylenimine conjugates (F127-PEI), d-?-tocopheryl polyethylene glycol 1000 succinate (TPGS), soybean phosphatidylcholine (SPC) and sodium cholate (NaC) and to elucidate the effects and possible mechanism of micelle components on the intestinal absorption of paclitaxel (PTX) in rats. The results of intestinal absorption revealed that the PTX in SPC/NaC micelles displayed superior permeability across intestinal barrier than free drug and PTX in TPGS/SPC/NaC and F127-PEI/TPGS/SPC/NaC mixed micelles exhibited the strongest permeability across intestinal barrier. These results were also proved by the studies on cell uptake tests. The mechanism was demonstrated in connection with inhibition of the efflux mediated by intestinal P-gp and enhancement of the drug transportation across the unstirred water layer to the endothelial lining, thereby promoting the permeation across the intestinal wall. Pharmacokinetic study demonstrated that the area under the plasma concentration-time curve (AUC0??) of paclitaxel in F127-PEI/TPGS/SPC/NaC micelles was much greater than that in TPGS/SPC/NaC micelles. This phenomenon deviated from the results of uptake studies by cells and permeability experiments through rat intestine and revealed that the micelle stability had a great effect on intestinal absorption of paclitaxel. PMID:25077358

  1. Codelivery of paclitaxel and small interfering RNA by octadecyl quaternized carboxymethyl chitosan-modified cationic liposome for combined cancer therapy.

    PubMed

    Zhang, Ran; Wang, Shi-Bin; Chen, Ai-Zheng; Chen, Wei-Guang; Liu, Yuan-Gang; Wu, Wen-Guo; Kang, Yong-Qiang; Ye, Shi-Fu

    2015-09-01

    Conventional therapeutic approaches for cancer are limited by cancer cell resistance, which has impeded their clinical applications. The main goal of this work was to investigate the combined antitumor effect of paclitaxel with small interfering RNA modified by cationic liposome formed from modified octadecyl quaternized carboxymethyl chitosan. The cationic liposome was composed of 3?-[N-(N', N'-dimethylaminoethane)-carbamoyl]-cholesterol, dioleoylphosphatidylethanolamine, and octadecyl quaternized carboxymethyl chitosan. The cationic liposome properties were characterized by Fourier transform infrared spectroscopy, dynamic light scattering and zeta potential measurements, transmission electron microscopy, atomic force microscopy, and gel retardation assay. The cationic liposome exhibited good properties, such as a small particle size, a narrow particle size distribution, a good spherical shape, a smooth surface, and a good binding ability with small interfering RNA. Most importantly, when combined with paclitaxel and small interfering RNA, the composite cationic liposome induced a great enhancement in the antitumor activity, which showed a significantly higher in vitro cytotoxicity in Bcap-37 cells than liposomal paclitaxel or small interfering RNA alone. In conclusion, the results indicate that cationic liposome could be further developed as a codelivery system for chemotherapy drugs and therapeutic small interfering RNAs. PMID:25838353

  2. Efficacy of paclitaxel-based doublet regimens combining with intraperitoneal chemotherapy for advanced gastric cancer with peritoneal metastasis

    PubMed Central

    Chen, Yu; Tang, Wei-Feng; Lin, Jing; Shi, Yi; Wang, Xiao-Jie; Chen, Qiang; Guo, Zeng-Qing

    2015-01-01

    We aim to evaluate the efficacy and safety of paclitaxel-based doublet intravenous chemotherapy (IVC) with and without intraperitoneal chemotherapy (IPC) as the first-line treatment in advanced gastric cancer (AGC) with peritoneal metastasis (PM). 173 AGC patients with peritoneal metastasis were enrolled. All patients received paclitaxel-based doublet systemic chemotherapy Among them, 117 patients received IVC+IPC and 56 patients received IVC alone. The median OS of patients in the IP+ group was longer than the IP- group, however, there was no statistical difference between the two groups (11.1 months vs. 10.1 months, P = 0.072). In the multivariate analysis, the ECOG PS and IVCIPC were independent prognostic factors for PFS and OS. There were no significant differences in the incidence of grade 3 and 4 toxicity between the IP+(DDP), IP+(FUDR) and IP- groups. Paclitaxel-based doublet regimens combining with IPC is effective, feasible and tolerated in AGC patients with PM. PMID:26770475

  3. Neoadjuvant concurrent chemoradiation with weekly paclitaxel and carboplatin for patients with oesophageal cancer: a phase II study

    PubMed Central

    van Meerten, E; Muller, K; Tilanus, H W; Siersema, P D; Eijkenboom, W M H; van Dekken, H; Tran, T C K; van der Gaast, A

    2006-01-01

    This study was performed to assess the efficacy and safety of preoperative chemoradiation consisting of carboplatin and paclitaxel and concurrent radiotherapy for patients with resectable (T2-3N0-1M0) oesophageal cancer. Treatment consisted of paclitaxel 50?mg?m?2 and carboplatin AUC=2 on days 1, 8, 15, 22 and 29 and concurrent radiotherapy (41.4?Gy in 23 fractions, 5 days per week), followed by oesophagectomy. All 54 entered patients completed the chemoradiation without delay or dose-reduction. Grade 34 toxicities were: neutropaenia 15%, thrombocytopaenia 2%, and oesophagitis 7.5%. After completion of the chemoradiotherapy 63% had a major endoscopical response. Fifty-two patients (96%) underwent a resection. The postoperative mortality rate was 7.7%. All patients had an R0-resection. The pathological complete response rate was 25%, and an additional 36.5% had less than 10% vital residual tumour cells. At a median follow-up of 23.2 months, the median survival time has not yet been reached. The probability of disease-free survival after 30 months was 60%. In conclusion, weekly neoadjuvant paclitaxel and carboplatin with concurrent radiotherapy is a very tolerable regimen and can be given on an outpatient basis. It achieves considerable down staging and a subsequent 100% radical resection rate in this series. A phase III trial with this regimen is now ongoing. PMID:16670722

  4. Dose-dense epirubicin and paclitaxel with G-CSF: a study of decreasing intervals in metastatic breast cancer

    PubMed Central

    Lalisang, R I; Voest, E E; Wils, J A; Nortier, J W; Erdkamp, F L; Hillen, H F; Wals, J; Schouten, H C; Blijham, G H

    2000-01-01

    Anthracyclines and taxanes are very effective drugs in the treatment of advanced breast cancer. With G-CSF support, the dose-intensity of this combination can be increased by reducing the interval between chemotherapy cycles, the so-called shortening of cycle time. We treated 36 patients with advanced breast cancer in a multicentre phase I/II study. The treatment regimen consisted of epirubicin 75 mg m?2followed by paclitaxel 135 mg m?2(3 h) in combination with G-CSF. At least six patients were treated in each cohort and were evaluated over the first three cycles. Starting at an interval of 14 days, in subsequent cohorts of patients the interval could be shortened to 10 days. An 8-day interval was not feasible due mainly to incomplete neutrophil recovery at the day of the next scheduled cycle. In the 10-day interval cohort it was feasible to increase the paclitaxel dose to 175 mg m?2. The haematological and non-haematological toxicity was relatively mild. No cumulative myelosuppression was observed over at least three consecutive cycles. In combination with G-CSF, epirubicin 75 mg m?2and paclitaxel 175 mg m?2could be safely administered every 10 days over at least three cycles, enabling a dose intensity of 52 and 122 mg m?2per week, respectively. 2000 Cancer Research Campaign PMID:10864197

  5. Low-dose paclitaxel improves the therapeutic efficacy of recombinant adenovirus encoding CCL21 chemokine against murine cancer.

    PubMed

    Chen, Ping; Luo, Shan; Wen, Yan-Jun; Li, Yu-Hua; Li, Jiong; Wang, Yong-Sheng; Du, Li-Cheng; Zhang, Ping; Tang, Jiao; Yang, Da-Bing; Hu, Huo-Zhen; Zhao, Xia; Wei, Yu-Quan

    2014-11-01

    Secondary lymphoid tissue chemokine (SLC/CCL21), one of the CC chemokines, exerts potent antitumor immunity by co-localizing T cells and dendritic cells at the tumor site and is currently tested against human solid tumors. Here, we investigated whether the combination of recombinant adenovirus encoding murine CCL21 (Ad-mCCL21) with low-dose paclitaxel would improve therapeutic efficacy against murine cancer. Immunocompetent mice bearing B16-F10 melanoma or 4T1 breast carcinoma were treated with either Ad-mCCL21, paclitaxel, or both agents together. Our results showed that Ad-mCCL21 + low-dose paclitaxel more effectively reduced the growth of tumors as compared with either treatment alone and significantly prolonged survival time of the tumor-bearing animals. These antitumor effects of the combined therapy were linked to altered cytokine network at the tumor site, enhanced apoptosis of tumor cells, and decreased formation of new vessels in tumors. Importantly, the combined therapy elicited a strong therapeutic antitumor immunity, which could be partly abrogated by the depletion of CD4(+) or CD8(+) T lymphocytes. Collectively, these preclinical evaluations may provide a combined strategy for antitumor immunity and should be considered for testing in clinical trials. PMID:25230206

  6. Biodegradable paclitaxel-loaded microparticles prepared from novel block copolymers: influence of polymer composition on drug encapsulation and release.

    PubMed

    Sartori, Susanna; Caporale, Andrea; Rechichi, Alfonsina; Cufari, Domenico; Cristallini, Caterina; Barbani, Niccoletta; Giusti, Paolo; Ciardelli, Gianluca

    2013-04-01

    This study covers the preparation of microspheres for the controlled and targeted release of paclitaxel, using novel degradable polymers as carrier materials. Paclitaxel-loaded microspheres were prepared by oil-in-water single-emulsion solvent extraction/evaporation technique by using a series of polyurethanes and a block copolymer; the physicochemical properties of these polymers were modulated by changing nature and composition of their structural units. The obtained microparticles showed a regular morphology and properties (diameter: 1-100 m; resuspension index: 18.8-100%; encapsulation efficiency: 26.6-97.2%) depending on polymer hydrophilicity and emulsifier used. In vitro release curves showed in all cases almost zero-order kinetics after an initial low burst effect (from 1 to 8.4%), which is required to minimize the drug side effects. This work also proposes a novel strategy to combine a controlled and a targeted release through the functionalization of the polymer matrix with peptide sequences. An RGD-functionalized polyurethane was used to successfully prepare paclitaxel-loaded microparticles. Studies on the preparation of polymer microspheres are reported. PMID:23495215

  7. Urinary N telopeptide levels in predicting the anti-nociceptive responses of zoledronic acid and paclitaxel in a rat model of bone metastases

    PubMed Central

    GUI, QI; XU, CHENGCHENG; LI, DAPENG; ZHUANG, LIANG; XIA, SHU; YU, SHIYING

    2015-01-01

    The present study investigated the hypothesis that urinary levels of N telopeptide (NTx) can be used to predict the anti-nociceptive responses of zoledronic acid and paclitaxel on bone metastases in a rat model. Rats were implanted with intra-femur Walker 256 carcinoma cells or control solution, and were treated with either normal saline, zoledronic acid or paclitaxel on the 10th day following surgery. Mechanical allodynia was recorded and the urine collagen-crosslinked NTx values were measured prior to, and 7, 14 and 21 days following the injections. Bone sections and osteoclasts were stained on the 14th day (4 days post-injection). Furthermore, the mRNA and protein expression levels of c-fos in the spinal cord and acid-sensing ion channel 3 (ASIC3) in the dorsal root ganglion (DRG) were analyzed. The mechanical allodynia of rats was attenuated from day 14 in the zoledronic acid group and from day 21 in the paclitaxel group. A positive correlation was observed between the anti-nociceptive responses of zoledronic acid and paclitaxel, and the urinary levels of NTx (r=0.619; P<0.001). The mRNA levels of c-fos in the spinal cord and ASIC3 in the DRG in the zoledronic acid group were reduced 14 and 21 days after inoculation, and this reduction was observed in the paclitaxel group 21 days after inoculation. Low dose paclitaxel was observed to have a weaker anti-nociceptive effect on bone cancer pain, with a later-onset, compared with zoledronic acid. The results suggested that urinary levels of NTx may predict the anti-nociceptive responses of zoledronic acid and paclitaxel in a rat model of bone metastases. PMID:26081451

  8. STX140, but not paclitaxel, inhibits mammary tumour initiation and progression in C3(1)/SV40 T/t-antigen transgenic mice.

    PubMed

    Meyer-Losic, Florence; Newman, Simon P; Day, Joanna M; Reed, Michael J; Kasprzyk, Philip G; Purohit, Atul; Foster, Paul A

    2013-01-01

    Despite paclitxael's clinical success, treating hormone-refractory breast cancer remains challenging. Paclitaxel has a poor pharmacological profile, characterized by a low therapeutic index (TIX) caused by severe dose limiting toxicities, such as neutropenia and peripheral neuropathy. Consequently, new drugs are urgently required. STX140, a compound previously shown to have excellent efficacy against many tumors, is here compared to paclitaxel in three translational in vivo breast cancer models, a rat model of peripheral neuropathy, and through pharmacological testing. Three different in vivo mouse models of breast cancer were used; the metastatic 4T1 orthotopic model, the C3(1)/SV40 T-Ag model, and the MDA-MB-231 xenograft model. To determine TIX and pharmacological profile of STX140, a comprehensive dosing regime was performed in mice bearing MDA-MD-231 xenografts. Finally, peripheral neuropathy was examined using a rat plantar thermal hyperalgesia model. In the 4T1 metastatic model, STX140 and paclitaxel significantly inhibited primary tumor growth and lung metastases. All C3(1)/SV40 T-Ag mice in the control and paclitaxel treated groups developed palpable mammary cancer. STX140 blocked 47% of tumors developing and significantly inhibited growth of tumors that did develop. STX140 treatment caused a significant (P<0.001) survival advantage for animals in early and late intervention groups. Conversely, in C3(1)/SV40 T-Ag mice, paclitaxel failed to inhibit tumor growth and did not increase survival time. Furthermore, paclitaxel, but not STX140, induced significant peripheral neuropathy and neutropenia. These results show that STX140 has a greater anti-cancer efficacy, TIX, and reduced neurotoxicity compared to paclitaxel in C3(1)/SV40 T-Ag mice and therefore may be of significant benefit to patients with breast cancer. PMID:24324595

  9. Quality-of-life and performance status results from the phase III RAINBOW study of ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated gastric or gastroesophageal junction adenocarcinoma†

    PubMed Central

    Al-Batran, S.-E.; Van Cutsem, E.; Oh, S. C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O. N.; Kim, T.-Y.; Cunningham, D.; Rougier, P.; Muro, K.; Liepa, A. M.; Chandrawansa, K.; Emig, M.; Ohtsu, A.; Wilke, H.

