Science.gov

Sample records for paclitaxel

  1. Paclitaxel Injection

    MedlinePlus

    ... with other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... cancer, and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...

  2. Paclitaxel Injection

    MedlinePlus

    ... other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...

  3. Prodrug Strategies for Paclitaxel.

    PubMed

    Meng, Ziyuan; Lv, Quanxia; Lu, Jun; Yao, Houzong; Lv, Xiaoqing; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective. PMID:27223283

  4. Prodrug Strategies for Paclitaxel

    PubMed Central

    Meng, Ziyuan; Lv, Quanxia; Lu, Jun; Yao, Houzong; Lv, Xiaoqing; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective. PMID:27223283

  5. Paclitaxel alters sensory nerve biomechanical properties.

    PubMed

    Bober, Brian G; Shah, Sameer B

    2015-10-15

    Paclitaxel is an effective chemotherapeutic that, despite its common use, frequently causes debilitating peripheral sensory neuropathy. Paclitaxel binds to and stabilizes microtubules, and through unknown mechanisms, causes abnormal microtubule aggregation. Given that microtubules contribute to the mechanical properties of cells, we tested the hypothesis that paclitaxel treatment would alter the stiffness of sensory nerves. Rat sural nerves were excised and soaked in Ringer's solution with or without paclitaxel. Nerves were secured between a force transducer and actuator, and linearly strained. Stress-strain curves were generated, from which elastic moduli were calculated. Paclitaxel treated nerves exhibited significantly higher moduli in both linear and transition regions of the curve. A composite-tissue model was then generated to estimate the stiffness increase in the cellular fraction of the nerve following paclitaxel treatment. This model was supported experimentally by data on mechanical properties of sural nerves stripped of their epineurium, and area fractions of the cellular and connective tissue components of the rat sural nerve, calculated from immunohistochemical images. Model results revealed that the cellular components of the nerve must stiffen 12x to 115x, depending on the initial axonal modulus assumed, in order to achieve the observed tissue level mechanical changes. Consistent with such an increase, electron microscopy showed increased microtubule aggregation and cytoskeletal packing, suggestive of a more cross-linked cytoskeleton. Overall, our data suggests that paclitaxel treatment induces increased microtubule bundling in axons, which leads to alterations in tissue-level mechanical properties. PMID:26321364

  6. Paclitaxel Albumin-stabilized Nanoparticle Formulation

    Cancer.gov

    This page contains brief information about paclitaxel albumin-stabilized nanoparticle formulation and a collection of links to more information about the use of this drug, research results, and ongoing clinical trials.

  7. Paclitaxel improves outcome from traumatic brain injury

    PubMed Central

    Cross, Donna J.; Garwin, Gregory G.; Cline, Marcella M.; Richards, Todd L.; Yarnykh, Vasily; Mourad, Pierre D.; Ho, Rodney J.Y.; Minoshima, Satoshi

    2016-01-01

    Pharmacologic interventions for traumatic brain injury (TBI) hold promise to improve outcome. The purpose of this study was to determine if the microtubule stabilizing therapeutic paclitaxel used for more than 20 years in chemotherapy would improve outcome after TBI. We assessed neurological outcome in mice that received direct application of paclitaxel to brain injury from controlled cortical impact (CCI). Magnetic resonance imaging was used to assess injury-related morphological changes. Catwalk Gait analysis showed significant improvement in the paclitaxel group on a variety of parameters compared to the saline group. MRI analysis revealed that paclitaxel treatment resulted in significantly reduced edema volume at site-of-injury (11.92 ± 3.0 and 8.86 ± 2.2 mm3 for saline vs. paclitaxel respectively, as determined by T2-weighted analysis; p ≤ 0.05), and significantly increased myelin tissue preservation (9.45 ± 0.4 vs. 8.95 ± 0.3, p ≤ 0.05). Our findings indicate that paclitaxel treatment resulted in improvement of neurological outcome and MR imaging biomarkers of injury. These results could have a significant impact on therapeutic developments to treat traumatic brain injury. PMID:26086366

  8. Potential drug interaction between paclitaxel and clopidogrel

    PubMed Central

    SHINODA, YASUTAKA; KIMURA, MICHIO; USAMI, EISEKI; ASANO, HIROKI; YOSHIMURA, TOMOAKI

    2016-01-01

    Paclitaxel is mainly inactivated in vivo by cytochrome P5402C8 (CYP2C8). In recent years, the clopidogrel metabolite has been reported to potently inhibit CYP2C8. However, clinical information regarding the interaction between these two drugs is limited. To the best of our knowledge, this is the first retrospective study investigating the potential for the drug interaction between paclitaxel and clopidogrel. A total of 8 cases in which clopidogrel and paclitaxel were used in combination were examined. The incidence of adverse events and discontinuation rate in these cases were assessed. Neutrophil counts were compared in patients prior and subsequent to the combined administration of clopidogrel and paclitaxel. Grade 3 neutropenia occurred in all cases of combination therapy and grade 4 occurred in 7 cases (88%). In addition, 4 cases (50%) showed febrile neutropenia. Four cases (50%) involved a severe adverse event requiring discontinuation of drug administration. In 1 case involving 6 courses of paclitaxel and nedaplatin therapy prior and subsequent to clopidogrel, there was a significant reduction in the average neutrophil count after 8 days of combination treatment (1,240±395 counts/mm3 without clopidogrel; 370±148 counts/mm3 with clopidogrel; mean ± standard deviation, P<0.01). Drug interactions during co-administration of clopidogrel and paclitaxel may cause severe neutropenia. To avoid these interactions, alternative medications should be considered. If these two drugs are used in combination, it may be necessary to monitor for adverse events more carefully. PMID:27347418

  9. Nab-Paclitaxel Plus Gemcitabine for Metastatic Pancreatic Cancer

    Cancer.gov

    A summary of results from a phase III trial that compared the combination of albumin-bound paclitaxel (nab-paclitaxel [Abraxane®]) and gemcitabine (Gemzar®) versus gemcitabine alone in patients with metastatic pancreatic cancer.

  10. 21 CFR 516.1684 - Paclitaxel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS NEW ANIMAL DRUGS FOR MINOR USE AND MINOR SPECIES Conditionally Approved New Animal Drugs For Minor Use and Minor Species § 516.1684 Paclitaxel. (a) Specifications. Each vial...

  11. Ototoxicity of paclitaxel in rat cochlear organotypic cultures

    SciTech Connect

    Dong, Yang; Ding, Dalian; Jiang, Haiyan; Shi, Jian-rong; Salvi, Richard; Roth, Jerome A.

    2014-11-01

    Paclitaxel (taxol) is a widely used antineoplastic drug employed alone or in combination to treat many forms of cancer. Paclitaxel blocks microtubule depolymerization thereby stabilizing microtubules and suppressing cell proliferation and other cellular processes. Previous reports indicate that paclitaxel can cause mild to moderate sensorineural hearing loss and some histopathologic changes in the mouse cochlea; however, damage to the neurons and the underlying cell death mechanisms are poorly understood. To evaluate the ototoxicity of paclitaxel in more detail, cochlear organotypic cultures from postnatal day 3 rats were treated with paclitaxel for 24 or 48 h with doses ranging from 1 to 30 μM. No obvious histopathologies were observed after 24 h treatment with any of the paclitaxel doses employed, but with 48 h treatment, paclitaxel damaged cochlear hair cells in a dose-dependent manner and also damaged auditory nerve fibers and spiral ganglion neurons (SGN) near the base of the cochlea. TUNEL labeling was negative in the organ of Corti, but positive in SGN with karyorrhexis 48 h after 30 μM paclitaxel treatment. In addition, caspase-6, caspase-8 and caspase-9 labeling was present in SGN treated with 30 μM paclitaxel for 48 h. These results suggest that caspase-dependent apoptotic pathways are involved in paclitaxel-induced damage of SGN, but not hair cells in cochlea. - Highlights: • Paclitaxel was toxic to cochlear hair cells and spiral ganglion neurons. • Paclitaxel-induced spiral ganglion degeneration was apoptotic. • Paclitaxel activated caspase-6, -8 and -8 in spiral ganglion neurons.

  12. Monoclonal Antibodies Attached to Carbon Nanotube Transistors for Paclitaxel Detection

    NASA Astrophysics Data System (ADS)

    Lee, Wonbae; Lau, Calvin; Richardson, Mark; Rajapakse, Arith; Weiss, Gregory; Collins, Philip; UCI, Molecular Biology; Biochemistry Collaboration; UCI, Departments of Physics; Astronomy Collaboration

    Paclitaxel is a naturally-occurring pharmaceutical used in numerous cancer treatments, despite its toxic side effects. Partial inhibition of this toxicity has been demonstrated using weakly interacting monoclonal antibodies (3C6 and 8A10), but accurate monitoring of antibody and paclitaxel concentrations remains challenging. Here, single-molecule studies of the kinetics of antibody-paclitaxel interactions have been performed using single-walled carbon nanotube field-effect transistors. The devices were sensitized with single antibody attachments to record the single-molecule binding dynamics of paclitaxel. This label-free technique recorded a range of dynamic interactions between the antibody and paclitaxel, and it provided sensitive paclitaxel detection for pM to nM concentrations. Measurements with two different antibodies suggest ways of extending this working range and uncovering the mechanistic differences among different antibodies.

  13. Effectiveness of liposomal paclitaxel against MCF-7 breast cancer cells.

    PubMed

    Heney, Melanie; Alipour, Misagh; Vergidis, Dimitrios; Omri, Abdelwahab; Mugabe, Clement; Th'ng, John; Suntres, Zacharias

    2010-12-01

    Paclitaxel is an effective chemotherapeutic agent that is widely used for the treatment of several cancers, including breast, ovarian, and non-small-cell lung cancer. Due to its high lipophilicity, paclitaxel is difficult to administer and requires solubilization with Cremophor EL (polyethoxylated castor oil) and ethanol, which often lead to adverse side effects, including life-threatening anaphylaxis. Incorporation of paclitaxel in dimyristoylphosphatidylcholine:dimyristoylphosphatidylglycerol (DPPC:DMPG) liposomes can facilitate its delivery to cancer cells and eliminate the adverse reactions associated with the Cremophor EL vehicle. Accordingly, the effectiveness of liposomal paclitaxel on MCF-7 breast cancer cells was examined. The results from this study showed that (i) the lipid components of the liposomal formulation were nontoxic, (ii) the cytotoxic effects of liposomal paclitaxel were improved when compared with those seen with conventional paclitaxel, and (iii) the intracellular paclitaxel levels were higher in MCF-7 cells treated with the liposomal paclitaxel formulation. The results of these studies showed that delivery of paclitaxel as a liposomal formulation could be a promising strategy for enhancing its chemotherapeutic effects. PMID:21164564

  14. Stathmin Potentiates Vinflunine and Inhibits Paclitaxel Activity

    PubMed Central

    Malesinski, Soazig; Tsvetkov, Philipp O.; Kruczynski, Anna; Peyrot, Vincent; Devred, François

    2015-01-01

    Cell biology and crystallographic studies have suggested a functional link between stathmin and microtubule targeting agents (MTAs). In a previous study we showed that stathmin increases vinblastine (VLB) binding to tubulin, and that conversely VLB increases stathmin binding to tubulin. This constituted the first biochemical evidence of the direct relationship between stathmin and an antimitotic drug, and revealed a new mechanism of action for VLB. The question remained if the observed interaction was specific for this drug or represented a general phenomenon for all MTAs. In the present study we investigated the binding of recombinant stathmin to purified tubulin in the presence of paclitaxel or another Vinca alkaloid, vinflunine, using Isothermal Titration Calorimetry (ITC). These experiments revealed that stathmin binding to tubulin is increased in the presence of vinflunine, whereas no signal is observed in the presence of paclitaxel. Further investigation using turbidity and co-sedimentation showed that stathmin inhibited paclitaxel microtubule-stabilizing activity. Taken together with the previous study using vinblastine, our results suggest that stathmin can be seen as a modulator of MTA activity and binding to tubulin, providing molecular explanation for multiple previous cellular and in vivo studies showing that stathmin expression level affects MTAs efficiency. PMID:26030092

  15. Stathmin potentiates vinflunine and inhibits Paclitaxel activity.

    PubMed

    Malesinski, Soazig; Tsvetkov, Philipp O; Kruczynski, Anna; Peyrot, Vincent; Devred, François

    2015-01-01

    Cell biology and crystallographic studies have suggested a functional link between stathmin and microtubule targeting agents (MTAs). In a previous study we showed that stathmin increases vinblastine (VLB) binding to tubulin, and that conversely VLB increases stathmin binding to tubulin. This constituted the first biochemical evidence of the direct relationship between stathmin and an antimitotic drug, and revealed a new mechanism of action for VLB. The question remained if the observed interaction was specific for this drug or represented a general phenomenon for all MTAs. In the present study we investigated the binding of recombinant stathmin to purified tubulin in the presence of paclitaxel or another Vinca alkaloid, vinflunine, using Isothermal Titration Calorimetry (ITC). These experiments revealed that stathmin binding to tubulin is increased in the presence of vinflunine, whereas no signal is observed in the presence of paclitaxel. Further investigation using turbidity and co-sedimentation showed that stathmin inhibited paclitaxel microtubule-stabilizing activity. Taken together with the previous study using vinblastine, our results suggest that stathmin can be seen as a modulator of MTA activity and binding to tubulin, providing molecular explanation for multiple previous cellular and in vivo studies showing that stathmin expression level affects MTAs efficiency. PMID:26030092

  16. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    PubMed Central

    Yang, Danbo; Yu, Lei; Van, Sang

    2011-01-01

    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic. PMID:24212604

  17. Paclitaxel Impairs Adipose Stem Cell Proliferation and Differentiation

    PubMed Central

    Choron, Rachel L.; Chang, Shaohua; Khan, Sophia; Villalobos, Miguel A.; Zhang, Ping; Carpenter, Jeffrey P.; Tulenko, Thomas N.; Liu, Yuan

    2015-01-01

    BACKGROUND Cancer patients with chemotherapy-induced immunosuppression have poor surgical site wound healing. Prior literature supports the use of human adipose-derived stem cell (hASC) lipoinjection to improve wound healing. It has been established multipotent hASCs facilitate neovascularization, accelerated epithelialization, and wound closure in animal models. While hASC wound therapy may benefit surgical cancer patients, the chemotherapeutic effects on hASCs are unknown. We hypothesized Paclitaxel, a chemotherapeutic agent, impairs hASC growth, multipotency, and induces apoptosis. METHODS hASCs were isolated and harvested from consented, chemotherapy and radiation naïve patients. Growth curves, MTT, and EdU assays measured cytotoxicity and proliferation. Oil-Red-O stain, Alazarin-Red stain, Matrigel tube-formation assay, and qPCR analyzed hASC differentiation. Annexin V assay measured apoptosis. Immunostaining and Western blot determined TNF-α expression. RESULTS hASCs were selectively more sensitive to Paclitaxel (0.01μM–30μM) than fibroblasts (p<0.05). After 12 days, Paclitaxel caused hASC growth arrest whereas control hASCs proliferated (p=0.006). Paclitaxel caused an 80.6% reduction in new DNA synthesis (p<0.001). Paclitaxel severely inhibited endothelial differentiation and capillary-like tube formation. Differentiation markers LPL (adipogenic), alkaline phosphatase (osteogenic), CD31 and vWF (endothelial) were significantly decreased (all: p<0.05) confirming Paclitaxel impaired differentiation. Paclitaxel was also found to induce apoptosis and TNF-α was up-regulated in Paclitaxel-treated hASCs (p<0.001). CONCLUSION Paclitaxel is more cytotoxic to hASCs than fibroblasts. Paclitaxel inhibits hASC proliferation, differentiation, and induces apoptosis, possibly through the TNF-α pathway. Paclitaxel’s severe inhibition of endothelial differentiation indicates neovascularization disruption, possibly causing poor wound healing in cancer patients

  18. Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance.

    PubMed

    Khongkow, P; Gomes, A R; Gong, C; Man, E P S; Tsang, J W-H; Zhao, F; Monteiro, L J; Coombes, R C; Medema, R H; Khoo, U S; Lam, E W-F

    2016-02-25

    FOXM1 has been implicated in taxane resistance, but the molecular mechanism involved remains elusive. In here, we show that FOXM1 depletion can sensitize breast cancer cells and mouse embryonic fibroblasts into entering paclitaxel-induced senescence, with the loss of clonogenic ability, and the induction of senescence-associated β-galactosidase activity and flat cell morphology. We also demonstrate that FOXM1 regulates the expression of the microtubulin-associated kinesin KIF20A at the transcriptional level directly through a Forkhead response element (FHRE) in its promoter. Similar to FOXM1, KIF20A expression is downregulated by paclitaxel in the sensitive MCF-7 breast cancer cells and deregulated in the paclitaxel-resistant MCF-7Tax(R) cells. KIF20A depletion also renders MCF-7 and MCF-7Tax(R) cells more sensitive to paclitaxel-induced cellular senescence. Crucially, resembling paclitaxel treatment, silencing of FOXM1 and KIF20A similarly promotes abnormal mitotic spindle morphology and chromosome alignment, which have been shown to induce mitotic catastrophe-dependent senescence. The physiological relevance of the regulation of KIF20A by FOXM1 is further highlighted by the strong and significant correlations between FOXM1 and KIF20A expression in breast cancer patient samples. Statistical analysis reveals that both FOXM1 and KIF20A protein and mRNA expression significantly associates with poor survival, consistent with a role of FOXM1 and KIF20A in paclitaxel action and resistance. Collectively, our findings suggest that paclitaxel targets the FOXM1-KIF20A axis to drive abnormal mitotic spindle formation and mitotic catastrophe and that deregulated FOXM1 and KIF20A expression may confer paclitaxel resistance. These findings provide insights into the underlying mechanisms of paclitaxel resistance and have implications for the development of predictive biomarkers and novel chemotherapeutic strategies for paclitaxel resistance. PMID:25961928

  19. Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance

    PubMed Central

    Khongkow, P; Gomes, A R; Gong, C; Man, E P S; Tsang, J W-H; Zhao, F; Monteiro, L J; Coombes, R C; Medema, R H; Khoo, U S; Lam, E W-F

    2016-01-01

    FOXM1 has been implicated in taxane resistance, but the molecular mechanism involved remains elusive. In here, we show that FOXM1 depletion can sensitize breast cancer cells and mouse embryonic fibroblasts into entering paclitaxel-induced senescence, with the loss of clonogenic ability, and the induction of senescence-associated β-galactosidase activity and flat cell morphology. We also demonstrate that FOXM1 regulates the expression of the microtubulin-associated kinesin KIF20A at the transcriptional level directly through a Forkhead response element (FHRE) in its promoter. Similar to FOXM1, KIF20A expression is downregulated by paclitaxel in the sensitive MCF-7 breast cancer cells and deregulated in the paclitaxel-resistant MCF-7TaxR cells. KIF20A depletion also renders MCF-7 and MCF-7TaxR cells more sensitive to paclitaxel-induced cellular senescence. Crucially, resembling paclitaxel treatment, silencing of FOXM1 and KIF20A similarly promotes abnormal mitotic spindle morphology and chromosome alignment, which have been shown to induce mitotic catastrophe-dependent senescence. The physiological relevance of the regulation of KIF20A by FOXM1 is further highlighted by the strong and significant correlations between FOXM1 and KIF20A expression in breast cancer patient samples. Statistical analysis reveals that both FOXM1 and KIF20A protein and mRNA expression significantly associates with poor survival, consistent with a role of FOXM1 and KIF20A in paclitaxel action and resistance. Collectively, our findings suggest that paclitaxel targets the FOXM1-KIF20A axis to drive abnormal mitotic spindle formation and mitotic catastrophe and that deregulated FOXM1 and KIF20A expression may confer paclitaxel resistance. These findings provide insights into the underlying mechanisms of paclitaxel resistance and have implications for the development of predictive biomarkers and novel chemotherapeutic strategies for paclitaxel resistance. PMID:25961928

  20. Development and Evaluation of Transferrin-Stabilized Paclitaxel Nanocrystal Formulation

    PubMed Central

    Lu, Ying; Wang, Zhao-hui; Li, Tonglei; McNally, Helen; Park, Kinam; Sturek, Michael

    2014-01-01

    The aim of the present study was to prepare and evaluate a paclitaxel nanocrystal-based formulation stabilized by serum protein transferrin in a non-covalent manner. The pure paclitaxel nanocrystals were first prepared using an antisolvent precipitation method augmented by sonication. The serum protein transferrin was selected for use after evaluating the stabilizing effect of several serum proteins including albumin and immunoglobulin G. The formulation contained approximately 55~60% drug and was stable for at least 3 months at 4 °C. In vivo antitumor efficacy studies using mice inoculated with KB cells demonstrate significantly higher tumor inhibition rate of 45.1% for paclitaxel-transferrin formulation compared to 28.8% for paclitaxel nanosuspension treatment alone. Interestingly, the Taxol® formulation showed higher antitumor activity than the paclitaxel-transferrin formulation, achieving a 93.3% tumor inhibition rate 12 days post initial dosing. However, the paclitaxel-transferrin formulation showed a lower level of toxicity, which is indicated by steady increase in body weight of mice over the treatment period. In comparison, treatment with Taxol® resulted in toxicity issues as body weight decreased. These results suggest the potential benefit of using a serum protein in a non-covalent manner in conjunction with paclitaxel nanocrystals as a promising drug delivery model for anticancer therapy. PMID:24378441

  1. How paclitaxel can improve results in diabetics.

    PubMed

    Cafasso, D; Schneider, P

    2012-02-01

    Despite advances in endovascular techniques, the success of these revascularization procedures is limited by neointimal hyperplasia and subsequent restenosis or occlusion. Infrainguinal interventions have higher rates of restenosis after intervention in comparison to other vascular beds, and this is likely due to a host of anatomic, mechanical, biological and rheological factors that create a relatively hostile environment for the restoration of lower extremity perfusion through endovascular means. In addition, outcomes in the diabetic subpopulation are even worse, with a higher risk of amputation, re-interventions, and failed procedures in critical limb ischemia. Novel techniques for antiproliferative drug release into the vessel wall at the site of endovascular intervention have shown promising results in combating restenosis in the coronary arteries and data are accumulating to suggest promise in the infrainguinal arteries as well. The application of paclitaxel, delivered either through drug coated balloons or drug-eluting stents, has demonstrated benefit in enhanced durability of lower extremity endovascular procedures, and may be of particular advantage concerning diabetic limb salvage. This review presents an overview of the current literature and ongoing trials with the use of paclitaxel in diabetic lower extremity occlusive disease. PMID:22231525

  2. The activity of paclitaxel in gastrointestinal tumors.

    PubMed

    Ajani, J A; Ilson, D H; Kelsen, D P

    1995-10-01

    Gastrointestinal malignancies, which are common around the world, are relatively refractory to available cancer chemotherapeutic agents, necessitating a search for new agents able to improve palliation and survival of patients with advanced disease. Currently, metastatic or local-regional unresectable carcinoma of the esophagus or gastroesophageal junction carries a dismal prognosis. Paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton, NJ), a new mitotic spindle inhibitor, has been studied in patients with advanced gastrointestinal carcinoma. In this phase II National Cancer Institute-sponsored study, previously untreated patients with unresectable local-regional or metastatic carcinoma of the esophagus or gastroesophageal junction (either squamous cell carcinoma or adenocarcinoma) received a starting dose of paclitaxel of 250 mg/m2 administered by a 24-hour intravenous infusion (with premedication) repeated every 21 days; all patients received subcutaneous granulocyte colony-stimulating factor 5 micrograms/kg daily 24 hours after the completion of the paclitaxel infusion. Fifty-one of 53 patients were assessable for response and response duration. Thirty-three patients had adenocarcinoma and 18 had squamous cell carcinoma. Sixteen (31%) patients achieved a response (one complete and 15 partial) and 11 (22%) achieved a minor response. Among 33 patients with adenocarcinoma, 12 (36%; 95% confidence interval, 14% to 58%) achieved either a complete (one patient) or partial (11 patients) response and six patients (18%) had a minor response. Four (22%; 95% confidence interval, 3% to 41%) of 18 patients with squamous cell carcinoma had a partial response and four (22%) had a minor response. At a median follow-up of 12+ months, 28 patients remain alive with an actuarial median survival duration of 10.2 months (range, 2 to 20+ months). These data suggest that paclitaxel is active against adenocarcinoma as well as squamous cell carcinoma of the esophagus. In a

  3. A phase I/II trial of paclitaxel for non-Hodgkin's lymphoma followed by paclitaxel plus quinine in drug-resistant disease.

    PubMed

    Miller, T P; Chase, E M; Dorr, R; Dalton, W S; Lam, K S; Salmon, S E

    1998-02-01

    Patients with non-Hodgkin's lymphoma (NHL) recurrent after chemotherapy exhibit clinical characteristics compatible with the phenomenon of multidrug resistance (MDR) and frequently have detectable levels of P-glycoprotein (P-gp). Paclitaxel has been used in recurrent NHL with limited success. To test whether clinical resistance to paclitaxel can be reversed, we treated patients having paclitaxel-resistant NHL with paclitaxel plus quinine and measured the effects of quinine on paclitaxel pharmacokinetics. Eligible patients had recurrent and measurable NHL. Patients initially received paclitaxel, 120 mg/m2 (dose determined by a phase I trial of paclitaxel plus quinine), as a 20-24 h infusion every 3 weeks until there was evidence of clinical resistance. Patients then received paclitaxel at the same dose rate plus oral quinine at a fixed dose rate of 400 mg three times each day. Paclitaxel pharmacokinetics were studied in each patient using paired samples from plasma obtained at the end of the 24 h paclitaxel infusion as an estimate of the steady-state drug level. Of 14 patients treated with paclitaxel alone, one patient obtained a partial response (7%). At the time of disease progression, one patient (same patient) obtained a partial response with paclitaxel plus quinine (7%). Steady-state paclitaxel levels were obtained in 12 patients. In 11 of 12 patients the steady-state paclitaxel level was substantially lower with the addition of quinine. The average ratio of end of infusion plasma levels (paclitaxel alone/paclitaxel plus quinine) was 0.6 (range 0.31-0.97) indicating a 40% decrease in paclitaxel levels with the addition of quinine (p=0.001). We conclude that paclitaxel given by this dose and schedule has modest activity in recurrent NHL. The addition of quinine to paclitaxel also has limited activity, but the combination did reverse paclitaxel resistance in one patient, adding support to the hypothesis that clinical drug resistance can be overcome with

  4. Neoadjuvant nab-paclitaxel in the treatment of breast cancer.

    PubMed

    Ueno, Naoto T; Mamounas, Eleftherios P

    2016-04-01

    Neoadjuvant chemotherapy has the advantage of converting unresectable breast tumors to resectable tumors and allowing more conservative surgery in some mastectomy candidates. Chemotherapy agents, including taxanes, which are recommended in the adjuvant setting, are also considered in the neoadjuvant setting. Here, we review studies of nab-paclitaxel as a neoadjuvant treatment for patients with breast cancer. PubMed and conference or congress proceedings were searched for clinical studies of nab-paclitaxel in the neoadjuvant treatment of breast cancer. We also searched ClinicalTrials.gov for ongoing trials of nab-paclitaxel as a neoadjuvant agent in breast cancer. Twenty studies of nab-paclitaxel in the neoadjuvant setting were identified. In addition to reviewing key efficacy and safety data, we discuss how each trial assessed response, focusing on pathologic complete response and residual cancer burden scoring. Safety profiles are also reviewed. nab-Paclitaxel demonstrated antitumor activity and an acceptable safety profile in the neoadjuvant treatment of breast cancer. Ongoing and future trials will further evaluate preoperative nab-paclitaxel in breast cancer, including in combination with many novel immunological targeted therapies. PMID:27072366

  5. Gold nanorods carrying paclitaxel for photothermal-chemotherapy of cancer.

    PubMed

    Ren, Fei; Bhana, Saheel; Norman, Derek D; Johnson, Jermaine; Xu, Lijing; Baker, Daniel L; Parrill, Abby L; Huang, Xiaohua

    2013-03-20

    Nanotechnology-based photothermal therapy has emerged as a promising treatment for cancer during the past decade. However, heterogeneous laser heating and limited light penetration can lead to incomplete tumor cell eradication. Here, we developed a method to overcome these limitations by combining chemotherapy with photothermal therapy using paclitaxel-loaded gold nanorods. Paclitaxel was loaded to gold nanorods with high density (2.0 × 10(4) paclitaxel per gold nanorod) via nonspecific adsorption, followed by stabilization with poly(ethylene glycol) linked with 11-mercaptoundecanoic acid. Paclitaxel was entrapped in the hydrophobic pocket of the polymeric monolayer on the surface of gold nanorods, which allows direct cellular delivery of the hydrophobic drugs via the lipophilic plasma membrane. Highly efficient drug release was demonstrated in a cell membrane mimicking two-phase solution. Combined photothermal therapy and chemotherapy with the paclitaxel-loaded gold nanorods was shown to be highly effective in killing head and neck cancer cells and lung cancer cells, superior to photothermal therapy or chemotherapy alone due to a synergistic effect. The paclitaxel-gold nanorod enabled photothermal chemotherapy has the potential of preventing tumor reoccurrence and metastasis and may have an important impact on the treatment of head and neck cancer and other malignancies in the clinic. PMID:23360450

  6. Paclitaxel Nano-Delivery Systems: A Comprehensive Review

    PubMed Central

    Ma, Ping; Mumper, Russell J.

    2013-01-01

    Paclitaxel is one of the most effective chemotherapeutic drugs ever developed and is active against a broad range of cancers, such as lung, ovarian, and breast cancers. Due to its low water solubility, paclitaxel is formulated in a mixture of Cremophor EL and dehydrated ethanol (50:50, v/v) a combination known as Taxol. However, Taxol has some severe side effects related to Cremophor EL and ethanol. Therefore, there is an urgent need for the development of alternative Taxol formulations. The encapsulation of paclitaxel in biodegradable and non-toxic nano-delivery systems can protect the drug from degradation during circulation and in-turn protect the body from toxic side effects of the drug thereby lowering its toxicity, increasing its circulation half-life, exhibiting improved pharmacokinetic profiles, and demonstrating better patient compliance. Also, nanoparticle-based delivery systems can take advantage of the enhanced permeability and retention (EPR) effect for passive tumor targeting, therefore, they are promising carriers to improve the therapeutic index and decrease the side effects of paclitaxel. To date, paclitaxel albumin-bound nanoparticles (Abraxane®) have been approved by the FDA for the treatment of metastatic breast cancer and non-small cell lung cancer (NSCLC). In addition, there are a number of novel paclitaxel nanoparticle formulations in clinical trials. In this comprehensive review, several types of developed paclitaxel nano-delivery systems will be covered and discussed, such as polymeric nanoparticles, lipid-based formulations, polymer conjugates, inorganic nanoparticles, carbon nanotubes, nanocrystals, and cyclodextrin nanoparticles. PMID:24163786

  7. Paclitaxel Nano-Delivery Systems: A Comprehensive Review.

    PubMed

    Ma, Ping; Mumper, Russell J

    2013-02-18

    Paclitaxel is one of the most effective chemotherapeutic drugs ever developed and is active against a broad range of cancers, such as lung, ovarian, and breast cancers. Due to its low water solubility, paclitaxel is formulated in a mixture of Cremophor EL and dehydrated ethanol (50:50, v/v) a combination known as Taxol. However, Taxol has some severe side effects related to Cremophor EL and ethanol. Therefore, there is an urgent need for the development of alternative Taxol formulations. The encapsulation of paclitaxel in biodegradable and non-toxic nano-delivery systems can protect the drug from degradation during circulation and in-turn protect the body from toxic side effects of the drug thereby lowering its toxicity, increasing its circulation half-life, exhibiting improved pharmacokinetic profiles, and demonstrating better patient compliance. Also, nanoparticle-based delivery systems can take advantage of the enhanced permeability and retention (EPR) effect for passive tumor targeting, therefore, they are promising carriers to improve the therapeutic index and decrease the side effects of paclitaxel. To date, paclitaxel albumin-bound nanoparticles (Abraxane®) have been approved by the FDA for the treatment of metastatic breast cancer and non-small cell lung cancer (NSCLC). In addition, there are a number of novel paclitaxel nanoparticle formulations in clinical trials. In this comprehensive review, several types of developed paclitaxel nano-delivery systems will be covered and discussed, such as polymeric nanoparticles, lipid-based formulations, polymer conjugates, inorganic nanoparticles, carbon nanotubes, nanocrystals, and cyclodextrin nanoparticles. PMID:24163786

  8. Paclitaxel-Loaded Polymersomes for Enhanced Intraperitoneal Chemotherapy.

    PubMed

    Simón-Gracia, Lorena; Hunt, Hedi; Scodeller, Pablo D; Gaitzsch, Jens; Braun, Gary B; Willmore, Anne-Mari A; Ruoslahti, Erkki; Battaglia, Giuseppe; Teesalu, Tambet

    2016-04-01

    Peritoneal carcinomatosis is present in more than 60% of gastric cancer, 40% of ovarian cancer, and 35% of colon cancer patients. It is the second most common cause of cancer-related mortality, with a median survival of 1 to 3 months. Cytoreductive surgery combined with intraperitoneal chemotherapy is the current clinical treatment, but achieving curative drug accumulation and penetration in peritoneal carcinomatosis lesions remains an unresolved challenge. Here, we used flexible and pH-sensitive polymersomes for payload delivery to peritoneal gastric (MKN-45P) and colon (CT26) carcinoma in mice. Polymersomes were loaded with paclitaxel and in vitro drug release was studied as a function of pH and time. Paclitaxel-loaded polymersomes remained stable in aqueous solution at neutral pH for up to 4 months. In cell viability assay on cultured cancer cell lines (MKN-45P, SKOV3, CT26), paclitaxel-loaded polymersomes were more toxic than free drug or albumin-bound paclitaxel (Abraxane). Intraperitoneally administered fluorescent polymersomes accumulated in malignant lesions, and immunofluorescence revealed an intense signal inside tumors with no detectable signal in control organs. A dual targeting of tumors was observed: direct (circulation-independent) penetration, and systemic, blood vessel-associated accumulation. Finally, we evaluated preclinical antitumor efficacy of paclitaxel-polymersomes in the treatment of MKN-45P disseminated gastric carcinoma using a total dose of 7 mg/kg. Experimental therapy with paclitaxel-polymersomes improved the therapeutic index of drug over free paclitaxel and Abraxane, as evaluated by intraperitoneal tumor burden and number of metastatic nodules. Our findings underline the potential utility of the polymersome platform for delivery of drugs and imaging agents to peritoneal carcinomatosis lesions. Mol Cancer Ther; 15(4); 670-9. ©2016 AACR. PMID:26880267

  9. Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo

    PubMed Central

    Fellner, Stephan; Bauer, Björn; Miller, David S.; Schaffrik, Martina; Fankhänel, Martina; Spruß, Thilo; Bernhardt, Günther; Graeff, Claudia; Färber, Lothar; Gschaidmeier, Harald; Buschauer, Armin; Fricker, Gert

    2002-01-01

    Paclitaxel concentrations in the brain are very low after intravenous injection. Since paclitaxel is excluded from some tumors by p-glycoprotein (p-gp), the same mechanism may prevent entry into the brain. In vitro, paclitaxel transport was examined in capillaries from rat brains by confocal microscopy using BODIPY Fl-paclitaxel. Western blots and immunostaining demonstrated apical expression of p-gp in isolated endothelial cells, vessels, and tissue. Secretion of BODIPY Fl-paclitaxel into capillary lumens was specific and energy-dependent. Steady state luminal fluorescence significantly exceeded cellular fluorescence and was reduced by NaCN, paclitaxel, and SDZ PSC-833 (valspodar), a p-gp blocker. Leukotriene C4 (LTC4), an Mrp2-substrate, had no effect. Luminal accumulation of NBDL-cyclosporin, a p-gp substrate, was inhibited by paclitaxel. In vivo, paclitaxel levels in the brain, liver, kidney, and plasma of nude mice were determined after intravenous injection. Co-administration of valspodar led to increased paclitaxel levels in brains compared to monotherapy. Therapeutic relevance was proven for nude mice with implanted intracerebral human U-118 MG glioblastoma. Whereas paclitaxel did not affect tumor volume, co-administration of paclitaxel (intravenous) and PSC833 (peroral) reduced tumor volume by 90%. Thus, p-gp is an important obstacle preventing paclitaxel entry into the brain, and inhibition of this transporter allows the drug to reach sensitive tumors within the CNS. PMID:12417570

  10. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431

    PubMed Central

    2014-01-01

    Background Paclitaxel (Taxol™) is an important anticancer drug with a unique mode of action. The biosynthesis of paclitaxel had been considered restricted to the Taxus species until it was discovered in Taxomyces andreanae, an endophytic fungus of T. brevifolia. Subsequently, paclitaxel was found in hazel (Corylus avellana L.) and in several other endophytic fungi. The distribution of paclitaxel in plants and endophytic fungi and the reported sequence homology of key genes in paclitaxel biosynthesis between plant and fungi species raises the question about whether the origin of this pathway in these two physically associated groups could have been facilitated by horizontal gene transfer. Results The ability of the endophytic fungus of hazel Penicillium aurantiogriseum NRRL 62431 to independently synthesize paclitaxel was established by liquid chromatography-mass spectrometry and proton nuclear magnetic resonance. The genome of Penicillium aurantiogriseum NRRL 62431 was sequenced and gene candidates that may be involved in paclitaxel biosynthesis were identified by comparison with the 13 known paclitaxel biosynthetic genes in Taxus. We found that paclitaxel biosynthetic gene candidates in P. aurantiogriseum NRRL 62431 have evolved independently and that horizontal gene transfer between this endophytic fungus and its plant host is unlikely. Conclusions Our findings shed new light on how paclitaxel-producing endophytic fungi synthesize paclitaxel, and will facilitate metabolic engineering for the industrial production of paclitaxel from fungi. PMID:24460898

  11. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    SciTech Connect

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T.; Pan, Chong-xian

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid report provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.

  12. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    DOE PAGESBeta

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T.; Pan, Chong-xian

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid report provides themore » first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.« less

  13. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity.

    PubMed

    Jiang, Shuai; Pan, Amy W; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T; Pan, Chong-xian

    2015-12-21

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 10(8) nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 10(8) nucleotides per hour in carboplatin alone (p = 0.021). This rapid report provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic. PMID:26544157

  14. Albumin-bound paclitaxel in solid tumors: clinical development and future directions

    PubMed Central

    Kundranda, Madappa N; Niu, Jiaxin

    2015-01-01

    Albumin-bound paclitaxel (nab-paclitaxel) is a solvent-free formulation of paclitaxel that was initially developed more than a decade ago to overcome toxicities associated with the solvents used in the formulation of standard paclitaxel and to potentially improve efficacy. Nab-paclitaxel has demonstrated an advantage over solvent-based paclitaxel by being able to deliver a higher dose of paclitaxel to tumors and decrease the incidence of serious toxicities, including severe allergic reactions. To date, nab-paclitaxel has been indicated for the treatment of three solid tumors in the USA. It was first approved for the treatment of metastatic breast cancer in 2005, followed by locally advanced or metastatic non-small-cell lung cancer in 2012, and most recently for metastatic pancreatic cancer in 2013. Nab-paclitaxel is also under investigation for the treatment of a number of other solid tumors. This review highlights key clinical efficacy and safety outcomes of nab-paclitaxel in the solid tumors for which it is currently indicated, discusses ongoing trials that may provide new data for the expansion of nab-paclitaxel’s indications into other solid tumors, and provides a clinical perspective on the use of nab-paclitaxel in practice. PMID:26244011

  15. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy

    NASA Astrophysics Data System (ADS)

    Liu, Kuang-Kai; Zheng, Wen-Wei; Wang, Chi-Ching; Chiu, Yu-Chung; Cheng, Chia-Liang; Lo, Yu-Shiu; Chen, Chinpiao; Chao, Jui-I.

    2010-08-01

    A nanoparticle-conjugated cancer drug provides a novel strategy for cancer therapy. In this study, we manipulated nanodiamond (ND), a carbon nanomaterial, to covalently link paclitaxel for cancer drug delivery and therapy. Paclitaxel was bound to the surface of 3-5 nm sized ND through a succession of chemical modifications. The ND-paclitaxel conjugation was measured by atomic force microscope and nuclear magnetic resonance spectroscopy, and confirmed with infrared spectroscopy by the detection of deuterated paclitaxel. Treatment with 0.1-50 µg ml - 1 ND-paclitaxel for 48 h significantly reduced the cell viability in the A549 human lung carcinoma cells. ND-paclitaxel induced both mitotic arrest and apoptosis in A549 cells. However, ND alone or denatured ND-paclitaxel (after treatment with strong alkaline solution, 1 M NaOH) did not induce the damage effects on A549 cells. ND-paclitaxel was taken into lung cancer cells in a concentration-dependent manner using flow cytometer analysis. The ND-paclitaxel particles were located in the microtubules and cytoplasm of A549 cells observed by confocal microscopy. Furthermore, ND-paclitaxel markedly blocked the tumor growth and formation of lung cancer cells in xenograft SCID mice. Together, we provide a functional covalent conjugation of ND-paclitaxel, which can be delivered into lung carcinoma cells and preserves the anticancer activities on the induction of mitotic blockage, apoptosis and anti-tumorigenesis.

  16. Enabling Anticancer Therapeutics by Nanoparticle Carriers: The Delivery of Paclitaxel

    PubMed Central

    Liu, Yongjin; Zhang, Bin; Yan, Bing

    2011-01-01

    Anticancer drugs, such as paclitaxel (PTX), are indispensable for the treatment of a variety of malignancies. However, the application of most drugs is greatly limited by the low water solubility, poor permeability, or high efflux from cells. Nanoparticles have been widely investigated to enable drug delivery due to their low toxicity, sustained drug release, molecular targeting, and additional therapeutic and imaging functions. This review takes paclitaxel as an example and compares different nanoparticle-based delivery systems for their effectiveness in cancer chemotherapy. PMID:21845085

  17. Weekly Paclitaxel Versus Three-Weekly Paclitaxel in Recurrent Platinum-Resistant Epithelial Ovarian and Peritoneal Cancers: A Phase III Study

    PubMed Central

    Osman, Mohammed A.; Elkady, Mohammad S.; Nasr, Khalid E.

    2016-01-01

    INTRODUCTION Treatment of recurrent platinum-resistant ovarian and peritoneal cancers represents a therapeutic challenge. The aim of this Phase III prospective study was to compare the survival benefits, objective response rate, and toxicities among patients treated by weekly paclitaxel with those who underwent three-weekly paclitaxel in recurrent platinum-resistant ovarian and peritoneal cancers. METHOD Patients with recurrent platinum-resistant ovarian and peritoneal cancer were allocated to receive either weekly paclitaxel (arm 1) at 80 m/m2 or three-weekly paclitaxel (arm 2) at 175 mg/m2. RESULTS Fifty-five patients were enrolled (30 arm 1, 25 arm 2). The mean age was 56.7 years, and the median performance status was 0 (Eastern Cooperative Oncology Group [ECOG]). For arms 1 and 2, the objective response rates were 27% and 16%, the median progression-free survival were 7 and 4.5 months, and the median overall survival were 15.5 and 12.5 months, respectively. Treatments also significantly improved the quality of life. Treatment was associated with mild toxicities, and while neuropathy was slightly higher for weekly paclitaxel over three-weekly paclitaxel, hematological toxicities were significantly lower for the former than the latter. CONCLUSION Paclitaxel rechallenge showed antitumor activity in recurrent platinum-resistant ovarian and peritoneal cancers. Weekly paclitaxel achieved better results than three-weekly paclitaxel in terms of survival benefits, quality of life, and toxicities. PMID:27147900

  18. Sunitinib Plus Paclitaxel Versus Bevacizumab Plus Paclitaxel for First-Line Treatment of Patients With Advanced Breast Cancer: A Phase III, Randomized, Open-Label Trial

    PubMed Central

    Robert, Nicholas J.; Saleh, Mansoor N.; Paul, Devchand; Generali, Daniele; Gressot, Laurent; Copur, Mehmet S.; Brufsky, Adam M.; Minton, Susan E.; Giguere, Jeffrey K.; Smith, John W.; Richards, Paul D.; Gernhardt, Diana; Huang, Xin; Liau, Katherine F.; Kern, Kenneth A.; Davis, John

    2015-01-01

    Introduction A multicenter, open-label phase III study was conducted to test whether sunitinib plus paclitaxel prolongs progression-free survival (PFS) compared with bevacizumab plus paclitaxel as first-line treatment for patients with HER2− advanced breast cancer. Patients and Methods Patients with HER2− advanced breast cancer who were disease free for ≥ 12 months after adjuvant taxane treatment were randomized (1:1; planned enrollment 740 patients) to receive intravenous (I.V.) paclitaxel 90 mg/m2 every week for 3 weeks in 4-week cycles plus either sunitinib 25 to 37.5 mg every day or bevacizumab 10 mg/kg I.V. every 2 weeks. Results The trial was terminated early because of futility in reaching the primary endpoint as determined by the independent data monitoring committee during an interim futility analysis. At data cutoff, 242 patients had been randomized to sunitinib-paclitaxel and 243 patients to bevacizumab-paclitaxel. Median PFS was shorter with sunitinib-paclitaxel (7.4 vs. 9.2 months; hazard ratio [HR] 1.63 [95% confidence interval (CI), 1.18–2.25]; 1-sided P = .999). At a median follow-up of 8.1 months, with 79% of sunitinib-paclitaxel and 87% of bevacizumab-paclitaxel patients alive, overall survival analysis favored bevacizumab-paclitaxel (HR 1.82 [95% CI, 1.16–2.86]; 1-sided P = .996). The objective response rate was 32% in both arms, but median duration of response was shorter with sunitinib-paclitaxel (6.3 vs. 14.8 months). Bevacizumab-paclitaxel was better tolerated than sunitinib-paclitaxel. This was primarily due to a high frequency of grade 3/4, treatment-related neutropenia with sunitinib-paclitaxel (52%) precluding delivery of the prescribed doses of both drugs. Conclusion The sunitinib-paclitaxel regimen evaluated in this study was clinically inferior to the bevacizumab-paclitaxel regimen and is not a recommended treatment option for patients with advanced breast cancer. PMID:21569994

  19. [Nab-Paclitaxel plus Gemcitabine for Metastatic Pancreatic Cancer].

    PubMed

    Katsura, Yoshiteru; Takeda, Yutaka; Ohmura, Yoshiaki; Motoyama, Yurina; Ishida, Tomo; Morimoto, Yoshihiro; Matsushita, Katsunori; Naito, Atsushi; Murakami, Kohei; Kagawa, Yoshinori; Okishiro, Masatsugu; Takeno, Atsushi; Egawa, Chiyomi; Kato, Takeshi; Tamura, Shigeyuki

    2015-11-01

    Pancreatic ductal carcinoma is a highly aggressive cancer, with one of the highest mortality rates among gastrointestinal cancers. Nab-paclitaxel plus gemcitabine (GEM) significantly improved overall survival, progression-free survival, and response rate in a phase Ⅲ trial in 151 community and academic centers in 11 countries. As a result, nab-paclitaxel plus GEM was approved for use in December 2014 in Japan. We report a case of a patient with pancreatic cancer who underwent this chemotherapy. A 47-year-old man was admitted to our hospital for evaluation of pancreatic lesions. Computed tomography revealed a hypoattenuating tumor in the body of the pancreas. After the patient underwent preoperative chemoradiotherapy under the diagnosis of cStage Ⅳa cancer, we planned to perform distal pancreatectomy. However, this case was inoperable because we found 3 liver metastases during surgery. On postoperative day 14, we treated the patient with nab-paclitaxel plus GEM. Grade 2 toxicities included neutropenia, diarrhea, and peripheral neuropathy, but serious adverse events did not occur. The progression-free survival was 5 months. He remained alive for 7 months after the chemotherapy. In patients with metastatic pancreatic adenocarcinoma, nab-paclitaxel plus GEM can be considered as the standard treatment. PMID:26805366

  20. Alpha fetoprotein antagonizes apoptosis induced by paclitaxel in hepatoma cells in vitro.

    PubMed

    Zhu, Mingyue; Li, Wei; Lu, Yan; Dong, Xu; Chen, Yi; Lin, Bo; Xie, Xieju; Guo, Junli; Li, Mengsen

    2016-01-01

    Hepatocellular carcinoma (HCC) cell resistance to the effects of paclitaxel has not been adequately addressed. In this study, we found that paclitaxel significantly inhibited the viability of HLE, Bel 7402 and L-02 cells in a dose- and time-dependent manner. HLE cells and L-02 cells resisted the cytotoxicity of paclitaxel when transfected with pcDNA3.1-afp vectors. However, Bel 7402 cell sensitivity to paclitaxel was increased when transfected with alpha fetoprotein (AFP)-siRNA. Bel 7402 cell resistance to paclitaxel was associated with the expression of the "stemness" markers CD44 and CD133. Paclitaxel significantly inhibited growth and promoted apoptosis in HLE cells and L-02 cells by inducing fragmentation of caspase-3 and inhibiting the expression of Ras and Survivin, but pcDNA3.1-afp vectors prevented these effects. However, paclitaxel could not significantly promote the cleavage of caspase-3 or suppress the expression of Ras and Survivin in Bel 7402 cells. Silenced expression of AFP may be synergistic with paclitaxel to restrain proliferation and induce apoptosis, enhance cleavage of caspase-3, and suppress the expression of Ras and Survivin. Taken together, AFP may be an important molecule acting against paclitaxel-inhibited proliferation and induced apoptosis in HCC cells via repressing the activity of caspase-3 and stimulating the expression of Ras and Survivin. Targeted inhibition of AFP expression after treatment with paclitaxel is an available strategy for the therapy of patients with HCC. PMID:27255186

  1. Alpha fetoprotein antagonizes apoptosis induced by paclitaxel in hepatoma cells in vitro

    PubMed Central

    Zhu, Mingyue; Li, Wei; Lu, Yan; Dong, Xu; Chen, Yi; Lin, Bo; Xie, Xieju; Guo, Junli; Li, Mengsen

    2016-01-01

    Hepatocellular carcinoma (HCC) cell resistance to the effects of paclitaxel has not been adequately addressed. In this study, we found that paclitaxel significantly inhibited the viability of HLE, Bel 7402 and L-02 cells in a dose- and time-dependent manner. HLE cells and L-02 cells resisted the cytotoxicity of paclitaxel when transfected with pcDNA3.1-afp vectors. However, Bel 7402 cell sensitivity to paclitaxel was increased when transfected with alpha fetoprotein (AFP)-siRNA. Bel 7402 cell resistance to paclitaxel was associated with the expression of the “stemness” markers CD44 and CD133. Paclitaxel significantly inhibited growth and promoted apoptosis in HLE cells and L-02 cells by inducing fragmentation of caspase-3 and inhibiting the expression of Ras and Survivin, but pcDNA3.1-afp vectors prevented these effects. However, paclitaxel could not significantly promote the cleavage of caspase-3 or suppress the expression of Ras and Survivin in Bel 7402 cells. Silenced expression of AFP may be synergistic with paclitaxel to restrain proliferation and induce apoptosis, enhance cleavage of caspase-3, and suppress the expression of Ras and Survivin. Taken together, AFP may be an important molecule acting against paclitaxel-inhibited proliferation and induced apoptosis in HCC cells via repressing the activity of caspase-3 and stimulating the expression of Ras and Survivin. Targeted inhibition of AFP expression after treatment with paclitaxel is an available strategy for the therapy of patients with HCC. PMID:27255186

  2. Paclitaxel induces vascular endothelial growth factor expression through reactive oxygen species production.

    PubMed

    Kim, Hyun Sun; Oh, Jin Mi; Jin, Dong Hoon; Yang, Kyu-Hwan; Moon, Eun-Yi

    2008-01-01

    The antineoplastic drug paclitaxel is known to block cells in the G2/M phase of the cell cycle through stabilization of microtubules. The development of paclitaxel resistance in tumors is one of the most significant obstacles to successful therapy. Vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1 (HIF-1) are important regulators of neovascularization. HIF-1 regulates VEGF expression at the transcriptional level. Here, we investigated whether paclitaxel treatment affects VEGF expression for the development of paclitaxel resistance. Paclitaxel treatment induced dose-dependent cell death and increased VEGF expression. Paclitaxel also induced nuclear factor-kappaB activation and stabilized HIF-1alpha, which stimulated luciferase activity of HIF-1alpha response element on VEGF gene. As paclitaxel treatment produced reactive oxygen species (ROS), VEGF expression was increased by H2O2 treatment and reduced by various ROS scavengers such as N-acetyl-L-cysteine, pyrrolidine dithiocarbamate and diphenylene iodonium. Paclitaxel-induced cell death was aggravated by incubation with those ROS scavengers. Collectively, this suggests that paclitaxel-induced VEGF expression could be mediated by paclitaxel-induced ROS production through nuclear factor-kappaB activation and HIF-1alpha stabilization, which could affect resistance induction to antitumor therapeutics during cancer treatment. PMID:18322419

  3. A preliminary risk-benefit assessment of paclitaxel.

    PubMed

    Bitton, R J; Figg, W D; Reed, E

    1995-03-01

    Paclitaxel is an antineoplastic agent, first isolated and described in 1971. Despite its novel structure and apparent activity in vitro, little interest was shown in developing the compound because of its scarcity, problems with its formulation and the mistaken assumption that its mechanism of action was similar to that of the vinca alkaloids. Approximately 10 years later, the unique mechanism of action of paclitaxel, its ability to stabilise microtubules, was discovered, and its activity against human tumour xenografts was demonstrated. Interest in the drug was reignited and clinical testing began. Severe hypersensitivity reactions were controlled in the phase II programme with a premedication regimen consisting of dexamethasone, histamine H1-antagonists and H2-antagonists. Neutropenia was dose limiting in all studies conducted in patients with solid tumours. This toxicity was schedule-dependent, and less severe when paclitaxel was administered as a 3-hour infusion regimen. Peripheral neuropathy was mild to moderate in the initial experience, and dose-dependent. However, when bone marrow support with haemopoietic growth factors was used to allow paclitaxel dose intensification, neurotoxicity became dose limiting. To date, substantial clinical efficacy has been demonstrated in ovarian, breast, non-small-cell lung, and head and neck cancers. Response rates were low in initial studies in melanoma, prostate, colon, cervix and renal cancer. In December 1992, US Food and Drug Administration approval was granted for the use of paclitaxel as second-line therapy in ovarian cancer patients. More recently, similar approval was granted for use in recurrent breast cancer. Nevertheless, important questions remain.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7619331

  4. Targeted chemotherapy with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) in metastatic breast cancer: which benefit for which patients?

    PubMed Central

    Palumbo, Raffaella; Sottotetti, Federico; Bernardo, Antonio

    2016-01-01

    The therapeutic goals in metastatic breast cancer (MBC) remain palliative in nature, aimed at controlling symptoms, improving or maintaining quality of life and prolonging survival. The advent of new drugs and new formulations of standard agents has led to better outcomes in patients with advanced or metastatic disease. These developments have also allowed a tailored therapeutic approach, in which the molecular biology of the tumour, the treatment history, and patient attitudes are taken into account in the decision-making process. Targeting drug delivery to the tumour is a promising mean of increasing the therapeutic index of highly active agents such as the taxanes, and nanoparticle albumin-bound paclitaxel (nab-paclitaxel), the first nanotechnology-based drug developed in cancer treatment, is one such advance. Data from randomized trials support the efficacy of single-agent nab-paclitaxel as first-line and further treatment lines in MBC at the registered 3-weekly schedule of 260 mg/m2, but emerging evidence suggests its activity as a weekly regimen or combined with other agents in various clinical scenarios. Thus, nab-paclitaxel seems to offer flexibility in terms of dosing schedules, allowing physicians to tailor the dose according to different clinical situations. This paper reviews the clinical trial background for nab-paclitaxel in MBC, focusing on specific ‘difficult-to-treat’ patient populations, such as taxane-pretreated or elderly women, as well as those with triple-negative, HER2-positive and poor-prognostic-factors disease. Moving beyond evidence-based information, ‘real life’ available experiences are also discussed with the aim of providing an update for daily clinical practice. PMID:27239239

  5. Paralytic ileus due to a novel anticancer drug, nab-paclitaxel: A case report

    PubMed Central

    JIAO, XIAO-DONG; LUO, XIU; QIN, WEN-XING; YUAN, LING-YAN; ZANG, YUAN-SHENG

    2016-01-01

    Nab-paclitaxel is a recently emerged chemotherapy drug, which is widely used for the treatment of multiple types of cancer. The prospects of this novel drug are very bright as a result of its higher efficacy and lower toxicity compared with paclitaxel. Hence, the side effect, even if rare, require attention in clinical practice. The present study described an unusual case of nab-paclitaxel-associated paralytic ileus. To the best of our knowledge, this is the first report to demonstrate that nab-paclitaxel may lead to acute intestinal obstruction. Since nab-paclitaxel will be used more frequently, this unusual side effect might be encountered by a clinical oncologist and must be treated correctly. This is the first reported case, to the best of our knowledge, of paralytic ileus caused by nab-paclitaxel, which will be widely used as a novel anticancer drug. PMID:27123288

  6. Subcutaneous administration of paclitaxel in dogs with cancer: A preliminary study

    PubMed Central

    Silva, Daniella M.; Franciosi, Aline I.; Pezzini, Paula C.F.; Guérios, Simone D.

    2015-01-01

    Intravenous paclitaxel has been underused in dogs due to severe and acute hypersensitivity reactions. Subcutaneous (SC) administration of paclitaxel and its safety are unknown. In this preliminary study, SC administration of paclitaxel was evaluated for hypersensitivity reactions and toxicity in 21 dogs with advanced cancer. Dogs received 1 to 5 paclitaxel doses, ranging from 85 to 170 mg/m2, SC every 14 or 21 days. A total of 40 paclitaxel doses were administered and none of the 21 dogs developed systemic or acute local hypersensitivity reactions. Severe skin lesions at the injection site developed in 2 dogs after the 4th injection at the same location. Grade 4 neutropenia was observed in 50% of the dogs 5 days after the first treatment at 115 mg/m2 (n = 14). Two animals developed Grade 5 diarrhea and died likely due to hemodynamic failure or sepsis. Paclitaxel can be administered SC in dogs with no hypersensitivity reaction. PMID:26246628

  7. Phase I Study of Pazopanib in Combination with Weekly Paclitaxel in Patients with Advanced Solid Tumors

    PubMed Central

    Dowlati, Afshin; Jones, Suzanne F.; Infante, Jeffrey R.; Nishioka, Jennifer; Fang, Lei; Hodge, Jeffrey P.; Gainer, Shelby D.; Arumugham, Thangam; Suttle, A. Benjamin; Dar, Mohammed M.; Lager, Joanne J.; Burris, Howard A.

    2010-01-01

    Purpose. To evaluate the maximum tolerated regimen (MTR), dose-limiting toxicities, and pharmacokinetics of pazopanib, an oral small-molecule tyrosine kinase inhibitor of vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and c-Kit, in combination with paclitaxel. Patients and Methods. Pazopanib was given daily with weekly paclitaxel on days 1, 8, and 15 every 28 days. Dose levels of pazopanib (mg/day)/paclitaxel (mg/m2) were 400/15, 800/15, 800/50, and 800/80. An expanded cohort was enrolled at the MTR. Plasma samples were collected to evaluate the effect of pazopanib, an inhibitor of cytochrome P450 (CYP)3A4, on the pharmacokinetics of paclitaxel, a CYP3A4 and CYP2C8 substrate. Results. Of 26 enrolled patients, 17 were treated at the MTR of 800 mg pazopanib and 80 mg/m2 paclitaxel. Dose-limiting toxicities included a grade 3 abscess and grade 2 hyperbilirubinemia. Other toxicities included elevated liver transaminases and diarrhea. Six patients (23%) had partial responses and 15 patients (58%) had stable disease. Administration of 800 mg pazopanib resulted in a 14% lower paclitaxel clearance and a 31% higher paclitaxel maximal concentration than with administration of paclitaxel alone at 15, 50, and 80 mg/m2. At the MTR, coadministration of 800 mg pazopanib and 80 mg/m2 paclitaxel resulted in a 26% higher geometric mean paclitaxel area under the curve. Conclusion. Pazopanib, at a dose of 800 mg daily, can be safely combined with a therapeutic dose of paclitaxel at 80 mg/m2 when administered on days 1, 8, and 15, every 28 days. The observed greater plasma concentrations of paclitaxel given concurrently with pazopanib suggest that pazopanib is a weak inhibitor of CYP3A4 and CYP2C8. PMID:21147873

  8. Severe hyponatremia caused by nab-paclitaxel-induced syndrome of inappropriate antidiuretic hormone secretion

    PubMed Central

    Neuzillet, Cindy; Babai, Samy; Kempf, Emmanuelle; Pujol, Géraldine; Rousseau, Benoît; Le-Louët, Hervé; Christophe Tournigand

    2016-01-01

    Abstract Incidence of pancreatic ductal adenocarcinoma (PDAC) is increasing. Most patients have advanced disease at diagnosis and therapeutic options in this setting are limited. Gemcitabine plus nab-paclitaxel regimen was demonstrated to increase survival compared with gemcitabine monotherapy and is therefore indicated as first-line therapy in patients with metastatic PDAC and performance status Eastern Cooperative Oncology Group (ECOG) 0-2. The safety profile of gemcitabine and nab-paclitaxel combination includes neutropenia, fatigue, and neuropathy as most common adverse events of grade 3 or higher. No case of severe hyponatremia associated with the use of nab-paclitaxel for the treatment of PDAC has been reported to date. We report the case of a 72-year-old Caucasian man with a metastatic PDAC treated with gemcitabine and nab-paclitaxel regimen, who presented with a severe hyponatremia (grade 4) caused by a documented syndrome of inappropriate antidiuretic hormone secretion (SIADH). This SIADH was attributed to nab-paclitaxel after a rigorous imputability analysis, including a rechallenge procedure with dose reduction. After dose and schedule adjustment, nab-paclitaxel was pursued without recurrence of severe hyponatremia and with maintained efficacy. Hyponatremia is a rare but potentially severe complication of nab-paclitaxel therapy that medical oncologists and gastroenterologists should be aware of. Nab-paclitaxel-induced hyponatremia is manageable upon dose and schedule adaptation, and should not contraindicate careful nab-paclitaxel reintroduction. This is of particular interest for a disease in which the therapeutic options are limited. PMID:27368013

  9. Paclitaxel stimulates chromosomal fusion and instability in cells with dysfunctional telomeres: Implication in multinucleation and chemosensitization

    SciTech Connect

    Park, Jeong-Eun; Woo, Seon Rang; Kang, Chang-Mo; Juhn, Kyoung-Mi; Ju, Yeun-Jin; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun Ran; Park, In-chul; Hong, Sung Hee; Hwang, Sang-Gu; Lee, Jung-Kee; Kim, Hae Kwon; Cho, Myung-Haing; Park, Gil Hong; Lee, Kee-Ho

    2011-01-14

    Research highlights: {yields} Paclitaxel serves as a stimulator of chromosomal fusion in cells in which telomeres are dysfunctional. {yields} Typical fusions involve p-arms, but paclitaxel-induced fusions occur between both q- and p-arms. {yields} Paclitaxel-stimulated fusions in cells in which telomeres are dysfunctional evoke prolonged G2/M cell cycle arrest and delay multinucleation. {yields} Upon telomere erosion, paclitaxel promotes chromosomal instability and subsequent apoptosis. {yields} Chromosomal fusion enhances paclitaxel chemosensitivity under telomere dysfunction. -- Abstract: The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, and eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.

  10. Label-free detection of anticancer drug paclitaxel in living cells by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Derely, L.; Vegh, A.-G.; Durand, J.-C.; Gergely, C.; Larroque, C.; Fauroux, M.-A.; Cuisinier, F. J. G.

    2013-03-01

    Confocal Raman microscopy, a non-invasive, label-free, and high spatial resolution imaging technique is employed to trace the anticancer drug paclitaxel in living Michigan Cancer Foundation-7 (MCF-7) cells. The Raman images were treated by K-mean cluster analysis to detect the drug in cells. Distribution of paclitaxel in cells is verified by calculating the correlation coefficient between the reference spectrum of the drug and the whole Raman image spectra. A time dependent gradual diffusion of paclitaxel all over the cell is observed suggesting a complementary picture of the pharmaceutical action of this drug based on rapid binding of free tubulin to crystallized paclitaxel.

  11. Paclitaxel injection concentrate for nanodispersion versus nab-paclitaxel in women with metastatic breast cancer: a multicenter, randomized, comparative phase II/III study.

    PubMed

    Jain, Minish M; Gupte, Smita U; Patil, Shekhar G; Pathak, Anand B; Deshmukh, Chetan D; Bhatt, Niraj; Haritha, Chiramana; Govind Babu, K; Bondarde, Shailesh A; Digumarti, Raghunadharao; Bajpai, Jyoti; Kumar, Ravi; Bakshi, Ashish V; Bhattacharya, Gouri Sankar; Patil, Poonam; Subramanian, Sundaram; Vaid, Ashok K; Desai, Chirag J; Khopade, Ajay; Chimote, Geetanjali; Bapsy, Poonamalle P; Bhowmik, Shravanti

    2016-02-01

    Paclitaxel is widely used in the treatment of patients with metastatic breast cancer (MBC). Formulations of paclitaxel contain surfactants and solvents or albumin derived from human blood. The use of co-solvents such as polyoxyethylated castor oil is thought to contribute to toxicity profile and hypersensitivity reactions as well as leaching of plasticizers from polyvinyl chloride bags and infusion sets. Currently, nab-paclitaxel, an albumin-bound paclitaxel in nanometer range continues to be the preferred taxane formulation used in clinic. This study (CTRI/2010/091/001116) investigated the efficacy and tolerability of a polyoxyethylated castor oil- and albumin-free formulation of paclitaxel [paclitaxel injection concentrate for nanodispersion (PICN)] compared with nab-paclitaxel in women with refractory MBC. The current study was a multicenter, open-label, parallel-group, randomized, comparative phase II/III trial evaluating the efficacy and safety of PICN (260 mg/m(2) [n = 64] and 295 mg/m(2) [n = 58] every 3 weeks) compared with nab-paclitaxel (260 mg/m(2) every 3 weeks [n = 58]) in women 18 and 70 years old with confirmed MBC. Overall response rate (ORR) was assessed with imaging every 2 cycles. An independent analysis of radiologic data was performed for evaluable patients. Progression-free survival (PFS) was a secondary efficacy measure. Independent radiologist-assessed ORRs in the evaluable population of women aged ≥70 years were 35, 49, and 43 % in the PICN 260 mg/m(2), PICN 295 mg/m(2), and nab-paclitaxel 260 mg/m(2) arms, respectively. Median PFS in the evaluable population was 23, 35, and 34 weeks in the PICN 260 mg/m(2), PICN 295 mg/m(2), and nab-paclitaxel 260 mg/m(2) arms, respectively. Adverse events occurred in similar proportions of patients across treatment arms. Hypersensitivity reactions were not frequently observed with the clinical use of PICN across the treatment cohorts. In women with metastatic breast cancer, PICN at 260 and 295 mg/m(2

  12. Neuropathy-inducing effects of eribulin mesylate versus paclitaxel in mice with preexisting neuropathy.

    PubMed

    Wozniak, Krystyna M; Wu, Ying; Farah, Mohamed H; Littlefield, Bruce A; Nomoto, Kenichi; Slusher, Barbara S

    2013-10-01

    Eribulin mesylate (E7389, INN:eribulin mesilate Halaven(®)) is a non-taxane microtubule dynamics inhibitor currently in clinical use for advanced breast cancer. Other microtubule-targeting agents for breast cancer, including paclitaxel and ixabepilone, display a common treatment dose-limiting toxicity of peripheral neuropathy (PN). In an earlier study, we found eribulin mesylate had a lower propensity to induce PN in mice than either paclitaxel or ixabepilone. In the current study, we compared additional PN induced by paclitaxel versus eribulin mesylate when administered to mice with preexisting paclitaxel-induced PN. Initially, paclitaxel at 0.75 × its maximum tolerated dose (MTD; 22.5 mg/kg) was given on a Q2Dx3 regimen for 2 weeks. The second chemotherapy was 0.5 MTD eribulin mesylate (0.875 mg/kg) or paclitaxel (15 mg/kg) on a similar regimen, starting 2 weeks after the first. Initial paclitaxel treatment produced significant decreases in caudal nerve conduction velocity (NCV; averaging 19.5 ± 1 and 22.2 ± 1.3 %, p < 0.001) and amplitude (averaging 53.2 ± 2.6 and 72.4 ± 2.1 %, p < 0.001) versus vehicle when measured 24 h or 2 weeks after dosing cessation, respectively. Additional 0.5 MTD paclitaxel further reduced caudal NCV and amplitude relative to immediately before initiation of the second regimen (by 11 ± 2.1 and 59.2 ± 5 %, p < 0.01, respectively). In contrast, 0.5 MTD eribulin mesylate caused no further decrease in caudal NCV. In conclusion, unlike additional paclitaxel treatment, eribulin mesylate administered to mice with preexisting paclitaxel-induced PN had limited additional deleterious effects at 6 weeks. These preclinical data suggest that eribulin mesylate may have reduced tendency to exacerbate preexisting paclitaxel-induced PN in clinical settings. PMID:23637052

  13. Effect of paclitaxel (TAXOL) alone and in combination with radiation on the gastrointestinal mucosa

    SciTech Connect

    Mason, K.A.; Milas, L.; Peters, L.J.

    1995-07-30

    Paclitaxel is a potentially useful drug for augmenting the cytotoxic action of radiotherapy because it has independent cytotoxic activity against certain cancers and blocks cells in the radiosensitive mitotic phase of the cell cycle. However, all rapidly proliferating tissues, both normal and neoplastic, may be affected by this therapeutic strategy. The aim of this study was to define the in vivo response of rapidly dividing cells of the small bowel mucosa in mice to paclitaxel given alone and in combination with radiation. Paclitaxel blocked jejunal crypt cells in mitosis and induced apoptosis in a dose-dependent manner. Fractionating the paclitaxel dose over 1-4 days did not result in any greater accumulation of mitotically blocked cells than did a single dose. Mitosis peaked 2-4 h after paclitaxel and returned to near normal by 24 h. Apoptosis lagged several hours behind mitosis and peaked about 6 h later than mitosis. Despite these kinetic perturbations, there was little or no enhancement of radiation effect when single doses were delivered 2-4 h after paclitaxel administration. The maximum sensitizer enhancement ratio of 1.07 observed after a single paclitaxel dose of 40 mg/kg is consistent with independent crypt cell killing. Conversely, when radiation was given 24 h after paclitaxel, a significant protective effect of the drug (SER 0.89-0.92), most probably due to a regenerative overshoot induced by paclitaxel, was observed. Stem cells of the jejunal mucosa determining radiation response were not radiosensitized by paclitaxel with the drug concentrations and dose deliver schedules used, although additive cytotoxicity was observed with the highest drug dose. A radioprotective effect was observed when radiation was given 24 h after paclitaxel administration. 33 refs., 4 figs., 3 tabs.

  14. Paclitaxel-resistant cells have a mutation in the paclitaxel-binding region of beta-tubulin (Asp26Glu) and less stable microtubules.

    PubMed

    Hari, Malathi; Loganzo, Frank; Annable, Tami; Tan, Xingzhi; Musto, Sylvia; Morilla, Daniel B; Nettles, James H; Snyder, James P; Greenberger, Lee M

    2006-02-01

    Resistance to paclitaxel-based therapy is frequently encountered in the clinic. The mechanisms of intrinsic or acquired paclitaxel resistance are not well understood. We sought to characterize the resistance mechanisms that develop upon chronic exposure of a cancer cell line to paclitaxel in the presence of the P-glycoprotein reversal agent, CL-347099. The epidermoid tumor line KB-3-1 was exposed to increasing concentrations of paclitaxel and 5 micromol/L CL-347099 for up to 1 year. Cells grown in 15 nmol/L paclitaxel plus CL-347099 (KB-15-PTX/099) developed 18-fold resistance to paclitaxel and were dependent upon paclitaxel for maximal growth. They grew well and retained resistance to paclitaxel when grown in athymic mice. Cross-resistance (3- to 5-fold) was observed in tissue culture to docetaxel, the novel taxane MAC-321, and epothilone B. Collateral sensitivity (approximately 3-fold) was observed to the depolymerizing agents vinblastine, dolastatin-10, and HTI-286. KB-15-PTX/099-resistant cells did not overexpress P-glycoprotein nor did they have an alteration of [14C]paclitaxel accumulation compared with parental cells. However, a novel point mutation (T to A) resulting in Asp26 to glutamate substitution in class I (M40) beta-tubulin was found. Based on an electron crystallography structure of Zn-stabilized tubulin sheets, the phenyl ring of C-3' NHCO-C6H5 of paclitaxel makes contact with Asp26 of beta-tubulin, suggesting a ligand-induced mutation. Optimized model complexes of paclitaxel, docetaxel, and MAC-321 in beta-tubulin show a novel hydrogen bonding pattern for the glutamate mutant and rationalize the observed resistance profiles. However, a mutation in the paclitaxel binding pocket does not explain the phenotype completely. KB-15-PTX/099 cells have impaired microtubule stability as determined by a reduced percentage of tubulin in microtubules and reflected by less acetylated tubulin. These results suggest that a mutation in tubulin might affect

  15. Effects of Jia-Wei-Xiao-Yao-San on the Peripheral and Lymphatic Pharmacokinetics of Paclitaxel in Rats

    PubMed Central

    Hou, Mei-Ling; Lu, Chia-Ming

    2016-01-01

    Paclitaxel is effective against breast cancer. The herbal medicine, Jia-Wei-Xiao-Yao-San (JWXYS), is the most frequent prescription used to relieve the symptoms of breast cancer treatments. The aim of the study was to investigate the herb-drug interaction effects of a herbal medicine on the distribution of paclitaxel to lymph. A validated ultraperformance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method was used to determine the paclitaxel levels in rat plasma and lymph after intravenous infusion of paclitaxel alone with or without 7 days of JWXYS pretreatment. The pharmacokinetic results indicate that paclitaxel concentrations in plasma exceeded those in lymph by approximately 3.6-fold. The biodistribution of paclitaxel from plasma to lymph was 39 ± 5%; however, this increased to 45 ± 4% with JWXYS pretreatment. With JWXYS pretreatment, the AUC and Cmax of paclitaxel in plasma were significantly reduced by approximately 1.5-fold, compared to paclitaxel alone. Additionally, JWXYS decreased the AUC and Cmax of paclitaxel in lymph. However, the lymph absorption rate of paclitaxel with or without JWXYS pretreatment was not significantly changed (27 ± 3 and 30 ± 2%, resp.). Our findings demonstrate that when paclitaxel is prescribed concurrently with herbal medicine, monitoring of the blood pharmacokinetics of paclitaxel is recommended. PMID:27057200

  16. nab-Paclitaxel in combination with biologically targeted agents for early and metastatic breast cancer.

    PubMed

    Megerdichian, Christine; Olimpiadi, Yuliya; Hurvitz, Sara A

    2014-06-01

    Taxanes are highly active chemotherapeutic agents used in the treatment of early-stage and metastatic breast cancer. Novel formulations have been developed to improve efficacy and decrease toxicity associated with these cytotoxic agents. nab-Paclitaxel is a biologically interactive, solvent-free, 130-nm-sized albumin-bound paclitaxel, developed to avoid the Cremophor vehicle used in solvent-based paclitaxel. Based on a pivotal phase 3 study, nab-paclitaxel was shown to be safely infused at a significantly higher dose of paclitaxel than the doses used with standard paclitaxel therapy, and had a shorter infusion time, no premedication, and higher response rates. It is now approved in the United States for treatment of breast cancer after failure of combination chemotherapy for metastatic disease or relapse within 6 months of adjuvant therapy, and has demonstrated promising efficacy and favorable tolerability. Recently, several phase 2 and 3 studies have suggested a role for nab-paclitaxel in combination with biologically targeted agents for the treatment of early- and late-stage breast cancer. This review will discuss the findings of clinical trials evaluating nab-paclitaxel in combination with biologically targeted therapeutic agents for breast cancer in the neoadjuvant, adjuvant, and metastatic settings. PMID:24560997

  17. TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer.

    PubMed

    Zhang, Song-Fa; Wang, Xin-Yu; Fu, Zhi-Qin; Peng, Qiao-Hua; Zhang, Jian-Yang; Ye, Feng; Fu, Yun-Feng; Zhou, Cai-Yun; Lu, Wei-Guo; Cheng, Xiao-Dong; Xie, Xing

    2015-01-01

    Paclitaxel is recommended as a first-line chemotherapeutic agent against ovarian cancer, but drug resistance becomes a major limitation of its success clinically. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Here, we showed that TXNDC17 screened from 356 differentially expressed proteins by LC-MS/MS label-free quantitative proteomics was more highly expressed in paclitaxel-resistant ovarian cancer cells and tissues, and the high expression of TXNDC17 was associated with poorer prognostic factors and exhibited shortened survival in 157 ovarian cancer patients. Moreover, paclitaxel exposure induced upregulation of TXNDC17 and BECN1 expression, increase of autophagosome formation, and autophagic flux that conferred cytoprotection for ovarian cancer cells from paclitaxel. TXNDC17 inhibition by siRNA or enforced overexpression by a pcDNA3.1(+)-TXNDC17 plasmid correspondingly decreased or increased the autophagy response and paclitaxel resistance. Additionally, the downregulation of BECN1 by siRNA attenuated the activation of autophagy and cytoprotection from paclitaxel induced by TXNDC17 overexpression in ovarian cancer cells. Thus, our findings suggest that TXNDC17, through participation of BECN1, induces autophagy and consequently results in paclitaxel resistance in ovarian cancer. TXNDC17 may be a potential predictor or target in ovarian cancer therapeutics. PMID:25607466

  18. Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish

    PubMed Central

    Lisse, Thomas S.; Middleton, Leah J.; Pellegrini, Adriana D.; Martin, Paige B.; Spaulding, Emily L.; Lopes, Olivia; Brochu, Elizabeth A.; Carter, Erin V.; Waldron, Ashley; Rieger, Sandra

    2016-01-01

    Paclitaxel is a microtubule-stabilizing chemotherapeutic agent that is widely used in cancer treatment and in a number of curative and palliative regimens. Despite its beneficial effects on cancer, paclitaxel also damages healthy tissues, most prominently the peripheral sensory nervous system. The mechanisms leading to paclitaxel-induced peripheral neuropathy remain elusive, and therapies that prevent or alleviate this condition are not available. We established a zebrafish in vivo model to study the underlying mechanisms and to identify pharmacological agents that may be developed into therapeutics. Both adult and larval zebrafish displayed signs of paclitaxel neurotoxicity, including sensory axon degeneration and the loss of touch response in the distal caudal fin. Intriguingly, studies in zebrafish larvae showed that paclitaxel rapidly promotes epithelial damage and decreased mechanical stress resistance of the skin before induction of axon degeneration. Moreover, injured paclitaxel-treated zebrafish skin and scratch-wounded human keratinocytes (HEK001) display reduced healing capacity. Epithelial damage correlated with rapid accumulation of fluorescein-conjugated paclitaxel in epidermal basal keratinocytes, but not axons, and up-regulation of matrix-metalloproteinase 13 (MMP-13, collagenase 3) in the skin. Pharmacological inhibition of MMP-13, in contrast, largely rescued paclitaxel-induced epithelial damage and neurotoxicity, whereas MMP-13 overexpression in zebrafish embryos rendered the skin vulnerable to injury under mechanical stress conditions. Thus, our studies provide evidence that the epidermis plays a critical role in this condition, and we provide a previously unidentified candidate for therapeutic interventions. PMID:27035978

  19. TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer

    PubMed Central

    Zhang, Song-Fa; Wang, Xin-Yu; Fu, Zhi-Qin; Peng, Qiao-Hua; Zhang, Jian-Yang; Ye, Feng; Fu, Yun-Feng; Zhou, Cai-Yun; Lu, Wei-Guo; Cheng, Xiao-Dong; Xie, Xing

    2015-01-01

    Paclitaxel is recommended as a first-line chemotherapeutic agent against ovarian cancer, but drug resistance becomes a major limitation of its success clinically. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Here, we showed that TXNDC17 screened from 356 differentially expressed proteins by LC-MS/MS label-free quantitative proteomics was more highly expressed in paclitaxel-resistant ovarian cancer cells and tissues, and the high expression of TXNDC17 was associated with poorer prognostic factors and exhibited shortened survival in 157 ovarian cancer patients. Moreover, paclitaxel exposure induced upregulation of TXNDC17 and BECN1 expression, increase of autophagosome formation, and autophagic flux that conferred cytoprotection for ovarian cancer cells from paclitaxel. TXNDC17 inhibition by siRNA or enforced overexpression by a pcDNA3.1(+)-TXNDC17 plasmid correspondingly decreased or increased the autophagy response and paclitaxel resistance. Additionally, the downregulation of BECN1 by siRNA attenuated the activation of autophagy and cytoprotection from paclitaxel induced by TXNDC17 overexpression in ovarian cancer cells. Thus, our findings suggest that TXNDC17, through participation of BECN1, induces autophagy and consequently results in paclitaxel resistance in ovarian cancer. TXNDC17 may be a potential predictor or target in ovarian cancer therapeutics. PMID:25607466

  20. Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish.

    PubMed

    Lisse, Thomas S; Middleton, Leah J; Pellegrini, Adriana D; Martin, Paige B; Spaulding, Emily L; Lopes, Olivia; Brochu, Elizabeth A; Carter, Erin V; Waldron, Ashley; Rieger, Sandra

    2016-04-12

    Paclitaxel is a microtubule-stabilizing chemotherapeutic agent that is widely used in cancer treatment and in a number of curative and palliative regimens. Despite its beneficial effects on cancer, paclitaxel also damages healthy tissues, most prominently the peripheral sensory nervous system. The mechanisms leading to paclitaxel-induced peripheral neuropathy remain elusive, and therapies that prevent or alleviate this condition are not available. We established a zebrafish in vivo model to study the underlying mechanisms and to identify pharmacological agents that may be developed into therapeutics. Both adult and larval zebrafish displayed signs of paclitaxel neurotoxicity, including sensory axon degeneration and the loss of touch response in the distal caudal fin. Intriguingly, studies in zebrafish larvae showed that paclitaxel rapidly promotes epithelial damage and decreased mechanical stress resistance of the skin before induction of axon degeneration. Moreover, injured paclitaxel-treated zebrafish skin and scratch-wounded human keratinocytes (HEK001) display reduced healing capacity. Epithelial damage correlated with rapid accumulation of fluorescein-conjugated paclitaxel in epidermal basal keratinocytes, but not axons, and up-regulation of matrix-metalloproteinase 13 (MMP-13, collagenase 3) in the skin. Pharmacological inhibition of MMP-13, in contrast, largely rescued paclitaxel-induced epithelial damage and neurotoxicity, whereas MMP-13 overexpression in zebrafish embryos rendered the skin vulnerable to injury under mechanical stress conditions. Thus, our studies provide evidence that the epidermis plays a critical role in this condition, and we provide a previously unidentified candidate for therapeutic interventions. PMID:27035978

  1. Atomized paclitaxel liposome inhalation treatment of bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Zhou, Y; Zhu, W P; Cai, X J; Chen, M

    2016-01-01

    We sought to determine the efficacy of atomized paclitaxel liposome inhalation treatment of pulmonary fibrosis in a bleomycin-induced rat model. Forty male Sprague-Dawley rats were randomly divided into four groups: healthy control, pulmonary fibrosis without treatment, paclitaxel liposome inhalation-treated, and intravenous paclitaxel liposome-treated. Fibrosis was induced by bleomycin injection. A total of 20 mg/kg paclitaxel liposome was administered by inhalation every other day for a total of 10 doses. The intravenous group received 5 mg/kg paclitaxel liposome on days 1, 7, 14, and 21. We observed the general condition, weight change, survival index, and pathological changes in the lung tissue of the rats. Quantitative analysis of collagen types I and III and transforming growth factor (TGF)-β1 expression in the lungs was also performed. The paclitaxel liposome inhalation and intravenous delivery methods improved survival index and pulmonary fibrosis Ashcroft score, and decreased the thickness of the alveolar interval. No obvious difference was found between the two groups. Compared with the untreated group, paclitaxel liposome inhalation and intravenous injection significantly reduced the levels of collagen types I and III and TGF-β1 expression equally. In conclusion, atomized paclitaxel liposome inhalation protects against severe pulmonary fibrosis in a bleomycin-induced rat model. This delivery method has less systemic side effects and increased safety over intravenous injection. PMID:27173212

  2. MiR-125a promotes paclitaxel sensitivity in cervical cancer through altering STAT3 expression.

    PubMed

    Fan, Z; Cui, H; Yu, H; Ji, Q; Kang, L; Han, B; Wang, J; Dong, Q; Li, Y; Yan, Z; Yan, X; Zhang, X; Lin, Z; Hu, Y; Jiao, S

    2016-01-01

    Cervical cancer (CC) is one of the most common malignancies in women. Paclitaxel is the front-line chemotherapeutic agent for treating CC. However, its therapeutic efficacy is limited because of chemoresistance, the mechanism of which remains poorly understood. Here, we used microRNA (miRNA) arrays to compare miRNA expression levels in the CC cell lines, HeLa and CaSki, with their paclitaxel resistance counterparts, HeLa/PR and CaSki/PR. We demonstrate that miR-125a was one of most significantly downregulated miRNAs in paclitaxel-resistant cells, which also acquired cisplatin resistance. And that the upregulation of miR-125a sensitized HeLa/PR and CaSki/PR cells to paclitaxel both in vitro and in vivo and to cisplatin in vitro. Moreover, we determined that miR-125a increased paclitaxel and cisplatin sensitivity by downregulating STAT3. MiR-125a enhanced paclitaxel and cisplatin sensitivity by promoting chemotherapy-induced apoptosis. Clinically, miR-125a expression was associated with an increased responsiveness to paclitaxel combined with cisplatin and a more favorable outcome. These data indicate that miR-125a may be a useful method to enable treatment of chemoresistant CC and may also provide a biomarker for predicting paclitaxel and cisplatin responsiveness in CC. PMID:26878391

  3. Tumor-selective peptide-carrier delivery of Paclitaxel increases in vivo activity of the drug

    PubMed Central

    Brunetti, Jlenia; Pillozzi, Serena; Falciani, Chiara; Depau, Lorenzo; Tenori, Eleonora; Scali, Silvia; Lozzi, Luisa; Pini, Alessandro; Arcangeli, Annarosa; Menichetti, Stefano; Bracci, Luisa

    2015-01-01

    Taxanes are highly effective chemotherapeutic drugs against proliferating cancer and an established option in the standard treatment of ovarian and breast cancer. However, treatment with paclitaxel is associated with severe side effects, including sensory axonal neuropathy, and its poor solubility in water complicates its formulation. In this paper we report the in vitro and in vivo activity of a new form of paclitaxel, modified for conjugation with a tumor-selective tetrabranched peptide carrier (NT4). NT4 selectively targets tumor cells by binding to membrane sulfated glycosaminoglycans (GAG) and to endocytic receptors, like LRP1 and LRP6, which are established tumor markers. Biological activity of NT4-paclitaxel was tested in vitro on MDA-MB 231 and SKOV-3 cell lines, representing breast and ovarian cancer, respectively, and in vivo in an orthotopic mouse model of human breast cancer. Using in vivo bioluminescence imaging, we found that conjugation of paclitaxel with the NT4 peptide led to increased therapeutic activity of the drug in vivo. NT4-paclitaxel induced tumor regression, whereas treatment with unconjugated paclitaxel only produced a reduction in tumor growth. Moreover, unlike paclitaxel, NT4-paclitaxel is very hydrophilic, which may improve its pharmacokinetic profile and allow the use of less toxic dilution buffers, further decreasing its general chemotherapic toxicity. PMID:26626158

  4. Proliferation, migration and invasion of human glioma cells exposed to paclitaxel (Taxol) in vitro.

    PubMed Central

    Terzis, A. J.; Thorsen, F.; Heese, O.; Visted, T.; Bjerkvig, R.; Dahl, O.; Arnold, H.; Gundersen, G.

