Science.gov

Sample records for pade approximant method

  1. Detecting Gravitational Waves using Pade Approximants

    NASA Astrophysics Data System (ADS)

    Porter, E. K.; Sathyaprakash, B. S.

    1998-12-01

    We look at the use of Pade Approximants in defining a metric tensor for the inspiral waveform template manifold. By using this method we investigate the curvature of the template manifold and the number of templates needed to carry out a realistic search for a Gravitational Wave signal. By comparing this method with the normal use of Taylor Approximant waveforms we hope to show that (a) Pade Approximants are a superior method for calculating the inspiral waveform, and (b) the number of search templates needed, and hence computing power, is reduced.

  2. Diagonal Pade approximations for initial value problems

    SciTech Connect

    Reusch, M.F.; Ratzan, L.; Pomphrey, N.; Park, W.

    1987-06-01

    Diagonal Pade approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained. 20 refs., 3 figs., 1 tab.

  3. Matrix Pade-type approximant and directional matrix Pade approximant in the inner product space

    NASA Astrophysics Data System (ADS)

    Gu, Chuanqing

    2004-03-01

    A new matrix Pade-type approximant (MPTA) is defined in the paper by introducing a generalized linear functional in the inner product space. The expressions of MPTA are provided with the generating function form and the determinant form. Moreover, a directional matrix Pade approximant is also established by giving a set of linearly independent matrices. In the end, it is shown that the method of MPTA can be applied to the reduction problems of the high degree multivariable linear system.

  4. Type II Hermite-Pade approximation to the exponential function

    NASA Astrophysics Data System (ADS)

    Kuijlaars, A. B. J.; Stahl, H.; van Assche, W.; Wielonsky, F.

    2007-10-01

    We obtain strong and uniform asymptotics in every domain of the complex plane for the scaled polynomials a(3nz), b(3nz), and c(3nz) where a, b, and c are the type II Hermite-Pade approximants to the exponential function of respective degrees 2n+2, 2n and 2n, defined by and as z-->0. Our analysis relies on a characterization of these polynomials in terms of a 3x3 matrix Riemann-Hilbert problem which, as a consequence of the famous Mahler relations, corresponds by a simple transformation to a similar Riemann-Hilbert problem for type I Hermite-Pade approximants. Due to this relation, the study that was performed in previous work, based on the Deift-Zhou steepest descent method for Riemann-Hilbert problems, can be reused to establish our present results.

  5. Unfolding the Second Riemann sheet with Pade Approximants: hunting resonance poles

    SciTech Connect

    Masjuan, Pere

    2011-05-23

    Based on Pade Theory, a new procedure for extracting the pole mass and width of resonances is proposed. The method is systematic and provides a model-independent treatment for the prediction and the errors of the approximation.

  6. Trigonometric Pade approximants for functions with regularly decreasing Fourier coefficients

    SciTech Connect

    Labych, Yuliya A; Starovoitov, Alexander P

    2009-08-31

    Sufficient conditions describing the regular decrease of the coefficients of a Fourier series f(x)=a{sub 0}/2 + {sigma} a{sub n} cos kx are found which ensure that the trigonometric Pade approximants {pi}{sup t}{sub n,m}(x;f) converge to the function f in the uniform norm at a rate which coincides asymptotically with the highest possible one. The results obtained are applied to problems dealing with finding sharp constants for rational approximations. Bibliography: 31 titles.

  7. On the Baker-Gammel-Wills conjecture in the theory of Pade approximants

    SciTech Connect

    Buslaev, V I

    2002-06-30

    The well-known Pade conjecture, which was formulated in 1961 by Baker, Gammel, and Wills states that for each meromorphic function f in the unit disc D there exists a subsequence of its diagonal Pade approximants converging to f uniformly on all compact subsets of D not containing the poles of f. In 2001, Lubinsky found a meromorphic function in D disproving Pade's conjecture. The function presented in this article disproves the holomorphic version of Pade's conjecture and simultaneously disproves Stahl's conjecture (Pade's conjecture for algebraic functions)

  8. Accurate calculation of Coulomb sums: Efficacy of Pade-like methods

    SciTech Connect

    Sarkar, B. ); Bhattacharyya, K. )

    1993-09-01

    The adequacy of numerical sequence accelerative transforms in providing accurate estimates of Coulomb sums is considered, referring particularly to distorted lattices. Performance of diagonal Pade approximants (DPA) in this context is critically assessed. Failure in the case of lattice vacancies is also demonstrated. The method of multiple-point Pade approximants (MPA) has been introduced for slowly convergent sequences and is shown to work well for both regular and distorted lattices, the latter being due either to impurities or vacancies. Viability of the two methods is also compared. In divergent situations with distortions owing to vacancies, a strategy of obtaining reliable results by separate applications of both DPA and MPA at appropriate places is also sketched. Representative calculations involve two basic cubic-lattice sums, one slowly convergent and the other divergent, from which very good quality estimates of Madelung constants for a number of common lattices follow.

  9. PAWS/STEM - PADE APPROXIMATION WITH SCALING AND SCALED TAYLOR EXPONENTIAL MATRIX (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1994-01-01

    Traditional fault-tree techniques for analyzing the reliability of large, complex systems fail to model the dynamic reconfiguration capabilities of modern computer systems. Markov models, on the other hand, can describe fault-recovery (via system reconfiguration) as well as fault-occurrence. The Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs provide a flexible, user-friendly, language-based interface for the creation and evaluation of Markov models describing the behavior of fault-tolerant reconfigurable computer systems. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. The calculation of the probability of entering a death state of a Markov model (representing system failure) requires the solution of a set of coupled differential equations. Because of the large disparity between the rates of fault arrivals and system recoveries, Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST

  10. PAWS/STEM - PADE APPROXIMATION WITH SCALING AND SCALED TAYLOR EXPONENTIAL MATRIX (SUN VERSION)

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1994-01-01

    Traditional fault-tree techniques for analyzing the reliability of large, complex systems fail to model the dynamic reconfiguration capabilities of modern computer systems. Markov models, on the other hand, can describe fault-recovery (via system reconfiguration) as well as fault-occurrence. The Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs provide a flexible, user-friendly, language-based interface for the creation and evaluation of Markov models describing the behavior of fault-tolerant reconfigurable computer systems. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. The calculation of the probability of entering a death state of a Markov model (representing system failure) requires the solution of a set of coupled differential equations. Because of the large disparity between the rates of fault arrivals and system recoveries, Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST

  11. Modelling vibrational-rotational interactions in intensities of v2 band of H2O by Pade approximants

    NASA Astrophysics Data System (ADS)

    Egorov, O. V.; Voitsekhovskaya, O. K.

    2014-11-01

    A semiempirical model in the form of Pade approximants, describing vibrational-rotational (VR) interactions in intensities of VR-lines of v2 water vapor (H2O) band, was developed. The corresponding to the C2v molecular symmetry group matrix elements, involved in the expansion of the transformed dipole moment, was applied to the derivation. The treatment of experimental intensities of v2 H2O band for transitions with ΔK = +/-1 and ΔK = +/-3 by means of obtained model results in decreasing the root mean square deviation (RMS) about two times (2.82 % instead of 6.20 %) in comparison to the traditional scheme.

  12. On the use of Pade approximants to represent unsteady aerodynamic loads for arbitrarily small motions of wings

    NASA Technical Reports Server (NTRS)

    Vepa, R.

    1976-01-01

    The general behavior of unsteady airloads in the frequency domain is explained. Based on this, a systematic procedure is described whereby the airloads, produced by completely arbitrary, small, time-dependent motions of a thin lifting surface in an airstream, can be predicted. This scheme employs as raw materials any of the unsteady linearized theories that have been mechanized for simple harmonic oscillations. Each desired aerodynamic transfer function is approximated by means of an appropriate Pade approximant, that is, a rational function of finite degree polynomials in the Laplace transform variable. Although these approximations have many uses, they are proving especially valuable in the design of automatic control systems intended to modify aeroelastic behavior.

  13. Semi-Implicit Operator Splitting Pade Method For Vector HNLS Solitons

    SciTech Connect

    Aziez, Siham; Smadi, Moussa; Bahloul, Derradji

    2008-09-23

    We use in this paper the semi-implicit finite difference operator splitting Pade(OSPD) method for solving the coupled higher-order nonlinear Schroedinger equation which describes the propagation of vector solitons in optical fibers. This method having a fourth order accuracy in space shows good stability and efficiency for the coupled HNLS equations describing vector solitons. We have tested this method for analyzing the behavior of optical pulses in birefringent fibers verifying that the third order dispersion TOD has different effects on the two polarizations and the asymmetric oscillation is significant only in one polarization.

  14. A hybrid Pade-Galerkin technique for differential equations

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1993-01-01

    A three-step hybrid analysis technique, which successively uses the regular perturbation expansion method, the Pade expansion method, and then a Galerkin approximation, is presented and applied to some model boundary value problems. In the first step of the method, the regular perturbation method is used to construct an approximation to the solution in the form of a finite power series in a small parameter epsilon associated with the problem. In the second step of the method, the series approximation obtained in step one is used to construct a Pade approximation in the form of a rational function in the parameter epsilon. In the third step, the various powers of epsilon which appear in the Pade approximation are replaced by new (unknown) parameters (delta(sub j)). These new parameters are determined by requiring that the residual formed by substituting the new approximation into the governing differential equation is orthogonal to each of the perturbation coordinate functions used in step one. The technique is applied to model problems involving ordinary or partial differential equations. In general, the technique appears to provide good approximations to the solution even when the perturbation and Pade approximations fail to do so. The method is discussed and topics for future investigations are indicated.

  15. Pade spectroscopy of structural correlation functions: Application to liquid gallium

    NASA Astrophysics Data System (ADS)

    Chtchelkatchev, N. M.; Klumov, B. A.; Ryltsev, R. E.; Khusnutdinoff, R. M.; Mokshin, A. V.

    2016-03-01

    We propose the new method of fluid structure investigation based on numerical analytic continuation of structural correlation functions with Pade approximants. The method particularly allows extracting hidden structural features of disordered condensed matter systems from experimental diffraction data. The method has been applied to investigate the local order of liquid gallium, which has a non-trivial structure in both the liquid and solid states. Processing the correlation functions obtained from molecular dynamic simulations, we show the method proposed reveals non-trivial structural features of liquid gallium such as the spectrum of length-scales and the existence of different types of local clusters in the liquid.