    2016-01-01

    Background The phase III RAINBOW trial demonstrated that the addition of ramucirumab to paclitaxel improved overall survival, progression-free survival, and tumor response rate in fluoropyrimidine–platinum previously treated patients with advanced gastric/gastroesophageal junction (GEJ) adenocarcinoma. Here, we present results from quality-of-life (QoL) and performance status (PS) analyses. Patients and methods Patients with Eastern Cooperative Oncology Group PS of 0/1 were randomized to receive ramucirumab (8 mg/kg i.v.) or placebo on days 1 and 15 of a 4-week cycle, with both arms receiving paclitaxel (80 mg/m2) on days 1, 8, and 15. Patient-reported outcomes were assessed with the QoL/health status questionnaires EORTC QLQ-C30 and EQ-5D at baseline and 6-week intervals. PS was assessed at baseline and day 1 of every cycle. Time to deterioration (TtD) in each QLQ-C30 scale was defined as randomization to first worsening of ≥10 points (on 100-point scale) and TtD in PS was defined as first worsening to ≥2. Hazard ratios (HRs) for treatment effect were estimated using stratified Cox proportional hazards models. Results Of the 665 patients randomized, 650 (98%) provided baseline QLQ-C30 and EQ-5D data, and 560 (84%) also provided data from ≥1 postbaseline time point. Baseline scores for both instruments were similar between arms. Of the 15 QLQ-C30 scales, 14 had HR < 1, indicating similar or longer TtD in QoL for ramucirumab + paclitaxel. Treatment with ramucirumab + paclitaxel was also associated with a delay in TtD in PS to ≥2 (HR = 0.798, P = 0.0941). Alternate definitions of PS deterioration yielded similar results: PS ≥ 3 (HR = 0.656, P = 0.0508), deterioration by ≥1 PS level (HR = 0.802, P = 0.0444), and deterioration by ≥2 PS levels (HR = 0.608, P = 0.0063). EQ-5D scores were comparable between treatment arms, stable during treatment, and worsened at discontinuation. Conclusion In patients with previously treated advanced gastric/GEJ adenocarcinoma, addition of ramucirumab to paclitaxel prolonged overall survival while maintaining patient QoL with delayed symptom worsening and functional status deterioration. ClinicalTrials.gov NCT01170663. PMID:26747859

  10. MiR-16 targets Bcl-2 in paclitaxel-resistant lung cancer cells and overexpression of miR-16 along with miR-17 causes unprecedented sensitivity by simultaneously modulating autophagy and apoptosis.

    PubMed

    Chatterjee, Abhisek; Chattopadhyay, Dhrubajyoti; Chakrabarti, Gopal

    2015-02-01

    Non-small cell lung cancer is one of the most aggressive cancers as per as the mortality and occurrence is concerned. Paclitaxel based chemotherapeutic regimes are now used as an important option for the treatment of lung cancer. However, resistance of lung cancer cells to paclitaxel continues to be a major clinical problem nowadays. Despite impressive initial clinical response, most of the patients eventually develop some degree of paclitaxel resistance in the course of treatment. Previously, utilizing miRNA arrays we reported that downregulation of miR-17 is at least partly involved in the development of paclitaxel resistance in lung cancer cells by modulating Beclin-1 expression [1]. In this study, we showed that miR-16 was also significantly downregulated in paclitaxel resistant lung cancer cells. We demonstrated that anti-apoptotic protein Bcl-2 was directly targeted miR-16 in paclitaxel resistant lung cancer cells. Moreover, in this report we showed that the combined overexpression of miR-16 and miR-17 and subsequent paclitaxel treatment greatly sensitized paclitaxel resistant lung cancer cells to paclitaxel by inducing apoptosis via caspase-3 mediated pathway. Combined overexpression of miR-16 and miR-17 greatly reduced Beclin-1 and Bcl-2 expressions respectively. Our results indicated that though miR-17 and miR-16 had no common target, both miR-16 and miR-17 jointly played roles in the development of paclitaxel resistance in lung cancer. miR-17 overexpression reduced cytoprotective autophagy by targeting Beclin-1, whereas overexpression of miR-16 potentiated paclitaxel induced apoptotic cell death by inhibiting anti-apoptotic protein Bcl-2. PMID:25435430

  11. Dendritic polyglycerol sulfate as a novel platform for paclitaxel delivery: pitfalls of ester linkage

    NASA Astrophysics Data System (ADS)

    Sousa-Herves, Ana; Wrfel, Patrick; Wegner, Nicole; Khandare, Jayant; Licha, Kai; Haag, Rainer; Welker, Pia; Caldern, Marcelo

    2015-02-01

    In this study, dendritic polyglycerol sulfate (dPGS) is evaluated as a delivery platform for the anticancer, tubulin-binding drug paclitaxel (PTX). The conjugation of PTX to dPGS is conducted via a labile ester linkage. A non-sulfated dendritic polyglycerol (dPG) is used as a control, and the labeling with an indocarbocyanine dye (ICC) renders multifunctional conjugates that can be monitored by fluorescence microscopy. The conjugates are characterized by 1H NMR, UV-vis measurements, and RP-HPLC. In vitro cytotoxicity of PTX and dendritic conjugates is evaluated using A549 and A431 cell lines, showing a reduced cytotoxic efficacy of the conjugates compared to PTX. The study of uptake kinetics reveals a linear, non saturable uptake in tumor cells for dPGS-PTX-ICC, while dPG-PTX-ICC is hardly taken up. Despite the marginal uptake of dPG-PTX-ICC, it prompts tubulin polymerization to a comparable extent as PTX. These observations suggest a fast ester hydrolysis and premature drug release, as confirmed by HPLC measurements in the presence of plasma enzymes.In this study, dendritic polyglycerol sulfate (dPGS) is evaluated as a delivery platform for the anticancer, tubulin-binding drug paclitaxel (PTX). The conjugation of PTX to dPGS is conducted via a labile ester linkage. A non-sulfated dendritic polyglycerol (dPG) is used as a control, and the labeling with an indocarbocyanine dye (ICC) renders multifunctional conjugates that can be monitored by fluorescence microscopy. The conjugates are characterized by 1H NMR, UV-vis measurements, and RP-HPLC. In vitro cytotoxicity of PTX and dendritic conjugates is evaluated using A549 and A431 cell lines, showing a reduced cytotoxic efficacy of the conjugates compared to PTX. The study of uptake kinetics reveals a linear, non saturable uptake in tumor cells for dPGS-PTX-ICC, while dPG-PTX-ICC is hardly taken up. Despite the marginal uptake of dPG-PTX-ICC, it prompts tubulin polymerization to a comparable extent as PTX. These observations suggest a fast ester hydrolysis and premature drug release, as confirmed by HPLC measurements in the presence of plasma enzymes. Electronic supplementary information (ESI) available: 1H NMR spectra of the conjugates, HPLC chromatograms, internalization images of dPGS-PTX-ICC (5), elimination kinetics of dPGS-PTX-ICC (5) and dPGS-ICC (7), comparison of IC50 values of PTX and dPGS-PTX (3) in A431 and A549 cell lines and cell viability of dPGS amine (1). See DOI: 10.1039/c4nr04428b

  12. The Quest for a Simple Bioactive Analog of Paclitaxel as a Potential Anticancer Agent

    PubMed Central

    2015-01-01

    Conspectus Paclitaxel (PTX), introduced into the clinic in 1991, has revealed itself as an effective antimicrotubule drug for treatment of a range of otherwise intractable cancers. Along with docetaxel (DTX) and in combination with other agents such as cisplatin, it has proven to be a first-line therapy. Unfortunately, PTX and DTX carry severe liabilities such as debilitating side effects, rapid onset of resistance, and rather complex molecular structures offering substantial challenges to ease of synthetic manipulation. Consequently, the past 15 years has witnessed many efforts to synthesize and test highly modified analogs based on intuitive structural similarity relationships with the PTX molecular skeleton, as well as efforts to mimic the conformational profile of the ligand observed in the macromolecular tubulinPTX complex. Highly successful improvements in potency, up to 50-fold increases in IC50, have been achieved by constructing bridges between distal centers in PTX that imitate the conformer of the electron crystallographic binding pose. Much less successful have been numerous attempts to truncate PTX by replacing the baccatin core with simpler moieties to achieve PTX-like potencies and applying a wide range of flexible synthesis-based chemistries. Reported efforts, characterized by a fascinating array of baccatin substitutes, have failed to surpass the bioactivities of PTX in both microtubule disassembly assays and cytotoxicity measurements against a range of cell types. Most of the structures retain the main elements of the PTX C13 side chain, while seeking a smaller rigid bicycle as a baccatin replacement adorned with substituents to mimic the C2 benzoyl moiety and the oxetane ring. We surmise that past studies have been handicapped by solubility and membrane permeability issues, but primarily by the existence of an expansive taxane binding pocket and the discrepancy in molecular size between PTX and the pruned analogs. A number of these molecules offer molecular volumes 5060% that of PTX, fewer contacts with the tubulin protein, severe mismatches with the PTX pharmacophore, lessened capacity to dispel binding site waters contributing to ?Gbind, and unanticipated binding poses. The latter is a critical drawback if molecular designs of simpler PTX structures are based on a perceived or known PTX binding conformation. We conclude that design and synthesis of a highly cytotoxic tubulin-assembly agent based on the paclitaxel pharmacophore remains an unsolved challenge, but one that can be overcome by focus on the architecture of the taxane binding site independent of the effective, but not unique, hand-in-glove match represented by the PTXtubulin complex. PMID:25052294

  13. The quest for a simple bioactive analog of paclitaxel as a potential anticancer agent.

    PubMed

    Kingston, David G I; Snyder, James P

    2014-08-19

    Paclitaxel (PTX), introduced into the clinic in 1991, has revealed itself as an effective antimicrotubule drug for treatment of a range of otherwise intractable cancers. Along with docetaxel (DTX) and in combination with other agents such as cisplatin, it has proven to be a first-line therapy. Unfortunately, PTX and DTX carry severe liabilities such as debilitating side effects, rapid onset of resistance, and rather complex molecular structures offering substantial challenges to ease of synthetic manipulation. Consequently, the past 15 years has witnessed many efforts to synthesize and test highly modified analogs based on intuitive structural similarity relationships with the PTX molecular skeleton, as well as efforts to mimic the conformational profile of the ligand observed in the macromolecular tubulin-PTX complex. Highly successful improvements in potency, up to 50-fold increases in IC50, have been achieved by constructing bridges between distal centers in PTX that imitate the conformer of the electron crystallographic binding pose. Much less successful have been numerous attempts to truncate PTX by replacing the baccatin core with simpler moieties to achieve PTX-like potencies and applying a wide range of flexible synthesis-based chemistries. Reported efforts, characterized by a fascinating array of baccatin substitutes, have failed to surpass the bioactivities of PTX in both microtubule disassembly assays and cytotoxicity measurements against a range of cell types. Most of the structures retain the main elements of the PTX C13 side chain, while seeking a smaller rigid bicycle as a baccatin replacement adorned with substituents to mimic the C2 benzoyl moiety and the oxetane ring. We surmise that past studies have been handicapped by solubility and membrane permeability issues, but primarily by the existence of an expansive taxane binding pocket and the discrepancy in molecular size between PTX and the pruned analogs. A number of these molecules offer molecular volumes 50-60% that of PTX, fewer contacts with the tubulin protein, severe mismatches with the PTX pharmacophore, lessened capacity to dispel binding site waters contributing to ?Gbind, and unanticipated binding poses. The latter is a critical drawback if molecular designs of simpler PTX structures are based on a perceived or known PTX binding conformation. We conclude that design and synthesis of a highly cytotoxic tubulin-assembly agent based on the paclitaxel pharmacophore remains an unsolved challenge, but one that can be overcome by focus on the architecture of the taxane binding site independent of the effective, but not unique, hand-in-glove match represented by the PTX-tubulin complex. PMID:25052294

  14. The telomerase template antagonist GRN163L alters MDA-MB-231 breast cancer cell morphology, inhibits growth, and augments the effects of paclitaxel.