    1997-01-01

    Paclitaxel (Taxol), an anti-cancer drug derived from Taxus species, was tested for its anti-migrational, anti-invasive and anti-proliferative effect on two human glioma cell lines (GaMg and D-54Mg) grown as multicellular tumour spheroids. In addition, the direct effect of paclitaxel on glioma cells was studied using flow cytometry and scanning confocal microscopy. Both cell lines showed a dose-dependent growth and migratory response to paclitaxel. The GaMg cells were found to be 5-10 times more sensitive to paclitaxel than D-54Mg cells. Paclitaxel also proved to be remarkably effective in preventing invasion in a co-culture system in which tumour spheroids were confronted with fetal rat brain cell aggregates. Control experiments with Cremophor EL (the solvent of paclitaxel for clinical use) in this study showed no effect on tumour cell migration, cell proliferation or cell invasion. Scanning confocal microscopy of both cell lines showed an extensive random organization of the microtubules in the cytoplasm. After paclitaxel exposure, the GaMg and the D-54Mg cells exhibited a fragmentation of the nuclear material, indicating a possible induction of apoptosis. In line with this, flow cytometric DNA histograms showed an accumulation of cells in the G2/M phase of the cell cycle after 24 h of paclitaxel exposure. After 48 h, a deterioration of the DNA histograms was observed indicating nuclear fragmentation. Images Figure 3 Figure 6 PMID:9192976

  5. Pharmacological Modulation of the Mitochondrial Electron Transport Chain in Paclitaxel-Induced Painful Peripheral Neuropathy

    PubMed Central

    Griffiths, Lisa A.; Flatters, Sarah J.L.

    2015-01-01

    Paclitaxel is an effective first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Mitochondrial dysfunction and oxidative stress have been implicated in paclitaxel-induced painful neuropathy. Here we show the effects of pharmacological modulation of mitochondrial sites that produce reactive oxygen species using systemic rotenone (complex I inhibitor) or antimycin A (complex III inhibitor) on the maintenance and development of paclitaxel-induced mechanical hypersensitivity in adult male Sprague Dawley rats. The maximally tolerated dose (5 mg/kg) of rotenone inhibited established paclitaxel-induced mechanical hypersensitivity. However, some of these inhibitory effects coincided with decreased motor coordination; 3 mg/kg rotenone also significantly attenuated established paclitaxel-induced mechanical hypersensitivity without any motor impairment. The maximally tolerated dose (.6 mg/kg) of antimycin A reversed established paclitaxel-induced mechanical hypersensitivity without any motor impairment. Seven daily doses of systemic rotenone or antimycin A were given either after paclitaxel administration or before and during paclitaxel administration. Rotenone had no significant effect on the development of paclitaxel-induced mechanical hypersensitivity. However, antimycin A significantly inhibited the development of paclitaxel-induced mechanical hypersensitivity when given before and during paclitaxel administration but had no effect when given after paclitaxel administration. These studies provide further evidence of paclitaxel-evoked mitochondrial dysfunction in vivo, suggesting that complex III activity is instrumental in paclitaxel-induced pain. Perspective This study provides further in vivo evidence that mitochondrial dysfunction is a key contributor to the development and maintenance of chemotherapy-induced painful neuropathy. This work also indicates that selective modulation of the electron transport chain can induce

  6. Apoptosis induced by paclitaxel-loaded copolymer PLA–TPGS in Hep-G2 cells

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai Nam; Tran Thi, Hong Ha; Le Quang, Duong; Nguyen Thi, Toan; Tran Thi, Nhu Hang; Huong Le, Mai; Thu Ha, Phuong

    2012-12-01

    Paclitaxel is an important anticancer drug in clinical use for treatment of a variety of cancers. The clinical application of paclitaxel in cancer treatment is considerably limited due to its serious poor delivery characteristics. In this study paclitaxel-loaded copolymer poly(lactide)–d-α-tocopheryl polyethylene glycol 1000 succinate (PLA–TPGS) nanoparticles were prepared by a modified solvent extraction/evaporation technique. The characteristics of the nanoparticles, such as surface morphology, size distribution, zeta potential, solubility and apoptosis were investigated in vitro. The obtained spherical nanoparticles were negatively charged with a zeta potential of about ‑18 mV with the size around 44 nm and a narrow size distribution. The ability of paclitaxel-loaded PLA–TPGS nanoparticles to induce apoptosis in human hepatocellular carcinoma cell line (Hep-G2) indicates the possibility of developing paclitaxel nanoparticles as a potential universal cancer chemotherapeutic agent.

  7. In vitro and in vivo targeting effect of folate decorated paclitaxel loaded PLA–TPGS nanoparticles

    PubMed Central

    Thu, Ha Phuong; Nam, Nguyen Hoai; Quang, Bui Thuc; Son, Ho Anh; Toan, Nguyen Linh; Quang, Duong Tuan

    2015-01-01

    Paclitaxel is one of the most effective chemotherapeutic agents for treating various types of cancer. However, the clinical application of paclitaxel in cancer treatment is considerably limited due to its poor water solubility and low therapeutic index. Thus, it requires an urgent solution to improve therapeutic efficacy of paclitaxel. In this study, folate decorated paclitaxel loaded PLA–TPGS nanoparticles were prepared by a modified emulsification/solvent evaporation method. The obtained nanoparticles were characterized by Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared (FTIR) and Dynamic Light Scattering (DLS) method. The spherical nanoparticles were around 50 nm in size with a narrow size distribution. Targeting effect of nanoparticles was investigated in vitro on cancer cell line and in vivo on tumor bearing nude mouse. The results indicated the effective targeting of folate decorated paclitaxel loaded copolymer nanoparticles on cancer cells both in vitro and in vivo. PMID:26702264

  8. Microbial degradation of Paclitaxel using Citrobacter amalonaticus Rashtia isolated from pharmaceutical wastewater: kinetic and thermodynamic study.

    PubMed

    Zamani, Hojjatolah; Grakoee, Seyed Reza; Rakhshaee, Roohan

    2016-08-01

    Paclitaxel is a highly toxic anticancer agent which is used in a wide range against ovarian, breast, lung, and prostate cancers. Paclitaxel is manufactured recently in the north of Iran which may lead to the introduction of the drug into the environment via pharmaceutical wastewater. To our knowledge, Paclitaxel degradation is currently performed using physicochemical methods and biological degradation of Paclitaxel has not been reported. In this study, a Paclitaxel degrading bacterium was isolated from pharmaceutical wastewater for the first time. The bacterium was identified using biochemical and molecular assays and its Paclitaxel degradation potential was evaluated using High Performance Liquid Chromatography (HPLC). In addition, kinetic and thermodynamic study of Paclitaxel degradation at different experimental conditions was performed. A Citrobacter species named as C. amalonaticus Rashtia able to degrade and utilize Paclitaxel as the sole carbon source was isolated. The isolated strain tolerated high level concentration of Paclitaxel (0.4 mg/mL) in liquid culture media and was able to degrade spillage-level concentrations of the drug (0.01-0.1 mg/mL) with 87-93 % efficacy under aerobic condition. Kinetic and thermodynamic study at different pHs (4.0, 7.0 and 10.0) and temperatures (285, 295 and 310 K) revealed that Paclitaxel degradation is a non-spontaneous process and the highest rate constant was observed in the basic condition and at the highest temperature. The ΔG values at 285, 295 and 310 K were determined 103.3, 105.9 and 109.9 kJ/mol, respectively. In addition, The ΔH and activation energy (Ea) of the process were determined +28.7 kJ/mol and +30.87 kJ/mol, respectively. PMID:27339310

  9. Global inhibition of reactive oxygen species (ROS) inhibits paclitaxel-induced painful peripheral neuropathy.

    PubMed

    Fidanboylu, Mehmet; Griffiths, Lisa A; Flatters, Sarah J L

    2011-01-01

    Paclitaxel (Taxol®) is a widely used chemotherapeutic agent that has a major dose limiting side-effect of painful peripheral neuropathy. Currently there is no effective therapy for the prevention or treatment of chemotherapy-induced painful peripheral neuropathies. Evidence for mitochondrial dysfunction during paclitaxel-induced pain was previously indicated with the presence of swollen and vacuolated neuronal mitochondria. As mitochondria are a major source of reactive oxygen species (ROS), the aim of this study was to examine whether pharmacological inhibition of ROS could reverse established paclitaxel-induced pain or prevent the development of paclitaxel-induced pain. Using a rat model of paclitaxel-induced pain (intraperitoneal 2 mg/kg paclitaxel on days 0, 2, 4 & 6), the effects of a non-specific ROS scavenger, N-tert-Butyl-α-phenylnitrone (PBN) and a superoxide selective scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) were compared. Systemic 100 mg/kg PBN administration markedly inhibited established paclitaxel-induced mechanical hypersensitivity to von Frey 8 g and 15 g stimulation and cold hypersensitivity to plantar acetone application. Daily systemic administration of 50 mg/kg PBN (days -1 to 13) completely prevented mechanical hypersensitivity to von Frey 4 g and 8 g stimulation and significantly attenuated mechanical hypersensitivity to von Frey 15 g. Systemic 100 mg/kg TEMPOL had no effect on established paclitaxel-induced mechanical or cold hypersensitivity. High dose (250 mg/kg) systemic TEMPOL significantly inhibited mechanical hypersensitivity to von Frey 8 g & 15 g, but to a lesser extent than PBN. Daily systemic administration of 100 mg/kg TEMPOL (day -1 to 12) did not affect the development of paclitaxel-induced mechanical hypersensitivity. These data suggest that ROS play a causal role in the development and maintenance of paclitaxel-induced pain, but such effects cannot be attributed to superoxide radicals alone. PMID

  10. Nab-paclitaxel as alternative treatment regimen in advanced cholangiocellular carcinoma

    PubMed Central

    Unseld, Matthias; Scheithauer, Werner; Weigl, Roman; Kornek, Gabriela; Stranzl, Nadja; Bianconi, Daniela; Brunauer, Georg; Steger, Guenther; Zielinski, Christoph C.

    2016-01-01

    Background Advanced cholangiocellular carcinoma has a poor prognosis with limited therapeutic options. Nab-paclitaxel has recently been described to be beneficial in metastatic pancreatic cancer improving overall and progression free survival (PFS). The potential antitumor activity of nab-paclitaxel in cholangiocellular carcinoma is hitherto unknown. Methods We retrospectively analyzed an institutional cholangiocellular carcinoma registry to determine the potential biological activity of nab-paclitaxel in advanced intrahepatic cholangiocellular carcinoma. Disease control rate (DCR), PFS and overall survival (OS) upon nab-paclitaxel based treatment, after failure of platinum-containing first-line combination chemotherapy, was assessed. Results Twelve patients were identified. Five of 12 patients (42%) received nab-paclitaxel as second line, and 7 patients (56%) as third-line treatment. The objective DCR with nab-paclitaxel was 83% (10/12 patients). One patient had a complete remission (CR), two patients had a partial remission (PR) and 7 patients had stable disease (SD). Disease was rated progressive in two patients. In all 12 patients receiving nab-paclitaxel the median time to progression was 6 months (range, 2.1–19.5 months). Median OS after initiation of nab-paclitaxel treatment was 9 months (2.1–28.4 months). The median time of survival after diagnosis of advanced disease was 21.5 months, whereby 3 patients were alive at the date of censoring (04/01/2015). Conclusions This is the first report suggesting substantial antitumor activity of nab-paclitaxel in advanced cholangiocellular carcinoma. In this small series, nab-paclitaxel based salvage chemotherapy appears to have a biological activity by controlling the disease and positively affecting survival. Randomized trials in this disease entity and subgroup of patients are urged. PMID:27563449

  11. Anti-tumor efficacy of paclitaxel against human lung cancer xenografts.

    PubMed

    Yamori, T; Sato, S; Chikazawa, H; Kadota, T

    1997-12-01

    We examined paclitaxel for anti-tumor activity against human lung cancer xenografts in nude mice and compared its efficacy with that of cisplatin, currently a key drug for lung cancer chemotherapy. Five non-small cell lung cancers (A549, NCI-H23, NCI-H226, NCI-H460 and NCI-H522) and 2 small cell lung cancers (DMS114 and DMS273) were chosen for this study, since these cell lines have been well characterized as regards in vitro and in vivo drug sensitivity. These cells were exposed to graded concentrations of paclitaxel (0.1 to 1000 nM) for 48 h. The 50% growth-inhibitory concentrations (GI50) for the cell lines ranged from 4 to 24 nM, which are much lower than the achievable peak plasma concentration of paclitaxel. In the in vivo study, 4 cell lines (A549, NCI-H23, NCI-H460, DMS-273) were grown as subcutaneous tumors xenografts in nude mice. Paclitaxel was given intravenously as consecutive daily injections for 5 days at the doses of 24 and 12 mg/kg/day. Against every xenograft, paclitaxel produced a statistically significant tumor growth inhibition compared to the saline control. Paclitaxel at 24 mg/kg/day was more effective than cisplatin at 3 mg/kg/day with the same dosing schedule as above, although the toxicity of paclitaxel was similar to or rather lower than that of cisplatin, in terms of body weight loss. In addition, paclitaxel showed potent activity against 2 other lung cancer xenografts (NCI-H226 and DMS114). Therefore, paclitaxel showed more effective, wider-spectrum anti-tumor activity than cisplatin in this panel of 6 lung cancer xenografts. These findings support the potential utility of paclitaxel in the treatment of human lung cancer. PMID:9473739

  12. Global Inhibition of Reactive Oxygen Species (ROS) Inhibits Paclitaxel-Induced Painful Peripheral Neuropathy

    PubMed Central

    Fidanboylu, Mehmet; Griffiths, Lisa A.; Flatters, Sarah J. L.

    2011-01-01

    Paclitaxel (Taxol®) is a widely used chemotherapeutic agent that has a major dose limiting side-effect of painful peripheral neuropathy. Currently there is no effective therapy for the prevention or treatment of chemotherapy-induced painful peripheral neuropathies. Evidence for mitochondrial dysfunction during paclitaxel-induced pain was previously indicated with the presence of swollen and vacuolated neuronal mitochondria. As mitochondria are a major source of reactive oxygen species (ROS), the aim of this study was to examine whether pharmacological inhibition of ROS could reverse established paclitaxel-induced pain or prevent the development of paclitaxel-induced pain. Using a rat model of paclitaxel-induced pain (intraperitoneal 2 mg/kg paclitaxel on days 0, 2, 4 & 6), the effects of a non-specific ROS scavenger, N-tert-Butyl-α-phenylnitrone (PBN) and a superoxide selective scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) were compared. Systemic 100 mg/kg PBN administration markedly inhibited established paclitaxel-induced mechanical hypersensitivity to von Frey 8 g and 15 g stimulation and cold hypersensitivity to plantar acetone application. Daily systemic administration of 50 mg/kg PBN (days −1 to 13) completely prevented mechanical hypersensitivity to von Frey 4 g and 8 g stimulation and significantly attenuated mechanical hypersensitivity to von Frey 15 g. Systemic 100 mg/kg TEMPOL had no effect on established paclitaxel-induced mechanical or cold hypersensitivity. High dose (250 mg/kg) systemic TEMPOL significantly inhibited mechanical hypersensitivity to von Frey 8 g & 15 g, but to a lesser extent than PBN. Daily systemic administration of 100 mg/kg TEMPOL (day −1 to 12) did not affect the development of paclitaxel-induced mechanical hypersensitivity. These data suggest that ROS play a causal role in the development and maintenance of paclitaxel-induced pain, but such effects cannot be attributed to superoxide radicals alone. PMID

  13. Design, synthesis, and evaluation of water-soluble morpholino-decorated paclitaxel prodrugs with remarkably decreased toxicity.

    PubMed

    Feng, Siliang; Chen, Kuncheng; Wang, Chenhong; Jiang, Xifeng; Dong, Huajin; Gong, Zehui; Liu, Keliang

    2016-08-01

    Novel water-soluble paclitaxel prodrugs were designed and synthesized by introducing morpholino groups through different linkers. These derivatives showed 400-20,000-times greater water solubility than paclitaxel as well as comparable activity in MCF-7 and HeLa cell lines. The prodrug PM4 was tested in the S-180 tumor mouse model, with paclitaxel as the positive control. The results showed that PM4 had comparable antitumor activity as paclitaxel, with tumor inhibition of 54% versus 56%, and remarkably decreased toxicity. The survival rate of treated mice was 8/8 in the PM4 group, compared to 3/8 in the paclitaxel group. PMID:27311893

  14. Gemcitabine plus paclitaxel versus carboplatin plus either gemcitabine or paclitaxel in advanced non-small-cell lung cancer: a literature-based meta-analysis.

    PubMed

    Li, Chenguang; Sun, Yihua; Pan, Yunjian; Wang, Qifeng; Yang, Shu; Chen, Haiquan

    2010-10-01

    The combination of gemcitabine plus paclitaxel has been proposed as an alternative to the platinum-based combinations for treatment of advanced non-small-cell lung cancer (NSCLC). However, conflicting results have been reported. This meta-analysis was performed to compare the activity, efficacy, and toxicity of gemcitabine plus paclitaxel versus carboplatin plus either gemcitabine or paclitaxel in patients with untreated advanced NSCLC. Randomized phase II and phase III clinical trials comparing gemcitabine plus paclitaxel with carboplatin plus gemcitabine or paclitaxel were collected from electronic databases (Medline, EMBASE, and the Cochrane Central Register of Controlled Trials), relevant reference lists, and abstract books. The published languages and years were not limited. Pooled odds ratios (ORs) were calculated for the 1-year survival rate (1-year SR), the overall response rate (ORR), and grade 3 and grade 4 toxicities. Four randomized controlled trials (2186 patients) were identified from 2051 reports. They were all published as full-text articles. No significant heterogeneity was detected in these studies. A significant difference in ORR favoring gemcitabine plus paclitaxel over carboplatin-based doublets was observed [OR = 1.20; 95% confidence interval (95% CI) = 1.02-1.42; P = 0.03], whereas the trend toward an improved 1-year SR was not significant (OR = 1.07; 95% CI = 0.91-1.26; P = 0.41). An increased risk of grade 3-4 toxicities for patients receiving carboplatin-based chemotherapy was statistically demonstrated. The gemcitabine plus paclitaxel combination showed an improved ORR and a better toxicity profile but a similar 1-year SR compared to carboplatin-based doublets. For nonplatinum-based chemotherapy, gemcitabine plus paclitaxel is a useful alternative. PMID:20703493

  15. Tolerance of weekly metronomic paclitaxel and carboplatin as neoadjuvant chemotherapy in advanced ovarian cancer patients who are unlikely to tolerate 3 weekly paclitaxel and carboplatin

    PubMed Central

    Dessai, S. B.; Chakraborty, S.; Babu, T. V. S.; Nayanar, S.; Bhattacharjee, A.; Jones, J.; Balasubramanian, S.; Patil, Vijay M.

    2016-01-01

    Objective: There are little data regarding safety and effectiveness of neoadjuvant chemotherapy (NACT) in patients who are considered unfit for receiving 3 weekly paclitaxel and carboplatin. The aim of this study was to examine the toxicity and response rates of weekly paclitaxel and carboplatin as NACT in such cohort of patients. Methods: Study population included advanced ovarian cancer patients who were unlikely to tolerate 3 weekly paclitaxel and carboplatin and hence received weekly paclitaxel (80 mg/m2) and carboplatin AUC-2 as NACT. The data regarding the baseline characteristics, chemotherapy tolerance, completion rates, toxicity (Common Terminology Criteria for Adverse Events version 4.02), and radiological response rates are presented. SPSS version 16 was used for analysis. Descriptive statistics is presented. Results: Eleven patients received this schedule. Nine patients completed nine cycles of NACT. Except one, all patients completed NACT with an average relative dose intensity of >0.8. There was no chemotherapy-related mortality. Grade 3–4 life-threatening complications were seen in two patients. The post NACT response rate was 100%. Conclusions: Weekly paclitaxel and carboplatin chemotherapy is safe and efficacious in patients who are unsuitable for 3 weekly paclitaxel and carboplatin chemotherapy schedules. PMID:27275450

  16. An effective and more convenient drug regimen for prophylaxis against paclitaxel-associated hypersensitivity reactions.

    PubMed

    Markman, M; Kennedy, A; Webster, K; Peterson, G; Kulp, B; Belinson, J

    1999-07-01

    "Standard" prophylaxis for paclitaxel-associated hypersensitivity reactions has included the systemic administration of H1 and H2 histamine antagonists, along with oral dexamethasone taken both the night prior to, and the morning of, each paclitaxel treatment. To improve patient convenience and compliance with steroid delivery, the Gynecologic Cancer Program of the Cleveland Clinic Foundation has treated patients with an all-intravenous prophylaxis regimen (diphenhydramine 50 mg, famotidine 20 mg, dexamethasone 20 mg) given 30 min prior to paclitaxel (without any earlier oral steroid dosing). To date, we have treated more than 200 patients who received all courses of paclitaxel with this simplified prophylactic regimen, of whom approximately 9% developed hypersensitivity reactions (major or minor). This incidence is comparable to our previously reported experience with hypersensitivity reactions in a similar number of patients receiving the standard prophylaxis (including oral dexamethasone) with their initial course of paclitaxel, and subsequent cycles employing this all-intravenous program. We conclude that this "modified" regimen for paclitaxel-associated hypersensitivity reactions (with all drugs administered approximately 30 min prior to the delivery of paclitaxel) is as effective as, and more convenient than, the standard regimen, and avoids delaying chemotherapy as a result of a patient failing to remember to take one or both oral steroid doses. PMID:10394964

  17. Development of New Lipid-Based Paclitaxel Nanoparticles Using Sequential Simplex Optimization

    PubMed Central

    Dong, Xiaowei; Mattingly, Cynthia A.; Tseng, Michael; Cho, Moo; Adams, Val R.; Mumper, Russell J.

    2008-01-01

    The objective of these studies was to develop Cremophor-free lipid-based paclitaxel (PX) nanoparticle formulations prepared from warm microemulsion precursors. To identify and optimize new nanoparticles, experimental design was performed combining Taguchi array and sequential simplex optimization. The combination of Taguchi array and sequential simplex optimization efficiently directed the design of paclitaxel nanoparticles. Two optimized paclitaxel nanoparticles (NPs) were obtained: G78 NPs composed of glyceryl tridodecanoate (GT) and polyoxyethylene 20-stearyl ether (Brij 78), and BTM NPs composed of Miglyol 812, Brij 78 and D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Both nanoparticles successfully entrapped paclitaxel at a final concentration of 150 μg/ml (over 6% drug loading) with particle sizes less than 200 nm and over 85% of entrapment efficiency. These novel paclitaxel nanoparticles were stable at 4°C over three months and in PBS at 37°C over 102 hours as measured by physical stability. Release of paclitaxel was slow and sustained without initial burst release. Cytotoxicity studies in MDA-MB-231 cancer cells showed that both nanoparticles have similar anticancer activities compared to Taxol®. Interestingly, PX BTM nanocapsules could be lyophilized without cryoprotectants. The lyophilized powder comprised only of PX BTM NPs in water could be rapidly rehydrated with complete retention of original physicochemical properties, in-vitro release properties, and cytotoxicity profile. Sequential Simplex Optimization has been utilized to identify promising new lipid-based paclitaxel nanoparticles having useful attributes. PMID:19111929

  18. Albumin-bound paclitaxel for the treatment of refractory or relapsed small-cell lung cancer

    PubMed Central

    YOSHIDA, HIRONORI; KIM, YOUNG HAK; OZASA, HIROAKI; NAGAI, HIROKI; SAKAMORI, YUICHI; NAKAOKU, TAKASHI; YAGI, YOSHITAKA; TSUJI, TAKAHIRO; NOMIZO, TAKASHI; MISHIMA, MICHIAKI

    2016-01-01

    Since nanoparticle albumin-bound (nab)-paclitaxel exerts clinically meaningful antitumor effects on various malignancies, including breast, gastric and non-small-cell lung cancer, we hypothesized that treatment with nab-paclitaxel may also be beneficial for patients with small-cell lung cancer (SCLC). We herein evaluated the safety and efficacy of weekly, single-agent nab-paclitaxel in patients with refractory or relapsed SCLC. Between May, 2013 and February, 2015, 9 patients with refractory or relapsed SCLC were treated with single-agent nab-paclitaxel at the Kyoto University Hospital. The medical records of the patients were retrospectively reviewed. All the patients had been previously treated with ≥2 lines of chemotherapy prior to receiving nab-paclitaxel. The median number of cycles of nab-paclitaxel was 2 (range, 1–4) and 3 partial responses were observed (response rate: 33%). The toxicity was generally mild and manageable: Grade 3/4 adverse events were only observed in 1 patient (grade 3 leukopenia). Thus, weekly administration of nab-paclitaxel may be a viable treatment option in patients with refractory or relapsed SCLC. Considering that treatment options are quite limited in this patient population, further evaluation of this regimen may prove valuable in the clinical setting. PMID:27330801

  19. Microtubule-associated protein tau: A marker of paclitaxel sensitivity in breast cancer

    PubMed Central

    Rouzier, Roman; Rajan, Radhika; Wagner, Peter; Hess, Kenneth R.; Gold, David L.; Stec, James; Ayers, Mark; Ross, Jeffrey S.; Zhang, Peter; Buchholz, Thomas A.; Kuerer, Henry; Green, Marjorie; Arun, Banu; Hortobagyi, Gabriel N.; Symmans, W. Fraser; Pusztai, Lajos

    2005-01-01

    Breast cancers show variable sensitivity to paclitaxel. There is no diagnostic test to identify tumors that are sensitive to this drug. We used U133A chips to identify genes that are associated with pathologic complete response (pCR) to preoperative paclitaxel-containing chemotherapy in stage I-III breast cancer (n = 82). Tau was the most differentially expressed gene. Tumors with pCR had significantly lower (P < 0.3 × 10-5) mRNA expression. Tissue arrays from 122 independent but similarly treated patients were used for validation by immunohistochemistry. Seventy-four percent of pCR cases were tau protein negative; the odds ratio for pCR was 3.7 (95% confidence interval, 1.6-8.6; P = 0.0013). In multivariate analysis, nuclear grade (P < 0.01), age <50 (P = 0.03), and tau-negative status (P = 0.04) were independent predictors of pCR. Small interfering RNA experiments were performed to examine whether down-regulation of tau increases sensitivity to chemotherapy in vitro. Down-regulation of tau increased sensitivity of breast cancer cells to paclitaxel but not to epirubicin. Tubulin polymerization assay was used to assess whether tau modulates binding of paclitaxel to tubulin. Preincubation of tubulin with tau resulted in decreased paclitaxel binding and reduced paclitaxel-induced microtubule polymerization. These data suggest that low tau expression renders microtubules more vulnerable to paclitaxel and makes breast cancer cells hypersensitive to this drug. Low tau expression may be used as a marker to select patients for paclitaxel therapy. Inhibition of tau function might be exploited as a therapeutic strategy to increase sensitivity to paclitaxel. PMID:15914550

  20. A Review of Paclitaxel and Novel Formulations Including Those Suitable for Use in Dogs.

    PubMed

    Khanna, C; Rosenberg, M; Vail, D M

    2015-01-01

    Paclitaxel is a commonly used chemotherapeutic agent with a broad spectrum of activity against cancers in humans. In 1992, paclitaxel was approved by the U.S. Food and Drug Administration (FDA) as Taxol(®) for use in advanced ovarian cancer. Two years later, it was approved for the treatment of metastatic breast cancer. Paclitaxel was originally isolated from the bark of the Pacific yew tree, Taxus brevifolia in 1971. Taxanes are a family of microtubule inhibitors. As a member of this family, paclitaxel suppresses spindle microtubule dynamics. This activity results in the blockage of the metaphase-anaphase transitions, and ultimately in the inhibition of mitosis, and induction of apoptosis in a wide spectrum of cancer cells. Additional anticancer activities of paclitaxel have been defined that are independent of these effects on the microtubules and may include the suppression of cell proliferation as well as antiangiogenic effects. Based on its targeting of a fundamental feature of the cancer phenotype, the mitotic complex, it is not surprising that paclitaxel has been found to be active in a wide variety of cancers in humans. This review summarizes the evidence in support of paclitaxel's broad anticancer activity and introduces the rationale for, and the progress in development of novel formulations of paclitaxel that may preferentially target cancers and that are not associated with the risks for hypersensitivity in dogs. Of note, a novel nanoparticle formulation of paclitaxel that substantially limits hypersensitivity was recently given conditional approval by the FDA Center for Veterinary Medicine for use in dogs with resectable and nonresectable squamous cell carcinoma and nonresectable stage III, IV and V mammary carcinoma. PMID:26179168

  1. Prostate cancer cell response to paclitaxel is affected by abnormally expressed securin PTTG1.

    PubMed

    Castilla, Carolina; Flores, M Luz; Medina, Rafael; Pérez-Valderrama, Begoña; Romero, Francisco; Tortolero, María; Japón, Miguel A; Sáez, Carmen

    2014-10-01

    PTTG1 protein, the human securin, has a central role in sister chromatid separation during mitosis, and its altered expression has been reported in many tumor types. Paclitaxel is a widely used chemotherapeutic drug, whose mechanism of action is related to its ability to arrest cells in mitosis and the subsequent induction of the intrinsic apoptotic pathway. By using two prostate cancer cell lines with different responses to paclitaxel treatment, we have identified two situations in which PTTG1 influences cell fate differentially. In slippage-prone PC3 cells, both PTTG1 downregulation and overexpression induce an increase in mitotic cells that is associated with diminished apoptosis after paclitaxel treatment. In LNCaP cells, however, PTTG1 downregulation prevents mitotic entry and, subsequently, inhibits mitosis-associated, paclitaxel-induced apoptosis. In contrast, PTTG1 overexpression induces an increase in mitotic cells and apoptosis after paclitaxel treatment. We have also identified a role for Mcl-1 protein in preventing apoptosis during mitosis in PC3 cells, as simultaneous PTTG1 and Mcl-1 silencing enhances mitosis-associated apoptosis after paclitaxel treatment. The finding that a more efficient mitotic arrest alone in PC3 cells is not enough to increase apoptosis was also confirmed with the observation that a selected paclitaxel-resistant PC3 cell line showed an apoptosis-resistant phenotype associated with increased mitosis upon paclitaxel treatment. These findings could contribute to identify putative responsive and nonresponsive cells and help us to approach incomplete responses to paclitaxel in the clinical setting. PMID:25122070

  2. Drug-induced immune hemolytic anemia associated with albumin-bound paclitaxel.

    PubMed

    Thomas, Roby; Shillingburg, Alexandra

    2015-08-01

    Drug-induced immune hemolytic anemia (DIIHA) is rare, with only 1 patient in 1 million affected by the condition.1 Garratty identified 125 drugs indicated in DIIHA of which 11% were antineoplastic agents, and neither paclitaxel nor albumin-bound paclitaxel were included.2 In addition, we did not find any reports in our own search of the literature. Taxanes are known to cause anemia as a result of their myelosuppressive effects, but an immune hemolysis is rare. To our knowledge, we present here the first case of DIIHA with nab-paclitaxel. PMID:26859672

  3. Nanoparticle Albumin Bound Paclitaxel in the Treatment of Human Cancer: Nanodelivery Reaches Prime-Time?

    PubMed Central

    Cucinotto, Iole; Fiorillo, Lucia; Gualtieri, Simona; Arbitrio, Mariamena; Ciliberto, Domenico; Staropoli, Nicoletta; Grimaldi, Anna; Luce, Amalia; Tassone, Pierfrancesco; Caraglia, Michele; Tagliaferri, Pierosandro

    2013-01-01

    Nanoparticle albumin bound paclitaxel (nab-paclitaxel) represents the first nanotechnology-based drug in cancer treatment. We discuss the development of this innovative compound and report the recent changing-practice results in breast and pancreatic cancer. A ground-breaking finding is the demonstration that nab-paclitaxel can not only enhance the activity and reduce the toxicity of chromophore-diluted compound, but also exert activity in diseases considered refractory to taxane-based treatment. This is the first clinical demonstration of major activity of nanotechnologically modified drugs in the treatment of human neoplasms. PMID:23738077

  4. Nanoparticle albumin bound Paclitaxel in the treatment of human cancer: nanodelivery reaches prime-time?

    PubMed

    Cucinotto, Iole; Fiorillo, Lucia; Gualtieri, Simona; Arbitrio, Mariamena; Ciliberto, Domenico; Staropoli, Nicoletta; Grimaldi, Anna; Luce, Amalia; Tassone, Pierfrancesco; Caraglia, Michele; Tagliaferri, Pierosandro

    2013-01-01

    Nanoparticle albumin bound paclitaxel (nab-paclitaxel) represents the first nanotechnology-based drug in cancer treatment. We discuss the development of this innovative compound and report the recent changing-practice results in breast and pancreatic cancer. A ground-breaking finding is the demonstration that nab-paclitaxel can not only enhance the activity and reduce the toxicity of chromophore-diluted compound, but also exert activity in diseases considered refractory to taxane-based treatment. This is the first clinical demonstration of major activity of nanotechnologically modified drugs in the treatment of human neoplasms. PMID:23738077

  5. Paclitaxel loaded PEGylated gleceryl monooleate based nanoparticulate carriers in chemotherapy.

    PubMed

    Jain, Vikas; Swarnakar, Nitin K; Mishra, Prabhat R; Verma, Ashwni; Kaul, Ankur; Mishra, Anil K; Jain, Narendra K

    2012-10-01

    A PEGylated drug delivery system of paclitaxel (PTX), based on glyceryl monooleate (GMO) was prepared by optimizing various parameters to explore its potential in anticancer therapy. The prepared system was characterized through polarized light microscopy, TEM, AFM and SAXS to reveal its liquid crystalline nature. As GMO based LCNPs exhibit high hemolytic toxicity and faster release of entrapped drug (66.2 ± 2.5% in 24 h), PEGylation strategy was utilized to increase the hemocompatibility (reduction in hemolysis from 60.3 ± 10.2 to 4.4 ± 1.3%) and control the release of PTX (43.6 ± 3.2% released in 24 h). The cytotoxic potential and cellular uptake was assessed in MCF-7 cell lines. Further, biodistribution studies were carried out in EAT (Ehrlich Ascites tumor) bearing mice using (99m)Tc-(Technetium radionuclide) labeled formulations and an enhanced circulation time and tumor accumulation (14 and 8 times, respectively) were observed with PEGylated carriers over plain ones, at 24 h. Finally, tumor growth inhibition experiment was performed and after 15 days, control group exhibited 15 times enhancement in tumor volume, while plain and PEGylated systems exhibited only 8 and 4 times enhancement, respectively, as compared to initial tumor volume. The results suggest that PEGylation enhances the hemocompatibility and efficacy of GMO based system that may serve as an efficient i.v. delivery vehicle for paclitaxel. PMID:22809646

  6. Preparation, characterization, and efficacy of thermosensitive liposomes containing paclitaxel.

    PubMed

    Wang, Zhi-Yuan; Zhang, Hui; Yang, Yang; Xie, Xiang-Yang; Yang, Yan-Fang; Li, Zhiping; Li, Ying; Gong, Wei; Yu, Fang-Lin; Yang, Zhenbo; Li, Ming-Yuan; Mei, Xing-Guo

    2016-05-01

    To increase the anti-tumor activity of paclitaxel (PTX), novel temperature-sensitive liposomes loading paclitaxel (PTX-TSL) were developed. In vitro, characteristics of PTX-TSL were evaluated. The mean particle diameter was about 100 nm, and the entrapment efficiency was larger than 95%. The phase-transition temperature of PTX-TSL determined by differential scanning calorimetry was about 42 °C. The result of in vitro drug release from PTX-TSL illustrated that release rate at 37 °C was obviously lower than that at 42 °C. Stability data indicated that the liposome was physically and chemically stable for at least 3 months at -20 °C. In vivo study, after three injections with hyperthermia in the xenograft lung tumor model, PTX-TSL showed distinguished tumor growth suppression, compared with non-temperature-sensitive liposome and free drug. The results of intratumoral drug concentration indicated that PTX-TSL combined with hyperthermia delivered more paxlitaxel into the tumor location than the other two paxlitaxel formulations. In summary, PTX-TSL combined with hyperthermia significantly inhibited tumor growth, due to the increased targeting efficiency of PTX to tumor tissues. Such approach may enhance the delivery efficiency of chemotherapeutics into solid tumors. PMID:26666408

  7. Sialoganglioside Micelles for Enhanced Paclitaxel Solubility: In Vitro Characterization.

    PubMed

    Heredia, Valeria; Alasino, Roxana V; Leonhard, Victoria; Garro, Ariel G; Maggio, Bruno; Beltramo, Dante M

    2016-01-01

    Efficiency of mono-sialogangliosides to load Paclitaxel (Ptx) has recently been found to depend on the structure of the polysaccharide chain. In this study, we demonstrated that incorporation of only one more sialic acid into the ganglioside molecule, independently of its position, causes a 4-fold increase in Ptx-loading capacity, the maximum being at a 5:1 molar ratio (di-sialoganglioside/Paclitaxel, GD/Ptx). These complexes are stable in solution for at least 3 months, and over 90% of Ptx remains loaded in the micelles after extreme stress conditions such as high-speed centrifugation, lyophilization, or freeze-thaw cycles. Ganglioside micelles protect 50% of the initially loaded Ptx from alkaline hydrolysis after 24 h at pH 10. Dynamic light scattering studies revealed that GD micelles increase their size from 9 to 12 nm when loaded with Ptx. Transmission electron microscopy shows a homogeneous population of spherical micelles either with or without Ptx. In vitro biological activity was similar to that of the free drug. These results provide further options of self-assembled nanostructures of di- and tri-sialogangliosides with a higher loading capacity. PMID:26852858

  8. Promotion of mitotic catastrophe via activation of PTEN by paclitaxel with supplement of mulberry water extract in bladder cancer cells

    PubMed Central

    Chen, Nien-Cheng; Chyau, Charng-Cherng; Lee, Yi-Ju; Tseng, Hsien-Chun; Chou, Fen-Pi

    2016-01-01

    Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. Mulberry fruit is rich in phenolic compounds and flavonoids and exhibits chemopreventive activities. In this study, mulberry water extract (MWE) was used as a supplement to synergize with the effects of paclitaxel in the treatment of the TSGH 8301 human bladder cancer cell line. Treatment with paclitaxel combined with MWE (paclitaxel/MWE) enhanced the cytotoxicity of paclitaxel and induced severe G2/M arrest, mitotic catastrophe and subsequent apoptosis, as shown by MTT assay, HE staining and flow cytometry analyses. Differences in the expression and activation of Aurora A and Plk1between cells treated with paclitaxel/MWE and paclitaxel alone suggested that the combined treatment caused a defect in the early steps of cytokinesis. Paclitaxel/MWE decreased EEA1immunofluorescence staining and increased the expression of PTEN, indicating that the regimen inhibited the formation of the recycling endosome, which is required for cytokinesis. Paclitaxel/MWE also retarded tumor growth in a TSGH 8301 xenograft model via activation of PTEN and Caspase 3. These data demonstrated a synergistic effect on the anticancer efficacy of paclitaxel through MWE supplementation by promoting mitotic catastrophe through the activation of PTEN, providing a novel and effective therapeutic option for bladder cancer treatment strategies. PMID:26838546

  9. Promotion of mitotic catastrophe via activation of PTEN by paclitaxel with supplement of mulberry water extract in bladder cancer cells.

    PubMed

    Chen, Nien-Cheng; Chyau, Charng-Cherng; Lee, Yi-Ju; Tseng, Hsien-Chun; Chou, Fen-Pi

    2016-01-01

    Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. Mulberry fruit is rich in phenolic compounds and flavonoids and exhibits chemopreventive activities. In this study, mulberry water extract (MWE) was used as a supplement to synergize with the effects of paclitaxel in the treatment of the TSGH 8301 human bladder cancer cell line. Treatment with paclitaxel combined with MWE (paclitaxel/MWE) enhanced the cytotoxicity of paclitaxel and induced severe G2/M arrest, mitotic catastrophe and subsequent apoptosis, as shown by MTT assay, HE staining and flow cytometry analyses. Differences in the expression and activation of Aurora A and Plk1 between cells treated with paclitaxel/MWE and paclitaxel alone suggested that the combined treatment caused a defect in the early steps of cytokinesis. Paclitaxel/MWE decreased EEA1 immunofluorescence staining and increased the expression of PTEN, indicating that the regimen inhibited the formation of the recycling endosome, which is required for cytokinesis. Paclitaxel/MWE also retarded tumor growth in a TSGH 8301 xenograft model via activation of PTEN and Caspase 3. These data demonstrated a synergistic effect on the anticancer efficacy of paclitaxel through MWE supplementation by promoting mitotic catastrophe through the activation of PTEN, providing a novel and effective therapeutic option for bladder cancer treatment strategies. PMID:26838546

  10. CX3CL1-mediated macrophage activation contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy.

    PubMed

    Huang, Zhen-Zhen; Li, Dai; Liu, Cui-Cui; Cui, Yu; Zhu, He-Quan; Zhang, Wen-Wen; Li, Yong-Yong; Xin, Wen-Jun

    2014-08-01

    Painful peripheral neuropathy is a dose-limiting side effect of paclitaxel therapy, which hampers the optimal clinical management of chemotherapy in cancer patients. Currently the underlying mechanisms remain largely unknown. Here we showed that the clinically relevant dose of paclitaxel (3×8mg/kg, cumulative dose 24mg/kg) induced significant upregulation of the chemokine CX3CL1 in the A-fiber primary sensory neurons in vivo and in vitro and infiltration of macrophages into the dorsal root ganglion (DRG) in rats. Paclitaxel treatment also increased cleaved caspase-3 expression, induced the loss of primary afferent terminal fibers and decreased sciatic-evoked A-fiber responses in the spinal dorsal horn, indicating DRG neuronal apoptosis induced by paclitaxel. In addition, the paclitaxel-induced DRG neuronal apoptosis occurred exclusively in the presence of macrophage in vitro study. Intrathecal or systemic injection of CX3CL1 neutralizing antibody blocked paclitaxel-induced macrophage recruitment and neuronal apoptosis in the DRG, and also attenuated paclitaxel-induced allodynia. Furthermore, depletion of macrophage by systemic administration of clodronate inhibited paclitaxel-induced allodynia. Blocking CX3CL1 decreased activation of p38 MAPK in the macrophage, and inhibition of p38 MAPK activity blocked the neuronal apoptosis and development of mechanical allodynia induced by paclitaxel. These findings provide novel evidence that CX3CL1-recruited macrophage contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy. PMID:24681252

  11. Recent advances in design, synthesis and bioactivity of paclitaxel-mimics.

    PubMed

    Wen, Guan; Qu, Xiao-Xia; Wang, Dan; Chen, Xing-Xiu; Tian, Xin-Chuan; Gao, Feng; Zhou, Xian-Li

    2016-04-01

    Taxane-type anticancer drugs, including paclitaxel and its semi-synthetic derivatives docetaxel and cabazitaxel, are widely applied to chemotherapy of malignancy like breast cancer, ovarian cancer, non-small cell lung cancer and prostate cancer. However, their clinical applications are generally limited by scarce natural resources, various side effects and multidrug resistance. Therefore, it is significant to develop paclitaxel-mimics with simplified structure, fewer side effects and improved pharmaceutical properties. Based on our investigation on chemistry of paclitaxel, the current review summarized the most recent advances in the design, synthesis and biological activities of paclitaxel-mimics, which could be appealing to researchers in the field of medicinal chemistry and oncology. Meanwhile, smart design, interesting synthesis and potential bioactivities of these novel compounds may also provide valuable reference for the wider scientific communities. PMID:26906104

  12. Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy

    NASA Astrophysics Data System (ADS)

    Namgung, Ran; Mi Lee, Yeong; Kim, Jihoon; Jang, Yuna; Lee, Byung-Heon; Kim, In-San; Sokkar, Pandian; Rhee, Young Min; Hoffman, Allan S.; Kim, Won Jong

    2014-05-01

    Effective anticancer therapy can be achieved by designing a targeted drug-delivery system with high stability during circulation and efficient uptake by the target tumour cancer cells. We report here a novel nano-assembled drug-delivery system, formed by multivalent host-guest interactions between a polymer-cyclodextrin conjugate and a polymer-paclitaxel conjugate. The multivalent inclusion complexes confer high stability to the nano-assembly, which efficiently delivers paclitaxel into the targeted cancer cells via both passive and active targeting mechanisms. The ester linkages between paclitaxel and the polymer backbone permit efficient release of paclitaxel within the cell by degradation. This novel targeted nano-assembly exhibits significant antitumour activity in a mouse tumour model. The strategy established in this study also provides knowledge for the development of advanced anticancer drug delivery.

  13. Cost-effectiveness of paclitaxel plus cisplatin in advanced non-small-cell lung cancer

    PubMed Central

    Earle, C C; Evans, W K

    1999-01-01

    The aim of this study was to assess the cost-effectiveness of combination chemotherapy with paclitaxel/cisplatin, compared with standard etoposide/cisplatin in patients with advanced non-small cell lung cancer (NSCLC). We obtained the primary survival and resource utilization data from a large three-arm randomized trial comparing: paclitaxel 135 mg m−2 by 24-h intravenous (i.v.) infusion + cisplatin; paclitaxel 250 mg m−2 by 24-h i.v. infusion + cisplatin + granulocyte colony-stimulating factor (G-CSF); and standard etoposide/cisplatin in patients with stage IIIb or IV NSCLC. We also modelled the regimens with paclitaxel 135 mg m−2 + cisplatin administered as an outpatient by 3-h infusion, as clinical data suggest that this is equivalent to 24-h infusion. We collected costing data from the Ottawa Regional Cancer Centre and applied it to the resources consumed in the randomized trial. We integrated these data into the Statistics Canada POpulation HEalth Model (POHEM), which generated hypothetical cohorts of patients treated with each regimen. The POHEM model assigned diagnostic work-up, treatment, disease progression and survival characteristics to each individual in these cohorts and tabulated the costs associated with each. We did sensitivity analyses around the costs of chemotherapy and its administration, and the survival differences between the two regimens. All costs are in 1997 Canadian dollars ($1.00 Canadian ˜ £0.39 sterling). The perspective is that of the Canadian health care system. In the trial, the two paclitaxel-containing arms had almost identical survival curves with a median survival of 9.7 months compared with 7.4 months for etoposide/cisplatin. As administered in the trial, paclitaxel/cisplatin cost $76 370 per life-year gained (LYG) and paclitaxel/cisplatin/G-CSF $138 578 per LYG relative to etoposide/cisplatin. However, when modelled as an outpatient 3-h infusion, paclitaxel/cisplatin was moderately cost-effective at $30 619 per LYG

  14. Novel paclitaxel formulations solubilized by parenteral nutrition nanoemulsions for application against glioma cell lines.

    PubMed

    Najlah, Mohammad; Kadam, Alisha; Wan, Ka-Wai; Ahmed, Waqar; Taylor, Kevin M G; Elhissi, Abdelbary M A

    2016-06-15

    The aim of this study is to investigate using nanoemulsion formulations as drug-delivery vehicles of paclitaxel (PX), a poor water-soluble anticancer drug. Two commercially available nanoemulsion fat formulations (Clinoleic 20% and Intralipid 20%) were loaded with PX and characterised based on their size, zeta potential, pH and loading efficiency. The effect of formulation on the cytotoxicity of PX was also evaluated using MTT assay. The droplet size of the Clinoleic emulsion increased from 254.1nm to 264.7nm when paclitaxel (6mg/ml) was loaded into the formulation, compared to the drug-free formulation. Similarly, the droplet size of Intralipid increased from 283.3 to 294.6nm on inclusion of 6mg/ml paclitaxel. The Polydispersity Indexes (PDIs) of all the nanoemulsion formulations (Clinoleic and Intralipid) were less than 0.2 irrespective of paclitaxel concentration indicating that all nanoemulsion formulations used were homogeneously sized. The pH range for the Clinoleic formulations (7.1-7.5) was slightly higher than that of the Intralipid formulations (6.5-6.9). The zeta potential of linoleic had a greater negative value than that of Intralipid. Loading efficiencies for paclitaxel were 70.4-80.2% and 44.2-57.4% for Clinoleic and Intralipid formulations, respectively. Clinoleic loaded with paclitaxel decreased the viability of U87-MG cell to 6.4±2.3%, compared to Intralipid loaded with paclitaxel (21.29±3.82%). Both nanoemulsions were less toxic to the normal glial cells (SVG-P12), decreasing the cell viability to 25-35%. This study suggests that nanoemulsions are useful and potentially applicable vehicles of paclitaxel for treatment of glioma. PMID:27107899

  15. A novel self-microemulsifying formulation of paclitaxel for oral administration to patients with advanced cancer

    PubMed Central

    Veltkamp, S A; Thijssen, B; Garrigue, J S; Lambert, G; Lallemand, F; Binlich, F; Huitema, A D R; Nuijen, B; Nol, A; Beijnen, J H; Schellens, J H M

    2006-01-01

    To explore the parmacokinetics, safety and tolerability of paclitaxel after oral administration of SMEOF#3, a novel Self-Microemulsifying Oily Formulation, in combination with cyclosporin A (CsA) in patients with advanced cancer. Seven patients were enrolled and randomly assigned to receive oral paclitaxel (SMEOF#3) 160 mg+CsA 700 mg on day 1, followed by oral paclitaxel (Taxol®) 160 mg+CsA 700 mg on day 8 (group I) or vice versa (group II). Patients received paclitaxel (Taxol®) 160 mg as 3-h infusion on day 15. The median (range) area under the plasma concentration–time curve of paclitaxel was 2.06 (1.15–3.47) μg h ml−1 and 1.97 (0.58–3.22) μg h ml−1 after oral administration of SMEOF#3 and Taxol®, respectively, and 4.69 (3.90–6.09) μg h ml−1 after intravenous Taxol®. Oral SMEOF#3 resulted in a lower median Tmax of 2.0 (0.5–2.0) h than orally applied Taxol® (Tmax=4.0 (0.8–6.1) h, P=0.02). The median apparent bioavailability of paclitaxel was 40 (19–83)% and 55 (9–70)% for the oral SMEOF#3 and oral Taxol® formulation, respectively. Oral paclitaxel administered as SMEOF#3 or Taxol® was safe and well tolerated by the patients. Remarkably, the SMEOF#3 formulation resulted in a significantly lower Tmax than orally applied Taxol®, probably due to the excipients in the SMEOF#3 formulation resulting in a higher absorption rate of paclitaxel. PMID:16926835

  16. Cardioprotective effect of royal jelly on paclitaxel-induced cardio-toxicity in rats

    PubMed Central

    Malekinejad, Hassan; Ahsan, Sima; Delkhosh-Kasmaie, Fatemeh; Cheraghi, Hadi; Rezaei-Golmisheh, Ali; Janbaz-Acyabar, Hamed

    2016-01-01

    Objective(s): Paclitaxel is a potent chemotherapy agent with severe side effects, including allergic reactions, cardiovascular problems, complete hair loss, joint and muscle pain, which may limit its use and lower its efficiency. The cardioprotective effect of royal jelly was investigated on paclitaxel-induced damages. Materials and Methods: Adult male Wistar rats were divided into control and test groups (n=8). The test group was assigned into five subgroups; 4 groups, along with paclitaxel administration (7.5 mg/kg BW, weekly), received various doses of royal jelly (50, 100, and 150 mg/kg BW) for 28 consecutive days. The last group received only royal jelly at 100 mg/kg. In addition to oxidative and nitrosative stress biomarkers, the creatine kinase (CK-BM) level was also determined. To show the cardioprotective effect of royal jelly on paclitaxel-induced damages, histopathological examinations were conducted. Results: Royal jelly lowered the paclitaxel-elevated malondialdehyde and nitric oxide levels in the heart. Royal jelly could also remarkably reduce the paclitaxel-induced cardiac biomarker of creatine kinase (CK-BM) level and pathological injuries such as diffused edema, hemorrhage, congestion, hyaline exudates, and necrosis. Moreover, royal jelly administration in a dose-dependent manner resulted in a significant (P<0.05) increase in the paclitaxel-reduced total antioxidant capacity. Conclusion: Our data suggest that the paclitaxel-induced histopathological and biochemical alterations could be protected by the royal jelly administration. The cardioprotective effect of royal jelly may be related to the suppression of oxidative and nitrosative stress. PMID:27081469

  17. Paeonol reverses paclitaxel resistance in human breast cancer cells by regulating the expression of transgelin 2.

    PubMed

    Cai, Jiangxia; Chen, Siying; Zhang, Weipeng; Hu, Sasa; Lu, Jun; Xing, Jianfeng; Dong, Yalin

    2014-06-15

    Paclitaxel (PTX) is a first-line antineoplastic drug that is commonly used in clinical chemotherapy for breast cancer treatment. However, the occurrence of drug resistance in chemotherapeutic treatment has greatly restricted its use. There is thus an urgent need to find ways of reversing paclitaxel chemotherapy resistance in breast cancer. Plant-derived agents have great potential in preventing the onset of the carcinogenic process and enhancing the efficacy of mainstream antitumor drugs. Paeonol, a main compound derived from the root bark of Paeonia suffruticosa, has various biological activities, and is reported to have reversal drug resistance effects. This study established a paclitaxel-resistant human breast cancer cell line (MCF-7/PTX) and applied the dual-luciferase reporter gene assay, MTT assay, flow cytometry, transfection assay, Western blotting and the quantitative real-time polymerase chain reaction (qRT-PCR) to investigate the reversing effects of paeonol and its underlying mechanisms. It was found that transgelin 2 may mediate the resistance of MCF-7/PTX cells to paclitaxel by up-regulating the expressions of the adenosine-triphosphate binding cassette transporter proteins, including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP). Furthermore, the ability of paeonol to reverse paclitaxel resistance in breast cancer was confirmed, with a superior 8.2-fold reversal index. In addition, this study found that paeonol down-regulated the transgelin 2-mediated paclitaxel resistance by reducing the expressions of P-gp, MRP1, and BCRP in MCF-7/PTX cells. These results not only provide insight into the potential application of paeonol to the reversal of paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer. PMID:24680370

  18. Effect of Paclitaxel on Antitumor Activity of Cyclophosphamide: Study on Two Transplanted Tumors in Mice.

    PubMed

    Kaledin, V I; Nikolin, V P; Popova, N A; Pyshnaya, I A; Bogdanova, L A; Morozkova, T S

    2015-11-01

    Antitumor effect of paclitaxel used as the monotherapy or in combination with cyclophosphamide was studied on CBA/LacSto mice with transplanted LS and RLS tumors characterized by high (LS) and low (RLS) sensitivity to cyclophosphamide. The therapeutic effects of cyclophosphamide and paclitaxel were summed in animals with drug-resistant RLS tumor, while combined use of these drugs in LS tumor highly sensitive to the apoptogenic effect of cyclophosphamide was no more effective than cyclophosphamide alone. PMID:26597686

  19. Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning.

    PubMed

    Dorman, Stephanie N; Baranova, Katherina; Knoll, Joan H M; Urquhart, Brad L; Mariani, Gabriella; Carcangiu, Maria Luisa; Rogan, Peter K

    2016-01-01

    Increasingly, the effectiveness of adjuvant chemotherapy agents for breast cancer has been related to changes in the genomic profile of tumors. We investigated correspondence between growth inhibitory concentrations of paclitaxel and gemcitabine (GI50) and gene copy number, mutation, and expression first in breast cancer cell lines and then in patients. Genes encoding direct targets of these drugs, metabolizing enzymes, transporters, and those previously associated with chemoresistance to paclitaxel (n = 31 genes) or gemcitabine (n = 18) were analyzed. A multi-factorial, principal component analysis (MFA) indicated expression was the strongest indicator of sensitivity for paclitaxel, and copy number and expression were informative for gemcitabine. The factors were combined using support vector machines (SVM). Expression of 15 genes (ABCC10, BCL2, BCL2L1, BIRC5, BMF, FGF2, FN1, MAP4, MAPT, NFKB2, SLCO1B3, TLR6, TMEM243, TWIST1, and CSAG2) predicted cell line sensitivity to paclitaxel with 82% accuracy. Copy number profiles of 3 genes (ABCC10, NT5C, TYMS) together with expression of 7 genes (ABCB1, ABCC10, CMPK1, DCTD, NME1, RRM1, RRM2B), predicted gemcitabine response with 85% accuracy. Expression and copy number studies of two independent sets of patients with known responses were then analyzed with these models. These included tumor blocks from 21 patients that were treated with both paclitaxel and gemcitabine, and 319 patients on paclitaxel and anthracycline therapy. A new paclitaxel SVM was derived from an 11-gene subset since data for 4 of the original genes was unavailable. The accuracy of this SVM was similar in cell lines and tumor blocks (70-71%). The gemcitabine SVM exhibited 62% prediction accuracy for the tumor blocks due to the presence of samples with poor nucleic acid integrity. Nevertheless, the paclitaxel SVM predicted sensitivity in 84% of patients with no or minimal residual disease. PMID:26372358

  20. The BH3 mimetic ABT-737 increases treatment efficiency of paclitaxel against hepatoblastoma

    PubMed Central

    2011-01-01

    Background The primary goal of current chemotherapy in hepatoblastoma (HB) is reduction of tumour volume and vitality to enable complete surgical resection and reduce risk of recurrence or metastatic disease. Drug resistance remains a major challenge for HB treatment. In some malignancies inhibition of anti-apoptotic pathways using small BH3 mimetic molecules like ABT-737 shows synergistic effects in combination with cystotoxic agents in vitro. Now we analysed toxicology and synergistic effects of this approach in HB cells and HB xenografts. Methods Viability was monitored in HB cells (HUH6 and HepT1) and fibroblasts treated with paclitaxel, ABT-737 and a combination of both in a MTT assay. HUH6 xenotransplants in NOD/LtSz-scid IL2Rγnull mice (NSG) were treated accordingly. Tumour volume and body weight were monitored. Xenografted tumours were analysed by histology and immunohistochemistry (Ki-67 and TUNEL assay). Results ABT-737 reduced viability in HUH6 and HepT1 cells cultures at concentrations above 1 μM and also enhanced the cytotoxic effect of paclitaxel when used in combination. Thereby paclitaxel could be reduced tenfold to achieve similar reduction of viability of tumour cells. In contrast no toxicity in fibroblasts was observed at the same regiments. Subcutaneous HB (HUH6) treated with paclitaxel (12 mg/kg body weight, n = 7) led to delayed tumour growth in the beginning of the experiment. However, tumour volume was similar to controls (n = 5) at day 25. Combination treatment with paclitaxel and ABT-737 (100 mg/kg, n = 8) revealed significantly 10 fold lower relative tumour volumes compared to control and paclitaxel groups. Paclitaxel dependent toxicity was observed in this mice strain. Conclusions Our results demonstrate enhancement of chemotherapy by using modulators of apoptosis. Further analyses should include improved pharmacological formulations of paclitaxel and BH3 mimetics in order to reduce toxicological effects. Sensitising HB to apoptosis

  1. Surface-enhanced Raman spectroscopy study of the interaction of antitumoral drug Paclitaxel with human serum albumin

    NASA Astrophysics Data System (ADS)

    Yan, Tianxiu; Gu, Huaimin; Yuan, Xiaojuan; Wu, Jiwei; Wei, Huajiang

    2008-12-01

    SERS spectroscopy was employed to study the interaction of the antitumoral drug paclitaxel with human serum albumin. The normal Raman spectrum of the paclitaxel was shown in this study for the first time. There were some differences existing in the surface-enhanced Raman scattering (SERS) spectrum of paclitaxel and its human serum albumin (HSA), which demonstrated that there was high bioaffinity of paclitaxel to human serum albumin. And it was also found that there existed some differences in the SERS of the paclitaxel/HSA complexes at different pH values, which may indicated some significant information on the binding site, by which paclitaxel binds to human serum albumin. It can provide significant instruction in the synthesis of the drug and in improving the therapeutic efficacy of this drug.

  2. Cost-Benefit Analysis of Nanoparticle Albumin-Bound Paclitaxel versus Solvent-Based Paclitaxel for the Treatment of Metastatic Breast Cancer in the United States

    NASA Astrophysics Data System (ADS)

    Vichansavakul, Kittaya

    Breast cancer is the second leading cause of death among women in the US. Although early detection and treatment help to increase survival rates, some unfortunate patients develop metastatic breast cancer that has no cure. Palliative treatment is the main objective in this group of patients in order to prolong life and reduce toxicities from interventions. In the advancement of treatment for metastatic breast cancer, solvent-based paclitaxel has been widely used. However, solvent-based paclitaxel often causes adverse reactions. Therefore, researchers have developed a new chemotherapy based on nanotechnology. One of these drugs is the Nanoparticle albumin-bound Paclitaxel. This nanodrug aims to increase therapeutic index by reducing adverse reactions from solvents and to improve efficacy of conventional cytotoxic chemotherapy. Breast cancer is a disease with high epidemiological and economic burden. The treatment of metastatic breast cancer has not only high direct costs but also high indirect costs. Breast cancer affects mass populations, especially women younger than 50 years of age. It relates to high indirect costs due to lost productivity and premature death because the majority of these patients are in the workforce. Because of the high cost of breast cancer therapies and short survival rates, the question is raised whether the costs and benefits are worth paying or not. Due to the rising costs in healthcare and new financing policies that have been developed to address this issue, economic evaluation is an important aspect of the development and use of any new interventions. To guide policy makers on how to allocate limited healthcare resources in the most efficient and effective manner, many economic evaluation methods can be used to measure the costs, benefits, and impacts of healthcare innovations. Currently, economic evaluation and health outcomes studies have focused greatly on cost-effectiveness and cost-utility analysis. However, the previous studies

  3. Vaginal delivery of paclitaxel via nanoparticles with non-mucoadhesive surfaces suppresses cervical tumor growth

    PubMed Central

    Yang, Ming; Yu, Tao; Wang, Ying-Ying; Lai, Samuel K.; Zeng, Qi; Miao, Bolong; Tang, Benjamin C.; Simons, Brian W.; Ensign, Laura; Liu, Guanshu; Chan, Kannie W. Y.; Juang, Chih-Yin; Mert, Olcay; Wood, Joseph; Fu, Jie; McMahon, Michael T.; Wu, T.-C.; Hung, Chien-Fu; Hanes, Justin

    2014-01-01

    Local delivery of chemotherapeutics in the cervicovaginal tract using nanoparticles may reduce adverse side effects associated with systemic chemotherapy, while improving outcomes for early stage cervical cancer. We hypothesize drug-loaded nanoparticles must rapidly penetrate cervicovaginal mucus (CVM) lining the female reproductive tract to effectively deliver their payload to underlying diseased tissues in a uniform and sustained manner. We develop paclitaxel-loaded nanoparticles, composed entirely of polymers used in FDA-approved products, which rapidly penetrate human CVM and provide sustained drug release with minimal burst effect. We further employ a mouse model with aggressive cervical tumors established in the cervicovaginal tract to compare paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (conventional particles , or CP) and similar particles coated with Pluronic® F127 (mucus-penetrating particles , or MPP). CP are mucoadhesive and, thus, aggregated in mucus, while MPP achieve more uniform distribution and close proximity to cervical tumors. Paclitaxel-MPP suppress tumor growth more effectively and prolong median survival of mice compared to free paclitaxel or paclitaxel-CP. Histopathological studies demonstrate minimal toxicity to the cervicovaginal epithelia, suggesting paclitaxel-MPP may be safe for intravaginal use. These results demonstrate for the first time the in vivo advantages of polymer-based MPP for treatment of tumors localized to a mucosal surface. PMID:24339398

  4. Release of paclitaxel from polylactide-co-glycolide (PLGA) microparticles and discs under irradiation.

    PubMed

    Wang, J; Ng, C W; Win, K Y; Shoemakers, P; Lee, T K Y; Feng, S S; Wang, C H

    2003-01-01

    Paclitaxel is a promising anti-cancer drug as well as a radiosensitizer for chemotherapy and radiotherapy applications. Because of the poor solubility of paclitaxel in water and most pharmaceutical reagents, it is usually formulated with an adjuvant called Cremophor EL, which causes severe side effects. This work develops new dosage forms of paclitaxel for controlled release application, which do not require the adjuvant and, thus, can avoid its associated side effects. Paclitaxel was encapsulated into the PLGA matrix with various additives such as polyethylene glycol (PEG), isopropyl myristate (IPM) and d-alpha tocopheryl polyethylene glycol (Vitamin E TPGS). These additives were used to enhance the release rate of paclitaxel from the polymer matrix. Spray-drying and an hydraulic press were used to prepare paclitaxel-PLGA microspheres and discs. The microspheres and discs were given different irradiation doses to investigate their effects on the surface morphology (characterized by SEM, AFM and XPS) and in vitro release properties. There seems to be a small effect of the ionizing radiation on various formulations. Although the irradiation did not cause observable changes on the morphology of the polymer matrix, the release rate can be enhanced by a few per cent. It was found that PEG has the highest enhancement effect for release rate among all the additives investigated in this study. PMID:12881113

  5. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Chang; Gould, Stephen; Nannini, Michelle; Qin, Ann; Deng, Yuzhong; Arrazate, Alfonso; Kam, Kimberly R.; Ran, Yingqing; Wong, Harvey

    2014-04-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.

  6. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing water-soluble prodrugs of paclitaxel.

    PubMed

    Ceruti, M; Crosasso, P; Brusa, P; Arpicco, S; Dosio, F; Cattel, L

    2000-01-01

    Paclitaxel (Taxol) is a diterpenoid isolated from Taxus brevifolia, used clinically for the treatment of ovarian and breast cancer. Due to its aqueous insolubility it is administered dissolved in ethanol and Cremophor EL (polyethoxylated castor oil), which has serious side effects. In order to eliminate this vehicle, in previous work we entrapped paclitaxel in conventional and in polyethylene glycol coated liposomes. However, in neither formulation did we obtain satisfactory entrapment efficiency. In this study we increased the paclitaxel concentration entrapped in liposomes by incorporating different water-soluble prodrugs, such as the 2'-succinyl, 2'-methylpyridinium acetate and 2'-mPEG ester paclitaxel derivatives, in the lipid vesicles. Liposomes containing 2'-mPEG (5000)-paclitaxel showed the best performance in terms of stability, entrapment efficiency and drug concentration (6.5 mgml(-1)). The in vitro cytotoxic activity of this liposomal prodrug was similar to that of the parent drug. The pharmacokinetic parameters for the free and for the liposomal prodrugs fitted a bi-exponential plasma disposition. The most important change in pharmacokinetic values of the prodrug vs. the free drug liposomal formulations was t(1/2)beta, plasma lifetime, which was longer in liposomes containing 2'-mPEG (5000)-paclitaxel. PMID:10640588

  7. Fluorescence properties of several chemotherapy drugs: doxorubicin, paclitaxel and bleomycin

    PubMed Central

    Motlagh, Najme Sadat Hosseini; Parvin, Parviz; Ghasemi, Fatemah; Atyabi, Fatemeh

    2016-01-01

    Several chemo-drugs act as the biocompatible fluorophores. Here, the laser induced fluorescence (LIF) properties of doxorubicin, paclitaxel and bleomycin are investigated. The absorption lines mostly lie over UV range according to the UV-VIS spectra. Therefore, a single XeCl laser provokes the desired transitions of the chemo-drugs of interest at 308 nm. It is shown that LIF spectra are strongly dependent on the fluorophore concentration giving rise to the sensible red shift. This happens when large overlapping area appears between absorption and emission spectra accordingly. The red shift is taken into account as a characteristic parameter of a certain chemo-drug. The fluorescence extinction (α) and self-quenching (k) coefficients are determined based on the best fitting of the adopted Lambert-Beer equation over experimental data. The quantum yield of each chemo-drug is also measured using the linearity of the absorption and emission rates. PMID:27375954

  8. Fluorescence properties of several chemotherapy drugs: doxorubicin, paclitaxel and bleomycin.

    PubMed

    Motlagh, Najme Sadat Hosseini; Parvin, Parviz; Ghasemi, Fatemah; Atyabi, Fatemeh

    2016-06-01

    Several chemo-drugs act as the biocompatible fluorophores. Here, the laser induced fluorescence (LIF) properties of doxorubicin, paclitaxel and bleomycin are investigated. The absorption lines mostly lie over UV range according to the UV-VIS spectra. Therefore, a single XeCl laser provokes the desired transitions of the chemo-drugs of interest at 308 nm. It is shown that LIF spectra are strongly dependent on the fluorophore concentration giving rise to the sensible red shift. This happens when large overlapping area appears between absorption and emission spectra accordingly. The red shift is taken into account as a characteristic parameter of a certain chemo-drug. The fluorescence extinction (α) and self-quenching (k) coefficients are determined based on the best fitting of the adopted Lambert-Beer equation over experimental data. The quantum yield of each chemo-drug is also measured using the linearity of the absorption and emission rates. PMID:27375954

  9. Phase I feasibility study of intraperitoneal cisplatin and intravenous paclitaxel followed by intraperitoneal paclitaxel in untreated ovarian, fallopian tube, and primary peritoneal carcinoma: A Gynecologic Oncology Group Study

    PubMed Central

    Dizon, Don S.; Sill, Michael W.; Gould, Natalie; Rubin, Stephen C.; Yamada, S. Diane; DeBernardo, Robert L.; Mannel, Robert S.; Eisenhauer, Eric L.; Duska, Linda R.; Fracasso, Paula M.

    2011-01-01

    Purpose Intraperitoneal chemotherapy has shown a survival advantage over intravenous chemotherapy for women with newly diagnosed optimally debulked epithelial ovarian, fallopian tube, or primary peritoneal carcinoma. However, significant toxicity has limited its acceptance. In an effort to reduce toxicity, the Gynecologic Oncology Group conducted a Phase I study to evaluate the feasibility of day 1 intravenous (IV) paclitaxel and intraperitoneal (IP) cisplatin followed by day 8 IP paclitaxel on an every 21-day cycle. Methods Patients with Stage IIB-IV epithelial ovarian, fallopian tube, primary peritoneal carcinomas or carcinosarcoma received paclitaxel 135 mg/m2 IV over 3 hours followed by cisplatin 75 mg/m2 IP on day 1 and paclitaxel 60 mg/m2 IP on day 8 of a 21 day cycle with 6 cycles planned. Dose-limiting toxicity (DLT) was defined as febrile neutropenia or dose-delay of greater than 2 weeks due to failure to recover counts, or Grade 3-5 non-hematologic toxicity occurring within the first 4 cycles of treatment. Results Twenty of 23 patients enrolled were evaluable and nineteen (95%) completed all six cycles of therapy. Three patients experienced a DLT consisting of infection with normal absolute neutrophil count, grade 3 hyperglycemia, and grade 4 abdominal pain. Conclusions This modified IP regimen which administers both IV paclitaxel and IP cisplatin on day one, followed by IP paclitaxel on day eight, of a twenty-one day cycle appears feasible and is an attractive alternative to the intraperitoneal treatment regimen administered in GOG-0172. PMID:21820161

  10. A mucoadhesive in situ gel delivery system for paclitaxel.

    PubMed

    Jauhari, Saurabh; Dash, Alekha K

    2006-01-01

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at drug loads of 0.18%, 0.30%, and 0.54% (wt/wt), in Sorensen's phosphate buffer (pH 7.4) at 37 degrees C. Different mucin-producing cell lines (Calu-3>Caco-2) were selected for PTX transport studies. Transport of PTX from solution and gel delivery system was performed in side by side diffusion chambers from apical to basal (A-B) and basal to apical (B-A) directions. In vitro release studies revealed that within 4 hours, only 7.61% +/- 0.19%, 12.0% +/- 0.98%, 31.7% +/- 0.40% of PTX were released from 0.18%, 0.30%, and 0.54% drug-loaded gel formulation, respectively, in absence of Tween 80. However, in presence of surfactant (0.05% wt/vol) in the dissolution medium, percentages of PTX released were 28.1% +/- 4.35%, 44.2% +/- 6.35%, and 97.1% +/- 1.22%, respectively. Paclitaxel has shown a polarized transport in all the cell monolayers with B-A transport 2 to 4 times higher than in the A-B direction. The highest mucin-producing cell line (Calu-3) has shown the lowest percentage of PTX transport from gels as compared with Caco-2 cells. Transport of PTX from mucoadhesive gels was shown to be influenced by the mucin-producing capability of cell. PMID:16796370

  11. Targeting HDAC with a novel inhibitor effectively reverses paclitaxel resistance in non-small cell lung cancer via multiple mechanisms

    PubMed Central

    Wang, L; Li, H; Ren, Y; Zou, S; Fang, W; Jiang, X; Jia, L; Li, M; Liu, X; Yuan, X; Chen, G; Yang, J; Wu, C

    2016-01-01

    Chemotherapy paclitaxel yields significant reductions in tumor burden in the majority of advanced non-small cell lung cancer (NSCLC) patients. However, acquired resistance limits its clinical use. Here we demonstrated that the histone deacetylase (HDAC) was activated in paclitaxel-resistant NSCLC cells, and its activation promoted proliferation and tumorigenesis of paclitaxel-resistant NSCLC cells in vitro and in vivo. By contrast, knockdown of HDAC1, a primary isoform of HDAC, sensitized resistant cells to paclitaxel in vitro. Furthermore, we observed that overexpression of HDAC1 was associated with the downregulation of p21, a known HDAC target, in advanced NSCLC patients with paclitaxel treatment, and predicted chemotherapy resistance and bad outcome. In addition, we also identified a novel HDACs inhibitor, SNOH-3, which inhibited HDAC expression and activity, induced cell apoptosis, and suppressed cell migration, invasion and angiogenesis. Notably, co-treatment with SNOH-3 and paclitaxel overcome paclitaxel resistance through inhibiting HDAC activity, leading to the induction of apoptosis and suppression of angiogenesis in vitro and in preclinical model. In summary, our data demonstrate a role of HDAC in paclitaxel-resistant NSCLC and provide a promising therapeutic strategy to overcome paclitaxel-acquired resistance. PMID:26794658

  12. Paclitaxel-induced hyposensitivity to nociceptive chemical stimulation in mice can be prevented by treatment with minocycline

    PubMed Central

    Masocha, Willias

    2014-01-01

    Development of peripheral neuropathy, which can present as painful neuropathy or loss of sensation, sometimes limit the use of paclitaxel in the treatment of solid tumors such as breast cancer. Previous studies reported development of thermal hyperalgesia in mice treated with paclitaxel. In this study an automated flinch detection system for the formalin test (20 μl of 5% formalin injected subcutaneously into the paw dorsum) was used to evaluate chemical nociception in BALB/c mice treated with paclitaxel 2 mg/kg alone or coadministered with minocycline 50 mg/kg, intraperitoneally for 5 consecutive days. Reaction latency to thermal stimuli (hot-plate) was also measured. Injection of formalin resulted in biphasic paw flinches; phase 1 (1–9 minutes) and phase 2 (10–40 minutes). Treatment with paclitaxel reduced cumulative flinches in both phases 1 and 2 by 28% and 43%, respectively at day 7. However, treatment with paclitaxel also induced thermal hyperalgesia. Co-administration of paclitaxel with minocycline prevented development of both paclitaxel-induced hyposensitivity to chemical nociception and thermal hyperalgesia. In conclusion, the results indicate paclitaxel induces chemical hyposensitivity and thermal hyperalgesia in mice. Minocycline protected against paclitaxel-induced chemical hyposensitivity and thermal hyperalgesia, thus, providing further support of the usefulness of the drug in prevention of chemotherapy-induced neuropathy. PMID:25335491

  13. A novel biosensor for quantitative monitoring of on-target activity of paclitaxel

    NASA Astrophysics Data System (ADS)

    Townley, H. E.; Zheng, Y.; Goldsmith, J.; Zheng, Y. Y.; Stratford, M. R. L.; Dobson, P. J.; Ahmed, A. A.

    2014-12-01

    This study describes a system for quantifying paclitaxel activity using the C-terminus of α-tubulin as a biomarker. Following stabilization of microtubules with paclitaxel, a specific detyrosination reaction occurs at the C-terminus of α-tubulin which could be used to assess efficacy. A fluorescence resonance energy transfer (FRET) based biosensor was synthesized comprising a short peptide that corresponded to the C-terminus of α-tubulin, a fluorophore (Abz), and a quencher (Dnp). The fluorophore added to the end of the peptide can be released upon enzymatic detyrosination. In addition, a single fluorophore-tagged peptide was also conjugated to mesoporous silica nanoparticles to examine the feasibility of combining the drug with the peptide biomarker. As a proof of concept, we found that the degree of peptide cleavage, and therefore enzymatic activity, was directly correlated with exogenous bovine carboxypeptidase (CPA) an enzyme that mimics endogenous detyrosination. In addition, we show that cell lysates obtained from paclitaxel-treated cancer cells competed with exogenous CPA for biosensor cleavage in a paclitaxel dose-dependent manner. Our work provides strong evidence for the feasibility of combining paclitaxel with a novel biosensor in a multi-load nanoparticle.This study describes a system for quantifying paclitaxel activity using the C-terminus of α-tubulin as a biomarker. Following stabilization of microtubules with paclitaxel, a specific detyrosination reaction occurs at the C-terminus of α-tubulin which could be used to assess efficacy. A fluorescence resonance energy transfer (FRET) based biosensor was synthesized comprising a short peptide that corresponded to the C-terminus of α-tubulin, a fluorophore (Abz), and a quencher (Dnp). The fluorophore added to the end of the peptide can be released upon enzymatic detyrosination. In addition, a single fluorophore-tagged peptide was also conjugated to mesoporous silica nanoparticles to examine the

  14. Paclitaxel Drug-Eluting Stents in Peripheral Arterial Disease: A Health Technology Assessment

    PubMed Central

    2015-01-01

    Background Peripheral arterial disease is a condition in which atherosclerotic plaques partially or completely block blood flow to the legs. Although percutaneous transluminal angioplasty and metallic stenting have high immediate success rates in treating peripheral arterial disease, long-term patency and restenosis rates in long and complex lesions remain unsatisfactory. Objective The objective of this analysis was to evaluate the clinical effectiveness, safety, cost-effectiveness and budget impact of Zilver paclitaxel self-expanding drug-eluting stents for the treatment of de novo or restenotic lesions in above-the-knee peripheral arterial disease. Data Sources Literature searches were performed using Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), and EBM Reviews. For the economic review, a search filter was applied to limit search results to economics-related literature. Data sources for the budget impact analysis included expert opinion, published literature, and Ontario administrative data. Review Methods Systematic reviews, meta-analyses, randomized controlled trials, and observational studies were included in the clinical effectiveness review, and full economic evaluations were included in the economic literature review. Studies were included if they examined the effect of Zilver paclitaxel drug-eluting stents in de novo or restenotic lesions in above-the-knee arteries. For the budget impact analysis, 3 scenarios were constructed based on different assumptions. Results One randomized controlled trial reported a significantly higher patency rate with Zilver paclitaxel drug-eluting stents for lesions ≤ 14 cm than with angioplasty or bare metal stents. One observational study showed no difference in patency rates between Zilver paclitaxel drug-eluting stents and paclitaxel drug-coated balloons. Zilver paclitaxel drug-eluting stents were associated with

  15. Aurora kinase inhibitors synergize with paclitaxel to induce apoptosis in ovarian cancer cells

    PubMed Central

    Scharer, Christopher D; Laycock, Noelani; Osunkoya, Adeboye O; Logani, Sanjay; McDonald, John F; Benigno, Benedict B; Moreno, Carlos S

    2008-01-01

    Background A large percentage of patients with recurrent ovarian cancer develop resistance to the taxane class of chemotherapeutics. While mechanisms of resistance are being discovered, novel treatment options and a better understanding of disease resistance are sorely needed. The mitotic kinase Aurora-A directly regulates cellular processes targeted by the taxanes and is overexpressed in several malignancies, including ovarian cancer. Recent data has shown that overexpression of Aurora-A can confer resistance to the taxane paclitaxel. Methods We used expression profiling of ovarian tumor samples to determine the most significantly overexpressed genes. In this study we sought to determine if chemical inhibition of the Aurora kinase family using VE-465 could synergize with paclitaxel to induce apoptosis in paclitaxel-resistant and sensitive ovarian cancer cells. Results Aurora-A kinase and TPX2, an activator of Aurora-A, are two of the most significantly overexpressed genes in ovarian carcinomas. We show that inhibition of the Aurora kinases prevents phosphorylation of a mitotic marker and demonstrate a dose-dependent increase of apoptosis in treated ovarian cancer cells. We demonstrate at low doses that are specific to Aurora-A, VE-465 synergizes with paclitaxel to induce 4.5-fold greater apoptosis than paclitaxel alone in 1A9 cells. Higher doses are needed to induce apoptosis in paclitaxel-resistant PTX10 cells. Conclusion Our results show that VE-465 is a potent killer of taxane resistant ovarian cancer cells and can synergize with paclitaxel at low doses. These data suggest patients whose tumors exhibit high Aurora-A expression may benefit from a combination therapy of taxanes and Aurora-A inhibition. PMID:19077237

  16. Dasatinib enhances antitumor activity of paclitaxel in ovarian cancer through Src signaling

    PubMed Central

    XIAO, JUAN; XU, MANMAN; HOU, TENG; HUANG, YONGWEN; YANG, CHENLU; LI, JUNDONG

    2015-01-01

    Src family tyrosine kinase (SFK) activation is associated with ovarian cancer progression. Therefore, SFKs are targets for the development of potential treatments of ovarian cancer. Dasatinib is a tyrosine kinase inhibitor that targets SFK activity, and is used for the treatment of B cell and Abelson lymphomas. At the present time, the potential effect of dasatinib on ovarian cancer is not clear. The aim of the present study was to investigate the antitumor activity of dasatinib, alone and in combination with paclitaxel, in ovarian cancer in vitro and in vivo. In the present study, the expression of Src and phospho-Src-Y416 (p-Src) was measured in six ovarian cancer cell lines using western blotting and immunohistochemistry. In addition, cell viability and apoptosis were measured using an MTT assay and annexin V-fluorescein isothiocyanate staining. An ovarian cancer murine xenograft model was established, in order to evaluate the antitumor effect of dasatinib alone and in combination with paclitaxel in ovarian cancer. High levels of p-Src protein expression were observed in all cell lines, as compared with healthy cells, which indicated activation of the Src signaling pathway. p-Src expression increased in ovarian cancer cells following paclitaxel treatment. Dasatinib treatment demonstrated anti-ovarian cancer properties, by downregulating p-Src expression and by inducing cancer cell apoptosis. Combined treatment with dasatinib and paclitaxel markedly inhibited proliferation and promoted apoptosis of ovarian cancer cells, compared with control cells. Combined dasatinib and paclitaxel treatment exhibited antitumor activities in vivo and in vitro (combination indices, 0.25–0.93 and 0.31–0.75; and tumor growth inhibitory rates, 76.7% and 58.5%, in A2780 and HO8910 cell lines, respectively), compared with paclitaxel treatment alone. Dasatinib monotherapy demonstrated anti-ovarian cancer activities. The effects of dasatinib and paclitaxel treatments on ovarian

  17. Treatment of patients with aortic atherosclerotic disease with paclitaxel-associated lipid nanoparticles

    PubMed Central

    Shiozaki, Afonso A.; Senra, Tiago; Morikawa, Aleksandra T.; Deus, Débora F.; Paladino, Antonio T; Pinto, Ibraim M.F.; Maranhão, Raul C.

    2016-01-01

    OBJECTIVE: The toxicity of anti-cancer chemotherapeutic agents can be reduced by associating these compounds, such as the anti-proliferative agent paclitaxel, with a cholesterol-rich nanoemulsion (LDE) that mimics the lipid composition of low-density lipoprotein (LDL). When injected into circulation, the LDE concentrates the carried drugs in neoplastic tissues and atherosclerotic lesions. In rabbits, atherosclerotic lesion size was reduced by 65% following LDE-paclitaxel treatment. The current study aimed to test the effectiveness of LDE-paclitaxel on inpatients with aortic atherosclerosis. METHODS: This study tested a 175 mg/m2 body surface area dose of LDE-paclitaxel (intravenous administration, 3/3 weeks for 6 cycles) in patients with aortic atherosclerosis who were aged between 69 and 86 yrs. A control group of 9 untreated patients with aortic atherosclerosis (72-83 yrs) was also observed. RESULTS: The LDE-paclitaxel treatment elicited no important clinical or laboratory toxicities. Images were acquired via multiple detector computer tomography angiography (64-slice scanner) before treatment and at 1-2 months after treatment. The images showed that the mean plaque volume in the aortic artery wall was reduced in 4 of the 8 patients, while in 3 patients it remained unchanged and in one patient it increased. In the control group, images were acquired twice with an interval of 6-8 months. None of the patients in this group exhibited a reduction in plaque volume; in contrast, the plaque volume increased in three patients and remained stable in four patients. During the study period, one death unrelated to the treatment occurred in the LDE-paclitaxel group and one death occurred in the control group. CONCLUSION: Treatment with LDE-paclitaxel was tolerated by patients with cardiovascular disease and showed the potential to reduce atherosclerotic lesion size.

  18. Gene and microRNA expression reveals sensitivity to paclitaxel in laryngeal cancer cell line

    PubMed Central

    Xu, Cheng-Zhi; Xie, Jin; Jin, Bin; Chen, Xin-Wei; Sun, Zhen-Feng; Wang, Bao-Xing; Dong, Pin

    2013-01-01

    Paclitaxel is a widely used chemotherapy drug for advanced laryngeal cancer patients. However, the fact that there are 20-40% of advanced laryngeal cancer patients do not response to paclitaxel makes it necessary to figure out potential biomarkers for paclitaxel sensitivity prediction. In this work, Hep2, a laryngeal cancer cell line, untreated or treated with lower dose of paclitaxel for 24 h, was applied to DNA microarray chips for gene and miR expression profile analysis. Expression of eight genes altered significantly following paclitaxel treatment, which was further validated by quantitative real-time PCR. Four up-regulated genes were ID2, BMP4, CCL4 and ACTG2, in which ID2 and BMP4 were implicated to be involved in several drugs sensitivity. While the down-regulated four genes, MAPK4, FASN, INSIG1 and SCD, were mainly linked to the endoplasmic reticulum and fatty acid biosynthesis, these two cell processes that are associated with drug sensitivity by increasing evidences. After paclitaxel treatment, expression of 49 miRs was significantly altered. Within these miRs, the most markedly expression-changed were miR-31-star, miR-1264, miR-3150b-5p and miR-210. While the miRs putatively modulated the mRNA expression of the most significantly expression-altered genes were miR-1264, miR-130a, miR-27b, miR-195, miR-1291, miR-214, miR-1277 and miR-1265, which were obtained by miR target prediction and miRNA target correlation. Collectively, our study might provide potential biomarkers for paclitaxel sensitivity prediction and drug resistance targets in laryngeal cancer patients. PMID:23826416

  19. The small molecule tyrosine kinase inhibitor NVP-BHG712 antagonizes ABCC10-mediated paclitaxel resistance: a preclinical and pharmacokinetic study.

    PubMed

    Kathawala, Rishil J; Wei, Liuya; Anreddy, Nagaraju; Chen, Kang; Patel, Atish; Alqahtani, Saeed; Zhang, Yun-Kai; Wang, Yi-Jun; Sodani, Kamlesh; Kaddoumi, Amal; Ashby, Charles R; Chen, Zhe-Sheng

    2015-01-01

    Paclitaxel exhibits clinical activity against a wide variety of solid tumors. However, resistance to paclitaxel significantly attenuates the response to chemotherapy. The ABC transporter subfamily C member 10 (ABCC10), also known as multi-drug resistance protein 7 (MRP7) efflux transporter, is a major mediator of paclitaxel resistance. Here, we determine the effect of NVP-BHG712, a specific EphB4 receptor inhibitor, on 1) paclitaxel resistance in HEK293 cells transfected with ABCC10, 2) the growth of tumors in athymic nude mice that received NVP-BHG712 and paclitaxel systemically and 3) the pharmacokinetics of paclitaxel in presence or absence of NVP-BHG712. NVP-BHG712 (0.5 μM), in HEK293/ABCC10 cells, significantly enhanced the intracellular accumulation of paclitaxel by inhibiting the efflux activity of ABCC10 without altering the expression level of the ABCC10 protein. Furthermore, NVP-BHG712 (25 mg/kg, p.o., q3d x 6), in combination with paclitaxel (15 mg/kg, i.p., q3d x 6), significantly inhibited the growth of ABCC10-expressing tumors in athymic nude mice. NVP-BHG712 administration significantly increased the levels of paclitaxel in the tumors but not in plasma compared to paclitaxel alone. The combination of NVP-BHG712 and paclitaxel could serve as a novel and useful therapeutic strategy to attenuate paclitaxel resistance mediated by the expression of the ABCC10 transporter. PMID:25402202

  20. Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors.