  16. Semiclassical complex angular momentum theory and Pade reconstruction for resonances, rainbows, and reaction thresholds

    SciTech Connect

    Sokolovski, D.; Msezane, A.Z.

    2004-09-01

    A semiclassical complex angular momentum theory, used to analyze atom-diatom reactive angular distributions, is applied to several well-known potential (one-particle) problems. Examples include resonance scattering, rainbow scattering, and the Eckart threshold model. Pade reconstruction of the corresponding matrix elements from the values at physical (integral) angular momenta and properties of the Pade approximants are discussed in detail.

  17. An analytic Pade-motivated QCD coupling

    SciTech Connect

    Martinez, H. E.; Cvetic, G.

    2010-08-04

    We consider a modification of the Minimal Analytic (MA) coupling of Shirkov and Solovtsov. This modified MA (mMA) coupling reflects the desired analytic properties of the space-like observables. We show that an approximation by Dirac deltas of its discontinuity function {rho} is equivalent to a Pade(rational) approximation of the mMA coupling that keeps its analytic structure. We propose a modification to mMA that, as preliminary results indicate, could be an improvement in the evaluation of low-energy observables compared with other analytic couplings.

  18. PaDe - The particle detection program

    NASA Astrophysics Data System (ADS)

    Ott, T.; Drolshagen, E.; Koschny, D.; Poppe, B.

    2016-01-01

    This paper introduces the Particle Detection program PaDe. Its aim is to analyze dust particles in the coma of the Jupiter-family comet 67P/Churyumov-Gerasimenko which were recorded by the two OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras onboard the ESA spacecraft Rosetta, see e.g. Keller et al. (2007). In addition to working with the Rosetta data, the code was modified to work with images from meteors. It was tested with data recorded by the ICCs (Intensified CCD Cameras) of the CILBO-System (Canary Island Long-Baseline Observatory) on the Canary Islands; compare Koschny et al. (2013). This paper presents a new method for the position determination of the observed meteors. The PaDe program was written in Python 3.4. Its original intent is to find the trails of dust particles in space from the OSIRIS images. For that it determines the positions where the trail starts and ends. They were found using a fit following the so-called error function (Andrews, 1998) for the two edges of the profiles. The positions where the intensities fall to the half maximum were found to be the beginning and end of the particle. In the case of meteors, this method can be applied to find the leading edge of the meteor. The proposed method has the potential to increase the accuracy of the position determination of meteors dramatically. Other than the standard method of finding the photometric center, our method is not influenced by any trails or wakes behind the meteor. This paper presents first results of this ongoing work.

  19. An approximation method for electrostatic Vlasov turbulence

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.

    1979-01-01

    Electrostatic Vlasov turbulence in a bounded spatial region is considered. An iterative approximation method with a proof of convergence is constructed. The method is non-linear and applicable to strong turbulence.

  20. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  1. Approximation methods in gravitational-radiation theory

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  2. Second derivatives for approximate spin projection methods

    SciTech Connect

    Thompson, Lee M.; Hratchian, Hrant P.

    2015-02-07

    The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical second derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.

  3. Approximation methods in relativistic eigenvalue perturbation theory

    NASA Astrophysics Data System (ADS)

    Noble, Jonathan Howard

    In this dissertation, three questions, concerning approximation methods for the eigenvalues of quantum mechanical systems, are investigated: (i) What is a pseudo--Hermitian Hamiltonian, and how can its eigenvalues be approximated via numerical calculations? This is a fairly broad topic, and the scope of the investigation is narrowed by focusing on a subgroup of pseudo--Hermitian operators, namely, PT--symmetric operators. Within a numerical approach, one projects a PT--symmetric Hamiltonian onto an appropriate basis, and uses a straightforward two--step algorithm to diagonalize the resulting matrix, leading to numerically approximated eigenvalues. (ii) Within an analytic ansatz, how can a relativistic Dirac Hamiltonian be decoupled into particle and antiparticle degrees of freedom, in appropriate kinematic limits? One possible answer is the Foldy--Wouthuysen transform; however, there are alter- native methods which seem to have some advantages over the time--tested approach. One such method is investigated by applying both the traditional Foldy--Wouthuysen transform and the "chiral" Foldy--Wouthuysen transform to a number of Dirac Hamiltonians, including the central-field Hamiltonian for a gravitationally bound system; namely, the Dirac-(Einstein-)Schwarzschild Hamiltonian, which requires the formal- ism of general relativity. (iii) Are there are pseudo--Hermitian variants of Dirac Hamiltonians that can be approximated using a decoupling transformation? The tachyonic Dirac Hamiltonian, which describes faster-than-light spin-1/2 particles, is gamma5--Hermitian, i.e., pseudo-Hermitian. Superluminal particles remain faster than light upon a Lorentz transformation, and hence, the Foldy--Wouthuysen program is unsuited for this case. Thus, inspired by the Foldy--Wouthuysen program, a decoupling transform in the ultrarelativistic limit is proposed, which is applicable to both sub- and superluminal particles.

  4. Approximation methods for stochastic petri nets

    NASA Technical Reports Server (NTRS)

    Jungnitz, Hauke Joerg

    1992-01-01

    Stochastic Marked Graphs are a concurrent decision free formalism provided with a powerful synchronization mechanism generalizing conventional Fork Join Queueing Networks. In some particular cases the analysis of the throughput can be done analytically. Otherwise the analysis suffers from the classical state explosion problem. Embedded in the divide and conquer paradigm, approximation techniques are introduced for the analysis of stochastic marked graphs and Macroplace/Macrotransition-nets (MPMT-nets), a new subclass introduced herein. MPMT-nets are a subclass of Petri nets that allow limited choice, concurrency and sharing of resources. The modeling power of MPMT is much larger than that of marked graphs, e.g., MPMT-nets can model manufacturing flow lines with unreliable machines and dataflow graphs where choice and synchronization occur. The basic idea leads to the notion of a cut to split the original net system into two subnets. The cuts lead to two aggregated net systems where one of the subnets is reduced to a single transition. A further reduction leads to a basic skeleton. The generalization of the idea leads to multiple cuts, where single cuts can be applied recursively leading to a hierarchical decomposition. Based on the decomposition, a response time approximation technique for the performance analysis is introduced. Also, delay equivalence, which has previously been introduced in the context of marked graphs by Woodside et al., Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's is slower, but the accuracy is generally better. Delay

  5. ConPADE: Genome Assembly Ploidy Estimation from Next-Generation Sequencing Data

    PubMed Central

    Margarido, Gabriel R. A.; Heckerman, David

    2015-01-01

    As a result of improvements in genome assembly algorithms and the ever decreasing costs of high-throughput sequencing technologies, new high quality draft genome sequences are published at a striking pace. With well-established methodologies, larger and more complex genomes are being tackled, including polyploid plant genomes. Given the similarity between multiple copies of a basic genome in polyploid individuals, assembly of such data usually results in collapsed contigs that represent a variable number of homoeologous genomic regions. Unfortunately, such collapse is often not ideal, as keeping contigs separate can lead both to improved assembly and also insights about how haplotypes influence phenotype. Here, we describe a first step in avoiding inappropriate collapse during assembly. In particular, we describe ConPADE (Contig Ploidy and Allele Dosage Estimation), a probabilistic method that estimates the ploidy of any given contig/scaffold based on its allele proportions. In the process, we report findings regarding errors in sequencing. The method can be used for whole genome shotgun (WGS) sequencing data. We also show applicability of the method for variant calling and allele dosage estimation. Results for simulated and real datasets are discussed and provide evidence that ConPADE performs well as long as enough sequencing coverage is available, or the true contig ploidy is low. We show that ConPADE may also be used for related applications, such as the identification of duplicated genes in fragmented assemblies, although refinements are needed. PMID:25880203

  6. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  7. Nouvelle methode pour les etudes des interactions aeroservoelastiques en boucle ouverte sur les avions F/A-18, CL-604 et ATM et en boucle fermee sur l'ATM

    NASA Astrophysics Data System (ADS)

    Dinu, Alin Dorian

    2006-04-01

    Nous avons concu, implemente puis valide une nouvelle methode d'approximation des forces aerodynamiques non stationnaires a l'aide des polynomes orthogonaux de Chebyshev. Cela represente une contribution originale dans l'analyse des interactions aeroservoelastiques. La premiere serie de resultats obtenus par cette nouvelle methode (erreurs d'approximation des forces aerodynamiques non stationnaires) est comparee avec les resultats des methodes LS et de Pade. La deuxieme serie de resultats (vitesses et frequences de battement obtenues avec cette nouvelle methode) est comparee avec celles obtenues par les methodes classiques LS et de Pade. Ces deux series de resultats obtenus par notre methode et par les deux methodes classiques LS et de Pade sont validees sur trois types differents d'avions: l'ATM (Aircraft Test Model), le F/A-18 en collaboration avec les laboratoires de la NASA Dryden Flight Research Center, et enfin le Challenger CL-604 de Bombardier Aeronautique.

  8. A new approximation method for stress constraints in structural synthesis

    NASA Technical Reports Server (NTRS)

    Vanderplaats, Garret N.; Salajegheh, Eysa

    1987-01-01

    A new approximation method for dealing with stress constraints in structural synthesis is presented. The finite element nodal forces are approximated and these are used to create an explicit, but often nonlinear, approximation to the original problem. The principal motivation is to create the best approximation possible, in order to reduce the number of detailed finite element analyses needed to reach the optimum. Examples are offered and compared with published results, to demonstrate the efficiency and reliability of the proposed method.

  9. Pade spectrum decompositions of quantum distribution functions and optimal hierarchical equations of motion construction for quantum open systems

    SciTech Connect

    Hu Jie; Luo Meng; Jiang Feng; Xu Ruixue; Yan Yijing

    2011-06-28

    Pade spectrum decomposition is an optimal sum-over-poles expansion scheme of Fermi function and Bose function [J. Hu, R. X. Xu, and Y. J. Yan, J. Chem. Phys. 133, 101106 (2010)]. In this work, we report two additional members to this family, from which the best among all sum-over-poles methods could be chosen for different cases of application. Methods are developed for determining these three Pade spectrum decomposition expansions at machine precision via simple algorithms. We exemplify the applications of present development with optimal construction of hierarchical equations-of-motion formulations for nonperturbative quantum dissipation and quantum transport dynamics. Numerical demonstrations are given for two systems. One is the transient transport current to an interacting quantum-dots system, together with the involved high-order co-tunneling dynamics. Another is the non-Markovian dynamics of a spin-boson system.