    PubMed

    Goldblatt, Erin M; Gentry, Erin R; Fox, Melanie J; Gryaznov, Sergei M; Shen, Changyu; Herbert, Brittney-Shea

    2009-07-01

    Telomeres are repetitive (TTAGGG)(n) DNA sequences found at the end of chromosomes that protect the ends from recombination, end to end fusions, and recognition as damaged DNA. Telomerase activity can be detected in 85% to 90% of human tumors, which stabilizes telomeres to prevent apoptosis or cellular senescence. Previous reports showed the efficacy of the novel telomerase template antagonist, GRN163L, as a potential anticancer agent. The objective of the present study was to elucidate the molecular effects of GRN163L in MDA-MB-231 breast cancer cells and to determine whether GRN163L could be used in mechanism-based combination therapy for breast cancer. We observed that GRN163L reduced MDA-MB-231 growth rates without a significant effect on breast cancer cell viability within the first 14 days in vitro. In addition, GRN163L altered cell morphology, actin filament organization, and focal adhesion formation in MDA-MB-231 cells. Importantly, the cellular response to GRN163L significantly augmented the effects of the microtubule stabilizer paclitaxel in MDA-MB-231 breast cancer cell growth in vitro and in vivo compared with paclitaxel alone or a mismatch control oligonucleotide plus paclitaxel. Furthermore, in vitro MDA-MB-231 invasive potential was significantly inhibited with GRN163L and paclitaxel. These data support a rationale for potentially combining GRN163L with paclitaxel for the treatment of breast cancer in the clinical setting. PMID:19509275

  15. Antiproliferative efficacies but minor drug transporter inducing effects of paclitaxel, cisplatin, or 5-fluorouracil in a murine xenograft model for head and neck squamous cell carcinoma

    PubMed Central

    Theile, Dirk; Gal, Zoltan; Warta, Rolf; Rigalli, Juan Pablo; Lahrmann, Bernd; Grabe, Niels; Herold-Mende, Christel; Dyckhoff, Gerhard; Weiss, Johanna

    2014-01-01

    Drug-induced multidrug resistance (MDR) has been linked to overexpression of drug transporting proteins in head and neck squamous cell carcinoma (HNSCC) in vitro. The aim of this work was to reassess these findings in a murine xenograft model. NOD-SCID mice xenotransplanted with 106 HNO97 cells were treated for four consecutive weeks with weekly paclitaxel, biweekly cisplatin (both intraperitoneal), or 5-fluorouracil (5-FU, administered by osmotic pump). Tumor volume and body weight were weekly documented. Expression of drug transporters and Ki-67 marker were examined using quantitative real-time polymerase chain reaction and/or immunohistochemistry. Both paclitaxel and cisplatin significantly reduced tumor volumes after 23 weeks. 5-FU-treated animals had significantly lower body weights after 2 or 4 weeks of chemotherapy. None of the drugs affected expression of drug transporters at the mRNA level. However, P-glycoprotein (Pgp) protein expression was increased by paclitaxel (P < 0.01). Ki-67 expression did not change during treatment irrespective of the drug applied. Paclitaxel and cisplatin are effectively tumor volume reducing drugs in a murine xenograft model of HNSCC. Paclitaxel enhanced Pgp expression at the protein level, but not at the mRNA level suggesting transcriptional induction to be of minor relevance. In contrast, posttranscriptional mechanisms or Darwinian selection of intrinsically drug transporter overexpressing MDR cells might lead to iatrogenic chemotherapy resistance in HNSCC. PMID:24448417

  16. [Survey of current status of adverse ocular reactions to paclitaxel and a retrospective analysis for aiding in early detection of adverse reactions].

    PubMed

    Noguchi, Yusuke; Nishimura, Rie; Kawara, Hiroko; Omori, Kiyotaka; Matsumoto, Keiji; Tokuyama, Yoko; Uchiyama, Kiyoshi; Shimizu, Yoshihiro

    2013-06-01

    We have observed several cases of adverse reactions to paclitaxel, including visual impairment and lacrimation. Therefore, we conducted a survey of the current status of adverse reactions to paclitaxel and also performed a retrospective analysis of the initial symptoms and the times of their appearance. Of the 22 study patients, 8(36. 4%)presented with adverse ocular reactions, such as visual impairment and lacrimation, and for 3(13. 6%), an ophthalmologist confirmed that paclitaxel could not be ruled out as the direct cause of their adverse reactions. The group of patients who presented with adverse ocular reactions included significantly more patients with ocular complications and a previous history of ocular ailments, compared to the group showing no such reactions. The timing of reaction appearance did not show a consistent pattern. The results of this study suggest that the initial symptoms were mainly visual impairment and lacrimation, and that caution must be taken when administering paclitaxel to patients with a previous history of ocular ailments and ocular complications because of the risk of adverse ocular reactions. Thus, adverse ocular reactions to paclitaxel were indicated as a possible risk, in addition to other adverse events such as myelosuppression and peripheral neuropathy. PMID:23863667

  17. CSE1L/CAS, a microtubule-associated protein, inhibits taxol (paclitaxel)-induced apoptosis but enhances cancer cell apoptosis induced by various chemotherapeutic drugs.

    PubMed

    Liao, Ching-Fong; Luo, Shue-Fen; Shen, Tzu-Yun; Lin, Chin-Huang; Chien, Jung-Tsun; Du, Shin-Yi; Jiang, Ming-Chung

    2008-03-31

    CSE1L/CAS, a microtubule-associated, cellular apoptosis susceptibility protein, is highly expressed in various cancers. Microtubules are the target of paclitaxel-induced apoptosis. We studied the effects of increased or reduced CAS expression on cancer cell apoptosis induced by chemotherapeutic drugs including paclitaxel. Our results showed that CAS overexpression enhanced apoptosis induced by doxorubicin, 5-fluorouracil, cisplatin, and tamoxifen, but inhibited paclitaxel-induced apoptosis of cancer cells. Reductions in CAS produced opposite results. CAS overexpression enhanced p53 accumulation induced by doxorubicin, 5-fluorouracil, cisplatin, tamoxifen, and etoposide. CAS was associated with alpha-tubulin and beta-tubulin and enhanced the association between alpha-tubulin and beta-tubulin. Paclitaxel can induce G2/M phase cell cycle arrest and microtubule aster formation during apoptosis induction, but CAS overexpression reduced paclitaxel-induced G2/M phase cell cycle arrest and microtubule aster formation. Our results indicate that CAS may play an important role in regulating the cytotoxicities of chemotherapeutic drugs used in cancer chemotherapy against cancer cells. PMID:18377724

  18. Effect of Antioxidants and Carbohydrates in Callus Cultures of Taxus brevifolia: Evaluation of Browning, Callus Growth, Total Phenolics and Paclitaxel Production

    PubMed Central

    Yari Khosroushahi, Ahmad; Naderi-Manesh, Hossein; Toft Simonsen, Henrik

    2011-01-01

    Introduction To control the tissue browning phenomenon, callus growth, total phenolics and paclitaxel production, in the current investigation, we evaluated the effects of citric acid and ascorbic acid (as antioxidants) and glucose, fructose and sucrose in callus cultures of Taxus brevifolia. Methods To obtain healthy callus/cell lines of Taxus brevifolia, the effects of two antioxidants ascorbic acid (100-1000 mg/L) and citric acid (50-500 mg/L), and three carbohydrates (glucose, fructose and sucrose (5-10 g/L)) were studied evaluating activities of polyphenol oxidase (PPO) and peroxidase (PO) enzymes, callus growth/browning, total phenolics and paclitaxel production. Results These antioxidants (ascorbic acid and citric acid) failed to show significant effects on callus growth, browning intensity or paclitaxel production. However, the carbohydrates imposed significant effects on the parameters studied. High concentrations of both glucose and sucrose increased the browning intensity, thus decreased callus growth. Glucose increased paclitaxel production, but sucrose decreased it. Conclusion These results revealed that the browning phenomenon can be controlled through supplementation of the growth media with glucose, sucrose (5 g/L) and fructose (10 g/L), while increased paclitaxel production can be obtain by the optimized media supplemented with glucose (10 g/L), sucrose and fructose (5 g/L). PMID:23678406

  19. Enhanced oral bioavailability of paclitaxel formulated in vitamin E-TPGS emulsified nanoparticles of biodegradable polymers: in vitro and in vivo studies.

    PubMed

    Zhao, Lingyun; Feng, Si-Shen

    2010-08-01

    This work evaluates the effects of paclitaxel loaded polymeric nanoparticles (NPs) composed of poly(D,L-lactic-co-glycolic acid) (PLGA) with vitamin E TPGS as emulsifier for oral chemotherapy. NPs prepared by a modified solvent extraction/evaporation technique were observed in spherical shape of 200-300 nm diameter with a high drug encapsulation efficiency (EE) of 80.9%. The TPGS-emulsified PLGA NPs formulation of paclitaxel was found of great advantages over that of Taxol. The in vitro viability experiment showed that the NP formulation could be 1.28, 1.38, 1.12 times more effective than Taxol(R) after 24, 48, 72 h incubation with MCF-7 human breast cancer cell line at 2.5 microg/mL paclitaxel concentration. In vivo evaluation confirmed the advantages of the TPGS-emulsified PLGA NP formulation versus Taxol in promoting oral bioavailability of paclitaxel. Such a NP formulation achieved more than 10 times higher oral bioavailability than Taxol, which resulted 9.74-fold higher therapeutic effect and 12.56-fold longer sustainable therapeutic time than Taxol. The present proof-of-concept experimental data proved that the formulation of vitamin E TPGS emulsified PLGA NPs is a promising approach for paclitaxel oral administration. Oral chemotherapy by NPs formulation is feasible. PMID:20564384

  20. Paclitaxel-sensitization enhanced by curcumin involves down-regulation of nuclear factor-?B and Lin28 in Hep3B cells.

    PubMed

    Zhou, Mingjie; Li, Zhaohui; Han, Ziwu; Tian, Nan

    2015-12-01

    Although paclitaxel is an effective chemotherapeutic drug used in the treatment of many tumors, hepatoma cells, in particular, are known to be highly resistant to it. Previously, we discovered that Lin28 was closely associated with resistance to paclitaxel in Hep3B cells. The nuclear factor-kappa B (NF-?B) transcription factor, which plays an important role in tumor survival, directly activates Lin28 expression through a binding site on the first intron. Curcumin, a non-toxic anti-inflammatory agent, inhibits NF-?B activity in vitro. In this study, we reported that a combination of curcumin and paclitaxel exhibited synergistic anti-proliferative and pro-apoptosis effects on Hep3B cells, and curcumin down-regulated paclitaxel-induced enhanced expression of Lin28 and NF-?B activation. Furthermore, our results revealed that curcumin reduced Lin28 levels via mechanisms directly mediated by inhibition of NF-?B activity. These mechanism-based observations evidence that curcumin enhances the sensitivity of hepatoma cells to paclitaxe, and strongly support the notion that paclitaxel in combination with curcumin may provide a superior therapeutic index for HCC chemotherapy. PMID:26108226

  1. Identification of the First Inhibitor of the GBP1:PIM1 Interaction. Implications for the Development of a New Class of Anticancer Agents against Paclitaxel Resistant Cancer Cells

    PubMed Central

    2015-01-01

    Class III ?-tubulin plays a prominent role in the development of drug resistance to paclitaxel by allowing the incorporation of the GBP1 GTPase into microtubules. Once in the cytoskeleton, GBP1 binds to prosurvival kinases such as PIM1 and initiates a signaling pathway that induces resistance to paclitaxel. Therefore, the inhibition of the GBP1:PIM1 interaction could potentially revert resistance to paclitaxel. A panel of 44 4-azapodophyllotoxin derivatives was screened in the NCI-60 cell panel. The result is that 31 are active and the comparative analysis demonstrated specific activity in paclitaxel-resistant cells. Using surface plasmon resonance, we were able to prove that NSC756093 is a potent in vitro inhibitor of the GBP1:PIM1 interaction and that this property is maintained in vivo in ovarian cancer cells resistant to paclitaxel. Through bioinformatics, molecular modeling, and mutagenesis studies, we identified the putative NSC756093 binding site at the interface between the helical and the LG domain of GBP1. According to our results by binding to this site, the NSC756093 compound is able to stabilize a conformation of GBP1 not suitable for binding to PIM1. PMID:25211704

  2. Phase II study of low-dose paclitaxel and cisplatin as a second-line therapy after 5-fluorouracil/platinum chemotherapy in gastric cancer.