    PubMed

    Wang, Jie; Lu, Ze; Wang, Junfeng; Cui, Minjian; Yeung, Bertrand Z; Cole, David J; Wientjes, M Guillaume; Au, Jessie L-S

    2015-10-28

    The major barrier for using small interfering RNA (siRNA) as cancer therapeutics is the inadequate delivery and transfection in solid tumors. We have previously shown that paclitaxel tumor priming, by inducing apoptosis, expands the tumor interstitial space, improves the penetration and dispersion of nanoparticles and siRNA-lipoplexes in 3-dimensional tumor histocultures, and promotes the delivery and transfection efficiency of siRNA-lipoplexes under the locoregional setting in vivo (i.e., intraperitoneal treatment of intraperitoneal tumors). The current study evaluated whether tumor priming is functional for systemically delivered siRNA via intravenous injection, which would subject siRNA to several additional delivery barriers and elimination processes. We used the same pegylated cationic (PCat)-siRNA lipoplexes as in the intraperitoneal study to treat mice bearing subcutaneous human pancreatic Hs766T xenograft tumors. The target gene was survivin, an inducible chemoresistance gene. The results show single agent paclitaxel delayed tumor growth but also significantly induced the survivin protein level in residual tumors, whereas addition of PCat-siSurvivin completely reversed the paclitaxel-induced survivin and enhanced the paclitaxel activity (p<0.05). In comparison, PCat-siSurvivin alone did not yield survivin knockdown or antitumor activity, indicating the in vivo effectiveness of intravenous siRNA-mediated gene silencing requires paclitaxel cotreatment. Additional in vitro studies showed that paclitaxel promoted the cytoplasmic release of siGLO, a 22 nucleotide double-stranded RNA that has no mRNA targets, from its PCat lipoplex and/or endosomes/lysosomes. Taken together, our earlier and current data show paclitaxel tumor priming, by promoting the interstitial transport and cytoplasmic release, is critical to promote the delivery and transfection of siRNA in vivo. In addition, because paclitaxel has broad spectrum activity and is used to treat multiple types

  1. Independent Review of E2100: A Phase III Trial of Bevacizumab Plus Paclitaxel Versus Paclitaxel in Women With Metastatic Breast Cancer

    PubMed Central

    Gray, Robert; Bhattacharya, Suman; Bowden, Christopher; Miller, Kathy; Comis, Robert L.

    2009-01-01

    Purpose E2100, an open-label, randomized, phase III trial conducted by the Eastern Cooperative Oncology Group (ECOG), demonstrated a significant improvement in progression-free survival (PFS) and overall response rate (ORR) with paclitaxel plus bevacizumab compared with paclitaxel alone as initial chemotherapy for patients with HER2-negative metastatic breast cancer. Methods An independent, blinded review of radiologic and clinical data was performed, assessing progression and response according to Response Evaluation Criteria in Solid Tumors. In addition, ECOG's investigator assessments were reanalyzed using the same methods applied to the independent review. The primary end point was PFS as assessed by an independent review facility (IRF). Results The addition of bevacizumab to paclitaxel resulted in a statistically significant improvement in PFS using both the IRF and investigator assessments. Hazard ratios for PFS (0.48, 95% CI, 0.385 to 0.607; P < .0001 for the IRF v 0.42, 95% CI, 0.34 to 0.52; P < .0001 for ECOG investigators) and the improvement in median PFS (11.3 v 5.8 months for the IRF v 11.4 v 5.8 months for ECOG investigators) were similar. Among patients with measurable disease at baseline, the IRF-assessed ORR was significantly higher in patients treated with paclitaxel and bevacizumab (48.9% v 22.2%; P < .0001). Conclusion The risk of progression was reduced by more than half and the ORR more than doubled with the addition of bevacizumab to weekly paclitaxel in both analyses, confirming a substantial and robust bevacizumab treatment effect. The consistency between the IRF and ECOG analyses validates the original data previously reported by ECOG in this open-label trial. PMID:19720913

  2. Contribution of taxane biosynthetic pathway gene expression to observed variability in paclitaxel accumulation in Taxus suspension cultures

    PubMed Central

    Patil, Rohan A.; Kolewe, Martin E.; Normanly, Jennifer; Walker, Elsbeth L.; Roberts, Susan C.

    2012-01-01

    Variability in product accumulation is one of the major obstacles limiting the widespread commercialization of plant cell culture technology to supply natural product pharmaceuticals. Despite extensive process engineering efforts, which have led to increased yields, plant cells exhibit variability in productivity that is poorly understood. Elicitation of Taxus cultures with methyl jasmonate (MeJA) induces paclitaxel accumulation, but to varying extents in different cultures. In this work, cultures with different aggregation profiles were established to create predictable differences in paclitaxel accumulation upon MeJA elicitation. Expression of known paclitaxel biosynthetic genes in MeJA-elicited cultures exhibiting both substantial (15-fold) and moderate (2-fold) differences in paclitaxel accumulation was analyzed using qRT-PCR. Each population exhibited the characteristic large increase in paclitaxel pathway gene expression following MeJA elicitation; however, differences in expression between populations were minor, and only observed for the cultures with the 15-fold variation in paclitaxel content. These data suggest that although upregulation of biosynthetic pathway gene expression contributes to observed increases in paclitaxel synthesis upon elicitation with MeJA, there are additional factors that need to be uncovered before paclitaxel productivity can be fully optimized. PMID:22095859

  3. Paclitaxel promotes a caspase 8-mediated apoptosis via death effector domain association with microtubules

    PubMed Central

    Mielgo, Ainhoa; Torres, Vicente A.; Clair, Kiran; Barbero, Simone; Stupack, Dwayne G.

    2009-01-01

    Microtubule-perturbing drugs have become front line chemotherapeutics, inducing cell cycle crisis as a major mechanism of action. However, these agents exhibit pleiotropic effects on cells, and can induce apoptosis via other means. Paclitaxel, a microtubule-stabilizing agent, induces a caspase-dependent apoptosis, though the precise mechanism(s) remain unclear. Here, we used genetic approaches to evaluate the role of caspase 8 in paclitaxel-mediated apoptosis. We observed that caspase 8-expressing cells are more sensitive to paclitaxel than caspase 8-deficient cells. Mechanistically, caspase 8 was found associated with microtubules, and this interaction increased following paclitaxel-treatment. The prodomains (DEDs) of caspase 8 were sufficient for interaction with microtubules, but the caspase 8 holoprotein was required for apoptosis. DED-only forms of caspase 8 were found in both primary and tumor cell lines, associating with perinuclear microtubules and the centrosome. Microtubule-association, and paclitaxel-sensitivity, depends upon a critical lysine (K156) within a microtubule-binding motif (KLD) in DED-b of caspase 8. The results reveal an unexpected pathway of apoptosis mediated by caspase 8. PMID:19668227

  4. IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel.

    PubMed

    Wee, Zhen Ning; Yatim, Siti Maryam J M; Kohlbauer, Vera K; Feng, Min; Goh, Jian Yuan; Bao, Yi; Yi, Bao; Lee, Puay Leng; Zhang, Songjing; Wang, Pan Pan; Lim, Elgene; Tam, Wai Leong; Cai, Yu; Ditzel, Henrik J; Hoon, Dave S B; Tan, Ern Yu; Yu, Qiang

    2015-01-01

    Metastatic tumour recurrence due to failed treatments remains a major challenge of breast cancer clinical management. Here we report that interleukin-1 receptor-associated kinase 1 (IRAK1) is overexpressed in a subset of breast cancers, in particular triple-negative breast cancer (TNBC), where it acts to drive aggressive growth, metastasis and acquired resistance to paclitaxel treatment. We show that IRAK1 overexpression confers TNBC growth advantage through NF-κB-related cytokine secretion and metastatic TNBC cells exhibit gain of IRAK1 dependency, resulting in high susceptibility to genetic and pharmacologic inhibition of IRAK1. Importantly, paclitaxel treatment induces strong IRAK1 phosphorylation, an increase in inflammatory cytokine expression, enrichment of cancer stem cells and acquired resistance to paclitaxel treatment. Pharmacologic inhibition of IRAK1 is able to reverse paclitaxel resistance by triggering massive apoptosis at least in part through inhibiting p38-MCL1 pro-survival pathway. Our study thus demonstrates IRAK1 as a promising therapeutic target for TNBC metastasis and paclitaxel resistance. PMID:26503059

  5. A clinical and pharmacokinetic study of the combination of carboplatin and paclitaxel for epithelial ovarian cancer.

    PubMed Central

    Siddiqui, N.; Boddy, A. V.; Thomas, H. D.; Bailey, N. P.; Robson, L.; Lind, M. J.; Calvert, A. H.

    1997-01-01

    The aim of this phase I study was to determine the maximum tolerated dose of a 3-h infusion of paclitaxel, combined with carboplatin at a fixed AUC of 7 mg ml-1 min every 4 weeks for up to six cycles and to evaluate any possible pharmacokinetic interaction. Twelve chemonaive patients with ovarian cancer were treated with paclitaxel followed by a 30-min infusion of carboplatin. Paclitaxel dose was escalated from 150 mg m-2 to 225 mg m-2 in cohorts of three patients. Carboplatin dose was based on renal function. Pharmacokinetic studies were performed in nine patients (at least two at each dose level). A total of 66 courses were evaluable for assessment. Grade 3 or 4 neutropenia was seen in 70% of the courses, however hospitalization was not required. Grade 3 or 4 thrombocytopenia occurred in 24% of the courses. Alopecia, myalgia and peripheral neuropathy were common but rarely severe. The pharmacokinetics of paclitaxel was non-linear and did not appear to be influenced by co-administration of carboplatin. The AUC of carboplatin was 7.0 +/- 1.4 mg ml-1 min, indicating that there was no pharmacokinetic interaction. The combination of carboplatin and paclitaxel may be administered as first-line treatment for advanced ovarian cancer. Although myelosuppression is the dose-limiting toxicity of the component drugs, the severity of thrombocytopenia was less than anticipated. The results of this study, with only a small number of patients, need to be confirmed in future investigations. PMID:9010040

  6. Peripheral Neuropathy Caused by Paclitaxel and Docetaxel: An Evaluation and Comparison of Symptoms

    PubMed Central

    Tofthagen*, Cindy; McAllister, R. Denise; Visovsky, Constance

    2013-01-01

    The purpose of this study was to explore the prevalence, severity, distress, and timing of neuropathic symptoms in cancer patients receiving taxanes and to explore neuropathy-related interference with activities. In this descriptive, cross-sectional study, 68 adult outpatients receiving paclitaxel (n = 36) and docetaxel (n = 32) completed the Chemotherapy Induced Peripheral Neuropathy Assessment Tool and a demographic questionnaire. Muscle or joint aches were the most prevalent symptom. Muscle or joint aches were also the most severe and distressing symptom in persons receiving paclitaxel. Participants receiving paclitaxel reported that neuropathic symptoms interfered with a mean of 7.3 (standard deviation [SD] = 4.1) of 14 activities. Nerve pain was the most severe and distressing symptom in persons receiving docetaxel. Participants receiving docetaxel reported that neuropathic symptoms interfered with a mean of 7.1 (SD = 4.1) of 14 activities. Numbness in the feet was the most frequent or constant symptom in persons receiving paclitaxel or docetaxel. Patients receiving paclitaxel and docetaxel experienced similar symptoms of peripheral neuropathy and interference with activities. Continued focus on treatment of painful neuropathy including myalgias and arthralgias is needed. PMID:25032002

  7. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines.

    PubMed

    Muthusamy, Ganesan; Balupillai, Agilan; Ramasamy, Karthikeyan; Shanmugam, Mohana; Gunaseelan, Srithar; Mary, Beaulah; Prasad, N Rajendra

    2016-09-01

    Multidrug resistance (MDR) remains a major obstacle in cancer chemotherapy. The use of the dietary phytochemicals as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention as a plausible approach for overcoming the drug resistance. The aim of this study was to investigate whether a naturally occurring diet-based phenolic acid, ferulic acid, could sensitize paclitaxel efficacy in ABCB1 overexpressing (P-glycoprotein) colchicine selected KB Ch(R)8-5 cell line. In vitro drug efflux assays demonstrated that ferulic acid inhibits P-glycoprotein transport function in drug resistant KB Ch(R)8-5 cell lines. However, ferulic acid significantly downregulates ABCB1 expression in a concentration dependent manner. Cytotoxicity assay reveals that ferulic acid decreased paclitaxel resistance in KBCh(R)8-5 and HEK293/ABCB1 cells, which indicates its chemosensitizing potential. Clonogenic cell survival assay and apoptotic morphological staining further confirm the chemosensitizing potential of ferulic acid in drug resistant KB Ch(R)8-5 cell lines. Ferulic acid treatment enhances paclitaxel mediated cell cycle arrest and upregulates paclitaxel-induced apoptotic signaling in KB resistant cells. Hence, it has been concluded that downregulation of ABCB1 and subsequent induction of paclitaxel-mediated cell cycle arrest and apoptotic signaling may be the cause for the chemosensitizing potential of ferulic acid in P-gp overexpressing cell lines. PMID:27262378

  8. E2F Inhibition Synergizes with Paclitaxel in Lung Cancer Cell Lines

    PubMed Central

    Kurtyka, Courtney A.; Chen, Lu; Cress, W. Douglas

    2014-01-01

    The CDK/Rb/E2F pathway is commonly disrupted in lung cancer, and thus, it is predicted that blocking the E2F pathway would have therapeutic potential. To test this hypothesis, we have examined the activity of HLM006474 (a small molecule pan-E2F inhibitor) in lung cancer cell lines as a single agent and in combination with other compounds. HLM006474 reduces the viability of both SCLC and NSCLC lines with a biological IC50 that varies between 15 and 75 µM, but with no significant difference between the groups. Combination of HLM006474 with cisplatin and gemcitabine demonstrate little synergy; however, HLM006474 synergizes with paclitaxel. Surprisingly, we discovered that brief treatment of cells with HLM006474 led to an increase of E2F3 protein levels (due to de-repression of these promoter sites). Since paclitaxel sensitivity has been shown to correlate with E2F3 levels, we hypothesized that HLM006474 synergy with paclitaxel may be mediated by transient induction of E2F3. To test this, H1299 cells were depleted of E2F3a and E2F3b with siRNA and treated with paclitaxel. Assays of proliferation showed that both siRNAs significantly reduced paclitaxel sensitivity, as expected. Taken together, these results suggest that HLM006474 may have efficacy in lung cancer and may be useful in combination with taxanes. PMID:24831239

  9. Paclitaxel Induced MDS and AML: A Case Report and Literature Review

    PubMed Central

    Bhatnagar, Udit Bhaskar; Singh, Daulath; Glazyrin, Alexy; Moormeier, Jill

    2016-01-01

    Therapy related acute myelogenous leukemia (AML) and myelodysplastic syndromes (MDS) have been classically linked to alkylating agents and topoisomerase inhibitors. They constitute about 1% of all AMLs. There is less evidence on association of taxanes (paclitaxel and docetaxel) with these myeloid neoplasms. We present a case of paclitaxel therapy related acute myelogenous leukemia after treatment of endometrial cancer with a regimen containing paclitaxel and carboplatin. A 63-year-old female underwent surgery followed by a total of 6 cycles of chemotherapy with carboplatin and paclitaxel. Six months after last cycle of chemotherapy, she was diagnosed with myelodysplastic syndrome with refractory anemia and excess blasts. Six weeks later, she had worsening anemia and thrombocytopenia which prompted a bone marrow biopsy which revealed acute myelomonocytic leukemia. A thorough literature review revealed 12 other case reports where taxanes have been implicated in the development of therapy related myeloid neoplasm. Based on the timeline of events in our patient, paclitaxel is the likely culprit in the pathogenesis of this myeloid neoplasm. This rare but significantly grave adverse effect should be kept in consideration when deciding on treatment options for gynecological malignancies. PMID:27057370

  10. Redirecting Transport of Nanoparticle Albumin-Bound Paclitaxel to Macrophages Enhances Therapeutic Efficacy against Liver Metastases.

    PubMed

    Tanei, Tomonori; Leonard, Fransisca; Liu, Xuewu; Alexander, Jenolyn F; Saito, Yuki; Ferrari, Mauro; Godin, Biana; Yokoi, Kenji

    2016-01-15

    Current treatments for liver metastases arising from primary breast and lung cancers are minimally effective. One reason for this unfavorable outcome is that liver metastases are poorly vascularized, limiting the ability to deliver therapeutics from the systemic circulation to lesions. Seeking to enhance transport of agents into the tumor microenvironment, we designed a system in which nanoparticle albumin-bound paclitaxel (nAb-PTX) is loaded into a nanoporous solid multistage nanovector (MSV) to enable the passage of the drug through the tumor vessel wall and enhance its interaction with liver macrophages. MSV enablement increased nAb-PTX efficacy and survival in mouse models of breast and lung liver metastasis. MSV-nAb-PTX also augmented the accumulation of paclitaxel and MSV in the liver, specifically in macrophages, whereas paclitaxel levels in the blood were unchanged after administering MSV-nAb-PTX or nAb-PTX. In vitro studies demonstrated that macrophages treated with MSV-nAb-PTX remained viable and were able to internalize, retain, and release significantly higher quantities of paclitaxel compared with treatment with nAb-PTX. The cytotoxic potency of the released paclitaxel was also confirmed in tumor cells cultured with the supernatants of macrophage treated with MSV-nAB-PTX. Collectively, our findings showed how redirecting nAb-PTX to liver macrophages within the tumor microenvironment can elicit a greater therapeutic response in patients with metastatic liver cancer, without increasing systemic side effects. PMID:26744528

  11. Effect of unpurified Cremophor EL on the solution stability of paclitaxel.

    PubMed

    Gogate, Uday S; Schwartz, Philip A; Agharkar, Shreeram N

    2009-01-01

    Taxol for Injection Concentrate contains a solution of paclitaxel in a 50:50 v/v mixture of Cremophor EL (cleaned):ethanol. Cleaned, rather than unpurified, Cremophor EL is used as a cosolvent because paclitaxel was observed to be less stable in the presence of unpurified Cremophor. In order to understand the cause of this paclitaxel instability, various studies were performed. The results of these studies, coupled with the examination of degradation products, suggested that carboxylate anions present in the unpurified Cremophor catalyze the degradation of paclitaxel by general base catalyzed ethanolysis. Stabilization of Taxol for Injection Concentrate prepared with unpurified Cremophor can be achieved by addition of strong acids, resulting in neutralization of the carboxylate anions. Separately, a quality control test for the cleaning procedure of Cremophor is needed to insure stability of Taxol for Injection Concentrate. A colorimetric indicator test was identified which can distinguish between good and poor quality cleaned Cremophor as it pertains to paclitaxel stability. PMID:18791935

  12. Paclitaxel Through the Ages of Anticancer Therapy: Exploring Its Role in Chemoresistance and Radiation Therapy

    PubMed Central

    Barbuti, Anna Maria; Chen, Zhe-Sheng

    2015-01-01

    Paclitaxel (Taxol®) is a member of the taxane class of anticancer drugs and one of the most common chemotherapeutic agents used against many forms of cancer. Paclitaxel is a microtubule-stabilizer that selectively arrests cells in the G2/M phase of the cell cycle, and found to induce cytotoxicity in a time and concentration-dependent manner. Paclitaxel has been embedded in novel drug formulations, including albumin and polymeric micelle nanoparticles, and applied to many anticancer treatment regimens due to its mechanism of action and radiation sensitizing effects. Though paclitaxel is a major anticancer drug which has been used for many years in clinical treatments, its therapeutic efficacy can be limited by common encumbrances faced by anticancer drugs. These encumbrances include toxicities, de novo refraction, and acquired multidrug resistance (MDR). This article will give a current and comprehensive review of paclitaxel, beginning with its unique history and pharmacology, explore its mechanisms of drug resistance and influence in combination with radiation therapy, while highlighting current treatment regimens, formulations, and new discoveries. PMID:26633515

  13. Pretreatment H2 receptor antagonists that differ in P450 modulation activity: comparative effects on paclitaxel clearance rates and neutropenia.

    PubMed

    Slichenmyer, W J; Donehower, R C; Chen, T L; Bowling, M K; McGuire, W P; Rowinsky, E K

    1995-01-01

    Histamine-2 receptor antagonists (H2RAs) are principal components of the premedication regimen used to prevent major hypersensitivity reactions in patients receiving paclitaxel. Several different H2RAs, including cimetidine, ranitidine and famotidine, have been used in clinical trials of paclitaxel, as well as by clinicians in different geographic regions and hospitals primarily because of differences in the availability of the various H2RAs. However, H2RAs have highly variable cytochrome P450-modulating capabilities, and the P450 system appears to play a major role in paclitaxel metabolism and disposition. Therefore, the use of different H2RAs may result in different pharmacologic, toxicologic and antitumor profiles due to differential effects on paclitaxel metabolism. This study evaluated whether cimetidine and famotidine, which possess disparate P450-modulating capabilities, differentially affect paclitaxel clearance rates and the agent's principal toxicity, neutropenia. Women with advanced, platinum-refractory ovarian carcinoma received two courses of treatment with 135 mg/m2 paclitaxel over 24 h while participating in the National Cancer Institute's Treatment Referral Center Protocol. A crossover design was employed in which consecutive patients received either 300 mg cimetidine i.v. or 20 mg famotidine i.v. before their first course of paclitaxel and the alternate H2RA before their second course. In order to evaluate the differential effects of cimetidine and famotidine on pertinent pharmacologic and toxicologic parameters in the same individual, paclitaxel concentrations at steady-state (Css), paclitaxel clearance rates, and absolute neutrophil counts (ANCs) were obtained during both courses. Paclitaxel Css values were not significantly different in individual patients when either cimetidine or famotidine preceded paclitaxel (p = 0.16). Mean paclitaxel clearance rates were 271 and 243 ml/min per m2 following cimetidine and famotidine, respectively. These

  14. Paclitaxel inhibits selenoprotein S expression and attenuates endoplasmic reticulum stress.

    PubMed

    Qin, Hong-Shuang; Yu, Pei-Pei; Sun, Ying; Wang, Dan-Feng; Deng, Xiao-Fen; Bao, Yong-Li; Song, Jun; Sun, Lu-Guo; Song, Zhen-Bo; Li, Yu-Xin

    2016-06-01

    The primary effect of the endoplasmic reticulum (ER) stress response or unfolded protein response (UPR) is to reduce the load of unfolded protein and promote survival. However, prolonged and severe ER stress leads to tissue injury and serious diseases. Thus, it is important to identify drugs that can attenuate ER stress for the treatment of diseases. Natural products continue to provide lead compounds for drug discovery and front‑line pharmacotherapy for people worldwide. Previous studies have indicated that selenoprotein S (SelS) is a sensitive and ideal maker of ER stress. In the present study, a firefly luciferase reporter driven by the SelS gene promoter was used to screen for natural compounds capable of attenuating ER stress. From this, paclitaxel (PTX) was identified to efficiently inhibit the promoter activity of the SelS gene, and further results revealed that PTX significantly inhibited the tunicamycin‑induced upregulation of SelS at the mRNA and protein levels in HepG2 and HEK293T cells. In addition, PTX was able to efficiently inhibit the expression of the ER stress marker, glucose‑regulated protein 78, in ER stress, indicating that PTX may reverse ER stress. Taken together, these results suggest that PTX is able to inhibit SelS expression during ER stress and attenuate ER stress. PMID:27109260

  15. Phase I studies of gemcitabine combined with carboplatin or paclitaxel.

    PubMed

    Pedersen, A G

    1997-04-01

    Gemcitabine is a novel nucleoside analogue with a unique mechanism of action. In light of its good single-agent activity in several solid tumors, generally mild toxicity profile, and potential for synergy, combination phase I studies with other active chemotherapeutic agents have been conducted. In two studies the combination of gemcitabine and carboplatin was used to treat patients with non-small cell lung cancer. Gemcitabine was administered weekly x 3 every 4 weeks, and carboplatin was given on day 1. Although dose-limiting myelotoxicity was observed, encouraging activity was noted. In other studies patients with recurrent or persistent ovarian cancer or with refractory solid tumors were treated with weekly gemcitabine and paclitaxel on a 28-day schedule or with both drugs given every 2 weeks. Dose escalation was possible and toxicities were manageable. The effect of sequence of drug administration on the toxicity profile was also examined. Further trials to establish the efficacy of these promising approaches as well as combinations of all three drugs are needed. PMID:9194483

  16. Paclitaxel isomerisation in polymeric micelles based on hydrophobized hyaluronic acid.

    PubMed

    Smejkalová, Daniela; Nešporová, Kristina; Hermannová, Martina; Huerta-Angeles, Gloria; Cožíková, Dagmar; Vištejnová, Lucie; Safránková, Barbora; Novotný, Jaroslav; Kučerík, Jiří; Velebný, Vladimír

    2014-05-15

    Physical and chemical structure of paclitaxel (PTX) was studied after its incorporation into polymeric micelles made of hyaluronic acid (HA) (Mw=15 kDa) grafted with C6 or C18:1 acyl chains. PTX was physically incorporated into the micellar core by solvent evaporation technique. Maximum loading capacity for HAC6 and HAC18:1 was determined to be 2 and 14 wt.%, respectively. The loading efficiency was higher for HAC18:1 and reached 70%. Independently of the derivative, loaded HA micelles had spherical size of approximately 60-80 nm and demonstrated slow and sustained release of PTX in vitro. PTX largely changed its form from crystalline to amorphous after its incorporation into the micelle's interior. This transformation increased PTX sensitivity towards stressing conditions, mainly to UV light exposure, during which the structure of amorphous PTX isomerized and formed C3C11 bond within its structure. In vitro cytotoxicity assay revealed that polymeric micelles loaded with PTX isomer had higher cytotoxic effect to normal human dermal fibroblasts (NHDF) and human colon carcinoma cells (HCT-116) than the same micelles loaded with non-isomerized PTX. Further observation indicated that PTX isomer influenced in different ways cell morphology and markers of cell cycle. Taken together, PTX isomer loaded in nanocarrier systems may have improved anticancer activity in vivo than pure PTX. PMID:24614580

  17. Paclitaxel inhibits selenoprotein S expression and attenuates endoplasmic reticulum stress

    PubMed Central

    QIN, HONG-SHUANG; YU, PEI-PEI; SUN, YING; WANG, DAN-FENG; DENG, XIAO-FEN; BAO, YONG-LI; SONG, JUN; SUN, LU-GUO; SONG, ZHEN-BO; LI, YU-XIN

    2016-01-01

    The primary effect of the endoplasmic reticulum (ER) stress response or unfolded protein response (UPR) is to reduce the load of unfolded protein and promote survival. However, prolonged and severe ER stress leads to tissue injury and serious diseases. Thus, it is important to identify drugs that can attenuate ER stress for the treatment of diseases. Natural products continue to provide lead compounds for drug discovery and front-line pharmacotherapy for people worldwide. Previous studies have indicated that selenoprotein S (SelS) is a sensitive and ideal maker of ER stress. In the present study, a firefly luciferase reporter driven by the SelS gene promoter was used to screen for natural compounds capable of attenuating ER stress. From this, paclitaxel (PTX) was identified to efficiently inhibit the promoter activity of the SelS gene, and further results revealed that PTX significantly inhibited the tunicamycin-induced upregulation of SelS at the mRNA and protein levels in HepG2 and HEK293T cells. In addition, PTX was able to efficiently inhibit the expression of the ER stress marker, glucose-regulated protein 78, in ER stress, indicating that PTX may reverse ER stress. Taken together, these results suggest that PTX is able to inhibit SelS expression during ER stress and attenuate ER stress. PMID:27109260

  18. Stable and Efficient Paclitaxel Nanoparticles for Targeted Glioblastoma Therapy

    PubMed Central

    Mu, Qingxin; Jeon, Mike; Hsiao, Meng-Hsuan; Patton, Victoria K.; Wang, Kui; Press, Oliver W.

    2015-01-01

    Development of efficient nanoparticles (NPs) for cancer therapy remains a challenge. NPs are required to have high stability, uniform size, sufficient drug loading, targeting capability, and ability to overcome drug resistance. In this study, we report the development of a nanoparticle formulation that can meet all these challenging requirements for targeted glioblastoma multiform (GBM) therapy. This multifunctional nanoparticle is composed of a polyethylene glycol (PEG) coated magnetic iron oxide NP conjugated with cyclodextrin (CD) and chlorotoxin (CTX) and loaded with fluorescein and paclitaxel (PTX) (IONP-PTX-CTX-FL). The physicochemical properties of the IONP-PTX-CTX-FL were characterized by TEM, dynamic light scattering (DLS), and HPLC. The cellular uptake of NPs was studied using flow cytometry and confocal microscopy. Cell viability and apoptosis were assessed with the Alamar Blue viability assay and flow cytometry, respectively. The IONP-PTX-CTX-FL had a uniform size of ~44 nm and high stability in cell culture medium. Importantly, the presence of CTX on NPs enhanced the uptake of the NPs by GBM cells and improved the efficacy of PTX in killing both GBM and GBM drug-resistant cells. The IONP-PTX-CTX-FL has demonstrated its great potential for brain cancer therapy and may also be used to deliver PTX to treat other cancers. PMID:25761648

  19. Polymerizable disulfide paclitaxel prodrug for controlled drug delivery.

    PubMed

    Ding, Yi; Chen, Wulian; Hu, Jianhua; Du, Ming; Yang, Dong

    2014-11-01

    A polymerizable disulfide paclitaxel (PTX) prodrug was synthesized by the consequential esterification reactions of 3,3'-dithiodipropionic acid (DTPA), a disulfide compound containing two active carboxyl groups, with 2-hydroxyethyl methacrylate (HEMA) and PTX. The structure of the prodrug was confirmed by (1)H NMR characterization. Then, the polymerizable prodrug was copolymerized with poly(ethylene glycol) methyl ether methacrylate (PEGMEA) to obtain a copolymer with hydrophilic PEG side chains and PTX covalently linked onto the backbone via disulfide bonds. The loading content of PTX was 23%. In aqueous solution, this copolymer prodrug could self-assemble into micelles, with hydrophobic PTX as the cores and hydrophilic PEG-segment as the shells. In vitro cell assay demonstrated that this copolymer prodrug showed more apparent cytotoxicity to cancer cells than to human normal cells. After incubation for 48 h, the cell viability of HEK-293 cells (human embryo kidney cells) at 0.1 μg/mL PTX still remained more than 90%, however, that of HeLa cells (human cervical cancer cells) decreased to 52%. PMID:25280719

  20. Stable and efficient Paclitaxel nanoparticles for targeted glioblastoma therapy.

    PubMed

    Mu, Qingxin; Jeon, Mike; Hsiao, Meng-Hsuan; Patton, Victoria K; Wang, Kui; Press, Oliver W; Zhang, Miqin

    2015-06-01

    Development of efficient nanoparticles (NPs) for cancer therapy remains a challenge. NPs are required to have high stability, uniform size, sufficient drug loading, targeting capability, and ability to overcome drug resistance. In this study, the development of a NP formulation that can meet all these challenging requirements for targeted glioblastoma multiform (GBM) therapy is reported. This multifunctional NP is composed of a polyethylene glycol-coated magnetic iron oxide NP conjugated with cyclodextrin and chlorotoxin (CTX) and loaded with fluorescein and paclitaxel (PTX) (IONP-PTX-CTX-FL). The physicochemical properties of the IONP-PTX-CTX-FL are characterized by transmission electron microscope, dynamic light scattering, and high-performance liquid chromatography. The cellular uptake of NPs is studied using flow cytometry and confocal microscopy. Cell viability and apoptosis are assessed with the Alamar Blue viability assay and flow cytometry, respectively. The IONP-PTX-CTX-FL had a uniform size of ≈44 nm and high stability in cell culture medium. Importantly, the presence of CTX on NPs enhanced the uptake of the NPs by GBM cells and improved the efficacy of PTX in killing both GBM and GBM drug-resistant cells. The IONP-PTX-CTX-FL demonstrated its great potential for brain cancer therapy and may also be used to deliver PTX to treat other cancers. PMID:25761648

  1. SPARC-Independent Delivery of Nab-Paclitaxel without Depleting Tumor Stroma in Patient-Derived Pancreatic Cancer Xenografts.

    PubMed

    Kim, Harrison; Samuel, Sharon; Lopez-Casas, Pedro; Grizzle, William; Hidalgo, Manuel; Kovar, Joy; Oelschlager, Denise; Zinn, Kurt; Warram, Jason; Buchsbaum, Donald

    2016-04-01

    The study goal was to examine the relationship between nab-paclitaxel delivery and SPARC (secreted protein acidic and rich in cysteine) expression in pancreatic tumor xenografts and to determine the antistromal effect of nab-paclitaxel, which may affect tumor vascular perfusion. SPARC-positive and -negative mice bearing Panc02 tumor xenografts (n = 5-6/group) were injected with IRDye 800CW (IR800)-labeled nab-paclitaxel. After 24 hours, tumors were collected and stained with DL650-labeled anti-SPARC antibody, and the correlation between nab-paclitaxel and SPARC distributions was examined. Eight groups of mice bearing either Panc039 or Panc198 patient-derived xenografts (PDX; 4 groups/model, 5 animals/group) were untreated (served as control) or treated with gemcitabine (100 mg/kg body weight, i.p., twice per week), nab-paclitaxel (30 mg/kg body weight, i.v., for 5 consecutive days), and these agents in combination, respectively, for 3 weeks, and tumor volume and perfusion changes were assessed using T2-weighted MRI and dynamic contrast-enhanced (DCE) MRI, respectively. All tumors were collected and stained with Masson's Trichrome Stain, followed by a blinded comparative analysis of tumor stroma density. IR800-nab-paclitaxel was mainly distributed in tumor stromal tissue, but nab-paclitaxel and SPARC distributions were minimally correlated in either SPARC-positive or -negative animals. Nab-paclitaxel treatment neither decreased tumor stroma nor increased tumor vascular perfusion in either PDX model when compared with control groups. These data suggest that the specific tumor delivery of nab-paclitaxel is not directly related to SPARC expression, and nab-paclitaxel does not deplete tumor stroma in general. Mol Cancer Ther; 15(4); 680-8. ©2016 AACR. PMID:26832793

  2. Paclitaxel and carboplatin in early phase studies: Roswell Park Cancer Institute experience in the subset of patients with lung cancer.

    PubMed

    Creaven, P J; Raghavan, D; Pendyala, L; Loewen, G; Kindler, H L; Berghorn, E J

    1997-08-01

    The combination of paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton, NJ) given by 3-hour infusion followed by carboplatin infused over 30 minutes has been evaluated in a series of phase I studies and is currently being explored in a phase II study in patients with limited- and extensive-stage small cell lung cancer. Pharmacokinetic measurements were performed at all dose levels in the phase I studies, in which the use of granulocyte colony-stimulating factor in previously treated patients enabled more than twice the dose of paclitaxel to be given with low to moderate doses of carboplatin (dosed to a target area under the concentration-time curve of 4.0 mg x min x mL[-1]). Treatment-naive patients tolerated high paclitaxel doses (270 mg/m2) with carboplatin (dosed to a target area under the curve of 4.5 mg x min x mL[-1]) without granulocyte colony-stimulating factor support. Twenty-three patients (including previously treated and untreated) with non-small cell lung cancer were entered at a variety of paclitaxel doses in the phase I studies. At 100 to 205 mg/m2 paclitaxel, none of nine treated patients responded; at 230 to 290 mg/m2, four (29%) of 14 responded. In the phase II study of paclitaxel 250 mg/m2 in previously untreated patients with small cell lung cancer, two of five evaluable patients with extensive-stage disease have shown a partial response. In a preliminary analysis of the pharmacodynamics of paclitaxel in relation to neurotoxicity (dose limiting in two of three phase I studies), neurotoxicity correlated with the total dose of paclitaxel, the area under the curve, and the peak paclitaxel concentration, but not with the length of time plasma paclitaxel levels remained above 0.05 micromol/L. These correlations were not strong, however, and analysis of these data is ongoing. PMID:9331139

  3. [Weekly administration of paclitaxel with a short course of premedication for advanced or recurrent gastric cancer].

    PubMed

    Yamamoto, Shigetaka; Tanaka, Yasuhiro; Ito, Toshinori; Nakai, Sumio; Morimoto, Yoshikazu; Kitagawa, Tohru; Kurihara, Youjirou; Nishimura, Junichi

    2003-01-01

    Weekly administration of paclitaxel with a short course of premedication was performed for 8 patients with advanced or recurrent gastric cancer. In this regimen, 500 ml of physiological saline with vitamins was administered in a 3-hour infusion. After 30 minutes of infusion, dexamethasone 10 mg, chlorpheniramine maleate 5 mg, famotidine 20 mg and ramosetron hydrochloride 0.3 mg were administered intravenously. After 30 more minutes of infusion, paclitaxel at a dose of 65 mg/m2 was admixed in the residual normal physiological saline and administered over 2 hours. Administration was continued for 3 weeks with a 1 week rest. Though the partial response rate was 25%, clinical symptoms improved in all patients. Moreover, both hematological and non-hematological toxicities were mild. Weekly administration of paclitaxel with a short course of premedication is an effective and well-tolerated method for patients with advanced or recurrent gastric cancer. PMID:12557707

  4. [A case of secondary sclerosing cholangitis caused by chemotherapy with nab-paclitaxel].

    PubMed

    Matsuo, Taku; Nakamura, Yukiko; Suzuki, Koji

    2015-05-01

    A 73-year-old woman had received 9 months of chemotherapy with nab-paclitaxel for locally advanced breast cancer. During the treatment, she was well and showed no major side effects except for alopecia and arthralgia. The tumor showed a tendency to reduction. However, chemotherapy was discontinued because of liver dysfunction. MRCP and ERCP demonstrated multiple stenoses of the hepatic ducts and the intrahepatic bile ducts. We diagnosed chemotherapy-induced sclerosing cholangitis caused by nab-paclitaxel. Treatment with ursodeoxycholic acid and steroid was ineffective. We added bezafibrate, which resulted in a gradual improvement in liver function. To the best of our knowledge, this is the first reported case of nab-paclitaxel-induced secondary sclerosing cholangitis. PMID:25947025

  5. Poly-paclitaxel/cyclodextrin-SPION nano-assembly for magnetically guided drug delivery system.

    PubMed

    Jeon, Hyeonjeong; Kim, Jihoon; Lee, Yeong Mi; Kim, Jinhwan; Choi, Hyung Woo; Lee, Junseok; Park, Hyeongmok; Kang, Youngnam; Kim, In-San; Lee, Byung-Heon; Hoffman, Allan S; Kim, Won Jong

    2016-06-10

    This work demonstrates the development of magnetically guided drug delivery systems and its potential on efficient anticancer therapy. The magnetically guided drug delivery system was successfully developed by utilizing superparamagnetic iron oxide nanoparticle, β-cyclodextrin, and polymerized paclitaxel. Multivalent host-guest interactions between β-cyclodextrin-conjugated superparamagnetic iron oxide nanoparticle and polymerized paclitaxel allowed to load the paclitaxel and the nanoparticle into the nano-assembly. Clusterized superparamagnetic iron oxide nanoparticles in the nano-assembly permitted the rapid and efficient targeted drug delivery. Compared to the control groups, the developed nano-assembly showed the enhanced anticancer effects in vivo as well as in vitro. Consequently, the strategy of the use of superparamagnetic nanoparticles and multivalent host-guest interactions has a promising potential for developing the efficient drug delivery systems. PMID:26780174

  6. Nab-paclitaxel-induced cystoid macular edema in a patient with pre-existing optic neuropathy.

    PubMed

    Park, Elizabeth; Goldberg, Naomi R; Adams, Sylvia

    2016-07-01

    Paclitaxel is a widely used chemotherapy agent that has rarely been associated with ophthalmic toxicities. Cystoid macular edema is one such rare side effect of paclitaxel therapy. Its pathophysiology remains poorly understood. Here, we report on a 69-year-old woman who developed cystoid macular edema associated with the albumin-bound formulation of paclitaxel after several months of therapy for breast cancer. After 2 months of drug withdrawal, her vision improved and there was a significant improvement in the macular edema by imaging with spectral-domain optical coherence tomography. Oncologists using taxane agents should be aware of this rare adverse outcome for timely patient referral to an ophthalmologist and appropriate treatment to preserve a patient's visual acuity. PMID:26982237

  7. Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy.

    PubMed

    Duggett, Natalie A; Griffiths, Lisa A; McKenna, Olivia E; de Santis, Vittorio; Yongsanguanchai, Nutcha; Mokori, Esther B; Flatters, Sarah J L

    2016-10-01

    Paclitaxel is a first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Previous preclinical studies indicate mitochondrial dysfunction and oxidative stress are associated with this disorder; however no direct assessment of reactive oxygen species (ROS) levels and antioxidant enzyme activity in sensory neurons following paclitaxel has been undertaken. As expected, repeated low doses of systemic paclitaxel in rats induced long-lasting pain behaviour with a delayed onset, akin to the clinical scenario. To elucidate the role of ROSinthe development and maintenance ofpaclitaxel-inducedpainful neuropathy, we have assessed ROS and antioxidant enzyme activity levels in the nociceptive system in vivo at three key behavioural time-points; prior to pain onset (day 7), peak pain severity and pain resolution. In isolated dorsal root ganglia (DRG) neurons, ROS levels were unchanged following paclitaxel-exposure in vitro or in vivo. ROS levels were further assessed in DRG and spinal cord in vivo following intrathecal MitoTracker®RedCM-H2XRos administration in paclitaxel-/vehicle-treated rats. ROS levels were increased at day 7, specifically in non-peptidergic DRG neurons. In the spinal cord, neuronally-derived ROS was increased at day 7, yet ROS levels in microglia and astrocytes were unaltered. In DRG, CuZnSOD and glutathione peroxidase (GPx) activity were increased at day 7 and peak pain time-points, respectively. In peripheral sensory nerves, CuZnSOD activity was increased at day 7, and at peak pain, MnSOD, CuZnSOD and GPx activity were increased. Catalase activity was unaltered in DRG and saphenous nerves. These data suggest that neuronally-derived mitochondrial ROS, accompanied with an inadequate endogenous antioxidant enzyme response, are contributory factors in paclitaxel-induced painful neuropathy. PMID:27393249

  8. Effects of the taxanes paclitaxel and docetaxel on edema formation and interstitial fluid pressure.

    PubMed

    Brønstad, Aurora; Berg, Ansgar; Reed, Rolf K

    2004-08-01

    Interstitial fluid pressure (P(if)) is important for maintaining constant interstitial fluid volume. In several acute inflammatory reactions, a dramatic lowering of P(if) has been observed, increasing transcapillary filtration pressure and favoring initial and rapid edema formation. This lowering of P(if) seems to involve dynamic beta(1)-integrin-mediated interactions between connective tissue cells and extracellular matrix (ECM) fibers. beta(1)-Integrins are adhesion receptors responsible for the attachment of connective tissue cells to the ECM providing a force-transmitting physical link between the ECM and cytoskeleton. Disruption of actin filaments leads to lowering of P(if) and edema formation, suggesting a role for actin filaments. The aim of this study was to further investigate the role of the cytoskeleton in the control of P(if) by studying the effect of microtubuli fixation using paclitaxel and docetaxel. P(if) was measured with the micropuncture technique. Albumin extravasation (E(alb)) was measured using (125)I-labeled albumin. Paclitaxel and docetaxel were tested locally on foot skin in female Wistar rats. Paclitaxel (6 mg/ml) reduced P(if) from -1.5 +/- 1.0 mmHg in controls to -4.9 +/- 2.6 mmHg after 30 min (P < 0.05) in a dose-dependent manner (P < 0.05). Docetaxel caused a similar lowering of P(if). Both paclitaxel and docetaxel increased E(alb) compared with Cremophor EL and saline control (P < 0.05). Pretreatment with phalloidin before paclitaxel, causing fixation of actin filaments, abolished the lowering of P(if) caused by paclitaxel. This study confirms several previous studies demonstrating that connective tissue cells influence P(if) and edema formation. PMID:15059777

  9. Dual Metronomic Chemotherapy with Nab-Paclitaxel and Topotecan Has Potent Antiangiogenic Activity in Ovarian Cancer.

    PubMed

    Previs, Rebecca A; Armaiz-Pena, Guillermo N; Lin, Yvonne G; Davis, Ashley N; Pradeep, Sunila; Dalton, Heather J; Hansen, Jean M; Merritt, William M; Nick, Alpa M; Langley, Robert R; Coleman, Robert L; Sood, Anil K

    2015-12-01

    There is growing recognition of the important role of metronomic chemotherapy in cancer treatment. On the basis of their unique antiangiogenic effects, we tested the efficacy of nab-paclitaxel, which stimulates thrombospondin-1, and topotecan, which inhibits hypoxia-inducible factor 1-α, at metronomic dosing for the treatment of ovarian carcinoma. In vitro and in vivo SKOV3ip1, HeyA8, and HeyA8-MDR (taxane-resistant) orthotopic models were used to examine the effects of metronomic nab-paclitaxel and metronomic topotecan. We examined cell proliferation (Ki-67), apoptosis (cleaved caspase-3), and angiogenesis (microvessel density, MVD) in tumors obtained at necropsy. In vivo therapy experiments demonstrated treatment with metronomic nab-paclitaxel alone and in combination with metronomic topotecan resulted in significant reductions in tumor weight (62% in the SKOV3ip1 model, P < 0.01 and 96% in the HeyA8 model, P < 0.03) compared with vehicle (P < 0.01). In the HeyA8-MDR model, metronomic monotherapy with either cytotoxic agent had modest effects on tumor growth, but combination therapy decreased tumor burden by 61% compared with vehicle (P < 0.03). The greatest reduction in MVD (P < 0.05) and proliferation was seen in combination metronomic therapy groups. Combination metronomic therapy resulted in prolonged overall survival in vivo compared with other groups (P < 0.001). Tube formation was significantly inhibited in RF-24 endothelial cells exposed to media conditioned with metronomic nab-paclitaxel alone and media conditioned with combination metronomic nab-paclitaxel and metronomic topotecan. The combination of metronomic nab-paclitaxel and metronomic topotecan offers a novel, highly effective therapeutic approach for ovarian carcinoma that merits further clinical development. PMID:26516159

  10. Secondary leukemia after treatment with paclitaxel and carboplatin in a patient with recurrent ovarian cancer.

    PubMed

    See, H T; Thomas, D A; Bueso-Ramos, C; Kavanagh, J

    2006-01-01

    The occurrence of myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) has been reported after treatment with cytotoxic alkylating agent-based chemotherapy for solid tumors. We report a patient with metastatic ovarian carcinoma treated with carboplatin and paclitaxel, who developed secondary acute erythroid leukemia. The overall survival of patients with stage III and IV ovarian cancer has increased in the past decade. Monitoring of the long-term outcome of paclitaxel- and platinum-based regimens is warranted, particularly with regard to monitoring the development of secondary MDS and/or AML. The incidence and outcome of secondary leukemia in the setting of active ovarian carcinoma is reviewed. PMID:16515597

  11. Practical synthesis of the C-ring precursor of paclitaxel from 3-methoxytoluene.

    PubMed

    Fukaya, Keisuke; Yamaguchi, Yu; Watanabe, Ami; Yamamoto, Hiroaki; Sugai, Tomoya; Sugai, Takeshi; Sato, Takaaki; Chida, Noritaka

    2016-04-01

    The practical synthesis of the C-ring precursor of paclitaxel starting from 3-methoxytoluene is described. Lipase-catalyzed kinetic resolution of a substituted cyclohexane-1,2-diol, derived from 3-methoxytoluene in three steps, successfully afforded a desired enantiomer with >99% ee, which was transformed to a cyclohexenone. 1,4-Addition of a vinyl metal species, followed by Mukaiyama aldol reaction with formalin in the presence of a Lewis acid provided the known C-ring precursor of paclitaxel in a 10 g scale. PMID:26860468

  12. Randomized Phase III Trial of Paclitaxel Once Per Week Compared With Nanoparticle Albumin-Bound Nab-Paclitaxel Once Per Week or Ixabepilone With Bevacizumab As First-Line Chemotherapy for Locally Recurrent or Metastatic Breast Cancer: CALGB 40502/NCCTG N063H (Alliance)

    PubMed Central

    Rugo, Hope S.; Barry, William T.; Moreno-Aspitia, Alvaro; Lyss, Alan P.; Cirrincione, Constance; Leung, Eleanor; Mayer, Erica L.; Naughton, Michael; Toppmeyer, Deborah; Carey, Lisa A.; Perez, Edith A.; Hudis, Clifford; Winer, Eric P.

    2015-01-01

    Purpose We compared nab-paclitaxel or ixabepilone once per week to paclitaxel with bevacizumab as first-line therapy for patients with advanced breast cancer (BC) to evaluate progression-free survival (PFS) for nab-paclitaxel or ixabepilone versus paclitaxel. Patients and Methods Eligible patients were age ≥ 18 years with chemotherapy-naive advanced BC. Patients were randomly assigned to bevacizumab with paclitaxel 90 mg/m2 (arm A), nab-paclitaxel 150 mg/m2 (arm B), or ixabepilone 16 mg/m2 (arm C), once per week for 3 of 4 weeks. Planned enrollment was 900 patients, which would give 88% power to detect a hazard ratio of 0.73. Results In all, 799 patients were enrolled, and 783 received treatment (97% received bevacizumab). Arm C was closed for futility at the first interim analysis (n = 241), and arm A (n = 267) and arm B (n = 275) were closed for futility at the second interim analysis. Median PFS for paclitaxel was 11 months, ixabepilone was inferior to paclitaxel (PFS, 7.4 months; hazard ratio, 1.59; 95% CI, 1.31 to 1.93; P < .001), and nab-paclitaxel was not superior to paclitaxel (PFS, 9.3 months; hazard ratio, 1.20; 95% CI, 1.00 to 1.45; P = .054). Results were concordant with overall survival; time to treatment failure was significantly shorter in both experimental arms v paclitaxel. Hematologic and nonhematologic toxicity, including peripheral neuropathy, was increased with nab-paclitaxel, with more frequent and earlier dose reductions. Conclusion In patients with chemotherapy-naive advanced BC, ixabepilone once per week was inferior to paclitaxel, and nab-paclitaxel was not superior with a trend toward inferiority. Toxicity was increased in the experimental arms, particularly for nab-paclitaxel. Paclitaxel once per week remains the preferred palliative chemotherapy in this setting. PMID:26056183

  13. A phase I study with an expanded cohort to assess the feasibility of intravenous paclitaxel, intraperitoneal carboplatin and intraperitoneal paclitaxel in patients with untreated ovarian, fallopian tube or primary peritoneal carcinoma: A Gynecologic Oncology Group study☆,☆☆,★

    PubMed Central

    Gould, Natalie; Sill, Michael W.; Mannel, Robert S.; Thaker, P.H.; DiSilvestro, Paul; Waggoner, Steve; Yamada, S. Diane; Armstrong, Deborah K.; Wenzel, Lari; Huang, Helen; Fracasso, Paula M.; Walker, Joan L.

    2013-01-01

    Objective To define the maximum tolerated dose (MTD) and assess the feasibility of intravenous (IV) paclitaxel, intraperitoneal (IP) carboplatin, and IP paclitaxel in women with newly diagnosed Stages II–IV ovarian, fallopian tube, or primary peritoneal carcinoma. Methods Patients received escalating doses of paclitaxel IV and carboplatin IP on day 1 and paclitaxel IP 60 mg/m2 on day 8. A standard 3+3 design was used in the escalation phase. A two-stage group sequential design with 20 patients at the MTD was used in the feasibility phase. Patient-reported neurotoxicity was assessed pre and post treatment. Results Patients were treated with paclitaxel 175 mg/m2 IV and carboplatin IP from AUC 5–7 on day 1 and paclitaxel 60 mg/m2 IP on day 8. The MTD was estimated at carboplatin AUC 6 IP and 25 patients enrolled at this dose level. Within the first 4 cycles, seven (35%) of twenty evaluable patients had dose-limiting toxicities (DLTs) including grade 4 thrombocytopenia (1), grade 3 neutropenic fever (3), >2 week delay due to ANC recovery (1), grade 3 LFT (1), and grade 3 infection (1). De-escalation to paclitaxel 135 mg/m2 IV was given to improve the safety. After six evaluable patients completed 4 cycles without a DLT, bevacizumab was added and six evaluable patients completed 4 cycles with one DLT (grade 3 hyponatremia). Conclusions Paclitaxel at 175 mg/m2 IV, carboplatin AUC 6 IP day 1 and paclitaxel 60 mg/m2 IP day 8 yield 18–56% patients with DLTs. The tolerability of the regimen in combination with bevacizumab was indicated in a small cohort. PMID:22155262

  14. Myc Prevents Apoptosis and Enhances Endoreduplication Induced by Paclitaxel

    PubMed Central

    Gatti, Giuliana; Maresca, Giovanna; Natoli, Manuela; Florenzano, Fulvio; Nicolin, Angelo; Felsani, Armando; D'Agnano, Igea

    2009-01-01

    Background The role of the MYC oncogene in the apoptotic pathways is not fully understood. MYC has been reported to protect cells from apoptosis activation but also to sensitize cells to apoptotic stimuli. We have previously demonstrated that the down-regulation of Myc protein activates apoptosis in melanoma cells and increases the susceptibility of cells to various antitumoral treatments. Beyond the well-known role in the G1→S transition, MYC is also involved in the G2-M cell cycle phases regulation. Methodology/Principal Findings In this study we have investigated how MYC could influence cell survival signalling during G2 and M phases. We used the microtubules damaging agent paclitaxel (PTX), to arrest the cells in the M phase, in a p53 mutated melanoma cell line with modulated Myc level and activity. An overexpression of Myc protein is able to increase endoreduplication favoring the survival of cells exposed to antimitotic poisoning. The PTX-induced endoreduplication is associated in Myc overexpressing cells with a reduced expression of MAD2, essential component of the molecular core of the spindle assembly checkpoint (SAC), indicating an impairment of this checkpoint. In addition, for the first time we have localized Myc protein at the spindle poles (centrosomes) during pro-metaphase in different cell lines. Conclusions The presence of Myc at the poles during the prometaphase could be necessary for the Myc-mediated attenuation of the SAC and the subsequent induction of endoreduplication. In addition, our data strongly suggest that the use of taxane in antitumor therapeutic strategies should be rationally based on the molecular profile of the individual tumor by specifically analyzing Myc expression levels. PMID:19421315

  15. Differential modulation of paclitaxel-mediated apoptosis by p21Waf1 and p27Kip1.

    PubMed

    Schmidt, M; Lu, Y; Liu, B; Fang, M; Mendelsohn, J; Fan, Z

    2000-05-11

    The impact of the cyclin dependent kinase (CDK) inhibitors p21Waf1 and p27Kip1 on paclitaxel-mediated cytotoxicity was investigated in RKO human colon adenocarcinoma cells with the ecdysone-inducible expression of p21Waf1 or p27Kip1. Ectopic expression of p27Kip1 arrested cells at G1 phase, whereas p21Waf1 expression arrested cells at G1 and G2. Expression of p21Waf1 after paclitaxel treatment produced much greater resistance to paclitaxel than did expression of p27Kip1. We attributed this difference to the additional block at G2 induced by p21Waf1, which prevented cells from entering M phase and becoming paclitaxel susceptible. Expression of p21Waf1 inhibited p34cdc2 activity and markedly reduced paclitaxel-mediated mitotic arrest, from 87.5 to 23%. In contrast, p27Kip1 expression also inhibited p34cdc2 but reduced mitotic arrest only slightly, from 87. 4 to 74.5%. We concluded that the G2 block produced by p21Waf1, but not by p27Kip1, contributed to their unequal modulation of sensitivity to paclitaxel-mediated apoptosis in RKO cells, and there is no causal relationship between paclitaxel-mediated cytotoxicity and elevation of p34cdc2 activity. PMID:10828884

  16. A leukotriene B4 receptor-2 is associated with paclitaxel resistance in MCF-7/DOX breast cancer cells

    PubMed Central

    Kim, H; Park, G-S; Lee, J E; Kim, J-H

    2013-01-01

    Background: Breast cancer is the most common malignancy in women. Although chemotherapeutic agents, such as paclitaxel, are effective treatments for the majority of breast cancer patients, recurrence is frequent and often leads to death. Thus, there is an urgent need to identify novel therapeutic targets that sensitise tumour cells to existing chemotherapy agents. Methods: The levels of leukotriene B4 receptor-2 (BLT2) in multidrug-resistant MCF-7/DOX cells were determined using quantitative PCR and FACS analysis. The potential role of BLT2 in the paclitaxel resistance of MCF-7/DOX cells was assessed using a pharmacological inhibitor and small interfering RNA knockdown, and the BLT2-associated resistance mechanism was assessed. Results: The expression levels of BLT2 were markedly upregulated in MCF-7/DOX cells. The inhibition of BLT2 by pre-treatment with LY255283 or siBLT2 knockdown significantly sensitised MCF-7/DOX cells to paclitaxel and induced significant levels of apoptotic death, suggesting that BLT2 mediates paclitaxel resistance. We also demonstrated that BLT2-induced paclitaxel resistance was associated with the upregulation of P-glycoprotein. Finally, co-treatment with a BLT2 inhibitor and paclitaxel markedly reduced tumour growth in an MCF-7/DOX in vivo model. Conclusion: Together, our results demonstrate that BLT2 is a novel therapeutic target that sensitises drug-resistant breast cancer cells to paclitaxel. PMID:23799854

  17. DNA microarray reveals different pathways responding to paclitaxel and docetaxel in non-small cell lung cancer cell line

    PubMed Central

    Che, Chun-Li; Zhang, Yi-Mei; Zhang, Hai-Hong; Sang, Yu-Lan; Lu, Ben; Dong, Fu-Shi; Zhang, Li-Juan; Lv, Fu-Zhen

    2013-01-01

    The wide use of paclitaxel and docetaxel in NSCLC clinical treatment makes it necessary to find biomarkers for identifying patients who can benefit from paclitaxel or docetaxel. In present study, NCI-H460, a NSCLC cell line with different sensitivity to paclitaxel and docetaxel, was applied to DNA microarray expression profiling analysis at different time points of lower dose treatment with paclitaxel or docetaxel. And the complex signaling pathways regulating the drug response were identified, and several novel sensitivity-realted markers were biocomputated.The dynamic changes of responding genes showed that paclitaxel effect is acute but that of docetaxel is durable at least for 48 hours in NCI-H460 cells. Functional annotation of the genes with altered expression showed that genes/pathways responding to these two drugs were dramatically different. Gene expression changes induced by paclitaxel treatment were mainly enriched in actin cytoskeleton (ACTC1, MYL2 and MYH2), tyrosine-protein kinases (ERRB4, KIT and TIE1) and focal adhesion pathway (MYL2, IGF1 and FLT1), while the expression alterations responding to docetaxel were highly co-related to cell surface receptor linked signal transduction (SHH, DRD5 and ADM2), cytokine-cytokine receptor interaction (IL1A and IL6) and cell cycleregulation (CCNB1, CCNE2 and PCNA). Moreover, we also confirmed some different expression patterns with real time PCR. Our study will provide the potential biomarkers for paclitaxel and docetaxel-selection therapy in clinical application. PMID:23923072

  18. Phase II Study of Intraperitoneal Paclitaxel Plus Cisplatin and Intravenous Paclitaxel Plus Bevacizumab As Adjuvant Treatment of Optimal Stage II/III Epithelial Ovarian Cancer

    PubMed Central

    Konner, Jason A.; Grabon, Diana M.; Gerst, Scott R.; Iasonos, Alexia; Thaler, Howard; Pezzulli, Sandra D.; Sabbatini, Paul J.; Bell-McGuinn, Katherine M.; Tew, William P.; Hensley, Martee L.; Spriggs, David R.; Aghajanian, Carol A.

    2011-01-01

    Purpose Intraperitoneal (IP) cisplatin and intravenous (IV) or IP paclitaxel constitute a standard therapy for optimally debulked ovarian cancer. Bevacizumab prolongs progression-free survival (PFS) when included in first-line IV chemotherapy. In this study, the safety and feasibility of adding bevacizumab to a first-line IP regimen were assessed. Patients and Methods Treatment was as follows: paclitaxel 135 mg/m2 IV over 3 hours day 1, cisplatin 75 mg/m2 IP day 2, and paclitaxel 60 mg/m2 IP day 8. Bevacizumab 15 mg/kg IV was given after paclitaxel on day 1 beginning in cycle 2. After six cycles of chemotherapy, bevacizumab was given every 3 weeks for 17 additional treatments. The primary end point was safety and tolerability determined by whether 60% of patients completed six cycles of IV/IP chemotherapy. Results Of 41 treated patients, 30 (73%) received six cycles of IV/IP chemotherapy and 35 (85%) received at least four cycles. Three (27%) of those who discontinued chemotherapy did so because of complications related to bevacizumab (hypertension, n = 2; perforation, n = 1). Grades 3 to 4 toxicities included neutropenia (34%), vasovagal syncope (10%), hypertension (7%), nausea/vomiting (7%), hypomagnesemia (7%), and abdominal pain (7%). There were three grade 3 small bowel obstructions (7%) during cycles 3, 9, and 15. One patient died following rectosigmoid anastomotic dehiscence during cycle 4. Estimated median PFS is 28.6 months (95% CI, 19.1 to 38.9 months). Three patients (7%) had IP port malfunction. Conclusion The addition of bevacizumab to this IP regimen is feasible; however, bevacizumab may increase the risk of bowel obstruction/perforation. The observed median PFS is similar to that seen with IP/IV chemotherapy alone. PMID:22067389

  19. Effect of ω-conotoxin MVIIA and Phα1β on paclitaxel-induced acute and chronic pain.

    PubMed

    Rigo, Flávia K; Dalmolin, Gerusa D; Trevisan, Gabriela; Tonello, Raquel; Silva, Mariane A; Rossato, Mateus F; Klafke, Jonatas Z; Cordeiro, Marta do N; Castro Junior, Célio J; Montijo, Danuza; Gomez, Marcus V; Ferreira, Juliano

    2013-12-01

    The treatment with the chemotherapeutic agent paclitaxel produces a painful peripheral neuropathy, and is associated with an acute pain syndrome in a clinically significant number of patients. However, no standard therapy has been established to manage the acute pain or the chronic neuropathic pain related to paclitaxel. In the present study, we evaluated the analgesic potential of two N-type voltage-gated calcium channel (VGCC) blockers, ω-conotoxin MVIIA and Phα1β, on acute and chronic pain induced by paclitaxel. Adult male rats were treated with four intraperitoneal injections of paclitaxel (1+1+1+1mg/kg, in alternate days) and the development of mechanical hyperalgesia was evaluated 24h (acute painful stage) or 15days (chronic painful stage) after the first paclitaxel injection. Not all animals showed mechanical hyperalgesia 24h after the first paclitaxel injection, but those that showed developed a more intense mechanical hyperalgesia at the chronic painful stage. Intrathecal administration (i.t.) of ω-conotoxin MVIIA (3-300pmol/site) or Phα1β (10-300pmol/site) reduced the mechanical hyperalgesia either at the acute or at the chronic painful stage induced by paclitaxel. When administered at the acute painful stage, ω-conotoxin MVIIA (300pmol/site, i.t.) and Phα1β (300pmol/site, i.t.) prevented the worsening of chronic mechanical hyperalgesia. Furthermore, Phα1β (30-300pmol/site, i.t.) elicited less adverse effects than ω-conotoxin MVIIA (10-300 pmol/site, i.t.). Taken together, our data evidence the involvement of N-type VGCC in pain sensitization induced by paclitaxel and point out the potential of Phα1β as a safer alternative than ω-conotoxin MVIIA to treat the pain related to paclitaxel. PMID:24148893

  20. Enhanced Cytotoxicity to Cancer Cells by Codelivery and Controlled Release of Paclitaxel-loaded Sirolimus-conjugated Albumin Nanoparticles.

    PubMed

    Behrouz, Hossein; Esfandyari-Manesh, Mehdi; Khoeeniha, Mohammad Kazem; Amini, Mohsen; Shiri Varnamkhasti, Behrang; Atyabi, Fatemeh; Dinarvand, Rassoul

    2016-08-01

    Recently, it is suggested that mTOR signaling pathway is an important mediator in many cancers especially breast cancer. Therefore, effects of sirolimus as a mTOR inhibitor in breast cancer have been studied in combination with paclitaxel with or without controlled release effect. In this work, we prepared a water-soluble formulation of sirolimus-conjugated albumin nanoparticles loaded with paclitaxel, to study the effects of sirolimus concentration when it releases more later than paclitaxel in comparison with sirolimus-paclitaxel-loaded albumin nanoparticles. Also effects of paclitaxel loading on cytotoxic properties of nanoparticles were studied. Sirolimus was succinylated at 42-OH with enzymatic reaction of Candida antarctica lipase B, and then its carboxylic group was activated with EDC/NHS and conjugated to the lysine residues of albumin. Paclitaxel was loaded on albumin surface by nab technique in concentration range of 0-10 μg/mL. Sirolimus-conjugated nanoparticles with 0.01 μg/mL paclitaxel showed lowest cell viability of 44% while it was 53% for non-conjugated nanoparticles in MDA-MB-468 cell lines after 48 h (p-value = 0.003). In MCF-7 cell lines, sirolimus-conjugated nanoparticles with 0.1 μg/mL paclitaxel showed lowest cell viability of 35.69% while it was 48% for non-conjugated nanoparticles after 48 h (p-value = 0.03). We guess that when cancer cell lines arrest in G2-M by anticancer drugs like paclitaxel, Akt activates mTOR to make cells continue living, then inhibiting mTOR can enhance anticancer effects. PMID:26913996

  1. The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4

    PubMed Central

    Li, Yan; Adamek, Pavel; Zhang, Haijun; Tatsui, Claudio Esteves; Rhines, Laurence D.; Mrozkova, Petra; Li, Qin; Kosturakis, Alyssa K.; Cassidy, Ryan M.; Harrison, Daniel S.; Cata, Juan P.; Sapire, Kenneth; Zhang, Hongmei; Kennamer-Chapman, Ross M.; Jawad, Abdul Basit; Ghetti, Andre; Yan, Jiusheng; Palecek, Jiri

    2015-01-01

    Peripheral neuropathy is dose limiting in paclitaxel cancer chemotherapy and can result in both acute pain during treatment and chronic persistent pain in cancer survivors. The hypothesis tested was that paclitaxel produces these adverse effects at least in part by sensitizing transient receptor potential vanilloid subtype 1 (TRPV1) through Toll-like receptor 4 (TLR4) signaling. The data show that paclitaxel-induced behavioral hypersensitivity is prevented and reversed by spinal administration of a TRPV1 antagonist. The number of TRPV1+ neurons is increased in the dorsal root ganglia (DRG) in paclitaxel-treated rats and is colocalized with TLR4 in rat and human DRG neurons. Cotreatment of rats with lipopolysaccharide from the photosynthetic bacterium Rhodobacter sphaeroides (LPS-RS), a TLR4 inhibitor, prevents the increase in numbers of TRPV1+ neurons by paclitaxel treatment. Perfusion of paclitaxel or the archetypal TLR4 agonist LPS activated both rat DRG and spinal neurons directly and produced acute sensitization of TRPV1 in both groups of cells via a TLR4-mediated mechanism. Paclitaxel and LPS sensitize TRPV1 in HEK293 cells stably expressing human TLR4 and transiently expressing human TRPV1. These physiological effects also are prevented by LPS-RS. Finally, paclitaxel activates and sensitizes TRPV1 responses directly in dissociated human DRG neurons. In summary, TLR4 was activated by paclitaxel and led to sensitization of TRPV1. This mechanism could contribute to paclitaxel-induced acute pain and chronic painful neuropathy. SIGNIFICANCE STATEMENT In this original work, it is shown for the first time that paclitaxel activates peripheral sensory and spinal neurons directly and sensitizes these cells to transient receptor potential vanilloid subtype 1 (TRPV1)-mediated capsaicin responses via Toll-like receptor 4 (TLR4) in multiple species. A direct functional interaction between TLR4 and TRPV1 is shown in rat and human dorsal root ganglion neurons, TLR4/TRPV1

  2. In Vitro Activity of Paclitaxel-Loaded Polymeric Expansile Nanoparticles in Breast Cancer Cells

    PubMed Central

    Zubris, Kimberly Ann V.; Liu, Rong; Colby, Aaron; Schulz, Morgan D.; Colson, Yolonda L.; Grinstaff, Mark W.

    2013-01-01

    Through a series of in vitro studies, the essential steps for intracellular drug delivery of paclitaxel using a pH-responsive nanoparticle system have been investigated in breast cancer cells. We successfully encapsulated paclitaxel within polymeric expansile nanoparticles (Pax-eNPs) at 5% loading via a miniemulsion polymerization procedure. Fluorescently tagged eNPs were readily taken up by MDA-MB-231 breast cancer cells grown in culture as confirmed by confocal microscopy and flow cytometry. The ability of the encapsulated paclitaxel to reach the cytoplasm was also observed using confocal microscopy and fluorescently labeled paclitaxel. Pax-eNPs were shown to be efficacious against three in vitro human breast adenocarcinoma cell lines (MDA-MB-231, MCF-7 and SK-BR-3) as well as cells isolated from the pleural effusions of two different breast cancer patients. Lastly, macropinocytosis was identified as the major cellular pathway responsible for eNP uptake, as confirmed using temperature-sensitive metabolic reduction, pharmacologic inhibitors, and fluid-phase marker co-localization. PMID:23617223

  3. In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid-polymeric nanoparticles.

    PubMed

    Chan, Juliana M; Rhee, June-Wha; Drum, Chester L; Bronson, Roderick T; Golomb, Gershon; Langer, Robert; Farokhzad, Omid C

    2011-11-29

    Following recent successes with percutaneous coronary intervention (PCI) for treating coronary artery disease (CAD), many challenges remain. In particular, mechanical injury from the procedure results in extensive endothelial denudation, exposing the underlying collagen IV-rich basal lamina, which promotes both intravascular thrombosis and smooth muscle proliferation. Previously, we reported the engineering of collagen IV-targeting nanoparticles (NPs) and demonstrated their preferential localization to sites of arterial injury. Here, we develop a systemically administered, targeted NP system to deliver an antiproliferative agent to injured vasculature. Approximately 60-nm lipid-polymeric NPs were surface functionalized with collagen IV-targeting peptides and loaded with paclitaxel. In safety studies, the targeted NPs showed no signs of toxicity and a ≥3.5-fold improved maximum tolerated dose versus paclitaxel. In efficacy studies using a rat carotid injury model, paclitaxel (0.3 mg/kg or 1 mg/kg) was i.v. administered postprocedure on days 0 and 5. The targeted NP group resulted in lower neointima-to-media (N/M) scores at 2 wk versus control groups of saline, paclitaxel, or nontargeted NPs. Compared with sham-injury groups, an ∼50% reduction in arterial stenosis was observed with targeted NP treatment. The combination of improved tolerability, sustained release, and vascular targeting could potentially provide a safe and efficacious option in the management of CAD. PMID:22087004

  4. Dicer Elicits Paclitaxel Chemosensitization and Suppresses Cancer Stemness in Breast Cancer by Repressing AXL.

    PubMed

    Chang, Ting-Yu; Chen, Hsin-An; Chiu, Ching-Feng; Chang, Yi-Wen; Kuo, Tsang-Chih; Tseng, Po-Chun; Wang, Weu; Hung, Mien-Chie; Su, Jen-Liang

    2016-07-01

    Paclitaxel is a standard-of-care chemotherapy for breast cancer, despite the increasing recognition of its poor effectiveness in the treatment of patients with advanced disease. Here, we report that adenovirus-type 5 E1A-mediated elevation of the miRNA-processing enzyme Dicer is sufficient to enhance paclitaxel sensitization and reduce cancer stem-like cell properties in this setting. Elevating Dicer expression increased levels of the AXL kinase targeting miRNA miR-494, thereby repressing AXL expression to increase paclitaxel sensitivity. We found that Dicer expression was regulated at the transcription level by E1A, through activation of an MAPK14/CEBPα pathway. Our findings define a mechanism of E1A-mediated chemosensitization for paclitaxel, which is based upon the suppression of breast cancer stem-like cells, with potential implications for the diagnosis and treatment of breast cancer patients. Cancer Res; 76(13); 3916-28. ©2016 AACR. PMID:27216190

  5. Exploration of paclitaxel (Taxol) as a treatment for malignant tumors in cats: a descriptive case series.

    PubMed

    Kim, Jennifer; Doerr, Mary; Kitchell, Barbara E

    2015-02-01

    Paclitaxel, an effective chemotherapeutic agent in human oncology, has received little evaluation in feline patients. The diluent used to solubilize paclitaxel, polyoxyethylated castor oil (Cremophor EL), causes anaphylactoid reactions in human and dogs, which limits enthusiasm for use of this agent in veterinary oncology. Nine feline patients with measurable malignant tumors were treated with paclitaxel at a dosage of 80 mg/m(2) intravenously every 21 days for up to two doses. Adverse effects, including evidence of toxicity and anaphylactoid reactions, were assessed. Tumor response, progression and patient time to progression (TTP) were also recorded. Adverse effects included grade III and IV thrombocytopenia, grade III gastrointestinal signs (vomiting and constipation) and hypersensitivity reactions, seen in a total of five patients. Anaphylactoid reactions resolved with appropriate management. Stable disease and partial response were observed in 56% of feline patients. Median TTP was 28 days (range 15-45 days). Intravenous paclitaxel is a safe treatment option for feline malignant tumor patients. Future investigation is warranted to explore the effectiveness and appropriate application of this agent for specific tumor types. PMID:24820996

  6. Tumor-targeted delivery of paclitaxel using low density lipoprotein-mimetic solid lipid nanoparticles.

    PubMed

    Kim, Jin-Ho; Kim, Youngwook; Bae, Ki Hyun; Park, Tae Gwan; Lee, Jung Hee; Park, Keunchil

    2015-04-01

    Water-insoluble anticancer drugs, including paclitaxel, present severe clinical side effects when administered to patients, primarily associated with the toxicity of reagents used to solubilize the drugs. In efforts to develop alternative formulations of water-insoluble anticancer drugs suitable for intravenous administration, we developed biocompatible anticancer therapeutic solid lipid nanoparticles (SLNs), mimicking the structure and composition of natural particles, low-density lipoproteins (LDLs), for tumor-targeted delivery of paclitaxel. These therapeutic nanoparticles contained water-insoluble paclitaxel in the core with tumor-targeting ligand covalently conjugated on the polyethylene glycol (PEG)-modified surface (targeted PtSLNs). In preclinical human cancer xenograft mouse model studies, the paclitaxel-containing tumor-targeting SLNs exhibited pronounced in vivo stability and enhanced biocompatibility. Furthermore, these SLNs had superior antitumor activity to in-class nanoparticular therapeutics in clinical use (Taxol and Genexol-PM) and yielded long-term complete responses. The in vivo targeted antitumor activities of the SLN formulations in a mouse tumor model suggest that LDL-mimetic SLN formulations can be utilized as a biocompatible, tumor-targeting platform for the delivery of various anticancer therapeutics. PMID:25686010

  7. Effect of Combined Treatment Using Wilfortrine and Paclitaxel in Liver Cancer and Related Mechanism

    PubMed Central

    Li, Shuzhen; Zheng, Lei

    2016-01-01

    Background Liver cancer is a common malignant tumor with high mortality. Currently, effective medicines against liver cancer are still lacking. Paclitaxel is a wide-spectrum anti-tumor agent, while wilfortrine has been shown to have an inhibitory effect on the proliferation of liver cancer cells. This study thus investigated the potential effect of paclitaxel combined with wilfortrine on cultured liver cancer cells and related mechanisms, in order to provide evidence for pathogenesis and treatment of liver cancer. Material/Methods Liver cancer cell line HpeG2 was divided into control, paclitaxel, wilfortrine, and combined treatment groups. Cell proliferation was tested by MTT, while invasion was detected in Transwell chamber assay. Apoptotic protein Bcl-2 and Bax expression levels were further quantified using real-time PCR and Western blotting. Results Both of those 2 drugs can effectively inhibit cancer cell proliferation, depress invasion ability, increase Bcl-2 expression, and elevate Bax expression levels (p<0.05 in all cases). The combined therapy had better treatment efficacy compared to either of those drugs alone (p<0.05). Conclusions The combined treatment using wilfortrine and paclitaxel can inhibit proliferation and invasion of liver cancer cells via down-regulating Bcl-2 and up-regulating Bax, with better efficacy than single use of either drug. PMID:27043783

  8. A process optimization study on ultrasonic extraction of paclitaxel from Taxus cuspidata.

    PubMed

    Wang, Shujie; Li, Chun; Wang, Hujun; Zhong, Xiangmei; Zhao, Jing; Zhou, Yajun

    2016-04-01

    This study aimed to improve the extraction rate of paclitaxel from Taxus cuspidata in order to determine the most effective combination of ultrasonic extraction and thin-layer chromatography-ultraviolet (TLC-UV) rapid separation method. The study was performed using the Box-Behnken test design to conduct single-factor experiments using ultrasonic extraction of paclitaxel from Taxus cuspidata. The study showed ethanol to be the best extraction solvent. When mixed with dichloromethane (1:1), the ratio of material to liquid was 1:50 when using an ultrasonic time of 1 hr at a power of 200 W. The correction coefficient K for the separation and detection of paclitaxel using the TLC-UV spectrophotometric method was 0.009152. Multifactor experiments determined the effect of the rate of liquid to material (X1), ultrasonic time (X2), and ultrasonic power (X3) on extraction using extraction volume as the dependent variable. Response surface analysis allowed a regression equation to be obtained, with the optimal conditions for extraction when the rate of liquid to material was 53.23 mL/g as an ultrasonic time of 1.11 hr and an ultrasonic power of 207.88 W. Using these parameters, the average amount of extracted paclitaxel was about 130.576 µg/g, which was significantly better than for other extraction methods. PMID:25830908

  9. Release Kinetics of Paclitaxel and Cisplatin from Two and Three Layered Gold Nanoparticles

    PubMed Central

    England, Christopher G.; Miller, M. Clarke; Kuttan, Ashani; Trent, John O.; Frieboes, Hermann B.

    2015-01-01

    Gold nanoparticles functionalized with biologically-compatible layers may achieve stable drug release while avoiding adverse effects in cancer treatment. We study cisplatin and paclitaxel release from gold cores functionalized with hexadecanethiol (TL) and phosphatidylcholine (PC) to form two-layer nanoparticles, or TL, PC, and high density lipoprotein (HDL) to form three-layer nanoparticles. Drug release was monitored for 14 days to assess long term effects of the core surface modifications on release kinetics. Release profiles were fitted to previously developed kinetic models to differentiate possible release mechanisms. The hydrophilic drug (cisplatin) showed an initial (5-hr.) burst, followed by a steady release over 14 days. The hydrophobic drug (paclitaxel) showed a steady release over the same time period. Two layer nanoparticles released 64.0 ± 2.5% of cisplatin and 22.3 ± 1.5% of paclitaxel, while three layer nanoparticles released the entire encapsulated drug. The Korsmeyer-Peppas model best described each release scenario, while the simplified Higuchi model also adequately described paclitaxel release from the two layer formulation. We conclude that functionalization of gold nanoparticles with a combination of TL and PC may help to modulate both hydrophilic and hydrophobic drug release kinetics, while the addition of HDL may enhance long term release of hydrophobic drug. PMID:25753197

  10. Nab-Paclitaxel in Metastatic Breast Cancer: Defining the Best Patient Profile.

    PubMed

    González-Martín, Antonio; Alba, Emilio; Ciruelos, Eva; Cortés, Javier; Llombart, Antonio; Lluch, Ana; Andrés, Raquel; Álvarez, Isabel; Aramendía, José Manuel; de la Peña, Francisco Ayala; Barnadas, Agustí; Batista, Norberto; Calvo, Lourdes; Galve, Elena; García-Palomo, Andrés; García-Sáenz, José Ángel; de la Haba, Juan; López, Rafael; López-Vivanco, Guillermo; Martínez-Jáñez, Noelia; de Dueñas, Eduardo Martínez; Plazaola, Arrate; Rodríguez-Lescure, Álvaro; Ruiz, Manuel; Sánchez-Rovira, Pedro; Santaballa, Ana; Seguí, Miguel Ángel; Tusquets, Ignasi; Zamora, Pilar; Martín, Miguel

    2016-01-01

    Around 40% of patients with breast cancer will present with a recurrence of the disease. Chemotherapy is recommended for patients with recurrent hormone-independent or hormone-refractory breast cancer and almost all patients with metastatic breast cancer (MBC) receive chemotherapy during their medical history. Nanoparticle albuminbound (nab)-paclitaxel is a solvent-free, 130-nanometer particle formulation of paclitaxel. Nab-paclitaxel can be administered to all patients for whom the treatment choice is a taxane. In this review, 6 patient profiles for which nabpaclitaxel may be particularly useful are described and analyzed: (i) as first-line treatment of MBC, (ii) as second-line treatment of MBC after oral chemotherapy, (iii) after a standard taxane, (iv) as third-line treatment after a standard taxane and oral chemotherapy, (v) for patients with HER2-positive MBC and (vi) for patients with intolerance to standard taxanes. Nab-paclitaxel is a rational treatment choice for patients with MBC in different settings, as well as for those with prior exposure to a standard taxane. PMID:26278712

  11. Designing Paclitaxel Drug Delivery Systems Aimed at Improved Patient Outcomes: Current Status and Challenges

    PubMed Central

    Surapaneni, Madhu S.; Das, Sudip K.; Das, Nandita G.

    2012-01-01

    Paclitaxel is one of the most widely used and effective antineoplastic agents derived from natural sources. It has a wide spectrum of antitumor activity, particularly against ovarian cancer, breast cancer, nonsmall cell lung cancer, head and neck tumors, Kaposi's sarcoma, and urologic malignancies. It is a highly lipophilic compound with a log P value of 3.96 and very poor aqueous solubility of less than 0.01 mg/mL. In addition, the compound lacks functional groups that are ionizable which could potentially lead to an increase in its solubility with the alteration in pH. Therefore, the delivery of paclitaxel is associated with substantial challenges. Until the introduction of Abraxane, only commercial formulation was solution of paclitaxel in cremophor, which caused severe side effects. However, in recent years, a number of approaches have been reported to solubilize paclitaxel using cosolvents and inclusion complexes. In addition, innovative approaches have been reported for passive targeting of tumors using nanoparticles, nanosuspensions, liposomes, emulsions, micelles, implants, pastes and gels. All approaches for delivery of improved therapeutic outcome have been discussed in this paper. PMID:22934190

  12. Paclitaxel-Eluting versus Everolimus-Eluting Coronary Stents in Diabetes.

    PubMed

    2016-07-28

    Paclitaxel-Eluting versus Everolimus-Eluting Coronary Stents in Diabetes Original Article, N Engl J Med 2015;373:1709-1719. In the list of authors (page 1709), the surname Abhaychand should have been Abhaichand. The article is correct at NEJM.org. PMID:27464221

  13. Photoimmunotherapy of hepatocellular carcinoma-targeting Glypican-3 combined with nanosized albumin-bound paclitaxel

    PubMed Central

    Hanaoka, Hirofumi; Nakajima, Takahito; Sato, Kazuhide; Watanabe, Rira; Phung, Yen; Gao, Wei; Harada, Toshiko; Kim, Insook; Paik, Chang H; Choyke, Peter L; Ho, Mitchell; Kobayashi, Hisataka

    2015-01-01

    Aim Effectiveness of Glypican-3 (GPC3)-targeted photoimmunotherapy (PIT) combined with the nanoparticle albumin-bound paclitaxel (nab-paclitaxel) for hepatocellular carcinoma was evaluated. Materials & methods GPC3 expressing A431/G1 cells were incubated with a phthalocyanine-derivative, IRDye700DX (IR700), conjugated to an anti-GPC3 antibody, IR700-YP7 and exposed to near-infrared light. Therapeutic experiments combining GPC3-targeted PIT with nab-paclitaxel were performed in A431/G1 tumor-bearing mice. Results IR700-YP7 bound to A431/G1 cells and induced rapid target-specific necrotic cell death by near-infrared light exposure in vitro. IR700-YP7 accumulated in A431/G1 tumors. Tumor growth was inhibited by PIT compared with nontreated control. Additionally, PIT dramatically increased nabpaclitaxel delivery and enhanced the therapeutic effect. Conclusion PIT targeting GPC3 combined with nab-paclitaxel is a promising method for treating hepatocellular carcinoma. PMID:25929570

  14. Thermosensitive and Mucoadhesive Sol-Gel Composites of Paclitaxel/Dimethyl-β-Cyclodextrin for Buccal Delivery

    PubMed Central

    Kang, Bong-Seok; Ng, Choon Lian; Davaa, Enkhzaya; Park, Jeong-Sook

    2014-01-01

    The purpose of this study was to develop a buccal paclitaxel delivery system using the thermosensitive polymer Pluronic F127 (PF127) and the mucoadhesive polymer polyethylene oxide (PEO). The anticancer agent paclitaxel is usually used to treat ovarian, breast, and non-small-cell lung cancer. To improve its aqueous solubility, paclitaxel was incorporated into an inclusion complex with (2,6-di-O-methyl)-β-cyclodextrin (DMβCD). The formation of the paclitaxel inclusion complex was evaluated using various techniques, including x-ray diffractometry (XRD), Fourier-transform infrared (FT-IR) spectrophotometry, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Hydrogels were prepared using a cold method. Concentrations of 18, 20, and 23% (w/v) PF127 were dissolved in distilled water including paclitaxel and stored overnight in a refrigerator at 4°C. PEO was added at concentrations of 0.1, 0.2, 0.4, 0.8, and 1% (w/v). Each formulation included paclitaxel (0.5 mg/mL). The sol-gel transition temperature of the hydrogels was measured using the tube-inverting method. Drug release from the hydrogels was measured using a Franz diffusion cell containing pH 7.4 phosphate-buffered solution (PBS) buffer at 37°C. The cytotoxicity of each formulation was measured using the MTT assay with a human oral cancer cell (KB cell). The sol-gel transition temperature of the hydrogel decreased when PF127 was present and varied according to the presence of mucoadhesive polymers. The in vitro release was sustained and the release rate was slowed by the addition of the mucoadhesive polymer. The cytotoxicity of the blank formulation was low, although the drug-loaded hydrogel showed acceptable cytotoxicity. The results of our study suggest that the combination of a PF 127-based mucoadhesive hydrogel formulation and inclusion complexes improves the in vitro release and cytotoxic effect of paclitaxel. PMID:25275485

  15. Polymeric nanoparticles for the intracellular delivery of paclitaxel in lung and breast cancer

    NASA Astrophysics Data System (ADS)

    Zubris, Kimberly Ann Veronica

    Nanoparticles are useful for addressing many of the difficulties encountered when administering therapeutic compounds. Nanoparticles are able to increase the solubility of hydrophobic drugs, improve pharmacokinetics through sustained release, alter biodistribution, protect sensitive drugs from low pH environments or enzymatic alteration, and, in some cases, provide targeting of the drug to the desired tissues. The use of functional nanocarriers can also provide controlled intracellular delivery of a drug. To this end, we have developed functional pH-responsive expansile nanoparticles for the intracellular delivery of paclitaxel. The pH-responsiveness of these nanoparticles occurs due to a hydrophobic to hydrophilic transition of the polymer occurring under mildly acidic conditions. These polymeric nanoparticles were systematically evaluated for the delivery of paclitaxel in vitro and in vivo to improve local therapy for lung and breast cancers. Nanoparticles were synthesized using a miniemulsion polymerization process and were subsequently characterized and found to swell when exposed to acidic environments. Paclitaxel was successfully encapsulated within the nanoparticles, and the particles exhibited drug release at pH 5 but not at pH 7.4. In addition, the uptake of nanoparticles was observed using flow cytometry, and the anticancer efficacy of the paclitaxel-loaded nanoparticles was measured using cancer cell lines in vitro. The potency of the paclitaxel-loaded nanoparticles was close to that of free drug, demonstrating that the drug was effectively delivered by the particles and that the particles could act as an intracellular drug depot. Following in vitro characterization, murine in vivo studies demonstrated the ability of the paclitaxel-loaded responsive nanoparticles to delay recurrence of lung cancer and to prevent establishment of breast cancer in the mammary fat pads with higher efficacy than paclitaxel alone. In addition, the ability of nanoparticles to

  16. Selective impairment of CD4+CD25+Foxp3+ regulatory T cells by paclitaxel is explained by Bcl-2/Bax mediated apoptosis.