  10. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.

  11. Sensitivity analysis and approximation methods for general eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Murthy, D. V.; Haftka, R. T.

    1986-01-01

    Optimization of dynamic systems involving complex non-hermitian matrices is often computationally expensive. Major contributors to the computational expense are the sensitivity analysis and reanalysis of a modified design. The present work seeks to alleviate this computational burden by identifying efficient sensitivity analysis and approximate reanalysis methods. For the algebraic eigenvalue problem involving non-hermitian matrices, algorithms for sensitivity analysis and approximate reanalysis are classified, compared and evaluated for efficiency and accuracy. Proper eigenvector normalization is discussed. An improved method for calculating derivatives of eigenvectors is proposed based on a more rational normalization condition and taking advantage of matrix sparsity. Important numerical aspects of this method are also discussed. To alleviate the problem of reanalysis, various approximation methods for eigenvalues are proposed and evaluated. Linear and quadratic approximations are based directly on the Taylor series. Several approximation methods are developed based on the generalized Rayleigh quotient for the eigenvalue problem. Approximation methods based on trace theorem give high accuracy without needing any derivatives. Operation counts for the computation of the approximations are given. General recommendations are made for the selection of appropriate approximation technique as a function of the matrix size, number of design variables, number of eigenvalues of interest and the number of design points at which approximation is sought.

  12. Approximate inverse preconditioning of iterative methods for nonsymmetric linear systems

    SciTech Connect

    Benzi, M.; Tuma, M.

    1996-12-31

    A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods.

  13. Mapping biological entities using the longest approximately common prefix method

    PubMed Central

    2014-01-01

    Background The significant growth in the volume of electronic biomedical data in recent decades has pointed to the need for approximate string matching algorithms that can expedite tasks such as named entity recognition, duplicate detection, terminology integration, and spelling correction. The task of source integration in the Unified Medical Language System (UMLS) requires considerable expert effort despite the presence of various computational tools. This problem warrants the search for a new method for approximate string matching and its UMLS-based evaluation. Results This paper introduces the Longest Approximately Common Prefix (LACP) method as an algorithm for approximate string matching that runs in linear time. We compare the LACP method for performance, precision and speed to nine other well-known string matching algorithms. As test data, we use two multiple-source samples from the Unified Medical Language System (UMLS) and two SNOMED Clinical Terms-based samples. In addition, we present a spell checker based on the LACP method. Conclusions The Longest Approximately Common Prefix method completes its string similarity evaluations in less time than all nine string similarity methods used for comparison. The Longest Approximately Common Prefix outperforms these nine approximate string matching methods in its Maximum F1 measure when evaluated on three out of the four datasets, and in its average precision on two of the four datasets. PMID:24928653

  14. A simple approximation method for obtaining the spanwise lift distribution

    NASA Technical Reports Server (NTRS)

    Schrenk, O

    1940-01-01

    The approximation method described makes possible lift-distribution computations in a few minutes. Comparison with an exact method shows satisfactory agreement. The method is of greater applicability than the exact method and includes also the important case of the wing with end plates.

  15. Numerical Stability and Convergence of Approximate Methods for Conservation Laws

    NASA Astrophysics Data System (ADS)

    Galkin, V. A.

    We present the new approach to background of approximate methods convergence based on functional solutions theory for conservation laws. The applications to physical kinetics, gas and fluid dynamics are considered.

  16. Discrete approximation methods for parameter identification in delay systems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    Approximation schemes for parameter identification problems in which the governing state equation is a linear functional differential equation of retarded type are constructed. The basis of the schemes is the replacement of the parameter identification problem having an infinite dimensional state equation by a sequence of approximating parameter identification problems in which the states are given by finite dimensional discrete difference equations. The difference equations are constructed using linear semigroup theory and rational function approximations to the exponential. Sufficient conditions are given for the convergence of solutions to the approximating problems, which can be obtained using conventional methods, to solutions to the original parameter identification problem. Finite difference and spline based schemes using Paderational function approximations to the exponential are constructed, and shown to satisfy the sufficient conditions for convergence. A discussion and analysis of numerical results obtained through the application of the schemes to several examples is included.

  17. Dual methods and approximation concepts in structural synthesis

    NASA Technical Reports Server (NTRS)

    Fleury, C.; Schmit, L. A., Jr.

    1980-01-01

    Approximation concepts and dual method algorithms are combined to create a method for minimum weight design of structural systems. Approximation concepts convert the basic mathematical programming statement of the structural synthesis problem into a sequence of explicit primal problems of separable form. These problems are solved by constructing explicit dual functions, which are maximized subject to nonnegativity constraints on the dual variables. It is shown that the joining together of approximation concepts and dual methods can be viewed as a generalized optimality criteria approach. The dual method is successfully extended to deal with pure discrete and mixed continuous-discrete design variable problems. The power of the method presented is illustrated with numerical results for example problems, including a metallic swept wing and a thin delta wing with fiber composite skins.

  18. Intermediate boundary conditions for LOD, ADI and approximate factorization methods

    NASA Technical Reports Server (NTRS)

    Leveque, R. J.

    1985-01-01

    A general approach to determining the correct intermediate boundary conditions for dimensional splitting methods is presented. The intermediate solution U is viewed as a second order accurate approximation to a modified equation. Deriving the modified equation and using the relationship between this equation and the original equation allows us to determine the correct boundary conditions for U*. This technique is illustrated by applying it to locally one dimensional (LOD) and alternating direction implicit (ADI) methods for the heat equation in two and three space dimensions. The approximate factorization method is considered in slightly more generality.

  19. Efficient variational Bayesian approximation method based on subspace optimization.

    PubMed

    Zheng, Yuling; Fraysse, Aurélia; Rodet, Thomas

    2015-02-01

    Variational Bayesian approximations have been widely used in fully Bayesian inference for approximating an intractable posterior distribution by a separable one. Nevertheless, the classical variational Bayesian approximation (VBA) method suffers from slow convergence to the approximate solution when tackling large dimensional problems. To address this problem, we propose in this paper a more efficient VBA method. Actually, variational Bayesian issue can be seen as a functional optimization problem. The proposed method is based on the adaptation of subspace optimization methods in Hilbert spaces to the involved function space, in order to solve this optimization problem in an iterative way. The aim is to determine an optimal direction at each iteration in order to get a more efficient method. We highlight the efficiency of our new VBA method and demonstrate its application to image processing by considering an ill-posed linear inverse problem using a total variation prior. Comparisons with state of the art variational Bayesian methods through a numerical example show a notable improvement in computation time. PMID:25532179

  20. Efficient solution of parabolic equations by Krylov approximation methods

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Y.

    1990-01-01

    Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.

  1. Multi-level methods and approximating distribution functions

    NASA Astrophysics Data System (ADS)

    Wilson, D.; Baker, R. E.

    2016-07-01

    Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie's direct method. These algorithms often come with high computational costs, therefore approximate stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparable to Gillespie's direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146-179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely approximating required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to approximate entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.

  2. Spin-1 Heisenberg ferromagnet using pair approximation method

    NASA Astrophysics Data System (ADS)

    Mert, Murat; Kılıç, Ahmet; Mert, Gülistan

    2016-06-01

    Thermodynamic properties for Heisenberg ferromagnet with spin-1 on the simple cubic lattice have been calculated using pair approximation method. We introduce the single-ion anisotropy and the next-nearest-neighbor exchange interaction. We found that for negative single-ion anisotropy parameter, the internal energy is positive and heat capacity has two peaks.

  3. Methods to approximate reliabilities in single-step genomic evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reliability of predictions from single-step genomic BLUP (ssGBLUP) can be calculated by inversion, but that is not feasible for large data sets. Two methods of approximating reliability were developed based on decomposition of a function of reliability into contributions from records, pedigrees, and...

  4. Using Propensity Score Methods to Approximate Factorial Experimental Designs

    ERIC Educational Resources Information Center

    Dong, Nianbo

    2011-01-01

    The purpose of this study is through Monte Carlo simulation to compare several propensity score methods in approximating factorial experimental design and identify best approaches in reducing bias and mean square error of parameter estimates of the main and interaction effects of two factors. Previous studies focused more on unbiased estimates of…

  5. Calculating Resonance Positions and Widths Using the Siegert Approximation Method

    ERIC Educational Resources Information Center

    Rapedius, Kevin

    2011-01-01

    Here, we present complex resonance states (or Siegert states) that describe the tunnelling decay of a trapped quantum particle from an intuitive point of view that naturally leads to the easily applicable Siegert approximation method. This can be used for analytical and numerical calculations of complex resonances of both the linear and nonlinear…

  6. Approximate iterative operator method for potential-field downward continuation

    NASA Astrophysics Data System (ADS)

    Tai, Zhenhua; Zhang, Fengxu; Zhang, Fengqin; Hao, Mengcheng

    2016-05-01

    An approximate iterative operator method in wavenumber domain was proposed to improve the stability and accuracy of downward continuation of potential fields measured from the ground surface, marine or airborne. Firstly, the generalized iterative formula of downward continuation is derived in wavenumber domain; then, the transformational relationship between horizontal second-order partial derivatives and continuation is derived based on the Taylor series and Laplace equation, to obtain an approximate operator. By introducing this operator to the generalized iterative formula, a rapid algorithm is developed for downward continuation. The filtering and convergence characteristics of this method are analyzed for the purpose of estimating the optimal interval of number of iterations. We demonstrate the proposed method on synthetic data, and the results validate the flexibility of the proposed method. At last, we apply the proposed method to real data, and the results show the proposed method can enhance gravity anomalies generated by concealed orebodies. And in the contour obtained by making our proposed method results continue upward to measured level, the numerical results have approximate distribution and amplitude with original anomalies.