    PubMed

    Lee, Keun Wook; Kim, Jee Hyun; Yun, Tak; Song, Eun Kee; Na, Im Il; Shin, Hyunchoon; Oh, So Yeon; Choi, In Sil; Oh, Do Youn; Kim, Dong Wan; Im, Seock Ah; Kim, Tae You; Lee, Jong Seok; Heo, Dae Seog; Bang, Yung Jue; Kim, Noe Kyeong

    2007-09-01

    This study was performed to evaluate the efficacy and toxicity of low-dose paclitaxel/cisplatin chemotherapy in patients with metastatic or recurrent gastric cancer that had failed 5-fluorouracil/platinum-based chemotherapy. Thirty-two patients with documented progression on or within 6 months after discontinuing 5-fluorouracil/platinum-based chemotherapy were enrolled. As a second-line treatment, paclitaxel (145 mg/m(2)) and cisplatin (60 mg/m(2)) was administered on day 1 every 3 weeks. Among 32 patients enrolled, 8 (25%) responded partially to paclitaxel/cisplatin, 8 (25%) had stable disease, and 14 (44%) had progressive disease. Two patients (6%) were not evaluable. The median time to progression (TTP) and overall survival for all patients were 2.9 months and 9.1 months, respectively. The most common hematologic toxicity was anemia (47%). Grade 3 neutropenia developed in three patients (9%), but no other grade 3/4 hematologic toxicity occurred. The most common non-hematologic toxicities were emesis (31%) and peripheral neuropathy (38%). Three cases (9%) of grade 3/4 emesis and 2 cases (6%) of grade 3 peripheral neuropathy developed. In conclusion, low-dose paclitaxel and cisplatin chemotherapy showed moderate activity with favorable toxicity profiles. However, relatively short TTP of this regimen warrants the development of more effective paclitaxel-based regimens other than combination with cisplatin in these patients as second-line therapies. PMID:17923737

  3. An injectable calcium phosphate cement for the local delivery of paclitaxel to bone.

    PubMed

    Lopez-Heredia, Marco A; Kamphuis, G J Bernard; Thne, Peter C; ner, F Cumhur; Jansen, John A; Walboomers, X Frank

    2011-08-01

    Bone metastases are usually treated by surgical removal, fixation and chemotherapeutic treatment. Bone cement is used to fill the resection voids. The aim of this study was to develop a local drug delivery system using a calcium phosphate cement (CPC) as carrier for chemotherapeutic agents. CPC consisted of alpha-tricalcium phosphate, calcium phosphate dibasic and precipitated hydroxyapatite powders and a 2% Na(2)HPO(4) hardening solution. Scanning electron microscopy (SEM) was used to observe CPC morphology. X-ray diffraction (XRD) was used to follow CPC transformation. The loading/release capacity of the CPC was studied by a bovine serum albumin-loading model. Release/retention was measured by high performance liquid chromatography and X-ray photoelectron spectrometry. For chemotherapeutic loading, paclitaxel (PX) was loaded onto the CPC discs by absorption. Viability of osteosarcoma U2OS and metastatic breast cancer MDA-MB-231 cells was measured by an AlamarBlue assay. Results of SEM and XRD showed changes in CPC due to its transformation. The loading model indicated a high retention behavior by the CPC composition. Cell viability tests indicated a PX minimal lethal dose of 90?g/ml. PX released from CPC remained active to influence cell viability. In conclusion, this study demonstrated that CPC is a feasible delivery vector for chemotherapeutic agents. PMID:21529931

  4. Nanocomposite hydrogel incorporating gold nanorods and paclitaxel-loaded chitosan micelles for combination photothermal-chemotherapy.

    PubMed

    Zhang, Nan; Xu, Xuefan; Zhang, Xue; Qu, Ding; Xue, Lingjing; Mo, Ran; Zhang, Can

    2016-01-30

    Development of combination photothermal-chemotherapy platform is of great interest for enhancing antitumor efficacy and inhibiting tumor recurrence, which supports selective and dose-controlled delivery of heat and anticancer drugs to tumor. Here, an injectable nanocomposite hydrogel incorporating PEGylated gold nanorods (GNRs) and paclitaxel-loaded chitosan polymeric micelles (PTX-M) is developed in pursuit of improved local tumor control. After intratumoral injection, both GNRs and PTX-M can be simultaneously delivered and immobilized in the tumor tissue by the thermo-sensitive hydrogel matrix. Exposure to the laser irradiation induces the GNR-mediated photothermal damage confined to the tumor with sparing the surrounding normal tissue. Synergistically, the co-delivered PTX-M shows prolonged tumor retention with the sustained release of anticancer drug to efficiently kill the residual tumor cells that evade the photothermal ablation due to the heterogeneous heating in the tumor region. This combination photothermal-chemotherapy presents superior effects on suppressing the tumor recurrence and prolonging the survival in the Heps-bearing mice, compared to the photothermal therapy alone. PMID:26608619

  5. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Jayanta; Bellucci, Joseph J.; Weitzhandler, Isaac; McDaniel, Jonathan R.; Spasojevic, Ivan; Li, Xinghai; Lin, Chao-Chieh; Chi, Jen-Tsan Ashley; Chilkoti, Ashutosh

    2015-08-01

    Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumour-specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60 nm near-monodisperse nanoparticles that increased the systemic exposure of PTX by sevenfold compared with free drug and twofold compared with the Food and Drug Administration-approved taxane nanoformulation (Abraxane). The tumour uptake of the CP-PTX nanoparticle was fivefold greater than free drug and twofold greater than Abraxane. In a murine cancer model of human triple-negative breast cancer and prostate cancer, CP-PTX induced near-complete tumour regression after a single dose in both tumour models, whereas at the same dose, no mice treated with Abraxane survived for >80 days (breast) and 60 days (prostate), respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for PTX delivery.

  6. Sulfatide-containing lipid perfluorooctylbromide nanoparticles as paclitaxel vehicles targeting breast carcinoma

    PubMed Central

    Li, Xiao; Qin, Fei; Yang, Li; Mo, Liqian; Li, Lei; Hou, Lianbing

    2014-01-01

    Targeted nanoparticle (NP) delivery vehicles are emerging technologies, the full potential of which has yet to be realized. Sulfatide is known to bind to extracellular matrix glycoproteins that are highly expressed in breast tumors. In this study, we report for the first time the combination of sulfatide and lipid perfluorooctylbromide NPs as a targeted breast cancer delivery vehicle for paclitaxel (PTX). PTX-sulfatide-containing lipid perfluorooctylbromide NPs (PTX-SNPs) were prepared using the emulsion/solvent evaporation method. PTX-SNPs exhibited a spherical shape, small particle size, high encapsulation efficiency, and a biphasic release in phosphate-buffered solution. The cytotoxicity study and cell apoptosis assay revealed that blank sulfatide-containing lipid perfluorooctylbromide NPs (SNPs) had no cytotoxicity, whereas PTX-SNPs had greater EMT6 cytotoxicity levels than PTX-lipid perfluorooctylbromide NPs (PTX-NPs) and free PTX. An in vitro cellular uptake study revealed that SNPs can deliver greater amounts of drug with more efficient and immediate access to intracellular targets. In vivo biodistribution measured using high-performance liquid chromatography confirmed that the PTX-SNPs can target breast tumor tissues to increase the accumulation of PTX in these tissues. The in vivo tumor inhibition ability of PTX-SNPs was remarkably higher than PTX-NPs and free PTX. Furthermore, toxicity studies suggested that the blank SNPs had no systemic toxicity. All results suggested that SNPs may serve as efficient PTX delivery vehicles targeting breast carcinoma. PMID:25170267

  7. A7RC peptide modified paclitaxel liposomes dually target breast cancer.

    PubMed

    Cao, Jingyan; Wang, Ran; Gao, Ning; Li, Minghui; Tian, Xuyu; Yang, Weili; Ruan, Ying; Zhou, Chunlan; Wang, Guangtian; Liu, Xiaoying; Tang, Shukun; Yu, Yan; Liu, Ying; Sun, Guangyu; Peng, Haisheng; Wang, Qun

    2015-12-10

    A7R peptide (ATWLPPR), a ligand of the NRP-1 receptor, regulates the intracellular signal transduction related to tumor vascularization and tumor growth. Here, we designed A7R-cysteine peptide (A7RC) surface modified paclitaxel liposomes (A7RC-LIPs) to achieve targeting delivery and inhibition of tumor growth and angiogenesis simultaneously. The cytotoxicity, inhibiting angiogenesis, and internalization of various liposomes by cells were assessed in vitro to confirm the influence of the peptide modification. The accumulations of A7RC-LIPs in various xenografts in mice were tracked to further identify the function of the peptide on the liposomes' surface. The results confirmed that A7RC peptides could enhance the uptake of vesicles by MDA-MB-231 cells, leading to stronger cytotoxicity in vitro and higher accumulation of vesicles in MDA-MB-231 xenografts in vivo. In addition, A7RC peptides enhanced the inhibitory effects of LIPs on the HUVEC tubular formation on Matrigel. The A7RC-LIPs may be promising drug carriers for anticancer therapy. PMID:26291480

  8. Solid-Nanoemulsion Preconcentrate for Oral Delivery of Paclitaxel: Formulation Design, Biodistribution, and γ Scintigraphy Imaging

    PubMed Central

    Ahmad, Javed; Mir, Showkat R.; Kohli, Kanchan; Chuttani, Krishna; Mishra, Anil K.; Panda, A. K.

    2014-01-01

    Aim of present study was to develop a solid nanoemulsion preconcentrate of paclitaxel (PAC) using oil [propylene glycol monocaprylate/glycerol monooleate, 4 : 1 w/w], surfactant [polyoxyethylene 20 sorbitan monooleate/polyoxyl 15 hydroxystearate, 1 : 1 w/w], and cosurfactant [diethylene glycol monoethyl ether/polyethylene glycol 300, 1 : 1 w/w] to form stable nanocarrier. The prepared formulation was characterized for droplet size, polydispersity index, and zeta potential. Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to assess surface morphology and drug encapsulation and its integrity. Cumulative drug release of prepared formulation through dialysis bag and permeability coefficient through everted gut sac were found to be remarkably higher than the pure drug suspension and commercial intravenous product (Intaxel), respectively. Solid nanoemulsion preconcentrate of PAC exhibited strong inhibitory effect on proliferation of MCF-7 cells in MTT assay. In vivo systemic exposure of prepared formulation through oral administration was comparable to that of Intaxel in γ scintigraphy imaging. Our findings suggest that the prepared solid nanoemulsion preconcentrate can be used as an effective oral solid dosage form to improve dissolution and bioavailability of PAC. PMID:25114933

  9. The centrosomal protein TACC3 controls paclitaxel sensitivity by modulating a premature senescence program.

    PubMed

    Schmidt, S; Schneider, L; Essmann, F; Cirstea, I C; Kuck, F; Kletke, A; Jänicke, R U; Wiek, C; Hanenberg, H; Ahmadian, M R; Schulze-Osthoff, K; Nürnberg, B; Piekorz, R P

    2010-11-18

    Microtubule-interfering cancer drugs such as paclitaxel (PTX) often cause chemoresistance and severe side effects, including neurotoxicity. To explore potentially novel antineoplastic molecular targets, we investigated the cellular response of breast carcinoma cells to short hairpin(sh)RNA-mediated depletion of the centrosomal protein transforming acidic coiled coil (TACC) 3, an Aurora A kinase target expressed during mitosis. Unlike PTX, knockdown of TACC3 did not trigger a cell death response, but instead resulted in a progressive loss of the pro-apoptotic Bcl-2 protein Bim that links microtubule integrity to spindle poison-induced cell death. Interestingly, TACC3-depleted cells arrested in G₁ through a cellular senescence program characterized by the upregulation of nuclear p21(WAF), downregulation of the retinoblastoma protein and extracellular signal-regulated kinase 1/2, formation of HP1γ (phospho-Ser83)-positive senescence-associated heterochromatic foci and increased senescence-associated β-galactosidase activity. Remarkably, the onset of senescence following TACC3 knockdown was strongly accelerated in the presence of non-toxic PTX concentrations. Thus, we conclude that mitotic spindle stress is a major trigger of premature senescence and propose that the combined targeting of the centrosomal Aurora A-TACC3 axis together with drugs interfering with microtubule dynamics may efficiently improve the chemosensitivity of cancer cells. PMID:20729911

  10. Covalent Polyisobutylene-Paclitaxel Conjugates for Controlled Release from Potential Vascular Stent Coatings.

    PubMed

    Trant, John F; McEachran, Matthew J; Sran, Inderpreet; Turowec, Bethany A; de Bruyn, John R; Gillies, Elizabeth R

    2015-07-01

    The development of covalent polyisobutylene (PIB)-paclitaxel (PTX) conjugates as a potential approach to controlling drug release from vascular stent coatings is described. PIB-PTX materials containing ?24 and ?48 wt % PTX, conjugated via ester linkages, were prepared. The PTX release profiles were compared with those of physical mixtures of PTX with carboxylic acid-functionalized PIB and with the triblock copolymer polystyrene-b-PIB-b-polystyrene (SIBS). Covalent conjugation led to significantly slower drug release. Atomic force microscopy imaging of coatings of the materials suggested that the physical mixtures exhibited multiple domains corresponding to phase separation, whereas the materials in which PTX was covalently conjugated appeared homogeneous. Coatings of the conjugated materials on stainless steel surfaces suffered less surface erosion than the physically mixed materials, remained intact, and adhered well to the surface throughout the thirty-five day study. Tensile testing and rheological studies suggested that the incorporation of PTX into the polymer introduces similar physical changes to the PIB as the incorporation of a glassy polystyrene block does in SIBS. Cytotoxicity assays showed that the coatings did not release toxic levels of PTX or other species into a cell culture medium over a 24 h period, yet the levels of PTX in the materials were sufficient to prevent C2C12 cells from adhering to and proliferating on them. Overall, these results indicate that covalent PIB-PTX conjugates have promise as coatings for vascular stents. PMID:26066902

  11. Preparation and characterization of amphiphilic calixarene nanoparticles as delivery carriers for paclitaxel.

    PubMed

    Zhao, Zi-Ming; Wang, Yu; Han, Jin; Zhu, Hui-Dong; An, Lin

    2015-01-01

    Two types of amphoteric calix[n]arene carboxylic acid (CnCA) derivative, i.e., calix[6]arene hexa-carboxylic acid (C6HCA) and calix[8]arene octo-carboxylic acid (C8OCA), were synthesized by introducing acetoxyls into the hydroxyls of calix[n]arene (n=6, 8). C6HCA and C8OCA nanoparticles (NPs) were prepared successfully using the dialysis method. CnCA NPs had regular spherical shapes with an average diameter of 180-220 nm and possessed negative charges of greater than -30 mV. C6HCA and C8OCA NPs were stable in 4.5% bovine serum albumin solutions and buffers (pH 5-9), with a low critical aggregation concentration value of 5.7 mg·L(-1) and 4.0 mg·L(-1), respectively. C6HCA and C8OCA NPs exhibited good paclitaxel (PTX) loading capacity, with drug loading contents of 7.5% and 8.3%, respectively. The overall in vitro release behavior of PTX from the CnCA NPs was sustained, and C8OCA NPs had a slower release rate compared with C6HCA NPs. These favorable properties of CnCA NPs make them promising nanocarriers for tumor-targeted drug delivery. PMID:25757488

  12. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers.