    PubMed

    Liu, Nan; Zheng, Yijie; Zhu, Ying; Xiong, Shudao; Chu, Yiwei

    2011-02-01

    Paclitaxel has become one of the most effective and widely used chemotherapeutic agents over the past decades. Although it has shown promise to selectively deplete regulatory T (Treg) cells in our previous study, the underlying molecular mechanism remains to be further elucidated. The present study focused on the effect of paclitaxel on Treg cells in 3LL Lewis tumor model and explored the possible molecular pathways involved in this process. We found that paclitaxel significantly decreased the percentage of Treg cells in CD4(+) cells and impaired their suppressive functions, but effector T (Teff) cells remained unaffected. Compared with Teff cells, Treg cells exhibited a high sensitivity to paclitaxel-mediated apoptosis in vitro. Interestingly, though paclitaxel has been characterized as a mitotic inhibitor, tubulin was not involved in the selective function of paclitaxel. Treg cells exposed to paclitaxel displayed downregulation of Bcl-2 and upregulation of Bax. Blocking the Bcl-2 pathway eliminated the difference between Treg and Teff cells responding to paclitaxel. These results suggest that Bcl-2 rather than tubulin contributes to the distinctive effect of paclitaxel on Treg cells. Therefore, we here identify a molecular pathway through which paclitaxel selectively ablates Treg cells. PMID:21115120

  17. Carboxymethyl-chitosan-tethered lipid vesicles: hybrid nanoblanket for oral delivery of paclitaxel.

    PubMed

    Joshi, Nitin; Saha, Rama; Shanmugam, Thanigaivel; Balakrishnan, Biji; More, Prachi; Banerjee, Rinti

    2013-07-01

    We describe the development and evaluation of a hybrid lipopolymeric system comprising carboxymethyl chitosan (CMC), covalently tethered to phosphatidylethanolamine units on the surface of lipid nanovesicles, for oral delivery of paclitaxel. The bioploymer is intended to act as a blanket, thereby shielding the drug from harsh gastrointestinal conditions, whereas the lipid nanovesicle ensures high encapsulation efficiency of paclitaxel and its passive targeting to tumor. CMC-tethered nanovesicles (LN-C-PTX) in the size range of 200-300 nm improved the gastrointestinal resistance and mucoadhesion properties as compared with unmodified lipid nanovesicles (LN-PTX). Conjugation of CMC did not compromise the cytotoxic potential of paclitaxel yet facilitated the interaction and uptake of the nanovesicles by murine melanoma (B16F10) cells through an ATP-dependent process. CMC-conjugated nanovesicles, upon oral administration in rats, improved the plasma concentration profile of paclitaxel, with 1.5 fold increase in its bioavailability and 5.5 folds increase in elimination half life in comparison with Taxol. We also found that CMC in addition to providing a gastric resistant coating also imparted stealth character to the nanovesicles, thereby reducing their reticuloendothelial system (RES)-mediated uptake by liver and spleen and bypassing the need for PEGylation. In vivo efficacy in subcutaneous model of B16F10 showed significantly improved tumor growth inhibition and survival with CMC-tethered nanovesicles as compared with unmodified nanovesicles, both administered orally. LN-C-PTX exhibited therapeutic efficacy comparable to Taxol and Abraxane and also showed reduced toxicity and improved survival. Overall, these results suggest the therapeutic potential of CMC tethered nanovesicles as a platform for oral administration of paclitaxel and also unravel the ability of CMC to impart stealth character to the nanoparticles, thereby preventing their RES clearance. PMID:23721348

  18. Transportan in nanocarriers improves skin localization and antitumor activity of paclitaxel

    PubMed Central

    Pepe, Dominique; Carvalho, Vanessa FM; McCall, Melissa; de Lemos, Débora P; Lopes, Luciana B

    2016-01-01

    In this study, the ability of nanocarriers containing protein transduction domains (PTDs) of various classes to improve cutaneous paclitaxel delivery and efficacy in skin tumor models was evaluated. Microemulsions (MEs) were prepared by mixing a surfactant blend (polyoxyethylene 10 oleoyl ether, ethanol and propylene glycol), monocaprylin, and water. The PTD transportan (ME-T), penetratin (ME-P), or TAT (ME-TAT) was added at a concentration of 1 mM to the plain ME. All MEs displayed nanometric size (32.3–40.7 nm) and slight positive zeta potential (+4.1 mV to +6.8 mV). Skin penetration of paclitaxel from the MEs was assessed for 1–12 hours using porcine skin and Franz diffusion cells. Among the PTD-containing formulations, paclitaxel skin (stratum corneum + epidermis and dermis) penetration at 12 hours was maximized with ME-T, whereas ME-TAT provided the lowest penetration (1.6-fold less). This is consistent with the stronger ability of ME-T to increase transepidermal water loss (2.4-fold compared to water) and tissue permeability. The influence of PTD addition on the ME irritation potential was assessed by measuring interleukin-1α expression and viability of bioengineered skin equivalents. A 1.5- to 1.8-fold increase in interleukin-1α expression was induced by ME-T compared to the other formulations, but this effect was less pronounced (5.8-fold) than that mediated by the moderate irritant Triton. Because ME-T maximized paclitaxel cutaneous localization while being safer than Triton, its efficacy was assessed against basal cell carcinoma cells and a bioengineered three-dimensional melanoma model. Paclitaxel-containing ME-T reduced cells and tissue viability by twofold compared to drug solutions, suggesting the potential clinical usefulness of the formulation for the treatment of cutaneous tumors. PMID:27274232

  19. Transportan in nanocarriers improves skin localization and antitumor activity of paclitaxel.

    PubMed

    Pepe, Dominique; Carvalho, Vanessa Fm; McCall, Melissa; de Lemos, Débora P; Lopes, Luciana B

    2016-01-01

    In this study, the ability of nanocarriers containing protein transduction domains (PTDs) of various classes to improve cutaneous paclitaxel delivery and efficacy in skin tumor models was evaluated. Microemulsions (MEs) were prepared by mixing a surfactant blend (polyoxyethylene 10 oleoyl ether, ethanol and propylene glycol), monocaprylin, and water. The PTD transportan (ME-T), penetratin (ME-P), or TAT (ME-TAT) was added at a concentration of 1 mM to the plain ME. All MEs displayed nanometric size (32.3-40.7 nm) and slight positive zeta potential (+4.1 mV to +6.8 mV). Skin penetration of paclitaxel from the MEs was assessed for 1-12 hours using porcine skin and Franz diffusion cells. Among the PTD-containing formulations, paclitaxel skin (stratum corneum + epidermis and dermis) penetration at 12 hours was maximized with ME-T, whereas ME-TAT provided the lowest penetration (1.6-fold less). This is consistent with the stronger ability of ME-T to increase transepidermal water loss (2.4-fold compared to water) and tissue permeability. The influence of PTD addition on the ME irritation potential was assessed by measuring interleukin-1α expression and viability of bioengineered skin equivalents. A 1.5- to 1.8-fold increase in interleukin-1α expression was induced by ME-T compared to the other formulations, but this effect was less pronounced (5.8-fold) than that mediated by the moderate irritant Triton. Because ME-T maximized paclitaxel cutaneous localization while being safer than Triton, its efficacy was assessed against basal cell carcinoma cells and a bioengineered three-dimensional melanoma model. Paclitaxel-containing ME-T reduced cells and tissue viability by twofold compared to drug solutions, suggesting the potential clinical usefulness of the formulation for the treatment of cutaneous tumors. PMID:27274232

  20. iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes.

    PubMed

    Simón-Gracia, Lorena; Hunt, Hedi; Scodeller, Pablo; Gaitzsch, Jens; Kotamraju, Venkata Ramana; Sugahara, Kazuki N; Tammik, Olav; Ruoslahti, Erkki; Battaglia, Giuseppe; Teesalu, Tambet

    2016-10-01

    Polymersomes are versatile nanoscale vesicles that can be used for cytoplasmic delivery of payloads. Recently, we demonstrated that pH-sensitive polymersomes exhibit an intrinsic selectivity towards intraperitoneal tumor lesions. A tumor homing peptide, iRGD, harbors a cryptic C-end Rule (CendR) motif that is responsible for neuropilin-1 (NRP-1) binding and for triggering extravasation and tumor penetration of the peptide. iRGD functionalization increases tumor selectivity and therapeutic efficacy of systemic drug-loaded nanoparticles in many tumor models. Here we studied whether intraperitoneally administered paclitaxel-loaded iRGD-polymersomes show improved efficacy in the treatment of peritoneal carcinomatosis. First, we demonstrated that the pH-sensitive polymersomes functionalized with RPARPAR (a prototypic CendR peptide) or iRGD internalize in the cells that express NRP-1, and that internalized polymersomes release their cargo inside the cytosol. CendR-targeted polymersomes loaded with paclitaxel were more cytotoxic on NRP-1-positive cells than on NRP-1-negative cells. In mice bearing peritoneal tumors of gastric (MKN-45P) or colon (CT26) origin, intraperitoneally administered RPARPAR and iRGD-polymersomes showed higher tumor-selective accumulation and penetration than untargeted polymersomes. Finally, iRGD-polymersomes loaded with paclitaxel showed improved efficacy in peritoneal tumor growth inhibition and in suppression of local dissemination compared to the pristine paclitaxel-polymersomes or Abraxane. Our study demonstrates that iRGD-functionalization improves efficacy of paclitaxel-polymersomes for intraperitoneal treatment of peritoneal carcinomatosis. PMID:27472162

  1. Comparative Effects of Ibandronate and Paclitaxel on Immunocompetent Bone Metastasis Model

    PubMed Central

    Chung, Yoon-Sok; Kang, Ho Chul

    2015-01-01

    Purpose Bone metastasis invariably increases morbidity and mortality. This study compares the effects of ibandronate and paclitaxel on bone structure and its mechanical properties and biochemical turnover in resorption markers using an immunocompetent Walker 256-Sprague-Dawley model, which was subjected to tumor-induced osteolysis. Materials and Methods Seventy rats were divided equally into 4 groups: 1) sham group (SHAM), 2) tumor group (CANC), 3) ibandronate treated group (IBAN), and 4) paclitaxel treated group (PAC). Morphological indices [bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp)] and mechanical properties (failure load, stiffness) were evaluated after thirty days of treatment period. Bone resorption rate was analysed using serum deoxypyridinoline (Dpd) concentrations. Results Morphological indices showed that ibandronate (anti-resorptive drug) had a better effect in treating tumor-induced architectural changes in bone than paclitaxel (chemotherapeutic drug). The deterioration in bone architecture was reflected in the biomechanical properties of bone as studied with decreased failure load (Fx) and stiffness (S) of the bone on the 30th day post-surgery. Dpd concentrations were significantly lower in the IBAN group, indicating successful inhibition of bone resorption and destruction. Conclusion Ibandronate was found to be as effective as higher doses of paclitaxel in maintaining stiffness of bone. Paclitaxel treatment did not appear to inhibit osteoclast resorption, which is contrary to earlier in-vitro literature. Emphasis should be placed on the use of immunocompetent models for examining drug efficacy since it adequately reflects bone metastasis in clinical scenarios. PMID:26446649

  2. Paclitaxel Loaded Nanoliposomes in Thermosensitive Hydrogel: A Dual Approach for Sustained and Localized Delivery.

    PubMed

    Mahajan, Mohit; Utreja, Puneet; Jain, Subheet Kumar

    2016-01-01

    In an attempt to improve the localized paclitaxel delivery, carrier based thermoresponsive chitosan hydrogel was exploited in the present study. Nanoliposomes as carrier for paclitaxel were prepared and optimized in strength of 6 mg/ml similar to marketed paclitaxel formulation. The chitosan solution (2% w/v) mixed with different concentrations of dibasic sodium phosphate (DSP) was evaluated as thermoresponsive systems in terms of gelling temperature and time. Finally, the drug loaded nanoliposomes were incorporated in optimized chitosan- DSP hydrogel base to form nanoliposomal in situ thermosensitive hydrogel formulations having dual mechanism of protection and release. The optimal formulation containing DSP was selected on the basis of minimal gelation temperature (37±0.8 ºC) and time (6.7±0.3 min). In vitro drug release experiment illustrated that developed formulation manifested sustained release action in which drug release was extended for more than 72 h compared to marketed formulation. In addition, optimized nanoliposomal hydrogel demonstrated enhanced biological half-life of 15.7±1.5h, depicting maintenance of constant plasma concentration in contrast to marketed formulation that showed the half-life (t1/2) of 3.6±0.4h. The in vivo anti tumor activity tested using EAC model also corroborated the above findings that developed formulation was having significant higher anti-tumor activity and reduced toxicity than the marketed formulation. Tumor volume was found to reduce upto 89.1±3.5% by treatment with in situ hydrogel formulation. The histopathological study of tumor also demonstrated the better safety and efficacy of developed formulation in comparison to marketed paclitaxel formulation. Our results suggest that carrier based chitosan hydrogel could be an efficacious vehicle for sustained and localized delivery of paclitaxel. PMID:26255673

  3. Timed, sequential administration of paclitaxel improves its cytotoxic effectiveness in a cell culture model

    PubMed Central

    Fisi, Viktória; Kátai, Emese; Bogner, Péter; Miseta, Attila; Nagy, Tamás

    2016-01-01

    ABSTRACT Paclitaxel (taxol) is a chemotherapeutic agent frequently used in combination with other anti-neoplastic drugs. It is most effective during the M phase of the cell-cycle and tends to cause synchronization in malignant cells lines. In this study, we investigated whether timed, sequential treatment based on the cell-cycle characteristics could be exploited to enhance the cytotoxic effect of paclitaxel. We characterized the cell-cycle properties of a rapidly multiplying cell line (Sp2, mouse myeloma cells) by propidium-iodide DNA staining such as the lengths of various cell cycle phases and population duplication time. Based on this we designed a paclitaxel treatment protocol that comprised a primary and a secondary, timed treatment. We found that the first paclitaxel treatment synchronized the cells at the G2/M phase but releasing the block by stopping the treatment allowed a large number of cells to enter the next cell-cycle by a synchronized manner. The second treatment was most effective during the time when these cells approached the next G2/M phase and was least effective when it occurred after the peak time of this next G2/M phase. Moreover, we found that after mixing Sp2 cells with another, significantly slower multiplying cell type (Jurkat human T-cell leukemia) at an initial ratio of 1:1, the ratio of the two different cell types could be influenced by timed sequential paclitaxel treatment at will. Our results demonstrate that knowledge of the cell-cycle parameters of a specific malignant cell type could improve the effectivity of the chemotherapy. Implementing timed chemotherapeutic treatments could increase the cytotoxicity on the malignant cells but also decrease the side-effects since other, non-malignant cell types will have different cell-cycle characteristic and be out of synch during the treatment. PMID:27104236

  4. Raman confocal microscopy and AFM combined studies of cancerous cells treated with Paclitaxel

    NASA Astrophysics Data System (ADS)

    Derely, L.; Collart Dutilleul, P.-Y.; Michotte de Welle, Sylvain; Szabo, V.; Gergely, C.; Cuisinier, F. J. G.

    2011-03-01

    Paclitaxel interferes with the normal function of microtubule breakdown, induces apoptosis in cancer cells and sequesters free tubulin. As this drug acts also on other cell mechanisms it is important to monitor its accumulation in the cell compartments. The intracellular spreading of the drug was followed using a WITEC 300R confocal Raman microscope equipped with a CCD camera. Hence Atomic force microscopy (an MFP3D- Asylum Research AFM) in imaging and force mode was used to determine the morphological and mechanical modifications induced on living cells. These studies were performed on living epithelial MCF-7 breast cancer cells. Paclitaxel was added to cell culture media for 3, 6 and 9 hours. Among the specific paclitaxel Raman bands we selected the one at 1670 cm-1 because it is not superposed by the spectrum of the cells. Confocal Raman images are formed by monitoring this band, the NH2 and the PO4 band. Paclitaxel slightly accumulates in the nucleus forming patches. The drug is also concentrated in the vicinity of the cell membrane and in an area close to the nucleus where proteins accumulate. Our AFM images reveal that the treated cancerous MCF-7 cells keep the same size as the non treated ones, but their shape becomes more oval. Cell's elasticity is also modified: a difference of 2 kPa in the Young Modulus characterizes the treated MCF-7 mammary cancerous cell. Our observations demonstrate that paclitaxel acts not only on microtubules but accumulates also in other cell compartments (nucleus) where microtubules are absent.

  5. Timed, sequential administration of paclitaxel improves its cytotoxic effectiveness in a cell culture model.

    PubMed

    Fisi, Viktória; Kátai, Emese; Bogner, Péter; Miseta, Attila; Nagy, Tamás

    2016-05-01

    Paclitaxel (taxol) is a chemotherapeutic agent frequently used in combination with other anti-neoplastic drugs. It is most effective during the M phase of the cell-cycle and tends to cause synchronization in malignant cells lines. In this study, we investigated whether timed, sequential treatment based on the cell-cycle characteristics could be exploited to enhance the cytotoxic effect of paclitaxel. We characterized the cell-cycle properties of a rapidly multiplying cell line (Sp2, mouse myeloma cells) by propidium-iodide DNA staining such as the lengths of various cell cycle phases and population duplication time. Based on this we designed a paclitaxel treatment protocol that comprised a primary and a secondary, timed treatment. We found that the first paclitaxel treatment synchronized the cells at the G2/M phase but releasing the block by stopping the treatment allowed a large number of cells to enter the next cell-cycle by a synchronized manner. The second treatment was most effective during the time when these cells approached the next G2/M phase and was least effective when it occurred after the peak time of this next G2/M phase. Moreover, we found that after mixing Sp2 cells with another, significantly slower multiplying cell type (Jurkat human T-cell leukemia) at an initial ratio of 1:1, the ratio of the two different cell types could be influenced by timed sequential paclitaxel treatment at will. Our results demonstrate that knowledge of the cell-cycle parameters of a specific malignant cell type could improve the effectivity of the chemotherapy. Implementing timed chemotherapeutic treatments could increase the cytotoxicity on the malignant cells but also decrease the side-effects since other, non-malignant cell types will have different cell-cycle characteristic and be out of synch during the treatment. PMID:27104236

  6. Cisplatin improves antitumor activity of weekly nab-paclitaxel in patients with metastatic breast cancer

    PubMed Central

    Sun, Si; Tang, Lichen; Zhang, Jian; Lv, Fangfang; Wang, Zhonghua; Wang, Leiping; Zhang, Qunling; Zheng, Chunlei; Qiu, Lixin; Jia, Zhen; Lu, Yunhua; Liu, Guangyu; Shao, Zhimin; Wang, Biyun; Hu, Xichun

    2014-01-01

    Although nanoparticle albumin-bound paclitaxel (nab-paclitaxel) is approved to be given every 3 weeks, weekly use of this drug is becoming a new standard of care in patients with metastatic breast cancer (MBC). This prospective Phase II study was conducted to improve the efficacy of weekly nab-paclitaxel with cisplatin in MBC patients. Seventy-three women with recurrent or MBC were eligible for participation. Nab-paclitaxel was administered weekly at a dose of 125 mg/m2 on day 1, day 8, and day 15, followed by cisplatin 75 mg/m2 on day 1, repeated every 28 days with a maximum of 6 cycles. The primary objective was investigator-assessed overall response rate (ORR). A high ORR of 67.1% was obtained, with rates of 80.6% for the first-line patients and 80% for patients not pretreated with taxanes. Among those who had objective responses, a large percentage of patients (83.7%) showed quickly remarkable tumor shrinkage during the first two cycles. The median progression-free and overall survival times were 9.8 and 26.9 months, respectively. For the patients receiving first-, second-, and third-line therapy or beyond, median progression-free survival was 11.7, 7.7, and 7.6 months, respectively (P=0.005). Molecular subtype was not significantly associated with ORR or disease progression. Grade 4 neutropenia occurred in 46 patients (63.0%), with febrile neutropenia found in 9 patients (12.3%). Grade 3 peripheral neuropathy was an accumulated dose-limiting toxicity occurring in 19 patients (26.0%). Efficacy of weekly nab-paclitaxel can be improved by adding cisplatin. The doublet is highly effective, with quick response, manageable toxicity, and possible equivalence across molecular subtypes in MBC patients. PMID:24672237

  7. A phase I study of intraperitoneal nanoparticulate paclitaxel (Nanotax®) in patients with peritoneal malignancies

    PubMed Central

    Johnson, Gary A.; Maulhardt, Holly A.; Moore, Kathleen M.; McMeekin, D. S.; Schulz, Thomas K.; Reed, Gregory A.; Roby, Katherine F.; Mackay, Christine B.; Smith, Holly J.; Weir, Scott J.; Wick, Jo A.; Markman, Maurie; diZerega, Gere S.; Baltezor, Michael J.; Espinosa, Jahna; Decedue, Charles J.

    2015-01-01

    Purpose This multicenter, open-label, dose-escalating, phase I study evaluated the safety, tolerability, pharmacokinetics and preliminary tumor response of a nanoparticulate formulation of paclitaxel (Nanotax®) administered intraperitoneally for multiple treatment cycles in patients with solid tumors predominantly confined to the peritoneal cavity for whom no other curative systemic therapy treatment options were available. Methods Twenty-one patients with peritoneal malignancies received Nanotax® in a modified dose-escalation approach utilizing an accelerated titration method. All patients enrolled had previously received chemotherapeutics and undergone surgical procedures, including 33 % with optimal debulking. Six doses (50–275 mg/m2) of Cremophor-free Nanotax® were administered intraperitoneally for one to six cycles (every 28 days). Results Intraperitoneal (IP) administration of Nanotax® did not lead to increases in toxicity over that typically associated with intravenous (IV) paclitaxel. No patient reported ≥Grade 2 neutropenia and/or ≥Grade 3 neurologic toxicities. Grade 3 thrombocytopenia unlikely related to study medication occurred in one patient. The peritoneal concentration–time profile of paclitaxel rose during the 2 days after dosing to peritoneal fluid concentrations 450–2900 times greater than peak plasma drug concentrations and remained elevated through the entire dose cycle. Best response assessments were made in 16/21 patients: Four patients were assessed as stable or had no response and twelve patients had increasing disease. Five of 21 patients with advanced cancers survived longer than 400 days after initiation of Nanotax® IP treatment. Conclusions Compared to IV paclitaxel administration, Cremophor-free IP administration of Nanotax® provides higher and prolonged peritoneal paclitaxel levels with minimal systemic exposure and reduced toxicity. PMID:25898813

  8. PEG-derivatized octacosanol as micellar carrier for paclitaxel delivery.

    PubMed

    Chu, Bingyang; Qu, Ying; Huang, Yixing; Zhang, Lan; Chen, Xiaoxin; Long, Chaofeng; He, Yunqi; Ou, Caiwen; Qian, Zhiyong

    2016-03-16

    In this study, PEG-derivatized octacosanol copolymer was successfully developed to improve the anti-tumor activity and eliminate toxicity of the commercial formulation of paclitaxel (PTX). MPEG2K-C28, the conjugation of monomethoxy Poly(ethylene glycol) 2000 and octacosanol, was readily soluble in aqueous solution and self-assembled to form micelles with small sizes (< 20 nm) that are efficient in encapsulating PTX with a drug loading of 9.38 ± 0.18% and an encapsulation efficiency of 93.90 ± 2.12%. Meanwhile, octacosanol is very safe for humans and amazingly exhibits antitumor activity through inhibition activity of matrix metalloproteinases (MMPs) and translocation of the transcription factor (nuclear factor-kappa B, NF-κB) to the nucleus, which may be able to promote synergistic effects with PTX. A sustained and slower in vitro release behavior was observed in the (PTX micelles) than that of Taxol. PTX micelles exhibited more potent cytotoxicity than Taxol in the 4T1 breast cancer cell line. More interestingly, MPEG2K-C28 selectively inhibited the growth of 4T1 cells rather than the normal cells (HEK293 and L929 cell lines), indicating the antitumor activity of octacosanol remained after conjugation with MPEG. Acute toxicity evaluations indicated that MPEG2K-C28 was a safe drug carrier. Pharmacokinetic study revealed that PTX micelles improved the T1/2 and AUC of PTX (compared with Taxol) from 1.910 ± 0.139 h and 13.999 ± 1.109 mg/l × h to 2.876 ± 0.532 h and 76.462 ± 8.619 mg/l × h in vivo, respectively. The maximal tolerated dose (MTD) for PTX micelles (ca. 120 mg PTX/kg) in mice was significantly higher than that for Taxol (ca. 20mg PTX/kg). PTX micelles exhibited slightly better antitumor activity than Taxol but safer in 4T1 breast cancer model in vivo. The cell apoptosis in the immunofluorescent studies and the cell proliferation in the immunohistochemical studies also proved the results. In conclusion, MPEG2K-C28 is a simple, safe and effective

  9. In vitro and in vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, G Devanand; Ramasamy, S; Reddy, G Pramod; Kumar, J

    2013-08-01

    Targeted drug delivery using nanocrystalline materials delivers the drug at the diseased site. This increases the efficacy of the drug in killing the cancer cells. Surface modifications were done to target the drug to a particular receptor on the cell surface. This paper reports synthesis of hydroxyapatite and titanium dioxide nanoparticles and modification of their surface with polyethylene glycol (PEG) followed by folic acid (FA). Paclitaxel, an anticancer drug, is attached to functionalized hydroxyapatite and titanium dioxide nanoparticles. The pure and functionalised nanoparticles are characterised with XRD, TEM and UV spectroscopy. Anticancer analysis was carried out in DEN induced hepatocarcinoma animals. Biochemical, hematological and histopathological analysis show that the surface modified paclitaxel attached nanoparticles have an higher anticancer activity than the pure paclitaxel and surface modified nanoparticles without paclitaxel. This is due to the targeting of the drug to the folate receptor in the cancer cells. PMID:23615724

  10. Micro RNA 100 sensitizes luminal A breast cancer cells to paclitaxel treatment in part by targeting mTOR

    PubMed Central

    He, Yuan; Fu, Xing; Fu, Liya; Zhu, Zhengmao; Fu, Li; Dong, Jin-Tang

    2016-01-01

    Luminal A breast cancer usually responds to hormonal therapies but does not benefit from chemotherapies, including microtubule-targeted paclitaxel. MicroRNAs could play a role in mediating this differential response. In this study, we examined the role of micro RNA 100 (miR-100) in the sensitivity of breast cancer to paclitaxel treatment. We found that while miR-100 was downregulated in both human breast cancer primary tumors and cell lines, the degree of downregulation was greater in the luminal A subtype than in other subtypes. The IC50 of paclitaxel was much higher in luminal A than in basal-like breast cancer cell lines. Ectopic miR-100 expression in the MCF-7 luminal A cell line enhanced the effect of paclitaxel on cell cycle arrest, multinucleation, and apoptosis, while knockdown of miR-100 in the MDA-MB-231 basal-like line compromised these effects. Similarly, overexpression of miR-100 enhanced the effects of paclitaxel on tumorigenesis in MCF-7 cells. Rapamycin-mediated inhibition of the mammalian target of rapamycin (mTOR), a target of miR-100, also sensitized MCF-7 cells to paclitaxel. Gene set enrichment analysis showed that genes that are part of the known paclitaxel-sensitive signature had a significant expression correlation with miR-100 in breast cancer samples. In addition, patients with lower levels of miR-100 expression had worse overall survival. These results suggest that miR-100 plays a causal role in determining the sensitivity of breast cancers to paclitaxel treatment. PMID:26744318

  11. Combination therapy using imatinib and vatalanib improves the therapeutic efficiency of paclitaxel towards a mouse melanoma tumor.

    PubMed

    Kłosowska-Wardęga, Agnieszka; Hasumi, Yoko; Åhgren, Aive; Heldin, Carl-Henrik; Hellberg, Carina

    2011-02-01

    Melanomas respond poorly to chemotherapy. In this study, we investigated the sensitization of B16 mouse melanoma tumors to paclitaxel by a combination of two tyrosine kinase inhibitors: vatalanib, targeting vascular endothelial growth factor receptors, and imatinib, an inhibitor targeting for example, Abl/BCR-ABL, the platelet-derived growth factor receptor, and stem cell factor receptor c-Kit. C57Bl6/J mice carrying B16/PDGF-BB mouse melanoma tumors were treated daily with vatalanib (25 mg/kg), imatinib (100 mg/kg), or a combination of these drugs. Paclitaxel was given subcutaneously twice during the study. The effects of the drugs on tumor cell proliferation in vitro were determined by counting cells. B16/PDGF-BB mouse melanoma tumors were not sensitive to paclitaxel at doses of either 5 or 20 mg/kg. However, the tumor growth was significantly reduced by 58%, in response to paclitaxel (5 mg/kg) when administered with daily doses of both vatalanib and imatinib. Paclitaxel only inhibited the in-vitro growth of B16/PDGF-BB tumor cells when given in combination with imatinib. Imatinib presumably targets c-Kit, as the cells do not express platelet-derived growth factor receptor and as another c-Abl inhibitor was without effect. This was supported by data from three c-Kit-expressing human melanoma cell lines showing varying sensitization to paclitaxel by the kinase inhibitors. In addition, small interfering RNA knockdown of c-Kit sensitized the cells to paclitaxel. These data show that combination of two tyrosine kinase inhibitors, imatinib and vatalanib, increases the effects of paclitaxel on B16/PDGF-BB tumors, thus suggesting a novel strategy for the treatment of melanomas expressing c-Kit. PMID:20975605

  12. Phase I study of saracatinib (AZD0530) in combination with paclitaxel and/or carboplatin in patients with solid tumours

    PubMed Central

    Kaye, S; Aamdal, S; Jones, R; Freyer, G; Pujade-Lauraine, E; de Vries, E G E; Barriuso, J; Sandhu, S; Tan, D S-W; Hartog, V; Kuenen, B; Ruijter, R; Kristensen, G B; Nyakas, M; Barrett, S; Burke, W; Pietersma, D; Stuart, M; Emeribe, U; Boven, E

    2012-01-01

    Background: As a prelude to combination studies aimed at resistance reversal, this dose-escalation/dose-expansion study investigated the selective Src kinase inhibitor saracatinib (AZD0530) in combination with carboplatin and/or paclitaxel. Methods: Patients with advanced solid tumours received saracatinib once-daily oral tablets in combination with either carboplatin AUC 5 every 3 weeks (q3w), paclitaxel 175 mg m−2 q3w, paclitaxel 80 mg m−2 every 1 week (q1w), or carboplatin AUC 5 plus paclitaxel 175 mg m−2 q3w. The primary endpoint was safety/tolerability. Results: A total of 116 patients received saracatinib 125 (N=20), 175 (N=44), 225 (N=40), 250 (N=9), or 300 mg (N=3). There were no clear dose-related trends within each chemotherapy regimen group in number or severity of adverse events (AEs). However, combining all groups, the occurrence of grade ⩾3 asthenic AEs (all causality) was dose-related (125 mg, 10% 175 mg, 20% ⩾225 mg, 33%), and grade ⩾3 neutropenia occurred more commonly at doses ⩾225 mg. There was no evidence that saracatinib affected exposure to carboplatin or paclitaxel, or vice versa. Objective responses were seen in 5 out of 44 patients (11%) receiving carboplatin plus paclitaxel q3w, and 5 out of 24 (21%) receiving paclitaxel q1w. Conclusion: Saracatinib doses up to 175 mg with paclitaxel with/without carboplatin showed acceptable toxicity in most patients, and are suitable for further trials. PMID:22531637

  13. Increased chemoresistance to paclitaxel in the MCF10AT series of human breast epithelial cancer cells.

    PubMed

    Lim, Soo-Jeong; Choi, Hyeon Gyeom; Jeon, Chae Kyung; Kim, So Hee

    2015-04-01

    The MCF10AT cell series of human breast epithelial cancer cells includes normal MCF10A (10A), premalignant MCF10AT (10AT) and MCF10ATG3B (10ATG3B), and fully malignant MCF10CA1a (10CA1a) cells. The series is a unique model system showing progressive tumorigenic potential with the same origin. The effects of paclitaxel, a microtubule inhibitor, were evaluated in this cell system. Paclitaxel inhibited cell proliferation in a time-dependent (24, 48 and 72 h) and concentration-dependent (0-10 nM) manners with less sensitivity in 10CA1a cells. Treatment with paclitaxel (10 nM) for 24 h induced apoptosis in 10A, 10AT, 10ATG3B and 10CA1a cells, with 23.6, 26.1, 25.2 and 8.96%, respectively, in the sub-G1 phase. Treatment with paclitaxel (0-10 nM) for 24 h, resulted in the appearance of DNA fragmentation (a hallmark of apoptosis) with less sensitivity in the 10CA1a tumor cells. Paclitaxel increased p53 protein expression in 10A, 10AT, 10ATG3B and 10CA1a cells, by 87, 102, 812 and 84%, respectively. The p21Waf1/Cip1 protein expression increased by 2.57-, 1.53- and 2.48-fold in 10A, 10AT and 10ATG3B cells, respectively, with negligible detection in the 10CA1a cells. Activation of the Akt signaling pathway was observed in the MCF10AT cell lineage and the protein expression of phospho-Akt (Ser473 and Thr308). The downstream targets of this pathway, phospho-p70S6K and phospho-S6RP, were also inhibited by paclitaxel in 10A, 10AT and 10ATG3B cells, but minimally inhibited in 10CA1a cells, suggestive of chemoresistance in 10CA1a cells. The effects of paclitaxel on the multidrug resistance 1 (MDR1), MRP1 and breast cancer resistance protein (BCRP) gene expression were not significant in the MCF10AT cell lineage. These results collectively indicated that paclitaxel inhibited cell proliferation and induced apoptosis in the MCF10AT cell lineage, with chemoresistance in 10CA1a tumor cells. The decreased responsiveness to paclitaxel observed in 10CA1a tumor cells was likely due

  14. Paclitaxel-incorporated nanoparticles using block copolymers composed of poly(ethylene glycol)/poly(3-hydroxyoctanoate).

    PubMed

    Kim, Hyun Yul; Ryu, Je Ho; Chu, Chong Woo; Son, Gyung Mo; Jeong, Young-Il; Kwak, Tae-Won; Kim, Do Hyung; Chung, Chung-Wook; Rhee, Young Ha; Kang, Dae Hwan; Kim, Hyung Wook

    2014-01-01

    Block copolymers composed of poly(3-hydroxyoctanoate) (PHO) and methoxy poly(ethylene glycol) (PEG) were synthesized to prepare paclitaxel-incorporated nanoparticle for antitumor drug delivery. In a (1)H-NMR study, chemical structures of PHO/PEG block copolymers were confirmed and their molecular weight (M.W.) was analyzed with gel permeation chromatography (GPC). Paclitaxel as a model anticancer drug was incorporated into the nanoparticles of PHO/PEG block copolymer. They have spherical shapes and their particle sizes were less than 100 nm. In a (1)H-NMR study in D2O, specific peaks of PEG solely appeared while peaks of PHO disappeared, indicating that nanoparticles have core-shell structures. The higher M.W. of PEG decreased loading efficiency and particle size. The higher drug feeding increased drug contents and average size of nanoparticles. In the drug release study, the higher M.W. of PEG block induced the acceleration of drug release rate. The increase in drug contents induced the slow release rate of drug. In an antitumor activity study in vitro, paclitaxel nanoparticles have practically similar anti-proliferation activity against HCT116 human colon carcinoma cells. In an in vivo animal study using HCT116 colon carcinoma cell-bearing mice, paclitaxel nanoparticles have enhanced antitumor activity compared to paclitaxel itself. Therefore, paclitaxel-incorporated nanoparticles of PHO/PEG block copolymer are a promising vehicle for antitumor drug delivery. PMID:25288916

  15. Paclitaxel-incorporated nanoparticles using block copolymers composed of poly(ethylene glycol)/poly(3-hydroxyoctanoate)

    PubMed Central

    2014-01-01

    Block copolymers composed of poly(3-hydroxyoctanoate) (PHO) and methoxy poly(ethylene glycol) (PEG) were synthesized to prepare paclitaxel-incorporated nanoparticle for antitumor drug delivery. In a 1H-NMR study, chemical structures of PHO/PEG block copolymers were confirmed and their molecular weight (M.W.) was analyzed with gel permeation chromatography (GPC). Paclitaxel as a model anticancer drug was incorporated into the nanoparticles of PHO/PEG block copolymer. They have spherical shapes and their particle sizes were less than 100 nm. In a 1H-NMR study in D2O, specific peaks of PEG solely appeared while peaks of PHO disappeared, indicating that nanoparticles have core-shell structures. The higher M.W. of PEG decreased loading efficiency and particle size. The higher drug feeding increased drug contents and average size of nanoparticles. In the drug release study, the higher M.W. of PEG block induced the acceleration of drug release rate. The increase in drug contents induced the slow release rate of drug. In an antitumor activity study in vitro, paclitaxel nanoparticles have practically similar anti-proliferation activity against HCT116 human colon carcinoma cells. In an in vivo animal study using HCT116 colon carcinoma cell-bearing mice, paclitaxel nanoparticles have enhanced antitumor activity compared to paclitaxel itself. Therefore, paclitaxel-incorporated nanoparticles of PHO/PEG block copolymer are a promising vehicle for antitumor drug delivery. PMID:25288916

  16. Paclitaxel enhances therapeutic efficacy of the F8-IL2 immunocytokine to EDA-fibronectin-positive metastatic human melanoma xenografts.

    PubMed

    Moschetta, Michele; Pretto, Francesca; Berndt, Alexander; Galler, Kerstin; Richter, Petra; Bassi, Andrea; Oliva, Paolo; Micotti, Edoardo; Valbusa, Giovanni; Schwager, Kathrin; Kaspar, Manuela; Trachsel, Eveline; Kosmehl, Hartwig; Bani, Maria Rosa; Neri, Dario; Giavazzi, Raffaella

    2012-04-01

    The selective delivery of bioactive agents to tumors reduces toxicity and enhances the efficacy of anticancer therapies. In this study, we show that the antibody F8, which recognizes perivascular and stromal EDA-fibronectin (EDA-Fn), when conjugated to interleukin-2 (F8-IL2) can effectively inhibit the growth of EDA-Fn-expressing melanomas in combination with paclitaxel. We obtained curative effects with paclitaxel administered before the immunocytokine. Coadministration of paclitaxel increased the uptake of F8 in xenografted melanomas, enhancing tumor perfusion and permeability. Paclitaxel also boosted the recruitment of F8-IL2-induced natural killer (NK) cells to the tumor, suggesting a host response as part of the observed therapeutic benefit. In support of this likelihood, NK cell depletion impaired the antitumor effect of paclitaxel plus F8-IL2. Importantly, this combination reduced both the tumor burden and the number of pulmonary metastatic nodules. The combination did not cause cumulative toxicity. Together, our findings offer a preclinical proof that by acting on the tumor stroma paclitaxel potentiates the antitumor activity elicited by a targeted delivery of IL2, thereby supporting the use of immunochemotherapy in the treatment of metastatic melanoma. PMID:22392081

  17. Effects of stathmin 1 silencing by siRNA on sensitivity of esophageal cancer cells Eca-109 to paclitaxel.

    PubMed

    Zhu, H W; Jiang, D; Xie, Z Y; Zhou, M H; Sun, D Y; Zhao, Y G

    2015-01-01

    We investigated the effects of stathmin 1 (STMN1) silencing by small interfering (siRNA) on the sensitivity of esophageal cancer cells Eca-109 to paclitaxel. STMN1 siRNA was transiently transfected into Eca-109 cells. The effects of transfection were detected by quantitative polymerase chain reaction and western blotting. The effects of STMN1 silencing by siRNA on the sensitivity of esophageal cancer cells Eca-109 to paclitaxel was tested by MTT and colony formation assays. Hoechst 33258 nuclear staining was used to investigate the differences in Eca-109 cell apoptosis induced by paclitaxel. STMN1 siRNA was successfully transfected and the expression of STMN1 was inhibited. The sensitivity of STMN1 siRNA-transfected Eca-109 cells to paclitaxel was significantly increased (P < 0.01). The apoptosis of Eca-109 cells significantly increased following treatment with paclitaxel (P < 0.01). STMN1 silencing by siRNA may enhance the sensitivity of esophageal cancer cells Eca-109 to paclitaxel and induce apoptosis. PMID:26782519

  18. A combination of the telomerase inhibitor, BIBR1532, and paclitaxel synergistically inhibit cell proliferation in breast cancer cell lines.

    PubMed

    Shi, Yi; Sun, Lin; Chen, Ge; Zheng, Dongyan; Li, Li; Wei, Wanguo

    2015-12-01

    Breast cancer is one of the most significant causes of female cancer death worldwide. Paclitaxel, an extensively used breast cancer chemotherapeutic has limited success due to drug resistance. 2-[(E)-3-naphtalen-2-yl-but-2-enoylamino]-benzoic acid (BIBR1532), a small molecule pharmacological inhibitor of telomerase activity, can inhibit human cancer cell proliferation as well. Thus, to enhance breast cancer treatment efficacy, we studied the combination of BIBR1532 and paclitaxel in breast cancer cell lines. Cell viability assays revealed that BIBR1532 or paclitaxel alone inhibited proliferation in a dose-dependent manner, and combining the drugs synergistically induced growth inhibition in all breast cell lines tested independent of their p53, ER, and HER2 status. The drug combination also synergistically inhibited colony formation of MCF-7 cells in a dose-dependent manner. Annexin V-PI staining and Western blot assays on PARP cleavage and caspase-8 and caspase-3 revealed that BIBR1532 in combination with paclitaxel was more potent than either agent alone in promoting MCF-7 cell apoptosis. Cell cycle analysis indicated that BIBR1532 induced a G1 phase arrest and paclitaxel arrested cells at the G2/M phase. The drug combination dramatically blocked S cells from entering the G2/M phase. Our results suggest the potential of telomerase inhibition as an effective breast cancer treatment and that used in conjunction with paclitaxel; it may potentiate tumor cytotoxicity. PMID:25916999

  19. The ClC-3 chloride channel associated with microtubules is a target of paclitaxel in its induced-apoptosis

    PubMed Central

    Zhang, Haifeng; Li, Huarong; Yang, Lili; Deng, Zhiqin; Luo, Hai; Ye, Dong; Bai, Zhiquan; Zhu, Linyan; Ye, Wencai; Wang, Liwei; Chen, Lixin

    2013-01-01

    Recent evidences show that cationic fluxes play a pivotal role in cell apoptosis. In this study, the roles of Cl− channels in paclitaxel-induced apoptosis were investigated in nasopharyngeal carcinoma CNE-2Z cells. Chloride current and apoptosis were induced by paclitaxel and inhibited by chloride channel blockers. Paclitaxel-activated current possessed similar properties to volume-activated chloride current. After ClC-3 was knocked-down by ClC-3-siRNA, hypotonicity-activated and paclitaxel-induced chloride currents were obviously decreased, indicating that the chloride channel involved in paclitaxel-induced apoptosis may be ClC-3. In early apoptotic cells, ClC-3 was up-regulated significantly; over-expressed ClC-3 was accumulated in cell membrane to form intercrossed filaments, which were co-localized with α-tubulins; changes of ultrastructures and decrease of flexibility in cell membrane were detected by atomic force microscopy. These suggest that ClC-3 is a critical target of paclitaxel and the involvement of ClC-3 in apoptosis may be associated with its accumulation with membrane microtubules and its over activation. PMID:24026363

  20. The effect of 17-allylamino-17-demethoxygeldanamycin alone or in combination with paclitaxel on anaplastic thyroid carcinoma cells.

    PubMed

    Kim, Si Hyoung; Kang, Jun Goo; Kim, Chul Sik; Ihm, Sung-Hee; Choi, Moon Gi; Yoo, Hyung Joon; Lee, Seong Jin

    2015-04-01

    The effect of 17-allylamino-17-demethoxygeldanamycin (17-AAG), an hsp90 inhibitor, alone or in combination with paclitaxel on survival of anaplastic thyroid carcinoma (ATC) was evaluated. In 8505C and CAL62 cells, after treatment of 17-AAG, cell viability decreased, and the percentage of dead cells increased. 17-AAG did not cause cleavage of caspase-3 protein, and change expression of IAPs. Pretreatment of z-VAD-fmk did not alter cell viability and the percentage of dead cells. In 17-AAG-treated cells, knockdown of p53 rescued growth inhibition, while cycloheximide attenuated cell death. When cells were treated with both 17-AAG and paclitaxel, all of the combination index values were higher than 1, indicating antagonism between 17-AAG and paclitaxel. In 17-AAG- and paclitaxel-treated cells, compared with paclitaxel alone-treated cells, the protein levels of hsp90, hsp70, and hsc70 increased. In conclusion, our results suggest that 17-AAG induces non-apoptotic cell death requiring de novo protein synthesis in ATC cells. Moreover, these results demonstrate that 17-AAG antagonizes paclitaxel with concomitant alterations in hsp90 client proteins in ATC cells. PMID:25096912

  1. Phase II trial of capecitabine plus nab-paclitaxel in patients with metastatic pancreatic adenocarcinoma

    PubMed Central

    Kornek, Gabriela; Prager, Gerald; Stranzl, Nadja; Laengle, Friedrich; Schindl, Martin; Friedl, Josef; Klech, Julia; Roethlin, Sabine; Zielinski, Christoph

    2016-01-01

    Background Combination chemotherapy regimens including fluoropyrimidines as well as albumin-bound paclitaxel have shown promising results in patients with metastatic pancreatic adenocarcinoma (mPC). Based on the recently described excellent therapeutic index of capecitabine plus nab-paclitaxel in metastatic breast cancer, the present phase II trial was initiated. Methods Patients with previously untreated mPC were treated with capecitabine (825 mg/m2 orally bid on days 1-15) and nab-paclitaxel (125 mg/m2 intravenously on days 1 and 8) every 3 weeks. In patients without clinically relevant adverse reactions after the 1st treatment course (≤ grade 2 toxicities according to NCI-CTC vs. 4.0, exuding alopecia and fatigue of any degree) and adequate bone marrow function, the nab-paclitaxel dose was escalated to 100 mg/m2 on days 1, 8 and 15 of each cycle; this intra-individual dose escalation was maintained during subsequent treatment courses if tolerated. The primary endpoint was objective response rate (ORR) according to RECIST criteria, assessed by an independent radiological review committee with evaluation performed every 2 months. Results Between 12/2013 and 01/2015, 30 patients were entered in this monocentric academic phase II trial. All patients had an ECOG performance status of 0-1, 80% had liver metastases and 23% had biliary stents in place at time of study initiation. Median CA19-9 was 1,004 U/mL (0.9-100.000 U/mL). In all patients except 2, a dose escalation of nab-paclitaxel after the 1st treatment course could be accomplished. The most common grade 3 adverse events (AEs) included transient sensory neuropathy (23%), (afebrile) neutropenia (17%), hand-foot-syndrome (13%) and phototoxic skin reaction (10%). Among 29 RECIST-response assessable patients, the ORR was 41.4% and stable disease (SD) was noted in 34.5%, resulting in a disease control rate (DCR) of 76%. After a median follow-up duration of 10.3 months (range, 1.9-19.0 months), 13/30 patients (43

  2. Nab-paclitaxel-associated photosensitivity: report in a woman with non-small cell lung cancer and review of taxane-related photodermatoses

    PubMed Central

    Beutler, Bryce D.; Cohen, Philip R.

    2015-01-01

    Background: Taxanes [paclitaxel, nab-paclitaxel (Abraxane, Celgene Corp, USA), and docetaxel]—used in the treatment of lung, breast, and head and neck cancers—have been associated with cutaneous adverse effects, including photodermatoses. Purpose: We describe a woman with non-small cell lung cancer who developed a photodistributed dermatitis associated with her nab-paclitaxel therapy and review photodermatoses in patients receiving taxanes. Materials and methods: The features of a woman with a nab-paclitaxel-associated photodistributed dermatitis are presented and the literature on nab-paclitaxel-associated photosensitivity is reviewed. Results: Our patient developed nab-paclitaxel-associated photodistributed dermatitis on the sun-exposed surfaces of her upper extremities, which was exacerbated with each course of nab-paclitaxel. Biopsies revealed an interface dermatitis and laboratory studies were negative for lupus erythematosus and dermatomyositis. Her condition improved following topical corticosteroid cream application and strict avoidance of sunlight. Conclusion: Chemotherapy can be associated with adverse mucocutaneous events, including dermatoses on sun-exposed areas of the skin. Paclitaxel and nab-paclitaxel have both been associated with photodermatoses, including dermatitis, erythema multiforme, onycholysis, and subacute cutaneous lupus erythematosus. Strict avoidance of sun exposure, topical or oral corticosteroids, and/or discontinuation of the drug results in improvement with progressive resolution of symptoms and skin lesions. Development of photodermatoses is not an absolute contraindication to continuing chemotherapy, provided that the cutaneous condition resolves with dermatosis-directed treatment and the patient avoids sun exposure. PMID:26114068

  3. Severe hyponatremia caused by nab-paclitaxel-induced syndrome of inappropriate antidiuretic hormone secretion: A case report in a patient with metastatic pancreatic adenocarcinoma.

    PubMed

    Neuzillet, Cindy; Babai, Samy; Kempf, Emmanuelle; Pujol, Géraldine; Rousseau, Benoît; Le-Louët, Hervé; Christophe Tournigand

    2016-06-01

    Incidence of pancreatic ductal adenocarcinoma (PDAC) is increasing. Most patients have advanced disease at diagnosis and therapeutic options in this setting are limited. Gemcitabine plus nab-paclitaxel regimen was demonstrated to increase survival compared with gemcitabine monotherapy and is therefore indicated as first-line therapy in patients with metastatic PDAC and performance status Eastern Cooperative Oncology Group (ECOG) 0-2. The safety profile of gemcitabine and nab-paclitaxel combination includes neutropenia, fatigue, and neuropathy as most common adverse events of grade 3 or higher. No case of severe hyponatremia associated with the use of nab-paclitaxel for the treatment of PDAC has been reported to date.We report the case of a 72-year-old Caucasian man with a metastatic PDAC treated with gemcitabine and nab-paclitaxel regimen, who presented with a severe hyponatremia (grade 4) caused by a documented syndrome of inappropriate antidiuretic hormone secretion (SIADH). This SIADH was attributed to nab-paclitaxel after a rigorous imputability analysis, including a rechallenge procedure with dose reduction. After dose and schedule adjustment, nab-paclitaxel was pursued without recurrence of severe hyponatremia and with maintained efficacy.Hyponatremia is a rare but potentially severe complication of nab-paclitaxel therapy that medical oncologists and gastroenterologists should be aware of. Nab-paclitaxel-induced hyponatremia is manageable upon dose and schedule adaptation, and should not contraindicate careful nab-paclitaxel reintroduction. This is of particular interest for a disease in which the therapeutic options are limited. PMID:27368013

  4. Nanoparticle albumin-bound paclitaxel in a patient with locally advanced breast cancer and taxane-induced skin toxicity: a case report

    PubMed Central

    2014-01-01

    Introduction Taxanes have demonstrated effectiveness in the treatment of breast cancer, the most common type of cancer in women. The toxicity profile of taxanes (including skin toxicities) induces dose adjustment, delay, or discontinuation, which prevents a sufficient dose intensity to achieve a response. Nanoparticle albumin-bound paclitaxel, a solvent-free form of paclitaxel, prevents toxicities and reduces the pharmacokinetic interferences between paclitaxel and other drugs. Case presentation We describe the case of a 55-year-old Caucasian woman with locally advanced breast cancer treated with neoadjuvant therapy who developed secondary skin toxicity due to delayed hypersensitivity to taxanes. She received Adriamycin® (doxorubicin), cyclophosphamide and docetaxel and developed toxicity that promoted treatment delay and a switch to weekly paclitaxel. After the third and fourth weeks of treatment, paclitaxel toxicities also induced treatment delay and paclitaxel was switched to nanoparticle albumin-bound paclitaxel. She completed the five planned nanoparticle albumin-bound paclitaxel cycles with acceptable tolerability (including persistent grade 2 neuropathy) and without dose delay or adjustments. Clinical response was achieved although pathological response was not good. Conclusions Nanoparticle albumin-bound paclitaxel treatment is a good option for patients with breast cancer with taxanes-related skin toxicity. This drug allows the treatment to be completed with acceptable tolerance in our case. PMID:24386978

  5. Neuroglobin overexpression induced by the 17β-Estradiol-Estrogen receptor-α Pathway reduces the sensitivity of MCF-7 Breast cancer cell to paclitaxel.

    PubMed

    Fiocchetti, Marco; Cipolletti, Manuela; Leone, Stefano; Ascenzi, Paolo; Marino, Maria

    2016-08-01

    Although paclitaxel (Taxol) is an active chemotherapeutic agent for the treatment of breast cancer, not all breast tumors are sensitive to this drug. In particular, there is a wide agreement on the low sensitivity of estrogen receptor (ER) α-positive breast cancer to paclitaxel treatment. However, the ERα-based insensitivity to paclitaxel is still elusive. Here, the effect of the E2/ERα-dependent upregulation of neuroglobin (NGB), an antiapoptotic globin, on the reduced sensitivity of breast cancer cells to paclitaxel-induced apoptosis has been evaluated in ERα-containing MCF-7 cells. The E2 pretreatment enhances the ERα activity and significantly impairs paclitaxel-induced apoptosis as evaluated by Annexin V assay and PARP-1 cleavage. NGB displays a pivotal role in the E2/ERα-induced antiapoptotic pathway to abrogate paclitaxel-induced cell death in stable NGB-silenced MCF-7 cell clones. Moreover, in the absence of the active ERα, paclitaxel significantly reduces the NGB cell content. In conclusion, these results highlight the involvement of ERα activation and of E2/ERα-dependent NGB upregulation in the insensitivity of MCF-7 to paclitaxel. These novel findings could have important implications in the development of targeted therapeutics for overcoming paclitaxel insensitivity in ERα-positive human breast cancer. © 2016 IUBMB Life, 68(8):645-651, 2016. PMID:27312786

  6. Macitentan (ACT-064992), a Tissue-Targeting Endothelin Receptor Antagonist, Enhances Therapeutic Efficacy of Paclitaxel by Modulating Survival Pathways in Orthotopic Models of Metastatic Human Ovarian Cancer12

    PubMed Central

    Kim, Sun-Jin; Kim, Jang Seong; Kim, Seung Wook; Brantley, Emily; Yun, Seok Joong; He, Junqin; Maya, Marva; Zhang, Fahao; Wu, Qiuyu; Lehembre, François; Regenass, Urs; Fidler, Isaiah J

    2011-01-01

    Potential treatments for ovarian cancers that have become resistant to standard chemotherapies include modulators of tumor cell survival, such as endothelin receptor (ETR) antagonist. We investigated the therapeutic efficacy of the dual ETR antagonist, macitentan, on human ovarian cancer cells, SKOV3ip1 and IGROV1, growing orthotopically in nude mice. Mice with established disease were treated with vehicle (control), paclitaxel (weekly, intraperitoneal injections), macitentan (daily oral administrations), or a combination of paclitaxel and macitentan. Treatment with paclitaxel decreased tumor weight and volume of ascites. Combination therapy with macitentan and paclitaxel reduced tumor incidence and further reduced tumor weight and volume of ascites when compared with paclitaxel alone. Macitentan alone occasionally reduced tumor weight but alone had no effect on tumor incidence or ascites. Immunohistochemical analyses revealed that treatment with macitentan and macitentan plus paclitaxel inhibited the phosphorylation of ETRs and suppressed the survival pathways of tumor cells by decreasing the levels of pVEGFR2, pAkt, and pMAPK. The dose of macitentan necessary for inhibition of phosphorylation correlated with the dose required to increase antitumor efficacy of paclitaxel. Treatment with macitentan enhanced the cytotoxicity mediated by paclitaxel as measured by the degree of apoptosis in tumor cells and tumor-associated endothelial cells. Collectively, these results show that administration of macitentan in combination with paclitaxel prevents the progression of ovarian cancer in the peritoneal cavity of nude mice in part by inhibiting survival pathways of both tumor cells and tumor-associated endothelial cells. PMID:21403842

  7. 212Pb-radioimmunotherapy potentiates paclitaxel-induced cell killing efficacy by perturbing the mitotic spindle checkpoint

    PubMed Central

    Yong, K J; Milenic, D E; Baidoo, K E; Brechbiel, M W

    2013-01-01

    Background: Paclitaxel has recently been reported by this laboratory to potentiate the high-LET radiation therapeutic 212Pb-TCMC-trastuzumab, which targets HER2. To elucidate mechanisms associated with this therapy, targeted α-particle radiation therapeutic 212Pb-TCMC-trastuzumab together with paclitaxel was investigated for the treatment of disseminated peritoneal cancers. Methods: Mice bearing human colon cancer LS-174T intraperitoneal xenografts were pre-treated with paclitaxel, followed by treatment with 212Pb-TCMC-trastuzumab and compared with groups treated with paclitaxel alone, 212Pb-TCMC-HuIgG, 212Pb-TCMC-trastuzumab and 212Pb-TCMC-HuIgG after paclitaxel pre-treatment. Results: 212Pb-TCMC-trastuzumab with paclitaxel given 24 h earlier induced increased mitotic catastrophe and apoptosis. The combined modality of paclitaxel and 212Pb-TCMC-trastuzumab markedly reduced DNA content in the S-phase of the cell cycle with a concomitant increase observed in the G2/M-phase. This treatment regimen also diminished phosphorylation of histone H3, accompanied by an increase in multi-micronuclei, or mitotic catastrophe in nuclear profiles and positively stained γH2AX foci. The data suggests, possible effects on the mitotic spindle checkpoint by the paclitaxel and 212Pb-TCMC-trastuzumab treatment. Consistent with this hypothesis, 212Pb-TCMC-trastuzumab treatment in response to paclitaxel reduced expression and phosphorylation of BubR1, which is likely attributable to disruption of a functional Aurora B, leading to impairment of the mitotic spindle checkpoint. In addition, the reduction of BubR1 expression may be mediated by the association of a repressive transcription factor, E2F4, on the promoter region of BubR1 gene. Conclusion: These findings suggest that the sensitisation to therapy of 212Pb-TCMC-trastuzumab by paclitaxel may be associated with perturbation of the mitotic spindle checkpoint, leading to increased mitotic catastrophe and cell death. PMID:23632482

  8. Clinical pharmacokinetic and in vitro combination studies of nolatrexed dihydrochloride (AG337, ThymitaqTM) and paclitaxel

    PubMed Central

    Hughes, A N; Griffin, M J; Newell, D R; Calvert, A H; Johnston, A; Kerr, B; Lee, C; Liang, B; Boddy, A V

    2000-01-01

    A clinical study of nolatrexed dihydrochloride (AG337, ThymitaqTM) in combination with paclitaxel was performed. The aims were to optimize the schedule of administration and determine any pharmacokinetic (PK) interactions between the two drugs. In vitro combination studies were performed to assist with schedule optimization. Three patients were entered on each of three different schedules of administration of the two drugs: (1) paclitaxel 0–3 h, nolatrexed 24–144 h; (2) nolatrexed 0–120 h, paclitaxel 48–51 h; (3) nolatrexed 0–120 h, paclitaxel 126–129 h. Paclitaxel was administered at a dose of 80 mg m−2over 3 h and nolatrexed at a dose of 500 mg m−2day−1as a 120-h continuous intravenous infusion. Plasma concentrations of both drugs were determined by high performance liquid chromatography. In vitro growth inhibition studies using corresponding schedules were performed using two head and neck cancer cell lines. In both HNX14C and HNX22B cell lines, synergistic growth inhibition was observed on schedule 2, whereas schedules 1 and 3 demonstrated antagonistic effects. In the clinical study, there was no effect of schedule on the pharmacokinetics of nolatrexed. However, patients on schedules 1 and 3 had a higher clearance of paclitaxel (322–520 ml min−1m−2) than those on schedule 2 (165–238 ml min−1m−2). Peak plasma concentrations (1.66–1.93 vs 0.86–1.32 μM) and areas under the curve (392–565 vs 180–291 μM min−1) of paclitaxel were correspondingly higher on schedule 2. The pharmacokinetic interaction was confirmed by studies with human liver microsomes, nolatrexed being an inhibitor of the major routes of metabolism of paclitaxel. Toxicity was not schedule-dependent. Nolatrexed and paclitaxel may be safely given together when administered sequentially at the doses used in this study. Studies in vitro suggest some synergy, however, due to a pharmacokinetic interaction, paclitaxel doses should be reduced when administered during

  9. Peptidergic intraepidermal nerve fibers in the skin contribute to the neuropathic pain in paclitaxel-induced peripheral neuropathy.

    PubMed

    Ko, Miau-Hwa; Hu, Ming-E; Hsieh, Yu-Lin; Lan, Chyn-Tair; Tseng, To-Jung

    2014-06-01

    Paclitaxel in chemotherapy-induced peripheral neuropathy (CIPN) is predominantly with a dose-limiting effect on neuropathic pain in clinical strategy. In the present study, the relationship between the neuropathic pain and nerve degeneration in paclitaxel CIPN was investigated. Adult male Sprague-Dawley (SD) rats were divided into three paclitaxel groups (0.5, 1.0, 2.0mg/kg) and a vehicle group with four intraperitoneal (i.p.) injections on alternating days. Our results demonstrated that the paclitaxel groups significantly exhibited the reductions of thermal hyperalgesia and mechanical allodynia. The neurotoxicity of paclitaxel conveyed the degeneration of intraepidermal nerve fibers (IENFs) in hindpaw glabrous skin. Nevertheless, the influence of paclitaxel to the peptidergic IENFs are even unknown. The skin innervation of protein gene product 9.5 (PGP 9.5)-immunoreactive (IR) IENFs in paclitaxel groups revealed the decreasing levels of density (73.54±0.72%, 63.17±1.77%, 61.79±2.68%, respectively; vs. vehicle group, p<0.05) throughout the entire experimental period. Additionally, the diminishing levels of density for peptidergic substance P (SP)-IR IENFs in paclitaxel groups were significantly shown (48.84±1.74%, 30.02±1.69%, 30.14±0.37%, respectively; vs. vehicle group, p<0.05). On the contrary, the density for peptidergic calcitonin gene-related peptide (CGRP)-IR IENFs in paclitaxel groups were revealed the similar decreasing levels (82.75±0.91%, 84.34±3.20%, 81.99±0.25%, respectively; vs. vehicle group, p<0.05). Linear regression analyses exhibited that densities of IENFs for PGP 9.5, SP, CGRP were correlated with withdrawal latencies (r(2)=0.77, p<0.0001; r(2)=0.75, p<0.0001; r(2)=0.28, p=0.0001, respectively) and mechanical thresholds (r(2)=0.43, p<0.0001; r(2)=0.73, p<0.0001; r(2)=0.40, p<0.0001, respectively). Therefore, the present results suggested that the development of neuropathic pain following paclitaxel injection induced the progressive

  10. Paclitaxel- and/or cisplatin-induced ocular neurotoxicity: a case report and literature review

    PubMed Central

    Li, Ying; Li, Yanping; Li, Junyu; Pi, Guoliang; Tan, Wenyong

    2014-01-01

    Paclitaxel (PTX) and/or cisplatin (CDDP), as important cytotoxic anti-cancer agents, are widely used to treat various solid tumors. Both may cause moderate or severe neurotoxicity, but ocular neurotoxicity is also occasionally reported. A patient diagnosed with nasopharyngeal cancer suffering acute ocular neurotoxicity 10 days after paclitaxel and CDDP administration at the recommended dose is described in the present case report, and PTX- and/or CDDP-induced ocular neurotoxicity are summarized according to previous reports. Possible mechanisms and the potential diagnostic, therapeutic and predictive strategies of PTX- and/or CDDP-induced ocular neurotoxicity are reviewed, to help the oncologist to take the infrequent toxicity of cytotoxic drugs into account and improve patient safety during anti-cancer therapy. PMID:25114574

  11. 2’-Behenoyl-Paclitaxel Conjugate Containing Lipid Nanoparticles for the Treatment of Metastatic Breast Cancer

    PubMed Central

    Ma, Ping; Benhabbour, S. Rahima; Feng, Lan; Mumper, Russell J

    2012-01-01

    The aim of these studies was to develop a novel 2’-behenoyl-paclitaxel (C22-PX) conjugate nanoparticle (NP) formulation for the treatment of metastatic breast cancer. A lipophilic paclitaxel derivative C22-PX was synthesized and incorporated into lipid-based NPs. Free C22-PX and its NP formulation were evaluated in a series of in-vitro and in-vivo studies. The results demonstrated that C22-PX NPs were much better tolerated and had significantly higher plasma and tumor AUCs compared to Taxol at the maximum tolerated dose (MTD) in a subcutaneous 4T1 mouse mammary carcinoma model. These benefits resulted in significantly improved antitumor efficacy with the NP-based formulation. PMID:22902506

  12. Combination chemotherapy with S-1 and docetaxel for cutaneous angiosarcoma resistant to paclitaxel.

    PubMed

    Kajihara, Ikko; Kanemaru, Hisashi; Miyake, Taiga; Aoi, Jun; Masuguchi, Shinichi; Fukushima, Satoshi; Jinnin, Masatoshi; Ihn, Hironobu

    2015-02-01

    The prognosis of cutaneous angiosarcoma is very poor compared with that of other skin malignancies. The main reason for this is the limited regimens of chemotherapy available for angiosarcoma, because it is resistant to most common chemotherapeutic agents. Therefore, there is an urgent need to identify new treatment options. Recently, S-1 and docetaxel therapy was reported to be effective for advanced gastric cancer and metastatic extramammary Paget's disease. Therefore, we treated paclitaxel-resistant angiosarcoma patient with S-1/docetaxel chemotherapy. The progression-free survival was 5.0 months although grade 3 adverse events such as diarrhea and neutropenia developed. Our data need to be confirmed in a large number of patients, but S-1/docetaxel chemotherapy as an additional regimen seems to be an effective treatment option for paclitaxel-resistant angiosarcoma. PMID:25788055

  13. Detection of apoptosis caused by anticancer drug paclitaxel in MCF-7 cells by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Middendorp, E.; Végh, A.-G.; Ramakrishnan, S.-K.; Gergely, C.; Cuisinier, F. J. G.

    2013-02-01

    Confocal Raman Microscopy, a non-invasive, label free imaging technique is used to study apoptosis in living MCF-7 cells. The images are based on Raman spectra of cells components. K-mean clustering was used to determine mitochondria position in cells and cytochrome c distribution inside the cells was based on correlation analysis. Cell apoptosis is defined as cytochrome c diffusion in cytoplasm. Co-localization of cytochrome c is found within mitochondria after three hours of incubation with 10 μM paclitaxel. Our results demonstrate that the presence of paclitaxel at this concentration in the culture media for 3 hours does not induce apoptosis of MCF7 cells via a caspase independent pathway.

  14. Confocal Raman data analysis enables identifying apoptosis of MCF-7 cells caused by anticancer drug paclitaxel

    NASA Astrophysics Data System (ADS)

    Salehi, Hamideh; Middendorp, Elodie; Panayotov, Ivan; Dutilleul, Pierre-Yves Collard; Vegh, Attila-Gergely; Ramakrishnan, Sathish; Gergely, Csilla; Cuisinier, Frederic

    2013-05-01

    Confocal Raman microscopy is a noninvasive, label-free imaging technique used to study apoptosis of live MCF-7 cells. The images are based on Raman spectra of cells components, and their apoptosis is monitored through diffusion of cytochrome c in cytoplasm. K-mean clustering is used to identify mitochondria in cells, and correlation analysis provides the cytochrome c distribution inside the cells. Our results demonstrate that incubation of cells for 3 h with 10 μM of paclitaxel does not induce apoptosis in MCF-7 cells. On the contrary, incubation for 30 min at a higher concentration (100 μM) of paclitaxel induces gradual release of the cytochrome c into the cytoplasm, indicating cell apoptosis via a caspase independent pathway.

  15. High-dose paclitaxel in combination with doxorubicin, cyclophosphamide and peripheral blood progenitor cell rescue in patients with high-risk primary and responding metastatic breast carcinoma: toxicity profile, relationship to paclitaxel pharmacokinetics and short-term outcome

    PubMed Central

    Somlo, G; Doroshow, J H; Synold, T; Longmate, J; Reardon, D; Chow, W; Forman, S J; Leong, L A; Margolin, K A; Jr, R J Morgan; Raschko, J W; Shibata, S I; Tetef, M L; Yen, Y; Kogut, N; Schriber, J; Alvarnas, J

    2001-01-01

    We assessed the feasibility and pharmacokinetics of high-dose infusional paclitaxel in combination with doxorubicin, cyclophosphamide, and peripheral blood progenitor cell rescue. Between October 1995 and June 1998, 63 patients with high-risk primary [stage II with ≥ 10 axillary nodes involved, stage IIIA or stage IIIB inflammatory carcinoma (n = 53)] or with stage IV responsive breast cancer (n = 10) received paclitaxel 150–775 mg/m2infused over 24 hours, doxorubicin 165 mg/m2as a continuous infusion over 96 hours, and cyclophosphamide 100 mg kg–1. There were no treatment-related deaths. Dose-limiting toxicity was reversible, predominantly sensory neuropathy following administration of paclitaxel at the 775 mg/m2dose level. Paclitaxel pharmacokinetics were non-linear at higher dose levels; higher paclitaxel dose level, AUC, and peak concentrations were associated with increased incidence of paraesthesias. No correlation between stomatitis, haematopoietic toxicities, and paclitaxel dose or pharmacokinetics was found. Kaplan–Meier estimates of 30-month event-free and overall survival for patients with primary breast carcinoma are 65% (95% CI; 51–83%) and 77% (95% CI; 64–93%). Paclitaxel up to 725 mg/m2infused over 24 hours in combination with with doxorubicin 165 mg/m2and cyclophosphamide 100 mg kg–1is tolerable. A randomized study testing this regimen against high-dose carboplatin, thiotepa and cyclophosphamide (STAMP V) is currently ongoing. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11401310

  16. The role of Six1 signaling in paclitaxel-dependent apoptosis in MCF-7 cell line

    PubMed Central

    Armat, Marzieh; Bakhshaiesh, Taiebeh Oghabi; Sabzichi, Mehdi; Shanehbandi, Dariush; Sharifi, Simin; Molavi, Ommoleila; Mohammadian, Jamal; Hejazi, Mohammad Saeid; Samadi, Nasser

    2016-01-01

    The resistance of cancer cells to chemotherapeutic agents represents the main problem in cancer treatment. Despite intensive research, mechanisms of resistance have not yet been fully elucidated. Six1 signaling has an important role in the expansion of progenitor cell populations during early embryogenesis. Six1 gene overexpression has been strongly associated with aggressiveness, invasiveness, and poor prognosis of different cancers. In this study, we investigated the role of Six1 signaling in resistance of MCF-7 breast cancer cells to taxanes. We first established in vitro paclitaxel-resistant MCF-7 breast cancer cells. Morphological modifications in paclitaxel-resistant cells were examined via light microscopic images and fluorescence-activated cell sorting analysis. Applying quantitative real-time polymerase chain reaction, we measured Six1, B-cell lymphoma/leukemia(BCL-2), BAX, and P53 mRNA expression levels in both non-resistant and resistant cells. Resistant cells were developed from the parent MCF-7 cells by applying increasing concentrations of paclitaxel up to 64 nM. The inhibitory concentration 50% value in resistant cells increased from 3.5 ± 0.03 to 511 ± 10.22 nM (p = 0.015). In paclitaxel-resistant cells, there was a significant increase in Six1 and BCL-2 mRNA levels (p = 0.0007) with a marked decrease in pro-apoptotic Bax mRNA expression level (p = 0.03); however, there was no significant change in P53 expression (p = 0.025). Our results suggest that identifying cancer patients with high Six1 expression and then inhibition of Six1 signaling can improve the efficiency of chemotherapeutic agents in the induction of apoptosis. PMID:26773176

  17. Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in human breast carcinoma cell lines

    SciTech Connect

    Ho, T.-F.; Peng, Y.-T.; Chuang, S.-M.; Lin, S.-C.; Feng, B.-L.; Lu, C.-H.; Yu, W.-J.; Chang, J.-S. Chang, C.-C.

    2009-03-01

    Prodigiosin is a bacterial metabolite with potent anticancer activity, which is attributed to its proapoptotic effect selectively active in malignant cells. Still, the molecular mechanisms whereby prodigiosin induces apoptosis remain largely unknown. In particular, the role of survivin, a vital inhibitor of apoptosis, in prodigiosin-induced apoptosis has never been addressed before and hence was the primary goal of this study. Our results showed that prodigiosin dose-dependently induced down-regulation of survivin in multiple breast carcinoma cell lines, including MCF-7, T-47D and MDA-MB-231. This down-regulation is mainly regulated at the level of transcription, as prodigiosin reduced the levels of both survivin mRNA and survivin promoter activity but failed to rescue survivin expression when proteasome-mediated degradation is abolished. Importantly, overexpression of survivin rendered cells more resistant to prodigiosin, indicating an essential role of survivin down-regulation in prodigiosin-induced apoptosis. In addition, we found that prodigiosin synergistically enhanced cell death induced by paclitaxel, a chemotherapy drug known to up-regulate survivin that in turn confers its own resistance. This paclitaxel sensitization effect of prodigiosin is ascribed to the lowering of survivin expression, because prodigiosin was shown to counteract survivin induction by paclitaxel and, notably, the sensitization effect was severely abrogated in cells that overexpress survivin. Taken together, our results argue that down-regulation of survivin is an integral component mediating prodigiosin-induced apoptosis in human breast cancer cells, and further suggest the potential of prodigiosin to sensitize anticancer drugs, including paclitaxel, in the treatment of breast cancer.

  18. Kaposi's sarcoma in an HIV-positive person successfully treated with paclitaxel.

    PubMed

    Dongre, Atul; Montaldo, Chiara

    2009-01-01

    Epidemic Kaposi's sarcoma is one of the malignant neoplasms, which can develop in HIV-infected patients. Although the prevalence of HIV infection is reported to be high in Asian countries, Kaposi's sarcoma is rarely reported. We report a case of Kaposi's sarcoma involving the skin and oral mucosa along with extensive bilateral lymphedema of lower extremities, treated successfully with paclitaxel and antiretrovirals. PMID:19439884

  19. Skp2 is associated with paclitaxel resistance in prostate cancer cells.

    PubMed

    Yang, Yeguo; Lu, Yi; Wang, Lihui; Mizokami, Atsushi; Keller, Evan T; Zhang, Jian; Fu, Jiejun

    2016-07-01

    Prostate cancer is the most commonly diagnosed tumor in men in the United States. Patients with hormone-refractory prostate cancer are often treated with paclitaxel, but most of them eventually develop drug resistance. S-phase kinase associated protein 2 (Skp2) is a component of the SCF (Skp1-Cullin1-F-box) type of E3 ubiquitin ligase complexes. In the present study, we investigated the role of Skp2 in paclitaxel-resistant DU145-TxR or PC-3-TxR cells by Skp2 silencing or using Skp2 inhibitors. We first confirmed that Skp2 expression is up-regulated in DU145-TxR or PC-3-TxR cells compared with their parental cells DU145 or PC-3, respectively. Knockdown of Skp2 or Skp2 inhibitor treatment in DU145-TxR or PC-3-TxR cells restored paclitaxel sensitivity. E-cadherin was decreased while Vimentin was increased in PC-3-TxR or DU145-TxR cells. In addition, p27 expression was inversely correlated with Skp2 expression in DU145-TxR or PC-3-TxR cells. Moreover, p27 was found to increase in both Skp2 silencing PC-3-TxR and DU145-TxR cells. These results suggest that Skp2 is associated with prostate cancer cell resistance to paclitaxel. Skp2 may be a potential therapeutic target for drug-resistant prostate cancer. PMID:27175797

  20. Profound and persistent painful paclitaxel peripheral neuropathy in a premenopausal patient

    PubMed Central

    Quintyne, K I; Mainstone, P; McNamara, B; Boers, P; Wallis, F; Gupta, R K

    2011-01-01

    The authors herein report the case of a 35-year-old woman undergoing adjuvant therapy for node positive breast cancer, who presented with short and rapidly progressive history of bilateral lower limb symptoms of peripheral neuropathy following therapy with paclitaxel. MRI of her neural axis revealed no leptomeningeal enhancement or focal metastatic lesions. Neurophysiological tests favoured toxic sensory axonal polyneuropathy. She remains symptomatic following discontinuation of therapy 20 months ago, and is under review with pain management. PMID:22696717

  1. Developing Precisely Defined Drug-Loaded Nanoparticles by Ring-Opening Polymerization of a Paclitaxel Prodrug.

    PubMed

    Liu, Jinyao; Pang, Yan; Bhattacharyya, Jayanta; Liu, Wenge; Weitzhandler, Isaac; Li, Xinghai; Chilkoti, Ashutosh

    2016-08-01

    Nanoparticles with high paclitaxel (PTX) loading and low systemic toxicity are prepared in scalable and versatile manner via one-step ring-opening polymerization of a prodrug monomer consisting of PTX that is appended to a cyclic carbonate through a hydrolysable ester linker. Initiating this monomer from a hydrophilic macroinitiator results in an amphiphilic diblock copolymer that spontaneously self-assembles into well-defined nanoparticles with tunable size. PMID:27111757

  2. Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer

    PubMed Central

    Kampan, Nirmala Chandralega; Madondo, Mutsa Tatenda; McNally, Orla M.; Quinn, Michael; Plebanski, Magdalena

    2015-01-01

    Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound. PMID:26137480

  3. Double layer paclitaxel delivery systems based on bioresorbable terpolymer with shape memory properties.

    PubMed

    Musiał-Kulik, Monika; Kasperczyk, Janusz; Smola, Anna; Dobrzyński, Piotr

    2014-04-25

    The growing interest in the bioresorbable polymers contributed to developing a number of commercially available controlled drug delivery systems. Due to a variety of drugs and their physicochemical properties, there is a necessity of choosing an appropriate drug carrier. Terpolymer with shape memory properties was used to obtain double layer matrices composed of drug free matrix and paclitaxel containing layer. The in vitro degradation and drug release study were conducted at 37 °C in PBS (pH 7.4). The investigated materials were characterized by GPC (gel permeation chromatography) and DSC (differential scanning calorimetry). HPLC (high-pressure liquid chromatography) was applied to analyze the amount of released paclitaxel. The main purpose of this work was to determine the usefulness of the studied terpolymer as an anti-restenotic drug vehicle. Based on the obtained results it was established that polymer's degradation proceeded regularly and provided even paclitaxel release profiles. Double layer systems allowed to modify the amount of released drug which may be considered while developing the self-expanding drug-eluting stents tailoring different clinical indications. PMID:24491529

  4. c(RGDyK)-decorated Pluronic micelles for enhanced doxorubicin and paclitaxel delivery to brain glioma.

    PubMed

    Huang, YuKun; Liu, Wenchao; Gao, Feng; Fang, Xiaoling; Chen, Yanzuo

    2016-01-01

    Brain glioma therapy is an important challenge in oncology. Here, doxorubicin (DOX) and paclitaxel (PTX)-loaded cyclic arginine-glycine-aspartic acid peptide (c(RGDyK))-decorated Pluronic micelles (cyclic arginine-glycine-aspartic acid peptide-decorated Pluronic micelles loaded with doxorubicin and paclitaxel [RGD-PF-DP]) were designed as a potential targeted delivery system to enhance blood-brain barrier penetration and improve drug accumulation via integrin-mediated transcytosis/endocytosis and based on integrin overexpression in blood-brain barrier and glioma cells. The physicochemical characterization of RGD-PF-DP revealed a satisfactory size of 28.5±0.12 nm with uniform distribution and core-shell structure. The transport rates across the in vitro blood-brain barrier model, cellular uptake, cytotoxicity, and apoptosis of U87 malignant glioblastoma cells of RGD-PF-DP were significantly greater than those of non-c(RGDyK)-decorated Pluronic micelles. In vivo fluorescence imaging demonstrated the specificity and efficacy of intracranial tumor accumulation of RGD-PF-DP. RGD-PF-DP displayed an extended median survival time of 39 days, with no serious body weight loss during the regimen. No acute toxicity to major organs was observed in mice receiving treatment doses via intravenous administration. In conclusion, RGD-PF-DP could be a promising vehicle for enhanced doxorubicin and paclitaxel delivery in patients with brain glioma. PMID:27143884

  5. Biomodulation of capecitabine by paclitaxel and carboplatin in advanced solid tumors and adenocarcinoma of unknown primary.

    PubMed

    Mikhail, Sameh; Lustberg, Maryam B; Ruppert, Amy S; Mortazavi, Amir; Monk, Paul; Kleiber, Barbara; Villalona-Calero, Miguel; Bekaii-Saab, Tanios

    2015-11-01

    Paclitaxel and carboplatin upregulate thymidine phosphorylase and thus may provide synergistic antitumor activity in combination with capecitabine (CTX). We, therefore, performed a phase I/II study of CTX. In the phase I study, patients with advanced solid tumors received carboplatin on day 1, paclitaxel on days 1, 8, 15 and capecitabine orally twice a day on days 8-21, every 4 weeks. Phase II patients with advanced adenocarcinoma of unknown primary (ACUP) were treated at the maximal tolerable dose. The phase I study enrolled 29 patients evaluable for dose limiting toxicity. The recommended phase II dose was capecitabine 750 mg/m(2) bid, paclitaxel 60 mg/m(2)/week and carboplatin AUC of 6. There were 9 confirmed responses, 5 partial responses and disease stabilization >3 months in 14 patients. The phase II study was prematurely terminated at 25 patients due to cessation of funding. The objective response rate was 32 % (95 % CI 0.15-0.54), the median progression-free survival 5.5 months (95 % CI 2.8-10.8 months) and the median overall survival 10.8 months (95 % CI 6.0-32.0 months). CTX demonstrated acceptable tolerability and antitumor activity. At the recommended dose level in patients with ACUP, this regimen showed encouraging preliminary activity. PMID:26416564

  6. c(RGDyK)-decorated Pluronic micelles for enhanced doxorubicin and paclitaxel delivery to brain glioma

    PubMed Central

    Huang, YuKun; Liu, Wenchao; Gao, Feng; Fang, Xiaoling; Chen, Yanzuo

    2016-01-01

    Brain glioma therapy is an important challenge in oncology. Here, doxorubicin (DOX) and paclitaxel (PTX)-loaded cyclic arginine-glycine-aspartic acid peptide (c(RGDyK))-decorated Pluronic micelles (cyclic arginine-glycine-aspartic acid peptide-decorated Pluronic micelles loaded with doxorubicin and paclitaxel [RGD-PF-DP]) were designed as a potential targeted delivery system to enhance blood–brain barrier penetration and improve drug accumulation via integrin-mediated transcytosis/endocytosis and based on integrin overexpression in blood–brain barrier and glioma cells. The physicochemical characterization of RGD-PF-DP revealed a satisfactory size of 28.5±0.12 nm with uniform distribution and core-shell structure. The transport rates across the in vitro blood–brain barrier model, cellular uptake, cytotoxicity, and apoptosis of U87 malignant glioblastoma cells of RGD-PF-DP were significantly greater than those of non-c(RGDyK)-decorated Pluronic micelles. In vivo fluorescence imaging demonstrated the specificity and efficacy of intracranial tumor accumulation of RGD-PF-DP. RGD-PF-DP displayed an extended median survival time of 39 days, with no serious body weight loss during the regimen. No acute toxicity to major organs was observed in mice receiving treatment doses via intravenous administration. In conclusion, RGD-PF-DP could be a promising vehicle for enhanced doxorubicin and paclitaxel delivery in patients with brain glioma. PMID:27143884

  7. Combination of Rotational Atherothrombectomy and Paclitaxel-Coated Angioplasty for Femoropopliteal Occlusion

    PubMed Central

    Scheer, F; Lüdtke, CW; Kamusella, P; Wiggermann, P; Vieweg, H; Schlöricke, E; Lichtenberg, M; Andresen, R; Wissgott, C

    2014-01-01

    OBJECTIVE The rotational atherothrombectomy with Straub Rotarex® is a safe and efficient treatment of acute/subactute vascular occlusions. The purpose of this study was to evaluate the benefit of paclitaxel-coated angioplasty after rotational atherothrombectomy over an observation period of six months. MATERIALS AND METHODS Overall, 29 patients were treated with the Rotarex catheter in combination with paclitaxel-coated angioplasty. All patients had acute/subacute and chronic occlusions of the superficial femoral artery (SFA) and/or popliteal arteries. The ankle-brachial index (ABI) was detected before the intervention, after the procedure, and after six months. Also clinical examination and ultrasound scans were done in the observation period. RESULTS There were no technical failures. The ABI shows a significant increase from 0.52 ± 0.17 to 0.91 ± 0.25 in the follow-up. By ultrasound examination, there were found two (6.9%) restenoses during the follow-up. There was one dissection during the intervention (3.5%). CONCLUSION The rotational atherothrombectomy in combination with paclitaxel-coated angioplasty might be an effective and safe method with a promising low rate of restenosis at six months. PMID:25983558

  8. Long Circulating Lectin Conjugated Paclitaxel Loaded Magnetic Nanoparticles: A New Theranostic Avenue for Leukemia Therapy

    PubMed Central

    Singh, Abhalaxmi; Dilnawaz, Fahima; Sahoo, Sanjeeb Kumar

    2011-01-01

    Amongst all leukemias, Bcr-Abl positive chronic myelogenous leukemia (CML) confers resistance to native drug due to multi drug resistance and also resistance to p53 and fas ligand pathways. In the present study, we have investigated the efficacy of microtubule stabilizing paclitaxel loaded magnetic nanoparticles (pac-MNPs) to ascertain its cytotoxic effect on Bcr-Abl positive K562 cells. For active targeted therapy, pac-MNPs were functionalized with lectin glycoprotein which resulted in higher cellular uptake and lower IC50 value suggesting the efficacy of targeted delivery of paclitaxel. Both pac-MNPs and lectin conjugated pac-MNPs have a prolonged circulation time in serum suggesting increased bioavailability and therapeutics index of paclitaxel in vivo. Further, the molecular mechanism pertaining to pac-induced cytotoxicity was analyzed by studying the involvement of different apoptotic pathway proteins by immunoblotting and quantitative PCR. Our study revealed simultaneous activation of JNK pathway leading to Bcr-Abl instability and the extrinsic apoptotic pathway after pac-MNPs treatment in two Bcr-Abl positive cell lines. In addition, the MRI data suggested the potential application of MNPs as imaging agent. Thus our in vitro and in vivo results strongly suggested the pac-MNPs as a future prospective theranostic tool for leukemia therapy. PMID:22110595

  9. Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment.