  7. Capturing correlations in chaotic diffusion by approximation methods.

    PubMed

    Knight, Georgie; Klages, Rainer

    2011-10-01

    We investigate three different methods for systematically approximating the diffusion coefficient of a deterministic random walk on the line that contains dynamical correlations that change irregularly under parameter variation. Capturing these correlations by incorporating higher-order terms, all schemes converge to the analytically exact result. Two of these methods are based on expanding the Taylor-Green-Kubo formula for diffusion, while the third method approximates Markov partitions and transition matrices by using a slight variation of the escape rate theory of chaotic diffusion. We check the practicability of the different methods by working them out analytically and numerically for a simple one-dimensional map, study their convergence, and critically discuss their usefulness in identifying a possible fractal instability of parameter-dependent diffusion, in the case of dynamics where exact results for the diffusion coefficient are not available. PMID:22181115

  8. An approximation concepts method for space frame synthesis

    NASA Technical Reports Server (NTRS)

    Mills-Curran, W. C.; Lust, R. V.; Schmit, L. A.

    1982-01-01

    A method is presented for the minimum mass design of three dimensional space frames constructed of thin walled rectangular cross-section members. Constraints on nodal displacements and rotations, material stress, local buckling, and cross sectional dimensions are included. A high quality separable approximate problem is formed in terms of the reciprocals of the four section properties of the frame element cross section, replacing all implicit functions with simplified explicit relations. The cross sectional dimensions are efficiently calculated without using multilevel techniques. Several test problems are solved, demonstrating that a series of approximate problem solutions converge rapidly to an optimal design.

  9. An approximate method for calculating aircraft downwash on parachute trajectories

    SciTech Connect

    Strickland, J.H.

    1989-01-01

    An approximate method for calculating velocities induced by aircraft on parachute trajectories is presented herein. A simple system of quadrilateral vortex panels is used to model the aircraft wing and its wake. The purpose of this work is to provide a simple analytical tool which can be used to approximate the effect of aircraft-induced velocities on parachute performance. Performance issues such as turnover and wake recontact may be strongly influenced by velocities induced by the wake of the delivering aircraft, especially if the aircraft is maneuvering at the time of parachute deployment. 7 refs., 9 figs.

  10. Approximate method of designing a two-element airfoil

    NASA Astrophysics Data System (ADS)

    Abzalilov, D. F.; Mardanov, R. F.

    2011-09-01

    An approximate method is proposed for designing a two-element airfoil. The method is based on reducing an inverse boundary-value problem in a doubly connected domain to a problem in a singly connected domain located on a multisheet Riemann surface. The essence of the method is replacement of channels between the airfoil elements by channels of flow suction and blowing. The shape of these channels asymptotically tends to the annular shape of channels passing to infinity on the second sheet of the Riemann surface. The proposed method can be extended to designing multielement airfoils.

  11. Space-angle approximations in the variational nodal method.

    SciTech Connect

    Lewis, E. E.; Palmiotti, G.; Taiwo, T.

    1999-03-12

    The variational nodal method is formulated such that the angular and spatial approximations maybe examined separately. Spherical harmonic, simplified spherical harmonic, and discrete ordinate approximations are coupled to the primal hybrid finite element treatment of the spatial variables. Within this framework, two classes of spatial trial functions are presented: (1) orthogonal polynomials for the treatment of homogeneous nodes and (2) bilinear finite subelement trial functions for the treatment of fuel assembly sized nodes in which fuel-pin cell cross sections are represented explicitly. Polynomial and subelement trial functions are applied to benchmark water-reactor problems containing MOX fuel using spherical harmonic and simplified spherical harmonic approximations. The resulting accuracy and computing costs are compared.

  12. An approximate method for residual stress calculation infunctionally graded materials

    SciTech Connect

    Becker, T.L.

    1999-06-02

    Thermal residual stresses in functionally graded materials(FGMs) arise primarily from nonlinear spatial variations in the thermalexpansion coefficient, but can be significantly adjusted by variations inmodulus. Thermoelastic analysis of FGMs is complicated by such modulusgradients. A class of problems for which thermal stress solutions formaterials with constant modulus can be used as a basis for approximationsfor FGMs is discussed. The size of the error in this approximation due togradients in elastic modulus is investigated. Analytical and finiteelement solutions for the thermal stresses in various FGM geometries arecompared to results from this approximate method. In a geometry ofpractical interest, a right cylinder graded along the z-axis, the errorfor a Ni-Al2O3 FGM was found to be within 15 percent for all gradientsconsidered. The form of the approximation makes it easier to identifydesirable types of spatial nonlinearity in expansion coefficient andvariations in modulus: this would allow the manipulation of the locationof compressive stresses.

  13. Studying geomagnetic pulsation characteristics with the local approximation method

    NASA Astrophysics Data System (ADS)

    Getmanov, V. G.; Dabagyan, R. A.; Sidorov, R. V.

    2016-03-01

    A local approximation method based on piecewise sinusoidal models has been proposed in order to study the frequency and amplitude characteristics of geomagnetic pulsations registered at a network of magnetic observatories. It has been established that synchronous variations in the geomagnetic pulsation frequency in the specified frequency band can be studied with the use of calculations performed according to this method. The method was used to analyze the spectral-time structure of Pc3 geomagnetic pulsations registered at the network of equatorial observatories. Local approximation variants have been formed for single-channel and multichannel cases of estimating the geomagnetic pulsation frequency and amplitude, which made it possible to decrease estimation errors via filtering with moving weighted averaging.

  14. Interfacing Relativistic and Nonrelativistic Methods: A Systematic Sequence of Approximations

    NASA Technical Reports Server (NTRS)

    Dyall, Ken; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A systematic sequence of approximations for the introduction of relativistic effects into nonrelativistic molecular finite-basis set calculations is described. The theoretical basis for the approximations is the normalized elimination of the small component (ESC) within the matrix representation of the modified Dirac equation. The key features of the normalized method are the retention of the relativistic metric and the ability to define a single matrix U relating the pseudo-large and large component coefficient matrices. This matrix is used to define a modified set of one- and two-electron integrals which have the same appearance as the integrals of the Breit-Pauli Hamiltonian. The first approximation fixes the ratios of the large and pseudo-large components to their atomic values, producing an expansion in atomic 4-spinors. The second approximation defines a local fine-structure constant on each atomic centre, which has the physical value for centres considered to be relativistic and zero for nonrelativistic centres. In the latter case, the 4-spinors are the positive-energy kinetic al ly-balanced solutions of the Levy-Leblond equation, and the integrals involving pseudo-large component basis functions on these centres, are set to zero. Some results are presented for test systems to illustrate the various approximations.

  15. Spacecraft Orbit Determination with The B-spline Approximation Method

    NASA Astrophysics Data System (ADS)

    Song, Ye-zhi; Huang, Yong; Hu, Xiao-gong; Li, Pei-jia; Cao, Jian-feng

    2014-04-01

    It is known that the dynamical orbit determination is the most common way to get the precise orbits of spacecraft. However, it is hard to build up the precise dynamical model of spacecraft sometimes. In order to solve this problem, the technique of the orbit determination with the B-spline approximation method based on the theory of function approximation is presented in this article. In order to verify the effectiveness of this method, simulative orbit determinations in the cases of LEO (Low Earth Orbit), MEO (Medium Earth Orbit), and HEO (Highly Eccentric Orbit) satellites are performed, and it is shown that this method has a reliable accuracy and stable solution. The approach can be performed in both the conventional celestial coordinate system and the conventional terrestrial coordinate system. The spacecraft's position and velocity can be calculated directly with the B-spline approximation method, it needs not to integrate the dynamical equations, nor to calculate the state transfer matrix, thus the burden of calculations in the orbit determination is reduced substantially relative to the dynamical orbit determination method. The technique not only has a certain theoretical significance, but also can serve as a conventional algorithm in the spacecraft orbit determination.

  16. Spacecraft Orbit Determination with B Spline Approximation Method

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Huang, Y.; Hu, X. G.; Li, P. J.; Cao, J. F.

    2013-07-01

    It is known that the dynamical orbit determination is the most common way to get the precise orbit of spacecraft. However, it is hard to describe the precise orbit of spacecraft sometimes. In order to solve this problem, the technique of the orbit determination with the B spline approximation method based on the theory of function approximation is presented in this article. Several simulation cases of the orbit determination including LEO (Low Earth Orbit), MEO (Medium Earth Orbit), and HEO (Highly Eccentric Orbit) satellites are performed, and it is shown that the accuracy of this method is reliable and stable.The approach can be performed in the conventional celestial coordinate system and conventional terrestrial coordinate system.The spacecraft's position and velocity can be calculated directly with the B spline approximation method, which means that it is unnecessary to integrate the dynamics equations and variational equations. In that case, it makes the calculation amount of orbit determination reduce substantially relative to the dynamical orbit determination method. The technique not only has a certain theoretical significance, but also can be as a conventional algorithm in the spacecraft orbit determination.

  17. Parallel iterative solvers and preconditioners using approximate hierarchical methods

    SciTech Connect

    Grama, A.; Kumar, V.; Sameh, A.

    1996-12-31

    In this paper, we report results of the performance, convergence, and accuracy of a parallel GMRES solver for Boundary Element Methods. The solver uses a hierarchical approximate matrix-vector product based on a hybrid Barnes-Hut / Fast Multipole Method. We study the impact of various accuracy parameters on the convergence and show that with minimal loss in accuracy, our solver yields significant speedups. We demonstrate the excellent parallel efficiency and scalability of our solver. The combined speedups from approximation and parallelism represent an improvement of several orders in solution time. We also develop fast and paralellizable preconditioners for this problem. We report on the performance of an inner-outer scheme and a preconditioner based on truncated Green`s function. Experimental results on a 256 processor Cray T3D are presented.

  18. Novel determination of differential-equation solutions: universal approximation method

    NASA Astrophysics Data System (ADS)

    Leephakpreeda, Thananchai

    2002-09-01

    In a conventional approach to numerical computation, finite difference and finite element methods are usually implemented to determine the solution of a set of differential equations (DEs). This paper presents a novel approach to solve DEs by applying the universal approximation method through an artificial intelligence utility in a simple way. In this proposed method, neural network model (NNM) and fuzzy linguistic model (FLM) are applied as universal approximators for any nonlinear continuous functions. With this outstanding capability, the solutions of DEs can be approximated by the appropriate NNM or FLM within an arbitrary accuracy. The adjustable parameters of such NNM and FLM are determined by implementing the optimization algorithm. This systematic search yields sub-optimal adjustable parameters of NNM and FLM with the satisfactory conditions and with the minimum residual errors of the governing equations subject to the constraints of boundary conditions of DEs. The simulation results are investigated for the viability of efficiently determining the solutions of the ordinary and partial nonlinear DEs.