    PubMed

    Yan, Fei; Li, Lu; Deng, Zhiting; Jin, Qiaofeng; Chen, Juanjuan; Yang, Wei; Yeh, Chih-Kuang; Wu, Junru; Shandas, Robin; Liu, Xin; Zheng, Hairong

    2013-03-28

    Liposome-microbubble complexes (LMC) have become a promising therapeutic carrier for ultrasound-triggered drug delivery to treat malignant tumors. However, the efficacy for ultrasound-assisted chemotherapy in vivo and the underlying mechanisms remain to be elucidated. Here, we investigated the feasibility of using paclitaxel-liposome-microbubble complexes (PLMC) as possible ultrasound (US)-triggered targeted chemotherapy against breast cancer. PTX-liposomes (PL) were conjugated to the microbubble (MB) surface through biotin-avidin linkage, increasing the drug-loading efficiency of MBs. The significant increased release of payloads from liposome-microbubble complexes was achieved upon US exposure. We used fluorescent quantum dots (QDs) as a model drug to show that released QDs were taken up by 4T1 breast cancer cells treated with QD-liposome-microbubble complexes (QLMC) and US, and uptake depended on the exposure time and intensity of insonication. We found that PLMC plus US inhibited tumor growth more effectively than PL plus US or PLMC without US, not only in vitro, but also in vivo. Histologically, the inhibition of tumor growth appeared to result from increased apoptosis and reduced angiogenesis in tumor xenografts. In addition, a significant increase of drug concentration in tumors was observed in comparison to treatment with non-conjugated PL or PLMC without US. The significant increase in an antitumor efficacy of PLMC plus US suggests their potential use as a new targeted US chemotherapeutic approach to inhibit breast cancer growth. PMID:23306023

  13. [A case of paclitaxel-resistant recurrent gastric cancer responsive to S-1 plus docetaxel].

    PubMed

    Nishikawa, Kazuhiro; Iwase, Kazuhiro; Aono, Toyokazu; Yoshida, Hiroshi; Nomura, Masaya; Tamagawa, Hiroshi; Matsuda, Chu; Deguchi, Takashi; Kawada, Junji; Higashi, Shigeyoshi; Deguchi, Koichi; Noguchi, Yuki; Okumura, Yuichiro; Nomura, Masatoshi; Fushimi, Hiroaki; Takagi, Mari; Fukui, Akiko; Fujitani, Kazumasa; Endo, Shunji; Tanaka, Yasuhiro

    2013-11-01

    We report the case of a patient with paclitaxel (PTX) -resistant recurrent gastric cancer who was effectively treated with S-1 plus docetaxel( DOC). A 62-year-old woman underwent total gastrectomy for Stage IV advanced gastric cancer (type 4, por 2>sig, pT4a (SE), pN3a, pP1, CY1) in 2009. Although S-1 was administered as first-line chemotherapy, recurrent peritoneal metastasis was diagnosed 22 months after surgery. S-1 plus irinotecan (CPT-11) was administered as second-line chemotherapy, and this was followed by weekly PTX (80 mg/m2) as third-line chemotherapy. However, computed tomography (CT) showed increased ascites and peritoneal wall thickening in the pelvis. As the tumor proved resistant to PTX, making the treatment ineffective, S-1( 80 mg/m2, day 1-14, q3w) plus DOC( 40 mg/m2, day 1, q3w) was initiated. Two months later, the ascites and peritoneal wall thickening in the pelvis disappeared. Twelve months after initiation of S-1 plus DOC chemotherapy, no sign of recurrence has been noted. PMID:24394078

  14. Engineering erythrocytes as a novel carrier for the targeted delivery of the anticancer drug paclitaxel

    PubMed Central

    Harisa, Gamaleldin I.; Ibrahim, Mohamed F.; Alanazi, Fars; Shazly, Gamal A.

    2013-01-01

    Paclitaxel (PTX) is formulated in a mixture of Cremophor EL and dehydrated alcohol. The intravenous administration of this formula is associated with a risk of infection and hypersensitivity reactions. The presence of Cremophor EL as a pharmaceutical vehicle contributes to these effects. Therefore, in this study, we used human erythrocytes, instead of Cremophor, as a pharmaceutical vehicle. PTX was loaded into erythrocytes using the preswelling method. Analysis of the obtained data indicates that 148.8?g of PTX was loaded/mL erythrocytes, with an entrapment efficiency of 46.36% and a cell recovery of 75.94%. Furthermore, we observed a significant increase in the mean cell volume values of the erythrocytes, whereas both the mean cell hemoglobin and the mean cell hemoglobin concentration decreased following the loading of PTX. The turbulence fragility index values for unloaded, sham-loaded and PTX-loaded erythrocytes were 3, 2, and 1h, respectively. Additionally, the erythrocyte glutathione level decreased after PTX loading, whereas lipid peroxidation and protein oxidation increased. The release of PTX from loaded erythrocytes followed first-order kinetics, and about 81% of the loaded drug was released into the plasma after 48h. The results of the present study revealed that PTX was loaded successfully into human erythrocytes with acceptable loading parameters and with some oxidative modification to the erythrocytes. PMID:25061408

  15. Codelivery of Doxorubicin and Paclitaxel by Cross-Linked Multilamellar Liposome Enables Synergistic Antitumor Activity

    PubMed Central

    2015-01-01

    Combining chemotherapeutics is a promising method of improving cancer treatment; however, the clinical success of combination therapy is limited by the distinct pharmacokinetics of combined drugs, which leads to nonuniform distribution. In this study, we report a new robust approach to load two drugs with different hydrophilicities into a single cross-linked multilamellar liposomal vesicle (cMLV) to precisely control the drug ratio that reaches the tumor in vivo. The stability of cMLVs improves the loading efficiency and sustained release of doxorubicin (Dox) and paclitaxel (PTX), maximizing the combined therapeutic effect and minimizing the systemic toxicity. Furthermore, we show that the cMLV formulation maintains specific drug ratios in vivo for over 24 h, enabling the ratio-dependent combination synergy seen in vitro to translate to in vivo antitumor activity and giving us control over another parameter important to combination therapy. This combinatorial delivery system may provide a new strategy for synergistic delivery of multiple chemotherapeutics with a ratiometric control over encapsulated drugs to treat cancer and other diseases. PMID:24673622

  16. Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells.

    PubMed

    Wang, Yue; Qu, Ye; Niu, Xiu Long; Sun, Wei Jia; Zhang, Xiao Lei; Li, Ling Zhi

    2011-11-01

    It has been widely reported that interleukin-8 (IL-8) is overexpressed in ovarian cyst fluid, ascites, serum, and tumor tissue from ovarian cancer (OVCA) patients, and elevated IL-8 expression correlates with a poor final outcome and chemosensitivity. However, the role of IL-8 expression in the acquisition of the chemoresistance phenotype and the underlining mechanisms of drug resistance in OVCA cells are not yet fully understood. Here we show that both exogenous (a relatively short period of treatment with recombination IL-8) and endogenous IL-8 (by transfecting with plasmid encoding for sense IL-8) induce cisplatin and paclitaxel resistance in non-IL-8-expressing A2780 cells, while deleting of endogenous IL-8 expression in IL-8-overexpressing SKOV-3 cells (by transfecting with plasmid encoding for antisense IL-8) promotes the sensitivity of these cells to anticancer drugs. IL-8-mediated resistance of OVCA cells exhibits decreased proteolytic activation of caspase-3. Meanwhile, the further study demonstrates that the chemoresistance caused by IL-8 is associated with increased expression of both multidrug resistance-related genes (MDR1) and apoptosis inhibitory proteins (Bcl-2, Bcl-xL, and XIAP), as well as activation of PI3K/Akt and Ras/MEK/ERK signaling. Therefore, modulation of IL-8 expression or its related signaling pathway may be a promising strategy of treatment for drug-resistant OVCA. PMID:21742513

  17. Self-assembly PEGylation assists SLN-paclitaxel delivery inducing cancer cell apoptosis upon internalization.

    PubMed

    Arranja, Alexandra; Gouveia, Luís F; Gener, Petra; Rafael, Diana F; Pereira, Carolina; Schwartz, Simó; Videira, Mafalda A

    2016-03-30

    In past years, a considerable progress has been made in the conversion of conventional chemotherapy into potent and safe nanomedicines. The ultimate goal is to improve the therapeutic window of current chemotherapeutics by reducing systemic toxicities and to deliver higher concentrations of the chemotherapeutic agents to malignant cells. In this work, we report that PEGylation of the nanocarriers increases drug intracellular bioavailability leading therefore to higher therapeutic efficacy. The surface of the already patented solid lipid nanoparticles (SLN) loaded with paclitaxel (SLN-PTX) was coated with a PEG layer (SLN-PTX_PEG) through an innovative process to provide stable and highly effective nanoparticles complying with the predefined pharmaceutical quality target product profile. We observed that PEGylation not only stabilizes the SLN, but also modulates their cellular uptake kinetics. As a consequence, the intracellular concentration of chemotherapeutics delivered by SLN-PTX_PEG increases. This leads to the increase of efficacy and thus it is expected to significantly circumvent cancer cell resistance and increase patient survival and cure. PMID:26853316

  18. Small molecule, big difference: the role of water in the crystallization of paclitaxel.

    PubMed

    Vella-Zarb, Liana; Baisch, Ulrich; Dinnebier, Robert E

    2013-02-01

    Paclitaxel is an important antineoplastic drug, which is used widely in the treatment of many forms of cancer. The crystal structures of the anhydrous form and the hemihydrate were determined from laboratory X-ray powder diffraction data, whereas the dihydrate was solved from single-crystal synchrotron diffraction data. Intermolecular spaces allow for the inclusion of loosely bound water molecules, which are then lost easily upon heating. All three forms were found to crystallize in the orthorhombic spacegroup P2(1)2(1)2(1), with Z' = 2. The unit cell parameters were found to be a = 9.6530(3) Å, b = 28.1196(8) Å, c = 33.5378(14) Å, and V = 9103.5(5) Å for the anhydrous form (363 K); a = 9.6890(2) Å, b = 28.0760(4) Å, c = 33.6166(8) Å, and V = 9144.7(3) Å(3) for the hemihydrate (333 K); and a = 9.512(6) Å, b = 28.064(16) Å, c = 33.08(2) Å, and V = 8829.0(9) Å(3) for the dihydrate (120 K). Water loss occurs in two steps between 120 K ≤ t ≤ 363 K. The thermal stability of the hydrates and accompanying unit cell changes were observed in situ via temperature-resolved X-ray powder diffraction and thermogravimetric analysis. PMID:23203212

  19. Dendritic polyglycerol sulfate as a novel platform for paclitaxel delivery: pitfalls of ester linkage.

    PubMed

    Sousa-Herves, Ana; Wrfel, Patrick; Wegner, Nicole; Khandare, Jayant; Licha, Kai; Haag, Rainer; Welker, Pia; Caldern, Marcelo

    2015-03-01

    In this study, dendritic polyglycerol sulfate (dPGS) is evaluated as a delivery platform for the anticancer, tubulin-binding drug paclitaxel (PTX). The conjugation of PTX to dPGS is conducted via a labile ester linkage. A non-sulfated dendritic polyglycerol (dPG) is used as a control, and the labeling with an indocarbocyanine dye (ICC) renders multifunctional conjugates that can be monitored by fluorescence microscopy. The conjugates are characterized by (1)H NMR, UV-vis measurements, and RP-HPLC. In vitro cytotoxicity of PTX and dendritic conjugates is evaluated using A549 and A431 cell lines, showing a reduced cytotoxic efficacy of the conjugates compared to PTX. The study of uptake kinetics reveals a linear, non saturable uptake in tumor cells for dPGS-PTX-ICC, while dPG-PTX-ICC is hardly taken up. Despite the marginal uptake of dPG-PTX-ICC, it prompts tubulin polymerization to a comparable extent as PTX. These observations suggest a fast ester hydrolysis and premature drug release, as confirmed by HPLC measurements in the presence of plasma enzymes. PMID:25516353

  20. Enhancing the water dispersibility of paclitaxel by complexation with hydrophobic peptides.

    PubMed

    Inada, Asuka; Oshima, Tatsuya; Baba, Yoshinari

    2015-11-01

    The complex between paclitaxel (Ptx) and a peptide mixture (Pep) was prepared to enhance of the water-dispersibility of Ptx. Pep was prepared by enzymatic hydrolysis of casein, followed by fractionation using ammonium sulfate precipitation and ultrafiltration. The Ptx and Pep complex (Ptx-Pep) was prepared by mixing an ethanol solution of Ptx and an aqueous solution of Pep followed by lyophilization. The water dispersibility test of Ptx-Pep prepared using different fractions of Pep demonstrated that a fraction (Pep-A), containing relatively hydrophobic peptides with high molecular weights, was effective in enhancing the water dispersibility of Ptx. The sequences of the major peptides in Pep-A were identified by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry with "LIFT" technique. The water dispersibility of the complex between Ptx and Pep-A (Ptx-Pep-A) was independent of pH, even though it is positively or negatively charged under strongly acidic and neutral conditions. As the particle size of Ptx-Pep-A in aqueous media was 147-215nm, Ptx-Pep-A was present as a hydrocolloidal material in aqueous media. PMID:26277716

  1. Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting.