    PubMed

    Chirio, Daniela; Gallarate, Marina; Peira, Elena; Battaglia, Luigi; Muntoni, Elisabetta; Riganti, Chiara; Biasibetti, Elena; Capucchio, Maria Teresa; Valazza, Alberto; Panciani, Pierpaolo; Lanotte, Michele; Annovazzi, Laura; Caldera, Valentina; Mellai, Marta; Filice, Gaetano; Corona, Silvia; Schiffer, Davide

    2014-11-01

    Paclitaxel loaded solid lipid nanoparticles (SLN) of behenic acid were prepared with the coacervation technique. Generally, spherical shaped SLN with mean diameters in the range 300–600 nm were obtained. The introduction of charged molecules, such as stearylamine and glycol chitosan into the formulation allowed to obtain positive SLN with Zeta potential in the 8-20 mV range and encapsulation efficiency in the 25–90% range.Blood–brain barrier (BBB) permeability, tested in vitro through hCMEC/D3 cells monolayer, showed a significantly increase in the permeation of Coumarin-6, used as model drug, when vehicled in SLN. Positive-charged SLN do not seem to enhance permeation although stearylamine-positive SLN resulted the best permeable formulation after 24 h.Cytotoxicity studies on NO3 glioblastoma cell line demonstrated the maintenance of cytotoxic activity of all paclitaxel-loaded SLN that was always unmodified or greater compared with free drug. No difference in cytotoxicity was noted between neutral and charged SLN.Co-culture experiments with hCMEC/D3 and different glioblastoma cells evidenced that, when delivered in SLN, paclitaxel increased its cytotoxicity towards glioblastoma cells. PMID:25445304

  10. Microtubule-Binding Proteins as Promising Biomarkers of Paclitaxel Sensitivity in Cancer Chemotherapy

    PubMed Central

    Xie, Songbo; Ogden, Angela; Aneja, Ritu; Zhou, Jun

    2016-01-01

    Microtubules, tirelessly animated and highly dynamic structures, are vital for most cellular processes and their intricacies are still being revealed even after a century since their discovery. The importance of microtubules as chemotherapeutic targets cannot be overstated, and their clinical role is unlikely to abate in the near future. Indeed, improved understanding of microtubule biology could herald a new epoch of anticancer drug design by permitting fine-tuning of microtubule-targeting agents, the clinical utility of which is presently often limited by primary or acquired resistance. Paclitaxel, one such agent belonging to the taxane family, has proven a resoundingly successful treatment for many cancer patients; however, for too many others with paclitaxel-refractory tumors, the drug has offered nothing but side effects. Accumulating evidence suggests that microtubule-binding proteins (MBPs) can regulate paclitaxel sensitivity in a wide range of cancer types. Improved understanding of how these proteins can be assayed to predict treatment responses or manipulated pharmacologically to improve clinical outcomes could transform modern chemotherapy and is urgently awaited. PMID:26332739

  11. Chemosensitizing activities of cyclotides from Clitoria ternatea in paclitaxel-resistant lung cancer cells.

    PubMed

    Sen, Zhang; Zhan, Xiao Kai; Jing, Jin; Yi, Zhang; Wanqi, Zhou

    2013-02-01

    Cyclotides comprise a family of circular mini-peptides that have been isolated from various plants and have a wide range of bioactivities. Previous studies have demonstrated that cyclotides have antitumor effects and cause cell death by membrane permeabilization. The present study aimed to evaluate the cytotoxicity and chemosensitizing activities of cyclotides from Clitoria ternatea in paclitaxel-resistant lung cancer cells. In this study, a total of seven cyclotides were selected for colorimetric cell viability assay (MTT assay) to evaluate their anticancer and chemosensitizing activities in the lung cancer cell line A549 and its sub-line A549/paclitaxel. Results suggested that certain cyclotides had significant anticancer and chemosensitizing abilities; such cyclotides were capable of causing multi-fold decreases in the half maximal inhibitory concentration (IC(50)) value of cliotides in the presence of paclitaxel. More importantly, their bioactivities were found to be correlated with their net charge status. In conclusion, cyclotides from C. ternatea have potential in chemosensitization application. PMID:23419988

  12. Efficacy of cisplatin, 5-fluorouracil, and paclitaxel regimen for carcinoma of the esophagus.

    PubMed

    Belani, C P; Luketich, J D; Landreaneau, R J; Kim, R; Ramanathan, R K; Day, R; Ferson, P F; Keenan, R J; Posner, M; Seeger, J; Lembersky, B

    1997-12-01

    Eighteen patients with esophageal carcinoma (16 adenocarcinoma, two squamous cell carcinoma) were treated with two cycles of induction chemotherapy consisting of paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton, NJ) 175 mg/m2 (3-hour infusion), cisplatin 20 mg/m2/d x 4 days, and 5-fluorouracil 1 g/m2/d (continuous infusion x 4 days) separated by a 28-day interval before surgical resection. After resection, patients received two more cycles of the same regimen. A thorough staging evaluation was performed before patients were enrolled in the study. The salient chemotherapy toxicities included grade 3 nausea (two patients), grade 3 vomiting (two patients), grades 3 and 4 diarrhea (one patient each), and grades 3 and 4 neutropenia (two and 10 patients, respectively). No deaths occurred due to toxicity. Surgical resection was attempted in all 18 patients (100%) after two cycles of induction chemotherapy. Esophageal resection was successfully completed in 17 patients. Liver metastases were noted at laparotomy in the one patient who subsequently did not undergo esophageal resection. Surgical complications were minor, and no postoperative deaths occurred. Fifteen patients received two additional cycles of the paclitaxel/5-fluorouracil/cisplatin regimen postoperatively, two received only one cycle, and one refused further therapy. Of 15 patients alive, 14 show no evidence of disease. The 1-year actuarial survival rate of this group of patients is 82%. In conclusion, the paclitaxel/5-fluorouracil/cisplatin combination is well tolerated and is an active regimen in esophageal carcinoma. PMID:9427275

  13. [A Case Report of Advanced Gastric Cancer Demonstrating CR after Treatment with S-1 and Paclitaxel].

    PubMed

    Kudoh, Keisuke; Ogata, Kenichi; Ohchi, Tetsufumi; Ootao, Ryu; Koga, Yuki

    2015-11-01

    Here, we report a case of advanced gastric cancer that demonstrated CR after treatment with S-1 and paclitaxel. The patient was an 80-year-old woman with gastric cancer in whom upper gastrointestinal endoscopy (GIF) revealed a type 3 tumor in the cardia of the stomach that was pathologically diagnosed as a well-differentiated adenocarcinoma. Computed tomography showed no lymph node involvement or metastasis. Considering her advanced age and cardinal functional disorder, she was administered chemotherapy consisting of S-1 and paclitaxel. Depending on a state, a side effect, I changed a dose and inter-dose interval from head to foot and I treated it by foreign going to hospital and continued it. Gradual tumor reduction was observed on GIF (2011/1/25). CR was diagnosed without tumor disappearance, with accepted malignant findings on biopsy. The patient has now survived for 7 years 9 months after diagnosis. The present case demonstrates that combination therapy of S-1 and paclitaxel is safe and useful for patients with risk factors such as advanced age and underlying disease. PMID:26805267

  14. Confirmed Activity and Tolerability of Weekly Paclitaxel in the Treatment of Advanced Angiosarcoma

    PubMed Central

    Apice, Gaetano; Pizzolorusso, Antonio; Di Maio, Massimo; Grignani, Giovanni; Gebbia, Vittorio; Buonadonna, Angela; De Chiara, Annarosaria; Fazioli, Flavio; De Palma, Giampaolo; Galizia, Danilo; Arcara, Carlo; Mozzillo, Nicola; Perrone, Francesco

    2016-01-01

    Background. In several prospective and retrospective studies, weekly paclitaxel showed promising activity in patients with angiosarcoma. Patients and Methods. Our study was originally designed as a prospective, phase II multicenter trial for patients younger than 75, with ECOG performance status 0–2, affected by locally advanced or metastatic angiosarcoma. Patients received paclitaxel 80 mg/m2 intravenously, at days 1, 8, and 15 every 4 weeks, until disease progression or unacceptable toxicity. Primary endpoint was objective response. Results. Eight patients were enrolled but, due to very slow accrual, the trial was prematurely stopped and further 10 patients were retrospectively included in the analysis. Out of 17 evaluable patients, 6 patients obtained an objective response (5 partial, 1 complete), with an objective response rate of 35% (95% confidence interval 17%–59%). Of note, five responses were obtained in pretreated patients. In the paper, details of overall survival, progression-free survival, and tolerability are reported. Conclusions. In this small series of patients with locally advanced or metastatic angiosarcoma, weekly paclitaxel was confirmed to be well tolerated and active even in pretreated patients. PMID:27019606

  15. Antiangiogenic Therapy with Human Apolipoprotein(a) Kringle V and Paclitaxel in a Human Ovarian Cancer Mouse Model12

    PubMed Central

    Yu, Hyun-Kyung; Lee, Ho-Jeong; Yun, Seok-Joong; Lee, Sun-Joo; Langley, Robert R.; Yoon, Yeup; Yi, Lee S.H.; Bae, Duk-Soo; Kim, Jang-Seong; Kim, Sun Jin

    2014-01-01

    INTRODUCTION: The present study compared the effect of combination therapy using human apolipoprotein(a) kringle V (rhLK8) to conventional chemotherapy with paclitaxel for human ovarian carcinoma producing high or low levels of vascular endothelial growth factor (VEGF). MATERIALS AND METHODS: Human ovarian carcinoma cells producing high (SKOV3ip1) or low (HeyA8) levels of VEGF were implanted into the peritoneal cavity of female nude mice. Seven days later, mice were randomized into four groups: control (vehicle), paclitaxel [5 mg/kg, weekly intraperitoneal (i.p.) injection], rhLK8 (50 mg/kg, daily i.p. injection), or the combination of paclitaxel and rhLK8. Mice were treated for 4 weeks and examined by necropsy. RESULTS: In mice implanted with SKOV3ip1 cells, rhLK8 treatment had no significant effect on tumor incidence or the volume of ascites but induced a significant decrease in tumor weight compared with control mice. Paclitaxel significantly reduced tumor weight and ascites volume, and combination treatment with paclitaxel and rhLK8 had an additive therapeutic effect. Similarly, in HeyA8 mice, the effect of combination treatment on tumor weight and tumor incidence was statistically significantly greater than that of paclitaxel or rhLK8 alone. Immunohistochemical analysis showed a significant decrease in microvessel density and a marked increase of apoptosis in tumor and tumor-associated endothelial cells in response to combination treatment with paclitaxel and rhLK8. CONCLUSION: Collectively, these results suggest that antiangiogenic therapy with rhLK8 in combination with taxane-based conventional chemotherapy could be effective for the treatment of ovarian carcinomas, regardless of VEGF status. PMID:25180060

  16. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy.

    PubMed

    Eloy, Josimar O; Petrilli, Raquel; Topan, José Fernando; Antonio, Heriton Marcelo Ribeiro; Barcellos, Juliana Palma Abriata; Chesca, Deise L; Serafini, Luciano Neder; Tiezzi, Daniel G; Lee, Robert J; Marchetti, Juliana Maldonado

    2016-05-01

    Paclitaxel and rapamycin have been reported to act synergistically to treat breast cancer. Albeit paclitaxel is available for breast cancer treatment, the most commonly used formulation in the clinic presents side effects, limiting its use. Furthermore, both drugs present pharmacokinetics drawbacks limiting their in vivo efficacy and clinic combination. As an alternative, drug delivery systems, particularly liposomes, emerge as an option for drug combination, able to simultaneously deliver co-loaded drugs with improved therapeutic index. Therefore, the purpose of this study is to develop and characterize a co-loaded paclitaxel and rapamycin liposome and evaluate it for breast cancer efficacy both in vitro and in vivo. Results showed that a SPC/Chol/DSPE-PEG (2000) liposome was able to co-encapsulate paclitaxel and rapamycin with suitable encapsulation efficiency values, nanometric particle size, low polydispersity and neutral zeta potential. Taken together, FTIR and thermal analysis evidenced drug conversion to the more bioavailable molecular and amorphous forms, respectively, for paclitaxel and rapamycin. The pegylated liposome exhibited excellent colloidal stability and was able to retain drugs encapsulated, which were released in a slow and sustained fashion. Liposomes were more cytotoxic to 4T1 breast cancer cell line than the free drugs and drugs acted synergistically, particularly when co-loaded. Finally, in vivo therapeutic evaluation carried out in 4T1-tumor-bearing mice confirmed the in vitro results. The co-loaded paclitaxel/rapamycin pegylated liposome better controlled tumor growth compared to the solution. Therefore, we expect that the formulation developed herein might be a contribution for future studies focusing on the clinical combination of paclitaxel and rapamycin. PMID:26836480

  17. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy

    PubMed Central

    Eloy, Josimar O.; Petrilli, Raquel; Topan, José Fernando; Antonio, Heriton Marcelo Ribeiro; Barcellos, Juliana Palma Abriata; Chesca, Deise L.; Serafini, Luciano Neder; Tiezzi, Daniel G.; Lee, Robert J.; Marchetti, Juliana Maldonado

    2016-01-01

    Paclitaxel and rapamycin have been reported to act synergistically to treat breast cancer. Albeit paclitaxel is available for breast cancer treatment, the most commonly used formulation in the clinic presents side effects, limiting its use. Furthermore, both drugs present pharmacokinetics drawbacks limiting their in vivo efficacy and clinic combination. As an alternative, drug delivery systems, particularly liposomes, emerge as an option for drug combination, able to simultaneously deliver co-loaded drugs with improved therapeutic index. Therefore, the purpose of this study is to develop and characterize a co-loaded paclitaxel and rapamycin liposome and evaluate it for breast cancer efficacy both in vitro and in vivo. Results showed that a SPC/Chol/DSPE-PEG (2000) liposome was able to co-encapsulate paclitaxel and rapamycin with suitable encapsulation efficiency values, nanometric particle size, low polydispersity and neutral zeta potential. Taken together, FTIR and thermal analysis evidenced drug conversion to the more bioavailable molecular and amorphous forms, respectively, for paclitaxel and rapamycin. The pegylated liposome exhibited excellent colloidal stability and was able to retain drugs encapsulated, which were released in a slow and sustained fashion. Liposomes were more cytotoxic to 4T1 breast cancer cell line than the free drugs and drugs acted synergistically, particularly when co-loaded. Finally, in vivo therapeutic evaluation carried out in 4T1-tumor-bearing mice confirmed the in vitro results. The co-loaded paclitaxel/rapamycin pegylated liposome better controlled tumor growth compared to the solution. Therefore, we expect that the formulation developed herein might be a contribution for future studies focusing on the clinical combination of paclitaxel and rapamycin. PMID:26836480

  18. Notch3-specific inhibition using siRNA knockdown or GSI sensitizes paclitaxel-resistant ovarian cancer cells.

    PubMed

    Kang, Haeyoun; Jeong, Ju-Yeon; Song, Ji-Ye; Kim, Tae Heon; Kim, Gwangil; Huh, Jin Hyung; Kwon, Ah-Young; Jung, Sang Geun; An, Hee Jung

    2016-07-01

    Notch signaling plays an important role in ovarian cancer chemoresistance, which is responsible for recurrence. Gamma-secretase inhibitor (GSI) is a broad-spectrum Notch inhibitor, but it has serious side effects. The efficacy of Notch3-specific inhibition in paclitaxel-resistant ovarian cancers was assessed in this study, which has not yet been evaluated relative to GSI. To analyze the effect of Notch3-specific inhibition on paclitaxel-resistant ovarian cancers, we compared cell viability, apoptosis, cell migration, angiogenesis, cell cycle, and spheroid formation after treatment with either Notch3 siRNA or GSI in paclitaxel-resistant SKpac cells and parental SKOV3 cells. Expression levels of survival, cell cycle, and apoptosis-related proteins were measured and compared between groups. Notch3 was significantly overexpressed in chemoresistant cancer tissues and cell lines relative to chemosensitive group. In paclitaxel-resistant cancer cells, Notch inhibition significantly reduced viability, migration, and angiogenesis and increased apoptosis, thereby boosting sensitivity to paclitaxel. Spheroid formation was also significantly reduced. Both Notch3 siRNA-treated cells and GSI-treated cells arrested in the G2/M phase of the cell cycle. Proteins of cell survival, cyclin D1 and cyclin D3 were reduced, whereas p21 and p27 were elevated. Both GSI and Notch3 siRNA treatment reduced expression of anti-apoptotic proteins (BCL-W, BCL2, and BCL-XL) and increased expression of pro-apoptotic proteins (Bad, Bak, Bim, Bid, and Bax). These results indicate that Notch3-specific inhibition sensitizes paclitaxel-resistant cancer cells to paclitaxel treatment, with an efficacy comparable to that of GSI. This approach would be likely to avoid the side effects of broad-spectrum GSI treatment. © 2015 Wiley Periodicals, Inc. PMID:26207830

  19. Low-Dose Paclitaxel Reduces S100A4 Nuclear Import to Inhibit Invasion and Hematogenous Metastasis of Cholangiocarcinoma.

    PubMed

    Cadamuro, Massimiliano; Spagnuolo, Gaia; Sambado, Luisa; Indraccolo, Stefano; Nardo, Giorgia; Rosato, Antonio; Brivio, Simone; Caslini, Chiara; Stecca, Tommaso; Massani, Marco; Bassi, Nicolò; Novelli, Eugenio; Spirli, Carlo; Fabris, Luca; Strazzabosco, Mario

    2016-08-15

    Nuclear expression of the calcium-binding protein S100A4 is a biomarker of increased invasiveness in cholangiocarcinoma, a primary liver cancer with scarce treatment opportunities and dismal prognosis. In this study, we provide evidence that targeting S100A4 nuclear import by low-dose paclitaxel, a microtubule-stabilizing agent, inhibits cholangiocarcinoma invasiveness and metastatic spread. Administration of low-dose paclitaxel to established (EGI-1) and primary (CCA-TV3) cholangiocarcinoma cell lines expressing nuclear S100A4 triggered a marked reduction in nuclear expression of S100A4 without modifying its cytoplasmic levels, an effect associated with a significant decrease in cell migration and invasiveness. While low-dose paclitaxel did not affect cellular proliferation, apoptosis, or cytoskeletal integrity, it significantly reduced SUMOylation of S100A4, a critical posttranslational modification that directs its trafficking to the nucleus. This effect of low-dose paclitaxel was reproduced by ginkolic acid, a specific SUMOylation inhibitor. Downregulation of nuclear S100A4 by low-dose paclitaxel was associated with a strong reduction in RhoA and Cdc42 GTPase activity, MT1-MMP expression, and MMP-9 secretion. In an SCID mouse xenograft model, low-dose metronomic paclitaxel treatment decreased lung dissemination of EGI-1 cells without significantly affecting their local tumor growth. In the tumor mass, nuclear S100A4 expression by cholangiocarcinoma cells was significantly reduced, whereas rates of proliferation and apoptosis were unchanged. Overall, our findings highlight nuclear S100A4 as a candidate therapeutic target in cholangiocarcinoma and establish a mechanistic rationale for the use of low-dose paclitaxel in blocking metastatic progression of cholangiocarcinoma. Cancer Res; 76(16); 4775-84. ©2016 AACR. PMID:27328733

  20. Increased Spinal Cord Na+-K+-2Cl− Cotransporter-1 (NKCC1) Activity Contributes to Impairment of Synaptic Inhibition in Paclitaxel-induced Neuropathic Pain*

    PubMed Central

    Chen, Shao-Rui; Zhu, Lihong; Chen, Hong; Wen, Lei; Laumet, Geoffroy; Pan, Hui-Lin

    2014-01-01

    Microtubule-stabilizing agents, such as paclitaxel (Taxol), are effective chemotherapy drugs for treating many cancers, and painful neuropathy is a major dose-limiting adverse effect. Cation-chloride cotransporters, such as Na+-K+-2Cl− cotransporter-1 (NKCC1) and K+-Cl− cotransporter-2 (KCC2), critically influence spinal synaptic inhibition by regulating intracellular chloride concentrations. Here we show that paclitaxel treatment in rats significantly reduced GABA-induced membrane hyperpolarization and caused a depolarizing shift in GABA reversal potential of dorsal horn neurons. However, paclitaxel had no significant effect on AMPA or NMDA receptor-mediated glutamatergic input from primary afferents to dorsal horn neurons. Paclitaxel treatment significantly increased protein levels, but not mRNA levels, of NKCC1 in spinal cords. Inhibition of NKCC1 with bumetanide reversed the paclitaxel effect on GABA-mediated hyperpolarization and GABA reversal potentials. Also, intrathecal bumetanide significantly attenuated hyperalgesia and allodynia induced by paclitaxel. Co-immunoprecipitation revealed that NKCC1 interacted with β-tubulin and β-actin in spinal cords. Remarkably, paclitaxel increased NKCC1 protein levels at the plasma membrane and reduced NKCC1 levels in the cytosol of spinal cords. In contrast, treatment with an actin-stabilizing agent had no significant effect on NKCC1 protein levels in the plasma membrane or cytosolic fractions of spinal cords. In addition, inhibition of the motor protein dynein blocked paclitaxel-induced subcellular redistribution of NKCC1, whereas inhibition of kinesin-5 mimicked the paclitaxel effect. Our findings suggest that increased NKCC1 activity contributes to diminished spinal synaptic inhibition and neuropathic pain caused by paclitaxel. Paclitaxel disrupts intracellular NKCC1 trafficking by interfering with microtubule dynamics and associated motor proteins. PMID:25253692

  1. Breast cancer cells evade paclitaxel-induced cell death by developing resistance to dasatinib

    PubMed Central

    Jeong, Yun-Ji; Kang, Jong Soon; Lee, Su In; So, Dong Min; Yun, Jieun; Baek, Ji Young; Kim, Sang Kyum; Lee, Kiho; Park, Song-Kyu

    2016-01-01

    Triple negative breast cancer (TNBC), which does not express the progesterone, estrogen, or HER2/neu receptor, is aggressive and difficult to treat. Paclitaxel, a tubulin stabilizing agent, is one of the most frequently prescribed anticancer agents for breast cancers, including TNBC. Residual disease that occurs due to resistance or partial resistance of cancer cells in a tumor against anticancer agents is the most important issue in oncology. In the present study, when MDA-MB-231 cells, a TNBC cell line, were treated with 30 µM paclitaxel, a slightly higher concentration than its GI50 value, for 6 days, a small number of cells with different morphologies survived. Among the surviving cells, small round cells were isolated, cloned, and named MDA-MB-231-JYJ cells. MDA-MB-231-JYJ cells were observed to be highly proliferative and tumorigenic. In addition, signal transduction molecules involved in proliferation, survival, malignancy, or stemness of cancer cells, such as c-Src, c-Met, Notch 1, c-Myc, Sox2, Oct3/4, Nanog, and E-cadherin were highly expressed or activated. While further study is required, MDA-MB-231-JYJ cells appear to have some of the characteristics of cancer precursor cells. Although MDA-MB-231-JYJ cells were isolated from the cells that survived in the continuous presence of paclitaxel, they were not resistant to paclitaxel but developed resistance to dasatinib, a Bcr-Abl and Src kinase family inhibitor. The activated state of Src and Notch 1, and the expression levels of c-Myc and cyclins in MDA-MB-231-JYJ cells were less affected than MDA-MB-231 cells by the treatment of dasatinib, which may explain the resistance of MDA-MB-231-JYJ cells to dasatinib. These results suggest that cancer cells that become resistant to dasatinib during the process of paclitaxel therapy in patients may appear, and caution is required in the design of clinical trials using these two agents. PMID:27602155

  2. Phase II study of preoperative paclitaxel/cisplatin with radiotherapy in locally advanced esophageal cancer

    SciTech Connect

    Kim, Dong W.; Blanke, Charles D.; Wu, Huiyun; Shyr, Yu; Berlin, Jordan; Beauchamp, R. Daniel; Chakravarthy, Bapsi . E-mail: bapsi.chak@vanderbilt.edu

    2007-02-01

    Purpose: Preoperative paclitaxel-based chemoradiotherapy may improve the response rates and survival in patients with localized esophageal cancer. We evaluated paclitaxel-based induction chemoradiotherapy in patients with localized esophageal cancer to determine its feasibility, clinical response, pathologic response, and overall survival. Methods and Materials: Between 1995 and 1998, 50 patients were enrolled in this study. At study entry, patients were categorized as either resectable or unresectable according to evaluation by an experienced thoracic surgeon. All patients were treated with paclitaxel 175 mg/m{sup 2} and cisplatin 75 mg/m{sup 2} on Day 1, 29 with radiotherapy to 3,000 cGy in 15 fractions. Resectable patients underwent esophagectomy 4 weeks later. Postoperatively, patients received two cycles of paclitaxel 175 mg/m{sup 2} on Day 1 and 5-fluorouracil 350 mg/m{sup 2} and leucovorin 300 mg on Days 1-3, given every 28 days. Patients who were deemed unsuitable for resection from the outset continued radiotherapy to a total dose of 6,000 cGy. Results: Of the 50 patients, all began neoadjuvant chemoradiotherapy, 40 patients underwent surgery, and 25 patients completed postoperative chemotherapy. A pathologic complete response was seen in 7 patients (17.5%). Patients with a pathologic response had a median survival of 32.4 months vs. 14.4 months for nonresponders (p <0.001). Patients with a clinical response had a median survival of 25.2 months compared with 15.6 months for nonresponders (p = 0.002). At a median follow up of 19.8 months (range 2.4-100.8), the median survival was 20.4 months and the 3-year overall survival rate was 23.2%. Conclusion: Although preoperative cisplatin/paclitaxel with 3,000 cGy was tolerable, this multimodality regimen did not appear to be superior to standard cisplatin/5-fluorouracil-containing regimens and its use is not recommended.

  3. Weekly paclitaxel as metronomic palliative chemotherapy in small cell lung cancer

    PubMed Central

    Noronha, Vanita; Sahu, Arvind; Patil, Vijay M.; Joshi, Amit; Ramaswamy, Anant; Chandrasekharan, Arun; Kadam, Nandkumar; Prabhash, Kumar

    2016-01-01

    Background: Topotecan is the standard second line agent used in relapsed small cell lung cancer (SCLC). However, the erratic availability and the cost of the drug has been a prohibitive factor for its use in second-line setting in India. Paclitaxel has shown antitumor activity in heavily pretreated patients with SCLC. Hence, this audit was performed to study the efficacy of weekly paclitaxel as a form of metronomic therapy in the second-line setting in SCLC. Materials and Methods: Fifty-seven patients of relapsed SCLC who presented to the thoracic medical oncology unit of Tata Memorial Centre, Mumbai between January 2011 and December 2015 were selected for this analysis. Weekly paclitaxel at a dose of 80 mg/m2 was administered until progression or development of intolerable side effects or patient refusal. Data regarding baseline demographics, previous treatment history, response rate, progression-free survival, overall survival (OS), and toxicity to weekly paclitaxel was extracted from a prospectively maintained database in the thoracic medical oncology unit and was analyzed using SPSS version 16 (IBM, New York, USA). Kaplan–Meier survival analysis was performed. Results: Median age of the cohort was 58 years (40–77 years). Etoposide with carboplatin was the regimen used in 40 patients (70.2%) whereas the remaining 17 patients received etoposide with cisplatin (29.8%). Eastern Cooperative Oncology Group performance status at relapse was 1 in 3 (5.3%), 2 in 49 (86.0%), and 3 in 5 (8.7%) patients. The response rate and clinical benefit rate were 9.1% (5 patients) and 52.7% (29 patients), respectively. Grade 3–4 toxicities were seen in 10.5% (6 patients). The median PFS was 145 days (95% confidence interval [CI]: 116.6–173.5 days) whereas the median OS was 168 days (95% CI: 112.5–223.5 days). Conclusion: Weekly paclitaxel as a second line agent in relapsed small cell cancer of the lung is a feasible and well-tolerated agent. PMID:27275452

  4. Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells in vitro in a TLR4-independent manner

    PubMed Central

    Michels, Tillmann; Shurin, Galina V.; Naiditch, Hiam; Sevko, Alexandra; Umansky, Viktor; Shurin, Michael R.

    2012-01-01

    Myeloid cells play a key role in the outcome of anti-tumor immunity and response to anti-cancer therapy, since in the tumor microenvironment they may exert both stimulatory and inhibitory pressures on the proliferative, angiogenic, metastatic, and immunomodulating potential of tumor cells. Therefore, understanding the mechanisms of myeloid regulatory cell differentiation is critical for developing strategies for the therapeutic reversal of myeloid derived suppressor cell (MDSC) accumulation in the tumor-bearing hosts. Here, using an in vitro model system, several potential mechanisms of the direct effect of paclitaxel on MDSC were tested, which might be responsible for the anti-tumor potential of low-dose paclitaxel therapy in mice. It was hypothesized that a decreased level of MDSC in vivo after paclitaxel administration might be due to (i) the blockage of MDSC generation, (ii) an induction of MDSC apoptosis, or (iii) the stimulation of MDSC differentiation. The results revealed that paclitaxel in ultra-low concentrations neither increased MDSC apoptosis nor blocked MDSC generation, but stimulated MDSC differentiation towards dendritic cells. This effect of paclitaxel was TLR4-independent since it was not diminished in cell cultures originated from TLR4−/− mice. These results support a new concept that certain chemotherapeutic agents in ultra-low non-cytotoxic doses may suppress tumor progression by targeting several cell populations in the tumor microenvironment, including MDSC. PMID:22283566

  5. Apoptotic effect of cordycepin combined with cisplatin and/or paclitaxel on MA-10 mouse Leydig tumor cells

    PubMed Central

    Kang, Fu-Chi; Chen, Pei-Jung; Pan, Bo-Syong; Lai, Meng-Shao; Chen, Yung-Chia; Huang, Bu-Miin

    2015-01-01

    Background Chemotherapy is not limited to a single treatment, and the evidence demonstrates that different drug combinations can have positive results in patients. In this study, we sought to determine whether cordycepin combined with cisplatin and/or paclitaxel would have an additive effective on inducing apoptosis in mouse Leydig tumor cells, and the mechanisms were also briefly examined. Methods The additive effects of cordycepin combined with cisplatin and/or paclitaxel on apoptosis in MA-10 cells were investigated by monitoring changes in morphological characteristics and examining cell viability, flow cytometry assays, and Western blot analyses. Results Combination of cordycepin plus cisplatin and/or paclitaxel for 12 and 24 hours induced apoptotic features in MA-10 cells. The MTT assay showed that the combination treatment reduced the viability of MA-10 cells in a dose-dependent manner, with additive effects. Cell cycle analysis showed that combination treatment significantly increased subG1 phase cell numbers in MA-10 cells, indicating apoptosis. Moreover, cordycepin plus cisplatin and/or paclitaxel significantly induced cleavage of caspase-8, caspase-9, caspase-3, and poly ADP-ribose polymerase, and phosphorylation of c-Jun NH2-terminal kinase, extracellular signal-regulated kinase, p38, and p53 proteins in MA-10 cells. Conclusion Cordycepin plus cisplatin and/or paclitaxel can have an additive effect on apoptosis in MA-10 cells, with activation of caspase, mitogen-activated protein kinase, and p53 signal pathways. PMID:26366090

  6. Dasatinib promotes paclitaxel-induced necroptosis in lung adenocarcinoma with phosphorylated caspase-8 by c-Src.

    PubMed

    Diao, Yan; Ma, Xiaobin; Min, WeiLi; Lin, Shuai; Kang, HuaFeng; Dai, ZhiJun; Wang, Xijing; Zhao, Yang

    2016-08-28

    Cisplatin and paclitaxel are considered to be the backbone of chemotherapy in lung adenocarcinoma. These agents show pleiotropic effects on cell death. However, the precise mechanisms remain unclear. The present study reported that phosphorylated caspase-8 at tyrosine 380 (p-Casp8) was characterized as a biomarker of chemoresistance to TP regimen (cisplatin and paclitaxel) in patients with resectable lung adenocarcinoma with significantly poorer 5-year disease-free survival (DFS) and overall survival (OS). Cisplatin killed lung adenocarcinoma cells regardless of c-Src-induced caspase-8 phosphorylation at tyrosine 380. Subsequently, we identified a novel mechanism by which paclitaxel induced necroptosis in lung adenocarcinoma cells that was dependent upon p-Casp8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3. Moreover, dasatinib, a c-Src inhibitor, dephosphorylated caspase-8 to facilitate necroptosis, rather than apoptosis, in paclitaxel-treated p-Casp8-expressing lung adenocarcinoma cells. The data from our study revealed previously unrecognized roles of p-Casp8 as a positive effector in the initiation of necroptosis and as a negative effector in the repression of the interaction between RIPK1 and RIPK3. Moreover, these outcomes supported the need for further clinical studies with the goal of evaluating the efficacy of dasatinib plus paclitaxel in the treatment of lung adenocarcinoma. PMID:27195913

  7. Phase behavior of dioleyphosphatidylethanolamine molecules in the presence of components of pH-sensitive liposomes and paclitaxel.

    PubMed

    Monteiro, Liziane O F; Lopes, Sávia C A; Barros, André Luís B; Magalhães-Paniago, Rogério; Malachias, Ângelo; Oliveira, Mônica C; Leite, Elaine A

    2016-08-01

    Paclitaxel is a potent antimicrotubule chemotherapeutic agent widely used for clinical treatment of a variety of solid tumors. However, the low solubility of the drug in aqueous medium and the toxic effects of the commercially available formulation, Taxol(®), has hindered its clinical application. To overcome these paclitaxel-related disadvantages, several drug delivery approaches have been thoroughly investigated. In this context, our research group has developed long-circulating and pHsensitive liposomes containing paclitaxel composed of dioleylphosphatidylethanolamine, cholesterylhemisuccinate and distearoylphosphatidylethanolamine-polyethylene glycol2000, which have shown to be very promising carriers for this taxane. For the destabilization of pH-sensitive liposomal systems and the release of the encapsulated drug in the cytoplasm of tumor cells, the occurrence of a phase transition from a lamellar to a non-lamellar phase of dioleylphosphatidylethanolamine molecules is essential. Two techniques, differential scanning calorimetry and small angle X-ray scattering, were used to investigate the influence of the liposomal components and paclitaxel in the phase transition process of dioleylphosphatidylethanolamine molecules and to evaluate the pH-sensitivity of the formulation under low hydration conditions. The findings clearly evidence the phase transition of dioleylphosphatidylethanolamine molecules in the presence and absence of PTX indicating that the introduction of the drug in the system does not bring damage to the pH-sensitivity of the system, which resulting in liposome destabilization at low pH regions and encapsulated paclitaxel release preferentially in a desired target tissue. PMID:27100854

  8. [The effect of L-Glutamine and Shakuyaku-Kanzo-to for paclitaxel-induced myalgia/arthralgia].

    PubMed

    Hasegawa, Kosei; Mizutani, Yasushi; Kuramoto, Hiroyuki; Nagao, Shoji; Masuyama, Hisashi; Hongo, Atsuhi; Kodama, Jyunichi; Yoshinouchi, Mitsuo; Hiramatsu, Yuji; Kudo, Takafumi; Okuda, Hiroyuki

    2002-04-01

    Myalgia/arthralgia is a crucial side effect of paclitaxel, and may become the major dose-limiting side effect. However, this is a situation where there is little effective preventive treatment. L-Glutamine was reported as a neuroprotective agent for vincristine-induced neurotoxicity. In Japan, there have been reports on steroid and Shakuyaku-Kanzou-to (a herbal medicine) for paclitaxel-induced myalgia/arthralgia. This study aimed to compare the effect of L-Glutamine and Shakuyaku-Kanzou-to, and to discuss the validity of these agents for the paclitaxel-induced myalgia/arthralgia. Our results suggested that Shakuyaku-Kanzou-to showed no remarkable effects against paclitaxel-induced myalgia/arthralgia as had been reported before; however, both L-Glutamine and Shakuyaku-Kanzou-to decreased the duration of grade 2 toxicity (CALGB Expanded Common Toxicity Criteria) in comparison with those who were not treated. L-Glutamine and Shakuyaku-Kanzou-to might therefore a preventive effect against moderate or severer myalgia/arthralgia during paclitaxel-treated chemotherapy. Further trials are needed to confirm the value of these drugs. PMID:11977541

  9. Pharmaceutical development of an oral tablet formulation containing a spray dried amorphous solid dispersion of docetaxel or paclitaxel.

    PubMed

    Sawicki, Emilia; Beijnen, Jos H; Schellens, Jan H M; Nuijen, Bastiaan

    2016-09-25

    Previously, it was shown in Phase I clinical trials that solubility-limited oral absorption of docetaxel and paclitaxel can be drastically improved with a freeze dried solid dispersion (fdSD). These formulations, however, are unfavorable for further clinical research because of limitations in amorphicity of SD and scalability of the production process. To resolve this, a spray drying method for an SD (spSD) containing docetaxel or paclitaxel and subsequently drug products were developed. Highest saturation solubility (Smax), precipitation onset time (Tprecip), amorphicity, purity, residual solvents, yield/efficiency and powder flow of spSDs were studied. Drug products were monitored for purity/content and dissolution during 24 months at +15-25°C. Docetaxel spSD Smax was equal to that of fdSD but Tprecip was 3 times longer. Paclitaxel spSD Smax was 30% increased but Tprecip was equal to fdSD. spSDs were fully amorphous, >99% pure, <5% residual solvents, mean batch yield was 100g and 84%. spSDs had poor powder flow characteristics, which could not be resolved by changing settings, but by using 75% lactose as diluent. The drug product was a tablet with docetaxel or paclitaxel spSD and was stable for at least 24 months. Spray drying is feasible for the production of SD of docetaxel or paclitaxel for upcoming clinical trials. PMID:27480397

  10. CX3CR1-Mediated Akt1 Activation Contributes to the Paclitaxel-Induced Painful Peripheral Neuropathy in Rats.

    PubMed

    Li, Dai; Chen, Hui; Luo, Xiao-Huan; Sun, Yang; Xia, Wei; Xiong, Yuan-Chang

    2016-06-01

    Painful peripheral neuropathy is a serious dose-limiting side effect of paclitaxel therapy, which unfortunately often happens during the optimal clinical management of chemotherapy in cancer patients. Currently the underlying mechanisms of the painful peripheral neuropathy remain largely unknown. Here, we found that paclitaxel treatment (3 × 8 mg/kg, cumulative dose 24 mg/kg) upregulated the expression of CX3CR1 and phosphorylated Akt1 in DRG and spinal dorsal horn. Blocking of Akt1 pathway activation with different inhibitor (MK-2206 or LY294002) significantly attenuated mechanical allodynia and thermal hyperalgesia induced by paclitaxel. Furthermore, inhibition of CX3CR1 by using neutralizing antibody not only prevented Akt1 activation in DRG and spinal dorsal horn but also alleviated pain-related behavior induced by paclitaxel treatment. This study suggested that CX3CR1/Akt1 signaling pathway may be a potential target for prevention and reversion of the painful peripheral neuropathy induced by paclitaxel. PMID:26961886

  11. Low inducible expression of p21Cip1 confers resistance to paclitaxel in BRAF mutant melanoma cells with acquired resistance to BRAF inhibitor.

    PubMed

    Jang, Gun-Hee; Kim, Na-Yeon; Lee, Michael

    2015-08-01

    The therapeutic efficacy of oncogenic BRAF inhibitor is limited by the onset of acquired resistance. In this study, we investigated the potential therapeutic effects of the mitotic inhibitor paclitaxel on three melanoma cell lines with differing sensitivity to the BRAF inhibitor. Of the two BRAF inhibitor-resistant cell lines, A375P/Mdr cells harboring the BRAF V600E mutant were resistant and the wild-type BRAF SK-MEL-2 cells were sensitive to paclitaxel. In particular, paclitaxel caused the growth inhibition of SK-MEL-2 cells to a much greater extent than it caused growth inhibition of A375P cells. Paclitaxel exhibited no significant effect on the phosphorylation of MEK-ERK in any cell lines tested, regardless of both the BRAF mutation and the drug resistance, implying that paclitaxel activity is independent of MEK-ERK inhibition. In A375P cells, paclitaxel treatment resulted in a marked emergence of apoptotic cells after mitotic arrest, concomitant with a remarkable induction of p21(Cip1). However, paclitaxel only moderately increased the levels of p21(Cip1) in A375P/Mdr cells, which exhibited a strong resistance to paclitaxel. The p21(Cip1) overexpression partially conferred paclitaxel sensitivity to A375P/Mdr cells. Interestingly, we found an extremely low background expression level of p21(Cip1) in SK-MEL-2 cells lacking normal p53 function, which caused much greater G2/M arrest than that seen in A375P cells. Taken together, these results suggest that paclitaxel may be an effective anticancer agent through regulating the expression of p21(Cip1) for the treatment of BRAF mutant melanoma cells resistant to BRAF inhibitors. PMID:25912549

  12. Presynaptic N-Methyl-d-aspartate (NMDA) Receptor Activity Is Increased Through Protein Kinase C in Paclitaxel-induced Neuropathic Pain.

    PubMed

    Xie, Jing-Dun; Chen, Shao-Rui; Chen, Hong; Zeng, Wei-An; Pan, Hui-Lin

    2016-09-01

    Painful peripheral neuropathy is a severe adverse effect of chemotherapeutic drugs such as paclitaxel (Taxol). The glutamate N-methyl-d-aspartate receptors (NMDARs) are critically involved in the synaptic plasticity associated with neuropathic pain. However, paclitaxel treatment does not alter the postsynaptic NMDAR activity of spinal dorsal horn neurons. In this study, we determined whether paclitaxel affects presynaptic NMDAR activity by recording excitatory postsynaptic currents (EPSCs) of dorsal horn neurons in spinal cord slices. In paclitaxel-treated rats, the baseline frequency of miniature EPSCs (mEPSCs) was significantly increased; the NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5) completely normalized this frequency. Also, AP5 significantly reduced the amplitude of monosynaptic EPSCs evoked by dorsal root stimulation and reversed the reduction in the paired-pulse ratio of evoked EPSCs in paclitaxel-treated rats. Blocking GluN2A-containing, but not GluN2B-containing, NMDARs largely decreased the frequency of mEPSCs and the amplitude of evoked EPSCs of dorsal horn neurons in paclitaxel-treated rats. Furthermore, inhibition of protein kinase C fully reversed the increased frequency of mEPSCs and the amplitude of evoked EPSCs in paclitaxel-treated rats. Paclitaxel treatment significantly increased the protein level of GluN2A and phosphorylated GluN1 in the dorsal root ganglion. In addition, intrathecal injection of AP5 or systemic administration of memantine profoundly attenuated pain hypersensitivity induced by paclitaxel. Our findings indicate that paclitaxel treatment induces tonic activation of presynaptic NMDARs in the spinal cord through protein kinase C to potentiate nociceptive input from primary afferent nerves. Targeting presynaptic NMDARs at the spinal cord level may be an effective strategy for treating chemotherapy-induced neuropathic pain. PMID:27458019

  13. Down-regulated expression of miR-134 contributes to paclitaxel resistance in human ovarian cancer cells.

    PubMed

    Shuang, Ting; Wang, Min; Shi, Cong; Zhou, Yingying; Wang, Dandan

    2015-10-01

    MiR-134 has been reported to have a role in the development and progression of various cancers. In this study, we found that miR-134 expression was significantly decreased in chemo-resistant serous epithelial ovarian cancer (EOC) patients. Over-expression of miR-134 enhanced the sensitivity of SKOV3-TR30 cells to paclitaxel, and increased paclitaxel-induced apoptosis. Further, Pak2 was identified as a direct target of miR-134, and Pak2-specific siRNA increased cell inhibition rate and promoted paclitaxal-induced apoptosis. By regulating Pak2 expression, miR-134 could mediate Bad phosphorylation at Ser112 and Ser136, which affected cell survival and apoptosis. In conclusion, our findings indicate that repression of miR-134 and consequent up-regulation of Pak2 might contribute to paclitaxel resistance. PMID:26363097

  14. Ferrocenyl Paclitaxel and Docetaxel Derivatives: Impact of an Organometallic Moiety on the Mode of Action of Taxanes.

    PubMed

    Wieczorek, Anna; Błauż, Andrzej; Żal, Aleksandra; Arabshahi, Homayon John; Reynisson, Jóhannes; Hartinger, Christian G; Rychlik, Błażej; Plażuk, Damian

    2016-08-01

    A series of ferrocenyl analogues and derivatives of paclitaxel and docetaxel were synthesised and assayed for their antiproliferative/cytotoxic effects, impact on the cell cycle distribution and ability to induce tubulin polymerisation. The replacement of the 3'-N-benzoyl group of paclitaxel with a ferrocenoyl moiety, in particular, led to formation of an analogue that was at least one order of magnitude more potent in terms of antiproliferative activity than the parent compound (IC50 values of 0.11 versus 1.11 μm, respectively), but still preserved the classical taxane mode of action, that is, microtubule stabilisation leading to mitotic arrest. Molecular docking studies revealed an unexpected binding pocket in the tubulin structure for the ferrocenoyl group introduced in the paclitaxel backbone. PMID:27376707

  15. Nab-paclitaxel and trastuzumab combination: a promising approach for neoadjuvant treatment in HER2-positive breast cancer

    PubMed Central

    Ricciardi, Giuseppina Rosaria Rita; Franchina, Tindara; Russo, Alessandro; Schifano, Silvia; Ferraro, Giuseppa; Adamo, Vincenzo

    2016-01-01

    Neoadjuvant therapy is a well-established approach for the treatment of locally advanced or inflammatory breast cancer (BC) and has been increasingly used in recent years not only as a management strategy but also as a research tool. Recently, nanoparticle albumin-bound paclitaxel (nab-paclitaxel)/trastuzumab combinations have been associated with promising activity in different clinical settings. In the present case, we report a complete pathological response after neoadjuvant treatment with the trastuzumab/nab-paclitaxel combination in a locally advanced human epidermal growth factor receptor 2 (HER2)-positive BC patient, with a good toxicity profile. This combination may represent a valid therapeutic option in the neoadjuvant therapy for HER2-positive locally advanced BC. PMID:27499629

  16. Bevacizumab-Induced Inhibition of Angiogenesis Promotes a More Homogeneous Intratumoral Distribution of Paclitaxel, Improving the Antitumor Response.

    PubMed

    Cesca, Marta; Morosi, Lavinia; Berndt, Alexander; Fuso Nerini, Ilaria; Frapolli, Roberta; Richter, Petra; Decio, Alessandra; Dirsch, Olaf; Micotti, Edoardo; Giordano, Silvia; D'Incalci, Maurizio; Davoli, Enrico; Zucchetti, Massimo; Giavazzi, Raffaella

    2016-01-01

    The antitumor activity of angiogenesis inhibitors is reinforced in combination with chemotherapy. It is debated whether this potentiation is related to a better drug delivery to the tumor due to the antiangiogenic effects on tumor vessel phenotype and functionality. We addressed this question by combining bevacizumab with paclitaxel on A2780-1A9 ovarian carcinoma and HT-29 colon carcinoma transplanted ectopically in the subcutis of nude mice and on A2780-1A9 and IGROV1 ovarian carcinoma transplanted orthotopically in the bursa of the mouse ovary. Paclitaxel concentrations together with its distribution by MALDI mass spectrometry imaging (MALDI MSI) were measured to determine the drug in different areas of the tumor, which was immunostained to depict vessel morphology and tumor proliferation. Bevacizumab modified the vessel bed, assessed by CD31 staining and dynamic contrast enhanced MRI (DCE-MRI), and potentiated the antitumor activity of paclitaxel in all the models. Although tumor paclitaxel concentrations were lower after bevacizumab, the drug distributed more homogeneously, particularly in vascularized, non-necrotic areas, and was cleared more slowly than controls. This happened specifically in tumor tissue, as there was no change in paclitaxel pharmacokinetics or drug distribution in normal tissues. In addition, the drug concentration and distribution were not influenced by the site of tumor growth, as A2780-1A9 and IGROV1 growing in the ovary gave results similar to the tumor growing subcutaneously. We suggest that the changes in the tumor microenvironment architecture induced by bevacizumab, together with the better distribution of paclitaxel, may explain the significant antitumor potentiation by the combination. PMID:26494857

  17. Paclitaxel efficacy and toxicity in older women with metastatic breast cancer: combined analysis of CALGB 9342 and 9840

    PubMed Central

    Lichtman, S. M.; Hurria, A.; Cirrincione, C. T.; Seidman, A. D.; Winer, E.; Hudis, C.; Cohen, H. J.; Muss, H. B.

    2012-01-01

    Background: Two Cancer and Leukemia Group B (CALGB) studies were utilized to determine the efficacy and tolerability of paclitaxel (Taxol) in older patients with metastatic breast cancer. Patients and methods: CALGB 9840 evaluated weekly paclitaxel (80 mg/m2) versus paclitaxel every 3 weeks (175 mg/m2); CALGB 9342 evaluated three doses of paclitaxel as follows: 175, 210 and 250 mg/m2 each over 3 h every 3 weeks. Of the 1048 patients, paclitaxel was used first line in 57%. The groups: (i) <55 years (45%), (ii) 55–64 years (29%), and (iii) ≥65 years (26%). Results: Tumor response was also similar among age groups. First-line therapy (P = 0.0001) and better performance status (PS) (P = 0.018) were significantly related to higher response. Age did not significantly relate to overall survival (OS) or progression-free survival (PFS). First-line therapy, better PS, estrogen receptor positive status and a fewer number of metastatic sites were significantly related to improved OS and PFS. The grade ≥3 toxic effects that increased linearly with age were leucopenia (P = 0.0099), granulocytopenia (P = 0.022), anorexia (P = 0.028), bilirubin elevation (P = 0.0035) and neurotoxicity (P < 0.0001). Patients over 65 years receiving second-line therapy had the shortest time to neurotoxicity. Conclusions: Older women with breast cancer derive similar efficacy from treatment with paclitaxel as younger women. Older women are at increased risk for specific toxic effects. PMID:21693770

  18. DUSP1 induces paclitaxel resistance through the regulation of p-glycoprotein expression in human ovarian cancer cells.

    PubMed

    Kang, Yu-Seon; Seok, Hyun-Jeong; Jeong, Eun-Jeong; Kim, Yuna; Yun, Seok-Joong; Min, Jeong-Ki; Kim, Sun Jin; Kim, Jang-Seong

    2016-09-01

    The heterogeneity and genetic instability of ovarian cancer cells often lead to the development of drug resistance, closely related with the increased cancer-related mortality. In this study, we investigated the role of dual-specificity phosphatase 1 (DUSP1) in the development of the resistance in human ovarian cancer cells against paclitaxel. Overexpression of DUSP1 in HeyA8 human ovarian cancer cells (HeyA8-DUSP1) up-regulated the expression of the drug efflux pump, p-glycoprotein. Consequently, HeyA8-DUSP1 cells are highly resistant to paclitaxel, with the resistance comparable to that of a multi-drug resistance cell line (HeyA8-MDR). Moreover, over expression of DUSP1 significantly increased the activation of p38 MAPK, leaving the activation of ERK1/2 and JNK1/2 unaffected. Pharmacological suppression of p38 MAPK activity prevents the up-regulation of p-glycoprotein expression and the consequent resistance against paclitaxel in HeyA8-DUSP1 cells. By contrast, HeyA8-MDR cells expressed a significantly higher level of DUSP1, but treatment with small interference RNA against DUSP1 significantly suppressed the expression of p-glycoprotein and the resistance against paclitaxel in HeyA8-MDR cells. Ectopic expression of MKK3, an upstream activator of p38 MAPK, significantly up-regulated the expression of p-glycoprotein and increased the consequent resistance against paclitaxel in HeyA8 cells. Collectively, these data indicated that DUSP1 may induce the resistance against paclitaxel through the p38 MAPK-mediated overexpression of p-glycoprotein in human ovarian cancer cells. PMID:27422607

  19. Encapsulation of paclitaxel into a bio-nanocomposite. A study combining inelastic neutron scattering to thermal analysis and infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Martins, Murillo L.; Orecchini, Andrea; Aguilera, Luis; Eckert, Juergen; Embs, Jan; Matic, Aleksander; Saeki, Margarida J.; Bordallo, Heloisa N.

    2015-01-01

    The anticancer drug paclitaxel was encapsulated into a bio-nanocomposite formed by magnetic nanoparticles, chitosan and apatite. The aim of this drug carrier is to provide a new perspective against breast cancer. The dynamics of the pure and encapsulated drug were investigated in order to verify possible molecular changes caused by the encapsulation, as well as to follow which interactions may occur between paclitaxel and the composite. Fourier transformed infrared spectroscopy, thermal analysis, inelastic and quasi-elastic neutron scattering experiments were performed. These very preliminary results suggest the successful encapsulation of the drug.

  20. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer

    PubMed Central

    Xiao, Kai; Luo, Juntao; Fowler, Wiley; Li, Yuanpei; Lee, Joyce; Wang, Li; Lam, Kit S.

    2009-01-01

    Paclitaxel (PTX) is one of the most effective chemotherapeutic drugs for the treatment of a variety of cancers. However, it is associated with serious side effects caused by PTX itself and the Cremophor EL emulsifier. In the present study, we report the development of a well-defined amphiphilic linear–dendritic copolymer (named as telodendrimer) composed of polyethylene glycol (PEG), cholic acid (CA, a facial amphiphilic molecule) and lysine, which can form drug-loaded core/shell micelles when mixed with hydrophobic drug, such as PTX, under aqueous condition. We have used PEG5k-CA8, a representive telodendrimer, to prepare paclitaxel-loaded nanoparticles (PTX-PEG5k-CA8 NPs) with high loading capacity (7.3 mg PTX/mL) and a size of 20–60 nm. This novel nanoformulation of PTX was found to exhibit similar in vitro cytotoxic activity against ovarian cancer cells as the free drug (Taxol®) or paclitaxel/ human serum albumin nanoaggregate (Abraxane®). The maximum tolerated doses (MTDs) of PTX-PEG5k-CA8 NPs after single dose and five consective daily doses in mice were approximately 75 and 45 mg PTX/kg, respectively, which were 2.5-fold higher than those of Taxol®. In both subcutaneous and orthotopic intraperitoneal murine models of ovarian cancer, PTX-PEG5k-CA8 NPs achieved superior toxicity profiles and antitumor effects compared to Taxol® and Abraxane® at equivalent PTX doses, which were attributed to their preferential tumor accumulation, and deep penetration into tumor tissue, as confirmed by near infrared fluorescence (NIRF) imaging. PMID:19660809

  1. The effect of multivalent cations and Tau on paclitaxel-stabilized microtubule assembly, disassembly, and structure.

    PubMed

    Safinya, Cyrus R; Chung, Peter J; Song, Chaeyeon; Li, Youli; Ewert, Kai K; Choi, Myung Chul

    2016-06-01

    In this review we describe recent studies directed at understanding the formation of novel nanoscale assemblies in biological materials systems. In particular, we focus on the effects of multivalent cations, and separately, of microtubule-associated protein (MAP) Tau, on microtubule (MT) ordering (bundling), MT disassembly, and MT structure. Counter-ion directed bundling of paclitaxel-stabilized MTs is a model electrostatic system, which parallels efforts to understand MT bundling by intrinsically disordered proteins (typically biological polyampholytes) expressed in neurons. We describe studies, which reveal an unexpected transition from tightly spaced MT bundles to loose bundles consisting of strings of MTs as the valence of the cationic counter-ion decreases from Z=3 to Z=2. This transition is not predicted by any current theories of polyelectrolytes. Notably, studies of a larger series of divalent counter-ions reveal strong ion specific effects. Divalent counter-ions may either bundle or depolymerize paclitaxel-stabilized MTs. The ion concentration required for depolymerization decreases with increasing atomic number. In a more biologically related system we review synchrotron small angle x-ray scattering (SAXS) studies on the effect of the Tau on the structure of paclitaxel-stabilized MTs. The electrostatic binding of MAP Tau isoforms leads to an increase in the average radius of microtubules with increasing Tau coverage (i.e. a re-distribution of protofilament numbers in MTs). Finally, inspired by MTs as model nanotubes, we briefly describe other more robust lipid-based cylindrical nanostructures, which may have technological applications, for example, in drug encapsulation and delivery. PMID:26684364

  2. Effect of STK17A on the sensitivity of ovarian cancer cells to paclitaxel and carboplatin

    PubMed Central

    Gao, Jianhua; Liu, Dan; Li, Jie; Song, Qianlin; Wang, Qi

    2016-01-01

    Ovarian cancer is the main cause of cancer mortality in gynecological tumors around the world. Drug resistance to a variety of chemotherapeutics continue to be one of the main causes of treatment failure. In a previous study, it was demonstrated that STK17A, a proapoptotic gene, was significantly downregulated in acquired resistance phenotypes of colon cancer cells that are resistant to oxaliplatin and 5-fluorouracil. Therefore in the present study, the association between STK17A expression and ovarian cancer with initial drug resistance was investigated and the influence of STK17 on ovarian cancer cell proliferation and doubling time. In the present study, ovarian cancer cell lines that express low levels of STK17A were established by targeting STK17A with specific siRNA. In addition, up-regulation of STK17A was established in ovarian cells by pCDNA3flu/STK17A. The sensitivity of the transfected cells and controls to paclitaxel, carboplatin was examined by MTT assay, and the levels of proliferation and apoptosis were analyzed by flow cytometry. In the cells that were transfected with siRNA resulting in reduced expression of STK17A, the 50% inhibitory concentration (IC50) of the chemotherapy drugs paclitaxel and carboplatin was increased compared with control cells (P<0.05). By contrast, in the cells that overexpressed STK17A following treatment with pCDNA3flu/STK17A, the IC50 of the chemotherapy drugs reduced in each case, and was significantly lower compared with the control (P<0.05). There was a variable susceptibility to carboplatin and paclitaxel resulting from altering the levels of STK17A expression in ovarian cancer cell lines. The growth of STK17A/siRNA transfected cells was promoted compared with that of the control cells and accordingly their cell doubling time was shortened. PMID:27446402

  3. [A trial of biweekly paclitaxel administration in consideration of QOL for advanced or recurrent gynecologic cancer].

    PubMed

    Fushiki, Hiroshi; Yoshimoto, Hideo; Ikoma, Tomomi; Ota, Satoru

    2005-05-01

    At present there is no oral medicine available which is effective for advanced or recurrent case of elderly patients with gynecologic cancer. We report that a low-dose biweekly paclitaxel administration preserves quality of life (QOL) and seems to be "tumor dormancy like" therapy of good compliance with few side effects. A total of 11 cases were in ovarian cancer (5), uterine cancer (3), cervical cancer (2), and uterine sarcoma (1). The median age was 68 years old and the age range was 50 to 79 years old. We performed a standard treatment as a first time treatment. Afterwards, we obtained complete informed consent from the patients for progressive or recurrent cancer and administered biweekly paclitaxel 70 mg/m2 (80-100 mg/body) on an outpatient basis. We reviewed the effect, side effect and compliance of the medication. We judged the side effect based on the Japanese cancer treatment society common toxicity criteria. The result was only one patient death from PD and the other 10 patients were PR or a state of NC without side effect. An ovary cancer case patient lived for 67 months at best, an endometrial cancer case patient lived for 62 months at best, a cervical cancer case patient lived for 74 months at best, and a recurrent uterine sarcoma case patient lived for 76 months after recurrence and the QOL was good. In addition, there was no onset of side effect more than grade 2 in all of the cases and a compliance of medical administration was good. In these cases, we thought that a low-dose of biweekly paclitaxel administration was regarded as a therapy to preserve QOL without a serious side effect and a good compliance of medication. Furthermore, we intend to increase more cases and would like to report them in the future. PMID:15918575

  4. Inherent and Acquired Resistance to Paclitaxel in Hepatocellular Carcinoma: Molecular Events Involved

    PubMed Central

    Meena, Avtar Singh; Sharma, Aanchal; Kumari, Ratna; Mohammad, Naoshad; Singh, Shivendra Vikram; Bhat, Manoj Kumar

    2013-01-01

    Hepatocellular carcinoma (HCC) is a primary malignancy of the liver and is a major cause of cancer related deaths worldwide. Only 10 to 20% of HCC can be surgically excised. Therefore, chemotherapeutic intervention and treatment is essential for achieving favorable prognosis. However, therapeutic outcome of chemotherapy is generally poor owing to inherent resistance of cancer cells to the treatment or due to development of acquired resistance. To differentiate and delineate the molecular events, we developed drug resistant Hep3B cells (DRC) by treating cells with the increasing concentration of paclitaxel. We also developed a unique single cell clone of Hep3B cells (SCC) by selecting single cell colonies and screening them for resistant phenotype. Interestingly, both DRC and SCC were resistant to paclitaxel in comparison to parental Hep3B cells. We analyzed the contributory factors that may be involved in the development of resistance. As expected, level of P-glycoprotein (P-gp) was elevated in DRC. In addition, Caveolin-1 (Cav-1), Fatty acid synthase (FASN) and Cytochrome P450 (CYP450) protein levels were elevated in DRC whereas in SCC, FASN and CYP450 levels were elevated. Downregulation of these molecules by respective siRNAs and/or by specific pharmacological inhibitors resensitized cells to paclitaxel. Interestingly, these drug resistant cells were also less sensitive to vinblastine, doxorubicin and methotrexate with the exception of cisplatin. Our results suggested that differential levels of P-gp, Cav-1 and FASN play a major role in acquired resistant phenotype whereas FASN level was associated with the presentation of inherent resistant phenotype in HCC. PMID:23613870

  5. Phase III Trial of Carboplatin and Paclitaxel With or Without Sorafenib in Metastatic Melanoma

    PubMed Central

    Flaherty, Keith T.; Lee, Sandra J.; Zhao, Fengmin; Schuchter, Lynn M.; Flaherty, Lawrence; Kefford, Richard; Atkins, Michael B.; Leming, Philip; Kirkwood, John M.

    2013-01-01

    Purpose The primary objective of this study was to determine whether carboplatin, paclitaxel, and sorafenib (CPS) improve overall survival (OS) compared with carboplatin and paclitaxel (CP) in chemotherapy-naive patients with metastatic melanoma. Patients and Methods In this double-blind, randomized, placebo-controlled phase III study, all patients received carboplatin at area under the [concentration-time] curve 6 and paclitaxel 225 mg/m2 intravenously once every 21 days with random assignment to sorafenib 400 mg orally twice per day on days 2 through 19 every 21 days or placebo. The primary end point was OS, and secondary end points included progression-free survival, objective tumor response, and toxicity. Results In all, 823 patients were enrolled over 34 months. At final analysis, the median OS was 11.3 months (95% CI, 9.8 to 12.2 months) for CP and 11.1 months (95% CI, 10.3 to 12.3 months) for CPS; the difference in the OS distribution was not statistically significant by the stratified log-rank test, stratified on American Joint Committee on Cancer (AJCC) stage, Eastern Cooperative Oncology Group (ECOG) performance status, and prior therapy (P = .878). Median progression-free survival was 4.9 months for CPS and 4.2 months for CP (P = .092, stratified log-rank test). Response rate was 20% for CPS and 18% for CP (P = .427). More patients on the CPS arm had grade 3 or higher toxicities (84% v 78%; P = .027), with increased rash, hand-foot syndrome, and thrombocytopenia accounting for most of the difference. Conclusion Sorafenib does not improve OS when given in combination with CP for chemotherapy-naive patients with metastatic melanoma. This study establishes benchmark end points for the CP regimen in first-line therapy of metastatic melanoma. PMID:23248256

  6. Phase II Study of Carboplatin and Paclitaxel in Advanced Thymoma and Thymic Carcinoma

    PubMed Central

    Lemma, Girum L.; Lee, Ju-Whei; Aisner, Seena C.; Langer, Corey J.; Tester, William J.; Johnson, David H.; Loehrer, Patrick J.

    2011-01-01

    Purpose The purpose of this study was to evaluate the impact of carboplatin and paclitaxel in patients with advanced previously untreated thymoma and thymic carcinoma. Patients and Methods We conducted a prospective multicenter study in patients with unresectable thymoma (n = 21) or thymic carcinoma (n = 23). Patients were treated with carboplatin (area under the curve, 6) plus paclitaxel (225 mg/m2) every 3 weeks for a maximum of six cycles. The primary end point of this trial was to evaluate the objective response rate. Results From February 2001 through January 2008, 46 patients were enrolled. Thirteen patients had grade 4 or greater toxicity, mostly neutropenia. Using RECIST (Response Evaluation Criteria in Solid Tumors) 1.0 criteria, three complete responses (CRs) and six partial responses (PRs; objective response rate [ORR], 42.9%; 90% CI, 24.5% to 62.8%) were observed in the thymoma cohort; 10 patients had stable disease. For patients with thymic carcinoma, no CRs and five PRs (ORR, 21.7%; 90% CI, 9.0% to 40.4%) were observed; 12 patients had stable disease. Progression-free survival (PFS) was 16.7 (95% CI, 7.2 to 19.8) and 5.0 (95% CI, 3.0 to 8.3) months for thymoma and thymic carcinoma cohorts, respectively. To date, only seven patients (33.3%) with thymoma have died, compared with 16 patients (69.6%) with thymic carcinoma. Median survival time was 20.0 months (95% CI, 5.0 to 43.6 months) for patients with thymic carcinoma, but it has not been reached for patients with thymoma. Conclusion Carboplatin plus paclitaxel has moderate clinical activity for patients with thymic malignancies, but this seems less than expected with anthracycline-based therapy. Patients with thymic carcinoma have poorer PFS and overall survival than patients with thymoma. PMID:21502559

  7. Compatibility of Paclitaxel injection diluent with two reduced-phthalate administration sets for the acclaim pump.

    PubMed

    Xu, Q A; Trissel, L A

    1998-01-01

    The purpose of this project was to evaluate the compatibility of paclitaxel admixtures with the two reduced-phthalate administration sets designed for use with the Acclaim Infusion Control Device. The first is a nitroglycerin set composed of polyethylene tubing, while the second is made using tris(2-ethyl-hexyl) trimellitate (TOTM)-plasticized polyvinyl chloride tubing. Both sets utilize a diethylhexyl phthalate (DEHP)-plasicized pumping segment. The potential for extraction of DEHP from the pumping segments and TOTM plasticizer from the plastic matrix by the Cremophor EL surfactant present in the paclitaxel injection was evaluated. Diethylhexyl phthalate and TOTM plasticizer extraction was tested using the paclitaxel diluent at concentrations equivalent to 0.3 and 1.2 mg/mL over three-hour and four-day infusions. All samples were prepared in triplicate in polyolefin bags of 5% dextrose injection and deliverd through the administration sets into glass collection flasks. Both DEHP and TOTM content were determined using high-performance liquid chromatographic methods. None of the admixtures delivered rapidly over three hours or slowly over four days through the TOTM-plasticized set exhibited any detectable TOTM. Similarly, no DEHP was detected in the effluent form either set with the simulated 0.3-mg/mL admixtures delivered over three hours. The simulated 1.2-mg/mL admixture delivered over three hours yielded only a barely detectable, but not quantifiable, trace of DEHP. However, slow delivery of both concentrations over four days through both sets resulted in leached DEHP in concentrations ranging from about 30 to 150 micrograms/mL at both one and four days. The two reduced-phthalate administration sets tested in this study are suitable for the administration of paclitaxel infusions of short duration, for up to three hours. However, the sets cannot be recommended for administration over longer-duration delivery times ranging from one to four days due to leaching of

  8. Combination neratinib (HKI-272) and paclitaxel therapy in patients with HER2-positive metastatic breast cancer

    PubMed Central

    Chow, L W-C; Xu, B; Gupta, S; Freyman, A; Zhao, Y; Abbas, R; Vo Van, M-L; Bondarenko, I

    2013-01-01

    Introduction: Neratinib is a potent irreversible pan-ErbB tyrosine kinase inhibitor that has demonstrated antitumour activity and an acceptable safety profile in patients with human epidermal growth factor receptor (HER)-2-positive breast cancer and other solid tumours. Methods: This was a phase I/II, open-label, two-part study. Part 1 was a dose-escalation study to determine the maximum tolerated dose (MTD) of neratinib plus paclitaxel in patients with solid tumours. Part 2 evaluated the safety, efficacy, and pharmacokinetics of the combination at the MTD in patients with HER2-positive breast cancer. Results: Eight patients were included in the dose-escalation study; no dose-limiting toxicities were observed, and an MTD of oral neratinib 240 mg once daily plus intravenous paclitaxel 80 mg m−2 on days 1, 8, and 15 of each 28-day cycle was determined. A total of 102 patients with HER2-positive breast cancer were enrolled in part 2. The overall median treatment duration was 47.9 weeks (range: 0.1–147.3 weeks). Common treatment-emergent adverse events (all grades/grade ⩾3) included diarrhoea (92%/29% none grade 4), peripheral sensory neuropathy (51%/3%), neutropenia (50%/20%), alopecia (46%/0%), leukopenia (41%/18%), anaemia (37%/8%), and nausea (34%/1%). Three (3%) patients discontinued treatment due to an adverse event (mouth ulceration, left ventricular ejection fraction reduction, and acute renal failure). Among the 99 evaluable patients in part 2 of the study, the overall response rate (ORR) was 73% (95% confidence interval (CI): 62.9–81.2%), including 7 (7%) patients who achieved a complete response; an additional 9 (9%) patients achieved stable disease for at least 24 weeks. ORR was 71% among patients with 0/1 prior chemotherapy regimen for metastatic disease and no prior lapatinib, and 77% among those with 2/3 prior chemotherapy regimens for metastatic disease with prior lapatinib permitted. Kaplan–Meier median progression-free survival was 57

  9. Metformin inhibits ovarian cancer growth and increases sensitivity to paclitaxel in mouse models

    PubMed Central

    LENGYEL, Ernst; LITCHFIELD, Lacey M.; MITRA, Anirban K.; NIEMAN, Kristin M.; MUKHERJEE, Abir; ZHANG, Yilin; JOHNSON, Alyssa; BRADARIC, Michael; LEE, WooSeok; ROMERO, Iris L.

    2014-01-01

    OBJECTIVE There is increasing pre-clinical evidence indicating that metformin, a medication commonly used for type 2 diabetes, may protect against cancer. Motivated by this emerging evidence we asked two questions: (a) can metformin prevent ovarian cancer growth by altering metabolism, and (b) will metformin increase sensitivity to chemotherapy. STUDY DESIGN The effect of metformin in ovarian cancer was tested in vitro and by using two different mouse models. In vitro, cell lines (n=6) were treated with metformin (10 to 40 mM) or PBS and cellular proliferation and metabolic alterations (AMP-activated protein kinase activity, glycolysis, lipid synthesis) were compared between the two groups. In mouse models, a prevention study was performed by treating mice with metformin (250 mg/kg/day intraperitoneal (i.p.)) or placebo for 2 weeks followed by i.p. injection of the SKOV3ip1 human ovarian cancer cell line and the mean number of tumor implants in each treatment group was compared. In a treatment study, the LSL-K-rasG12D/+/PTENfloxP/floxP genetic mouse model of ovarian cancer was used. Mice were treated with placebo, paclitaxel (3 mg/kg/week i.p. x 7 weeks), metformin (100 mg/kg/day in water x 7 weeks), or paclitaxel plus metformin and tumor volume was compared between treatment groups. RESULTS In vitro, metformin decreased proliferation of ovarian cancer cell lines and induced cell cycle arrest, but not apoptosis. Further analysis showed that metformin altered several aspects of metabolism including AMP-activated protein kinase activity, glycolysis, and lipid synthesis. In the prevention mouse model, mice pre-treated with metformin had 60 % fewer tumor implants compared to controls (p<0.005). In the treatment study, mice treated with paclitaxel plus metformin had a 60% reduction in tumor weight compared to controls (p=0.02); a level of tumor reduction greater than that resulting from either paclitaxel or metformin alone. CONCLUSION Based on these results, we conclude

  10. Vasculitis resulting from a superficial femoral artery angioplasty with a paclitaxel-eluting balloon.

    PubMed

    Thomas, Shannon D; McDonald, Robert R A; Varcoe, Ramon L

    2014-02-01

    Drug-eluting balloons (DEBs) coated with the antiproliferative agent paclitaxel may improve primary patency by reducing recurrent luminal stenosis. A proportion of the active drug and excipient coating are known to embolize distally, but until now, there have been no reports of adverse events resulting from their use. We report an unusual case of a painful nodular, biopsy specimen-proven vasculitic rash that afflicted the ipsilateral lower limb of a patient after superficial femoral artery treatment with a DEB. This adverse event may have implications for the use of DEB in this and other vascular territories. PMID:23642919

  11. Forkhead box K2 modulates epirubicin and paclitaxel sensitivity through FOXO3a in breast cancer

    PubMed Central

    de Moraes, G Nestal; Khongkow, P; Gong, C; Yao, S; Gomes, A R; Ji, Z; Kandola, N; Delbue, D; Man, E P S; Khoo, U S; Sharrocks, A D; Lam, E W-F

    2015-01-01

    The forkhead transcription factor FOXK2 has recently been implicated in cancer cell proliferation and survival, but a role in cancer chemotherapeutic drug resistance has hitherto not been explored. Here we demonstrate that FOXK2 has a central role in mediating the cytotoxic drug response in breast cancer. Clonogenic and cell viability assays showed that enhanced FOXK2 expression sensitizes MCF-7 breast cancer cells to paclitaxel or epirubicin treatment, whereas FOXK2 depletion by small interfering RNAs (siRNAs) confers drug resistance. Our data also showed that the activation of the tumour suppressor FOXO3a by paclitaxel and epirubicin is mediated through the induction of FOXK2, as depletion of FOXK2 by siRNA limits the induction of FOXO3a by these drugs in MCF-7 cells. Chromatin immunoprecipitation (ChIP) analysis showed that in response to drug treatment, FOXK2 accumulates and binds to the proximal FOXO3a promoter region in MCF-7 cells. Furthermore, we also uncovered that FOXK2 is deregulated and, therefore, can express at high levels in the nucleus of both the paclitaxel and epirubicin drug-resistant MCF-7 cells. Our results showed that ectopically overexpressed FOXK2 accumulates in the nuclei of drug-resistant MCF-7 cells but failed to be recruited to target genes, including FOXO3a. Crucially, we found that FOXO3a is required for the anti-proliferative and epirubicin-induced cytotoxic function of FOXK2 in MCF-7 cells by sulphorhodamine and clonogenic assays. The physiological importance of the regulation of FOXO3a by FOXK2 is further confirmed by the significant correlations between FOXO3a and FOXK2 expression in breast carcinoma patient samples. Further survival analysis also reveals that high nuclear FOXK2 expression significantly associates with poorer clinical outcome, particularly in patients who have received conventional chemotherapy, consistent with our finding that FOXK2 is deregulated in drug-resistant cells. In summary, our results suggest that

  12. Synthesis and characterization of polymeric nanospheres loaded with the anticancer drug paclitaxel and magnetic particles

    NASA Astrophysics Data System (ADS)

    Závišová, Vlasta; Koneracká, Martina; Múčková, Marta; Kopčanský, Peter; Tomašovičová, Natália; Lancz, Gábor; Timko, Milan; Pätoprstá, Božena; Bartoš, Peter; Fabián, Martin

    2009-05-01

    We describe the preparation (by nanoprecipitation) and characterization of nanospheres (NPs) for magnetic drug targeting made of a magnetic fluid with poly(ethylene glycol), poly( D, L-lactic- co-glycolic acid) (PLGA), and the anticancer drug paclitaxel (Taxol ®). Infrared spectroscopy confirmed the incorporation of the drug in the PLGA NPs, which were also characterized in terms of morphology, size (typical diameter 200-250 nm) and colloidal stability in aqueous solutions of NaCl. Drug release and in vivo toxicity experiments of the prepared samples were performed. Their stability, magnetic properties (superparamagnetism), and lethal dose were found to be acceptable for the proposed application in cancer therapy.

  13. A case of coronary rupture and pseudoaneurysm formation after fracture of implanted paclitaxel-eluting stents.

    PubMed

    Kawai, Yasuyuki; Kitayama, Michihiko; Akao, Hironobu; Motoyama, Atsushi; Tsuchiya, Taketsugu; Kajinami, Kouji

    2016-07-01

    A 48-year-old man who had undergone implantation of two paclitaxel-eluting stents (PESs) at the right coronary artery was admitted to our hospital with progressive dyspnea. In the coronary care unit, he developed cardiogenic shock due to cardiac tamponade treated by pericardiocentesis. A coronary angiogram showed a large pseudoaneurysm at the site of the previously implanted stents, suggesting coronary rupture due to implanted stent fracture. The pseudoaneurysm was completely sealed by polytetrafluoroethylene-covered stent implantation. Although this case is very rare, coronary rupture by stent fracture should be considered when cardiac tamponade occurs after drug-eluting stent implantation, especially PES. PMID:25998891

  14. A Randomized Trial Investigating the Efficacy and Safety of Water Soluble Micellar Paclitaxel (Paccal Vet) for Treatment of Nonresectable Grade 2 or 3 Mast Cell Tumors in Dogs

    PubMed Central

    Vail, D.M.; von Euler, H.; Rusk, A.W.; Barber, L.; Clifford, C.; Elmslie, R.; Fulton, L.; Hirschberger, J.; Klein, M.; London, C.; Martano, M.; McNiel, E.A.; Morris, J.S.; Northrup, N.; Phillips, B.; Polton, G.; Post, G.; Rosenberg, M.; Ruslander, D.; Sahora, A.; Siegel, S.; Thamm, D.; Westberg, S.; Winter, J.; Khanna, C.

    2013-01-01

    Background Effective treatments for dogs with advanced stage mast cell tumors (MCT) remain a pressing need. A micellar formulation of paclitaxel (paclitaxel [micellar]) has shown promise in early-phase studies. Hypothesis/Objectives The objective was to demonstrate greater activity for paclitaxel (micellar) compared with lomustine. The null hypothesis was μp = μL (ie, proportion of responders for the paclitaxel [micellar] and lomustine groups, respectively). Animals Two hundred and fifty-two dogs with advanced stage nonresectable grade 2 or 3 MCT. Methods Prospective multicenter randomized double-blind positive-controlled clinical trial. The primary endpoint was confirmed overall response rate (CORR) at 14 weeks. A secondary endpoint, biologic observed response rate (BORR), also was calculated. Safety was assessed by the characterization and grading of adverse events (AE). Results Overall CORR (7% versus 1%; P = .048) and BORR (23% versus 10%; P = .012) were greater for paclitaxel (micellar) compared with lomustine. Paclitaxel (micellar)-treated dogs were 6.5 times more likely to have a confirmed response and 3.1 times more likely to experience a biologic observed response. The majority of AE with paclitaxel (micellar) were transient and clinically manageable. Twenty-seven dogs (33%) receiving lomustine were discontinued because of hepatopathy compared with 3 dogs (2%) receiving paclitaxel (micellar) (P < .0001; odds ratio 26.7). Conclusions and Clinical Importance Paclitaxel (micellar)’s activity and safety profile are superior to lomustine. The addition of an active and novel taxane to the veterinary armamentarium could fill a substantial need and, as its mechanism of action and AE profile do not overlap with currently available TKI, its availability could lead to effective combination protocols. PMID:22390318

  15. Prospective evaluation of concurrent paclitaxel and radiation therapy after adjuvant doxorubicin and cyclophosphamide chemotherapy for Stage II or III breast cancer

    SciTech Connect

    Burstein, Harold J. . E-mail: hburstein@partners.org; Bellon, Jennifer R.; Galper, Sharon; Lu, H.-M.; Kuter, Irene; Wong, Julia; Gelman, Rebecca; Bunnell, Craig A.; Parker, Leroy M.; Garber, Judy E.; Winer, Eric P.; Harris, Jay R.; Powell, Simon N.

    2006-02-01

    Purpose: To evaluate the safety and feasibility of concurrent radiation therapy and paclitaxel-based adjuvant chemotherapy, given either weekly or every 3 weeks, after adjuvant doxorubicin and cyclophosphamide (AC). Methods and Materials: After definitive breast surgery and AC chemotherapy, 40 patients with operable Stage II or III breast cancer received protocol-based treatment with concurrent paclitaxel and radiation therapy. Paclitaxel was evaluated on 2 schedules, with treatment given either weekly x 12 weeks (60 mg/m{sup 2}), or every 3 weeks x 4 cycles (135-175 mg/m{sup 2}). Radiation fields and schedules were determined by the patient's surgery and pathology. The tolerability of concurrent therapy was evaluated in cohorts of 8 patients as a phase I study. Results: Weekly paclitaxel treatment at 60 mg/m{sup 2} per week with concurrent radiation led to dose-limiting toxicity in 4 of 16 patients (25%), including 3 who developed pneumonitis (either Grade 2 [1 patient] or Grade 3 [2 patients]) requiring steroids. Efforts to eliminate this toxicity in combination with weekly paclitaxel through treatment scheduling and CT-based radiotherapy simulation were not successful. By contrast, dose-limiting toxicity was not encountered among patients receiving concurrent radiation with paclitaxel given every 3 weeks at 135-175 mg/m{sup 2}. However, Grade 2 radiation pneumonitis not requiring steroid therapy was seen in 2 of 24 patients (8%) treated in such a fashion. Excessive radiation dermatitis was not observed with either paclitaxel schedule. Conclusions: Concurrent treatment with weekly paclitaxel and radiation therapy is not feasible after adjuvant AC chemotherapy for early-stage breast cancer. Concurrent treatment using a less frequent paclitaxel dosing schedule may be possible, but caution is warranted in light of the apparent possibility of pulmonary injury.

  16. The effect of seal oil on paclitaxel induced cytotoxicity and apoptosis in breast carcinoma MCF-7 and MDA-MB-231 cell lines.

    PubMed

    Wang, Zheyu; Butt, Krista; Wang, Lili; Liu, Hu

    2007-01-01

    Some studies have suggested that omega-3 polyunsaturated fatty acids (PUFAs) have an inhibitory effect on the growth of cancer cells and therefore have the potential to increase the efficacy of cancer chemotherapeutic drugs. Considering that omega-3 PUFAs are present abundantly in harp seal oil, we investigated the effect of seal oil on the cytotoxicity and apoptosis induced by paclitaxel in 2 breast cancer cell lines, MCF-7 and MDA-MB-231, respectively. Cytotoxicity evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the concentration of paclitaxel that is required for 50% inhibition of cell growth in the presence of seal oil was significantly lower than that of paclitaxel alone. Apoptosis assessment based on morphological changes and DNA fragmentation results indicated that more cells treated with paclitaxel in combination with seal oil underwent apoptosis than with paclitaxel alone. Western blot analysis showed that the expression of B cell lymphoma-2 (Bcl-2) protein, an apoptosis inhibitory protein, in both cell lines was decreased more significant by paclitaxel in combination with seal oil than by paclitaxel alone. In addition, seal oil alone was found to induce apoptosis in both cell lines tested, which appeared to be due to the increased intracellular lipid peroxides produced. It is therefore concluded that paclitaxel in combination with seal oil demonstrated enhanced cytotoxicity and apoptosis in MCF-7 and MDA-MB-231 cells compared to paclitaxel alone, and the use of seal oil may be beneficial in the treatment of breast cancer. PMID:17640170

  17. Reducing Both Pgp Overexpression and Drug Efflux with Anti-Cancer Gold-Paclitaxel Nanoconjugates

    PubMed Central

    Li, Fei; Zhou, Xiaofei; Zhou, Hongyu; Jia, Jianbo; Li, Liwen; Zhai, Shumei; Yan, Bing

    2016-01-01

    Repeated administrations of anti-cancer drugs to patients often induce drug resistance. P-glycoprotein (Pgp) facilitates an efficient drug efflux, preventing cellular accumulation of drugs and causing multi-drug resistance (MDR). In this study, we developed a gold-paclitaxel nanoconjugate system to overcome MDR. Gold nanoparticles (GNPs) were conjugated with β-cyclodextrin enclosing paclitaxel (PTX) molecules and PEG molecules. GNP conjugates were effectively endocytosed by both drug-sensitive human lung cancer H460 cells and Pgp-overexpressed drug-resistant H460PTX cells. Compared with PTX, PGNPs did not induce the Pgp overexpression in drug-sensitive H460 cells after long-term treatment and also avoided being pumped out of cells by overexpressed Pgp molecules in H460PTX with a 17-fold lower EC50 compared to PTX. Fluorescent microscopy and flow cytometry further confirmed that fluorescent labeled PGNPs (f-PGNPs) maintained a high cellular PTX level in both H460 and H460PTX cells. These results demonstrated that nano-drug conjugates were able to avoid the development of drug resistance in sensitive cells and evade Pgp-mediated drug resistance and to maintain a high cytotoxicity in drug-resistant cancer cells. These findings exemplify a powerful nanotechnological approach to the long-lasting issue of chemotherapy-induced drug resistance. PMID:27467397

  18. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles

    PubMed Central

    Zhu, Xu; Guo, Jun; He, Cancan; Geng, Huaxiao; Yu, Gengsheng; Li, Jinqing; Zheng, Hairong; Ji, Xiaojuan; Yan, Fei

    2016-01-01

    Paclitaxel (PTX) has been recognized as a promising drug for intervention of vascular reconstructions. However, it is still difficult to achieve local drug delivery in a spatio-temporally controllable manner under real-time image guidance. Here, we introduce an ultrasound (US) triggered image-guided drug delivery approach to inhibit vascular reconstruction via paclitaxel (PTX)-loaded microbubbles (PLM) in a rabbit iliac balloon injury model. PLM was prepared through encapsulating PTX in the shell of lipid microbubbles via film hydration and mechanical vibration technique. Our results showed PLM could effectively deliver PTX when exposed to US irradiation and result in significantly lower viability of vascular smooth muscle cells. Ultrasonographic examinations revealed the US signals from PLM in the iliac artery were greatly increased after intravenous administration of PLM, making it possible to identify the restenosis regions of iliac artery. The in vivo anti-restenosis experiments with PLM and US greatly inhibited neointimal hyperplasia at the injured site, showing an increased lumen area and reduced the ratio of intima area and the media area (I/M ratio). No obvious functional damages to liver and kidney were observed for those animals. Our study provided a promising approach to realize US triggered image-guided PTX delivery for therapeutic applications against iliac restenosis. PMID:26899550

  19. Comparison between sirolimus- and paclitaxel-eluting stent in T-cell subsets redistribution.

    PubMed

    Sardella, Gennaro; De Luca, Leonardo; Di Roma, Angelo; De Persio, Giovanni; Conti, Giulia; Paroli, Marino; Fedele, Francesco

    2006-02-15

    We sought to investigate the effects of 2 different coronary drug-eluting stents on the distribution of central or effector memory T cells circulating in the coronary sinus of patients with coronary artery disease who underwent percutaneous coronary revascularization. We randomly assigned 43 patients (mean age 65.4 +/- 4.3 years; 34 men) presenting with stable coronary disease and angiographically proved stenosis of the left anterior descending artery to treatment with sirolimus- or paclitaxel-eluting stents. Heparinized blood samples were obtained from the coronary sinus before and 20 minutes after stent implantation. Analysis of surface phenotype was performed by 4-color flow cytometry, and data are expressed as the percentage of positive cells. The percentages of CD8+ and CD4+ effector memory T cells, as defined by the CD3+CD45RO+CD27- phenotype, were significantly reduced in patients who received a sirolimus-eluting stent compared with the basal values. Conversely, the percentages of CD8+, but not CD4+, central memory T cells (CD3+CD45RO+CD27+) were increased in the same treatment group after the revascularization procedure. No changes in the percentages of memory T-cell populations in the paclitaxel-eluting stent group were observed. These findings show that sirolimus-eluting stents rapidly induced a redistribution of memory T lymphocytes, with a significant decrease of proinflammatory effector memory T cells circulating within the coronary sinus. PMID:16461044

  20. Carboplatin plus paclitaxel in combination with bevacizumab for the treatment of adenocarcinoma with interstitial lung diseases

    PubMed Central

    SUZUKI, HIDEKAZU; HIRASHIMA, TOMONORI; KOBAYASHI, MASASHI; OKAMOTO, NORIO; MATSUURA, YUKA; TAMIYA, MOTOHIRO; MORISHITA, NAOKO; OKAFUJI, KOHEI; SHIROYAMA, TAKAYUKI; MORIMURA, OSAMU; MORITA, SATOMU; KAWASE, ICHIRO

    2013-01-01

    Interstitial lung diseases (ILDs) are frequently associated with lung cancer. The safety of carboplatin plus paclitaxel in combination with bevacizumab (CP-B) in patients with ILD and lung cancer (ILD-LC) remains to be clarified. In the present study, the safety and efficacy of CP-B treatment in ILD-LC patients were retrospectively investigated. Four patients, who completed CP-B therapy, were included in this study. The dose of carboplatin was the area under the curve 5, paclitaxel was 200 mg/m2 and bevacizumab was 15 mg/kg at treatment initiation. The patients were males, had histologically confirmed adenocarcinoma, were smokers and demonstrated non-usual interstitial pneumonia (non-UIP) patterns on computed tomography (CT). Patients received 1–6 cycles of CP-B therapy. Three of the four patients received maintenance bevacizumab therapy for 3–10 cycles. Only one patient demonstrated a partial response. Neutropenia was the most frequent adverse event. One patient experienced gut perforation during the first course of CP-B. No pulmonary toxicity was observed. Thus, treatment of ILD-LC patients with CP-B was not associated with pulmonary toxicity, however, this study population appeared to be at a low risk. PMID:24649195

  1. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route.

    PubMed

    Muley, Pratik; Kumar, Sunny; El Kourati, Fadoua; Kesharwani, Siddharth S; Tummala, Hemachand

    2016-03-16

    Micellization offers several advantages for the delivery of water insoluble drugs including a nanoparticulate 'core-shell' delivery system for drug targeting. Recently, hydrophobically modified polysaccharides (HMPs) are gaining recognition as micelle forming polymers to encapsulate hydrophobic drugs. In this manuscript, for the first time, we have evaluated the self-assembling properties of a lauryl carbamate derivative of the poly-fructose natural polymer inulin (Inutec SP1(®) (INT)) to form paclitaxel (PTX) loaded micelles. INT self-assembled into well-defined micellar structures in aqueous environment with a low critical micellar concentration of 27.8μg/ml. INT micelles exhibited excellent hemocompatibility and low toxicity to cultured cells. PTX loaded INT micelles exhibited a mean size of 256.37±10.45nm with excellent drug encapsulation efficiency (95.66±2.25%) and loading (8.69±0.22%). PTX loaded micelles also displayed sustained release of PTX and enhanced anti-cancer efficacy in-vitro in mouse melanoma cells (B16F10) compared to Taxol formulation with Cremophor EL as solvent. In addition, PTX loaded INT micelles exhibited comparable in-vivo antitumor activity in B16F10 allograft mouse model at half the dose of Taxol. In conclusion, INT offers safe, inexpensive and natural alternative to widely used PEG-modified polymers for the formulation of micellar delivery systems for paclitaxel. PMID:26792170

  2. PDMP sensitizes neuroblastoma to paclitaxel by inducing aberrant cell cycle progression leading to hyperploidy.

    PubMed

    Dijkhuis, Anne-Jan; Klappe, Karin; Jacobs, Susan; Kroesen, Bart-Jan; Kamps, Willem; Sietsma, Hannie; Kok, Jan Willem

    2006-03-01

    The sphingolipid ceramide has been recognized as an important mediator in the apoptotic machinery, and its efficient conversion to glucosylceramide has been associated with multidrug resistance. Therefore, inhibitors of glucosylceramide synthase are explored as tools for treatment of cancer. In this study, we used D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol to sensitize Neuro-2a murine neuroblastoma cells to the microtubule-stabilizing agent paclitaxel. This treatment resulted in a synergistic inhibition of viable cell number increase, which was based on a novel mechanism: (a) After a transient mitotic arrest, cells proceeded through an aberrant cell cycle resulting in hyperploidy. Apoptosis also occurred but to a very limited extent. (b) Hyperploidy was not abrogated by blocking de novo sphingolipid biosynthesis using ISP-1, ruling out involvement of ceramide as a mediator. (c) Cyclin-dependent kinase 1 and 2 activities were synergistically decreased on treatment. In conclusion, instead of inducing apoptosis through ceramide accumulation, D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol by itself affects cell cycle-related proteins in paclitaxel-arrested Neuro-2a cells resulting in aberrant cell cycle progression leading to hyperploidy. PMID:16546973

  3. A Paclitaxel-Loaded Recombinant Polypeptide Nanoparticle Outperforms Abraxane in Multiple Murine Cancer Models

    PubMed Central

    Bhattacharyya, Jayanta; Bellucci, Joseph J.; Weitzhandler, Isaac; McDaniel, Jonathan R.; Spasojevic, Ivan; Li, Xinghai; Lin, Chao-Chieh; Chi, Jen-Tsan Ashley; Chilkoti, Ashutosh

    2015-01-01

    Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumor specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60-nm diameter near-monodisperse nanoparticles that increased the systemic exposure of PTX by 7-fold compared to free drug and 2-fold compared to the FDA approved taxane nanoformulation (Abraxane®). The tumor uptake of the CP-PTX nanoparticle was 5-fold greater than free drug and 2-fold greater than Abraxane. In a murine cancer model of human triple negative breast cancer and prostate cancer, CP-PTX induced near complete tumor regression after a single dose in both tumor models, whereas at the same dose, no mice treated with Abraxane survived for more than 80 days (breast) and 60 days (prostate) respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for paclitaxel delivery. PMID:26239362

  4. Pegylated polyelectrolyte nanoparticles containing paclitaxel as a promising candidate for drug carriers for passive targeting.