  19. A multiscale two-point flux-approximation method

    SciTech Connect

    Møyner, Olav Lie, Knut-Andreas

    2014-10-15

    A large number of multiscale finite-volume methods have been developed over the past decade to compute conservative approximations to multiphase flow problems in heterogeneous porous media. In particular, several iterative and algebraic multiscale frameworks that seek to reduce the fine-scale residual towards machine precision have been presented. Common for all such methods is that they rely on a compatible primal–dual coarse partition, which makes it challenging to extend them to stratigraphic and unstructured grids. Herein, we propose a general idea for how one can formulate multiscale finite-volume methods using only a primal coarse partition. To this end, we use two key ingredients that are computed numerically: (i) elementary functions that correspond to flow solutions used in transmissibility upscaling, and (ii) partition-of-unity functions used to combine elementary functions into basis functions. We exemplify the idea by deriving a multiscale two-point flux-approximation (MsTPFA) method, which is robust with regards to strong heterogeneities in the permeability field and can easily handle general grids with unstructured fine- and coarse-scale connections. The method can easily be adapted to arbitrary levels of coarsening, and can be used both as a standalone solver and as a preconditioner. Several numerical experiments are presented to demonstrate that the MsTPFA method can be used to solve elliptic pressure problems on a wide variety of geological models in a robust and efficient manner.

  20. Parabolic approximation method for fast magnetosonic wave propagation in tokamaks

    SciTech Connect

    Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.

    1985-07-01

    Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters.

  1. An approximate methods approach to probabilistic structural analysis

    NASA Technical Reports Server (NTRS)

    Mcclung, R. C.; Millwater, H. R.; Wu, Y.-T.; Thacker, B. H.; Burnside, O. H.

    1989-01-01

    A probabilistic structural analysis method (PSAM) is described which makes an approximate calculation of the structural response of a system, including the associated probabilistic distributions, with minimal computation time and cost, based on a simplified representation of the geometry, loads, and material. The method employs the fast probability integration (FPI) algorithm of Wu and Wirsching. Typical solution strategies are illustrated by formulations for a representative critical component chosen from the Space Shuttle Main Engine (SSME) as part of a major NASA-sponsored program on PSAM. Typical results are presented to demonstrate the role of the methodology in engineering design and analysis.

  2. A Surface Approximation Method for Image and Video Correspondences.

    PubMed

    Huang, Jingwei; Wang, Bin; Wang, Wenping; Sen, Pradeep

    2015-12-01

    Although finding correspondences between similar images is an important problem in image processing, the existing algorithms cannot find accurate and dense correspondences in images with significant changes in lighting/transformation or with the non-rigid objects. This paper proposes a novel method for finding accurate and dense correspondences between images even in these difficult situations. Starting with the non-rigid dense correspondence algorithm [1] to generate an initial correspondence map, we propose a new geometric filter that uses cubic B-Spline surfaces to approximate the correspondence mapping functions for shared objects in both images, thereby eliminating outliers and noise. We then propose an iterative algorithm which enlarges the region containing valid correspondences. Compared with the existing methods, our method is more robust to significant changes in lighting, color, or viewpoint. Furthermore, we demonstrate how to extend our surface approximation method to video editing by first generating a reliable correspondence map between a given source frame and each frame of a video. The user can then edit the source frame, and the changes are automatically propagated through the entire video using the correspondence map. To evaluate our approach, we examine applications of unsupervised image recognition and video texture editing, and show that our algorithm produces better results than those from state-of-the-art approaches. PMID:26241974

  3. An Adaptive Derivative-based Method for Function Approximation

    SciTech Connect

    Tong, C

    2008-10-22

    To alleviate the high computational cost of large-scale multi-physics simulations to study the relationships between the model parameters and the outputs of interest, response surfaces are often used in place of the exact functional relationships. This report explores a method for response surface construction using adaptive sampling guided by derivative information at each selected sample point. This method is especially suitable for applications that can readily provide added information such as gradients and Hessian with respect to the input parameters under study. When higher order terms (third and above) in the Taylor series are negligible, the approximation error for this method can be controlled. We present details of the adaptive algorithm and numerical results on a few test problems.

  4. Proton Form Factor Measurements Using Polarization Method: Beyond Born Approximation

    SciTech Connect

    Pentchev, Lubomir

    2008-10-13

    Significant theoretical and experimental efforts have been made over the past 7 years aiming to explain the discrepancy between the proton form factor ratio data obtained at JLab using the polarization method and the previous Rosenbluth measurements. Preliminary results from the first high precision polarization experiment dedicated to study effects beyond Born approximation will be presented. The ratio of the transferred polarization components and, separately, the longitudinal polarization in ep elastic scattering have been measured at a fixed Q{sup 2} of 2.5 GeV{sup 2} over a wide kinematic range. The two quantities impose constraints on the real part of the ep elastic amplitudes.

  5. Approximate method for controlling solid elastic waves by transformation media

    NASA Astrophysics Data System (ADS)

    Hu, Jin; Chang, Zheng; Hu, Gengkai

    2011-11-01

    By idealizing a general mapping as a series of local affine ones, we derive approximately transformed material parameters necessary to control solid elastic waves within classical elasticity theory. The transformed elastic moduli are symmetric, and can be used with Navier's equation to manipulate elastic waves. It is shown numerically that the method can provide a powerful tool to control elastic waves in solids in case of high frequency or small material gradient. Potential applications can be anticipated in nondestructive testing, structure impact protection, petroleum exploration, and seismology.

  6. Pair approximation method for spin-1 Heisenberg system

    NASA Astrophysics Data System (ADS)

    Mert, Murat; Kılıç, Ahmet; Mert, Gülistan

    2016-03-01

    Spin-1 Heisenberg system on simple cubic lattice is considered in the pair approximation method assuming that the second-nearest-neighbor exchange interaction parameter has a negative value. The system is described in presence of an external magnetic field. The effects of the negative single-ion anisotropy and the negative second-nearest-neighbor exchange interaction on magnetization, internal energy, heat capacity, entropy and free energy are investigated. There are diverse anomalies at low temperature. In the magnetization and other thermodynamic quantities, the first-order phase transitions from ferromagnetic state to antiferromagnetic state and from ferromagnetic state to paramagnetic state have been observed.

  7. Finite amplitude method for the quasiparticle random-phase approximation

    SciTech Connect

    Avogadro, Paolo; Nakatsukasa, Takashi

    2011-07-15

    We present the finite amplitude method (FAM), originally proposed in Ref. [17], for superfluid systems. A Hartree-Fock-Bogoliubov code may be transformed into a code of the quasiparticle-random-phase approximation (QRPA) with simple modifications. This technique has advantages over the conventional QRPA calculations, such as coding feasibility and computational cost. We perform the fully self-consistent linear-response calculation for the spherical neutron-rich nucleus {sup 174}Sn, modifying the hfbrad code, to demonstrate the accuracy, feasibility, and usefulness of the FAM.

  8. Optical properties of electrohydrodynamic convection patterns: rigorous and approximate methods.

    PubMed

    Bohley, Christian; Heuer, Jana; Stannarius, Ralf

    2005-12-01

    We analyze the optical behavior of two-dimensionally periodic structures that occur in electrohydrodynamic convection (EHC) patterns in nematic sandwich cells. These structures are anisotropic, locally uniaxial, and periodic on the scale of micrometers. For the first time, the optics of these structures is investigated with a rigorous method. The method used for the description of the electromagnetic waves interacting with EHC director patterns is a numerical approach that discretizes directly the Maxwell equations. It works as a space-grid-time-domain method and computes electric and magnetic fields in time steps. This so-called finite-difference-time-domain (FDTD) method is able to generate the fields with arbitrary accuracy. We compare this rigorous method with earlier attempts based on ray-tracing and analytical approximations. Results of optical studies of EHC structures made earlier based on ray-tracing methods are confirmed for thin cells, when the spatial periods of the pattern are sufficiently large. For the treatment of small-scale convection structures, the FDTD method is without alternatives. PMID:16396044

  9. Optical properties of electrohydrodynamic convection patterns: rigorous and approximate methods

    NASA Astrophysics Data System (ADS)

    Bohley, Christian; Heuer, Jana; Stannarius, Ralf

    2005-12-01

    We analyze the optical behavior of two-dimensionally periodic structures that occur in electrohydrodynamic convection (EHC) patterns in nematic sandwich cells. These structures are anisotropic, locally uniaxial, and periodic on the scale of micrometers. For the first time, the optics of these structures is investigated with a rigorous method. The method used for the description of the electromagnetic waves interacting with EHC director patterns is a numerical approach that discretizes directly the Maxwell equations. It works as a space-grid-time-domain method and computes electric and magnetic fields in time steps. This so-called finite-difference-time-domain (FDTD) method is able to generate the fields with arbitrary accuracy. We compare this rigorous method with earlier attempts based on ray-tracing and analytical approximations. Results of optical studies of EHC structures made earlier based on ray-tracing methods are confirmed for thin cells, when the spatial periods of the pattern are sufficiently large. For the treatment of small-scale convection structures, the FDTD method is without alternatives.

  10. Approximation method to compute domain related integrals in structural studies

    NASA Astrophysics Data System (ADS)

    Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.