    PubMed

    Liu, Yayuan; Ran, Rui; Chen, Jiantao; Kuang, Qifang; Tang, Jie; Mei, Ling; Zhang, Qianyu; Gao, Huile; Zhang, Zhirong; He, Qin

    2014-06-01

    The treatment of glioma is a great challenge because of the existence of the blood-brain barrier (BBB). In order to reduce toxicity to the normal brain tissue and achieve efficient treatment, it is also important for drugs to specifically accumulate in the glioma foci and penetrate into the tumor core after entering into the brain. In this study, a specific ligand cyclic RGD peptide was conjugated to a cell penetrating peptide R8 to develop a multifunctional peptide R8-RGD. R8-RGD increased the cellular uptake of liposomes by 2-fold and nearly 30-fold compared to separate R8 and RGD respectively, and displayed effective penetration of three-dimensional glioma spheroids and BBB model invitro. Invivo studies showed that R8-RGD-lipo could be efficiently delivered into the brain and selectively accumulated in the glioma foci after systemic administration in C6 glioma bearing mice. When paclitaxel (PTX) was loaded in liposomes, R8-RGD-lipo could induce the strongest inhibition and apoptosis against C6 cells and finally achieved the longest survival in intracranial C6 glioma bearing mice. In conclusion, all the results indicated that the tandem peptide R8-RGD was a promising ligand possessing multi functions including BBB transporting, glioma targeting and tumor penetrating. And R8-RGD-lipo was proved to be a potential anti-glioma drug delivery system. PMID:24651033

  2. ING4 enhances paclitaxel's effect on colorectal cancer growth in vitro and in vivo.

    PubMed

    Cao, Liyu; Chen, Shunhua; Zhang, Cong; Chen, Cong; Lu, Nana; Jiang, Yan; Cai, Yongping; Yin, Yu; Xu, Jianming

    2015-01-01

    Inhibitor of growth 4 (ING4) is a tumor suppressor that can inhibit cell growth and induce apoptosis. ING4 expression levels show negative correlation with the clinical stage, histological grade, and lymph node metastasis of colorectal cancer. Further insights are needed to analyze the effect of adenovirus-mediated ING4 on colorectal cancer cell growth and the response to paclitaxel treatment. In this study, we found adenovirus-mediated ING4 expression reduced proliferation and enhanced apoptosis in the SW1116 cells. p-Stat3 and Ki-67 expression significantly decreased in the SW1116 cells treated with Ad-ING4, PTX, or Ad-ING4+PTX compared with those treated with PBS or Ad-GFP both in vitro and in vivo (P<0.05). In animal experiments, the mice treated with Ad-ING4, PTX, or Ad-ING4+PTX exhibited significantly inhibited growth of SW1116 xenografts compared with those treated with PBS or Ad-GFP (P<0.05) and the combination (Ad-ING4+PTX) treatment exhibited the highest inhibition. Our results highlight that Ad-ING4 significantly inhibits growth and induces apoptosis in SW1116 colorectal cancer cells and suppresses tumor growth in SW1116 xenografts by downregulating p-Stat3 and Ki-67 expression. A combination of Ad-ING4 and PTX exhibits the highest inhibition, indicating that ING4 enhances sensitivity to chemotherapy. PMID:26045800

  3. Construction of polymer-paclitaxel conjugate linked via a disulfide bond.

    PubMed

    Yan, Qunfang; Yang, Yuchi; Chen, Wulian; Hu, Jianhua; Yang, Dong

    2016-01-01

    Covalently linked amphiphilic polymer-paclitaxel (PTX) could self-assemble into micelles to overcome many drawbacks of existing delivery systems of PTX by virtue of tunable compositions, variable sizes, high drug loading content and zero burst release. Moreover, a reduction-responsive system based on glutathione (GSH) can be established by introducing disulfide bonds into the polymeric carriers to improve the selectivity for cancer cells. Herein, we reported a disulfide bond linked polymer-PTX, P(PEGMEA)-co-P(PDPHEMA)-g-PTX with a high PTX loading content of 43.7 wt.%. In vitro cell assay showed that the polymer carrier has almost no cytotoxicity. The half maximal inhibitory concentration (IC50) values of the polymer-PTX conjugate against HEK-293 cells was about 10 times higher than that of HeLa cells after incubation for 72 h. Such a dramatic selectivity for cancer and normal cells provides a promising strategy to improve the therapeutic efficacy and decrease the side effects of PTX in chemotherapy. PMID:26478347

  4. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media

    PubMed Central

    2013-01-01

    Background Endophytic fungi represent underexplored resource of novel lead compounds and have a capacity to produce diverse class of plant secondary metabolites. Here we investigated endophytic fungi diversity and screening of paclitaxel-producing fungi from Taxus x media. Results Eighty-one endophytic fungi isolated from T. media were grouped into 8 genera based on the morphological and molecular identification. Guignardia and Colletotrichum were the dominant genera, whereas the remaining genera were infrequent groups. The genera Glomerella and Gibberella were first reported in Taxus. Three representative species of the distinct genera gave positive hits by molecular marker screening and were capable of producing taxol which were validated by HPLC-MS. Among these 3 taxol-producing fungi, the highest yield of taxol was 720 ng/l by Guignardia mangiferae HAA11 compared with those of Fusarium proliferatum HBA29 (240 ng/l) and Colletotrichum gloeosporioides TA67 (120 ng/l). This is the first report of taxol producer from Guignardia. Moreover, the lower similarities of ts and bapt between microbial and plant origin suggested that fungal taxol biosynthetic cluster might be repeatedly invented during evolution, nor horizontal gene transfer from Taxus species. Conclusions Taxol-producing endophytic fungi could be a fascinating reservoir to generate taxol-related drug lead and to elucidate the remained 5 unknown genes or the potential regulation mechanism in the taxol biosynthesis pathway. PMID:23537181

  5. nab-Paclitaxel for the treatment of aggressive metastatic breast cancer.

    PubMed

    Glck, Stefan

    2014-08-01

    Despite advances in early diagnosis, prevention, and treatment, breast cancer remains the second-leading cause of cancer-related deaths in women. The 5-year survival rate for patients with metastatic breast cancer (MBC) is just 24%. However, some forms of MBC appear to be more aggressive than others. Triple-negative breast cancer (TNBC; lacking overexpression of human epidermal growth factor receptor 2 [HER2] and expression of estrogen and progesterone receptors) and breast cancers that overexpress HER2 are the 2 biologically defined subtypes with the worst prognoses. Although a number of effective options have been developed for the treatment of HER2-overexpressing disease, TNBC remains a difficult-to-treat subtype. In addition to hormone receptor and HER2 status, multiple other factors are predictive of relatively poorer clinical outcomes, including visceral metastasis, short disease-free interval between the end of treatment for early-stage disease and diagnosis of MBC, and higher number of metastatic sites. There is an urgent need to improve therapy for patients with aggressive forms of breast cancer. Taxanes are considered among the most active classes of compounds against breast cancer. This review specifically examines the clinical trials in which nab-paclitaxel was used to treat patients with MBC and factors associated with poor prognosis. PMID:24806278

  6. Weekly Paclitaxel plus Capecitabine versus Docetaxel Every 3 Weeks plus Capecitabine in Metastatic Breast Cancer.

    PubMed

    Wist, E A; Mjaaland, I; Lkkevik, E; Sommer, H H

    2012-01-01

    Background. We performed a randomized phase II study comparing efficacy and toxicity of weekly paclitaxel 80?mg/m(2) (Weetax) with three weekly docetaxel 75?mg/m(2) (Threetax), both in combination with oral capecitabine 1000?mg/m(2) twice daily for 2 weeks followed by a 1-week break. Patients. Thirty-seven women with confirmed metastatic breast cancer were randomized. Results. Median TTF was 174 (Weetax) versus 147 days (Threetax) (P=0.472). Median OS was 933 (Weetax) versus 464 days (Threetax) (P=0.191). Reasons for TTF were PD 8/18 (Weetax), 9/19 (Threetax); and toxicity: 8/18 (Weetax), 8/19 (Threetax). ORR was 72% (Weetax) versus 26% (Threetax) (P = 0.01). The Threetax-combination resulted in a higher incidence of leuco-/neutropenia compared to Weetax. Grade II anemia was more pronounced in the Weetax group. No difference was found in quality of life. Conclusion. Taxanes in combination with capecitabine resulted in a high level of toxicity. Taxanes and capecitabine should be considered given sequentially and not in combination. PMID:22291703

  7. Concurrent cisplatin, 5-FU, paclitaxel, and radiation therapy in patients with locally advanced esophageal cancer

    SciTech Connect

    Roof, Kevin S. . E-mail: kroof@sero.net; Coen, John; Lynch, Thomas J.; Wright, Cameron; Fidias, Panos; Willett, Christopher G.; Choi, Noah C.

    2006-07-15

    Purpose: Phase I-II data regarding neoadjuvant cisplatin, 5-fluorouracil (5-FU), paclitaxel, and radiation (PFT-R) from our institution demonstrated encouraging pathologic complete response (pCR) rates. This article updates our experience with PFT-R, and compares these results to our experience with cisplatin, 5-FU, and radiation therapy (PF-R) in locally advanced esophageal cancer. Patients and Methods: We searched the Massachusetts General Hospital cancer registry for esophageal cancer patients treated with radiation therapy and chemotherapy between 1994-2002. Records of patients treated with curative, neoadjuvant therapy were examined for chemotherapeutic regimen. Outcomes of patients treated with PF-R or PFT-R were assessed for response to therapy, toxicity, and survival. Results: A total of 177 patients were treated with neoadjuvant therapy with curative intent; 164 (93%) received PF-R (n = 81) or PFT-R (n = 83). Median overall survival was 24 months. After a median follow-up of 54 months for surviving patients, 3-year overall survival was 40% with no significant difference between PF-R (39%) and PFT-R (42%). Conclusions: Our findings failed to demonstrate an improvement in pCR or survival with PFT-R vs. PF-R. These results do not support this regimen of concurrent neoadjuvant PFT-R in esophageal cancer, and suggest that further investigations into alternative regimens and novel agents are warranted.

  8. Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel.

    PubMed

    Xu, Zhiyuan; Wang, Song; Li, Yongjun; Wang, Mingwei; Shi, Ping; Huang, Xiaoyu

    2014-10-01

    Graphene oxide (GO), a novel 2D nanomaterial prepared by the oxidation of natural graphite, has been paid much attention in the area of drug delivery due to good biocompatibility and low toxicity. In the present work, 6-armed poly(ethylene glycol) was covalently introduced into the surface of GO sheets via a facile amidation process under mild conditions, making the modified GO, GO-PEG (PEG: 65 wt %, size: 50-200 nm), stable and biocompatible in physiological solution. This nanosized GO-PEG was found to be nontoxic to human lung cancer A549 and human breast cancer MCF-7 cells via cell viability assay. Furthermore, paclitaxel (PTX), a widely used cancer chemotherapy drug, was conjugated onto GO-PEG via π-π stacking and hydrophobic interactions to afford a nanocomplex of GO-PEG/PTX with a relatively high loading capacity for PTX (11.2 wt %). This complex could quickly enter into A549 and MCF-7 cells evidenced by inverted fluorescence microscopy using Fluorescein isothiocyanate as a probe, and it also showed remarkably high cytotoxicity to A549 and MCF-7 cells in a broad range of concentration of PTX and time compared to free PTX. This kind of nanoscale drug delivery system on the basis of PEGylated GO may find potential application in biomedicine. PMID:25216036

  9. The formulation of aptamer-coated paclitaxel-polylactide nanoconjugates and their targeting to cancer cells.

    PubMed

    Tong, Rong; Yala, Linda; Fan, Timothy M; Cheng, Jianjun

    2010-04-01

    Paclitaxel-polylactide (Ptxl-PLA) conjugate nanoparticles, termed as nanoconjugates (NCs), were prepared through Ptxl/(BDI)ZnN(TMS)(2) (BDI = 2-((2,6-diisopropylphenyl)-amido)-4-((2,6-diisopropylphenyl)-imino)-2-pentene)-mediated controlled polymerization of lactide (LA) followed by nanoprecipitation. Nanoprecipitation of Ptxl-PLA resulted in sub-100 nm NCs with monomodal particle distributions and low polydispersities. The sizes of Ptxl-PLA NCs could be precisely controlled by using appropriate water-miscible solvents and by controlling the concentration of Ptxl-PLA during nanoprecipitation. Co-precipitation of a mixture of PLA-PEG-PLA (PLA = 14 kDa; PEG = 5 kDa) and Ptxl-PLA in PBS resulted in NCs that could stay non-aggregated in PBS for an extended period of time. To develop solid formulations of NCs, we evaluated a series of lyoprotectants, aiming to identify candidates that could effectively reduce or eliminate NC aggregation during lyophilization. Albumin was found to be an excellent lyoprotectant for the preparation of NCs in solid form, allowing lyophilized NCs to be readily dispersed in PBS without noticeable aggregates. Aptamer-NCs bioconjugates were prepared and found to be able to effectively target prostate-specific membrane antigen in a cell-specific manner. PMID:20122727

  10. Erlotinib versus carboplatin and paclitaxel in advanced lepidic adenocarcinoma: IFCT-0504.

    PubMed

    Cadranel, Jacques; Gervais, Radj; Merle, Patrick; Moro-Sibilot, Denis; Westeel, Virginie; Bigay-Game, Laurence; Quoix, Elisabeth; Friard, Sylvie; Barlesi, Fabrice; Lethrosne, Claire; Moreau, Lionel; Monnet, Isabelle; Salaun, Mathieu; Oliviero, Grard; Souquet, Pierre-Jean; Antoine, Martine; Langlais, Alexandra; Morin, Franck; Wislez, Marie; Zalcman, Grard

    2015-11-01

    The IFCT-0504 phase II trial evaluated the efficacy of erlotinib versus carboplatin-paclitaxel (CP) as first-line treatment in 130 cases of advanced lepidic-predominant adenocarcinoma (ADC).The primary objective of the study was treatment efficacy, evaluated based on an end-point of disease control at 16?weeks.The primary objective was met, with a disease control in 35 (53%) out of 66 patients treated with CP and in 25 (39.1%) out of 64 patients treated with erlotinib. Median progression-free survival (PFS) for the total population was 3.6?months. The disease control rate did not differ between either the therapeutic arms or pathological subtypes, whereas there was a strong interaction between treatment arms and tumour pathological subtypes for PFS (p=0.009). Mucinous tumour patients treated with erlotinib exhibited an increased progression risk (hazard ratio 3.4, 95% CI 1.7-6.5; p?0.001). The PFS for nonmucinous tumour patients was similar in both arms. Median overall survival was 20.1?months and did not differ between therapeutic arms. These findings were not further elucidated by molecular analyses and the toxicity profiles were as expected.Our study demonstrated the dominant role of CP alongside erlotinib in the management of advanced lepidic ADC. Based on these findings, erlotinib should not be administered in first-line therapy to patients with lepidic ADC in the absence of an epidermal growth factor receptor mutation. PMID:26381515

  11. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models.