    PubMed

    Szczepanowicz, Krzysztof; Bzowska, Monika; Kruk, Tomasz; Karabasz, Alicja; Bereta, Joanna; Warszynski, Piotr

    2016-07-01

    Targeted drug delivery systems are of special importance in cancer therapies, since serious side effects resulting from unspecific accumulation of highly toxic chemotherapeutics in healthy tissues can restrict effectiveness of the therapy. In this work we present the method of preparing biocompatible, polyelectrolyte nanoparticles containing the anticancer drug that may serve as a vehicle for passive tumor targeting. The nanoparticles were prepared via direct encapsulation of emulsion droplets in a polyelectrolyte multilayer shell. The oil cores that contained paclitaxel were stabilized by docusate sodium salt/poly-l-lysine surface complex (AOT/PLL) and were encapsulated in shells formed by the LbL adsorption of biocompatible polyelectrolytes, poly-L-glutamic acid (PGA) and PLL up to 5 or 6 layers. The surface of the nanoparticles was pegylated through the adsorption of the pegylated polyelectrolyte (PGA-g-PEG) as the outer layer to prolong the persistence of the nanocarriers in the circulation. The synthesized nanoparticles were stable in cell culture medium containing serum and their average size was 100nm, which makes them promising candidates for passive targeted drug delivery. This notion was further confirmed by the results of studying the biological effects of nanoformulations on two tumor cell lines: mouse colon carcinoma cell line CT26-CEA and the mouse mammary carcinoma cell line 4T1. The empty polyelectrolyte nanoparticles did not affect the viability of the tested cells, whereas encapsulated paclitaxel retained its strong cytotoxic/cytostatic activity. PMID:27037784

  5. Design and optimization of novel paclitaxel-loaded folate-conjugated amphiphilic cyclodextrin nanoparticles.

    PubMed

    Erdoğar, Nazlı; Esendağlı, Güneş; Nielsen, Thorbjorn T; Şen, Murat; Öner, Levent; Bilensoy, Erem

    2016-07-25

    As nanomedicines are gaining momentum in the therapy of cancer, new biomaterials emerge as alternative platforms for the delivery of anticancer drugs with bioavailability problems. In this study, two novel amphiphilic cyclodextrins (FCD-1 and FCD-2) conjugated with folate group to enable active targeting to folate positive breast tumors were introduced. The objective of this study was to develop and characterize new folated-CD nanoparticles via 3(2) factorial design for optimal final parameters. Full physicochemical characterization studies were performed. Blank and paclitaxel loaded FCD-1 and FCD-2 nanoparticles remained within the range of 70-275nm and 125-185nm, respectively. Zeta potential values were neutral and -20mV for FCD-1 and FCD-2 nanoparticles, respectively. Drug release studies showed initial burst release followed by a longer sustained release. Blank nanoparticles had no cytotoxicity against L929 cells. T-47D and ZR-75-1 human breast cancer cells with different levels of folate receptor expression were used to assess anti-cancer efficacy. Through targeting the folate receptor, these nanoparticles were efficiently engulfed by the breast cancer cells. Additionally, breast cancer cells became more sensitive to cytotoxic and/or cytostatic effects of PCX delivered by FCD-1 and FCD-2. In conclusion, these novel folate-conjugated cyclodextrin nanoparticles can therefore be considered as promising alternative systems for safe and effective delivery of paclitaxel with a folate-dependent mechanism. PMID:27282534

  6. Treatment of vemurafenib-resistant SKMEL-28 melanoma cells with paclitaxel.

    PubMed

    Thang, Nguyen Dinh; Nghia, Phan Tuan; Kumasaka, Mayuko Y; Yajima, Ichiro; Kato, Masashi

    2015-01-01

    Vemurafenib has recently been used as drug for treatment of melanomas with BRAFV600E mutation. Unfortunately, treatment with only vemurafenib has not been sufficiently effective, with recurrence after a short period. In this study, three vemurafenib-resistant BRAFV600E melanoma cell lines, A375PR, A375MR and SKMEL-28R, were established from the original A375P, A375M and SKMEL-28 cell lines. Examination of the molecular mechanisms showed that the phosphorylation levels of MEK and ERK, which play key roles in the RAS/RAF/MEK/ERK signaling pathway, were reduced in these three cell lines, with increased phosphorylation levels of pAKTs limited to SKMEL-28R cells. Treatment of SKMEL-28R cells with 100 nM paclitaxel resulted in increased apoptosis and decreased cellular proliferation, invasion and colony formation via reduction of expression levels of EGFR and pAKTs. Moreover, vemurafenib-induced pAKTs in SKMEL-28R were decreased by treatment with an AKT inhibitor, MK-2206. Taken together, our results revealed that resistance mechanisms of BRAFV600E-mutation melanoma cells to vemurafenib depended on the cell type. Our results suggested that paclitaxel should be considered as a drug in combination with vemurafenib to treat melanoma cells. PMID:25684511

  7. Preparation and characterization of a novel conformed bipolymer paclitaxel-nanoparticle using tea polysaccharides and zein.

    PubMed

    Li, Shuqin; Wang, Xiuming; Li, Weiwei; Yuan, Guoqi; Pan, Yuxiang; Chen, Haixia

    2016-08-01

    To improve the aqueous solubility of the anticancer agent paclitaxel (PTX), a newly conformed bipolymer paclitaxel-nanoparticle using tea polysaccharide (TPS) and zein was prepared and characterized. Tea polysaccharide was used as a biopolymer shell and zein was as the core and the optimal formula was subjected to the characteristic study by TEM, DSC, FTIR and in vitro release study. Results showed that the optimal particle was acquired with particle yield at 40.01%, drug loading at 0.12% and diameters around 165nm when the concentration of tea polysaccharide was set at 0.2%, and the amount of PTX:zein=1:10. The particle was a nanoparticle with spherical surface and the encapsulated PTX was in an amorphous form rather than cystalline form. PTX was interacted with zein and polysaccharide through O H and CO groups and it had a sustained release. The results suggested that the novel bipolymer might be a promising agent for PTX delivery and tea polysaccharide was demonstrated its function in drug delivery system. PMID:27112850

  8. Novel thermo-sensitive core-shell nanoparticles for targeted paclitaxel delivery

    NASA Astrophysics Data System (ADS)

    Li, Yuanpei; Pan, Shirong; Zhang, Wei; Du, Zhuo

    2009-02-01

    Novel thermo-sensitive nanoparticles self-assembled from poly(N,N-diethylacrylamide- co-acrylamide)-block-poly(γ-benzyl L-glutamate) were designed for targeted drug delivery in localized hyperthermia. The lower critical solution temperature (LCST) of nanoparticles was adjusted to a level between physiological body temperature (37 °C) and that used in local hyperthermia (about 43 °C). The temperature-dependent performances of the core-shell nanoparticles were systemically studied by nuclear magnetic resonance (NMR), circular dichroism (CD), fluorescence spectroscopy, dynamic light scattering (DLS), and atom force microscopy (AFM). The mean diameter of the nanoparticles increased slightly from 110 to 129 nm when paclitaxel (PTX), a poorly water-soluble anti-tumor drug, was encapsulated. A stability study in bovine serum albumin (BSA) solution indicated that the PTX loaded nanoparticles may have a long circulation time under physiological environments as the LCST was above physiological body temperature and the shell remained hydrophilic at 37 °C. The PTX release profiles showed thermo-sensitive controlled behavior. The proliferation inhibiting activity of PTX loaded nanoparticles was evaluated against Hela cells in vitro, compared with Taxol (a formulation of paclitaxel dissolved in Cremophor EL and ethanol). The cytotoxicity of PTX loaded nanoparticles increased obviously when hyperthermia was performed. The nanoparticles synthesized here could be an ideal candidate for thermal triggered anti-tumor PTX delivery system.

  9. Cytotoxic constituents of Lasiosphaera fenzlii on different cell lines and the synergistic effects with paclitaxel.

    PubMed

    Gao, J; Wang, L W; Zheng, H C; Damirin, A; Ma, C M

    2016-08-01

    The fruit body of Lasiosphaera fenzlii was found to show cytotoxicity on cancer cells during a preliminary screening. Repeated column chromatography of the fungal methanol extract resulted in the isolation of six compounds identified as 5α,8α-epidioxy-ergosta-6,22-dien-3β-ol (1), 5α,8α-epidioxy-ergosta-6,9(11),22-trien-3β-ol (2), 5α-ergosta-7,22-dien-3β-ol (3), 5α-ergosta-7,22-dien-3-one (4), ergosta-7,22-dien-3β,5α,6β-triol (5) and 6-dihydroxy-2,3-dihydro-1H-isoindol-1-one (6). The two peroxide compounds, 1 and 2, showed cytotoxic activity and compound 1 was selectively cytotoxic to cancer cells. Furthermore, compound 1 synergised the cytotoxicity of paclitaxel on Hela cells by increasing intracellular accumulation of paclitaxel in cancer cells but not in normal cells. PMID:26382563

  10. Cytotoxic and anti-angiogenic paclitaxel solubilized and permeation-enhanced by natural product nanoparticles

    PubMed Central

    Liu, Zhijun; Zhang, Fang; Koh, Gar Yee; Dong, Xin; Hollingsworth, Javoris; Zhang, Jian; Russo, Paul S.; Yang, Peiying; Stout, Rhett W.

    2014-01-01

    Paclitaxel (PTX) is one of the most potent intravenous chemotherapeutic agents to date, yet an oral formulation has been problematic due to its low solubility and permeability. Using the recently discovered solubilizing properties of rubusoside (RUB), we investigated this unique PTX-RUB formulation. Paclitaxel was solubilized by RUB in water to levels of 1.6 to 6.3 mg/mL at 10 to 40% weight/volume. These, nanomicellar, PTX-RUB complexes were dried to a powder which was subsequently reconstituted in physiologic solutions. After 2.5 hrs in gastric fluid 85 to 99% of PTX-RUB remained soluble, while 79 to 96% remained soluble in intestinal fluid. The solubilization of PTX was mechanized by the formation of water-soluble spherical nanomicelles between PTX and RUB with an average diameter of 6.6 nm. Compared with Taxol®, PTX-RUB nanoparticles were nearly four times more permeable in Caco-2 cell monocultures. In a side-by-side comparison with DMSO-solubilized PTX, PTX-RUB maintained the same level of cytotoxicity against three human cancer cell lines with IC50 values ranging from 4 nM to 20 nM. Additionally, tubular formation and migration of HUVECs were inhibited at levels as low as 5 nM. These chemical and biological properties demonstrated by the PTX-RUB nanoparticles may improve oral bioavailability and enable further pharmacokinetic, toxicologic, and efficacy investigations. PMID:25243454

  11. Synergistic cytotoxicity of oncolytic reovirus in combination with cisplatin–paclitaxel doublet chemotherapy

    PubMed Central

    Roulstone, V; Twigger, K; Zaidi, S; Pencavel, T; Kyula, JN; White, C; McLaughlin, M; Seth, R; Karapanagiotou, EM; Mansfield, D; Coffey, M; Nuovo, G; Vile, RG; Pandha, HS; Melcher, AA; Harrington, KJ

    2016-01-01

    Oncolytic reovirus is currently under active investigation in a range of tumour types. Early phase studies have shown that this agent has modest monotherapy efficacy and its future development is likely to focus on combination regimens with cytotoxic chemotherapy. Indeed, phase I/II clinical trials have confirmed that reovirus can be safely combined with cytotoxic drugs, including a platin—taxane doublet regimen, which is currently being tested in a phase III clinical trial in patients with relapsed/metastatic head and neck cancer. Therefore, we have tested this triple (reovirus, cisplatin, paclitaxel) combination therapy in a panel of four head and neck cancer cell lines. Using the combination index (CI) method, the triple therapy demonstrated synergistic cytotoxicity in vitro in both malignant and non-malignant cell lines. In head and neck cancer cell lines, this was associated with enhanced caspase 3 and 7 cleavage, but no increase in viral replication. In vitro analyses confirmed colocalisation of markers of reovirus infection and caspase 3. Triple therapy was significantly more effective than reovirus or cisplatin—paclitaxel in athymic nude mice. These data suggest that the combination of reovirus plus platin—taxane doublet chemotherapy has significant activity in head and neck cancer and underpin the current phase III study in this indication. PMID:22895509

  12. Paclitaxel-loaded ethosomes®: potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses.

    PubMed

    Paolino, Donatella; Celia, Christian; Trapasso, Elena; Cilurzo, Felisa; Fresta, Massimo

    2012-05-01

    Topical application of anticancer drugs for the treatment of malignancies represents a new challenge in dermatology, potentially being an alternative therapeutic approach for the efficacious treatment of non-melanoma skin cancer, that is, actinic keratoses, and malignant lesions of the skin caused by ultraviolet radiation. Anti-proliferative and antimitotic drugs, including many of the taxanes, are currently under investigation for the treatment of cutaneous malignant transformation of actinic keratoses, particularly the squamous cell carcinoma. Paclitaxel-loaded ethosomes® are proposed as topical drug delivery systems for the treatment of this pathology due to their suitable physicochemical characteristics and enhanced skin penetration ability for deep dermal delivery. Our in vitro data show that the skin application of paclitaxel-loaded ethosomes® improved the permeation of paclitaxel in a stratum corneum-epidermis membrane model and increased its anti-proliferative activity in a squamous cell carcinoma model as compared to the free drug. The results obtained encouraged the use of the paclitaxel-loaded ethosomes® as the formulation for the potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses. PMID:22414731

  13. Controlled release of paclitaxel from biodegradable unsaturated poly(ester amide)s/poly(ethylene glycol) diacrylate hydrogels.

    PubMed

    Guo, Kai; Chu, C C

    2007-01-01

    Biodegradable hydrogels (FPBe-G) were synthesized by the photopolymerization of two precursors: FPBe, a fumurate-based unsaturated poly(ester amide) (UPEA), and poly(ethylene glycol) diacrylate (PEG-DA). Depending on the feed ratio of these two precursors, the resultant FPBe-G hydrogels showed different crosslinking levels of network structure, mesh sizes (xi) and matrix morphology. When a lipophilic drug, paclitaxel, was preloaded into FPBe-G hydrogels, the two-month drug-release kinetics from FPBe-G hydrogels in both pure PBS buffer and alpha-chymotrypsin media were measured. The paclitaxel-preloaded FPBe-G hydrogels in a alpha-chymotrypsin solution had significantly faster drug release rate than the corresponding hydrogels in a pure PBS buffer due to an enzyme catalyzed biodegradation of FPBe-G hydrogels. Sustained paclitaxel releases over a two-month period without initial burst release were also achieved by using hydrogels having certain feed ratios of hydrogel precursors. These paclitaxel release data correlated well with the molecular mesh size (xi), molecular weight between cross-links (M(c)) and matrix morphological structure of FPBe-G hydrogels. PMID:17550654

  14. Coadministration of indomethacin and minocycline attenuates established paclitaxel-induced neuropathic thermal hyperalgesia: Involvement of cannabinoid CB1 receptors

    PubMed Central

    Parvathy, Subramanian S.; Masocha, Willias

    2015-01-01

    Taxanes such as paclitaxel, which are chemotherapeutic drugs, cause dose-dependent painful neuropathy in some patients. We investigated whether coadministration of minocycline and indomethacin produces antinociceptive effects in mice with paclitaxel-induced neuropathic thermal hyperalgesia and if the cannabinoid system is involved. Previously, we reported that coadministration of these two drugs results in antinociception against inflammatory pain at doses where either drug alone lack significant activity. In the current study, we observed that treatment of female mice with indomethacin or minocycline alone did not affect established paclitaxel-induced thermal hyperalgesia, whereas coadministration of the two drugs attenuated it. In male mice indomethacin had some antihyperalgesic activity, whilst minocycline did not. Coadministration of the two drugs had supraadditive antihyperalgesic activity in male mice. Administration of a cannabinoid CB1 receptor antagonist AM 251 blocked the antihyperalgesic effects of the combination of minocycline and indomethacin in both male and female mice. In conclusion our results indicate that coadministration of minocycline and indomethacin abrogates established paclitaxel-induced neuropathic thermal hyperalgesia in mice, and the potentiation of the antinociceptive effects of this combination involves the cannabinoid system. PMID:26085115

  15. Shape-Controlled Paclitaxel Nanoparticles with Multiple Morphologies: Rod-Shaped, Worm-Like, Spherical, and Fingerprint-Like

    PubMed Central

    2015-01-01

    Although many nanocarriers have been developed to encapsulate paclitaxel (PTX), the drug loading and circulation time in vivo always are not ideal because of its rigid “brickdust” molecular structure. People usually concentrate their attention on the spherical nanocarriers, here paclitaxel nanoparticles with different geometries were established through the chemical modification of PTX, nanoprecipitation, and core-matched cargos. Previously we have developed rod-shape paclitaxel nanocrystals using block copolymer, pluronic F127. Unfortunately, the pharmacokinetic (PK) profile of PTX nanocrystals is very poor. However, when PTX was replaced by its prodrug, the geometry of the nanoparticles changed from rod-shaped to worm-like. The worm-like nanoparticles can be further changed to spherical nanoparticles using the nanoprecipitation method, and changed to fingerprint-like nanoparticles upon the addition of the core-matched PTX. The nanoparticles with nonspherical morphologies, including worm-like nanoparticles and fingerprint-like nanoparticles, offer significant advantages in regards to key PK parameters in vivo. More important, in this report the application of the core-matching technology in creating a core-matched environment capable of controlling the in vivo PK of paclitaxel was demonstrated, and it revealed a novel technique platform to construct nanoparticles and improve the poor PK profiles of the drugs. PMID:25188586

  16. Metabolomics Analysis of Hormone-Responsive and Triple-Negative Breast Cancer Cell Responses to Paclitaxel Identify Key Metabolic Differences.

    PubMed

    Stewart, Delisha A; Winnike, Jason H; McRitchie, Susan L; Clark, Robert F; Pathmasiri, Wimal W; Sumner, Susan J

    2016-09-01

    To date, no targeted therapies are available to treat triple negative breast cancer (TNBC), while other breast cancer subtypes are responsive to current therapeutic treatment. Metabolomics was conducted to reveal differences in two hormone receptor-negative TNBC cell lines and two hormone receptor-positive Luminal A cell lines. Studies were conducted in the presence and absence of paclitaxel (Taxol). TNBC cell lines had higher levels of amino acids, branched-chain amino acids, nucleotides, and nucleotide sugars and lower levels of proliferation-related metabolites like choline compared with Luminal A cell lines. In the presence of paclitaxel, each cell line showed unique metabolic responses, with some similarities by type. For example, in the Luminal A cell lines, levels of lactate and creatine decreased while certain choline metabolites and myo-inositol increased with paclitaxel. In the TNBC cell lines levels of glutamine, glutamate, and glutathione increased, whereas lysine, proline, and valine decreased in the presence of drug. Profiling secreted inflammatory cytokines in the conditioned media demonstrated a greater response to paclitaxel in the hormone-positive Luminal cells compared with a secretion profile that suggested greater drug resistance in the TNBC cells. The most significant differences distinguishing the cell types based on pathway enrichment analyses were related to amino acid, lipid and carbohydrate metabolism pathways, whereas several biological pathways were differentiated between the cell lines following treatment. PMID:27447733

  17. Coadministration of indomethacin and minocycline attenuates established paclitaxel-induced neuropathic thermal hyperalgesia: Involvement of cannabinoid CB1 receptors.

    PubMed

    Parvathy, Subramanian S; Masocha, Willias

    2015-01-01

    Taxanes such as paclitaxel, which are chemotherapeutic drugs, cause dose-dependent painful neuropathy in some patients. We investigated whether coadministration of minocycline and indomethacin produces antinociceptive effects in mice with paclitaxel-induced neuropathic thermal hyperalgesia and if the cannabinoid system is involved. Previously, we reported that coadministration of these two drugs results in antinociception against inflammatory pain at doses where either drug alone lack significant activity. In the current study, we observed that treatment of female mice with indomethacin or minocycline alone did not affect established paclitaxel-induced thermal hyperalgesia, whereas coadministration of the two drugs attenuated it. In male mice indomethacin had some antihyperalgesic activity, whilst minocycline did not. Coadministration of the two drugs had supraadditive antihyperalgesic activity in male mice. Administration of a cannabinoid CB1 receptor antagonist AM 251 blocked the antihyperalgesic effects of the combination of minocycline and indomethacin in both male and female mice. In conclusion our results indicate that coadministration of minocycline and indomethacin abrogates established paclitaxel-induced neuropathic thermal hyperalgesia in mice, and the potentiation of the antinociceptive effects of this combination involves the cannabinoid system. PMID:26085115

  18. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Cai, Shuyu; Zhang, Rongbo; Liu, Peng; Chen, Hongbo; Zheng, Yi; Sun, Leilei

    2013-10-01

    A system of novel nanoparticles of star-shaped cholic acid-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment.

  19. Bisphosphonates Inhibit Stellate Cell Activity and Enhance Antitumor Effects of Nanoparticle Albumin Bound-Paclitaxel in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Gonzalez-Villasana, Vianey; Rodriguez-Aguayo, Cristian; Arumugam, Thiruvengadam; Cruz-Monserrate, Zobeida; Fuentes-Mattei, Enrique; Deng, Defeng; Hwang, Rosa F.; Wang, Huamin; Ivan, Cristina; Garza, Raul Joshua; Cohen, Evan; Gao, Hui; Armaiz-Pena, Guillermo N.; Monroig-Bosque, Paloma del C.; Philip, Bincy; Rashed, Mohammed H.; Aslan, Burcu; Erdogan, Mumin Alper; Gutierrez-Puente, Yolanda; Ozpolat, Bulent; Reuben, James M.; Sood, Anil K.; Logsdon, Craig; Lopez-Berestein, Gabriel

    2014-01-01

    Pancreatic stellate cells (PSCs) have been recognized as the principal cells responsible for the production of fibrosis in PDAC. Recently PSCs have been noted to share characteristics with cells of monocyte-macrophage lineage (MML cells). Thus, we tested whether PSCs could be targeted with the nitrogen-containing bisphosphonates (NBPs) [pamidronate (Pam) or zoledronic acid (ZA)], which are potent MML cell inhibitors. In addition, we tested NBPs treatment combination with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) to enhance antitumor activity. In vitro we observed that PSCs possess α-naphthyl butyrate esterase (ANBE) enzyme activity, a specific marker of MML cells. Moreover NBPs inhibited PSCs proliferation, activation, release of macrophage chemoattractant protein-1 (MCP-1) and type I collagen expression. NBPs also induced PSC apoptosis and cell cycle arrest in the G1 phase. In vivo, NBPs inactivated PSCs; reduced fibrosis; inhibited tumor volume, tumor weight, peritoneal dissemination, angiogenesis, and cell proliferation; and increased apoptosis in an orthotopic murine model of PDAC. These in vivo antitumor effects were enhanced when NBPs were combined with nab-paclitaxel but not gemcitabine (Gem). Our study suggests that targeting PSCs and tumor cells with NBPs in combination with nab-paclitaxel may be a novel therapeutic approach to PDAC. PMID:25193509

  20. Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice

    PubMed Central

    Pan, Jia-Hao; Bi, Bing-Tian; Feng, Kun-Yao; Huang, Wan; Zeng, Wei-An

    2015-01-01

    Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC). Aspartate transaminase (AST), alanine aminotransferase (ALT), and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2) of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL) from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided. PMID:26633878

  1. SU2C Phase Ib Study of Paclitaxel and MK-2206 in Advanced Solid Tumors and Metastatic Breast Cancer

    PubMed Central

    Gonzalez-Angulo, Ana M.; Krop, Ian; Akcakanat, Argun; Chen, Huiqin; Liu, Shuying; Li, Yisheng; Culotta, Kirk S.; Tarco, Emily; Piha-Paul, Sarina; Moulder-Thompson, Stacy; Velez-Bravo, Vivianne; Sahin, Aysegul A.; Doyle, Laurence A.; Do, Kim-Anh; Winer, Eric P.; Mills, Gordon B.; Kurzrock, Razelle

    2015-01-01

    Background: There is preclinical synergism between taxanes and MK-2206. We aim to determine the maximum tolerated dose, safety, and activity of combining MK-2206 and paclitaxel in metastatic cancer. Methods: Patients received weekly doses of paclitaxel at 80mg/m2 on day 1, followed by MK-2206 orally on day 2 escalated at 90mg, 135mg, and 200mg. Treatment continued until progression, excessive toxicity, or patient request. Blood and tissue were collected for pharmacokinetic and pharmacodynamics markers. A cycle consisted of three weeks of therapy. Dose-limiting toxicity (DLT) was defined as unacceptable toxicity during the first cycle. All statistical tests were two-sided. Results: Twenty-two patients were treated, nine in dose escalation and 13 in dose expansion. Median age was 55 years. Median number of cycles was four. Dose escalation was completed with no DLT. CTCAE Grade 3 or higher adverse events were fatigue (n = 2), rash (n = 2), hyperglycemia (n = 1), and neutropenia (n = 7). Four patients in the expansion phase required MK-2206 dose reduction. Phase II recommended dose was established as paclitaxel 80mg/m2 weekly on day 1, and MK-2206 135mg weekly on day 2. Paclitaxel systemic exposure was similar in the presence or absence of MK-2206. Plasma MK-2206 concentrations were similar to data from previous phase I monotherapy. There was a statistically significant decrease in expression of pAKT S473 (P = .01) and pAKT T308 (P = .002) after therapy. PI3K/AKT/mTOR downregulation in tumor tissues and circulating markers did not correlate with tumor response or clinical benefit. There were five objective responses, and nine patients had stable disease. Conclusion: MK-2206 was well tolerated with paclitaxel. Preliminary antitumor activity was documented. PMID:25688104

  2. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation.

    PubMed

    Ravar, Fatemeh; Saadat, Ebrahim; Gholami, Mehdi; Dehghankelishadi, Pouya; Mahdavi, Mehdi; Azami, Samira; Dorkoosh, Farid A

    2016-05-10

    Breast cancer is the leading cause of cancer death in women. Chemotherapy is regarded as the most essential strategy in inhibiting the proliferation of tumor cells. Paclitaxel is a widely used taxane; however, the side effects of available Cremophor-based formulations and also the limitations of passive targeting uncovered an essential need to develop tumor-specific targeted nanocarriers. A hyaluronic acid targeted liposomal formulation of paclitaxel was prepared in which, hyaluronic acid was electrostatistically attracted to the surface of liposomes. Liposomes, had a particle size of 106.4±3.2nm, a weakly negative zeta potential of -9.7±0.8mV and an acceptable encapsulation efficiency of 92.1±1.7%. The release profile of liposomes in buffer showed that 95% of PTX was released during 40h. Confocal laser scanning microscopy and flow cytometry analysis showed the greater cellular internalization of coumarin-loaded liposomes compared to free coumarin. MTT assay on 4T1 and T47D cells demonstrated the stronger cytotoxic activity of liposomes in comparison to free paclitaxel. Cell cycle analysis showed that cells were mainly blocked at G2/M phases after 48h treatment with liposomes. In vivo real time imaging on 4T1 tumor-bearing mice revealed that the liposomal formulation mainly accumulated in the tumor area. Liposomes also had better antitumor efficacy against Cremophor-based formulation. In conclusion, hyaluronic acid targeted paclitaxel liposome can serve as a promising targeted formulation of paclitaxel for future cancer chemotherapy. PMID:26968799

  3. Paclitaxel plus valproic acid versus paclitaxel alone as second- or third-line therapy for advanced gastric cancer: a randomized Phase II trial

    PubMed Central

    Fushida, Sachio; Kinoshita, Jun; Kaji, Masahide; Oyama, Katsunobu; Hirono, Yasuo; Tsukada, Tomoya; Fujimura, Takashi; Ohta, Tetsuo

    2016-01-01

    Background Weekly paclitaxel (wPTX) is the preferred second-line chemotherapy for gastric cancer in Japan. Histone deacetylase inhibitors have been shown to decrease proliferation through cell-cycle arrest, differentiation, and apoptosis in gastric cancer cells. One histone deacetylase inhibitor, valproic acid (VPA), also inhibits tumor growth by inducing apoptosis and enhances the efficacy of paclitaxel (PTX), shown in a murine gastric cancer model. This Phase II trial was designed to evaluate the benefits of adding VPA to wPTX in patients with gastric cancer refractory to first-line treatment with fluoropyrimidine. Patients and methods The patients were randomly assigned in a 1:1 ratio to receive PTX 80 mg/m2 intravenously on days 1, 8, and 15, every 4 weeks, or a dose of PTX plus VPA taken everyday at 7.5 mg/kg twice daily. Random assignment was carried out at the data center with a minimization method adjusted by the Eastern Cooperative Oncology Group performance status (0–1 vs 2), prior chemotherapy (first-line vs second-line), and measurable lesions (presence vs absence). The primary end point was the overall survival (OS) rate, and the secondary end points were the progression-free survival rate and safety analysis. Results Sixty-six patients were randomly assigned to receive wPTX (n=33) or wPTX plus VPA (n=33). The median OS was 9.8 months in the wPTX group and 8.7 months in the wPTX plus VPA group (hazard ratio 1.19; 95% CI 0.702–2.026; P=0.51). The median progression-free survival was 4.5 months in the wPTX group and 3.0 months in the wPTX plus VPA group (hazard ratio 1.29; 95% CI 0.753–2.211; P=0.35). Grade 3–4 adverse events were neutropenia (3.1%), pneumonia (1.6%), liver injury (1.6%), brain infarction (1.6%), and rupture of aorta (1.6%). Conclusion No statistically significant difference was observed between wPTX and wPTX plus VPA for OS. PMID:27524882

  4. Reconstituted high density lipoprotein mediated targeted co-delivery of HZ08 and paclitaxel enhances the efficacy of paclitaxel in multidrug-resistant MCF-7 breast cancer cells.

    PubMed

    Zhang, Fangrong; Wang, Xiaoyi; Xu, Xiangting; Li, Min; Zhou, Jianping; Wang, Wei

    2016-09-20

    In the past decades, reconstituted high density lipoprotein (rHDL) has been successfully developed as a drug carrier since the enhanced HDL-lipids uptake is demonstrated in several human cancers. In this paper, rHDL, for the first time, was utilized to co-encapsulate two hydrophobic drugs: an anticancer drug, paclitaxel (PTX), and a new reversal agent for P-gp (P-glycoprotein)-mediated multidrug resistance (MDR) of cancer, N-cyano-1-[(3,4-dimethoxyphenyl)methyl]-3,4-dihydro-6,7-dimethoxy-N'-octyl-2(1H)-isoquinoline-carboximidamide (HZ08). We proposed this drug co-delivery strategy to reverse PTX resistance. The study aimed to develop a biomimetic nanovector, reconstituted high density lipoprotein (rHDL), mediating targeted PTX-HZ08 delivery for cancer therapy. Using sodium cholate dialysis method, we successfully formulated dual-agent co-delivering rHDL nanoparticles (PTX-HZ08-rHDL NPs) with a typical spherical morphology, well-distributed size (~100nm), high drug encapsulation efficiency (approximately 90%), sustained drug release properties and exceptional stability even after storage for 1month or incubation in 10% fetal bovine serum (FBS) DMEM for up to 2days. Results demonstrated that PTX-HZ08-rHDL NPs significantly enhanced anticancer efficacy in vitro, including higher cytotoxicity and better ability to induce cell apoptosis against both PTX-sensitive and -resistant MCF-7 human breast cancer cell lines (MCF-7 and MCF-7/PTX cells). Mechanism studies demonstrated that these improvements could be correlated with increased cellular uptake of PTX mediated by scavenger receptor class B type I (SR-BI) as well as prolonged intracellular retention of PTX due to the HZ08 mediated drug-efflux inhibition. In addition, in vivo investigation showed that the PTX-HZ08-rHDL NPs were substantially safer, have higher tumor-targeted capacity and have stronger antitumor activity than the corresponding dosage of paclitaxel injection. These findings suggested that rHDL NPs could

  5. Is there a role of nab-paclitaxel in the treatment of advanced non-small cell lung cancer? The data suggest yes

    PubMed Central

    Villaruz, Liza C.; Socinski, Mark A.

    2016-01-01

    Nab-paclitaxel is a novel therapeutic agent, which was approved in combination with carboplatin in the first-line treatment of advanced non-small cell lung cancer (NSCLC) regardless of histologic subtype in the United States of America by the Food and Drug Administration in 2012 and by the European Commission in 2015. This approval was based on the results of a phase III clinical trial showing superior response rates compared with solvent-based paclitaxel in combination with carboplatin. This review will focus on the early development and clinical data to date supporting the use of nab-paclitaxel in advanced NSCLC. The clinical question central to this review is whether nab-paclitaxel has a place in the current therapeutic landscape of advanced NSCLC. PMID:26875112

  6. An antimitotic and antivascular agent BPR0L075 overcomes multidrug resistance and induces mitotic catastrophe in paclitaxel-resistant ovarian cancer cells.

    PubMed

    Wang, Xiaolei; Wu, Erxi; Wu, Jun; Wang, Tian-Li; Hsieh, Hsing-Pang; Liu, Xinli

    2013-01-01

    Paclitaxel plays a major role in the treatment of ovarian cancer; however, resistance to paclitaxel is frequently observed. Thus, new therapy that can overcome paclitaxel resistance will be of significant clinical importance. We evaluated antiproliferative effects of an antimitotic and antivascular agent BPR0L075 in paclitaxel-resistant ovarian cancer cells. BPR0L075 displays potent and broad-spectrum cytotoxicity at low nanomolar concentrations (IC50 = 2-7 nM) against both parental ovarian cancer cells (OVCAR-3, SKOV-3, and A2780-1A9) and paclitaxel-resistant sublines (OVCAR-3-TR, SKOV-3-TR, 1A9-PTX10), regardless of the expression levels of the multidrug resistance transporter P-gp and class III β-tubulin or mutation of β-tubulin. BPR0L075 blocks cell cycle at the G2/M phase in paclitaxel-resistant cells while equal concentration of paclitaxel treatment was ineffective. BPR0L075 induces cell death by a dual mechanism in parental and paclitaxel-resistant ovarian cancer cells. In the parental cells (OVCAR-3 and SKOV-3), BPR0L075 induced apoptosis, evidenced by poly(ADP-ribose) polymerase (PARP) cleavage and DNA ladder formation. BPR0L075 induced cell death in paclitaxel-resistant ovarian cancer cells (OVCAR-3-TR and SKOV-3-TR) is primarily due to mitotic catastrophe, evidenced by formation of giant, multinucleated cells and absence of PARP cleavage. Immunoblotting analysis shows that BPR0L075 treatment induced up-regulation of cyclin B1, BubR1, MPM-2, and survivin protein levels and Bcl-XL phosphorylation in parental cells; however, in resistant cells, the endogenous expressions of BubR1 and survivin were depleted, BPR0L075 treatment failed to induce MPM-2 expression and phosphorylation of Bcl-XL. BPR0L075 induced cell death in both parental and paclitaxel-resistant ovarian cancer cells proceed through caspase-3 independent mechanisms. In conclusion, BPR0L075 displays potent cytotoxic effects in ovarian cancer cells with a potential to overcome paclitaxel

  7. Enhanced Excitability of Primary Sensory Neurons and Altered Gene Expression of Neuronal Ion Channels in Dorsal Root Ganglion in Paclitaxel-Induced Peripheral Neuropathy

    PubMed Central

    Zhang, Haijun; Dougherty, Patrick M.

    2014-01-01

    Background The mechanism of chemotherapy-induced peripheral neuropathy after paclitaxel treatment is not well understood. Given the poor penetration of paclitaxel into central nervous system, peripheral nervous system is most at risk. Methods Intrinsic membrane properties of dorsal root ganglion (DRG) neurons were studied by intracellular recordings. Multiple-gene real-time Polymerase Chain Reaction array was used to investigate gene expression of DRG neuronal ion channels. Results Paclitaxel increased the incidence of spontaneous activity from 4.8% to 27.1% in large and from 0% to 33.3% in medium-sized neurons. Paclitaxel decreased the rheobase (nA) from 1.6 ± 0.1 to 0.8 ± 0.1 in large, from 1.5 ± 0.2 to 0.6 ± 0.1 in medium-sized, and from 1.6 ± 0.2 to 1.0 ± 0.1 in small neurons. After paclitaxel, other characteristics of membrane properties in each group remained the same except that Aδ neurons showed shorter action potential fall time (ms) (1.0 ± 0.2, n = 10 vs. 1.8 ± 0.3, n = 9, paclitaxel vs. vehicle). Meanwhile, real-time polymerase chain reaction array revealed an alteration in expression of some neuronal ion channel genes including upregulation of HCN1 (fold change 1.76 ± 0.06) and Nav1.7 (1.26 ± 0.02) and downregulation of Kir channels (Kir1.1, 0.73 ± 0.05, Kir3.4, 0.66 ± 0.06) in paclitaxel-treated animals. Conclusions The increased neuronal excitability and the changes in gene expression of some neuronal ion channels in DRG may provide insight into the molecular and cellular basis of paclitaxel neuropathy, which may lead to novel therapeutic strategies. PMID:24534904

  8. Bulleyaconitine A depresses neuropathic pain and potentiation at C-fiber synapses in spinal dorsal horn induced by paclitaxel in rats.

    PubMed

    Zhu, He-Quan; Xu, Jing; Shen, Kai-Feng; Pang, Rui-Ping; Wei, Xu-Hong; Liu, Xian-Guo

    2015-11-01

    Paclitaxel, a widely used chemotherapeutic agent, often induces painful peripheral neuropathy and at present no effective drug is available for treatment of the serious side effect. Here, we tested if intragastrical application of bulleyaconitine A (BLA), which has been approved for clinical treatment of chronic pain in China since 1985, could relieve the paclitaxel-induced neuropathic pain. A single dose of BLA attenuated the mechanical allodynia, thermal hyperalgesia induced by paclitaxel dose-dependently. Repetitive administration of the drug (0.4 and 0.8 mg/kg, t.i.d. for 7 d) during or after paclitaxel treatment produced a long-lasting inhibitory effect on thermal hyperalgesia, but not on mechanical allodynia. In consistency with the behavioral results, in vivo electrophysiological experiments revealed that spinal synaptic transmission mediated by C-fiber but not A fiber was potentiated, and the magnitude of long-term potentiation (LTP) at C-fiber synapses induced by the same high frequency stimulation was ~50% higher in paclitaxel-treated rats, compared to the naïve rats. Spinal or intravenous application of BLA depressed the spinal LTP, dose-dependently. Furthermore, patch clamp recordings in spinal cord slices revealed that the frequency but not amplitude of both spontaneous excitatory postsynaptic current (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs) in lamina II neurons was increased in paclitaxel-treated rats, and the superfusion of BLA reduced the frequency of sEPSCs and mEPSCs in paclitaxel-treated rats but not in naïve ones. Taken together, we provide novel evidence that BLA attenuates paclitaxel-induced neuropathic pain and that depression of spinal LTP at C-fiber synapses via inhibiting presynaptic transmitter release may contribute to the effect. PMID:26376216

  9. Liquid-Liquid Extraction for Recovery of Paclitaxel from Plant Cell Culture: Solvent Evaluation and Use of Extractants for Partitioning and Selectivity

    PubMed Central

    McPartland, Timothy J.; Patil, Rohan A.; Malone, Michael F.; Roberts, Susan C.

    2012-01-01

    A major challenge in the production of metabolites by plant cells is the separation and purification of a desired product from a number of impurities. An important application of plant cell culture is the biosynthesis of the anti-cancer agent paclitaxel. Liquid-liquid extraction plays a critical role in the recovery of paclitaxel and other valuable plant-derived products from culture broth. In this study, the extraction of paclitaxel and a major unwanted by-product, cephalomannine, from plant cell culture broth into organic solvents is quantified. Potential solvent mixtures show varying affinity and selectivity for paclitaxel over cephalomannine. The partition coefficient of paclitaxel is highest in ethyl acetate and dichloromethane, with measured values of 28 and 25, respectively; however selectivity coefficients are less than 1 for paclitaxel over cephalomannine for both solvents. Selectivity coefficient increases to 1.7 with extraction in n-hexane but the partition coefficient decreases to 1.9. Altering the pH of the aqueous phase results in an increase in both recovery and selectivity using n-hexane, but does not change the results for other solvents significantly. The addition of extractants trioctyl amine (TOA) or tributyl phosphate (TBP) to n-hexane gives significantly higher partition coefficients for paclitaxel (8.6 and 23.7, respectively), but no selectivity. Interestingly, when 20% hexafluorobenzene (HFB) is added to n-hexane, the partition coefficient remains approximately constant but the selectivity coefficient for paclitaxel over cephalomannine improves to 4.5. This significant increase in selectivity early in the purification process has the potential to simplify downstream processing steps and significantly reduce overall purification costs. PMID:22581674

  10. Nonvascular drug-eluting stent coated with sodium caprate-incorporated polyurethane for the efficient penetration of paclitaxel into tumor tissue.

    PubMed

    Jeong, Dooyong; Lee, Don Haeng; Lee, Dong Ki; Na, Kun

    2015-03-01

    To increase the therapeutic potency of nonvascular drug-eluting stents, sodium caprate was employed as a drug-penetration enhancer. A polytetrafluoroethylene-covered drug-eluting stent was coated with a mixture containing sodium caprate, paclitaxel, and polyurethane via the rolling coating technique. The coated stent has a smooth membrane surface with a 40-µm membrane thickness. Paclitaxel was released from the coated stent for two months. In the multilayered cell sheet model, sodium caprate in the polyurethane membrane (PUSC10) showed the possibility of enhancing the paclitaxel tissue penetration. The amount of penetrated paclitaxel for the sodium caprate-containing polyurethane membrane (PUSC10) was two times higher than that of sodium caprate-free polyurethane membrane. Additionally, the potential of sodium caprate was confirmed by a tumor-bearing small animal model. PUSC10 incorporated with Nile red (as a model fluorescence dye for visualization of drug penetration; PUSC10-Nile red) or PUSC10 incorporated with paclitaxel (PUSC10-paclitaxel) membrane was implanted at tumor sites in Balb/c mice. In the case of PUSC10-Nile red, the tissue penetration depth of Nile red was significantly increased from 30 µm (without sodium caprate) to 1060 µm (with sodium caprate). After seven days, an almost four times higher therapeutic area of PUSC10-paclitaxel was observed compared to that of polyurethane-paclitaxel (without sodium caprate) by a terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The results indicate that sodium caprate improves the penetration and therapeutic efficiencies of drugs in drug-eluting stents, and thus, it has potential for local stent therapy. PMID:25252589

  11. Far-Red Light-Activatable Prodrug of Paclitaxel for the Combined Effects of Photodynamic Therapy and Site-Specific Paclitaxel Chemotherapy.

    PubMed

    Thapa, Pritam; Li, Mengjie; Bio, Moses; Rajaputra, Pallavi; Nkepang, Gregory; Sun, Yajing; Woo, Sukyung; You, Youngjae

    2016-04-14

    Paclitaxel (PTX) is one of the most useful chemotherapeutic agents approved for several cancers, including ovarian, breast, pancreatic, and nonsmall cell lung cancer. However, it causes systemic side effects when administered parenterally. Photodynamic therapy (PDT) is a new strategy for treating local cancers using light and photosensitizer. Unfortunately, PDT is often followed by recurrence due to incomplete ablation of tumors. To overcome these problems, we prepared the far-red light-activatable prodrug of PTX by conjugating photosensitizer via singlet oxygen-cleavable aminoacrylate linker. Tubulin polymerization enhancement and cytotoxicity of prodrugs were dramatically reduced. However, once illuminated with far-red light, the prodrug effectively killed SKOV-3 ovarian cancer cells through the combined effects of PDT and locally released PTX. Ours is the first PTX prodrug that can be activated by singlet oxygen using tissue penetrable and clinically useful far-red light, which kills the cancer cells through the combined effects of PDT and site-specific PTX chemotherapy. PMID:26974508

  12. Salvianolic acid A reverses the paclitaxel resistance and inhibits the migration and invasion abilities of human breast cancer cells by inactivating transgelin 2

    PubMed Central

    Zheng, Xiaowei; Chen, Siying; Yang, Qianting; Cai, Jiangxia; Zhang, Weipeng; You, Haisheng; Xing, Jianfeng; Dong, Yalin

    2015-01-01

    Multidrug resistance and tumor migration and invasion are the major obstacles to effective breast cancer chemotherapy, but the underlying molecular mechanisms remain unclear. This study investigated the potential of transgelin 2 and salvianolic acid A to modulate the resistance and the migration and invasion abilities of paclitaxel-resistant human breast cancer cells (MCF-7/PTX). MCF-7/PTX cells were found to exhibit not only a high degree of resistance to paclitaxel, but also strong migration and invasion abilities. Small interfering RNA-mediated knockdown of TAGLN2 sensitized the MCF-7/PTX cells to paclitaxel, and inhibited their migration and invasion abilities. In addition, we also observed that combined salvianolic acid A and paclitaxel treatment could reverse paclitaxel resistance, markedly inhibit tumor migration and invasion, and suppress the expression of transgelin 2 in MCF-7/PTX cells. These findings indicate that salvianolic acid A can reverse the paclitaxel resistance and inhibit the migration and invasion abilities of human breast cancer cells by down-regulating the expression of transgelin 2, and hence could be useful in breast cancer treatments PMID:26176734

  13. Clinical experience with nanoparticle albumin-bound paclitaxel, a novel taxane anticancer agent, and management of adverse events in females with breast cancer

    PubMed Central

    TAKASHIMA, SEIKI; KIYOTO, SACHIKO; TAKAHASHI, MINA; HARA, FUMIKATA; AOGI, KENJIRO; OHSUMI, SHOZO; MUKAI, RYOKO; FUJITA, YORIKO

    2015-01-01

    Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) is currently approved in Japan for treatment of breast cancer. However, apart from phase I clinical trials, data regarding Japanese patients are scant. In the present study, the efficacy and safety of nab-paclitaxel therapy were retrospectively analyzed in 22 patients with advanced or metastatic breast cancer who were treated at the National Hospital Organization Shikoku Cancer Center between November 2010 and June 2012. The nab-paclitaxel was administered once every three weeks. The median age of the patients was 59 years. The tumors were estrogen-receptor positive and/or progesterone-receptor positive in 63.6% patients. None of the patients had HER2-positive breast cancer. The median number of treatment cycles was six (range, two to 12). Six patients exhibited a partial response; the response rate was 27.3% and the clinical benefit rate was 31.8%. The response rate and clinical benefit rate were higher in patients who received nab-paclitaxel as first- or second-line treatment. The median time to treatment failure was 127 days (range, 27–257). Major adverse events were peripheral neuropathy (59%; Grade 3, 9%), myalgia (59%), rash (45%), and nausea and vomiting (50%). The results suggest that nab-paclitaxel is a well-tolerated and clinically useful anticancer preparation. PMID:25789050

  14. The development of a quantitative and qualitative method based on UHPLC-QTOF MS/MS for evaluation paclitaxel-tetrandrine interaction and its application to a pharmacokinetic study.

    PubMed

    Li, Dan; Cao, Zhonglian; Liao, Xueling; Yang, Ping; Liu, Li

    2016-11-01

    Paclitaxel is a broad-spectrum anti-cancer drug by targeting microtubulin. However, multidrug resistant (MDR) makes its clinical application more difficult and results in failure of chemotherapy. Tetrandrine as a potential multidrug resistant modulator could be combined with other anti-cancer drugs. In this study, ultra-performance liquid chromatography (UHPLC) combined with quadrupole time-of-flight mass spectrometry (QTOF) was applied to simultaneously qualitative and quantitative analysis of paclitaxel for the pharmacokinetic studies while combined with tetrandrine. This method was developed based on non-target screening mode IDA (Information Dependent Acquisition). As a result, the validated range was 0.25-64ng/ml (30µl plasma) for paclitaxel. Totally 33 metabolites of paclitaxel and tetrandine were identified in vivo and in vitro. The main metabolites of PTX were dose-dependent decreased with different amounts of tetrandine co-administration no matter in vivo and in vitro, the exposure of PTX increased in pharmacokinetic study. The verified method is sensitive accurate and effective for the simultaneous determination of paclitaxel and its metabolites in blood, urine and live microsome incubation samples and it was successfully applied to evaluate the pharmacokinetics and drug-drug interaction between paclitaxel and tetrandine. Furthermore, a biosensor technology, surface plasmon resonance (SPR) analysis was applied to preliminary evaluate the competitive protein binding of multiple components. The SPR analysis indicated that the affinity between 6-hydroxy-paclitaxel and micotubulin is similar to that between paclitaxel and micotubulin, and tetrandrine also does not form a competitive combination with paclitaxel. For human, 6-hydroxy-paclitaxel is the one of main metabolites of paclitaxel, so the results suggested that tetrandine has an influence on the metabolite of paclitaxel, but tetrandine and the main metabolites of PTX probably do not affect PTX

  15. Repetitive responses to nanoparticle albumin-bound paclitaxel and carboplatin in malignant pleural mesothelioma.

    PubMed

    Kanai, Osamu; Fujita, Kohei; Nakatani, Koichi; Mio, Tadashi

    2016-03-01

    Malignant pleural mesothelioma (MPM) is a rare tumor with a poor prognosis. Although cisplatin plus pemetrexed is the standard chemotherapy for patients with unresectable MPM, few agents are available for MPM patients who do not tolerate pemetrexed. Here, we report the first case of an MPM patient for whom the combination of nanoparticle albumin-bound paclitaxel and carboplatin (nabPC) repetitively achieved tumor regression. A 76-year-old man was diagnosed with epithelioid MPM. One cycle of carboplatin plus pemetrexed and two cycles of gemcitabine were administered but failed to inhibit tumor progression. By contrast, four cycles of nabPC resulted in a good response. Upon disease progression, four cycles of nabPC were performed again and resulted in a modest response. In conclusion, based on the present case, nabPC is a potential alternative chemotherapeutic agent for MPM, especially for MPM patients who do not tolerate pemetrexed. PMID:26839699

  16. Paclitaxel and cisplatin with concurrent radiotherapy followed by surgery in locally advanced thymic carcinoma.

    PubMed

    Fukuda, Minoru; Obase, Yasushi; Miyashita, Naoyuki; Kobashi, Yoshihiro; Mohri, Keiji; Ueno, Shiro; Hayama, Makio; Shimizu, Katsuhiko; Nishimura, Hironori; Nakata, Masao; Oka, Mikio

    2007-01-01

    Thymic carcinoma is a rare neoplasm with a poor prognosis. We report the clinical course of a patient who received complete surgical resection after effective induction treatment. A 72-year-old woman with advanced thymic carcinoma (squamous cell carcinoma, stage IVb) was considered as nonresectable due to invasion of neighboring organs and mediastinal lymph node metastasis. Two cycles of chemotherapy, consisting of paclitaxel (180 mg/m2) plus cisplatin (80 mg/m2), combined with thoracic radiotherapy (total 54 Gy) were performed concurrently and complete radical resection could then be performed. She is currently alive and ambulatory and has remained disease-free for two years. This multimodal treatment may be a good treatment option for locally advanced thymic carcinoma. PMID:17595782

  17. Tumor lysis syndrome in metastatic breast cancer after a single dose of paclitaxel.

    PubMed

    Vaidya, Gaurang Nandkishor; Acevedo, Russell

    2015-02-01

    Tumor lysis syndrome (TLS) is an oncologic emergency characterized by spillage of intracellular material into the blood caused by disruption of massive load of tumor cells. It is more commonly reported in hematological cancers and can have fatal consequences due to renal and multi-organ failure and arrhythmias due to electrolyte imbalance. We describe a case with metastatic breast cancer who presented with TLS after a single dose of paclitaxel, second such case in literature. The development of a risk stratification score to assess the need for hospitalization or close observation of these patients and the documentation of appropriate preventive strategies could help prevent such fatal occurrences. TLS should be included in the differential when cancer patients on treatment present with acute decompensation. PMID:25178848

  18. Piperlongumine induces apoptosis and synergizes with cisplatin or paclitaxel in human ovarian cancer cells.

    PubMed

    Gong, Li-Hua; Chen, Xiu-Xiu; Wang, Huan; Jiang, Qi-Wei; Pan, Shi-Shi; Qiu, Jian-Ge; Mei, Xiao-Long; Xue, You-Qiu; Qin, Wu-Ming; Zheng, Fei-Yun; Shi, Zhi; Yan, Xiao-Jian

    2014-01-01

    Piperlongumine (PL), a natural alkaloid from Piper longum L., possesses the highly selective and effective anticancer property. However, the effect of PL on ovarian cancer cells is still unknown. In this study, we firstly demonstrate that PL selectively inhibited cell growth of human ovarian cancer cells. Furthermore, PL notably induced cell apoptosis, G2/M phase arrest, and accumulation of the intracellular reactive oxidative species (ROS) in a dose- and time-dependent manner. Pretreatment with antioxidant N-acety-L-cysteine could totally reverse the PL-induced ROS accumulation and cell apoptosis. In addition, low dose of PL/cisplatin or paclitaxel combination therapies had a synergistic antigrowth effect on human ovarian cancer cells. Collectively, our study provides new therapeutic potential of PL on human ovarian cancer. PMID:24895529

  19. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    PubMed Central

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  20. Piperlongumine Induces Apoptosis and Synergizes with Cisplatin or Paclitaxel in Human Ovarian Cancer Cells

    PubMed Central

    Chen, Xiu-Xiu; Wang, Huan; Jiang, Qi-Wei; Pan, Shi-Shi; Qiu, Jian-Ge; Mei, Xiao-Long; Xue, You-Qiu; Qin, Wu-Ming; Zheng, Fei-Yun; Yan, Xiao-Jian

    2014-01-01

    Piperlongumine (PL), a natural alkaloid from Piper longum L., possesses the highly selective and effective anticancer property. However, the effect of PL on ovarian cancer cells is still unknown. In this study, we firstly demonstrate that PL selectively inhibited cell growth of human ovarian cancer cells. Furthermore, PL notably induced cell apoptosis, G2/M phase arrest, and accumulation of the intracellular reactive oxidative species (ROS) in a dose- and time-dependent manner. Pretreatment with antioxidant N-acety-L-cysteine could totally reverse the PL-induced ROS accumulation and cell apoptosis. In addition, low dose of PL/cisplatin or paclitaxel combination therapies had a synergistic antigrowth effect on human ovarian cancer cells. Collectively, our study provides new therapeutic potential of PL on human ovarian cancer. PMID:24895529

  1. Silicate Esters of Paclitaxel and Docetaxel: Synthesis, Hydrophobicity, Hydrolytic Stability, Cytotoxicity, and Prodrug Potential

    PubMed Central

    2015-01-01

    We report here the synthesis and selected properties of various silicate ester derivatives (tetraalkoxysilanes) of the taxanes paclitaxel (PTX) and docetaxel (DTX) [i.e., PTX-OSi(OR)3 and DTX-OSi(OR)3]. Both the hydrophobicity and hydrolytic lability of these silicates can be (independently) controlled by choice of the alkyl group (R). The synthesis, structural characterization, hydrolytic reactivity, and in vitro cytotoxicity against the MDA-MB-231 breast cancer cell line of most of these derivatives are described. We envision that the greater hydrophobicity of these silicates (vis-à-vis PTX or DTX itself) should be advantageous from the perspective of preparation of stable aqueous dispersions of amphiphilic block-copolymer-based nanoparticle formulations. PMID:24564494

  2. [A Case of Drug-Induced Lung Injury Associated with Paclitaxel plus Bevacizumab Therapy].

    PubMed

    Yamaguchi, Yumi; Tada, Yoichiro; Takaya, Seigo; Iwamoto, Akemi; Yamashiro, Yutaka; Shibata, Shunsuke; Ishiguro, Minoru; Nishidoi, Hideaki

    2016-06-01

    A 61-year old woman with recurrent breast cancer received combined treatment with paclitaxel (PTX) and bevacizumab (BV) as the third-line chemotherapy. During the administration of PTX in the 3 courses of chemotherapy, she suddenly developed respiratory failure, and both chest X-ray and CT revealed bilateral pulmonary infiltrates. Symptoms and radiographic findings responded dramatically to steroid pulse therapy. The history of onset and laboratory data showed no evidence of infection; therefore, we made a diagnosis of acute lung injury induced by the chemotherapy. It should be noted that lung injury may be induced by both PTX and BV, and is one of the important adverse events despite the low frequency of occurrence. PMID:27306821

  3. Paclitaxel-loaded phosphonated calixarene nanovesicles as a modular drug delivery platform

    PubMed Central

    Mo, Jingxin; Eggers, Paul K.; Yuan, Zhi-xiang; Raston, Colin L.; Lim, Lee Yong

    2016-01-01

    A modular p-phosphonated calix[4]arene vesicle (PCV) loaded with paclitaxel (PTX) and conjugated with folic acid as a cancer targeting ligand has been prepared using a thin film-sonication method. It has a pH-responsive capacity to trigger the release of the encapsulated PTX payload under mildly acidic conditions. PTX-loaded PCV conjugated with alkyne-modified PEG-folic acid ligands prepared via click ligation (fP-PCVPTX) has enhanced potency against folate receptor (FR)-positive SKOV-3 ovarian tumour cells over FR-negative A549 lung tumour cells. Moreover, fP-PCVPTX is also four times more potent than the non-targeting PCVPTX platform towards SKOV-3 cells. Overall, as a delivery platform the PCVs have the potential to enhance efficacy of anticancer drugs by targeting a chemotherapeutic payload specifically to tumours and triggering the release of the encapsulated drug in the vicinity of cancer cells. PMID:27009430

  4. Conjugation of paclitaxel to iron oxide nanoparticles for tumor imaging and therapy

    NASA Astrophysics Data System (ADS)

    Liu, Dongfang; Wu, Wei; Chen, Xi; Wen, Song; Zhang, Xizhi; Ding, Qi; Teng, Gaojun; Gu, Ning

    2012-03-01

    A strategy for conjugating an antitumor agent to superparamagnetic iron oxide nanoparticles (SPIONs) via a biocleavable ester binding is reported. Paclitaxel (PTX) was selected as a model drug. Both the in vitro and in vivo performance of the conjugates of SPION-PTX was investigated respectively. PTX can be released slowly through the hydrolysis of the ester bond in a pH-dependent manner and the SPION-PTX has near equal cytotoxity to the clinical PTX injection (Taxol) at the equivalent dose of PTX. Furthermore, the SPION-PTX can accumulate in tumor tissues as demonstrated by MRI and exhibit better tumor suppression effect than Taxol in vivo. The above good performance of the SPION-PTX together with the good biocompatibility of the SPIONs would promote greatly the application of the SPIONs in the biomedicine field.

  5. Fabrication of poly hydroxybutyrate-polyethylene glycol-folic acid nanoparticles loaded by paclitaxel.

    PubMed

    Rezaei, Fatemeh; Rafienia, Mohammad; Keshvari, Hamid; Sattary, Mansooreh; Naeimi, Mitra; Keyvani, Hossein

    2016-01-01

    In this study drug (paclitaxel)-loaded nanoparticles of poly hydroxybutyrate-polyethylene glycol-folic acid (PHB-PEG-FOL) were prepared by using an oil-in-water (O/W) emulsion-solvent evaporation method. The functionalization and conjugation steps in the chemical synthesis were confirmed using Fourier transform infrared (FTIR) and nuclear magnetic resonance tests ((1)H NMR). Morphology of nanoparticles was evaluated by scanning electron microscopy (SEM). Nanoparticles were characterized by particle size analyzer. Between two samples containing drug, the lower doses showed more homogeneous distribution, and the lowest aggregation. The drug release profiles showed a two-phase release including initial rapid release and a continuous release. MG63 cells were used to evaluate cytotoxicity. The cytotoxicity of PHB-PEG-FOL nanoparticles with drug against cancer cells was much higher and longer than free drug sample. These nanoparticles were successfully synthesized as a novel system for targeted drug delivery against cancer cells. PMID:26234551

  6. Intraperitoneal chemotherapy of ovarian cancer by hydrogel depot of paclitaxel nanocrystals.

    PubMed

    Sun, Bo; Taha, Maie S; Ramsey, Benjamin; Torregrosa-Allen, Sandra; Elzey, Bennett D; Yeo, Yoon

    2016-08-10

    Intraperitoneal (IP) chemotherapy is a promising post-surgical therapy of ovarian cancer, but the full potential is yet to be realized. To facilitate IP chemotherapy of ovarian cancer, we developed an in-situ crosslinkable hydrogel depot containing paclitaxel (PTX) nanocrystals (PNC). PNC suppressed SKOV3 cell proliferation more efficiently than microparticulate PTX precipitates (PPT), and the gel containing PNC (PNC-gel) showed a lower maximum tolerated dose than PPT-containing gel (PPT-gel) in mice, indicating greater dissolution and cellular uptake of PNC than PPT. A single IP administration of PNC-gel extended the survival of tumor-bearing mice significantly better than Taxol, but PPT-gel did not. These results support the advantage of PNC over PPT and demonstrate the promise of a gel depot as an IP drug delivery system. PMID:27238443

  7. Use of paclitaxel-eluting balloons for endotherapy of anastomotic strictures following liver transplantation.

    PubMed

    Kabar, I; Cicinnati, V R; Beckebaum, S; Cordesmeyer, S; Avsar, Y; Reinecke, H; Schmidt, H H

    2012-12-01

    Biliary anastomotic strictures after liver transplantation are a major source of morbidity and graft failure; however, repeated endoscopic therapy has shown variable long-term success rates. Thus the aim of this prospective case series was to evaluate the safety and efficacy of using paclitaxel-eluting balloons in 13 patients requiring treatment for symptomatic anastomotic strictures following liver transplantation. Sustained clinical success-defined as no need for further endoscopic intervention for at least 6 months - was achieved in 12 /13 patients (92 %). One, two, and three interventions were required in 9 (69 %), 1, and 2 patients, respectively (mean number of sessions was 1.46). Mean (± SD) bilirubin level dropped from 6.8 (± 4.1) mg/dL to 1.4 (± 0.9) mg/dL. These promising results justify carrying out a randomized comparative trial to confirm this innovative approach. PMID:23188664

  8. Therapeutic targeting of erbB3 with MM-121/SAR256212 enhances antitumor activity of paclitaxel against erbB2-overexpressing breast cancer

    PubMed Central

    2013-01-01

    Introduction Elevated expression of erbB3 rendered erbB2-overexpressing breast cancer cells resistant to paclitaxel via PI-3 K/Akt-dependent upregulation of Survivin. It is unclear whether an erbB3-targeted therapy may abrogate erbB2-mediated paclitaxel resistance in breast cancer. Here, we study the antitumor activity of an anti-erbB3 antibody MM-121/SAR256212 in combination with paclitaxel against erbB2-overexpressing breast cancer. Methods Cell growth assays were used to determine cell viability. Cells undergoing apoptosis were quantified by a specific apoptotic ELISA. Western blot analyses were performed to assess the protein expression and activation. Lentiviral vector containing shRNA was used to specifically knockdown Survivin. Tumor xenografts were established by inoculation of BT474-HR20 cells into nude mice. The tumor-bearing mice were treated with paclitaxel and/or MM-121/SAR256212 to determine whether the antibody (Ab) enhances paclitaxel’s antitumor activity. Immunohistochemistry was carried out to study the combinatorial effects on tumor cell proliferation and induction of apoptosis in vivo. Results MM-121 significantly facilitated paclitaxel-mediated anti-proliferative/anti-survival effects on SKBR3 cells transfected with a control vector or erbB3 cDNA. It specifically downregulated Survivin associated with inactivation of erbB2, erbB3, and Akt. MM-121 enhances paclitaxel-induced poly(ADP-ribose) polymerase (PARP) cleavage, activation of caspase-8 and -3, and apoptosis in both paclitaxel-sensitive and -resistant cells. Specific knockdown of Survivin in the trastuzumab-resistant BT474-HR20 cells dramatically enhanced paclitaxel-induced apoptosis, suggesting that increased Survivin caused a cross-resistance to paclitaxel. Furthermore, the studies using a tumor xenograft model-established from BT474-HR20 cells revealed that either MM-121 (10 mg/kg) or low-dose (7.5 mg/kg) paclitaxel had no effect on tumor growth, their combinations significantly

  9. Adjuvant paclitaxel and carboplatin chemotherapy with involved field radiation in advanced endometrial cancer: A sequential approach

    SciTech Connect

    Lupe, Krystine; Kwon, Janice . E-mail: Janice.kwon@lhsc.on.ca; D'Souza, David; Gawlik, Christine; Stitt, Larry; Whiston, Frances; Nascu, Patricia; Wong, Eugene; Carey, Mark S.

    2007-01-01

    Purpose: To determine the feasibility of adjuvant paclitaxel and carboplatin chemotherapy interposed with involved field radiotherapy for women with advanced endometrial cancer. Methods and Materials: This was a prospective cohort study of women with Stage III and IV endometrial cancer. Adjuvant therapy consisted of 4 cycles of paclitaxel (175 mg/m{sup 2}) and carboplatin (350 mg/m{sup 2}) every 3 weeks, followed sequentially by external beam radiotherapy (RT) to the pelvis (45 Gy), followed by an additional two cycles of chemotherapy. Para-aortic RT and/or HDR vault brachytherapy (BT) were added at the discretion of the treating physician. Results: Thirty-three patients (median age, 63 years) received treatment between April 2002 and June 2005. Median follow-up was 21 months. Stage distribution was as follows: IIIA (21%), IIIC (70%), IVB (9%). Combination chemotherapy was successfully administered to 30 patients (91%) and 25 patients (76%), before and after RT respectively. Nine patients (27%) experienced acute Grade 3 or 4 chemotherapy toxicities. All patients completed pelvic RT; 19 (58%) received standard 4-field RT and 14 (42%) received intensity-modulated radiotherapy. Ten (30%) received extended field radiation. Four patients (12%) experienced acute Grade 3 or 4 RT toxicities. Six (18%) patients developed chronic RT toxicity. There were no treatment-related deaths. Two-year disease-free and overall survival rates were both 55%. There was only one pelvic relapse (3%). Conclusions: Adjuvant treatment with combination chemotherapy interposed with involved field radiation in advanced endometrial cancer was well tolerated. This protocol may be suitable for further evaluation in a clinical trial.

  10. Role of microRNAs in the resistance of prostate cancer to docetaxel and paclitaxel

    PubMed Central

    2016-01-01

    Taxanes, a group of cancer drugs that includes docetaxel and paclitaxel, have become a front-line therapy for a variety of metastatic cancers, but resistance can develop. There are several docetaxel resistance mechanisms in prostate cancer: unfavorable tumor microenvironment, drug efflux pump, alterations in microtubule structure and/or function, and apoptotic defects (e.g. up regulation of Bcl-2 and clusterin or activation of the PTEN/PI3K/mTOR pathway or activation of the MAPK/ERK pathway). MicroRNAs (miRNAs), small regulatory molecules, could also function as a contributor to the resistance of cancer cells to commonly used anti-cancer drugs. Aberrant expressions of miRNAs that can act as tumor suppressors or oncogenes are closely associated with the development, invasion and metastasis of various cancers including prostate cancer. Nearly 50 miRNAs have been reported to be differentially expressed in human prostate cancer so far, but knowledge concerning the effects of miRNAs on the sensitivity to anti-cancer drugs is still limited. The author of the review focus on probable impact of miRNAs on the resistance to docetaxel and paclitaxel. Overexpression of miR-21 increased the resistance of prostate cancer cells to docetaxel by targeting PDCD4, PTEN, RECK, and BTG2. Nevertheless, decreased expressions of tumor suppressors: miR-34a, miR-143, miR-148a and miR-200 family are involved in resistance of anti-cancer drugs by inhibition of apoptosis and activation of signaling pathways. Conclude miRNAs become very attractive target for potential therapeutic interventions. PMID:26843836

  11. Maackia amurensis agglutinin enhances paclitaxel induced cytotoxicity in cultured non-small cell lung cancer cells.

    PubMed

    Chhetra Lalli, Rakhee; Kaur, Kiranjeet; Dadsena, Shashank; Chakraborti, Anuradha; Srinivasan, Radhika; Ghosh, Sujata

    2015-08-01

    Maackia amurensis agglutinin (MAA) is gaining recognition as the potential diagnostic agent for cancer. Previous studies from our laboratory have demonstrated that this lectin could interact specifically with the cells and biopsy samples of non-small cell lung cancer (NSCLC) origin but not with normal lung fibroblast cells. Moreover, this lectin was also found to induce apoptosis in NSCLC cells. Further, the biological activity of this lectin was shown to survive gastrointestinal proteolysis and inhibit malignant cell growth and tumorigenesis in mice model of melanoma thereby indicating the therapeutic potential of this lectin. Paclitaxel is one of the widely used traditional chemotherapeutic drugs for treatment of NSCLC but it exerts side-effects on normal healthy cells too. Studies have revealed that lectins have potential to act as an adjuvant chemotherapeutic agent in cancer of different origin. Thus, in the present study, an attempt was made to assess the chemo-adjuvant role of MAA in three types of NSCLC cell lines [adenocarcinoma cell line (A549), squamous cell carcinoma cell line (NCI-H520) and large cell carcinoma cell line (NCI-H460)]. We have observed that the non-cytotoxic concentration of this lectin was able to enhance the cytotoxic activity of Paclitaxel even at low dose by inducing apoptosis through intrinsic/mitochondrial pathway in all the three types of NSCLC cell lines, although the involvement of extrinsic pathway of apoptosis in case of NCI-H460 cell line could not be ruled out. Further, this lectin was also found to augment the chemo-preventive activity of this drug by arresting cells in G2-M phase of the cell cycle. Collectively, our results have suggested that Maackia amurensis agglutinin may have the potential to be used as adjuvant chemotherapeutic agent in case of NSCLC. PMID:25978938

  12. Systems Pharmacological Analysis of Paclitaxel-Mediated Tumor Priming That Enhances Nanocarrier Deposition and Efficacy

    PubMed Central

    Straubinger, Robert M.; Mager, Donald E.

    2013-01-01

    Paclitaxel (PAC)-mediated apoptosis decompresses and primes tumors for enhanced deposition of nanoparticulate agents such as pegylated liposomal doxorubicin (DXR). A quantitative pharmacokinetic/pharmacodynamic (PK/PD) approach was developed to analyze efficacy and identify optima for PAC combined with sterically stabilized liposome (SSL)-DXR. Using data extracted from diverse literature sources, Cremophor-paclitaxel (Taxol®) PK was described by a carrier-mediated dispositional model and SSL-DXR PK was described by a two-compartment model with first-order drug release. A hybrid-physiologic, well-stirred model with partition coefficients (Kp) captured intratumor concentrations. Apoptotic responses driving tumor priming were modeled using nonlinear, time-dependent transduction functions. The tumor growth model used net first-order growth and death rate constants, and two transit compartments that captured the temporal displacement of tumor exposure versus effect, and apoptotic signals from each agent were used to drive cytotoxic effects of the combination. The final model captured plasma and intratumor PK data, apoptosis induction profiles, and tumor growth for all treatments/sequences. A feedback loop representing PAC-induced apoptosis effects on Kp_DXR enabled the model to capture tumor-priming effects. Simulations to explore time- and sequence-dependent effects of priming indicated that PAC priming increased Kp_DXR 3-fold. The intratumor concentrations producing maximal and half-maximal effects were 18 and 7.2 μg/ml for PAC, and 17.6 and 14.3 μg/ml for SSL-DXR. The duration of drug-induced apoptosis was 27.4 h for PAC and 15.8 h for SSL-DXR. Simulations suggested that PAC administered 24 h before peak priming could increase efficacy 2.5-fold over experimentally reported results. The quantitative approach developed in this article is applicable for evaluating tumor-priming strategies using diverse agents. PMID:23115220

  13. Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Aravind, Athulya; Nair, Remya; Raveendran, Sreejith; Veeranarayanan, Srivani; Nagaoka, Yutaka; Fukuda, Takahiro; Hasumura, Takahashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.

    2013-10-01

    Controlled and targeted drug delivery is an essential criterion in cancer therapy to reduce the side effects caused by non-specific drug release and toxicity. Targeted chemotherapy, sustained drug release and optical imaging have been achieved using a multifunctional nanocarrier constructed from poly (D, L-lactide-co-glycolide) nanoparticles (PLGA NPs), an anticancer drug paclitaxel (PTX), a fluorescent dye Nile red (NR), magnetic fluid (MF) and aptamers (Apt, AS1411, anti-nucleolin aptamer). The magnetic fluid and paclitaxel loaded fluorescently labeled PLGA NPs (MF-PTX-NR-PLGA NPs) were synthesized by a single-emulsion technique/solvent evaporation method using a chemical cross linker bis (sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. Targeting aptamers were then introduced to the particles through the reaction with the cross linker to target the nucleolin receptors over expressed on the cancer cell surface. Specific binding and uptake of the aptamer conjugated magnetic fluid loaded fluorescently tagged PLGA NPs (Apt-MF-NR-PLGA NPs) to the target cancer cells induced by aptamers was observed using confocal microscopy. Cytotoxicity assay conducted in two cell lines (L929 and MCF-7) confirmed that targeted MCF-7 cancer cells were killed while control cells were unharmed. In addition, aptamer mediated delivery resulting in enhanced binding and uptake to the target cancer cells exhibited increased therapeutic effect of the drug. Moreover, these aptamer conjugated magnetic polymer vehicles apart from actively transporting drugs into specifically targeted tumor regions can also be used to induce hyperthermia or for facilitating magnetic guiding of particles to the tumor regions.

  14. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Lv, Piping; Chen, Zhongke; Ni, Dezhi; Zhang, Lijun; Yue, Hua; Yue, Zhanguo; Wei, Wei; Ma, Guanghui

    2015-02-01

    Combination chemotherapy has been proven promising for cancer treatment, but unsatisfactory therapeutic data and increased side effects slow down the development in the clinic. In this study, we develop an effective approach to co-encapsulate a hydrophilic-hydrophobic chemotherapeutic drug pair (paclitaxel and doxorubicin) into magnetic O-carboxymethyl-chitosan nanoparticles. To endow them with the ability of programmed delivery, these carriers are further camouflaged with an Arg-Gly-Asp anchored erythrocyte membrane. Compared with the traditional polyethylene glycol coating method, this biomimetic decoration strategy is demonstrated to be superior in prolonging circulation time, improving tumor accumulation, facilitating tumor uptake, and tuning intracellular fate. These outstanding properties enable the as-designed nanodevice to exhibit greater tumor growth inhibition ability and much lower side effects than the combined use of commercial formulations.Combination chemotherapy has been proven promising for cancer treatment, but unsatisfactory therapeutic data and increased side effects slow down the development in the clinic. In this study, we develop an effective approach to co-encapsulate a hydrophilic-hydrophobic chemotherapeutic drug pair (paclitaxel and doxorubicin) into magnetic O-carboxymethyl-chitosan nanoparticles. To endow them with the ability of programmed delivery, these carriers are further camouflaged with an Arg-Gly-Asp anchored erythrocyte membrane. Compared with the traditional polyethylene glycol coating method, this biomimetic decoration strategy is demonstrated to be superior in prolonging circulation time, improving tumor accumulation, facilitating tumor uptake, and tuning intracellular fate. These outstanding properties enable the as-designed nanodevice to exhibit greater tumor growth inhibition ability and much lower side effects than the combined use of commercial formulations. Electronic supplementary information (ESI) available. See DOI

  15. Delivery of paclitaxel from cobalt–chromium alloy surfaces without polymeric carriers

    PubMed Central

    Mani, Gopinath; Macias, Celia E.; Feldman, Marc D.; Marton, Denes; Oh, Sunho; Agrawal, C. Mauli

    2014-01-01

    Polymer-based carriers are commonly used to deliver drugs from stents. However, adverse responses to polymer coatings have raised serious concerns. This research is focused on delivering drugs from stents without using polymers or any carriers. Paclitaxel (PAT), an anti-restenotic drug, has strong adhesion towards a variety of material surfaces. In this study, we have utilized such natural adhesion property of PAT to attach these molecules directly to cobalt–chromium (Co–Cr) alloy, an ultra-thin stent strut material. Four different groups of drug coated specimens were prepared by directly adding PAT to Co–Cr alloy surfaces: Group-A (PAT coated, unheated, and ethanol cleaned); Group-B (PAT coated, heat treated, and ethanol cleaned); Group-C (PAT coated, unheated, and not ethanol cleaned); and Group-D (PAT coated, heat treated and not ethanol cleaned). In vitro drug release of these specimens was investigated using high performance liquid chromatography. Groups A and B showed sustained PAT release for up to 56 days. A simple ethanol cleaning procedure after PAT deposition can remove the loosely bound drug crystals from the alloy surfaces and thereby allowing the remaining strongly bound drug molecules to be released at a sustained rate. The heat treatment after PAT coating further improved the stability of PAT on Co–Cr alloy and allowed the drug to be delivered at a much slower rate, especially during the initial 7 days. The specimens which were not cleaned in ethanol, Groups C and D, showed burst release. PAT coated Co–Cr alloy specimens were thoroughly characterized using scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. These techniques were collectively useful in studying the morphology, distribution, and attachment of PAT molecules on Co–Cr alloy surfaces. Thus, this study suggests the potential for delivering paclitaxel from Co–Cr alloy surfaces without using any carriers. PMID:20398928

  16. Paclitaxel alters the expression and specific activity of deoxycytidine kinase and cytidine deaminase in non-small cell lung cancer cell lines

    PubMed Central

    Shord, Stacy S; Patel, Shitalben R

    2009-01-01

    Background We observed that paclitaxel altered the pharmacokinetic properties of gemcitabine in patients with non-small cell lung cancer (NSCLC) and limited the accumulation of gemcitabine and its metabolites in various primary and immortalized human cells. Therefore, we classified the drug-drug interaction and the effects of paclitaxel on deoxycytidine kinase (dCK) and cytidine deaminase (CDA) in three NSCLC cell lines. These enzymes are responsible for the metabolism of gemcitabine to its deaminated metabolite dFdU (80% of the parent drug) and the phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP. These metabolites appear to relate to sensitivity and tolerability of gemcitabine based on previous animal and laboratory studies. Methods Three immortalized human cells representative of the most common histological subtypes identified in patients with advanced NSCLC were exposed to the individual drugs or combinations to complete a multiple drug effect analysis. These same cell lines were exposed to vehicle-control or paclitaxel and the mRNA levels, protein expression and specific activity of dCK and CDA were compared. Comparisons were made using a two-tailed paired t-test or analysis of variance with a P value of < 0.05 considered significant. Results The multiple drug effect analysis indicated synergy for H460, H520 and H838 cells independent of sequence. As anticipated, paclitaxel-gemcitabine increased the number of G2/M cells, whereas gemcitabine-paclitaxel increased the number of G0/G1 or S cells. Paclitaxel significantly decreased dCK and CDA mRNA levels in H460 and H520 cells (40% to 60%, P < 0.05) and lowered dCK protein (24% to 56%, P < 0.05) without affecting CDA protein. However, paclitaxel increased both dCK (10% to 50%) and CDA (75% to 153%) activity (P < 0.05). Paclitaxel caused substantial declines in the accumulation of the deaminated and phosphorylated metabolites in H520 cells (P < 0.05); the metabolites were not measurable in the remaining two

  17. Preliminary results of a phase I/II trial of paclitaxel in patients with relapsed or cisplatin-refractory testicular cancer.

    PubMed

    Bokemeyer, C; Schmoll, H J; Natt, F; Knoche, M; Beyer, J; Souchon, R

    1994-01-01

    Paclitaxel represents a novel antitumour agent with demonstrated activity in cisplatin-sensitive tumours, particularly ovarian cancer. In addition, responses to paclitaxel have been observed in patients with cisplatin-refractory ovarian cancer. The role of paclitaxel in the treatment of testicular cancer has not been explored so far. Despite the generally high cure rates in patients with metastatic testicular cancer, patients with relapsed disease not responding to platin-based salvage chemotherapy have an extremely poor prognosis. In a phase I/II trial 10 patients with relapsed, cisplatin-refractory malignant germ-cell tumours were treated with paclitaxel as 6-h infusions (8 patients) or 3-h infusions (2 patients) at doses from 135 mg/m2 to 310 mg/m2 at 3-week intervals. Three patients achieved a response to paclitaxel, but disease recurred shortly in two patients after two and four cycles of therapy, respectively. One patient has remained in marker-negative partial response for more than 5 months. The toxicity of paclitaxel was tolerable for a dose range from 135 mg/m2 to 225 mg/m2. Granulocytopenia, WHO grades 3 and 4, occurred in all patients but was of short duration (median 3 days; range: 2-7 days). Other toxicities such as mucositis (5 patients grade 1), neurotoxicity (1 patient grade 1, 2 patients grade 2), infection (1 patient grade 3) and diarrhoea (1 patient grade 2) were not dose-limiting. There were no hypersensitivity reactions, but 1 patient developed severe myalgias during therapy with paclitaxel. Six patients with documented cisplatin-refractory disease were retreated with cisplatin-based chemotherapy after paclitaxel treatment and, in 4 of these, tumour responses of 3, 4, 5 and more than 5 months duration were achieved. In order to explore the role of paclitaxel in relapsed and/or cisplatin-refractory testicular cancer a phase II study using a 3-h infusion of 225 mg/m2 paclitaxel every 3 weeks, conducted by the German Testicular Cancer Study Group

  18. Evaluation of paclitaxel rearrangement involving opening of the oxetane ring and migration of acetyl and benzoyl groups.

    PubMed

    Pyo, Sang-Hyun; Cho, Jin-Suk; Choi, Ho-Joon; Han, Byung-Hee

    2007-02-19

    The stability of drug is a critical factor in quality control, drug efficacy, safety, storage, and production conditions. The rearrangement of paclitaxel, which involves opening of the oxetane ring and migration of acetyl group occurred on heating a powder of purified paclitaxel. Subsequently, the unusual migration of benzoyl groups progressed rapidly in organic solvents. These rearrangement derivatives were isolated carefully. The structures of the intermediate derivative A and the product derivative B were confirmed using (1)H NMR, high performance liquid chromatography (HPLC), and mass spectrometry. We proposed the rearrangement pathway here for the first time. Neither derivative exhibited bioactivity in SKOV3 (ovarian cancer) or MDA-MB-435 (breast cancer) cell culture assays. PMID:17029668

  19. Effective Drug Delivery, in vitro and in vivo, By Carbon-Based Nanovectors Non-Covalently Loaded With Unmodified Paclitaxel

    PubMed Central

    Berlin, Jacob M.; Leonard, Ashley D.; Pham, Tam T.; Sano, Daisuke; Marcano, Daniela C.; Yan, Shayou; Fiorentino, Stefania; Milas, Zvonimir L.; Kosynkin, Dmitry V.; Katherine Price, B.; Lucente-Schultz, Rebecca M.; Wen, XiaoXia; Gabriela Raso, M.; Craig, Suzanne L.; Tran, Hai T.; Myers, Jeffrey N.; Tour, James M.

    2010-01-01

    Many new drugs have low aqueous solubility and high therapeutic efficacy. Paclitaxel (PTX) is a classic example of this type of compound. Here we show that extremely small (<40 nm) hydrophilic carbon clusters (HCCs) that are PEGylated (PEG-HCCs) are effective drug delivery vehicles when simply mixed with paclitaxel. This formulation of PTX sequestered in PEG-HCCs (PTX/PEG-HCCs) is stable for at least twenty weeks. The PTX/PEG-HCCs formulation was as effective as PTX in a clinical formulation in reducing tumor volumes in an orthotopic murine model of oral squamous cell carcinoma. Preliminary toxicity and biodistribution studies suggest that the PEG-HCCs are not acutely toxic and, like many other nanomaterials, are primarily accumulated in the liver and spleen. This work demonstrates that carbon nanomaterials are effective drug delivery vehicles in vivo when non-covalently loaded with an unmodified drug. PMID:20681596

  20. [A Case of Disseminated Bone Marrow Carcinomatosis Arising from Breast Cancer for Which Paclitaxel and Bevacizumab Treatment Was Effective].

    PubMed

    Kamata, Arimichi; Hagiwara, Hideyuki; Koizumi, Masaki; Sarukawa, Hideki; Wada, Yudai; Miyamae, Taku; Abe, Yutaka; Takahashi, Kazuhiro; Kano, Tsunehisa; Natori, Joji; Uchiyama, Kiichiro

    2016-01-01

    A 42-year-old woman visited our hospital with high fever and general malaise. A CT examination revealed that she had carcinoma of the left breast with axillary lymph node metastases and multiple bone metastases. A blood test showed anemia, thrombopenia and the existence of blast-like cells. Adenocarcinoma cells were detected in a bone marrow aspiration specimen, and the patient was diagnosed with disseminated carcinomatosis of the bone marrow. Systemic chemotherapy with paclitaxel plus bevacizumab was initiated while a blood transfusion was performed. Her symptoms improved, and the blood test results normalized. Disseminated carcinomatosis of the bone marrow is reported to have a poor prognosis, but paclitaxel plus bevacizumab is a possible effective chemotherapy. PMID:26809535

  1. PEG-PE-based micelles co-loaded with paclitaxel and cyclosporine A or loaded with paclitaxel and targeted by anticancer antibody overcome drug resistance in cancer cells.

    PubMed

    Sarisozen, Can; Vural, Imran; Levchenko, Tatyana; Hincal, A Atilla; Torchilin, Vladimir P

    2012-05-01

    The over-expression of the P-glycoprotein (P-gp) in cancer cells is one of the main reasons of the acquired Multidrug Resistance (MDR). Combined treatment of MDR cancer cells with P-gp inhibitors and chemotherapeutic agents could result in reversal of resistance in P-gp-expressing cells. In this study, paclitaxel (PTX) was co-encapsulated in actively targeted (anticancer mAb 2C5-modified) polymeric lipid-core PEG-PE-based micelles with Cyclosporine A (CycA), which is one of the most effective first generation P-gp inhibitors. Cell culture studies performed using MDCKII (parental and MDR1) cell lines to investigate the potential MDR reversal effect of the formulations. The average size of both empty and loaded PEG₂₀₀₀-PE/Vitamin E mixed micelles was found between 10 and 25 nm. Zeta potentials of the formulations were found between -7 and -35 mV. The percentage of PTX in the micelles was found higher than 3% for both formulations and cumulative PTX release of about 70% was demonstrated. P-gp inhibition with CycA caused an increase in the cytotoxicity of PTX. Dual-loaded micelles demonstrated significantly higher cytotoxicity in the resistant MDCKII-MDR1 cells than micelles loaded with PTX alone. Micelle modification with mAb 2C5 results in the highest cytotoxicity against resistant cells, with or without P-gp modulator, probably because of better internalization bypassing the P-gp mechanism. Our results suggest that micelles delivering a combination of P-gp modulator and anticancer drug or micelles loaded with only PTX, but targeted with mAb 2C5 represent a promising approach to overcome drug resistance in cancer cells. PMID:22506922

  2. Well-Defined Redox-Sensitive Polyethene Glycol-Paclitaxel Prodrug Conjugate for Tumor-Specific Delivery of Paclitaxel Using Octreotide for Tumor Targeting.