    2015-11-01

    Various engineering calculi use integral calculus in theoretical models, i.e. analytical and numerical models. For usual problems, integrals have mathematical exact solutions. If the domain of integration is complicated, there may be used several methods to calculate the integral. The first idea is to divide the domain in smaller sub-domains for which there are direct calculus relations, i.e. in strength of materials the bending moment may be computed in some discrete points using the graphical integration of the shear force diagram, which usually has a simple shape. Another example is in mathematics, where the surface of a subgraph may be approximated by a set of rectangles or trapezoids used to calculate the definite integral. The goal of the work is to introduce our studies about the calculus of the integrals in the transverse section domains, computer aided solutions and a generalizing method. The aim of our research is to create general computer based methods to execute the calculi in structural studies. Thus, we define a Boolean algebra which operates with ‘simple’ shape domains. This algebraic standpoint uses addition and subtraction, conditioned by the sign of every ‘simple’ shape (-1 for the shapes to be subtracted). By ‘simple’ shape or ‘basic’ shape we define either shapes for which there are direct calculus relations, or domains for which their frontiers are approximated by known functions and the according calculus is carried out using an algorithm. The ‘basic’ shapes are linked to the calculus of the most significant stresses in the section, refined aspect which needs special attention. Starting from this idea, in the libraries of ‘basic’ shapes, there were included rectangles, ellipses and domains whose frontiers are approximated by spline functions. The domain triangularization methods suggested that another ‘basic’ shape to be considered is the triangle. The subsequent phase was to deduce the exact relations for the

  11. Analytic approximations to the modon dispersion relation. [in oceanography

    NASA Technical Reports Server (NTRS)

    Boyd, J. P.

    1981-01-01

    Three explicit analytic approximations are given to the modon dispersion relation developed by Flierl et al. (1980) to describe Gulf Stream rings and related phenomena in the oceans and atmosphere. The solutions are in the form of k(q), and are developed in the form of a power series in q for small q, an inverse power series in 1/q for large q, and a two-point Pade approximant. The low order Pade approximant is shown to yield a solution for the dispersion relation with a maximum relative error for the lowest branch of the function equal to one in 700 in the q interval zero to infinity.

  12. Atomistic Modeling of Nanostructures via the BFS Quantum Approximate Method

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Garces, Jorge E.; Noebe, Ronald D.; Farias, D.

    2003-01-01

    Ideally, computational modeling techniques for nanoscopic physics would be able to perform free of limitations on the type and number of elements, while providing comparable accuracy when dealing with bulk or surface problems. Computational efficiency is also desirable, if not mandatory, for properly dealing with the complexity of typical nano-strucured systems. A quantum approximate technique, the BFS method for alloys, which attempts to meet these demands, is introduced for the calculation of the energetics of nanostructures. The versatility of the technique is demonstrated through analysis of diverse systems, including multi-phase precipitation in a five element Ni-Al-Ti-Cr-Cu alloy and the formation of mixed composition Co-Cu islands on a metallic Cu(III) substrate.

  13. Multivariate approximation methods and applications to geophysics and geodesy

    NASA Technical Reports Server (NTRS)

    Munteanu, M. J.

    1979-01-01

    The first report in a series is presented which is intended to be written by the author with the purpose of treating a class of approximation methods of functions in one and several variables and ways of applying them to geophysics and geodesy. The first report is divided in three parts and is devoted to the presentation of the mathematical theory and formulas. Various optimal ways of representing functions in one and several variables and the associated error when information is had about the function such as satellite data of different kinds are discussed. The framework chosen is Hilbert spaces. Experiments were performed on satellite altimeter data and on satellite to satellite tracking data.

  14. Methods of approximation of reference fields of different classes

    NASA Astrophysics Data System (ADS)

    Kolesova, Valentina I.

    1993-11-01

    The summary geomagnetic field on the reference field for the regional anomalies is surface of the Earth consists of the follow- the sum of the main geomagnetic field and ing components: the intermediate anomalies. Since the components mentioned above have the F0 = Fm + Fim + Fr + F1 + F (1) different space-spectral characteristics, different methods are used for the analytiwhere cal descriptions. The main geomagnetic field, being the global reference field, is approximated by F0 - the observed geomagnetic field the optimal way as a spherical harmonic Fm - the main geomagnetic field series [1]: Fim - the field of the intermediate anoma- n lies Fr - the field of the regional anomalies X = (g cosm\\ + n=i m=O F1 - the field of the local anomalies, - the external geomagnetic field.

  15. Perturbation Methods and Closure Approximations in Nonlinear Systems.

    NASA Astrophysics Data System (ADS)

    Dubin, Daniel Herschel Eli

    In the first section of this thesis, Hamiltonian theories of guiding center and gyro-center motion are developed using modern symplectic methods and Lie transformations. Littlejohn's techniques, combined with the theory of resonant interaction and island overlap, are used to explore the problem of adiabatic invariance and onset of stochasticity. As an example, we consider the breakdown of invariance due to resonance between drift motion and gyromotion in a tokamak. A Hamiltonian is developed for motion in a straight magnetic field with electrostatic perturbations in the gyrokinetic ordering, from which nonlinear gyrokinetic equations are constructed which have the property of phase space preservation, useful for computer simulation. Energy invariants are found and various limits of the equations are considered. For small Larmor radius the equations are similar to those of Lee. Several new effects appear which are absent from conventional theories. We show that the wave kinetic equation of Galeev and Sagdeev neglects several important gyrokinetic effects. In the second section, statistical closure theories are applied to simple dynamical systems. We use the logistic map as an example because of its universal properties and simple quadratic nonlinearity. The first closure considered is the Direct Interaction Approximation of Kraichnan, which is found to fail when applied to the logistic map because it cannot approximate the bounded support of the map's equilibrium distribution. By imposing a periodicity constraint on a Langevin form of the D.I.A. a new stable closure is developed. The relation between the predictability theory of Kraichnan and the theory of Liapunov exponents is considered. Realizability constraints on the moments of a distribution are formulated using Kuhn-Tucker multipliers. Results are related to the work of Sandri and Kraichnan, but the variational technique employed allows for a more elegant and general approach. The realizability criteria are

  16. An Approximate Matching Method for Clinical Drug Names

    PubMed Central

    Peters, Lee; Kapusnik-Uner, Joan E.; Nguyen, Thang; Bodenreider, Olivier

    2011-01-01

    Objective: To develop an approximate matching method for finding the closest drug names within existing RxNorm content for drug name variants found in local drug formularies. Methods: We used a drug-centric algorithm to determine the closest strings between the RxNorm data set and local variants which failed the exact and normalized string matching searches. Aggressive measures such as token splitting, drug name expansion and spelling correction are used to try and resolve drug names. The algorithm is evaluated against three sets containing a total of 17,164 drug name variants. Results: Mapping of the local variant drug names to the targeted concept descriptions ranged from 83.8% to 92.8% in three test sets. The algorithm identified the appropriate RxNorm concepts as the top candidate in 76.8%, 67.9% and 84.8% of the cases in the three test sets and among the top three candidates in 90–96% of the cases. Conclusion: Using a drug-centric token matching approach with aggressive measures to resolve unknown names provides effective mappings to clinical drug names and has the potential of facilitating the work of drug terminology experts in mapping local formularies to reference terminologies. PMID:22195172

  17. An approximate methods approach to probabilistic structural analysis

    NASA Technical Reports Server (NTRS)

    Mcclung, R. C.; Millwater, H. R.; Wu, Y.-T.; Thacker, B. H.; Burnside, O. H.

    1989-01-01

    A major research and technology program in Probabilistic Structural Analysis Methods (PSAM) is currently being sponsored by the NASA Lewis Research Center with Southwest Research Institute as the prime contractor. This program is motivated by the need to accurately predict structural response in an environment where the loadings, the material properties, and even the structure may be considered random. The heart of PSAM is a software package which combines advanced structural analysis codes with a fast probability integration (FPI) algorithm for the efficient calculation of stochastic structural response. The basic idea of PAAM is simple: make an approximate calculation of system response, including calculation of the associated probabilities, with minimal computation time and cost, based on a simplified representation of the geometry, loads, and material. The deterministic solution resulting should give a reasonable and realistic description of performance-limiting system responses, although some error will be inevitable. If the simple model has correctly captured the basic mechanics of the system, however, including the proper functional dependence of stress, frequency, etc. on design parameters, then the response sensitivities calculated may be of significantly higher accuracy.

  18. Communication: Improved pair approximations in local coupled-cluster methods

    SciTech Connect

    Schwilk, Max; Werner, Hans-Joachim; Usvyat, Denis

    2015-03-28

    In local coupled cluster treatments the electron pairs can be classified according to the magnitude of their energy contributions or distances into strong, close, weak, and distant pairs. Different approximations are introduced for the latter three classes. In this communication, an improved simplified treatment of close and weak pairs is proposed, which is based on long-range cancellations of individually slowly decaying contributions in the amplitude equations. Benchmark calculations for correlation, reaction, and activation energies demonstrate that these approximations work extremely well, while pair approximations based on local second-order Møller-Plesset theory can lead to errors that are 1-2 orders of magnitude larger.

  19. A comparison of computational methods and algorithms for the complex gamma function

    NASA Technical Reports Server (NTRS)

    Ng, E. W.

    1974-01-01

    A survey and comparison of some computational methods and algorithms for gamma and log-gamma functions of complex arguments are presented. Methods and algorithms reported include Chebyshev approximations, Pade expansion and Stirling's asymptotic series. The comparison leads to the conclusion that Algorithm 421 published in the Communications of ACM by H. Kuki is the best program either for individual application or for the inclusion in subroutine libraries.

  20. Production-passage-time approximation: a new approximation method to accelerate the simulation process of enzymatic reactions.

    PubMed

    Kuwahara, Hiroyuki; Myers, Chris J

    2008-09-01

    Given the substantial computational requirements of stochastic simulation, approximation is essential for efficient analysis of any realistic biochemical system. This paper introduces a new approximation method to reduce the computational cost of stochastic simulations of an enzymatic reaction scheme which in biochemical systems often includes rapidly changing fast reactions with enzyme and enzyme-substrate complex molecules present in very small counts. Our new method removes the substrate dissociation reaction by approximating the passage time of the formation of each enzyme-substrate complex molecule which is destined to a production reaction. This approach skips the firings of unimportant yet expensive reaction events, resulting in a substantial acceleration in the stochastic simulations of enzymatic reactions. Additionally, since all the parameters used in our new approach can be derived by the Michaelis-Menten parameters which can actually be measured from experimental data, applications of this approximation can be practical even without having full knowledge of the underlying enzymatic reaction. Here, we apply this new method to various enzymatic reaction systems, resulting in a speedup of orders of magnitude in temporal behavior analysis without any significant loss in accuracy. Furthermore, we show that our new method can perform better than some of the best existing approximation methods for enzymatic reactions in terms of accuracy and efficiency. PMID:18662102

  1. Stochastic Approximation Methods for Latent Regression Item Response Models

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2010-01-01

    This article presents an application of a stochastic approximation expectation maximization (EM) algorithm using a Metropolis-Hastings (MH) sampler to estimate the parameters of an item response latent regression model. Latent regression item response models are extensions of item response theory (IRT) to a latent variable model with covariates…

  2. A method of approximating range size of small mammals

    USGS Publications Warehouse

    Stickel, L.F.