    PubMed

    Bhattacharyya, Jayanta; Bellucci, Joseph J; Weitzhandler, Isaac; McDaniel, Jonathan R; Spasojevic, Ivan; Li, Xinghai; Lin, Chao-Chieh; Chi, Jen-Tsan Ashley; Chilkoti, Ashutosh

    2015-01-01

    Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumour-specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ?60?nm near-monodisperse nanoparticles that increased the systemic exposure of PTX by sevenfold compared with free drug and twofold compared with the Food and Drug Administration-approved taxane nanoformulation (Abraxane). The tumour uptake of the CP-PTX nanoparticle was fivefold greater than free drug and twofold greater than Abraxane. In a murine cancer model of human triple-negative breast cancer and prostate cancer, CP-PTX induced near-complete tumour regression after a single dose in both tumour models, whereas at the same dose, no mice treated with Abraxane survived for >80 days (breast) and 60 days (prostate), respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for PTX delivery. PMID:26239362

  12. Paclitaxel enhances early dendritic cell maturation and function through TLR4 signaling in mice

    PubMed Central

    Pfannenstiel, Lukas W.; Lam, Samuel S. K.; Emens, Leisha A.; Jaffee, Elizabeth M.; Armstrong, Todd D.

    2010-01-01

    Subclinical doses of Paclitaxel (PTX) given 1 day prior to a HER-2/neu (neu)-targeted, granulocyte-macrophage colony stimulating factor (GM-CSF)-secreting whole-cell vaccine enhances neu-specific T cell responses and slows neu+ tumor growth in tolerized HER-2/neu (neu-N) mice. We demonstrate that co-administration of PTX and Cyclophosphamide (CY) synergizes to slow tumor growth, and that in vitro, DC precursors exposed to PTX before LPS maturation results in greater co-stimulatory molecule expression, IL-12 production, and the ability to induce CD8+ T cells with enhanced lytic activity against neu+ tumors. PTX treatment also enhances maturation marker expression on CD11c+ DCs isolated from vaccine-draining lymph nodes. Ex vivo, these DCs activate CD8+ T cells with greater lytic capability than DCs from vaccine alone-treated neu-N mice. Finally, PTX treatment results in enhanced antigen-specific, IFN-?-secreting CD8+ T cells in vivo. Thus, administration of PTX with a tumor vaccine improves T cell priming through enhanced maturation of DC. PMID:20346445

  13. Molecular phylogeny and paclitaxel screening of fungal endophytes from Taxus globosa.

    PubMed

    Soca-Chafre, Giovanny; Rivera-Ordua, Flor N; Hidalgo-Lara, M Eugenia; Hernandez-Rodriguez, Cesar; Marsch, Rodolfo; Flores-Cotera, Luis B

    2011-02-01

    We studied the endophytic mycoflora associated with Taxus globosa, the Mexican yew. The study localities; Las Avispas (LA), San Gaspar (SG), and La Mina (LM) were three segments of cloud forest within the range of Sierra Gorda Biosphere Reserve, Mxico. Overall, 245 endophytes were isolated and 105 representative Ascomycota (morphotaxons) were chosen for phylogenetic and genotypic characterization. Maximum likelihood analyses of large subunit of ribosomal RNA (LSU) rDNA showed well-supported clades of Dothideomycetes, Eurotiomycetes, Leotiomycetes, Pezizomycetes, and Sordariomycetes. Analyses of ITS rDNA groups showed 57 genotypes (95% sequence similarity), in general consistent with the phylogenetically delimitated taxa based on LSU rDNA sequences. The endophyte diversity measured by Fisher's ?, Shanonn, and Simpson indices was ca. three-fold and ca. two-fold greater in LM than in LA and SG respectively. A screening for paclitaxel using a competitive inhibition enzyme immunoassay showed 16 positive isolates producing between 65 and 250 ng l(-1). The isolates included Acremonium, Botryosphaeria, Fusarium, Gyromitra, Nigrospora, Penicillium, three novel Pleosporales, and Xylaria. PMID:21315312

  14. Paclitaxel-eluting balloon dilation of biliary anastomotic stricture after liver transplantation

    PubMed Central

    Hsing, Anna; Reinecke, Holger; Cicinnati, Vito R; Beckebaum, Susanne; Wilms, Christian; Schmidt, Hartmut H; Kabar, Iyad

    2015-01-01

    AIM: To investigate the safety and effectiveness of endoscopic therapy with a paclitaxel-eluting balloon (PEB) for biliary anastomotic stricture (AS) after liver transplantation (LT). METHODS: This prospective pilot study enrolled 13 consecutive eligible patients treated for symptomatic AS after LT at the University Hospital of Mnster between January 2011 and March 2014. The patients were treated by endoscopic therapy with a PEB and followed up every 8 wk by endoscopic retrograde cholangiopancreatography (ERCP). In cases of re-stenosis, further balloon dilation with a PEB was performed. Follow-up was continued until 24 mo after the last intervention. RESULTS: Initial technical feasibility, defined as successful balloon dilation with a PEB during the initial ERCP procedure, was achieved in 100% of cases. Long-term clinical success (LTCS), defined as no need for further endoscopic intervention for at least 24 mo, was achieved in 12 of the 13 patients (92.3%). The mean number of endoscopic interventions required to achieve LTCS was only 1.7 1.1. Treatment failure, defined as the need for definitive alternative treatment, occurred in only one patient, who developed recurrent stenosis with increasing bile duct dilatation that required stent placement. CONCLUSION: Endoscopic therapy with a PEB is very effective for the treatment of AS after LT, and seems to significantly shorten the overall duration of endoscopic treatment by reducing the number of interventions needed to achieve LTCS. PMID:25624733

  15. Somatostatin receptor-mediated specific delivery of paclitaxel prodrugs for efficient cancer therapy.

    PubMed

    Huo, Meirong; Zhu, Qinnv; Wu, Qu; Yin, Tingjie; Wang, Lei; Yin, Lifang; Zhou, Jianping

    2015-06-01

    In this study, a novel PTX prodrug, octreotide(Phe)-polyethene glycol-paclitaxel [OCT(Phe)-PEG-PTX], was successfully synthesized and used for targeted cancer therapy. A nontargeting conjugate, mPEG-PTX, was also synthesized and used as a control. Chemical structures of OCT(Phe)-PEG-PTX and mPEG-PTX were confirmed using (1) H nuclear magnetic resonance and circular dichroism. The drug contents in both the conjugates were 12.0% and 14.0%, respectively. Compared with the parent drug (PTX), OCT(Phe)-PEG-PTX, and mPEG-PTX prodrugs showed a 20,000- and 30,000-fold increase in water solubility, respectively. PTX release from mPEG-PTX and OCT(Phe)-PEG-PTX exhibited a pH-dependent profile. Moreover, compared with mPEG-PTX, OCT(Phe)-PEG-PTX exhibited significantly stronger cytotoxicity against NCI-H446 cells (SSTR overexpression) but comparable cytotoxicity against WI-38 cells (no SSTR expression). Results of confocal laser scanning microscopy revealed that the targeting prodrug labeled with fluorescence probe was selectively taken into tumor cells via SSTR-mediated endocytosis. In vivo investigation of prodrugs in nude mice bearing NCI-H446 cancer xenografts confirmed that OCT(Phe)-PEG-PTX prodrug exhibited stronger antitumor efficacy and lower systemic toxicity than mPEG-PTX and commercial Taxol. These results suggested that OCT(Phe)-PEG-PTX is a promising anticancer drug delivery system for targeted cancer therapy. PMID:25820241

  16. Effects of PEGylated paclitaxel nanocrystals on breast cancer and its lung metastasis

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Hu, Hongxiang; Zhang, Haoran; Dai, Wenbing; Wang, Xinglin; Wang, Xueqing; Zhang, Qiang

    2015-06-01

    As an attractive strategy developed rapidly in recent years, nanocrystals are used to deliver insoluble drugs. PEGylation may further prolong the circulation time of nanoparticles and improve the therapeutic outcome of drugs. In this study, paclitaxel (PTX) nanocrystals (PTX-NCs) and PEGylated PTX nanocrystals (PEG-PTX-NCs) were prepared using antisolvent precipitation augmented by probe sonication. The characteristics and antitumor efficacy of nanocrystals were investigated. The results indicated that the nanocrystals showed rod-like morphology, and the average particle size was 240 nm and 330 nm for PTX-NCs and PEG-PTX-NCs, respectively. The PEG molecules covered the surface of nanocrystals with an 11.54 nm fixed aqueous layer thickness (FALT), much higher than that of PTX-NCs (0.2 nm). PEG-PTX-NCs showed higher stability than PTX-NCs under both storage and physiological conditions. In breast cancer xenografted mice, PEG-PTX-NCs showed significantly better tumor inhibition compared to saline (p < 0.001) and PTX-NC groups (p < 0.05) after intravenous administration. In a model of lung tumor metastasis quantified by the luciferase activity, the PEG-PTX-NCs group showed higher anticancer efficacy not only than saline and PTX-NCs groups, but also than Taxol®, achieving an 82% reduction at the end of the experiment. These studies suggested the potential advantages of PEGylated PTX nanocrystals as alternative drug delivery systems for anticancer therapy.

  17. Ultrasonication assisted Layer-by-Layer technology for the preparation of multi-functional anticancer drugs paclitaxel and lapatinib

    NASA Astrophysics Data System (ADS)

    Zhang, Xingcai

    In this dissertation, ultrasonication assisted Layer-by-Layer (LbL) technology for the preparation of multifunctional poorly water-soluble anticancer drug nanoparticles, paclitaxel and lapatinib, has been developed. Many FDA approved drugs are very low soluble in water; therefore, it is very difficult to load and control their release and targeting efficiently, which greatly confines their application. The development of this method will pave the way for the development and application of those low soluble anticancer drugs. In the first part of this dissertation, the first approach for powerful ultrasonication, the top-down approach (sonicating bulk drug crystals in polyelectrolyte solution), was successfully applied for the preparation of the nanoparticles of paclitaxel. For this approach, a 200 nm diameter was a kind of "magic" barrier for colloidal particles prepared. This diameter barrier may be related to the nucleation size of the solvent vapor microbubbles. Consequently, agents enhancing bubbling formation (such as NH4HCO3) were applied to decrease paclitaxel colloid particles to 100-120 nm. Those paclitaxel nanoparticles were Layer-by-Layer coated with a 10-20 nm polycation/polyanion shell to provide aqueous colloidal stability and slower particle dissolution. However, a large obstacle of these powerful ultrasonication methods was a necessity of long ca 45 minutes high power ultrasonication which resulted in TiO2 contamination from titanium electrode. The small amount of TiO2 contamination from ultrasonication did negatively affect the in vivo testing of this system in mice, and had to be removed before low toxicity of the Layer-by-Layer coated paclitaxel nanoparticles were observed. In the second part of the dissertation, the second approach for sonication, the bottom-up approach (sonicating drug in a water-miscible organic solvent followed by slow water add-in) was successfully applied for the preparation of the nanoparticles of lapatinib and paclitaxel with less powerful sonication. By using polymeric excipients combined with non-ionic and anionic surfactants along with regular sonication, the prepared particle sizes was uniform at around 140-150 nm. Less sonication time (ca 15 minutes) and lower sonication power avoided TiO2 contamination. The amphiphiles attached to the hydrophobic nanoparticles and served as anchors for LbL shell. The inner LbL layers and surfactants minimized the surface free energy, thereby preventing crystal form changes and nanoparticles coalescence, while the outermost layers enhanced colloidal stability. In the third part of the dissertation, LbL shells with PEGylation (using a block copolymer of poly-L-lysine (PLL) and PEG) for lapatinib were developed for enhanced colloidal stability in high molarity PBS buffer. In the above proposed paclitaxel and lapatinib formulation, we obtained 150-200 nm with high drug content of 80-90% due to very thin capsule walls (ca 10 nm). The drug release time from the LbL capsules was found to be between 10 and 20 hours depending on the shell thickness. Washless Layer-by-Layer assembly was used: 1) addition of polycation in the amount that is enough to reverse surface charge of the dispersion to a high positive (+30 mV) value; 2) addition of polyanion in the amount that is enough to reverse surface charge of the dispersion to a high negative (-30 mV) value. No intermediate washing of nanoparticles was done until the shell was complete. The washless method had the advantage of time and energy saving, preservation of the sample structure and no losses of sample. In the last part of the dissertation, we elaborated nanoformulation of two drugs in one nanocapsule locating paclitaxel in the core and lapatinib on the shell periphery. With this formulation, combining in one nanoparticle dual drugs, we reached the drugs' efficiency synergy. In a multidrug-resistant (MDR) ovarian cancer cell line, OVCAR-3, LbL lapatinib/paclitaxel nanocolloids mediated an enhanced cell growth inhibition in comparison with the LbL paclitaxel-only and LbL lapatinib-only treatment, not to say the free one drug treatment.