    PubMed

    Yin, Tingjie; Wu, Qu; Wang, Lei; Yin, Lifang; Zhou, Jianping; Huo, Meirong

    2015-08-01

    A redox-sensitive prodrug, octreotide(Phe)-polyethene glycol-disulfide bond-paclitaxel [OCT(Phe)-PEG-ss-PTX], was successfully developed for targeted intracellular delivery of PTX. The formulation emphasizes long-circulation-time polymer-drug conjugates, combined targeting based on EPR and OCT-receptor mediated endocytosis, sharp redox response, and programmed drug release. The nontargeted redox-sensitive prodrug, mPEG-ss-PTX, and the targeted insensitive prodrug, OCT(Phe)-PEG-PTX, were also synthesized as controls. These polymer-PTX conjugates, structurally confirmed by 1H NMR, exhibited approximately 23,000-fold increase in water solubility over parent PTX and possessed drug contents ranging from 11% to 14%. The redox-sensitivity of the objective OCT(Phe)-PEG-ss-PTX prodrug was verified by in vitro PTX release profile in simulated reducing conditions, and the SSTRs-mediated endocytosis was demonstrated by flow cytometry and confocal laser scanning microscopy analyses. Consequently, compared with mPEG-PTX and OCT(Phe)-PEG-PTX, the OCT(Phe)-PEG-ss-PTX exhibited much stronger cyotoxicity and apoptosis-inducing ability against NCI-H446 tumor cells (SSTRs overexpression), whereas a comparable cytotoxicity of these prodrugs was obtained against WI-38 normal cells (no SSTRs expression). Finally, the in vivo studies on NCI-H466 tumor-bearing nude mice demonstrated that the OCT(Phe)-PEG-ss-PTX possessed superior tumor-targeting ability and antitumor activity over mPEG-PTX, OCT(Phe)-PEG-PTX and Taxol, as well as minimal collateral damage. This targeted redox-sensitive polymer-PTX prodrug system is promising in tumor therapy. PMID:26086430

  3. Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene expression during paclitaxel-induced neuropathic pain in mice

    PubMed Central

    2015-01-01

    Spinal astrocyte activation contributes to the pathogenesis of paclitaxel-induced neuropathic pain (PINP) in animal models. We examined glial fibrillary acidic protein (GFAP; an astrocyte marker) immunoreactivity and gene expression of GFAP, glutamate transporters and receptor subunits by real time PCR in the anterior cingulate cortex (ACC) at 7 days post first administration of paclitaxel, a time point when mice had developed thermal hyperalgesia. The ACC, an area in the brain involved in pain perception and modulation, was chosen because changes in this area might contribute to the pathophysiology of PINP. GFAP transcripts levels were elevated by more than fivefold and GFAP immunoreactivity increased in the ACC of paclitaxel-treated mice. The 6 glutamate transporters (GLAST, GLT-1 EAAC1, EAAT4, VGLUT-1 and VGLUT-2) quantified were not significantly altered by paclitaxel treatment. Of the 12 ionotropic glutamate receptor subunits transcripts analysed 6 (GLuA1, GLuA3, GLuK2, GLuK3, GLuK5 and GLuN1) were significantly up-regulated, whereas GLuA2, GLuK1, GLuK4, GLuN2A and GLuN2B were not significantly altered and GLuA4 was lowly expressed. Amongst the 8 metabotropic receptor subunits analysed only mGLuR8 was significantly elevated. In conclusion, during PINP there is astrocyte activation, with no change in glutamate transporter expression and differential up-regulation of glutamate receptor subunits in the ACC. Thus, targeting astrocyte activation and the glutamatergic system might be another therapeutic avenue for management of PINP. PMID:26528412

  4. Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells.

    PubMed

    Wang, Chunxia; Ho, Paul C; Lim, Lee Yong

    2010-11-15

    The purpose of this study was to investigate the potentiation of the anticancer activity and enhanced cellular retention of paclitaxel-loaded PLGA nanoparticles after surface conjugation with wheat germ agglutinin (WGA) against colon cancer cells. Glycosylation patterns of representative colon cancer cells confirmed the higher expression levels of WGA-binding glycoproteins in the Caco-2 and HT-29 cells, than in the CCD-18Co cells. Cellular uptake and in vitro cytotoxicity of WNP (final formulation) against colon cell lines was evaluated alongside control formulations. Confocal microscopy and quantitative analysis of intracellular paclitaxel were used to monitor the endocytosis and retention of nanoparticles inside the cells. WNP showed enhanced anti-proliferative activity against Caco-2 and HT-29 cells compared to corresponding nanoparticles without WGA conjugation (PNP). The greater efficacy of WNP was associated with higher cellular uptake and sustained intracellular retention of paclitaxel, which in turn was attributed to the over-expression of N-acetyl-D-glucosamine-containing glycoprotein on the colon cell membrane. WNP also demonstrated increased intracellular retention in the Caco-2 (30% of uptake) and HT-29 (40% of uptake) cells, following post-uptake incubation with fresh medium, compared to the unconjugated PNP nanoparticles (18% in Caco-2) and (27% in HT-29), respectively. Cellular trafficking study of WNP showed endocytosed WNP could successful escape from the endo-lysosome compartment and release into the cytosol with increasing incubation time. It may be concluded that WNP has the potential to be applied as a targeted delivery platform for paclitaxel in the treatment of colon cancer. PMID:20804835

  5. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine

    PubMed Central

    Sparreboom, Alex; van Asperen, Judith; Mayer, Ulrich; Schinkel, Alfred H.; Smit, Johan W.; Meijer, Dirk K. F.; Borst, Piet; Nooijen, Willem J.; Beijnen, Jos H.; van Tellingen, Olaf

    1997-01-01

    In mice, the mdr1a and mdr1b genes encode drug-transporting proteins that can cause multidrug resistance in tumor cells by lowering intracellular drug levels. These P-glycoproteins are also found in various normal tissues such as the intestine. Because mdr1b P-glycoprotein is not detectable in the intestine, mice with a homozygously disrupted mdr1a gene [mdr1a(−/−) mice] do not contain functional P-glycoprotein in this organ. We have used these mdr1a(−/−) mice to study the effect of gut P-glycoprotein on the pharmacokinetics of paclitaxel. The area under the plasma concentration-time curves was 2- and 6-fold higher in mdr1a(−/−) mice than in wild-type (wt) mice after i.v. and oral drug administration, respectively. Consequently, the oral bioavailability in mice receiving 10 mg paclitaxel per kg body weight increased from only 11% in wt mice to 35% in mdr1a(−/−) mice. The cumulative fecal excretion (0–96 hr) was markedly reduced from 40% (after i.v. administration) and 87% (after oral administration) of the administered dose in wt mice to below 3% in mdr1a(−/−) mice. Biliary excretion was not significantly different in wt and mdr1a(−/−) mice. Interestingly, after i.v. drug administration of paclitaxel (10 mg/kg) to mice with a cannulated gall bladder, 11% of the dose was recovered within 90 min in the intestinal contents of wt mice vs. <3% in mdr1a(−/−) mice. We conclude that P-glycoprotein limits the oral uptake of paclitaxel and mediates direct excretion of the drug from the systemic circulation into the intestinal lumen. PMID:9050899

  6. Genetic variation of CYP3A5 influences paclitaxel/carboplatin-induced toxicity in Chinese epithelial ovarian cancer patients.

    PubMed

    Hu, Lei; Lv, Qiao-Li; Guo, Ying; Cheng, Lin; Wu, Na-Yiyuan; Qin, Chong-Zhen; Zhou, Hong-Hao

    2016-03-01

    Combination chemotherapy with platinum and taxane is the first-line treatment for ovarian cancer. The dose-limiting toxicities of these drugs include neuropathy, leukopenia, and neutropenia, but they exhibit substantial interindividual variability. This study investigated the relationship between CYP3A5 polymorphisms and paclitaxel/carboplatin-induced toxicity in Chinese epithelial ovarian cancer patients. Seventy-five patients with epithelial ovarian cancer were recruited. After combination chemotherapy, genotype analysis was conducted, and toxic effects were evaluated according to the Common Toxicity Criteria. A significant association was found between myelosuppression and the CYP3A5*3 genotype. CYP3A5*3/*1 patients showed a significantly higher risk of developing leukopenia (P < .001; Pearson's χ(2) test) and neutropenia (P < .001; Pearson's χ(2) test) than CYP3A5*3*3 patients. CYP3A5*3/*3 patients had significantly higher median leukocyte and neutrophil nadir counts than CYP3A5*3*1 patients (P < .001, Mann-Whitney U test). However, we did not observe an association between neuropathy and CYP3A5*3 in this study (P =.64; Pearson's χ(2) test). This is the first study to verify the influence of CYP3A5 polymorphisms on paclitaxel/carboplatin-induced toxicity in Chinese epithelial ovarian cancer patients. Our findings suggest that interindividual variability in paclitaxel/carboplatin-induced myelosuppression can be predicted by CYP3A5*3 genotyping and that incorporation of CYP3A5*3 genetic data in treatment selection could help to reduce myelosuppression events, thereby individualizing paclitaxel/carboplatin pharmacotherapy. PMID:26179145

  7. Efficient drug delivery of Paclitaxel glycoside: a novel solubility gradient encapsulation into liposomes coupled with immunoliposomes preparation.

    PubMed

    Shigehiro, Tsukasa; Kasai, Tomonari; Murakami, Masaharu; Sekhar, Sreeja C; Tominaga, Yuki; Okada, Masashi; Kudoh, Takayuki; Mizutani, Akifumi; Murakami, Hiroshi; Salomon, David S; Mikuni, Katsuhiko; Mandai, Tadakatsu; Hamada, Hiroki; Seno, Masaharu

    2014-01-01

    Although the encapsulation of paclitaxel into liposomes has been extensively studied, its significant hydrophobic and uncharged character has generated substantial difficulties concerning its efficient encapsulation into the inner water core of liposomes. We found that a more hydrophilic paclitaxel molecule, 7-glucosyloxyacetylpaclitaxel, retained tubulin polymerization stabilization activity. The hydrophilic nature of 7-glucosyloxyacetylpaclitaxel allowed its efficient encapsulation into the inner water core of liposomes, which was successfully accomplished using a remote loading method with a solubility gradient between 40% ethylene glycol and Cremophor EL/ethanol in PBS. Trastuzumab was then conjugated onto the surface of liposomes as immunoliposomes to selectively target human epidermal growth factor receptor-2 (HER2)-overexpressing cancer cells. In vitro cytotoxicity assays revealed that the immunoliposomes enhanced the toxicity of 7-glucosyloxyacetylpaclitaxel in HER2-overexpressing cancer cells and showed more rapid suppression of cell growth. The immunoliposomes strongly inhibited the tumor growth of HT-29 cells xenografted in nude mice. Notably, mice survived when treated with the immunoliposomes formulation, even when administered at a lethal dose of 7-glucosyloxyacetylpaclitaxel in vivo. This data successfully demonstrates immunoliposomes as a promising candidate for the efficient delivery of paclitaxel glycoside. PMID:25264848

  8. Efficient Drug Delivery of Paclitaxel Glycoside: A Novel Solubility Gradient Encapsulation into Liposomes Coupled with Immunoliposomes Preparation

    PubMed Central

    Murakami, Masaharu; Sekhar, Sreeja C.; Tominaga, Yuki; Okada, Masashi; Kudoh, Takayuki; Mizutani, Akifumi; Murakami, Hiroshi; Salomon, David S.; Mikuni, Katsuhiko; Mandai, Tadakatsu; Hamada, Hiroki; Seno, Masaharu

    2014-01-01

    Although the encapsulation of paclitaxel into liposomes has been extensively studied, its significant hydrophobic and uncharged character has generated substantial difficulties concerning its efficient encapsulation into the inner water core of liposomes. We found that a more hydrophilic paclitaxel molecule, 7-glucosyloxyacetylpaclitaxel, retained tubulin polymerization stabilization activity. The hydrophilic nature of 7-glucosyloxyacetylpaclitaxel allowed its efficient encapsulation into the inner water core of liposomes, which was successfully accomplished using a remote loading method with a solubility gradient between 40% ethylene glycol and Cremophor EL/ethanol in PBS. Trastuzumab was then conjugated onto the surface of liposomes as immunoliposomes to selectively target human epidermal growth factor receptor-2 (HER2)-overexpressing cancer cells. In vitro cytotoxicity assays revealed that the immunoliposomes enhanced the toxicity of 7-glucosyloxyacetylpaclitaxel in HER2-overexpressing cancer cells and showed more rapid suppression of cell growth. The immunoliposomes strongly inhibited the tumor growth of HT-29 cells xenografted in nude mice. Notably, mice survived when treated with the immunoliposomes formulation, even when administered at a lethal dose of 7-glucosyloxyacetylpaclitaxel in vivo. This data successfully demonstrates immunoliposomes as a promising candidate for the efficient delivery of paclitaxel glycoside. PMID:25264848

  9. Stability of carboplatin, paclitaxel, and docetaxel with acetyl-l-carnitine during simulated Y-site administration.

    PubMed

    Zhang, Yang; Scarlett, Cameron; Hutson, Paul

    2012-01-01

    The compatibility of acetyl-l-carnitine with three chemotherapy agents was studied during simulated Y-site administration. Acetyl-l-carnitine 30 mg/mL in 5% dextrose for injection (D5W) was combined with carboplatin 4 mg/mL, paclitaxel 2 mg/mL, and docetaxel 0.74 mg/mL in glass vials. Physical compatibility over the 4-hour storage at room temperature was assessed by visual examinations with unaided eye under fluorescent light and by measuring the percent transmittance at 600 nm. Chemical compatibility was measured by the percent of initial concentration remaining using stability-indicating high-performance liquid chromatographic-ultraviolet and high-performance liquid chromatographic-mass spectrometry methods. No visible particulate matter, haze, or color change was observed, and the percent transmittance was >95% for all admixtures. After a 4-hour incubation, 93.2% of the paclitaxel and 96.5% of docetaxel remained in separate mixtures with acetyl-l-carnitine. Carboplatin 4 mg/mL, paclitaxel 1.2 mg/mL, and docetaxel 0.74 mg/mL are physically and chemically compatible with acetyl-l-carnitine 30 mg/mLin D5W during a simulated 4-hour Y-site administration. PMID:23050317

  10. Codelivery of paclitaxel and small interfering RNA by octadecyl quaternized carboxymethyl chitosan-modified cationic liposome for combined cancer therapy.

    PubMed

    Zhang, Ran; Wang, Shi-Bin; Chen, Ai-Zheng; Chen, Wei-Guang; Liu, Yuan-Gang; Wu, Wen-Guo; Kang, Yong-Qiang; Ye, Shi-Fu

    2015-09-01

    Conventional therapeutic approaches for cancer are limited by cancer cell resistance, which has impeded their clinical applications. The main goal of this work was to investigate the combined antitumor effect of paclitaxel with small interfering RNA modified by cationic liposome formed from modified octadecyl quaternized carboxymethyl chitosan. The cationic liposome was composed of 3β-[N-(N', N'-dimethylaminoethane)-carbamoyl]-cholesterol, dioleoylphosphatidylethanolamine, and octadecyl quaternized carboxymethyl chitosan. The cationic liposome properties were characterized by Fourier transform infrared spectroscopy, dynamic light scattering and zeta potential measurements, transmission electron microscopy, atomic force microscopy, and gel retardation assay. The cationic liposome exhibited good properties, such as a small particle size, a narrow particle size distribution, a good spherical shape, a smooth surface, and a good binding ability with small interfering RNA. Most importantly, when combined with paclitaxel and small interfering RNA, the composite cationic liposome induced a great enhancement in the antitumor activity, which showed a significantly higher in vitro cytotoxicity in Bcap-37 cells than liposomal paclitaxel or small interfering RNA alone. In conclusion, the results indicate that cationic liposome could be further developed as a codelivery system for chemotherapy drugs and therapeutic small interfering RNAs. PMID:25838353

  11. Prenylated Chalcone 2 Acts as an Antimitotic Agent and Enhances the Chemosensitivity of Tumor Cells to Paclitaxel.

    PubMed

    Fonseca, Joana; Marques, Sandra; Silva, Patrícia M A; Brandão, Pedro; Cidade, Honorina; Pinto, Madalena M; Bousbaa, Hassan

    2016-01-01

    We previously reported that prenylated chalcone 2 (PC2), the O-prenyl derivative (2) of 2'-hydroxy-3,4,4',5,6'-pentamethoxychalcone (1), induced cytotoxicity of tumor cells via disruption of p53-MDM2 interaction. However, the cellular changes through which PC2 exerts its cytotoxic activity and its antitumor potential, remain to be addressed. In the present work, we aimed to (i) characterize the effect of PC2 on mitotic progression and the underlying mechanism; and to (ii) explore this information to evaluate its ability to sensitize tumor cells to paclitaxel in a combination regimen. PC2 was able to arrest breast adenocarcinoma MCF-7 and non-small cell lung cancer NCI-H460 cells in mitosis. All mitosis-arrested cells showed collapsed mitotic spindles with randomly distributed chromosomes, and activated spindle assembly checkpoint. Live-cell imaging revealed that the compound induced a prolonged delay (up to 14 h) in mitosis, culminating in massive cell death by blebbing. Importantly, PC2 in combination with paclitaxel enhanced the effect on cell growth inhibition as determined by cell viability and proliferation assays. Our findings demonstrate that the cytotoxicity induced by PC2 is mediated through antimitotic activity as a result of mitotic spindle damage. The enhancement effects of PC2 on chemosensitivity of cancer cells to paclitaxel encourage further validation of the clinical potential of this combination. PMID:27483224

  12. Salvianolic acid A reverses paclitaxel resistance in human breast cancer MCF-7 cells via targeting the expression of transgelin 2 and attenuating PI3 K/Akt pathway.

    PubMed

    Cai, Jiangxia; Chen, Siying; Zhang, Weipeng; Zheng, Xiaowei; Hu, Sasa; Pang, Chengsen; Lu, Jun; Xing, Jianfeng; Dong, Yalin

    2014-10-15

    Chemotherapy resistance represents a major problem for the treatment of patients with breast cancer and greatly restricts the use of first-line chemotherapeutics paclitaxel. The purpose of this study was to investigate the role of transgelin 2 in human breast cancer paclitaxel resistance cell line (MCF-7/PTX) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. Western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) indicated that transgelin 2 may mediate paclitaxel resistance by activating the phosphatidylinositol 3-kinase (PI3 K)/Akt signaling pathway to suppress MCF-7/PTX cells apoptosis. The reversal ability of SAA was confirmed by MTT assay and flow cytometry, with a superior 9.1-fold reversal index and enhancement of the apoptotic cytotoxicity induced by paclitaxel. In addition, SAA effectively prevented transgelin 2 and adenosine-triphosphate binding cassette transporter (ABC transporter) including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP) up-regulation and exhibited inhibitory effect on PI3 K/Akt signaling pathway in MCF-7/PTX cells. Taken together, SAA can reverse paclitaxel resistance through suppressing transgelin 2 expression by mechanisms involving attenuation of PI3 K/Akt pathway activation and ABC transporter up-regulation. These results not only provide insight into the potential application of SAA in reversing paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer. PMID:25442283

  13. Radiosensitizing effect of carboplatin and paclitaxel to carbon-ion beam irradiation in the non-small-cell lung cancer cell line H460.

    PubMed

    Kubo, Nobuteru; Noda, Shin-ei; Takahashi, Akihisa; Yoshida, Yukari; Oike, Takahiro; Murata, Kazutoshi; Musha, Atsushi; Suzuki, Yoshiyuki; Ohno, Tatsuya; Takahashi, Takeo; Nakano, Takashi

    2015-03-01

    The present study investigated the ability of carboplatin and paclitaxel to sensitize human non-small-cell lung cancer (NSCLC) cells to carbon-ion beam irradiation. NSCLC H460 cells treated with carboplatin or paclitaxel were irradiated with X-rays or carbon-ion beams, and radiosensitivity was evaluated by clonogenic survival assay. Cell proliferation was determined by counting the number of viable cells using Trypan blue. Apoptosis and senescence were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining and senescence-associated β-galactosidase (SA-β-gal) staining, respectively. The expression of cleaved caspase-3, Bax, p53 and p21 was analyzed by western blotting. Clonogenic survival assays demonstrated a synergistic radiosensitizing effect of carboplatin and paclitaxel with carbon-ion beams; the sensitizer enhancement ratios (SERs) at the dose giving a 10% survival fraction (D10) were 1.21 and 1.22, respectively. Similarly, carboplatin and paclitaxel showed a radiosensitizing effect with X-rays; the SERs were 1.41 and 1.29, respectively. Cell proliferation assays validated the radiosensitizing effect of carboplatin and paclitaxel with both carbon-ion beam and X-ray irradiation. Carboplatin and paclitaxel treatment combined with carbon-ion beams increased TUNEL-positive cells and the expression of cleaved caspase-3 and Bax, indicating the enhancement of apoptosis. The combined treatment also increased SA-β-gal-positive cells and the expression of p53 and p21, indicating the enhancement of senescence. In summary, carboplatin and paclitaxel radiosensitized H460 cells to carbon-ion beam irradiation by enhancing irradiation-induced apoptosis and senescence. PMID:25599995

  14. Quality-of-life and performance status results from the phase III RAINBOW study of ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated gastric or gastroesophageal junction adenocarcinoma†

    PubMed Central

    Al-Batran, S.-E.; Van Cutsem, E.; Oh, S. C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O. N.; Kim, T.-Y.; Cunningham, D.; Rougier, P.; Muro, K.; Liepa, A. M.; Chandrawansa, K.; Emig, M.; Ohtsu, A.; Wilke, H.

    2016-01-01

    Background The phase III RAINBOW trial demonstrated that the addition of ramucirumab to paclitaxel improved overall survival, progression-free survival, and tumor response rate in fluoropyrimidine–platinum previously treated patients with advanced gastric/gastroesophageal junction (GEJ) adenocarcinoma. Here, we present results from quality-of-life (QoL) and performance status (PS) analyses. Patients and methods Patients with Eastern Cooperative Oncology Group PS of 0/1 were randomized to receive ramucirumab (8 mg/kg i.v.) or placebo on days 1 and 15 of a 4-week cycle, with both arms receiving paclitaxel (80 mg/m2) on days 1, 8, and 15. Patient-reported outcomes were assessed with the QoL/health status questionnaires EORTC QLQ-C30 and EQ-5D at baseline and 6-week intervals. PS was assessed at baseline and day 1 of every cycle. Time to deterioration (TtD) in each QLQ-C30 scale was defined as randomization to first worsening of ≥10 points (on 100-point scale) and TtD in PS was defined as first worsening to ≥2. Hazard ratios (HRs) for treatment effect were estimated using stratified Cox proportional hazards models. Results Of the 665 patients randomized, 650 (98%) provided baseline QLQ-C30 and EQ-5D data, and 560 (84%) also provided data from ≥1 postbaseline time point. Baseline scores for both instruments were similar between arms. Of the 15 QLQ-C30 scales, 14 had HR < 1, indicating similar or longer TtD in QoL for ramucirumab + paclitaxel. Treatment with ramucirumab + paclitaxel was also associated with a delay in TtD in PS to ≥2 (HR = 0.798, P = 0.0941). Alternate definitions of PS deterioration yielded similar results: PS ≥ 3 (HR = 0.656, P = 0.0508), deterioration by ≥1 PS level (HR = 0.802, P = 0.0444), and deterioration by ≥2 PS levels (HR = 0.608, P = 0.0063). EQ-5D scores were comparable between treatment arms, stable during treatment, and worsened at discontinuation. Conclusion In patients with previously treated advanced gastric

  15. Resistance to cisplatin and paclitaxel does not affect the sensitivity of human ovarian cancer cells to antiprogestin-induced cytotoxicity

    PubMed Central

    2014-01-01

    Background Antiprogestin compounds have been shown to be effective in blocking the growth of ovarian cancer cells of different genetic backgrounds. Herein we studied the anti-ovarian cancer effect of a series of antiprogestins sharing the chemical backbone of the most characterized antiprogestin, mifepristone, but with unique modifications in position C-17 of the steroid ring. We assessed the effect of mifepristone-like antiprogestins on the growth of ovarian cancer cells sensitive to the standard combination therapy cisplatin-paclitaxel or made double-resistant upon six cycles of pulse-selection with the drugs used at clinically relevant concentrations and exposure times. Methods IGROV-1 and SKOV-3 cells were pulsed with 20 μM cisplatin for 1 h followed by 100 nM paclitaxel for 3 h once a week for six weeks. The cells that did not die and repopulate the culture after the chemotherapies were termed Platinum-Taxane-EScape cells (PTES). Parental cells were compared against their PTES derivatives in their responses to further platinum-taxane treatments. Moreover, both ovarian cancer cells and their PTES siblings were exposed to escalating doses of the various antiprogestin derivatives. We assessed cell growth, viability and sub-G1 DNA content using microcapillary cytometry. Cyclin-dependent kinase inhibitors p21cip1 and p27kip1 and cleavage of downstream caspase-3 substrate PARP were used to assess whether cell fate, as a consequence of treatment, was limited to cytostasis or progressed to lethality. Results Cells subjected to six pulse-selection cycles of cisplatin-paclitaxel gave rise to sibling derivatives that displayed ~2-7 fold reduction in their sensitivities to further chemotherapy. However, regardless of the sensitivity the cells developed to the combination cisplatin-paclitaxel, they displayed similar sensitivity to the antiprogestins, which blocked their growth in a dose-related manner, with lower concentrations causing cytostasis, and higher

  16. In Vitro Approaches to Study Regulation of Hepatic Cytochrome P450 (CYP) 3A Expression by Paclitaxel and Rifampicin.

    PubMed

    Ghose, Romi; Mallick, Pankajini; Taneja, Guncha; Chu, Chun; Moorthy, Bhagavatula

    2016-01-01

    Cancer is the second leading cause of mortality worldwide; however the response rate to chemotherapy treatment remains slow, mainly due to narrow therapeutic index and multidrug resistance. Paclitaxel (taxol) has a superior outcome in terms of response rates and progression-free survival. However, numerous cancer patients are resistant to this drug. In this investigation, we tested the hypothesis that induction of cytochrome P450 (Cyp)3a11 gene by paclitaxel is downregulated by the inflammatory mediator, lipopolysaccharide (LPS), and that the pro-inflammatory cytokine, tumor necrosis factor (TNF)-α, attenuates human CYP3A4 gene induction by rifampicin. Primary mouse hepatocytes were pretreated with LPS (1 μg/ml) for 10 min, followed by paclitaxel (20 μM) or vehicle for 24 h. RNA was extracted from the cells by trizol method followed by cDNA synthesis and analysis by real-time PCR. Paclitaxel significantly induced gene expression of Cyp3a11 (~30-fold) and this induction was attenuated in LPS-treated samples. Induction and subsequent downregulation of CYP3A enzyme can impact paclitaxel treatment in cancer patients where inflammatory mediators are activated. It has been shown that the nuclear receptor, pregnane X receptor (PXR), plays a role in the induction of CYP enzymes. In order to understand the mechanisms of regulation of human CYP3A4 gene, we co-transfected HepG2 cells (human liver cell line) with CYP3A4-luciferase construct and a PXR expression plasmid. The cells were then treated with the pro-inflammatory cytokine, TNFα, followed by the prototype CYP3A inducer rifampicin. It is well established that rifampicin activates PXR, leading to CYP3A4 induction. We found that induction of CYP3A4-luciferase activity by rifampicin was significantly attenuated by TNFα. In conclusion, we describe herein several in vitro approaches entailing primary and cultured hepatocytes, real-time PCR, and transcriptional activation (transfection) assays to investigate the

  17. Evaluation of weekly paclitaxel, carboplatin, and cetuximab in head and neck cancer patients with incurable disease.

    PubMed

    Narveson, Lisa; Kathol, Emily; Rockey, Michelle; Henry, David; Grauer, Dennis; Neupane, Prakash

    2016-10-01

    Weekly paclitaxel, carboplatin, and cetuximab (PCC) has been found to be efficacious and well-tolerated in patients with squamous cell carcinoma of the head and neck (SCCHN) with good performance status (PS) when used as induction chemotherapy. Use of PCC in incurable SCCHN in patients with poor PS or in a non-induction setting is an area which warrants further evaluation. Current recommendations for incurable disease consist of a platinum-based regimen with fluorouracil and cetuximab. Studied in patients with PS of 0 to 1, the fluorouracil-based regimens were associated with significant toxicities. Therefore, weekly PCC may offer an appealing, less toxic alternative for incurable patients with poor PS. This retrospective analysis evaluated 41 patients with very advanced or metastatic head and neck cancer who had received PCC (paclitaxel 80 mg/m(2), carboplatin AUC 2, and a cetuximab 400 mg/m(2) loading dose, followed by 250 mg/m(2) weekly) for up to 6 cycles between April 2008 and September 2014. Maximal response achieved and progression-free survival (PFS), as well as dose intensity and adverse effects, were evaluated. Of the 41 patients evaluated, baseline PS ranged as follows: PS of 2 (41 %), PS of 1 (54 %), and PS of 0 (5 %). Patients received 2 to 6 cycles, averaging 4 cycles. Thirty-one patients (76 %) required treatment to be held, delayed or dose reduced, most commonly for hematologic toxicities. Grades 3/4 neutropenia occurred in 16 patients (39 %), grades 1/2 neutropenia in 12 patients (29 %), with grades 3/4 thrombocytopenia in 1 patient (2 %), and grades 1/2 thrombocytopenia in 2 patients (4 %). No patients developed febrile neutropenia or required hospitalization due to treatment. Partial radiographic response occurred in 15 patients (37 %), complete radiographic response in 2 patients (5 %), stable disease in 14 patients (34 %), and progression in 8 patients (20 %). PFS ranged from 1.6 to 45 months, with a median duration of 4.6

  18. Dendritic polyglycerol sulfate as a novel platform for paclitaxel delivery: pitfalls of ester linkage

    NASA Astrophysics Data System (ADS)

    Sousa-Herves, Ana; Würfel, Patrick; Wegner, Nicole; Khandare, Jayant; Licha, Kai; Haag, Rainer; Welker, Pia; Calderón, Marcelo

    2015-02-01

    In this study, dendritic polyglycerol sulfate (dPGS) is evaluated as a delivery platform for the anticancer, tubulin-binding drug paclitaxel (PTX). The conjugation of PTX to dPGS is conducted via a labile ester linkage. A non-sulfated dendritic polyglycerol (dPG) is used as a control, and the labeling with an indocarbocyanine dye (ICC) renders multifunctional conjugates that can be monitored by fluorescence microscopy. The conjugates are characterized by 1H NMR, UV-vis measurements, and RP-HPLC. In vitro cytotoxicity of PTX and dendritic conjugates is evaluated using A549 and A431 cell lines, showing a reduced cytotoxic efficacy of the conjugates compared to PTX. The study of uptake kinetics reveals a linear, non saturable uptake in tumor cells for dPGS-PTX-ICC, while dPG-PTX-ICC is hardly taken up. Despite the marginal uptake of dPG-PTX-ICC, it prompts tubulin polymerization to a comparable extent as PTX. These observations suggest a fast ester hydrolysis and premature drug release, as confirmed by HPLC measurements in the presence of plasma enzymes.In this study, dendritic polyglycerol sulfate (dPGS) is evaluated as a delivery platform for the anticancer, tubulin-binding drug paclitaxel (PTX). The conjugation of PTX to dPGS is conducted via a labile ester linkage. A non-sulfated dendritic polyglycerol (dPG) is used as a control, and the labeling with an indocarbocyanine dye (ICC) renders multifunctional conjugates that can be monitored by fluorescence microscopy. The conjugates are characterized by 1H NMR, UV-vis measurements, and RP-HPLC. In vitro cytotoxicity of PTX and dendritic conjugates is evaluated using A549 and A431 cell lines, showing a reduced cytotoxic efficacy of the conjugates compared to PTX. The study of uptake kinetics reveals a linear, non saturable uptake in tumor cells for dPGS-PTX-ICC, while dPG-PTX-ICC is hardly taken up. Despite the marginal uptake of dPG-PTX-ICC, it prompts tubulin polymerization to a comparable extent as PTX. These

  19. Docetaxel in combination with irinotecan (CPT-11) in platinum-resistant paclitaxel-pretreated ovarian cancer.

    PubMed

    Polyzos, Aristides; Kosmas, Christos; Toufexi, Helen; Malamos, Nicholas; Lagadas, Antonios; Kosmidis, Christos; Ginopoulos, Panagiotis; Ziras, Nicholas; Kandilis, Kostas; Georgoulias, Vassilis

    2005-01-01

    The role of combination chemotherapy regimens in the management of ovarian cancer patients with tumors resistant to platinum compounds has not yet been defined. This multicenter prospective phase II study evaluated the activity and toxicity of the docetaxel-plus-irinotecan combination in ovarian cancer patients whose tumors were resistant to platinum compounds and who had been exposed to paclitaxel. Treatment consisted of docetaxel 60 mg/m2 i.v. followed by irinotecan 200 mg/m2 i.v. both on day 1 followed by prophylactic recombinant human granulocyte-colony stimulating factor (rhG-CSF) support from days 2 to 6, every 3 weeks. Thirty-one patients were enrolled in the study. The median age was 60 years, and the median performance status (ECOG) was 1. Eight (26%) patients had primary tumors resistant to platinum, while the rest of the population had tumor recurrence within 6 months from the last cisplatin treatment. Four chemotherapy cycles per patient were administered, with the delivered dose intensity at 75% of the planned dose for both agents. Among 30 patients evaluable for response, there were 2 (7%) complete and 4 (14%) partial responses (overall response rate 20%; (95% confidence interval, CI, 11%-33%). Stable disease was recorded in 8 (28%) patients and progressive disease in 15 (51%). The median response duration was 4.5 months (range, 3-12), the median time to progression 5 months (range, 2-17) and the median survival 11 months (range, 1-40); the 1-year survival was almost 50%. Myelotoxicity was moderate, with grade 3 and 4 neutropenia occurring in 23% of the patients, grade 3-4 thrombocytopenia in 6% and febrile neutropenia in 13%. Grade 3 diarrhea was observed in 2% of the patients. There was one treatment-related death due to sepsis. In conclusion, the combination of docetaxel plus irinotecan with rhG-CSF support, appears to be a moderately effective regimen with acceptable toxicity for platinum-resistant, paclitaxel-pretreated ovarian cancer patients

  20. Preparation of a paclitaxel-loaded cationic nanoemulsome and its biodistribution via direct intratumoral injection.

    PubMed

    Xu, Yurui; Asghar, Sajid; Li, Hongying; Chen, Minglei; Su, Zhigui; Xu, Yangfan; Ping, Qineng; Xiao, Yanyu

    2016-06-01

    In this study, a nano-preparation based on nanoemulsome (NES) modified with cetyltrimethylammonium bromide (CTAB) loading paclitaxel (PTX) was designed, and its biodistribution were explored after intratumoral (i.t.) administration on Heps tumor-bearing mice. The PTX-loaded nanoemulsome (PTX-NES) was prepared by using a solvent evaporation method and CTAB, chosen as a cationic material, was absorbed onto the surface of the NES via electrostatic interaction to yield paclitaxel-loaded cationic nanoemulsome (PTX-CTAB-NES). The MTT results exhibited that PTX-CTAB-NES (IC50: 0.50±0.035μg/mL in MCF-7 cells and 0.13±0.048μg/mL in SMMC-7721 cells) had the strongest cytotoxicity compared to Taxol (IC50: 0.88±0.054μg/mL in MCF-7 and 0.15±0.011μg/mL in SMMC-7721) and PTX-NES (IC50: 1.93±0.062μg/mL in MCF-7 and 0.32±0.027μg/mL in SMMC-7721). Body distribution of PTX revealed that the percent of PTX retained in the tumor after i.t. administration of PTX-CTAB-NES (approximately 92.99% at 0.167h and 15.35% at 48h) was higher when compared to that after i.t. injection of Taxol (approximately 58.94% at 0.167h and 0.83% at 48h) or PTX-NES (approximately 83.63% at 0.167h and 6.52% at 48h). Moreover, less PTX accumulated in liver, spleen, kidney, lung and heart after i.t. administration of PTX-CTAB-NES when compared with that after i.v. administration of PTX-CTAB-NES. In conclusion, PTX-CTAB-NES was a prospective in-situ delivery system for the therapy of tumor. PMID:26938323

  1. Drug resistance to paclitaxel is not only associated with ABCB1 mRNA expression but also with drug accumulation in intracellular compartments in human lung cancer cell lines.

    PubMed

    Shimomura, Masanori; Yaoi, Takeshi; Itoh, Kyoko; Kato, Daishiro; Terauchi, Kunihiko; Shimada, Junichi; Fushiki, Shinji

    2012-04-01

    In order to clarify the mechanisms of resistance to paclitaxel in lung cancer, three human lung cancer cell lines which exhibit different sensitivity to paclitaxel were investigated from the following viewpoints: overexpression of ATP-binding cassette, sub-family B, member 1 (ABCB1), mutations on paclitaxel binding site of β-tubulin genes, quantity of polymerized tubulin and the intracellular localization of paclitaxel. ABCB1 expression was evaluated by real-time RT-PCR. No correlations were noted between the ABCB1 expression in the sensitive and resistant cell lines at the mRNA level. No mutations on the paclitaxel binding site of the β-tubulin genes were detected in either the resistant or sensitive cells. Live cell images obtained by confocal laser microscopy revealed that the resistant cell line, RERF-LC-KJ, had more accumulation of Oregon Green® 488 conjugated paclitaxel in the lysosomal and extra-lysosomal compartments of cytoplasm than other cell lines. The results obtained in this study indicated that the changes in the subcellular localization could contribute to the production of paclitaxel resistance in lung cancer cell lines. Further studies should be conducted to elucidate the molecular mechanisms that differentiate the intracellular localization of paclitaxel. PMID:22179563

  2. Drug resistance to paclitaxel is not only associated with ABCB1 mRNA expression but also with drug accumulation in intracellular compartments in human lung cancer cell lines

    PubMed Central

    SHIMOMURA, MASANORI; YAOI, TAKESHI; ITOH, KYOKO; KATO, DAISHIRO; TERAUCHI, KUNIHIKO; SHIMADA, JUNICHI; FUSHIKI, SHINJI

    2012-01-01

    In order to clarify the mechanisms of resistance to paclitaxel in lung cancer, three human lung cancer cell lines which exhibit different sensitivity to paclitaxel were investigated from the following viewpoints: overexpression of ATP-binding cassette, sub-family B, member 1 (ABCB1), mutations on paclitaxel binding site of β-tubulin genes, quantity of polymerized tubulin and the intracellular localization of paclitaxel. ABCB1 expression was evaluated by real-time RT-PCR. No correlations were noted between the ABCB1 expression in the sensitive and resistant cell lines at the mRNA level. No mutations on the paclitaxel binding site of the β-tubulin genes were detected in either the resistant or sensitive cells. Live cell images obtained by confocal laser microscopy revealed that the resistant cell line, RERF-LC-KJ, had more accumulation of Oregon Green® 488 conjugated paclitaxel in the lysosomal and extra-lysosomal compartments of cytoplasm than other cell lines. The results obtained in this study indicated that the changes in the subcellular localization could contribute to the production of paclitaxel resistance in lung cancer cell lines. Further studies should be conducted to elucidate the molecular mechanisms that differentiate the intracellular localization of paclitaxel. PMID:22179563

  3. Three-Dimensional Collagen Type I Matrix Up-Regulates Nuclear Isoforms of the Microtubule Associated Protein Tau Implicated in Resistance to Paclitaxel Therapy in Ovarian Carcinoma

    PubMed Central

    Gurler, Hilal; Yu, Yi; Choi, Jacqueline; Kajdacsy-Balla, Andre A.; Barbolina, Maria V.

    2015-01-01

    Epithelial ovarian carcinoma is the deadliest gynecologic malignancy. One reason underlying treatment failure is resistance to paclitaxel. Expression of the microtubule associated protein tau has recently been proposed as a predictor of response to paclitaxel in ovarian carcinoma patients. Expression of tau was probed using immunohistochemistry in 312 specimens of primary, and 40 specimens of metastatic, ovarian carcinoma. Serous epithelial ovarian carcinoma cell line models were used to determine the expression of tau by Western blot and immunofluorescence staining. Subcellular fractionation and Western blot were employed to examine nuclear and cytoplasmic localization of tau. Gene silencing and clonogenic assays were used to evaluate paclitaxel response. Tau was expressed in 44% of all tested cases. Among the primary serous epithelial ovarian carcinoma cases, 46% were tau-positive. Among the metastatic serous epithelial ovarian carcinomas, 63% were tau-positive. Cell culture experiments demonstrated that tau was expressed in multiple isoforms. Three-dimensional collagen I matrix culture conditions resulted in up-regulation of tau protein. Silencing of tau with specific siRNAs in a combination with three-dimensional culture conditions led to a significant decrease of the clonogenic ability of cells treated with paclitaxel. The data suggest that reduction of tau expression may sensitize ovarian carcinoma to the paclitaxel treatment. PMID:25658796

  4. The telomerase template antagonist GRN163L alters MDA-MB-231 breast cancer cell morphology, inhibits growth, and augments the effects of paclitaxel.

    PubMed

    Goldblatt, Erin M; Gentry, Erin R; Fox, Melanie J; Gryaznov, Sergei M; Shen, Changyu; Herbert, Brittney-Shea

    2009-07-01

    Telomeres are repetitive (TTAGGG)(n) DNA sequences found at the end of chromosomes that protect the ends from recombination, end to end fusions, and recognition as damaged DNA. Telomerase activity can be detected in 85% to 90% of human tumors, which stabilizes telomeres to prevent apoptosis or cellular senescence. Previous reports showed the efficacy of the novel telomerase template antagonist, GRN163L, as a potential anticancer agent. The objective of the present study was to elucidate the molecular effects of GRN163L in MDA-MB-231 breast cancer cells and to determine whether GRN163L could be used in mechanism-based combination therapy for breast cancer. We observed that GRN163L reduced MDA-MB-231 growth rates without a significant effect on breast cancer cell viability within the first 14 days in vitro. In addition, GRN163L altered cell morphology, actin filament organization, and focal adhesion formation in MDA-MB-231 cells. Importantly, the cellular response to GRN163L significantly augmented the effects of the microtubule stabilizer paclitaxel in MDA-MB-231 breast cancer cell growth in vitro and in vivo compared with paclitaxel alone or a mismatch control oligonucleotide plus paclitaxel. Furthermore, in vitro MDA-MB-231 invasive potential was significantly inhibited with GRN163L and paclitaxel. These data support a rationale for potentially combining GRN163L with paclitaxel for the treatment of breast cancer in the clinical setting. PMID:19509275

  5. Acoustic Cluster Therapy (ACT) enhances the therapeutic efficacy of paclitaxel and Abraxane® for treatment of human prostate adenocarcinoma in mice.

    PubMed

    van Wamel, Annemieke; Sontum, Per Christian; Healey, Andrew; Kvåle, Svein; Bush, Nigel; Bamber, Jeffrey; de Lange Davies, Catharina

    2016-08-28

    Acoustic cluster therapy (ACT) is a novel approach for ultrasound mediated, targeted drug delivery. In the current study, we have investigated ACT in combination with paclitaxel and Abraxane® for treatment of a subcutaneous human prostate adenocarcinoma (PC3) in mice. In combination with paclitaxel (12mg/kg given i.p.), ACT induced a strong increase in therapeutic efficacy; 120days after study start, 42% of the animals were in stable, complete remission vs. 0% for the paclitaxel only group and the median survival was increased by 86%. In combination with Abraxane® (12mg paclitaxel/kg given i.v.), ACT induced a strong increase in the therapeutic efficacy; 60days after study start 100% of the animals were in stable, remission vs. 0% for the Abraxane® only group, 120days after study start 67% of the animals were in stable, complete remission vs. 0% for the Abraxane® only group. For the ACT+Abraxane group 100% of the animals were alive after 120days vs. 0% for the Abraxane® only group. Proof of concept for Acoustic Cluster Therapy has been demonstrated; ACT markedly increases the therapeutic efficacy of both paclitaxel and Abraxane® for treatment of human prostate adenocarcinoma in mice. PMID:27297780

  6. Enhancement of paclitaxel-induced breast cancer cell death via the glycogen synthase kinase-3β-mediated B-cell lymphoma 2 regulation

    PubMed Central

    Noh, Kyung Tae; Cha, Gil Sun; Kang, Tae Heung; Cho, Joon; Jung, In Duk; Kim, Kwang-Youn; Ahn, Soon-Cheol; You, Ji Chang; Park, Yeong-Min

    2016-01-01

    Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine protein kinase that is known to mediate cancer cell death. Here, we show that B-cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, is regulated by GSK-3β and that GSK-3β-mediated regulation of Bcl-2 is crucial for mitochondrial-dependent cell death in paclitaxel-stimulated cells. We demonstrate that MCF7 GSK-3β siRNA cells are more sensitive to cell death than MCF7 GFP control cells and that in the absence of GSK-3β, Bcl-2 levels are reduced, a result enhanced by paclitaxel. Paclitaxel-induced JNK (c-Jun N-terminal kinase) activation is critical for Bcl-2 modulation. In the absence of GSK-3β, Bcl-2 was unstable in an ubiquitination-dependent manner in both basal- and paclitaxel-treated cells. Furthermore, we demonstrate that GSK-3β-mediated regulation of Bcl-2 influences cytochrome C release and mitochondrial membrane potential. Taken together, our data suggest that GSK-3β-dependent regulation of Bcl-2 is crucial for mitochondria-dependent cell death in paclitaxel-mediated breast cancer therapy. [BMB Reports 2016; 49(1): 51-56] PMID:26246283

  7. High Id1 expression, a generally negative prognostic factor, paradoxically predicts a favorable prognosis for adjuvant paclitaxel plus cisplatin therapy in surgically treated lung cancer patients

    PubMed Central

    Cheng, Yu-Jen; Lee, Yi-Chen; Chiu, Wen-Chin; Tsai, Jen-Wei; Su, Yu-Han; Hung, Amos C.; Chang, Po-Chih; Huang, Chih-Jen; Chai, Chee-Yin; Yuan, Shyng-Shiou F.

    2014-01-01

    Adjuvant chemotherapy is commonly given to surgically treated non-small-cell lung cancer (NSCLC) patients. However, the prerequisite for chemotherapy needs to be scrutinized in order to maximize the benefits to patients. In this study, we observed that NSCLC cells with high Id1 protein expression were vulnerable to the treatment of paclitaxel and cisplatin. In addition, paclitaxel and cisplatin caused Id1 protein degradation through ubiquitination. In the nude mice xenograft model, the tumor growth was reduced to a large degree in the Id1-overexpressing group upon treatment with paclitaxel and cisplatin. Furthermore, immunohistochemical staining for Id1 followed by Kaplan-Meier survival analysis showed that surgically treated NSCLC patients with high Id1 expression in primary tumor tissues had better disease-free and overall survivals after adjuvant paclitaxel and cisplatin chemotherapy. In summary, our current data suggest that Id1, a generally negative prognostic factor, predicts a favorable prognosis in the case of surgically treated NSCLC patients receiving the definitive adjuvant chemotherapy. The distinct role of Id1 reported in this study may arise from the phenomenon of Id1 dependence of NSCLC cells for survival, which renders the cancer cells additionally susceptive to the adjuvant chemotherapy with paclitaxel and cisplatin. PMID:25344919

  8. Sub-Tenon Injections of Triamcinolone Acetonide Had Limited Effect on Cystoid Macular Edema Secondary to Nanoparticle Albumin-Bound-Paclitaxel (Abraxane)

    PubMed Central

    Matsuoka, Naoki; Hasebe, Hiruma; Mayama, Tetsuji; Fukuchi, Takeo

    2015-01-01

    Purpose. To report the first case of cystoid macular edema (CME) induced by nanoparticle albumin-bound- (nab-) paclitaxel treated with sub-Tenon injections of triamcinolone acetonide (STTA) with detailed long-term follow-up. Case. A 39-year-old Japanese woman with breast cancer presents with decreased vision in both eyes while receiving nab-paclitaxel. Two STTA treatments were administered for persistent CME in her right eye. Central retinal thickness (CRT) of the treated eye decreased after the first STTA, but there was no change after the second STTA. CRT of the other eye and bilateral visual acuity (VA) showed no change after each treatment. However, this patient experienced gradual recovery of visual function after nab-paclitaxel treatment was completed, 3 months after the second STTA. Improvements in VA and CRT did not overlap in time. Moreover, there was a big improvement time lag in VA between the eyes. Conclusion. Cessation of nab-paclitaxel could lead to resolution of CME more than STTA, although STTA had some effect. Since nab-paclitaxel has been recently approved for treating more types of malignancies, the number of the patients with this CME is expected to increase in the near future. Patients and physicians should understand this side effect and prepare for other treatment options. PMID:26366312

  9. Enhancing the Apoptotic Effect of a Low Dose of Paclitaxel on Tumor Cells in Mice by Arabinoxylan Rice Bran (MGN-3/Biobran).

    PubMed

    Badr El-Din, Nariman K; Ali, Doaa A; Alaa El-Dein, Mai; Ghoneum, Mamdooh

    2016-01-01

    In this study, we examine the ability of arabinoxylan rice bran (MGN-3/Biobran) to enhance the apoptotic effect of paclitaxel (Taxol) at low concentration [2 mg/kg body weight (BW)] in animals bearing Ehrlich ascites carcinoma (EAC) cells and elucidate its mechanisms of action. On Day 8 following tumor cells inoculation, mice bearing tumors were administered MGN-3 alone (40 mg/kg BW), paclitaxel alone, or MGN-3 plus paclitaxel. On Day 30 post-tumor inoculation, we observed significant suppression of tumor volume (TV) with paclitaxel alone (59%), MGN-3 alone (77%), and MGN-3 plus paclitaxel (88%). Inhibition of tumor growth post-treatment with both agents, as compared with either treatment alone, was associated with a decrease in cell proliferation, a marked increase in the sub-G0/G1 population, an increase in DNA damage and apoptosis of tumor cells, and a significant maximization of the apoptosis index (AI)/proliferation index (PrI) ratio. Histopathological and electron microscopy examination of the combined treatment group showed an increase in the degenerative regions of the solid tumor tissue and abundant apoptotic cells. These data suggest that MGN-3 supplementation enhances tumor cell demise in the presence of a low dose of chemotherapeutic agent via apoptotic mechanism. PMID:27367621

  10. Effect of Antioxidants and Carbohydrates in Callus Cultures of Taxus brevifolia: Evaluation of Browning, Callus Growth, Total Phenolics and Paclitaxel Production

    PubMed Central

    Yari Khosroushahi, Ahmad; Naderi-Manesh, Hossein; Toft Simonsen, Henrik

    2011-01-01

    Introduction To control the tissue browning phenomenon, callus growth, total phenolics and paclitaxel production, in the current investigation, we evaluated the effects of citric acid and ascorbic acid (as antioxidants) and glucose, fructose and sucrose in callus cultures of Taxus brevifolia. Methods To obtain healthy callus/cell lines of Taxus brevifolia, the effects of two antioxidants ascorbic acid (100-1000 mg/L) and citric acid (50-500 mg/L), and three carbohydrates (glucose, fructose and sucrose (5-10 g/L)) were studied evaluating activities of polyphenol oxidase (PPO) and peroxidase (PO) enzymes, callus growth/browning, total phenolics and paclitaxel production. Results These antioxidants (ascorbic acid and citric acid) failed to show significant effects on callus growth, browning intensity or paclitaxel production. However, the carbohydrates imposed significant effects on the parameters studied. High concentrations of both glucose and sucrose increased the browning intensity, thus decreased callus growth. Glucose increased paclitaxel production, but sucrose decreased it. Conclusion These results revealed that the browning phenomenon can be controlled through supplementation of the growth media with glucose, sucrose (5 g/L) and fructose (10 g/L), while increased paclitaxel production can be obtain by the optimized media supplemented with glucose (10 g/L), sucrose and fructose (5 g/L). PMID:23678406

  11. Identification of the First Inhibitor of the GBP1:PIM1 Interaction. Implications for the Development of a New Class of Anticancer Agents against Paclitaxel Resistant Cancer Cells

    PubMed Central

    2015-01-01

    Class III β-tubulin plays a prominent role in the development of drug resistance to paclitaxel by allowing the incorporation of the GBP1 GTPase into microtubules. Once in the cytoskeleton, GBP1 binds to prosurvival kinases such as PIM1 and initiates a signaling pathway that induces resistance to paclitaxel. Therefore, the inhibition of the GBP1:PIM1 interaction could potentially revert resistance to paclitaxel. A panel of 44 4-azapodophyllotoxin derivatives was screened in the NCI-60 cell panel. The result is that 31 are active and the comparative analysis demonstrated specific activity in paclitaxel-resistant cells. Using surface plasmon resonance, we were able to prove that NSC756093 is a potent in vitro inhibitor of the GBP1:PIM1 interaction and that this property is maintained in vivo in ovarian cancer cells resistant to paclitaxel. Through bioinformatics, molecular modeling, and mutagenesis studies, we identified the putative NSC756093 binding site at the interface between the helical and the LG domain of GBP1. According to our results by binding to this site, the NSC756093 compound is able to stabilize a conformation of GBP1 not suitable for binding to PIM1. PMID:25211704

  12. Enhancing the water dispersibility of paclitaxel by complexation with hydrophobic peptides.

    PubMed

    Inada, Asuka; Oshima, Tatsuya; Baba, Yoshinari

    2015-11-01

    The complex between paclitaxel (Ptx) and a peptide mixture (Pep) was prepared to enhance of the water-dispersibility of Ptx. Pep was prepared by enzymatic hydrolysis of casein, followed by fractionation using ammonium sulfate precipitation and ultrafiltration. The Ptx and Pep complex (Ptx-Pep) was prepared by mixing an ethanol solution of Ptx and an aqueous solution of Pep followed by lyophilization. The water dispersibility test of Ptx-Pep prepared using different fractions of Pep demonstrated that a fraction (Pep-A), containing relatively hydrophobic peptides with high molecular weights, was effective in enhancing the water dispersibility of Ptx. The sequences of the major peptides in Pep-A were identified by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry with "LIFT" technique. The water dispersibility of the complex between Ptx and Pep-A (Ptx-Pep-A) was independent of pH, even though it is positively or negatively charged under strongly acidic and neutral conditions. As the particle size of Ptx-Pep-A in aqueous media was 147-215 nm, Ptx-Pep-A was present as a hydrocolloidal material in aqueous media. PMID:26277716

  13. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Jayanta; Bellucci, Joseph J.; Weitzhandler, Isaac; McDaniel, Jonathan R.; Spasojevic, Ivan; Li, Xinghai; Lin, Chao-Chieh; Chi, Jen-Tsan Ashley; Chilkoti, Ashutosh

    2015-08-01

    Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumour-specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60 nm near-monodisperse nanoparticles that increased the systemic exposure of PTX by sevenfold compared with free drug and twofold compared with the Food and Drug Administration-approved taxane nanoformulation (Abraxane). The tumour uptake of the CP-PTX nanoparticle was fivefold greater than free drug and twofold greater than Abraxane. In a murine cancer model of human triple-negative breast cancer and prostate cancer, CP-PTX induced near-complete tumour regression after a single dose in both tumour models, whereas at the same dose, no mice treated with Abraxane survived for >80 days (breast) and 60 days (prostate), respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for PTX delivery.

  14. Biodegradable and injectable paclitaxel-loaded poly(ester amide)s microspheres: fabrication and characterization.

    PubMed

    Guo, Kai; Chu, C C

    2009-05-01

    Novel biodegradable submicron microspheres of amino acid based poly(ester amide)s (PEAs) were fabricated by an oil-in-water (O/W) emulsion/solvent evaporation technique and their morphology and drug loading efficiency were examined. PEAs microspheres of mean diameter <1 microm with very narrow size distribution were obtained at a fair yield about 80%. The effects of PEA polymer concentration, polyvinyl alcohol emulsifier concentration, and the homogenizer speed on the size and morphology of final PEA microspheres were examined by analyzing their SEM images. It is found that a low PEA concentration, a high PVA concentration, and a high homogenizer speed are the optimal conditions for obtaining smaller microspheres. The biodegradation behaviors of these PEA microspheres at 37 degrees C were investigated as a function of enzyme (alpha-chymotrypsin) concentration and incubation time. The data showed similar surface erosion degradation mechanism as PEA polymers reported previously. Paclitaxel loaded PEA microspheres with high encapsulation efficiency were obtained without significantly affecting their size and surface morphology. The high drug loading efficiency close to 100% suggested that PEA microspheres may have the potential for the injection administration of highly hydrophobic anticancer drugs. PMID:18937264

  15. Tumor priming using metronomic chemotherapy with neovasculature-targeted, nanoparticulate paclitaxel.

    PubMed

    Luan, Xin; Guan, Ying-Yun; Lovell, Jonathan F; Zhao, Mei; Lu, Qin; Liu, Ya-Rong; Liu, Hai-Jun; Gao, Yun-Ge; Dong, Xiao; Yang, Si-Cong; Zheng, Lin; Sun, Peng; Fang, Chao; Chen, Hong-Zhuan

    2016-07-01

    Normalization of the tumor microenvironment is a promising approach to render conventional chemotherapy more effective. Although passively targeted drug nanocarriers have been investigated to this end, actively targeted tumor priming remains to be explored. In this work, we demonstrate an effective tumor priming strategy using metronomic application of nanoparticles actively targeted to tumor neovasculature. F56 peptide-conjugated paclitaxel-loaded nanoparticles (F56-PTX-NP) were formulated from PEGylated polylactide using an oil in water emulsion approach. Metronomic F56-PTX-NP specifically targeted tumor vascular endothelial cells (ECs), pruned vessels with strong antiangiogenic activity and induced thrombospondin-1 (TSP-1) secretion from ECs. The treatment induced tumor vasculature normalization as evidenced by significantly increased coverage of basement membrane and pericytes. The tumor microenvironment was altered with enhanced pO2, lower interstitial fluid pressure, and enhanced vascular perfusion and doxorubicin delivery. A "normalization window" of at least 9 days was induced, which was longer than other approaches using antiangiogenic agents. Together, these results show that metronomic, actively-targeted nanomedicine can induce tumor vascular normalization and modulate the tumor microenvironment, opening a window of opportunity for effective combination chemotherapies. PMID:27130953

  16. Effects of PEGylated paclitaxel nanocrystals on breast cancer and its lung metastasis

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Hu, Hongxiang; Zhang, Haoran; Dai, Wenbing; Wang, Xinglin; Wang, Xueqing; Zhang, Qiang

    2015-06-01

    As an attractive strategy developed rapidly in recent years, nanocrystals are used to deliver insoluble drugs. PEGylation may further prolong the circulation time of nanoparticles and improve the therapeutic outcome of drugs. In this study, paclitaxel (PTX) nanocrystals (PTX-NCs) and PEGylated PTX nanocrystals (PEG-PTX-NCs) were prepared using antisolvent precipitation augmented by probe sonication. The characteristics and antitumor efficacy of nanocrystals were investigated. The results indicated that the nanocrystals showed rod-like morphology, and the average particle size was 240 nm and 330 nm for PTX-NCs and PEG-PTX-NCs, respectively. The PEG molecules covered the surface of nanocrystals with an 11.54 nm fixed aqueous layer thickness (FALT), much higher than that of PTX-NCs (0.2 nm). PEG-PTX-NCs showed higher stability than PTX-NCs under both storage and physiological conditions. In breast cancer xenografted mice, PEG-PTX-NCs showed significantly better tumor inhibition compared to saline (p < 0.001) and PTX-NC groups (p < 0.05) after intravenous administration. In a model of lung tumor metastasis quantified by the luciferase activity, the PEG-PTX-NCs group showed higher anticancer efficacy not only than saline and PTX-NCs groups, but also than Taxol®, achieving an 82% reduction at the end of the experiment. These studies suggested the potential advantages of PEGylated PTX nanocrystals as alternative drug delivery systems for anticancer therapy.

  17. A polymer-free Paclitaxel eluting coronary stent: effects of solvents, drug concentrations and coating methods.

    PubMed

    Lamichhane, Sujan; Gallo, Annemarie; Mani, Gopinath

    2014-06-01

    Some polymer coatings used in drug-eluting stents (DES) cause adverse reactions. Hence, the use of self-assembled monolayers (SAMs) as a polymer-free platform to deliver an anti-proliferative drug (paclitaxel-PAT) from 2D metal substrates was previously demonstrated. In this study, we optimized the PAT coating on SAMs coated 3D coronary stents. For the optimization process, we investigated the effects of solvents (ethanol, DMSO, and their mixtures), drug concentrations (2, 3, 4, 8, and 12 mg/mL) in the coating solution, and coating methods (dip and spray) on PAT deposition. A solvent mixture of 75:25 v/v Et-OH:DMSO was determined to be the best for obtaining smooth and homogenous PAT coating. PAT coated stents prepared using 8 mg/mL and 3 mg/mL concentrations of PAT by dip and spray coating methods, respectively, were optimal in terms of carrying adequate drug doses (0.35 µg/mm(2) for dipping and 0.76 µg/mm(2) for spraying) as well as negligible defects observed in the coating. PAT was successfully released from SAMs coated stents in a biphasic manner with an initial burst followed by a sustained release for up to 10 weeks. Thus, this study sheds light on the effects of solvents, drug concentrations, and coating methods on preparing a polymer-free DES. PMID:24705673

  18. PEG-Farnesyl Thiosalicylic Acid Telodendrimer Micelles as an Improved Formulation for Targeted Delivery of Paclitaxel

    PubMed Central

    2015-01-01

    We have recently designed and developed a dual-functional drug carrier that is based on poly(ethylene glycol) (PEG)-derivatized farnesylthiosalicylate (FTS, a nontoxic Ras antagonist). PEG5K-FTS2 readily form micelles (20–30 nm) and hydrophobic drugs such as paclitaxel (PTX) could be effectively loaded into these micelles. PTX formulated in PEG5K-FTS2 micelles showed an antitumor activity that was more efficacious than Taxol in a syngeneic mouse model of breast cancer (4T1.2). In order to further improve our PEG-FTS micellar system, four PEG-FTS conjugates were developed that vary in the molecular weight of PEG (PEG2K vs PEG5K) and the molar ratio of PEG/FTS (1/2 vs 1/4) in the conjugates. These conjugates were characterized including CMC, drug loading capacity, stability, and their efficacy in delivery of anticancer drug PTX to tumor cells in vitro and in vivo. Our data showed that the conjugates with four FTS molecules were more effective than the conjugates with two molecules of FTS and that FTS conjugates with PEG5K were more effective than the counterparts with PEG2K in forming stable mixed micelles. PTX formulated in PEG5K-FTS4 micelles was the most effective formulation in inhibiting the tumor growth in vivo. PMID:24987803

  19. In vitro effect of 5-fluorouracil and paclitaxel on Echinococcus granulosus larvae and cells.

    PubMed

    Pensel, P E; Albani, C; Gamboa, G Ullio; Benoit, J P; Elissondo, M C

    2014-12-01

    Human cystic echinococcosis is a zoonosis caused by the metacestode stage of the tapeworm Echinococcus granulosus. Although benzimidazole compounds such as albendazole and mebendazole have been the cornerstone of chemotherapy for the disease, there is often no complete recovery after treatment. Hence, in searching for novel treatment options, we examined the in vitro efficacies of 5-fluorouracil (5-FU) and paclitaxel (PTX) against E. granulosus germinal cells, protoscoleces and cysts. 5-FU or PTX inhibited the growth of E. granulosus cells in a time dependent manner. Although both treatments had a protoscolicidal effect, 5-FU had a considerably stronger effect than PTX. 5-FU produced a dose- and time-dependent effect, provoking the complete loss of viability after 24 days of incubation. Moreover, cysts did not develop following the inoculation of treated protoscoleces into mice. The loss of viability was slower in PTX treated protoscoleces, reaching to approximately 60% after 30 days. The results of the in vitro treatment with 5-FU and PTX were similar in secondary murine cysts. The employment of SEM and TEM allowed us to examine, at an ultrastructural level, the effects induced by 5-FU and PTX on E. granulosus germinal cells, protoscoleces and murine cysts. In conclusion, the data obtained clearly demonstrated that 5-FU and PTX at clinically achievable concentrations inhibit the survival of larval cells, protoscoleces and metacestodes. In vivo studies to test the antiparasitic activities of 5-FU and PTX are currently being undertaken on the murine model of cystic echinococcosis. PMID:25088684

  20. Inhalable, large porous PLGA microparticles loaded with paclitaxel: preparation, in vitro and in vivo characterization.

    PubMed

    Alipour, Shohreh; Montaseri, Hashem; Tafaghodi, Mohsen

    2015-01-01

    Large porous particles (LPPs) could be used as a useful carrier for non-invasive delivery to the deep lung. Pulmonary delivery of paclitaxel-loaded LPPs (PTX-LPPs) can help to eliminate the highly complicated and harmful solvent used in PTX parenteral formulations. PTX-LPPs with mass median aerodynamic diameter (MMAD) of 5.74 ± 0.09 μm, high encapsulation efficiency and good aerosolisation properties were produced using ammonium bicarbonate as porogen. Cytotoxicity of PTX-LPPs on A549 and Calu-6 cell lines was comparable with Free-PTX. Endotracheal administration of PTX-LPPs in rats exhibited PTX plasma concentration in the therapeutic range which lasted 4-fold longer than i.v. injection. The bioavailability was measured as 51 ± 7.1%. The lung targeting efficiency (Te) of PTX-LPPs was 11.9-fold higher than i.v. administration. PTX-LPPs could deliver a higher PTX to lung with a non-toxic plasma level in a longer duration which shows their pulmonary delivery suitability. PMID:26415914

  1. Dendritic polyglycerol sulfate as a novel platform for paclitaxel delivery: pitfalls of ester linkage.

    PubMed

    Sousa-Herves, Ana; Würfel, Patrick; Wegner, Nicole; Khandare, Jayant; Licha, Kai; Haag, Rainer; Welker, Pia; Calderón, Marcelo

    2015-03-01

    In this study, dendritic polyglycerol sulfate (dPGS) is evaluated as a delivery platform for the anticancer, tubulin-binding drug paclitaxel (PTX). The conjugation of PTX to dPGS is conducted via a labile ester linkage. A non-sulfated dendritic polyglycerol (dPG) is used as a control, and the labeling with an indocarbocyanine dye (ICC) renders multifunctional conjugates that can be monitored by fluorescence microscopy. The conjugates are characterized by (1)H NMR, UV-vis measurements, and RP-HPLC. In vitro cytotoxicity of PTX and dendritic conjugates is evaluated using A549 and A431 cell lines, showing a reduced cytotoxic efficacy of the conjugates compared to PTX. The study of uptake kinetics reveals a linear, non saturable uptake in tumor cells for dPGS-PTX-ICC, while dPG-PTX-ICC is hardly taken up. Despite the marginal uptake of dPG-PTX-ICC, it prompts tubulin polymerization to a comparable extent as PTX. These observations suggest a fast ester hydrolysis and premature drug release, as confirmed by HPLC measurements in the presence of plasma enzymes. PMID:25516353

  2. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting

    NASA Astrophysics Data System (ADS)

    Jin, Zhu; Lv, Yaqi; Cao, Hui; Yao, Jing; Zhou, Jianping; He, Wei; Yin, Lifang

    2016-06-01

    Rapid blood clearance and premature burst release are inherent drawbacks of conventional nanoparticles, resulting in poor tumor selectivity. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide homing to αVβ3 integrins. Herein, core-shell nanocapsules (NCs) and iRGD-modified NCs (iRGD-NCs) with high drug payload for paclitaxel (PTX) were prepared to enhance the antitumor activities of chemotherapy agents with poor water solubility. Improved in vitro and in vivo tumor targeting and penetration were observed with NCs and iRGD-NCs; the latter exhibited better antitumor activity because iRGD enhanced the accumulation and penetration of NCs in tumors. The NCs were cytocompatible, histocompatible, and non-toxic to other healthy tissues. The endocytosis of NCs was mediated by lipid rafts in an energy-dependent manner, leading to better cytotoxicity of PTX against cancer cells. In contrast with commercial product, PTX-loaded NCs (PTX-NCs) increased area under concentration-time curve (AUC) by about 4-fold, prolonged mean resident time (MRT) by more than 8-fold and reduced the elimination rate constant by greater than 68-fold. In conclusion, the present nanocarriers with high drug-loading capacity represent an efficient tumor-targeting drug delivery system with promising potential for cancer therapy.

  3. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting

    PubMed Central

    Jin, Zhu; Lv, Yaqi; Cao, Hui; Yao, Jing; Zhou, Jianping; He, Wei; Yin, Lifang

    2016-01-01

    Rapid blood clearance and premature burst release are inherent drawbacks of conventional nanoparticles, resulting in poor tumor selectivity. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide homing to αVβ3 integrins. Herein, core-shell nanocapsules (NCs) and iRGD-modified NCs (iRGD-NCs) with high drug payload for paclitaxel (PTX) were prepared to enhance the antitumor activities of chemotherapy agents with poor water solubility. Improved in vitro and in vivo tumor targeting and penetration were observed with NCs and iRGD-NCs; the latter exhibited better antitumor activity because iRGD enhanced the accumulation and penetration of NCs in tumors. The NCs were cytocompatible, histocompatible, and non-toxic to other healthy tissues. The endocytosis of NCs was mediated by lipid rafts in an energy-dependent manner, leading to better cytotoxicity of PTX against cancer cells. In contrast with commercial product, PTX-loaded NCs (PTX-NCs) increased area under concentration-time curve (AUC) by about 4-fold, prolonged mean resident time (MRT) by more than 8-fold and reduced the elimination rate constant by greater than 68-fold. In conclusion, the present nanocarriers with high drug-loading capacity represent an efficient tumor-targeting drug delivery system with promising potential for cancer therapy. PMID:27278751

  4. Anti-Cancer Efficacy of Paclitaxel Loaded in pH Triggered Liposomes.

    PubMed

    Jiang, Lei; He, Bin; Pan, Dayi; Luo, Kui; Yi, Qiangying; Gu, Zhongwei

    2016-01-01

    Smart liposomes that are responsive to the microenvironment of tumor tissue have been utilized to enhance chemotherapeutic efficiency. Here, we reported a novel liposome called Trojan horse liposome, which has a pH response, to enhance drug accumulation in tumor sites and intercellular uptake. L-lysine was used as a linker to connect 2,3-dimethylmaleic anhydride (DMA) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) to yield a DSPE-Lys-DMA (DLD) lipid. The pH-responsive DLD was mixed with other commercially available lipids to form liposomes. The size, morphology and zeta potential of the DLD liposomes (DLD-Lip) were measured. Paclitaxel (PTX) was loaded in the liposomes. The release profile, cellular uptake, in vitro and in vivo anticancer activity of the PTX-loaded liposomes were investigated. The results showed that the mean diameter of the liposomes was less than 200 nm. The zeta potential of the liposomes was negative at pH 7.4. However, it was transferred to positive at weak acidic pH values with the cleavage of DMA amide. The charge reversion of DMA in acidic environments facilitated the cellular internalization and endosome escape of DLD-Lip, which inhibited the proliferation of 4T1 cancer cells in vitro. The pH-responsive "Trojan horse"-like liposomes also exhibited efficient anticancer activity in the xenograft breast cancer model in vivo. PMID:27301174

  5. Self-assembly PEGylation assists SLN-paclitaxel delivery inducing cancer cell apoptosis upon internalization.

    PubMed

    Arranja, Alexandra; Gouveia, Luís F; Gener, Petra; Rafael, Diana F; Pereira, Carolina; Schwartz, Simó; Videira, Mafalda A

    2016-03-30

    In past years, a considerable progress has been made in the conversion of conventional chemotherapy into potent and safe nanomedicines. The ultimate goal is to improve the therapeutic window of current chemotherapeutics by reducing systemic toxicities and to deliver higher concentrations of the chemotherapeutic agents to malignant cells. In this work, we report that PEGylation of the nanocarriers increases drug intracellular bioavailability leading therefore to higher therapeutic efficacy. The surface of the already patented solid lipid nanoparticles (SLN) loaded with paclitaxel (SLN-PTX) was coated with a PEG layer (SLN-PTX_PEG) through an innovative process to provide stable and highly effective nanoparticles complying with the predefined pharmaceutical quality target product profile. We observed that PEGylation not only stabilizes the SLN, but also modulates their cellular uptake kinetics. As a consequence, the intracellular concentration of chemotherapeutics delivered by SLN-PTX_PEG increases. This leads to the increase of efficacy and thus it is expected to significantly circumvent cancer cell resistance and increase patient survival and cure. PMID:26853316

  6. Solid lipid nanoparticles of paclitaxel strengthened by hydroxypropyl-β-cyclodextrin as an oral delivery system.

    PubMed

    Baek, Jong-Suep; So, Jae-Woo; Shin, Sang-Chul; Cho, Cheong-Weon

    2012-10-01

    The objective of this study was to evaluate the potential of surface-modified paclitaxel (PTX)-incorporated solid lipid nanoparticles with hydroxypropyl-β-cyclodextrin (smPSH). The smPSH released 89.70 ± 3.99% of its entrapped PTX within 24 h when placed in dissolution medium containing sodium lauryl sulfate. The cellular uptake of PTX from smPSH in Caco-2 cells was 5.3-fold increased compared to a PTX solution based on a Taxol formulation. Moreover, smPSH showed an increased cytotoxicity compared to PTX solution. In addition, AUC (5.43 µg•h/ml) and Cmax (1.44 µg/ml) of smPSH were higher than those (1.81 µg•h/ml and 0.73 µg/ml) of PTX solution. The drug concentration of smPSH (11.12 ± 4.45 ng/mg of lymph tissue) in lymph nodes was higher than that of the PTX solution (0.89 ± 0.75 ng/mg of lymph tissue), suggesting that more PTX was transported to the lymphatic vessels in the form of smPSH. In conclusion, smPSH have a potential as an alternative delivery system for oral administration of PTX. PMID:22859311

  7. Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance.

    PubMed

    Jia, Lejiao; Li, Zhenyu; Shen, Jingyi; Zheng, Dandan; Tian, Xiaona; Guo, Hejian; Chang, Ping

    2015-07-15

    The objective of the study is to fabricate multifunctional mesoporous silica nanoparticles for achieving co-delivery of conventional antitumor drug paclitaxel (PTX) and the multidrug resistance reversal agent tetrandrine (TET) expecting to overcome multidrug resistance of MCF-7/ADR cells. The nanoparticles were facile to prepare by self-assemble in situ drug loading approach. Namely, PTX and TET were solubilized in the cetyltrimethylammonium bromide (CTAB) micelles and simultaneously silica resources hydrolyze and condense to form nanoparticles. The obtained nanoparticles, denoted as PTX/TET-CTAB@MSN, exhibited pH-responsive release property with more easily released in the weak acidic environment. Studies on cellular uptake of nanoparticles demonstrated TET could markedly increase intracellular accumulation of nanoparticles. Furthermore, the PTX/TET-CTAB@MSN suppressed tumor cells growth more efficiently than only delivery of PTX (PTX-CTAB@MSN) or the free PTX. Moreover, the nanoparticle loading drugs with a PTX/TET molar ratio of 4.4:1 completely reversed the resistance of MCF-7/ADR cells to PTX and the resistance reversion index was 72.3. Mechanism research showed that both TET and CTAB could arrest MCF-7/ADR cells at G1 phase; and besides PTX arrested cells at G2 phase. This nanocarrier might have important potential in clinical implications for co-delivery of multiple drugs to overcome MDR. PMID:25956050

  8. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors

    PubMed Central

    Bajaj, Gaurav; Kim, Mi Ran; Mohammed, Sulma I.; Yeo, Yoon

    2012-01-01

    Intraperitoneal (IP) chemotherapy is an effective way of treating local and regional malignancies confined in the peritoneal cavity such as ovarian cancer. However, a persistent major challenge in IP chemotherapy is the need to provide effective drug concentrations in the peritoneal cavity for an extended period of time. We hypothesized that hyaluronic acid (HA)-based in-situ crosslinkable hydrogel would serve as a carrier of paclitaxel (PTX) particles to improve their IP retention and therapeutic effects. In-vitro gel degradation and release kinetics studies demonstrated that HA gels could entrap microparticulate PTX (>100 μm) and release the drug over 10 days, gradually degraded by hyaluronidase, but had limited effect on retention of Taxol, a 14-nm micelle form of PTX. When administered IP to tumor-bearing nude mice, PTX was best retained in the peritoneal cavity as PTX-gel (microparticulate PTX entrapped in the HA gel), whereas Taxol-gel and other Taxol-based formulations left negligible amount of PTX in the cavity after 14 days. Despite the increase in IP retention of PTX, PTX-gel did not further decrease the tumor burdens than Taxol-based formulations, presumably due to the limited dissolution of PTX. This result indicates that spatial availability of a drug does not necessarily translate to the enhanced anti-tumor effect unless it is accompanied by the temporal availability. PMID:22178261

  9. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting.

    PubMed

    Jin, Zhu; Lv, Yaqi; Cao, Hui; Yao, Jing; Zhou, Jianping; He, Wei; Yin, Lifang

    2016-01-01

    Rapid blood clearance and premature burst release are inherent drawbacks of conventional nanoparticles, resulting in poor tumor selectivity. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide homing to αVβ3 integrins. Herein, core-shell nanocapsules (NCs) and iRGD-modified NCs (iRGD-NCs) with high drug payload for paclitaxel (PTX) were prepared to enhance the antitumor activities of chemotherapy agents with poor water solubility. Improved in vitro and in vivo tumor targeting and penetration were observed with NCs and iRGD-NCs; the latter exhibited better antitumor activity because iRGD enhanced the accumulation and penetration of NCs in tumors. The NCs were cytocompatible, histocompatible, and non-toxic to other healthy tissues. The endocytosis of NCs was mediated by lipid rafts in an energy-dependent manner, leading to better cytotoxicity of PTX against cancer cells. In contrast with commercial product, PTX-loaded NCs (PTX-NCs) increased area under concentration-time curve (AUC) by about 4-fold, prolonged mean resident time (MRT) by more than 8-fold and reduced the elimination rate constant by greater than 68-fold. In conclusion, the present nanocarriers with high drug-loading capacity represent an efficient tumor-targeting drug delivery system with promising potential for cancer therapy. PMID:27278751

  10. Chronic exposure to paclitaxel diminishes phosphoinositide signaling by calpain-mediated neuronal calcium sensor-1 degradation.

    PubMed

    Boehmerle, Wolfgang; Zhang, Kun; Sivula, Michael; Heidrich, Felix M; Lee, Yashang; Jordt, Sven-Eric; Ehrlich, Barbara E

    2007-06-26

    Paclitaxel (Taxol) is a well established chemotherapeutic agent for the treatment of solid tumors, but it is limited in its usefulness by the frequent induction of peripheral neuropathy. We found that prolonged exposure of a neuroblastoma cell line and primary rat dorsal root ganglia with therapeutic concentrations of Taxol leads to a reduction in inositol trisphosphate (InsP(3))-mediated Ca(2+) signaling. We also observed a Taxol-specific reduction in neuronal calcium sensor 1 (NCS-1) protein levels, a known modulator of InsP(3) receptor (InsP(3)R) activity. This reduction was also found in peripheral neuronal tissue from Taxol treated animals. We further observed that short hairpin RNA-mediated NCS-1 knockdown had a similar effect on phosphoinositide-mediated Ca(2+) signaling. When NCS-1 protein levels recovered, so did InsP(3)-mediated Ca(2+) signaling. Inhibition of the Ca(2+)-activated protease mu-calpain prevented alterations in phosphoinositide-mediated Ca(2+) signaling and NCS-1 protein levels. We also found that NCS-1 is readily degraded by mu-calpain in vitro and that mu-calpain activity is increased in Taxol but not vehicle-treated cells. From these results, we conclude that prolonged exposure to Taxol activates mu-calpain, which leads to the degradation of NCS-1, which, in turn, attenuates InsP(3)mediated Ca(2+) signaling. These findings provide a previously undescribed approach to understanding and treating Taxol-induced peripheral neuropathy. PMID:17581879

  11. Covalent Polyisobutylene-Paclitaxel Conjugates for Controlled Release from Potential Vascular Stent Coatings.

    PubMed

    Trant, John F; McEachran, Matthew J; Sran, Inderpreet; Turowec, Bethany A; de Bruyn, John R; Gillies, Elizabeth R

    2015-07-01

    The development of covalent polyisobutylene (PIB)-paclitaxel (PTX) conjugates as a potential approach to controlling drug release from vascular stent coatings is described. PIB-PTX materials containing ∼24 and ∼48 wt % PTX, conjugated via ester linkages, were prepared. The PTX release profiles were compared with those of physical mixtures of PTX with carboxylic acid-functionalized PIB and with the triblock copolymer polystyrene-b-PIB-b-polystyrene (SIBS). Covalent conjugation led to significantly slower drug release. Atomic force microscopy imaging of coatings of the materials suggested that the physical mixtures exhibited multiple domains corresponding to phase separation, whereas the materials in which PTX was covalently conjugated appeared homogeneous. Coatings of the conjugated materials on stainless steel surfaces suffered less surface erosion than the physically mixed materials, remained intact, and adhered well to the surface throughout the thirty-five day study. Tensile testing and rheological studies suggested that the incorporation of PTX into the polymer introduces similar physical changes to the PIB as the incorporation of a glassy polystyrene block does in SIBS. Cytotoxicity assays showed that the coatings did not release toxic levels of PTX or other species into a cell culture medium over a 24 h period, yet the levels of PTX in the materials were sufficient to prevent C2C12 cells from adhering to and proliferating on them. Overall, these results indicate that covalent PIB-PTX conjugates have promise as coatings for vascular stents. PMID:26066902

  12. Blood viscosity as a sensitive indicator for paclitaxel induced oxidative stress in human whole blood

    PubMed Central

    Harisa, Gamaleldin I.

    2014-01-01

    In this study, the in vitro effects of paclitaxel (PTX) and Cremophor-EL (CrEL) on blood viscosity and oxidative stress markers were investigated. Whole-blood samples were collected from healthy volunteers and co-incubated with PTX, CrEL or their combination then compared with control blood samples. After a 24 h incubation time, the whole-blood viscosity (WBV), erythrocyte sedimentation rate (ESR), levels of whole-blood malondialdehyde (MDA), protein carbonyl content (PCC) and reduced glutathione (GSH) were determined. Moreover, plasma nitrite and plasma sialic acid (SA) values were measured. The present results revealed that the incubation of blood samples with PTX, CrEL or PTX plus CrEL significantly increased the values of WBV, ESR, MDA and PCC compared to control samples. In contrast, a significant decrease in levels of GSH, SA and nitrite was observed after incubation of blood samples with tested agents compared to control. The effects of tested agents on the measured parameters were more pronounced in the case of blood samples treated with PTX plus CrEL. The present study demonstrates that PTX-induced oxidative stress is associated with an increase of WBV. PMID:25685043

  13. Tumor Angiogenesis Therapy Using Targeted Delivery of Paclitaxel to the Vasculature of Breast Cancer Metastases

    PubMed Central

    Kisiel, Walter; Lu, Yang J.; Petersen, Lars C.; Ndungu, John M.; Moore, Terry W.; Parker, Ernest T.; Sun, Aiming; Liotta, Dennis C.; El-Rayes, Bassel F.; Brat, Daniel J.; Snyder, James P.; Shoji, Mamoru

    2014-01-01

    Breast cancer aberrantly expresses tissue factor (TF) in cancer tissues and cancer vascular endothelial cells (VECs). TF plays a central role in cancer angiogenesis, growth, and metastasis and, as such, is a target for therapy and drug delivery. TF is the cognate receptor of factor VIIa (fVIIa). We have coupled PTX (paclitaxel, also named Taxol) with a tripeptide, phenylalanine-phenylalanine-arginine chloromethyl ketone (FFRck) and conjugated it with fVIIa. The key aim of the work is to evaluate the antiangiogenic effects of PTX-FFRck-fVIIa against a PTX-resistant breast cancer cell line. Matrigel mixed with VEGF and MDA-231 was injected subcutaneously into the flank of athymic nude mice. Animals were treated by tail vein injection of the PTX-FFRck-fVIIa conjugate, unconjugated PTX, or PBS. The PTX-FFRck-fVIIa conjugate significantly reduces microvessel density in matrigel (p < 0.01–0.05) compared to PBS and unconjugated PTX. The breast cancer lung metastasis model in athymic nude mice was developed by intravenous injection of MDA-231 cells expressing luciferase. Animals were similarly treated intravenously with the PTX-FFRck-fVIIa conjugate or PBS. The conjugate significantly inhibits lung metastasis as compared to the control, highlighting its potential to antagonize angiogenesis in metastatic carcinoma. In conclusion, PTX conjugated to fVIIa is a promising therapeutic approach for improving selective drug delivery and inhibiting angiogenesis. PMID:25574399

  14. The Effect of Surfactant on Paclitaxel Nanocrystals: An In Vitro and In Vivo Study.

    PubMed

    Liu, Hongzhuo; Ma, Yan; Liu, Dan; Fallon, John K; Liu, Feng

    2016-01-01

    In this study, we first investigated the change of the morphology of paclitaxel (PTX) nanocrystals by varying the type of stabilizer and increasing the amount of D-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) in PTX/TPGS nanocrystals. Rod-shaped nanocrystals changed into relatively thermally stable spherical micelles as the amount of TPGS increased to 1/20 (PTX/TPGS). With these increasing amounts of TPGS, higher cytotoxicity and cellular uptake were observed in P-glycoprotein-overexpressing PTX-resistant (H460/TaxR) cancer cells. Compared to Taxol, PTX/Pluronic F127 (F127) (1/5) nanocrystals, PTX/TPGS (1/5) nanocrystals and PTX/TPGS (1/40) micelles showed significantly sustained in vitro release profiles. Pharmacokinetic studies showed that PTX from these nanoformulations was cleared more rapidly than PTX from Taxol after intravenous administration. However, although presenting an unfavorable pharmacokinetic profile, the biodistribution study showed that PTX/TPGS (1/40) micelles were more effective in promoting accumulation of PTX in drug resistant tumors than Taxol, due to the P-gp inhibition effect of TPGS. PMID:27301180

  15. [Liver Atrophy and Failure Associated with Paclitaxel and Bevacizumab Combination Therapy for Metastatic Breast Cancer].