    1965-01-01

    In summary, trap success trends appear to provide a useful approximation to range size of easily trapped small mammals such as Peromyscus. The scale of measurement can be adjusted as desired. Further explorations of the usefulness of the plan should be made and modifications possibly developed before adoption.

  3. Approximate Green's function methods for HZE transport in multilayered materials

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Shinn, Judy L.; Costen, Robert C.

    1993-01-01

    A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport in multilayered materials. The code is established to operate on the Langley nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code was found to be highly efficient and compared well with the perturbation approximation.

  4. Study of hybrid methods for approximating the Edgeworth-Pareto hull in nonlinear multicriteria optimization problems

    NASA Astrophysics Data System (ADS)

    Berezkin, V. E.; Lotov, A. V.; Lotova, E. A.

    2014-06-01

    Methods for approximating the Edgeworth-Pareto hull (EPH) of the set of feasible criteria vectors in nonlinear multicriteria optimization problems are examined. The relative efficiency of two EPH approximation methods based on classical methods of searching for local extrema of convolutions of criteria is experimentally studied for a large-scale applied problem (with several hundred variables). A hybrid EPH approximation method combining classical and genetic approximation methods is considered.

  5. Approximate methods for building extreme mass ratio inspiral waveforms

    NASA Astrophysics Data System (ADS)

    Hughes, Scott

    2007-04-01

    The ``extreme mass ratio inspiral'' (or EMRI) problem has captured much attention in recent years. This is due to its relevance at describing a potentially important gravitational-wave source, and to the elegance of techniques which are being developed to solve it. A complete, self-consistent solution to this problem will require detailed knowledge of the self-interaction of a small body orbiting a Kerr black hole, taken (at least in part) to second order. This challenge will consume much time and effort. In the meantime, there is an exigent need for waveforms which, though not correct in all details, are sufficiently reliable that they can be used to understand how to measure these waves with space-based gravitational-wave antennae. I will describe in this talk results from a crude but surprisingly effective ``kludge'' approximation. The kludge produces waves which match well with available strong-field results, requiring only a fraction of the computational effort. Motivated by how the kludge operates, I will argue that a good medium between the kludge and the full solution is a ``hybrid'' approach to waveform generation. This hybrid combines the best features of both time and frequency domain approaches to black hole perturbation theory, using them to make EMRI waves that are as accurate as is possible without incorporating self-force information.

  6. Method for calculating multiphoton above-threshold processes in atoms: Two-photon above-threshold ionization

    SciTech Connect

    Manakov, N. L. Marmo, S. I.; Sviridov, S. A.

    2009-04-15

    The two-photon above-threshold ionization of atoms is calculated using numerical algorithms of the Pade approximation in the model-potential method with the Coulomb asymptotics. The total and differential cross sections of the above-threshold ionization of helium and alkali metal atoms by elliptically polarized radiation are presented. The dependence of the angular distribution of photoelectrons on the sign of the ellipticity of radiation (the elliptic dichroism phenomenon) is analyzed in the above-threshold frequency range.

  7. On an approximate method for the delay logistic equation

    NASA Astrophysics Data System (ADS)

    Röst, Gergely

    2011-09-01

    This note concerns with the asymptotic properties of solutions of the delay logistic equation. In particular, we point out some false statements in the recent paper Khan et al. [Khan H, Liao SJ, Mohapatra RN, Vajravelu K. An analytical solution for a nonlinear time-delay model in biology. Commun Nonlinear Sci Numer Simulat 2009;14:3141-3148]. Moreover, we show that the author's method is not able to reveal the basic and important features of the dynamics of the delay logistic equation, and gives misleading results.

  8. SET: a pupil detection method using sinusoidal approximation

    PubMed Central

    Javadi, Amir-Homayoun; Hakimi, Zahra; Barati, Morteza; Walsh, Vincent; Tcheang, Lili

    2015-01-01

    Mobile eye-tracking in external environments remains challenging, despite recent advances in eye-tracking software and hardware engineering. Many current methods fail to deal with the vast range of outdoor lighting conditions and the speed at which these can change. This confines experiments to artificial environments where conditions must be tightly controlled. Additionally, the emergence of low-cost eye tracking devices calls for the development of analysis tools that enable non-technical researchers to process the output of their images. We have developed a fast and accurate method (known as “SET”) that is suitable even for natural environments with uncontrolled, dynamic and even extreme lighting conditions. We compared the performance of SET with that of two open-source alternatives by processing two collections of eye images: images of natural outdoor scenes with extreme lighting variations (“Natural”); and images of less challenging indoor scenes (“CASIA-Iris-Thousand”). We show that SET excelled in outdoor conditions and was faster, without significant loss of accuracy, indoors. SET offers a low cost eye-tracking solution, delivering high performance even in challenging outdoor environments. It is offered through an open-source MATLAB toolkit as well as a dynamic-link library (“DLL”), which can be imported into many programming languages including C# and Visual Basic in Windows OS (www.eyegoeyetracker.co.uk). PMID:25914641

  9. SET: a pupil detection method using sinusoidal approximation.

    PubMed

    Javadi, Amir-Homayoun; Hakimi, Zahra; Barati, Morteza; Walsh, Vincent; Tcheang, Lili

    2015-01-01

    Mobile eye-tracking in external environments remains challenging, despite recent advances in eye-tracking software and hardware engineering. Many current methods fail to deal with the vast range of outdoor lighting conditions and the speed at which these can change. This confines experiments to artificial environments where conditions must be tightly controlled. Additionally, the emergence of low-cost eye tracking devices calls for the development of analysis tools that enable non-technical researchers to process the output of their images. We have developed a fast and accurate method (known as "SET") that is suitable even for natural environments with uncontrolled, dynamic and even extreme lighting conditions. We compared the performance of SET with that of two open-source alternatives by processing two collections of eye images: images of natural outdoor scenes with extreme lighting variations ("Natural"); and images of less challenging indoor scenes ("CASIA-Iris-Thousand"). We show that SET excelled in outdoor conditions and was faster, without significant loss of accuracy, indoors. SET offers a low cost eye-tracking solution, delivering high performance even in challenging outdoor environments. It is offered through an open-source MATLAB toolkit as well as a dynamic-link library ("DLL"), which can be imported into many programming languages including C# and Visual Basic in Windows OS (www.eyegoeyetracker.co.uk). PMID:25914641

  10. Computation of atmospheric cooling rates by exact and approximate methods

    NASA Technical Reports Server (NTRS)

    Ridgway, William L.; HARSHVARDHAN; Arking, Albert

    1991-01-01

    Infrared fluxes and cooling rates for several standard model atmospheres, with and without water vapor, carbon dioxide, and ozone, have been calculated using a line-by-line method at 0.01/cm resolution. The sensitivity of the results to the vertical integration scheme and to the model for water vapor continuum absorption is shown. Comparison with similar calculations performed at NOAA/GFDL shows agreement to within 0.5 W/sq m in fluxes at various levels and 0.05 K/d in cooling rates. Comparison with a fast, parameterized radiation code used in climate models reveals a worst case difference, when all gases are included, of 3.7 W/sq m in flux; cooling rate differences are 0.1 K/d or less when integrated over a substantial layer with point differences as large as 0.3 K/d.

  11. Lubrication approximation in completed double layer boundary element method

    NASA Astrophysics Data System (ADS)

    Nasseri, S.; Phan-Thien, N.; Fan, X.-J.

    This paper reports on the results of the numerical simulation of the motion of solid spherical particles in shear Stokes flows. Using the completed double layer boundary element method (CDLBEM) via distributed computing under Parallel Virtual Machine (PVM), the effective viscosity of suspension has been calculated for a finite number of spheres in a cubic array, or in a random configuration. In the simulation presented here, the short range interactions via lubrication forces are also taken into account, via the range completer in the formulation, whenever the gap between two neighbouring particles is closer than a critical gap. The results for particles in a simple cubic array agree with the results of Nunan and Keller (1984) and Stoksian Dynamics of Brady etal. (1988). To evaluate the lubrication forces between particles in a random configuration, a critical gap of 0.2 of particle's radius is suggested and the results are tested against the experimental data of Thomas (1965) and empirical equation of Krieger-Dougherty (Krieger, 1972). Finally, the quasi-steady trajectories are obtained for time-varying configuration of 125 particles.

  12. Algebraic filter approach for fast approximation of nonlinear tomographic reconstruction methods

    NASA Astrophysics Data System (ADS)

    Plantagie, Linda; Batenburg, Kees Joost

    2015-01-01

    We present a computational approach for fast approximation of nonlinear tomographic reconstruction methods by filtered backprojection (FBP) methods. Algebraic reconstruction algorithms are the methods of choice in a wide range of tomographic applications, yet they require significant computation time, restricting their usefulness. We build upon recent work on the approximation of linear algebraic reconstruction methods and extend the approach to the approximation of nonlinear reconstruction methods which are common in practice. We demonstrate that if a blueprint image is available that is sufficiently similar to the scanned object, our approach can compute reconstructions that approximate iterative nonlinear methods, yet have the same speed as FBP.

  13. Convergence of hausdorff approximation methods for the Edgeworth-Pareto hull of a compact set

    NASA Astrophysics Data System (ADS)

    Efremov, R. V.

    2015-11-01

    The Hausdorff methods comprise an important class of polyhedral approximation methods for convex compact bodies, since they have an optimal convergence rate and possess other useful properties. The concept of Hausdorff methods is extended to a problem arising in multicriteria optimization, namely, to the polyhedral approximation of the Edgeworth-Pareto hull (EPH) of a convex compact set. It is shown that the sequences of polyhedral sets generated by Hausdorff methods converge to the EPH to be approximated. It is shown that the Estimate Refinement method, which is most frequently used to approximate the EPH of convex compact sets, is a Hausdorff method and, hence, generates sequences of sets converging to the EPH.