  18. Polyethylene GlycolPhosphatidylethanolamine (PEGPE)/Vitamin E Micelles for Co-Delivery of Paclitaxel and Curcumin to Overcome Multi-Drug Resistance in Ovarian Cancer

    PubMed Central

    Abouzeid, Abraham H.; Patel, Niravkumar R.

    2014-01-01

    The therapeutic potential of mixed micelles, made of PEG-PE and vitamin E co-loaded with curcumin and paclitaxel, was investigated against SK-OV-3 human ovarian adenocarcinoma along with its multi-drug resistant version SK-OV-3-paclitaxel-resistant (TR) cells in vitro and in vivo. The addition of curcumin at various concentrations did not significantly enhance the cytotoxicity of paclitaxel against SK-OV-3 in vitro. However, a clear synergistic effect was observed with the combination treatment against SK-OV-3TR in vitro. In vivo, this combination treatment produced a three-fold tumor inhibition with each of these cell lines. Our results indicate that such co-loaded mixed micelles could have significant clinical advantages for the treatment of resistant ovarian cancer. PMID:24440402

  19. The Effect of Short-term Intra-arterial Delivery of Paclitaxel on Neointimal Hyperplasia and the Local Thrombotic Environment after Angioplasty

    SciTech Connect

    Yajun, E; He Nengshu Fan Hailun

    2013-08-01

    PurposeTo evaluate the effects of short-term intra-arterial delivery of paclitaxel on neointimal hyperplasia and the local thrombotic environment after angioplasty.MethodsAn experimental common carotid artery injury model was established in 60 rats, which were divided into experimental groups (40 rats) and controls (20 rats). Local intra-arterial administration of paclitaxel was applied at 2 doses (90 and 180 {mu}g/30 {mu}l), and the effects of short-term delivery of paclitaxel on neointimal hyperplasia and the expression of tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (t-PA) were evaluated at days 15 and 30 by hematoxylin and eosin staining and immunohistochemistry.ResultsAt 15 and 30 days after injury, neointimal thickness and area, the ratio of intimal area to medial area and the stenotic rate were all significantly decreased in the group provided the high concentrations (180 {mu}g/30 {mu}l) of paclitaxel for 2 min or 10 min and in the group provided the low concentration (90 {mu}g/30 {mu}l) of paclitaxel for 10 min (p < 0.05). At 30 days after injury, there were no significant changes in TF expression among all experimental groups. PAI-1 expression increased in the neointima of the high concentration 10 min group (p < 0.05), while t-PA expression decreased in the neointima of the high concentration 2 min group (p < 0.05).ConclusionIn the rat common carotid artery injury model, the short-term delivery of paclitaxel could effectively inhibit neointimal hyperplasia in the long term, with very little influence on the local expression of TF and PAI-1.

  20. Durable complete response induced by paclitaxel-nimotuzumab-methotrexate chemotherapy in a patient with metastatic head and neck squamous cell carcinoma.

    PubMed

    Verduzco-Rodrguez, L; Aguirre-Gonzlez, E H; Verduzco-Aguirre, H C

    2011-01-01

    A 61-year-old male patient with metastatic poorly differentiated squamous cell carcinoma of the larynx to lymph nodes and lung was treated with a third-line chemotherapy regimen of paclitaxel, nimotuzumab and low-dose methotrexate, receiving a total of 30 cycles. The response was complete and maintained at 16 months. Nimotuzumab is a humanized monoclonal antibody used to treat squamous cell carcinomas of the head and neck. This third-line chemotherapy combination with paclitaxel-nimotuzumab-methotrexate seems to be an active combination and needs further evaluation in clinical trials to validate its use in heavily treated patients. PMID:22198189

  1. A Phase II Trial of Neoadjuvant Chemotherapy with Genexol (Paclitaxel) and Epirubicin for Locally Advanced Breast Cancer

    PubMed Central

    Lee, Jinsun; Chang, Eilsung; Choi, Woonjung; Lee, Kwangman; Yoon, Hyunjo; Jung, Sunghoo; Park, Minho; Yoon, Junghan; Kim, Sungyong

    2014-01-01

    Purpose Neoadjuvant chemotherapy (NC) is yet to be established as the definitive treatment regimen for locally advanced breast cancer (LABC). The aim of this study was to determine the efficacy and toxicity of NC with epirubicin and paclitaxel. Methods Between March 2007 and January 2009, 50 patients with LABC were enrolled in an open-label, phase II, multicenter study carried out at five distinct institutions. All patients were scheduled to receive four cycles of 60 mg/m2 epirubicin and 175 mg/m2 paclitaxel every 3 weeks, preoperatively, unless they developed profound side effects or disease progression. After curative surgery, two additional cycles of chemotherapy were administered to patients who had shown a positive response to NC. Results In all, 196 cycles of chemotherapy were administered preoperatively; 47 of the 50 patients (94%) underwent all four cycles of designated treatment. Complete disappearance of invasive foci of the primary tumor, and negative axillary lymph nodes were confirmed in eight patients (16.0%), post operation. The cumulative 5-year disease-free survival rate was 70.0% for patients with complete remission (CR) and partial remission (PR), and 33.3% for patients with stable disease (SD) and progressive disease (PD) (p=0.018). The cumulative 5-year overall survival was 90.0% for patients who achieved CR and PR and 55.6% for patients who had SD and PD (p=0.001). Neutropenia (42.0%) was the most common grade 3/4 toxicity. However, none of the toxicities resulted in cessation of the treatment. Conclusion The encouraging pathologic response observed in the patients treated with epirubicin plus paclitaxel NC in this study suggests that epirubicin could be a substitute for doxorubicin, which is the most cardiotoxic agent. PMID:25548582

  2. Long-Term Outcomes and Toxicity of Concurrent Paclitaxel and Radiotherapy for Locally Advanced Head-and-Neck Cancer

    SciTech Connect

    Citrin, Deborah Mansueti, John; Likhacheva, Anna; Sciuto, Linda; Albert, Paul S.; Rudy, Susan F.; Cooley-Zgela, Theresa; Cotrim, Ana; Solomon, Beth; Colevas, A. Dimitrios; Russo, Angelo; Morris, John C.; Herscher, Laurie; Smith, Sharon

    2009-07-15

    Purpose: To report the long-term outcomes and toxicity of a regimen of infusion paclitaxel delivered concurrently with radiotherapy in patients with locally advanced squamous cell carcinoma of the head and neck. Patients and Methods: Between 1995 and 1999, 35 patients with nonmetastatic, Stage III or IV squamous cell carcinoma of the head and neck were treated with three cycles of paclitaxel as a 120-h continuous infusion beginning on Days 1, 21, and 42, concurrent with radiotherapy. The initial 16 patients received 105 mg/m{sup 2}/cycle, and the subsequent 19 patients received 120 mg/m{sup 2}/cycle. External beam radiotherapy was delivered to a dose of 70.2-72 Gy at five fractions weekly. Patients were followed to evaluate the disease outcomes and late toxicity of this regimen. Results: The median follow-up for all patients was 56.5 months. The median survival was 56.5 months, and the median time to local recurrence was not reached. Of the 35 patients, 15 (43%) developed hypothyroidism. Of the 33 patients who underwent percutaneous endoscopic gastrostomy tube placement, 11 were percutaneous endoscopic gastrostomy tube dependent until death or their last follow-up visit. Also, 5 patients (14%) required a tracheostomy until death, and 3 (9%) developed a severe esophageal stricture. All evaluated long-term survivors exhibited salivary hypofunction. Fibrosis in the radiation field occurred in 24 patients (69%). Conclusion: The results of our study have shown that concurrent chemoradiotherapy with a 120-h infusion of paclitaxel provides long-term local control and survival in patients with squamous cell carcinoma of the head and neck. Xerostomia, hypothyroidism, esophageal and pharyngeal complications, and subcutaneous fibrosis were common long-term toxicities; however, the vast majority of toxicities were grade 1 or 2.

  3. Rapid tumor necrosis and massive hemorrhage induced by bevacizumab and paclitaxel combination therapy in a case of advanced breast cancer

    PubMed Central

    Ono, Mayu; Ito, Tokiko; Kanai, Toshiharu; Murayama, Koichi; Koyama, Hiroshi; Maeno, Kazuma; Mochizuki, Yasuhiro; Iesato, Asumi; Hanamura, Toru; Okada, Toshihiro; Watanabe, Takayuki; Ito, Ken-ichi

    2013-01-01

    Bevacizumab when combined with chemotherapy exerts significant activity against many solid tumors through tumor angiogenesis inhibition; however, it can induce severe side effects. We report the rare case of a 27-year-old premenopausal woman with locally advanced breast cancer that was marked by rapid tumor necrosis followed by massive hemorrhage shortly after bevacizumab and paclitaxel administration. On the basis of histopathological examination of a biopsy specimen and computed tomography findings, she was diagnosed with stage IV estrogen and progesterone receptor-negative and human epidermal growth factor receptor type 2-positive breast cancer with multiple organ metastases when she had entered gestational week 24. Cyclophosphamide, Adriamycin, fluorouracil therapy was initiated, but multiple liver metastases continued to progress. A healthy fetus was delivered by induced delivery and trastuzumab-based treatment was initiated. Although the multiple liver metastases were controlled successfully by trastuzumab combined with paclitaxel, the primary tumor continued to expand even after subsequent administration of three other treatment regimens including anti-human epidermal growth factor receptor type 2 agents and cytotoxic drugs. To inhibit primary tumor growth, a combination therapy with paclitaxel and bevacizumab was subsequently initiated. Following therapy initiation, however, the large tumor occupying the patients entire left breast became necrotic and ulcerated rapidly. Furthermore, massive hemorrhage from the tumor occurred 5 weeks after bevacizumab-based therapy initiation. Although hemostasis was achieved by manual compression, the patient required blood transfusion for the massive blood loss. She eventually succumbed to respiratory failure. This case report demonstrates that primary breast cancer lesions with skin involvement have the potential to cause massive hemorrhage after bevacizumab-based treatment. PMID:24124381

  4. Anti-HIF-1alpha antibody-conjugated pluronic triblock copolymers encapsulated with Paclitaxel for tumor targeting therapy.

    PubMed

    Song, Hua; He, Rong; Wang, Kan; Ruan, Jing; Bao, Chenchen; Li, Na; Ji, Jiajia; Cui, Daxiang

    2010-03-01

    Targeted uptake of nanoscale controlled release polymer micelles encapsulated with drugs represents a potential powerful therapeutic technology. Herein we reported the development of anti-HIF-1alpha antibody-conjugated unimolecular polymer nano micelles filled with Paclitaxel for cancer targeting therapy. Pluronic triblock copolymers(Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), PEO-block-PPO-block-PEO) P123 were functionalized with terminal carboxylic groups, and were characterized by infrared (IR) spectroscopy, nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), and differential scanning calorimetric (DSC). The amphiphilic copolymer nano micelles encapsulated with Paclitaxel were fabricated by self-assembly means, and then were conjugated with anti-HIF-1alpha antibody, the resultant anti-HIF-1alpha conjugated nano micelles filled with PTX (anti-HIF-1alpha-NMs-PTX nanocomposites) were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and incubated with stomach cancer MGC-803 cells and HDF fibroblast cells, these treated cells were analyzed by MTT and cell-ELISA. The nanocomposites composed of anti-HIF-1alpha conjugated nano micelles filled with CdTe quantum dots were also prepared, and incubated with stomach cancer MGC-803 cells and HDF fibroblast cells for 24 h, then were observed by fluorescent microscope. Results showed that the anti-HIF-1alpha-NMs-PTX nanocomposites were successfully prepared, bound with stomach cancer MGC-803 cells specifically, were internalized, and released PTX inside cancer cells, and selectively killed cancer cells. In conclusion, unique anti-HIF-1alpha antibody-conjugated nano micelles filled with Paclitaxel can target and selectively kill cancer cells with over-expression of HIF-1alpha, and has great potential in clinical tumor targeting imaging and therapy. PMID:20004970

  5. Efficacy and toxicity of salvage weekly paclitaxel chemotherapy in non-Asian patients with advanced oesophagogastric adenocarcinoma

    PubMed Central

    Tarazona, Noelia; Smyth, Elizabeth C.; Peckit, Clare; Chau, Ian; Watkins, David; Rao, Sheela; Starling, Naureen; Cunningham, David

    2016-01-01

    Objectives: Survival for oesophagogastric adenocarcinoma (OGA) patients varies globally and clinical trial results are seldom replicated in clinical practice. We sought to examine the efficacy and toxicity of salvage paclitaxel chemotherapy for patients with advanced OGA at our institution. Methods: Advanced OGA patients treated with paclitaxel between June 2011 and February 2014 were identified from the electronic record at the Royal Marsden Hospital (RMH), London. Chart review was performed to obtain demographics, performance status (PS), laboratory parameters, radiological response and dates of progression, death and last follow up. Overall survival (OS) and progression-free survival (PFS) were estimated using the Kaplan–Meier method. Multivariate Cox regression analysis examined the interaction between clinical and laboratory parameters and survival. Results: Fifty-seven patients were identified; OS and PFS were 5.8 and 2.6 months respectively. From first-line chemotherapy, median OS was 14.3 months. Two-year and three-year survival rates from diagnosis were 26% and 13%. More than or equivalent to Grade 3 neutropenia occurred in 13% of patients. In multivariate analysis, PS more than or equal to 2, alkaline phosphatase (ALP) more than or equal to100 U/L, and previous rechallenge with platinum were independent prognostic factors for OS. Conclusions: OGA cancer patients treated at RMH with salvage