    PubMed

    Yamamoto, Mari; Ikeda, Masahiko; Kubo, Shinichiro; Tsukioki, Takahiro; Nakamoto, Shougo

    2016-07-01

    We managed 6 cases of severe liver atrophy and failure associated with paclitaxel and bevacizumab combination therapy (PB therapy)for HER2-negative metastatic breast cancer. In this case-controlstudy, we examined the records of these 6 patients to investigate past treatment, medication history, and degree of atrophy, and compared their data with that of 67 patients without liver atrophy. The degree of the liver atrophy used SYNAPSE VINCENT®of the image analysis software. The results showed that patients with liver atrophy had a longer pretreatment period than those without liver atrophy(33.5 months vs 15.5 months), and they also experienced a longer median time to treatment failure with PB therapy than other patients(11 months vs 6 months). The ratio of individuals presenting with diffuse liver metastasis among patients with liver metastasis was 80% with liver atrophy, compared to 8% without liver atrophy. The degree of liver atrophy was an average of 67%in terms of volume ratio before/after PB therapy(57-82%). The individualwith the greatest extent of liver atrophy died of liver failure, not as a result of breast cancer progression. The direct causal link between bevacizumab and liver atrophy and failure is unclear, but the individuals in this study had a long previous history of treatment, and diffuse liver metastases may develop in patients undergoing long periods of PB therapy, which may also cause liver atrophy; therefore, the possibility of liver failure should be considered in such cases. PMID:27431631

  16. Codelivery of Doxorubicin and Paclitaxel by Cross-Linked Multilamellar Liposome Enables Synergistic Antitumor Activity

    PubMed Central

    2015-01-01

    Combining chemotherapeutics is a promising method of improving cancer treatment; however, the clinical success of combination therapy is limited by the distinct pharmacokinetics of combined drugs, which leads to nonuniform distribution. In this study, we report a new robust approach to load two drugs with different hydrophilicities into a single cross-linked multilamellar liposomal vesicle (cMLV) to precisely control the drug ratio that reaches the tumor in vivo. The stability of cMLVs improves the loading efficiency and sustained release of doxorubicin (Dox) and paclitaxel (PTX), maximizing the combined therapeutic effect and minimizing the systemic toxicity. Furthermore, we show that the cMLV formulation maintains specific drug ratios in vivo for over 24 h, enabling the ratio-dependent combination synergy seen in vitro to translate to in vivo antitumor activity and giving us control over another parameter important to combination therapy. This combinatorial delivery system may provide a new strategy for synergistic delivery of multiple chemotherapeutics with a ratiometric control over encapsulated drugs to treat cancer and other diseases. PMID:24673622

  17. Liposomal formulation for co-delivery of paclitaxel and lapatinib, preparation, characterization and optimization.

    PubMed

    Ravar, Fatemeh; Saadat, Ebrahim; Kelishadi, Pouya Dehghan; Dorkoosh, Farid A

    2016-09-01

    Paclitaxel (PTX) is one of the most promising natural anticancer agents with a wide therapeutic range which is limited by its hydrophobic nature, low therapeutic index and more importantly, the emergence of multidrug resistance (MDR). Lapatinib (LPT) is a dual tyrosine kinase inhibitor with a significant potential to inhibit p-glycoproteins which form one of the main groups of proteins responsible for efflux pump mediated MDR. To overcome the PTX related MDR, a novel liposomal formulation was optimized for co-delivery of PTX and LPT by applying the D-optimal response surface methodology. The encapsulation efficiency (EE%) of the optimized formulation for LPT and PTX was 52 ± 3% and 68 ± 5, respectively. The optimized formulation showed a narrow size distribution with the average of 235 ± 12 nm. The transmission electron microscopy image showed that liposomes were round in shape and discrete. The release profile exhibited 93% and 71% drug release for PTX and LPT after 40 h in the sink condition. The differential scanning calorimetry analysis indicated the conversion of both drugs from crystalline state to molecular state in the optimized lyophilized formulation. The cytotoxicity of the prepared formulation was studied against 4T1 murine mammary cells. The liposomal formulation showed better cytotoxicity in comparison to the binary mixture of free drugs. PMID:26266828

  18. The in vitro protective effect of salicylic acid against paclitaxel and cisplatin-induced neurotoxicity.

    PubMed

    Cetin, Damla; Hacımuftuoglu, Ahmet; Tatar, Abdulgani; Turkez, Hasan; Togar, Basak

    2016-08-01

    Paclitaxel (PAC) and cisplatin (CIS) are two established chemotherapeutic drugs used in combination for the treatment of various solid tumors. However, the usage of PAC and CIS are limited because of the incidence of their moderate or severe neurotoxic side effects. In this study, we aimed to assess the protective role of salicylic acid (SA) against neurotoxicity caused by PAC and CIS. For this purpose, newborn Sprague Dawley rats were decapitated in sterile atmosphere and primary cortex neuron cultures were established. On the 10th day SA was added into culture plates. PAC and CIS were added on the 12th day. The cytotoxicity was determined by using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Oxidative alterations were assessed using total antioxidant capacity and total oxidative stress assays in rat primary neuron cell cultures. It was shown that both concentrations of PAC and CIS treatments caused neurotoxicity. Although SA decreased the neurotoxicity by CIS and PAC, it was more effective against the toxicity caused by CIS rather than the toxicity caused by PAC. In conclusion it was clearly revealed that SA decreased the neurotoxic effect of CIS and PAC in vitro. PMID:26199062

  19. Solid-Nanoemulsion Preconcentrate for Oral Delivery of Paclitaxel: Formulation Design, Biodistribution, and γ Scintigraphy Imaging

    PubMed Central

    Ahmad, Javed; Mir, Showkat R.; Kohli, Kanchan; Chuttani, Krishna; Mishra, Anil K.; Panda, A. K.

    2014-01-01

    Aim of present study was to develop a solid nanoemulsion preconcentrate of paclitaxel (PAC) using oil [propylene glycol monocaprylate/glycerol monooleate, 4 : 1 w/w], surfactant [polyoxyethylene 20 sorbitan monooleate/polyoxyl 15 hydroxystearate, 1 : 1 w/w], and cosurfactant [diethylene glycol monoethyl ether/polyethylene glycol 300, 1 : 1 w/w] to form stable nanocarrier. The prepared formulation was characterized for droplet size, polydispersity index, and zeta potential. Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to assess surface morphology and drug encapsulation and its integrity. Cumulative drug release of prepared formulation through dialysis bag and permeability coefficient through everted gut sac were found to be remarkably higher than the pure drug suspension and commercial intravenous product (Intaxel), respectively. Solid nanoemulsion preconcentrate of PAC exhibited strong inhibitory effect on proliferation of MCF-7 cells in MTT assay. In vivo systemic exposure of prepared formulation through oral administration was comparable to that of Intaxel in γ scintigraphy imaging. Our findings suggest that the prepared solid nanoemulsion preconcentrate can be used as an effective oral solid dosage form to improve dissolution and bioavailability of PAC. PMID:25114933

  20. A review of the ligands and related targeting strategies for active targeting of paclitaxel to tumours.

    PubMed

    Li, Juan; Wang, Fengshan; Sun, Deqing; Wang, Rongmei

    2016-08-01

    It has been 30 years since the discovery of the anti-tumour property of paclitaxel (PTX), which has been successfully applied in clinic for the treatment of carcinomas of the lungs, breast and ovarian. However, PTX is poorly soluble in water and has no targeting and selectivity to tumour tissue. Recent advances in active tumour targeting of PTX delivery vehicles have addressed some of the issues related to lack of solubility in water and non-specific toxicities associated with PTX. These PTX delivery vehicles are designed for active targeting to specific cancer cells by the addition of ligands for recognition by specific receptors/antigens on cancer cells. This article will focus on various ligands and related targeting strategies serving as potential tools for active targeting of PTX to tumour tissues, illustrating their use in different tumour models. This review also highlights the need of further studies on the discovery of receptors in different cells of specific organ and ligands with binding efficiency to these specific receptors. PMID:26878228

  1. Paclitaxel and cisplatin combined with intensity-modulated radiotherapy for upper esophageal carcinoma

    PubMed Central

    2013-01-01

    Purpose This study was conducted to evaluate the effectiveness and safety of intensity-modulated radiotherapy (IMRT) and concurrent paclitaxel plus cisplatin (TP regimen) for upper esophageal carcinoma. Methods 36 patients of upper esophageal carcinoma were retrospectively analyzed. Patients were treated with IMRT (median 60 Gy) combined with concurrent TP regimen chemotherapy. The Kaplan-Meier analysis was performed in statistical analysis. Toxicities were recorded according to the NCI CTC version 3.0. Results 36 patients aged 43–73 years (median 57 years). The median follow-up period was 14.0 months. The 1-year and 2-year survival rates were 83.3% and 42.8% respectively. The median progression-free survival (PFS) time and overall survival (OS) time were 12.0 (95% CI: 7.8–16.2 months) and 18.0 months (95% CI: 9.9–26.1 months), respectively. Grade 3 neutropenia, radiation-induced esophagitis and radiodermatitis were observed in 5 (13.9%), 3 (8.3%) and 8 (22.2%) patients respectively. There were two treatment-related deaths due to esophageal perforation and hemorrhea. Conclusions For those patients with upper esophageal carcinoma, IMRT combined with concurrent TP regimen chemotherapy was an effective treatment. However, more attention should be paid to the occurrence of perforation and hemorrhea. PMID:23531325

  2. Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells.

    PubMed

    Wang, Yue; Qu, Ye; Niu, Xiu Long; Sun, Wei Jia; Zhang, Xiao Lei; Li, Ling Zhi

    2011-11-01

    It has been widely reported that interleukin-8 (IL-8) is overexpressed in ovarian cyst fluid, ascites, serum, and tumor tissue from ovarian cancer (OVCA) patients, and elevated IL-8 expression correlates with a poor final outcome and chemosensitivity. However, the role of IL-8 expression in the acquisition of the chemoresistance phenotype and the underlining mechanisms of drug resistance in OVCA cells are not yet fully understood. Here we show that both exogenous (a relatively short period of treatment with recombination IL-8) and endogenous IL-8 (by transfecting with plasmid encoding for sense IL-8) induce cisplatin and paclitaxel resistance in non-IL-8-expressing A2780 cells, while deleting of endogenous IL-8 expression in IL-8-overexpressing SKOV-3 cells (by transfecting with plasmid encoding for antisense IL-8) promotes the sensitivity of these cells to anticancer drugs. IL-8-mediated resistance of OVCA cells exhibits decreased proteolytic activation of caspase-3. Meanwhile, the further study demonstrates that the chemoresistance caused by IL-8 is associated with increased expression of both multidrug resistance-related genes (MDR1) and apoptosis inhibitory proteins (Bcl-2, Bcl-xL, and XIAP), as well as activation of PI3K/Akt and Ras/MEK/ERK signaling. Therefore, modulation of IL-8 expression or its related signaling pathway may be a promising strategy of treatment for drug-resistant OVCA. PMID:21742513

  3. Paclitaxel-eluting balloon dilation of biliary anastomotic stricture after liver transplantation

    PubMed Central

    Hüsing, Anna; Reinecke, Holger; Cicinnati, Vito R; Beckebaum, Susanne; Wilms, Christian; Schmidt, Hartmut H; Kabar, Iyad

    2015-01-01

    AIM: To investigate the safety and effectiveness of endoscopic therapy with a paclitaxel-eluting balloon (PEB) for biliary anastomotic stricture (AS) after liver transplantation (LT). METHODS: This prospective pilot study enrolled 13 consecutive eligible patients treated for symptomatic AS after LT at the University Hospital of Münster between January 2011 and March 2014. The patients were treated by endoscopic therapy with a PEB and followed up every 8 wk by endoscopic retrograde cholangiopancreatography (ERCP). In cases of re-stenosis, further balloon dilation with a PEB was performed. Follow-up was continued until 24 mo after the last intervention. RESULTS: Initial technical feasibility, defined as successful balloon dilation with a PEB during the initial ERCP procedure, was achieved in 100% of cases. Long-term clinical success (LTCS), defined as no need for further endoscopic intervention for at least 24 mo, was achieved in 12 of the 13 patients (92.3%). The mean number of endoscopic interventions required to achieve LTCS was only 1.7 ± 1.1. Treatment failure, defined as the need for definitive alternative treatment, occurred in only one patient, who developed recurrent stenosis with increasing bile duct dilatation that required stent placement. CONCLUSION: Endoscopic therapy with a PEB is very effective for the treatment of AS after LT, and seems to significantly shorten the overall duration of endoscopic treatment by reducing the number of interventions needed to achieve LTCS. PMID:25624733

  4. Preparation and characterization of amphiphilic calixarene nanoparticles as delivery carriers for paclitaxel.

    PubMed

    Zhao, Zi-Ming; Wang, Yu; Han, Jin; Zhu, Hui-Dong; An, Lin

    2015-01-01

    Two types of amphoteric calix[n]arene carboxylic acid (CnCA) derivative, i.e., calix[6]arene hexa-carboxylic acid (C6HCA) and calix[8]arene octo-carboxylic acid (C8OCA), were synthesized by introducing acetoxyls into the hydroxyls of calix[n]arene (n=6, 8). C6HCA and C8OCA nanoparticles (NPs) were prepared successfully using the dialysis method. CnCA NPs had regular spherical shapes with an average diameter of 180-220 nm and possessed negative charges of greater than -30 mV. C6HCA and C8OCA NPs were stable in 4.5% bovine serum albumin solutions and buffers (pH 5-9), with a low critical aggregation concentration value of 5.7 mg·L(-1) and 4.0 mg·L(-1), respectively. C6HCA and C8OCA NPs exhibited good paclitaxel (PTX) loading capacity, with drug loading contents of 7.5% and 8.3%, respectively. The overall in vitro release behavior of PTX from the CnCA NPs was sustained, and C8OCA NPs had a slower release rate compared with C6HCA NPs. These favorable properties of CnCA NPs make them promising nanocarriers for tumor-targeted drug delivery. PMID:25757488

  5. Ultrasonication assisted Layer-by-Layer technology for the preparation of multi-functional anticancer drugs paclitaxel and lapatinib

    NASA Astrophysics Data System (ADS)

    Zhang, Xingcai

    In this dissertation, ultrasonication assisted Layer-by-Layer (LbL) technology for the preparation of multifunctional poorly water-soluble anticancer drug nanoparticles, paclitaxel and lapatinib, has been developed. Many FDA approved drugs are very low soluble in water; therefore, it is very difficult to load and control their release and targeting efficiently, which greatly confines their application. The development of this method will pave the way for the development and application of those low soluble anticancer drugs. In the first part of this dissertation, the first approach for powerful ultrasonication, the top-down approach (sonicating bulk drug crystals in polyelectrolyte solution), was successfully applied for the preparation of the nanoparticles of paclitaxel. For this approach, a 200 nm diameter was a kind of "magic" barrier for colloidal particles prepared. This diameter barrier may be related to the nucleation size of the solvent vapor microbubbles. Consequently, agents enhancing bubbling formation (such as NH4HCO3) were applied to decrease paclitaxel colloid particles to 100-120 nm. Those paclitaxel nanoparticles were Layer-by-Layer coated with a 10-20 nm polycation/polyanion shell to provide aqueous colloidal stability and slower particle dissolution. However, a large obstacle of these powerful ultrasonication methods was a necessity of long ca 45 minutes high power ultrasonication which resulted in TiO2 contamination from titanium electrode. The small amount of TiO2 contamination from ultrasonication did negatively affect the in vivo testing of this system in mice, and had to be removed before low toxicity of the Layer-by-Layer coated paclitaxel nanoparticles were observed. In the second part of the dissertation, the second approach for sonication, the bottom-up approach (sonicating drug in a water-miscible organic solvent followed by slow water add-in) was successfully applied for the preparation of the nanoparticles of lapatinib and paclitaxel

  6. [Efficacy and Safety of Neoadjuvant Chemotherapy Containing Nanoparticle Albumin-Bound Paclitaxel (NabPTX) in Operable Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer].

    PubMed

    Yoshioka, Shoko; Ota, Chika; Moriguchi, Yoshio

    2016-05-01

    The efficacy and safety of nanoparticle albumin-bound paclitaxel (nabPTX)-containing neoadjuvant chemotherapy (NAC) were investigated in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancers. Thirteen HER2-positive patients received NAC containing nabPTX or paclitaxel between June 2008 and December 2014. Of 13 HER2-positive patients, those who received nabPTX-containing NAC showed an 85.7% (6/7) pathological complete response (pCR) rate, whereas those who received paclitaxel-containing NAC showed a pCR rate of 50.0% (3/6). While 5 of 7 patients who received nabPTX-containing NAC developed Grade 3/4 neutropenia, none of them developed febrile neutropenia. Grade 1/2 peripheral neuropathy developed in all 7 patients who received nabPTX-containing NAC. This therapy may be a safe and effective treatment for HER2-positive breast cancer patients. PMID:27210086

  7. The enthalpies and kinetic of dissolution of diterpenoid derivative—paclitaxel in aqueous NaCl solutions at 309.5 K

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Zhao, Weiwei; Pu, Xiaohua

    2013-08-01

    The enthalpies of dissolution of paclitaxel in normal saline were measured using a RD496-2000 Calvet Microcalorimeter at 309.65 K under atmospheric pressure. The differential enthalpy (Δdif H m ) and molar enthalpy (Δsol H m) of dissolution of paclitaxel innormal saline were determined. The corresponding kinetic equation described the dissolution process was elucidated to be dα/ dt = 10-3.57(1 - a)1.15. Moreover, the half-life, Δsol H m , Δsol G m and Δsol S m of the dissolution process were also obtained. This work will provide a potential reference for the clinical application of paclitaxel.

  8. Comprehensive analysis of the GABAergic system gene expression profile in the anterior cingulate cortex of mice with Paclitaxel-induced neuropathic pain.

    PubMed

    Masocha, Willias

    2015-01-01

    The supraspinal pathophysiology of the painful neuropathy induced by paclitaxel, a chemotherapeutic agent, is not well understood. The γ-aminobutyric acid (GABA) neurotransmitter system has been implicated in the pathogenesis of neuropathic pain. Gene expression of GABAergic system molecules was examined in the anterior cingulate cortex (ACC) of mice brains, by real-time PCR, during paclitaxel-induced neuropathic pain, because this area is involved in pain perception and modulation that might contribute to neuropathic pain. Paclitaxel treatment resulted in thermal hyperalgesia and in increased GABA transporter-1 (GAT-1) mRNA expression, but not that of other GABA transporters or GABA(A) ergic enzymes in the ACC compared to vehicle treatment. Among the 18 GABA(A) receptor subunits analyzed, only β2, β3, δ, and γ2 had increased mRNA levels, and for the receptor subunit, only GABA(B2) had increased mRNA levels in the ACC of paclitaxel-treated mice, whereas the rest of the GABA receptor subunits were not altered. The mRNA expression of GABAA receptor subunits α6, θ, π, ρ1, ρ2, and ρ3 were not detected in the ACC. In conclusion, these data show that during paclitaxel-induced neuropathic pain there is significant increase in GAT-1 expression in the ACC. GAT-1 is the main transporter of GABA from the synapse, and thus its increased expression possibly results in less GABA at the synapse and dysregulation of the GABAergic system. GAT-1 is a potential therapeutic target for managing paclitaxel-induced neuropathic pain. PMID:25700370

  9. The Effect of Short-term Intra-arterial Delivery of Paclitaxel on Neointimal Hyperplasia and the Local Thrombotic Environment after Angioplasty

    SciTech Connect

    Yajun, E; He Nengshu Fan Hailun

    2013-08-01

    PurposeTo evaluate the effects of short-term intra-arterial delivery of paclitaxel on neointimal hyperplasia and the local thrombotic environment after angioplasty.MethodsAn experimental common carotid artery injury model was established in 60 rats, which were divided into experimental groups (40 rats) and controls (20 rats). Local intra-arterial administration of paclitaxel was applied at 2 doses (90 and 180 {mu}g/30 {mu}l), and the effects of short-term delivery of paclitaxel on neointimal hyperplasia and the expression of tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (t-PA) were evaluated at days 15 and 30 by hematoxylin and eosin staining and immunohistochemistry.ResultsAt 15 and 30 days after injury, neointimal thickness and area, the ratio of intimal area to medial area and the stenotic rate were all significantly decreased in the group provided the high concentrations (180 {mu}g/30 {mu}l) of paclitaxel for 2 min or 10 min and in the group provided the low concentration (90 {mu}g/30 {mu}l) of paclitaxel for 10 min (p < 0.05). At 30 days after injury, there were no significant changes in TF expression among all experimental groups. PAI-1 expression increased in the neointima of the high concentration 10 min group (p < 0.05), while t-PA expression decreased in the neointima of the high concentration 2 min group (p < 0.05).ConclusionIn the rat common carotid artery injury model, the short-term delivery of paclitaxel could effectively inhibit neointimal hyperplasia in the long term, with very little influence on the local expression of TF and PAI-1.

  10. Reduced BCL2 and CCND1 mRNA expression in human cervical cancer HeLa cells treated with a combination of everolimus and paclitaxel

    PubMed Central

    Alp, Ebru; Onen, H. Ilke; Menevse, Sevda

    2016-01-01

    Aim of the study Cervical cancer is the second most common malignancy in women worldwide. Everolimus displays direct effects on growth and proliferation of cancer cells via inhibition of mammalian target of rapamycin (mTOR) protein, which is known to be associated with drug resistance. In this study, we aimed to investigate the effects of everolimus, gemcitabine, and paclitaxel in terms of cell viability and mRNA expression levels of GRP78, CCND1, CASP2, and BCL2 genes. Material and methods HeLa cells were treated with different doses of everolimus, gemcitabine, and paclitaxel. Cell viability was assessed using MTT assay, and obtained dose response curves were used for the calculations of inhibitory concentration (IC) values. At the end of the treatment times with selected doses, RNA isolation and cDNA synthesis were performed. Finally, GRP78, CCND1, CASP2, and BCL2 genes mRNA expression levels were analysed using quantitative PCR. Results The IC50 value of everolimus was 0.9 µM for 24-hour treatment. Moreover, the IC50 value of gemcitabine and paclitaxel was found to be around 18.1 µM and 7.08 µM, respectively. Everolimus, gemcitabine, and paclitaxel treatments alone did not change the GRP78, CCND1, BCL2 and CASP2 mRNA expression levels significantly. However, combined treatment of everolimus and paclitaxel significantly reduced BCL2 and CCND1 mRNA expression (p < 0.05). In contrast, this combination did not change GRP78 and CASP2 mRNA expression levels (p > 0.05). Conclusions Down-regulation of CCND1 and BCL2 expression may be an important mechanism by which everolimus increases the therapeutic window of paclitaxel in cervical cancers. PMID:27095936

  11. Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) as second-line chemotherapy in HER2-negative, taxane-pretreated metastatic breast cancer patients: prospective evaluation of activity, safety, and quality of life

    PubMed Central

    Palumbo, Raffaella; Sottotetti, Federico; Trifirò, Giuseppe; Piazza, Elena; Ferzi, Antonella; Gambaro, Anna; Spinapolice, Elena Giulia; Pozzi, Emma; Tagliaferri, Barbara; Teragni, Cristina; Bernardo, Antonio

    2015-01-01

    Background A prospective, multicenter trial was undertaken to assess the activity, safety, and quality of life of nanoparticle albumin-bound paclitaxel (nab-paclitaxel) as second-line chemotherapy in HER2-negative, taxane-pretreated metastatic breast cancer (MBC). Patients and methods Fifty-two women with HER2-negative MBC who were candidates for second-line chemotherapy for the metastatic disease were enrolled and treated at three centers in Northern Italy. All patients had previously received taxane-based chemotherapy in the adjuvant or first-line metastatic setting. Single-agent nab-paclitaxel was given at the dose of 260 mg/m2 as a 30-minute intravenous infusion on day 1 each treatment cycle, which lasted 3 weeks, in the outpatient setting. No steroid or antihistamine premedication was provided. Treatment was stopped for documented disease progression, unacceptable toxicity, or patient refusal. Results All of the enrolled patients were evaluable for the study endpoints. The objective response rate was 48% (95% CI, 31.5%–61.3%) and included complete responses from 13.5%. Disease stabilization was obtained in 19 patients and lasted >6 months in 15 of them; the overall clinical benefit rate was 77%. The median time to response was 70 days (range 52–86 days). The median progression-free survival time was 8.9 months (95% CI, 8.0–11.6 months, range 5–21+ months). The median overall survival point has not yet been reached. Toxicities were expected and manageable with good patient compliance and preserved quality of life in patients given long-term treatment. Conclusion Our results showed that single-agent nab-paclitaxel 260 mg/m2 every 3 weeks is an effective and well tolerated regimen as second-line chemotherapy in HER2-negative, taxane-pretreated MBC patients, and that it produced interesting values of objective response rate and progression-free survival without the concern of significant toxicity. Specifically, the present study shows that such a regimen

  12. Enhanced in vitro antiproliferative effects of EpCAM antibody-functionalized paclitaxel-loaded PLGA nanoparticles in retinoblastoma cells

    PubMed Central

    Mitra, Moutushy; Misra, Ranjita; Harilal, Anju; Sahoo, Sanjeeb K

    2011-01-01

    Background To specifically deliver paclitaxel (PTX) to retinoblastoma (RB) cells, the anionic surface-charged poly(lactic-co-glycolic acid) (PLGA) NPs loaded with paclitaxel were conjugated with epithelial cell adhesion molecule (EpCAM) antibody for enhancing site-specific intracellular delivery of paclitaxel against EpCAM overexpressing RB cells. Methods PTX-loaded PLGA NPs were prepared by the oil-in-water single emulsion solvent evaporation method, and the PTX content in NPs was estimated by the reverse phase isocratic mode of high performance liquid chromatography. Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide chemistry was employed for the covalent attachment of monoclonal EpCAM antibody onto the NP surface. In vitro cytotoxicity of native PTX, unconjugated PTX-loaded NPs (PTX-NPs), and EpCAM antibody-conjugated PTX-loaded nanoparticles (PTX-NP-EpCAM) were evaluated on a Y79 RB cell line by a dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, while cellular apoptosis, cysteinyl-aspartic acid protease (caspase)-3 activation, Poly (adenosine diphosphate-ribose) polymerase (PARP) cleavage, and cell-cycle arrest were quantified by flow cytometry. By employing flow cytometry and fluorescence image analyses, the extent of cellular uptake was comparatively evaluated. Results PTX-NP-EpCAM had superior antiproliferation activity, increased arrested cell population at the G2-M phase, and increased activation of caspase-3, followed by PARP cleavage in parallel with the induction of apoptosis. Increased uptake of PTX-Np-EpCAM by the cells suggests that they were mainly taken up through EpCAM mediated endocytosis. Conclusions EpCAM antibody-functionalized biodegradable NPs for tumor-selective drug delivery and overcoming drug resistance could be an efficient therapeutic strategy for retinoblastoma treatment. PMID:22065926

  13. Honokiol enhances paclitaxel efficacy in multi-drug resistant human cancer model through the induction of apoptosis.

    PubMed

    Wang, Xu; Beitler, Jonathan J; Wang, Hong; Lee, Michael J; Huang, Wen; Koenig, Lydia; Nannapaneni, Sreenivas; Amin, A R M Ruhul; Bonner, Michael; Shin, Hyung Ju C; Chen, Zhuo Georgia; Arbiser, Jack L; Shin, Dong M

    2014-01-01

    Resistance to chemotherapy remains a major obstacle in cancer therapy. This study aimed to evaluate the molecular mechanism and efficacy of honokiol in inducing apoptosis and enhancing paclitaxel chemotherapy in pre-clinical multi-drug resistant (MDR) cancer models, including lineage-derived human MDR (KB-8-5, KB-C1, KB-V1) and their parental drug sensitive KB-3-1 cancer cell lines. In vitro analyses demonstrated that honokiol effectively inhibited proliferation in KB-3-1 cells and the MDR derivatives (IC50 ranging 3.35 ± 0.13 µg/ml to 2.77 ± 0.22 µg/ml), despite their significant differences in response to paclitaxel (IC50 ranging 1.66 ± 0.09 ng/ml to 6560.9 ± 439.52 ng/ml). Honokiol induced mitochondria-dependent and death receptor-mediated apoptosis in MDR KB cells, which was associated with inhibition of EGFR-STAT3 signaling and downregulation of STAT3 target genes. Combined treatment with honokiol and paclitaxel synergistically augmented cytotoxicity in MDR KB cells, compared with treatment with either agent alone in vitro. Importantly, the combined treatment significantly inhibited in vivo growth of KB-8-5 tumors in a subcutaneous model. Tumor tissues from the combination group displayed a significant inhibition of Ki-67 expression and an increase in TUNEL-positive cells compared with the control group. These results suggest that targeting multidrug resistance using honokiol in combination with chemotherapy drugs may provide novel therapeutic opportunities. PMID:24586249

  14. A phase I/II study of neoadjuvant liposomal doxorubicin, paclitaxel, and hyperthermia in locally advanced breast cancer

    PubMed Central

    Vujaskovic, Zeljko; Kim, Dong W.; Jones, Ellen; Lan, Lan; McCall, Linda; Dewhirst, Mark W.; Craciunescu, Oana; Stauffer, Paul; Liotcheva, Vlayka; Betof, Allison; Blackwell, Kimberly

    2010-01-01

    Purpose The prognosis for locally advanced breast cancer (LABC) patients continues to be poor, with an estimated five-year survival of only 50–60%. Preclinical data demonstrates enhanced therapeutic efficacy with liposomal encapsulation of doxorubicin combined with hyperthermia (HT). Therefore this phase I/II study was designed to evaluate the safety and efficacy of a novel neoadjuvant combination treatment of paclitaxel, liposomal doxorubicin, and hyperthermia. Materials and methods Eligible patients received four cycles of neoadjuvant liposomal doxorubicin (30–75 mg/m2), paclitaxel (100–175 mg/m2), and hyperthermia. They subsequently underwent either a modified radical mastectomy or lumpectomy with axillary node dissection followed by radiation therapy and then eight cycles of CMF (cyclophosphamide, methotrexate, 5-fluorouracil) chemotherapy. Results Forty-seven patients with stage IIB-III LABC were enrolled and 43 patients were evaluable. Fourteen patients (33%) had inflammatory breast cancer. Combined (partial + complete) clinical response rate was 72% and combined pathological response rate was 60%. Four patients achieved a pathologically complete response. Sixteen patients were eligible for breast-conserving surgery. The cumulative equivalent minutes (CEM 43) at T90 (tenth percentile of temperature distribution) was significantly greater for those with a pathological response. Four-year disease-free survival was 63% (95% CI, 46%–76%) and the four-year overall survival was 75% (95% CI, 58–86%). Conclusions Neoadjuvant therapy using paclitaxel, liposomal doxorubicin and hyperthermia is a feasible and well tolerated treatment strategy in patients with LABC. The thermal dose parameter CEM 43 T90 was significantly correlated with attaining a pathological response. PMID:20377362

  15. Efficacy and toxicity of salvage weekly paclitaxel chemotherapy in non-Asian patients with advanced oesophagogastric adenocarcinoma

    PubMed Central

    Tarazona, Noelia; Smyth, Elizabeth C.; Peckit, Clare; Chau, Ian; Watkins, David; Rao, Sheela; Starling, Naureen; Cunningham, David

    2016-01-01

    Objectives: Survival for oesophagogastric adenocarcinoma (OGA) patients varies globally and clinical trial results are seldom replicated in clinical practice. We sought to examine the efficacy and toxicity of salvage paclitaxel chemotherapy for patients with advanced OGA at our institution. Methods: Advanced OGA patients treated with paclitaxel between June 2011 and February 2014 were identified from the electronic record at the Royal Marsden Hospital (RMH), London. Chart review was performed to obtain demographics, performance status (PS), laboratory parameters, radiological response and dates of progression, death and last follow up. Overall survival (OS) and progression-free survival (PFS) were estimated using the Kaplan–Meier method. Multivariate Cox regression analysis examined the interaction between clinical and laboratory parameters and survival. Results: Fifty-seven patients were identified; OS and PFS were 5.8 and 2.6 months respectively. From first-line chemotherapy, median OS was 14.3 months. Two-year and three-year survival rates from diagnosis were 26% and 13%. More than or equivalent to Grade 3 neutropenia occurred in 13% of patients. In multivariate analysis, PS more than or equal to 2, alkaline phosphatase (ALP) more than or equal to100 U/L, and previous rechallenge with platinum were independent prognostic factors for OS. Conclusions: OGA cancer patients treated at RMH with salvage paclitaxel had an OS equivalent to patients in clinical trials with more (33%) PS = 2 patients treated and less haematological toxicity than Asian patients. Eastern Cooperative Oncology Group (ECOG) PS more than or equal to 2, ALP more than or equal to 100 U/L, and prior platinum rechallenge were associated with poor survival. However, the proportion of patients surviving more than or equal to two years from diagnosis demonstrates a clinically relevant improvement from historical controls. PMID:26929786

  16. Long-Term Outcomes and Toxicity of Concurrent Paclitaxel and Radiotherapy for Locally Advanced Head-and-Neck Cancer

    SciTech Connect

    Citrin, Deborah Mansueti, John; Likhacheva, Anna; Sciuto, Linda; Albert, Paul S.; Rudy, Susan F.; Cooley-Zgela, Theresa; Cotrim, Ana; Solomon, Beth; Colevas, A. Dimitrios; Russo, Angelo; Morris, John C.; Herscher, Laurie; Smith, Sharon

    2009-07-15

    Purpose: To report the long-term outcomes and toxicity of a regimen of infusion paclitaxel delivered concurrently with radiotherapy in patients with locally advanced squamous cell carcinoma of the head and neck. Patients and Methods: Between 1995 and 1999, 35 patients with nonmetastatic, Stage III or IV squamous cell carcinoma of the head and neck were treated with three cycles of paclitaxel as a 120-h continuous infusion beginning on Days 1, 21, and 42, concurrent with radiotherapy. The initial 16 patients received 105 mg/m{sup 2}/cycle, and the subsequent 19 patients received 120 mg/m{sup 2}/cycle. External beam radiotherapy was delivered to a dose of 70.2-72 Gy at five fractions weekly. Patients were followed to evaluate the disease outcomes and late toxicity of this regimen. Results: The median follow-up for all patients was 56.5 months. The median survival was 56.5 months, and the median time to local recurrence was not reached. Of the 35 patients, 15 (43%) developed hypothyroidism. Of the 33 patients who underwent percutaneous endoscopic gastrostomy tube placement, 11 were percutaneous endoscopic gastrostomy tube dependent until death or their last follow-up visit. Also, 5 patients (14%) required a tracheostomy until death, and 3 (9%) developed a severe esophageal stricture. All evaluated long-term survivors exhibited salivary hypofunction. Fibrosis in the radiation field occurred in 24 patients (69%). Conclusion: The results of our study have shown that concurrent chemoradiotherapy with a 120-h infusion of paclitaxel provides long-term local control and survival in patients with squamous cell carcinoma of the head and neck. Xerostomia, hypothyroidism, esophageal and pharyngeal complications, and subcutaneous fibrosis were common long-term toxicities; however, the vast majority of toxicities were grade 1 or 2.

  17. Full dose paclitaxel plus vinorelbine as salvage chemotherapy in anthracycline-resistant advanced breast cancer: a phase II study.

    PubMed

    Polyzos, A; Tsavaris, N; Kosmas, C; Gogas, H; Toufexi, H; Kosmidis, C; Markopoulos, C; Giannopoulos, A; Papadopoulos, O; Stamatiadis, D; Kouraklis, G

    2003-12-01

    This phase II trial studied the efficacy and toxicity of full dose paclitaxel plus vinorelbine, as salvage chemotherapy in patients with metastatic breast cancer resistant to anthracyclines. Patients received vinorelbine (30 mg/m2) followed 1 hour later by full dose paclitaxel (175 mg/m2) every 3 weeks for a maximum of 8 cycles or until disease progression. Because of the heavy pretreatment of the patients, prophylactic granulocyte-colony stimulating factor (5 microg/kg) was administered daily for 5-10 days. To minimize potentially cumulative neurotoxicity due to both agents, amifostine was given prior to chemotherapy. Thirty-four patients: 8 with tumors primary resistant and 26 with tumors recurring within 3-6 months after anthracycline treatment, were evaluable for efficacy and toxicity. Objective responses occurred in 11 patients [32%; 95% confidence interval (CI): 16.3-47.7%), all partial responses. Responses were observed in lung and liver. The median response duration was 4 months (range 3-7), median time to progression was 5 months (range 3-9) and median overall survival was 8 months (range 4-24). Neutropenia was dose limiting (35% grade 3-4 toxicity). The left ventricular ejection fraction, measured and followed in 18 patients, fell less than 20% below baseline level in 9 patients (50%), but only one patient developed congestive cardiac failure. The paclitaxel-vinorelbine regimen was moderately tolerated and moderately effective in poor prognosis breast cancer patients with visceral metastases and tumors resistant to anthracyclines. The combination at these doses and schedules should be considered in the design of regimens for advanced breast cancer. PMID:14998089

  18. Impact of the radiotherapy combined with cisplatin plus paclitaxel chemotherapy on the immunologic functions in the patients with esophageal cancer.

    PubMed

    Liu, Ru; Zhang, Jianlong; He, Chunyu; Jiang, Qiong; Liu, Jinsong; Fan, Ruitai

    2016-07-01

    To study the impact of radiotherapy combined with cisplatin plus paclitaxel chemotherapy on the immunologic functions in the patients with esophageal cancer, from July 2012 to September 2014, 82 patients of esophageal cancer which were receiving treatment in our hospital chose out for this research. Among them, 42 patients received radiotherapy only, as the control group; while the other 40 patients with concurrent cisplatin plus paclitaxel chemo radiotherapy was taken as the observation group. Then the immunologic functions, toxic and side effects were compared between the two groups as well as the survival rates after 3-year-followup-visit, Th level of the total T cells, Th cells and the ratio of Th cells to Ts cells after receiving treatment all increased significantly compared with prior treatment. And the difference was statistically significant (P<0.05). After the treatment, the level of T cells, Th cells and the ratio of Th cells to Ts cells of the observation group were all significantly lower than the control group, and the difference was statistically significant (P<0.05). While the difference of the ratio of Ts cells to natural killer cells (NK cells) between the two groups were not significant. The toxic and side effects were mainly myelosuppression, decrease leukocyte, esophagit, nausea and vomiting, and it was not statistically significant in the difference between the two groups (P >0.05), the survival rates from the first year to the third year in the observation group were respectively significantly higher than the control group, and the difference was statistically significant (P<0.05). Radiotherapy combined with cisplatin plus paclitaxel chemotherapy could properly increase the immunologic functions in patients with esophageal cancer, benefiting for the survival rate with a good security. Therefore, it was worth promoting. PMID:27592476

  19. Phase 1b dose-finding study of motesanib with docetaxel or paclitaxel in patients with metastatic breast cancer.

    PubMed

    De Boer, Richard H; Kotasek, Dusan; White, Shane; Koczwara, Bogda; Mainwaring, Paul; Chan, Arlene; Melara, Rebeca; Ye, Yining; Adewoye, Adeboye H; Sikorski, Robert; Kaufman, Peter A

    2012-08-01

    The purpose of this study was to investigate the safety, tolerability, and pharmacokinetics of motesanib when combined with docetaxel or paclitaxel in patients with metastatic breast cancer. In this open-label, dose-finding, phase 1b study, patients received motesanib 50 or 125-mg orally once daily (QD), beginning day 3 of cycle 1 of chemotherapy, continuously in combination with either paclitaxel 90 mg/m(2) on days 1, 8, and 15 every 28-day cycle (Arm A) or docetaxel 100 mg/m(2) on day 1 every 21-day cycle (Arm B). Dose escalation to motesanib 125 mg QD occurred if the incidence of dose-limiting toxicities (DLTs, primary endpoint) was ≤ 33 %. If the maximum tolerated dose (MTD) of motesanib was established in Arm B, additional patients could receive motesanib at the MTD plus docetaxel 75 mg/m(2). Forty-six patients were enrolled and 45 received ≥ 1 dose of motesanib. The incidence of DLTs was <33 % in all cohorts; thus, motesanib 125 mg QD was established as the MTD. Seven patients (16 %) had grade 3 motesanib-related adverse events including cholecystitis (2 patients) and hypertension (2 patients). Pharmacokinetic parameters of motesanib were similar to those reported in previous studies. The objective response rate was 56 % among patients with measurable disease at baseline who received motesanib in combination with taxane-based chemotherapy. The addition of motesanib to either paclitaxel or docetaxel was generally tolerable up to the 125-mg QD dose of motesanib. The objective response rate of 56 % suggests a potential benefit of motesanib in combination with taxane-based chemotherapy. PMID:22872523

  20. Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel Conjugates with Acid-labile Linkages as a pH-Sensitive and Functional Nanoscopic Platform for Paclitaxel Delivery

    PubMed Central

    Zou, Jiong; Zhang, Fuwu; Zhang, Shiyi; Pollack, Stephanie F.; Elsabahy, Mahmoud; Fan, Jingwei; Wooley, Karen L.

    2013-01-01

    There has been an increasing interest to develop new types of stimuli-responsive drug delivery vehicles with high drug loading and controlled release properties for chemotherapeutics. An acid-labile, polyphosphoester-based degradable, polymeric paclitaxel (PTX) conjugate containing ultra-high levels of PTX loading has been improved significantly, in this second generation development, which involves connection of each PTX molecule to the polymer backbone via a pH-sensitive β-thiopropionate linkage. The results for this system indicate that it has great potential as an effective anti-cancer agent. Poly(ethylene oxide)-block-polyphosphoester-graft-PTX drug conjugate (PEO-b-PPE-g-PTX G2) was synthesized by organocatalyst-promoted ring-opening polymerization of 2-(but-3-en-1-yloxy)-1,3,2-dioxaphospholane-2-oxide from a PEO macroinitiator, followed by thermo-promoted thiolene click conjugation of a thiol-functionalized PTX prodrug to the pendant alkene groups of the block copolymer. The PEO-b-PPE-g-PTX G2 formed well-defined nanoparticles in aqueous solution, by direct dissolution into water, with a number-averaged hydrodynamic diameter of 114 ± 31 nm. The conjugate had PTX loading capacity as high as 53 wt%, and a maximum PTX concentration of 0.68 mg/mL in water (vs. 1.7 μg/mL for free PTX). Although the PTX concentration is ca. 10× less than for our first generation material, its accelerated release allowed for similar free PTX concentrations vs. time. The PEO-b-PPE-g-PTX G2 exhibited accelerated drug release under acidic conditions (~50 wt% PTX released in 8 d) compared to neutral conditions (~20 wt% PTX released in 8 d) and compared to the first generation analog that contained ester linkages between PTX and the polymer backbone (<5 wt% PTX released in 4 d), due to their acid-sensitive hydrolytically-labile β-thiopropionate linkages between PTX molecules and the polymer backbone. The positive cell-killing activity of PEO-b-PPE-g-PTX G2 against two cancer cell

  1. Prospective randomized study comparing concomitant chemoradiotherapy using weekly cisplatin & paclitaxel versus weekly cisplatin in locally advanced carcinoma cervix

    PubMed Central

    Seam, Rajeev; Gupta, Manoj; Gupta, Manish

    2016-01-01

    Background To evaluate the benefit with the addition of paclitaxel to cisplatin-based concurrent chemoradiotherapy (C-CRT) for the treatment of locally advanced carcinoma of the uterine cervix in terms of local control, disease free survival (DFS) and overall survival (OS). Methods From 1/7/2011 to 31/5/2012, 81 women (median age of 50 years) with newly diagnosed, histopathologically proven carcinoma cervix with FIGO stages IIA to IIIB were randomized to two arms—cisplatin 40 mg/m2/week for 5 weeks was given in single agent cisplatin (control arm), while cisplatin 30 mg/m2/week and paclitaxel 50 mg/m2/week for 5 weeks were given in cisplatin and paclitaxel (study arm). External beam radiotherapy (EBRT) was delivered to a total dose of 50 Gray (Gy) in 25 fractions (#) followed by intracavitary (I/C) brachytherapy or supplement EBRT at 20 Gy/10# with 2 cycles of respective chemotherapy. This prospective trial was registered with clinicaltrials.gov (NCT01593306). Results Patients (n=81) had a maximum follow up of 36 months with a median follow up of 29 months. At first follow up study arm showed complete response in 84% vs. 75.6% in control arm (P=0.4095). An increase in toxicities was observed in the study arm in comparison to the control arm in terms of haematological grade II (35% vs. 12.2%), gastrointestinal (GI) grade III (20% vs. 7.4%) and GI grade IV (12.5% vs. 2.4%) toxicities. At median follow-up, the study arm demonstrated enhanced outcomes over the control arm in terms of DFS (79.5% vs. 64.3%; P=0.07) and OS (87.2% vs. 78.6%; P=0.27). Conclusions Despite the expected increase in manageable toxicities, these early results reveal promise with the inclusion of paclitaxel into the standard cisplatin based chemoradiation regime. Larger multi-institutional studies are justified to confirm a potential for the enhancement of response rates and survival. PMID:26904570

  2. Improved anti-glioblastoma efficacy by IL-13Rα2 mediated copolymer nanoparticles loaded with paclitaxel

    PubMed Central

    Wang, Baoyan; Lv, Lingyan; Wang, Zhi; Jiang, Yan; Lv, Wei; Liu, Xin; Wang, Zhongyuan; Zhao, Yue; Xin, Hongliang; Xu, Qunwei

    2015-01-01

    Glioma presents one of the most malignant brain tumors, and the therapeutic effect is often limited due to the existence of brain tumor barrier. Based on interleukin-13 receptor α2 (IL-13Rα2) over-expression on glioma cell, it was demonstrated to be a potential receptor for glioma targeting. In this study, Pep-1-conjugated PEGylated nanoparticles loaded with paclitaxel (Pep-NP-PTX) were developed as a targeting drug delivery system for glioma treatment. The Pep-NP-PTX presented satisfactory size of 95.78 nm with narrow size distribution. Compared with NP-PTX, Pep-NP-PTX exhibited significantly enhanced cellular uptake in C6 cells (p < 0.001). The in vitro anti-proliferation evaluation showed that the IC50 were 146 ng/ml and 349 ng/ml of Pep-NP-PTX and NP-PTX, respectively. The in vivo fluorescent image results indicated that Pep-NP had higher specificity and efficiency in intracranial tumor accumulation. Following intravenous administration, Pep-NP-PTX could enhance the distribution of PTX in vivo glioma section, 1.98, 1.91 and 1.53-fold over that of NP-PTX group after 0.5, 1 and 4 h, respectively. Pep-NP-PTX could improve the anti-glioma efficacy with a median survival time of 32 days, which was significantly longer than that of PTX-NP (23 days) and Taxol® (22 days). In conclusion, Pep-NP-PTX is a potential targeting drug delivery system for glioma treatment. PMID:26567528

  3. Bile salt liposomes for enhanced lymphatic transport and oral bioavailability of paclitaxel.

    PubMed

    Zhang, Bin; Xue, Aiying; Zhang, Chen; Yu, Jinlong; Chen, Wen; Sun, Deqing

    2016-06-01

    Paclitaxel (PTX), a BCS class IV drug that is characterized by its poor solubility and is a substrate for P-glycoprotein, is one of the most widely used antineoplastic agents. However, oral administration of PTX for chemotherapy is highly challenging. The aim of this study was to develop bile-salt liposomes (BS-Lips) to enhance the absorption of PTX and thus improve its therapeutic outcome. The BS-Lips were prepared by the thin-film hydration method and characterized in terms of particle size and morphology. Drug release and in vitro stability in simulated gastrointestinal fluids and in media of different pH values were evaluated, as well as in vivo performance, including antitumor activity and pharmacokinetics in rats, with the plasma concentrations determined by a HPLC method. The PTX-loaded BS-Lips were successfully prepared with a diameter of approximately 150 nm and an entrapment efficiency of greater than 90 percent. Moreover, the BS-Lips were not affected by gastrointestinal enzymes or pH alternation, as evident from the unchanged particle size and the drug retained in BS-Lips after 6 h incubation. The insertion of bile salt into the lipid layer of liposomes increased the lymphatic transport of PTX by twofold. Importantly, BS-Lips increased the oral bioavailability of PTX by 2.5 and 4-fold, respectively, compared with conventional liposomes (Lips) and Taxol (free drug), thereby displaying a better inhibition of tumor growth that was similar to the group injected intravenously with Taxol. In conclusion, the BS-Lips represent promising vehicles for the oral delivery of PTX, thereby enabling an intravenous-to-oral switch for cancer chemotherapy. PMID:27455550

  4. Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery

    PubMed Central

    Zhang, Linhua; Zhu, Dunwan; Dong, Xia; Sun, Hongfan; Song, Cunxian; Wang, Chun; Kong, Deling

    2015-01-01

    The purpose of this study was to develop a novel lipid–polymer hybrid drug carrier comprised of folate (FA) modified lipid-shell and polymer-core nanoparticles (FLPNPs) for sustained, controlled, and targeted delivery of paclitaxel (PTX). The core-shell NPs consist of 1) a poly(ε-caprolactone) hydrophobic core based on self-assembly of poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone) (PCL-PEG-PCL) amphiphilic copolymers, 2) a lipid monolayer formed with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG2000), 3) a targeting ligand (FA) on the surface, and were prepared using a thin-film hydration and ultrasonic dispersion method. Transmission electron microscopy and dynamic light scattering analysis confirmed the coating of the lipid monolayer on the hydrophobic polymer core. Physicochemical characterizations of PTX-loaded FLPNPs, such as particle size and size distribution, zeta potential, morphology, drug loading content, encapsulation efficiency, and in vitro drug release, were also evaluated. Fluorescent microscopy proved the internalization efficiency and targeting ability of the folate conjugated on the lipid monolayer for the EMT6 cancer cells which overexpress folate receptor. In vitro cytotoxicity assay demonstrated that the cytotoxic effect of PTX-loaded FLPNPs was lower than that of Taxol®, but higher than that of PTX-loaded LPNPs (without folate conjugation). In EMT6 breast tumor model, intratumoral administration of PTX-loaded FLPNPs showed similar antitumor efficacy but low toxicity compared to Taxol®. More importantly, PTX-loaded FLPNPs showed greater tumor growth inhibition (65.78%) than the nontargeted PTX-loaded LPNPs (48.38%) (P<0.05). These findings indicated that the PTX loaded-FLPNPs with mixed lipid monolayer shell and biodegradable polymer core would be a promising nanosized drug formulation for tumor-targeted therapy. PMID:25844039

  5. Development and in vitro characterization of paclitaxel and docetaxel loaded into hydrophobically derivatized hyperbranched polyglycerols.

    PubMed

    Mugabe, C; Liggins, R T; Guan, D; Manisali, I; Chafeeva, I; Brooks, D E; Heller, M; Jackson, J K; Burt, H M

    2011-02-14

    In this study we report the development and in vitro characterization of paclitaxel (PTX) and docetaxel (DTX) loaded into hydrophobically derivatized hyperbranched polyglycerols (HPGs). Several HPGs derivatized with hydrophobic groups (C(8/10) alkyl chains) (HPG-C(8/10)-OH) and/or methoxy polyethylene glycol (MePEG) chains (HPG-C(8/10)-MePEG) were synthesized. PTX or DTX were loaded into these polymers by a solvent evaporation method and the resulting nanoparticle formulations were characterized in terms of size, drug loading, stability, release profiles, cytotoxicity, and cellular uptake. PTX and DTX were found to be chemically unstable in unpurified HPGs and large fractions (∼80%) of the drugs were degraded during the preparation of the formulations. However, both PTX and DTX were found to be chemically stable in purified HPGs. HPGs possessed hydrodynamic radii of less than 10nm and incorporation of PTX or DTX did not affect their size. The release profiles for both PTX and DTX from HPG-C(8/10)-MePEG nanoparticles were characterized by a continuous controlled release with little or no burst phase of release. In vitro cytotoxicity evaluations of PTX and DTX formulations demonstrated a concentration-dependent inhibition of proliferation in KU7 cell line. Cellular uptake studies of rhodamine-labeled HPG (HPG-C(8/10)-MePEG(13)-TMRCA) showed that these nanoparticles were rapidly taken up into cells, and reside in the cytoplasm without entering the nuclear compartment and were highly biocompatible with the KU7 cells. PMID:21093563

  6. Paclitaxel combined with capecitabine as first-line chemotherapy for advanced or recurrent gastric cancer.

    PubMed

    Yuan, Meiqin; Yang, Yunshan; Lv, Wangxia; Song, Zhengbo; Zhong, Haijun

    2014-07-01

    Chemotherapy is of crucial importance in advanced gastric cancer (AGC) patients, in order to obtain palliation of symptoms and improve survival. To date, no standard chemotherapy regimen has been established for AGC. The purpose of the present study was to evaluate the efficacy and toxicity of the combination regimen of paclitaxel and capecitabine (PX) as first-line chemotherapy in patients with advanced or recurrent gastric cancer. Patients with advanced or recurrent gastric cancer who were treated with PX as first-line chemotherapy between January 2001 and December 2012 at the Zhejiang Cancer Hospital (Hangzhou, China) were retrospectively investigated. Survival was evaluated using the Kaplan-Meier method. In total, 36 patients were enrolled, with a median age of 53.5 years and a Karnofsky performance status (KPS) score of ≥80. A median of 4 PX cycles were administered (range, 2-8 cycles). The median progression-free survival time was 3.7 months [95% confidence interval (CI), 2.9-4.5 months) and the median overall survival time was 12.0 months (95% CI, 9.8-14.1 months). From the 36 patients evaluated, one (2.8%) achieved a complete response, seven (19.4%) achieved a partial response, 24 (66.7%) exhibited stable disease and four (11.1%) exhibited progressive disease. The objective response rate was 22.2% (8/36), and the disease control rate was 88.9% (32/36). All 36 patients were assessed for treatment toxicity. Grade 3 or 4 adverse events included neutropenia (2.8% of patients), hand-foot syndrome (2.8%) and vomiting (2.8%). No neutropenic fever or treatment-related mortalities were observed. PX combination chemotherapy may be a valuable first-line therapy for advanced or recurrent gastric cancer. PMID:24959275

  7. pH and glutathion-responsive hydrogel for localized delivery of paclitaxel.

    PubMed

    Pérez, Elena; Fernández, Ana; Olmo, Rosa; Teijón, Jose M; Blanco, M Dolores

    2014-04-01

    pH and glutathion (GSH)- responsive nanogels (NGs) based on poly-N-isopropylacrilamide (NIPA), N-hydroxyethyl acrylamide (HEAA) and tert-butyl 2-acrylamidoethyl carbamate (2AAECM) were synthesized by a microemulsion polymerization method using N, N'-cystaminebisacrylamide (CBA) as a crosslinking agent and evaluated for passive targeting of paclitaxel (PTX). Physicochemical characterizations of unloaded and PTX-loaded NGs, such as particle size, morphology, encapsulation efficiency and in vitro PTX release were also assessed. Electron microscopy techniques (SEM and TEM) as well as dynamic light scattering (DLS) analysis showed nanosized spherical hydrogels. FTIR spectra confirmed the synthesis of nanogels by free radical polymerization among vinyl groups of monomers. In vitro release was analyzed by high-performance liquid chromatography (HPLC) and differences between two NG formulations were obtained. Nanogels released almost 64% of PTX after 50h at GSH concentrations equivalent to that in the cellular cytosol, whereas less PTX was released from NGs at pH and GSH levels similar to plasma. Cellular uptake and cytotoxicity were also demonstrated by using coumarin-6 and MTT assays, respectively, for three tumor cell lines (MCF7, HeLa and T47D). Cellular uptake assays revealed rapid uptake within 2h and intracellular accumulation of coumarin-6-loaded nanogels after 48 h incubation. MTT assays showed changes in cell viability at different concentrations of PTX formulations, as well as pure PTX (10 μM, 20 μM and 30 μM). To investigate PTX effect on cell viability, changes in cell cycle were examined by flow cytometry and a G2/M cell arrest was demonstrated. Overall, synthesized nanogels may be used as potential carriers for hydrophobic anticancer drugs. PMID:24491841

  8. Combined Delivery and Anti-Cancer Activity of Paclitaxel and Curcumin Using Polymeric Micelles.

    PubMed

    Gao, Xiang; Wang, Bilan; Wu, Qinjie; Wei, Xiawei; Zheng, Fengjin; Men, Ke; Shi, Huashan; Huang, Ning; Wei, Yuquan; Gong, Changyang

    2015-04-01

    Paclitaxel (PTX) is efficacious in treating various solid tumors. However, the severe adverse effects of its present formulation (Cremophor EL and ethanol) and the development of drug resistance by the activation of nuclear factor-κB (NF-κB) reduce the anti-tumor activities of PTX. Curcumin (Cur) demonstrates anti-tumor activity by means of antiangiogenesis and induction of apoptosis as well as suppression of the activity of NF-κB. Therefore, to improve its antitumor activity and eliminate the toxicity of the commercial formulation of PTX, we prepared biodegradable monomethoxy poly(ethyleneglycol)-poly(ε-caprolactone) (MPEG-PCL) micelles to co-deliver PTX and Cur using a solid dispersion method. The mixed PTX and Cur polymeric micelles (PTX-Cur-M) produced were monomorphous micelles of 38 nm in diameter that released PTX and Cur for an extended period of time and induced cell apoptosis in vitro. In addition, the PTX-Cur-M exhibited anti-angiogenic activity in vitro and in vivo. Furthermore, the therapeutic efficacy of PTX-Cur-M in a mouse model of colon cancer was evaluated. PTX-Cur-M micelles produced significantly more inhibition of tumor growth than Cur micelles (Cur-M) and PTX micelles (PTX-M) alone at the same dose (P < 0.05 and P < 0.05, respectively). Immunohistochemical and immunofluorescent analyses demonstrated that PTX-Cur-M enhanced tumor cell apoptosis and inhibited angiogenesis to a greater extent than control treatment. Our data suggested that PTX-Cur-M may have potential clinical applications in cancer therapy. PMID:26310065

  9. Critical appraisal of paclitaxel balloon angioplasty for femoral–popliteal arterial disease

    PubMed Central

    Herten, Monika; Torsello, Giovanni B; Schönefeld, Eva; Stahlhoff, Stefan

    2016-01-01

    Peripheral arterial disease, particularly critical limb ischemia, is an area with urgent need for optimized therapies because, to date, vascular interventions often have limited life spans. In spite of initial encouraging technical success after femoropopliteal percutaneous transluminal angioplasty or stenting, postprocedural restenosis remains the major problem. The challenging idea behind the drug-coated balloon (DCB) concept is the biological modification of the injury response after balloon dilatation. Antiproliferative drugs administered via DCBs or drug-eluting stents are able to suppress neointimal hyperplasia, the main cause of restenosis. This article reviews the results of DCB treatments of femoropopliteal and infrapopliteal lesions in comparison to standard angioplasty with uncoated balloons. A systematic literature search was performed in 1) medical journals (ie, MEDLINE), 2) international registers for clinical studies (ie, www.clinicaltrials.gov), and 3) abstracts of scientific sessions. Several controlled randomized trials with follow-up periods of up to 5 years demonstrated the efficacy of paclitaxel –DCB technology. However, calcified lesions seem to affect the efficacy of DCB. Combinations of preconditioning methods with DCBs showed promising results. Although the mechanical abrasion of calcium via atherectomy or laser ablation showed favorable periprocedural results, the long-term impact on restenosis and clinical outcome has to be demonstrated. Major advantages of the DCBs are the rapid delivery of drug at uniform concentrations with a single dose, their efficacy in areas wherein stents have been contraindicated until now (ie, bifurcation, ostial lesions), and in leaving no stent scaffold behind. Reinterventions are easier to perform because DCBs leave no metal behind. Various combinations of DCBs with other treatment modalities may prove to be viable options in future. The follow-up results of clinical studies will evaluate the long

  10. Critical appraisal of paclitaxel balloon angioplasty for femoral-popliteal arterial disease.

    PubMed

    Herten, Monika; Torsello, Giovanni B; Schönefeld, Eva; Stahlhoff, Stefan

    2016-01-01

    Peripheral arterial disease, particularly critical limb ischemia, is an area with urgent need for optimized therapies because, to date, vascular interventions often have limited life spans. In spite of initial encouraging technical success after femoropopliteal percutaneous transluminal angioplasty or stenting, postprocedural restenosis remains the major problem. The challenging idea behind the drug-coated balloon (DCB) concept is the biological modification of the injury response after balloon dilatation. Antiproliferative drugs administered via DCBs or drug-eluting stents are able to suppress neointimal hyperplasia, the main cause of restenosis. This article reviews the results of DCB treatments of femoropopliteal and infrapopliteal lesions in comparison to standard angioplasty with uncoated balloons. A systematic literature search was performed in 1) medical journals (ie, MEDLINE), 2) international registers for clinical studies (ie, www.clinicaltrials.gov), and 3) abstracts of scientific sessions. Several controlled randomized trials with follow-up periods of up to 5 years demonstrated the efficacy of paclitaxel -DCB technology. However, calcified lesions seem to affect the efficacy of DCB. Combinations of preconditioning methods with DCBs showed promising results. Although the mechanical abrasion of calcium via atherectomy or laser ablation showed favorable periprocedural results, the long-term impact on restenosis and clinical outcome has to be demonstrated. Major advantages of the DCBs are the rapid delivery of drug at uniform concentrations with a single dose, their efficacy in areas wherein stents have been contraindicated until now (ie, bifurcation, ostial lesions), and in leaving no stent scaffold behind. Reinterventions are easier to perform because DCBs leave no metal behind. Various combinations of DCBs with other treatment modalities may prove to be viable options in future. The follow-up results of clinical studies will evaluate the long-term impact

  11. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity.

    PubMed

    Esfandyari-Manesh, Mehdi; Darvishi, Behrad; Ishkuh, Fatemeh Azizi; Shahmoradi, Elnaz; Mohammadi, Ali; Javanbakht, Mehran; Dinarvand, Rassoul; Atyabi, Fatemeh

    2016-05-01

    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6 ± 0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a controlled release of PTX, because of the presence of imprinted sites in the polymeric structure, which makes it is suitable for sustained drug delivery. The drug release from polymeric nanoparticles was indeed higher at acidic pH. The molecular structure of MIP-PEG-FA was confirmed by Hydrogen-Nuclear Magnetic Resonance (H NMR), Fourier Transform InfraRed (FT-IR), and Attenuated Total Reflection (ATR) spectroscopy, and their thermal behaviors by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) and Photon Correlation Spectroscopy (PCS) results showed that nanoparticles have a smooth surface and spherical shape with an average size of 181 nm. MIP-PEG-FA nanoparticles showed a greater amount of intracellular uptake in folate receptor-positive cancer cells (MDA-MB-231 cells) in comparison with the non-folate nanoparticles and free PTX, with half maximal inhibitory concentrations (IC50) of 4.9 ± 0.9, 7.4 ± 0.5 and 32.8 ± 3.8 nM, respectively. These results suggest that MIP-PEG-FA nanoparticles could be a potentially useful drug carrier for targeting drug delivery to cancer cells. PMID:26952466

  12. Carboplatin–paclitaxel-induced leukopenia and neuropathy predict progression-free survival in recurrent ovarian cancer

    PubMed Central

    Lee, C K; Gurney, H; Brown, C; Sorio, R; Donadello, N; Tulunay, G; Meier, W; Bacon, M; Maenpaa, J; Petru, E; Reed, N; Gebski, V; Pujade-Lauraine, E; Lord, S; Simes, R J; Friedlander, M

    2011-01-01

    Background: We assess the prognostic value of chemotherapy-induced leukopenia and sensory neuropathy in the CALYPSO trial patients treated with carboplatin–paclitaxel (CP) or carboplatin–liposomal doxorubicin (CPLD). Methods: We performed a landmark analysis at first month after randomisation to correlate leukopenia (nadir white blood cell <4.0 × 109 per litre or severe infection) during cycle 1 of chemotherapy with progression-free survival (PFS). Using time-dependent proportional-hazards models, we also investigated the association between neuropathy and PFS. Results: Of 608 patients with nadir blood and did not receive growth factors, 72% (CP=70%, CPLD=73%) had leukopenia. Leukopenia was prognostic for PFS in those receiving CP (adjusted hazard ratio (aHR) 0.66, P=0.01). Carboplatin–liposomal doxorubicin was more effective than CP in patients without leukopenia (aHR 0.51, P=0.001), but not those experiencing leukopenia (aHR 0.93, P=0.54; interaction P=0.008). Of 949 patients, 32% (CP=62%, CPLD=28%) reported neuropathy during landmark. Neuropathy was prognostic for PFS in the CP group only (aHR 0.77, P=0.02). Carboplatin–liposomal doxorubicin appeared to be more effective than CP among patients without neuropathy (aHR 0.70, P<0.0001), but not those with neuropathy (aHR 0.96, P=0.81; interaction P=0.15). Conclusion: First-cycle leukopenia and neuropathy were prognostic for patients treated with CP. Efficacy of CP treatment was similar to CPLD in patients who developed leukopenia. These findings support further research to understand the mechanisms of treatment-related toxicity. PMID:21750553

  13. A Hyperresponsive HPA Axis May Confer Resilience Against Persistent Paclitaxel-Induced Mechanical Hypersensitivity.

    PubMed

    Kozachik, Sharon L; Page, Gayle G

    2016-05-01

    Paclitaxel (PAC) treatment is associated with persistent, debilitating neuropathic pain that affects the hands and feet. Female sex and biological stress responsivity are risk factors for persistent pain, but it is unclear whether these important biologically based factors confer risk for PAC-induced neuropathic pain. To determine the relative contributions of sex and hypothalamic-pituitary-adrenal (HPA)-axis stress responsivity to PAC-induced mechanical hypersensitivity, we employed a PAC protocol consisting of three, 2-week cycles of every-other-day doses of PAC 1 mg/kg versus saline (Week 1) and recovery (Week 2), totaling 42 days, in mature male and female Fischer 344, Lewis, and Sprague Dawley (SD) rats, known to differ in HPA axis stress responsivity. Mechanical sensitivity was operationalized using von Frey filaments, per the up-down method. Among PAC-injected rats, SD rats exhibited significantly greater mechanical hypersensitivity relative to accumulative PAC doses compared to Fischer 344 rats. Lewis rats were not significantly different in mechanical hypersensitivity from SD or Fischer 344 rats. At the end of the protocol, PAC-injected SD rats exhibited profound mechanical hypersensitivity, whereas the PAC-injected Fischer 344 rats appeared relatively resilient to the long-term effects of PAC and exhibited mechanical sensitivity that was not statistically different from their saline-injected counterparts. Sex differences were mixed and noted only early in the PAC protocol. Moderate HPA axis stress responsivity may confer additional risk for the painful effects of PAC. If these findings hold in humans, clinicians may be better able to identify persons who may be at increased risks for developing neuropathic pain during PAC therapy. PMID:26512050

  14. Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner

    PubMed Central

    Volk-Draper, Lisa; Hall, Kelly; Griggs, Caitlin; Rajput, Sandeep; Kohio, Pascaline; DeNardo, David; Ran, Sophia

    2014-01-01

    Emerging evidence suggests that cytotoxic therapy may actually promote drug resistance and metastasis while inhibiting the growth of primary tumors. Work in preclinical models of breast cancer have shown that acquired chemoresistance to the widely used drug paclitaxel (PXL) can be mediated by activation of the Toll-like receptor TLR4 in cancer cells. In this study, we determined the pro-metastatic effects of tumor-expressed TLR4 and PXL therapy and we investigated the mechanisms mediating these effects. While PXL treatment was largely efficacious in inhibiting TLR4-negative tumors, it significantly increased the incidence and burden of pulmonary and lymphatic metastasis by TLR4-positive tumors. TLR4 activation by PXL strongly increased the expression of inflammatory mediators, not only locally in the primary tumor microenvironment but also systemically in the blood, lymph nodes, spleen, bone marrow and lungs. These pro-inflammatory changes promoted the outgrowth of Ly6C+ and Ly6G+ myeloid progenitor cells and their mobilization to tumors, where they increased blood vessel formation but not invasion of these vessels. In contrast, PXL-mediated activation of TLR4-positive tumors induced de novo generation of deep intratumoral lymphatic vessels that were highly permissive to invasion by malignant cells. These results suggest that PXL therapy of patients with TLR4-expressing tumors may activate systemic inflammatory circuits that promote angiogenesis, lymphangiogenesis and metastasis, both at local sites and premetastatic niches where invasion occurs in distal organs. Taken together, our findings suggest that efforts to target TLR4 on tumor cells may simultaneously quell local and systemic inflammatory pathways that promote malignant progression, with implications for how to prevent tumor recurrence and the establishment of metastatic lesions, either during chemotherapy or after it is completed. PMID:25274031

  15. Controlled delivery of paclitaxel from stent coatings using novel styrene maleic anhydride copolymer formulations.

    PubMed

    Richard, Robert; Schwarz, Marlene; Chan, Ken; Teigen, Nikolai; Boden, Mark

    2009-08-01

    The controlled release of paclitaxel (PTx) from stent coatings comprising an elastomeric polymer blended with a styrene maleic anhydride (SMA) copolymer is described. The coated stents were characterized for morphology by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and for drug release using high-performance liquid chromatography (HPLC). Differential scanning calorimetry (DSC) was used to measure the extent of interaction between the PTx and polymers in the formulation. Coronary stents were coated with blends of poly(b-styrene-b-isobutylene-b-styrene) (SIBS) and SMA containing 7% or 14% maleic anhydride (MA) by weight. SEM examination of the stents showed that the coating did not crack or delaminate either before or after stent expansion. Examination of the coating surface via AFM after elution of the drug indicated that PTx resides primarily in the SMA phase and provided information about the mechanism of PTx release. The addition of SMA altered the release profile of PTx from the base elastomer coatings. In addition, the presence of the SMA enabled tunable release of PTx from the elastomeric stent coatings, while preserving mechanical properties. Thermal analysis reveled no shift in the glass transition temperatures for any of the polymers at all drug loadings studied, indicating that the PTx is not miscible with any component of the polymer blend. An in vivo evaluation indicated that biocompatibility and vascular response results for SMA/SIBS-coated stents (without PTx) are similar to results for SIBS-only-coated and bare stainless steel control stents when implanted in the non-injured coronary arteries of common swine for 30 and 90 days. PMID:18563805

  16. Durable Clinical Effectiveness With Paclitaxel-Eluting Stents in the Femoropopliteal Artery

    PubMed Central

    Ansel, Gary M.; Jaff, Michael R.; Ohki, Takao; Saxon, Richard R.; Smouse, H. Bob; Machan, Lindsay S.; Snyder, Scott A.; O’Leary, Erin E.; Ragheb, Anthony O.; Zeller, Thomas

    2016-01-01

    Background— This randomized controlled trial evaluated clinical durability of Zilver PTX, a paclitaxel-coated drug-eluting stent (DES), for femoropopliteal artery lesions. Outcomes compare primary DES versus percutaneous transluminal angioplasty (PTA), overall DES (primary and provisional) versus standard care (PTA and provisional Zilver bare metal stent [BMS]), and provisional DES versus provisional BMS. Methods and Results— Patients with symptomatic femoropopliteal artery disease were randomly assigned to DES (n=236) or PTA (n=238). Approximately 91% had claudication; 9% had critical limb ischemia. Patients experiencing acute PTA failure underwent secondary randomization to provisional BMS (n=59) or DES (n=61). The 1-year primary end points of event-free survival and patency showed superiority of primary DES in comparison with PTA; these results were sustained through 5 years. Clinical benefit (freedom from persistent or worsening symptoms of ischemia; 79.8% versus 59.3%, P<0.01), patency (66.4% versus 43.4%, P<0.01), and freedom from reintervention (target lesion revascularization, 83.1% versus 67.6%, P<0.01) for the overall DES group were superior to standard care in nonrandomized comparisons. Similarly, clinical benefit (81.8% versus 63.8%, P=0.02), patency (72.4% versus 53.0%, P=0.03), and freedom from target lesion revascularization (84.9% versus 71.6%, P=0.06) with provisional DES were improved over provisional BMS. These results represent >40% relative risk reduction for restenosis and target lesion revascularization through 5 years for the overall DES in comparison with standard care and for provisional DES in comparison with provisional BMS. Conclusions— The 5-year results from this large study provide long-term information previously unavailable regarding endovascular treatment of femoropopliteal artery disease. The Zilver PTX DES provided sustained safety and clinical durability in comparison with standard endovascular treatments. Clinical Trial

  17. Erlotinib versus carboplatin and paclitaxel in advanced lepidic adenocarcinoma: IFCT-0504.

    PubMed

    Cadranel, Jacques; Gervais, Radj; Merle, Patrick; Moro-Sibilot, Denis; Westeel, Virginie; Bigay-Game, Laurence; Quoix, Elisabeth; Friard, Sylvie; Barlesi, Fabrice; Lethrosne, Claire; Moreau, Lionel; Monnet, Isabelle; Salaun, Mathieu; Oliviero, Gérard; Souquet, Pierre-Jean; Antoine, Martine; Langlais, Alexandra; Morin, Franck; Wislez, Marie; Zalcman, Gérard

    2015-11-01

    The IFCT-0504 phase II trial evaluated the efficacy of erlotinib versus carboplatin-paclitaxel (CP) as first-line treatment in 130 cases of advanced lepidic-predominant adenocarcinoma (ADC).The primary objective of the study was treatment efficacy, evaluated based on an end-point of disease control at 16 weeks.The primary objective was met, with a disease control in 35 (53%) out of 66 patients treated with CP and in 25 (39.1%) out of 64 patients treated with erlotinib. Median progression-free survival (PFS) for the total population was 3.6 months. The disease control rate did not differ between either the therapeutic arms or pathological subtypes, whereas there was a strong interaction between treatment arms and tumour pathological subtypes for PFS (p=0.009). Mucinous tumour patients treated with erlotinib exhibited an increased progression risk (hazard ratio 3.4, 95% CI 1.7-6.5; p≤0.001). The PFS for nonmucinous tumour patients was similar in both arms. Median overall survival was 20.1 months and did not differ between therapeutic arms. These findings were not further elucidated by molecular analyses and the toxicity profiles were as expected.Our study demonstrated the dominant role of CP alongside erlotinib in the management of advanced lepidic ADC. Based on these findings, erlotinib should not be administered in first-line therapy to patients with lepidic ADC in the absence of an epidermal growth factor receptor mutation. PMID:26381515

  18. Dual Targeting Biomimetic Liposomes for Paclitaxel/DNA Combination Cancer Treatment

    PubMed Central

    Liu, Guo-Xia; Fang, Gui-Qing; Xu, Wei

    2014-01-01

    Combinations of chemotherapeutic drugs with nucleic acid has shown great promise in cancer therapy. In the present study, paclitaxel (PTX) and DNA were co-loaded in the hyaluronic acid (HA) and folate (FA)-modified liposomes (HA/FA/PPD), to obtain the dual targeting biomimetic nanovector. The prepared HA/FA/PPD exhibited nanosized structure and narrow size distributions (247.4 ± 4.2 nm) with appropriate negative charge of −25.40 ± 2.7 mV. HA/FA/PD (PTX free HA/FA/PPD) showed almost no toxicity on murine malignant melanoma cell line (B16) and human hepatocellular carcinoma cell line (HepG2) (higher than 80% cell viability), demonstrating the safety of the blank nanovector. In comparison with the FA-modified PTX/DNA co-loaded liposomes (FA/PPD), HA/FA/PPD showed significant superiority in protecting the nanoparticles from aggregation in the presence of plasma and degradation by DNase I. Moreover, HA/FA/PPD could also significantly improve the transfection efficiency and cellular internalization rates on B16 cells comparing to that of FA/PPD (p < 0.05) and PPD (p < 0.01), demonstrating the great advantages of dual targeting properties. Furthermore, fluorescence microscope and flow cytometry results showed that PTX and DNA could be effectively co-delivered into the same tumor cell via HA/FA/PPD, contributing to PTX/DNA combination cancer treatment. In conclusion, the obtained HA/FA/PPD in the study could effectively target tumor cells, enhance transfection efficiency and subsequently achieve the co-delivery of PTX and DNA, displaying great potential for optimal combination therapy. PMID:25177862

  19. Versatile antitumor potential of isoxanthohumol: Enhancement of paclitaxel activity in vivo.

    PubMed

    Krajnović, Tamara; Kaluđerović, Goran N; Wessjohann, Ludger A; Mijatović, Sanja; Maksimović-Ivanić, Danijela

    2016-03-01

    Isoxanthohumol (IXN), a prenylated flavonoid from hops, exhibits diverse biological activities, e.g. antitumor, antiinflammatory, antioxidant and antiangiogenic. In this study, the effect of IXN is evaluated on two melanoma cell lines with dissimilar molecular background, B16 and A375. The treatment of both cell lines with IXN resulted in dose-dependent decrease of cell viability. Abolished viability was in correlation with changed morphology and loss of dividing potential indicating phenotypical alteration of both tested cell lines. While modified B16 cells underwent the process of non-classic differentiation followed by tyrosinase activity without enhancement of melanin content, inhibition of Notch 1, β-catenin and Oct-3/4 was observed in A375 cells indicating loss of their pluripotent characteristics. In parallel with this, distinct subpopulations in both cell cultures entered the process of programmed cell death-apoptosis in a caspase independent manner. The described changes in cultures upon exposure to IXN could be connected with the suppression of reactive oxygen (ROS) and nitrogen species (RNS) induced by the drug. Despite the differences in which IXN promoted modifications in the upper part of the PI3K/Akt and MEK-ERK signaling pathways between B16 and A375 cells, p70S6K and its target S6 protein in both types of melanoma cells, after transient activation, became inhibited. In addition to direct input of IXN on cell viability, this study for the first time shows that IXN strongly sensitizes melanoma cells to the treatment with paclitaxel in vivo, in concordance with data obtained in vitro on B16 cells as well as their highly invasive F10 subclone. PMID:26784390

  20. Biological evaluation of paclitaxel-peptide conjugates as a model for MMP2-targeted drug delivery.

    PubMed

    Yamada, Roppei; Kostova, Maya B; Anchoori, Ravi Kumar; Xu, Shili; Neamati, Nouri; Khan, Saeed R

    2010-02-01

    Paclitaxel (PTX) is a highly effective cytotoxic agent widely used for the treatment of several solid tumors. However, PTX shows dose-limiting cytotoxicity and in most cases induces drug resistance followed by failure in treatment. To enhance the therapeutic index of a given drug, various drug delivery methods have been explored to systemically deliver sufficient amount of the drug to the desired site. In the present study, we designed and synthesized two PTX prodrugs by conjugating PTX at different sites with an octapeptide (AcGPLGIAGQ) that can be cleaved by MMP2 at tumor sites. As a result, PTX is expected to be released at the tumor sites, absorbed by the tumor cells, and thereby inhibit the tumor growth. We evaluated the in vitro activities of the two drugs in a panel of drug-sensitive and -resistant cancer cell lines and their in vivo efficacies in a HT1080 fibrosarcoma mouse xenograft model that overexpresses MMP2. Our in vitro results showed that the PTX-AcGPLGIAGQ conjugates inhibited cancer cell proliferation with higher activity compared to that observed for free PTX, both of which were mediated by an arrest of G(2)/M-phase of the cell cycle. Consistent with the in vitro results, treatment with PTX-octapeptide conjugate resulted in extensive areas of necrosis and a lower percentage of proliferating cells in xenograft tumor sections. Together, our results indicate the potential of the tumor-targeted delivery of PTX to exploit the specific recognition of MMP2, reduce toxicity, and selectively kill tumor cells. PMID:20023432

  1. Enhanced antitumor response mediated by the codelivery of paclitaxel and adenoviral vector expressing IL-12.

    PubMed

    Cao, Linjie; Zeng, Qin; Xu, Chaoqun; Shi, Sanjun; Zhang, Zhirong; Sun, Xun

    2013-05-01

    It has been well-established that chemo-immunotherapy using cytotoxic drugs and appropriate cytokines offers a promising approach for the treatment of neoplastic diseases. In view of this, to improve melanoma treatment effect, our study developed a new codelivery system (AL/Ad5/PTX) that paclitaxel (PTX) and adenovirus encoding for murine interleukin-12 (Ad5-mIL-12) were incorporated into anionic liposomes (AL). First, AL/Ad5/PTX complexes were prepared by incorporating Ad5 into anionic PTX liposomes using calcium-induced phase change. Second, the size distribution and zeta potential of AL/Ad5/PTX were investigated. Third, the results of in vitro transduction assays showed that PTX introduced into AL/Ad-luc or AL/Ad5-mIL-12 highly enhanced gene transduction efficiency in B16 cells than naked Ad5 or AL/Ad complexes while it had no comparability in A549 cells. Finally, a melanoma-bearing mouse model was established to assess the antitumor effect. Tumor growth inhibition and prolonged survival time, accompanied by increased mIL-12 or interferon-γ (IFN-γ) expression levels in serum or tumor sites, were observed in mice treated with AL/Ad5-mIL-12/PTX, as compared with those treated with either AL/Ad5-mIL-12 or AL/PTX. In conclusion, these results suggested that codelivery of Ad5-mIL-12 and PTX incorporated into AL could be a relatively efficient strategy for the treatment of melanoma. PMID:23534449

  2. Brain-Penetrating Nanoparticles Improve Paclitaxel Efficacy in Malignant Glioma Following Local Administration

    PubMed Central

    2015-01-01

    Poor drug distribution and short drug half-life within tumors strongly limit efficacy of chemotherapies in most cancers, including primary brain tumors. Local or targeted drug delivery via controlled-release polymers is a promising strategy to treat infiltrative brain tumors, which cannot be completely removed surgically. However, drug penetration is limited with conventional local therapies since small-molecule drugs often enter the first cell they encounter and travel only short distances from the site of administration. Nanoparticles that avoid adhesive interactions with the tumor extracellular matrix may improve drug distribution and sustain drug release when applied to the tumor area. We have previously shown model polystyrene nanoparticles up to 114 nm in diameter were able to rapidly diffuse in normal brain tissue, but only if coated with an exceptionally dense layer of poly(ethylene glycol) (PEG) to reduce adhesive interactions. Here, we demonstrate that paclitaxel (PTX)-loaded, poly(lactic-co-glycolic acid) (PLGA)-co-PEG block copolymer nanoparticles with an average diameter of 70 nm were able to diffuse 100-fold faster than similarly sized PTX-loaded PLGA particles (without PEG coatings). Densely PEGylated PTX-loaded nanoparticles significantly delayed tumor growth following local administration to established brain tumors, as compared to PTX-loaded PLGA nanoparticles or unencapsulated PTX. Delayed tumor growth combined with enhanced distribution of drug-loaded PLGA-PEG nanoparticles to the tumor infiltrative front demonstrates that particle penetration within the brain tumor parenchyma improves therapeutic efficacy. The use of drug-loaded brain-penetrating nanoparticles is a promising approach to achieve sustained and more uniform drug delivery to treat aggressive gliomas and potentially other brain disorders. PMID:25259648

  3. Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2, and TcJAMYC4

    PubMed Central

    Lenka, Sangram K.; Nims, N. Ezekiel; Vongpaseuth, Kham; Boshar, Rosemary A.; Roberts, Susan C.; Walker, Elsbeth L.

    2015-01-01

    Taxus cell suspension culture is a sustainable technology for the industrial production of paclitaxel (Taxol®), a highly modified diterpene anti-cancer agent. The methyl jasmonate (MJ)-mediated paclitaxel biosynthetic pathway is not fully characterized, making metabolic engineering efforts difficult. Here, promoters of seven genes (TASY, T5αH, DBAT, DBBT, PAM, BAPT, and DBTNBT), encoding enzymes of the paclitaxel biosynthetic pathway were isolated and used to drive MJ-inducible expression of a GUS reporter construct in transiently transformed Taxus cells, showing that elicitation of paclitaxel production by MJ is regulated at least in part at the level of transcription. The paclitaxel biosynthetic pathway promoters contained a large number of E-box sites (CANNTG), similar to the binding sites for the key MJ-inducible transcription factor AtMYC2 from Arabidopsis thaliana. Three MJ-inducible MYC transcription factors similar to AtMYC2 (TcJAMYC1, TcJAMYC2, and TcJAMYC4) were identified in Taxus. Transcriptional regulation of paclitaxel biosynthetic pathway promoters by transient over expression of TcJAMYC transcription factors indicated a negative rather than positive regulatory role of TcJAMYCs on paclitaxel biosynthetic gene expression. PMID:25767476

  4. An ultrasensitive LC-MS/MS method with liquid phase extraction to determine paclitaxel in both cell culture medium and lysate promising quantification of drug nanocarriers release in vitro.

    PubMed

    Baati, Tarek; Schembri, Thérèse; Villard, Claude; Correard, Florian; Braguer, Diane; Estève, Marie-Anne

    2015-11-10

    The quantification of paclitaxel, a chemotherapy drug used to treat different types of cancers, has been performed from complete cell culture medium and cell lysate samples using a simple liquid-liquid extraction procedure in conjunction with liquid chromatography tandem mass spectrometry (LC-MS/MS). A simple sample preparation using methanol and acetic acid as a weaker acid was applied to avoid paclitaxel destruction and to achieve recovery exceeding 80 % from both matrices spiked with paclitaxel and docetaxel used as internal standard. This rapid, simple, selective and sensitive method enabled the quantification of paclitaxel within the linear range of 1-250nM in culture medium and 5-250nM in cell lysate. The lower limit of quantification was achieved in cell culture medium and cell lysates at 0.2 and 1pmol, respectively. This method was successfully applied to human non-small cell lung carcinoma cells (A549 cells) in order to quantify the amount of paclitaxel in both cell culture medium and lysate after incubation with 5, 50 and 100nM of paclitaxel. This ultra-sensitive method promises the quantification of ultra-low concentrations of paclitaxel released from any nanocarriers, allowing the determination of the kinetic profile of drug release, which is an essential parameter to validate the use of nanocarriers for drug delivery in cancer therapy. PMID:26263058

  5. Inhibition of Phospho-S6 Kinase, a Protein Involved in the Compensatory Adaptive Response, Increases the Efficacy of Paclitaxel in Reducing the Viability of Matrix-Attached Ovarian Cancer Cells

    PubMed Central

    Choi, Jeong In; Park, Sang Hi; Lee, Hee-Jin; Lee, Dae Woo; Lee, Hae Nam

    2016-01-01

    Objective To identify the proteins involved the compensatory adaptive response to paclitaxel in ovarian cancer cells and to determine whether inhibition of the compensatory adaptive response increases the efficacy of paclitaxel in decreasing the viability of cancer cells. Methods We used a reverse-phase protein array and western blot analysis to identify the proteins involved in the compensatory mechanism induced by paclitaxel in HeyA8 and SKOV3 ovarian cancer cells. We used a cell viability assay to examine whether inhibition of the proteins involved in the compensatory adaptive response influenced the effects of paclitaxel on cancer cell viability. All experiments were performed in three-dimensional cell cultures. Results Paclitaxel induced the upregulation of pS6 (S240/S244) and pS6 (S235/S236) in HeyA8 and SKOV3 cells, and pPRAS40 (T246) in HeyA8 cells. BX795 and CCT128930 were chosen as inhibitors of pS6 (S240/S244), pS6 (S235/S236), and pPRAS40 (T246). BX795 and CCT128930 decreased pS6 (S240/S244) and pS6 (S235/S236) expression in HeyA8 and SKOV3 cells. However, pPRAS40 (T246) expression was inhibited only by BX795 and not by CCT128930 in HeyA8 cells. Compared with paclitaxel alone, addition of BX795 or CCT128930 to paclitaxel was more effective in decreasing the viability of HeyA8 and SKOV3 cells. Conclusion Addition of BX795 or CCT128930 to inhibit pS6 (S240/S244) or pS6 (S235/S236) restricted the compensatory adaptive response to paclitaxel in HeyA8 and SKOV3 cells. These inhibitors increased the efficacy of paclitaxel in reducing cancer cell viability. PMID:27148873

  6. Prevention of nodal metastases in breast cancer following the lymphatic migration of paclitaxel-loaded expansile nanoparticles

    PubMed Central

    Liu, Rong; Gilmore, Denis M.; Zubris, Kimberly Ann V.; Xu, Xiaoyin; Catalano, Paul J.; Padera, Robert F.; Grinstaff, Mark W.; Colson, Yolonda L.

    2012-01-01

    Although breast cancer patients with localized disease exhibit an excellent long-term prognosis, up to 40% of patients treated with local resection alone may harbor occult nodal metastatic disease leading to increased locoregional recurrence and decreased survival. Given the potential for targeted drug delivery to result in more efficacious locoregional control with less morbidity, the current study assessed the ability of drug-loaded polymeric expansile nanoparticles (eNP) to migrate from the site of tumor to regional lymph nodes, locally deliver a chemotherapeutic payload, and prevent primary tumor growth as well as lymph node metastases. Expansile nanoparticles entered tumor cells and paclitaxel-loaded eNP (Pax-eNP) exhibited dose-dependent cytotoxicity in vitro and significantly decreased tumor doubling time in vivo against human triple negative breast cancer in both microscopic and established murine breast cancer models. Furthermore, migration of Pax-eNP to axillary lymph nodes resulted in higher intranodal paclitaxel concentrations and a significantly lower incidence of lymph node metastases. These findings demonstrate that lymphatic migration of drug-loaded eNP provides regionally targeted delivery of chemotherapy to both decrease local tumor growth and strategically prevent the development of nodal metastases within the regional tumor-draining lymph node basin. PMID:23228419

  7. Phase I/II study of trastuzumab, paclitaxel, cisplatin and radiation for locally advanced, HER2 overexpressing, esophageal adenocarcinoma

    SciTech Connect

    Safran, Howard . E-mail: hsafran@lifespan.org; Di Petrillo, Thomas; Akerman, Paul; Ng, Thomas; Evans, Devon; Steinhoff, Margaret; Benton, David; Purviance, John; Goldstein, Lisa; Tantravahi, Umadevi; Kennedy, Teresa R.N.

    2007-02-01

    Purpose: To determine the overall survival for patients with locally advanced, HER2 overexpressing, esophageal adenocarcinoma receiving trastuzumab, paclitaxel, cisplatin, and radiation on a Phase I-II study. Methods and Materials: Patients with adenocarcinoma of the esophagus without distant organ metastases and 2+/3+ HER2 overexpression by immunohistochemistry (IHC) were eligible. All patients received cisplatin 25 mg/m{sup 2} and paclitaxel 50 mg/m{sup 2} weekly for 6 weeks with radiation therapy (RT) 50.4 Gy. Patients received trastuzumab at dose levels of 1, 1.5, or 2 mg/kg weekly for 5 weeks after an initial bolus of 2, 3, or 4 mg/kg. Results: Nineteen patients were entered: 7 (37%) had celiac adenopathy, and 7 (37%