  14. Method for constructing approximate analytic solutions of differential equations with a polynomial right-hand side

    NASA Astrophysics Data System (ADS)

    Afanas'ev, A. P.; Dzyuba, S. M.

    2015-10-01

    A method for constructing approximate analytic solutions of systems of ordinary differential equations with a polynomial right-hand side is proposed. The implementation of the method is based on the Picard method of successive approximations and a procedure of continuation of local solutions. As an application, the problem of constructing the minimal sets of the Lorenz system is considered.

  15. Assessment of presentation methods for ReFace computerized facial approximations.

    PubMed

    Richard, Adam H; Parks, Connie L; Monson, Keith L

    2014-09-01

    Facial approximations (whether clay sculptures, sketches, or computer-generated) can be presented to the public in a variety of layouts, but there are currently no clear indicators as to what style of presentation is most effective at eliciting recognition. The primary purpose of this study is to determine which of five presentation methods produces the most favorable recognition results. A secondary goal of the research is to evaluate a new method for assessing the accuracy of facial approximations. Previous studies have evaluated facial approximation effectiveness using standards similar to studies of eyewitness identification in which a single, definitive choice must be made by the research participant. These criteria seem inappropriate given that facial approximation is strictly an investigative tool to help narrow the search for potential matching candidates in the process of identification. Results from the study showed a higher performance for methods utilizing more than one image of the approximation, but which specific method performed best varied among approximation subjects. Also, results for all five presentation methods showed that, when given the opportunity to select more than one approximation, participants were consistently better at identifying the correct approximation as one of a few possible matches to the missing person than they were at singling out the correct approximation. This suggests that facial approximations have perhaps been undervalued as investigative tools in previous research. PMID:25128751

  16. Beam propagation method using a [(p- 1)/ p] Padé approximant of the propagator.

    PubMed

    Lu, Ya Yan; Ho, Pui Lin

    2002-05-01

    A new beam propagation method (BPM) is developed based on a direct approximation to the propagator by its [(p-1)/p] Padé approximant. The approximant is simple to construct and has the desired damping effect for the evanescent modes. The method is applied to a tapered waveguide for TM-polarized waves, based on the energy-conserving improvement of the one-way Helmholtz equation. Numerical results are compared with those obtained with other variants of the BPM. PMID:18007898

  17. An approximate method for sonic fatigue analysis of plates and shells

    NASA Astrophysics Data System (ADS)

    Blevins, R. D.

    1989-02-01

    Approximate analytical methods are developed for determining the response of plate and shell structures to coherent sound fields. The methods are based on separating the spatial and temporal aspects of the problem and then developing approximations for both. Direct comparison is made with experimental data.

  18. Trajectory Optimization Using Adjoint Method and Chebyshev Polynomial Approximation for Minimizing Fuel Consumption During Climb

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Hornby, Gregory; Ishihara, Abe

    2013-01-01

    This paper describes two methods of trajectory optimization to obtain an optimal trajectory of minimum-fuel- to-climb for an aircraft. The first method is based on the adjoint method, and the second method is based on a direct trajectory optimization method using a Chebyshev polynomial approximation and cubic spine approximation. The approximate optimal trajectory will be compared with the adjoint-based optimal trajectory which is considered as the true optimal solution of the trajectory optimization problem. The adjoint-based optimization problem leads to a singular optimal control solution which results in a bang-singular-bang optimal control.

  19. Mechanical System Reliability and Cost Integration Using a Sequential Linear Approximation Method

    NASA Technical Reports Server (NTRS)

    Kowal, Michael T.

    1997-01-01

    The development of new products is dependent on product designs that incorporate high levels of reliability along with a design that meets predetermined levels of system cost. Additional constraints on the product include explicit and implicit performance requirements. Existing reliability and cost prediction methods result in no direct linkage between variables affecting these two dominant product attributes. A methodology to integrate reliability and cost estimates using a sequential linear approximation method is proposed. The sequential linear approximation method utilizes probability of failure sensitivities determined from probabilistic reliability methods as well a manufacturing cost sensitivities. The application of the sequential linear approximation method to a mechanical system is demonstrated.

  20. The Subspace Projected Approximate Matrix (SPAM) modification of the Davidson method

    SciTech Connect

    Shepard, R.; Tilson, J.L.; Wagner, A.F.; Minkoff, M.

    1997-12-31

    A modification of the Davidson subspace expansion method, a Ritz approach, is proposed in which the expansion vectors are computed from a {open_quotes}cheap{close_quotes} approximating eigenvalue equation. This approximate eigenvalue equation is assembled using projection operators constructed from the subspace expansion vectors. The method may be implemented using an inner/outer iteration scheme, or it may be implemented by modifying the usual Davidson algorithm in such a way that exact and approximate matrix-vector product computations are intersperced. A multi-level algorithm is proposed in which several levels of approximate matrices are used.

  1. Method of successive approximations for the solution of certain problems in aerodynamics

    NASA Technical Reports Server (NTRS)

    Shvets, M E

    1951-01-01

    A method of successive approximations for the solution of problems in the fields of diffusion, boundary-layer flow, and heat-transfer is illustrated by solving problems in each of these fields. In most of the examples, the approximate solutions are compared with known accurate solutions and the agreement is shown to be good.

  2. Approximate Method of Calculating Heating Rates at General Three-Dimensional Stagnation Points During Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Hamilton, H. H., II

    1982-01-01

    An approximate method for calculating heating rates at general three dimensional stagnation points is presented. The application of the method for making stagnation point heating calculations during atmospheric entry is described. Comparisons with results from boundary layer calculations indicate that the method should provide an accurate method for engineering type design and analysis applications.

  3. Extension of the weak-line approximation and application to correlated-k methods

    SciTech Connect

    Conley, A.J.; Collins, W.D.

    2011-03-15

    Global climate models require accurate and rapid computation of the radiative transfer through the atmosphere. Correlated-k methods are often used. One of the approximations used in correlated-k models is the weakline approximation. We introduce an approximation T/sub g/ which reduces to the weak-line limit when optical depths are small, and captures the deviation from the weak-line limit as the extinction deviates from the weak-line limit. This approximation is constructed to match the first two moments of the gamma distribution to the k-distribution of the transmission. We compare the errors of the weak-line approximation with T/sub g/ in the context of a water vapor spectrum. The extension T/sub g/ is more accurate and converges more rapidly than the weak-line approximation.

  4. Test particle propagation in magnetostatic turbulence. 2: The local approximation method

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Sandri, G.; Scudder, J. D.; Howell, D. R.

    1976-01-01

    An approximation method for statistical mechanics is presented and applied to a class of problems which contains a test particle propagation problem. All of the available basic equations used in statistical mechanics are cast in the form of a single equation which is integrodifferential in time and which is then used as the starting point for the construction of the local approximation method. Simplification of the integrodifferential equation is achieved through approximation to the Laplace transform of its kernel. The approximation is valid near the origin in the Laplace space and is based on the assumption of small Laplace variable. No other small parameter is necessary for the construction of this approximation method. The n'th level of approximation is constructed formally, and the first five levels of approximation are calculated explicitly. It is shown that each level of approximation is governed by an inhomogeneous partial differential equation in time with time independent operator coefficients. The order in time of these partial differential equations is found to increase as n does. At n = 0 the most local first order partial differential equation which governs the Markovian limit is regained.

  5. An efficient implementation of the Chebyshev Rational Approximation Method (CRAM) for solving the burnup equations

    SciTech Connect

    Pusa, M.; Leppaenen, J.

    2012-07-01

    The Chebyshev Rational Approximation Method (CRAM) has been recently introduced by the authors for solving the burnup equations with excellent results. This method has been shown to be capable of simultaneously solving an entire burnup system with thousands of nuclides both accurately and efficiently. The method was prompted by an analysis of the spectral properties of burnup matrices and it can be characterized as the best rational approximation on the negative real axis. The coefficients of the rational approximation are fixed and have been reported for various approximation orders. In addition to these coefficients, implementing the method only requires a linear solver. This paper describes an efficient method for solving the linear systems associated with the CRAM approximation. The introduced direct method is based on sparse Gaussian elimination where the sparsity pattern of the resulting upper triangular matrix is determined before the numerical elimination phase. The stability of the proposed Gaussian elimination method is discussed based on considering the numerical properties of burnup matrices. Suitable algorithms are presented for computing the symbolic factorization and numerical elimination in order to facilitate the implementation of CRAM and its adoption into routine use. The accuracy and efficiency of the described technique are demonstrated by computing the CRAM approximations for a large test case with over 1600 nuclides. (authors)

  6. Evaluation of the successive approximations method for acoustic streaming numerical simulations.

    PubMed

    Catarino, S O; Minas, G; Miranda, J M

    2016-05-01

    This work evaluates the successive approximations method commonly used to predict acoustic streaming by comparing it with a direct method. The successive approximations method solves both the acoustic wave propagation and acoustic streaming by solving the first and second order Navier-Stokes equations, ignoring the first order convective effects. This method was applied to acoustic streaming in a 2D domain and the results were compared with results from the direct simulation of the Navier-Stokes equations. The velocity results showed qualitative agreement between both methods, which indicates that the successive approximations method can describe the formation of flows with recirculation. However, a large quantitative deviation was observed between the two methods. Further analysis showed that the successive approximation method solution is sensitive to the initial flow field. The direct method showed that the instantaneous flow field changes significantly due to reflections and wave interference. It was also found that convective effects contribute significantly to the wave propagation pattern. These effects must be taken into account when solving the acoustic streaming problems, since it affects the global flow. By adequately calculating the initial condition for first order step, the acoustic streaming prediction by the successive approximations method can be improved significantly. PMID:27250122

  7. Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls

    NASA Astrophysics Data System (ADS)

    Kamenev, G. K.

    2016-05-01

    The estimate refinement method for the polyhedral approximation of convex compact bodies is analyzed. When applied to convex bodies with a smooth boundary, this method is known to generate polytopes with an optimal order of growth of the number of vertices and facets depending on the approximation error. In previous studies, for the approximation of a multidimensional ball, the convergence rates of the method were estimated in terms of the number of faces of all dimensions and the cardinality of the facial structure (the norm of the f-vector) of the constructed polytope was shown to have an optimal rate of growth. In this paper, the asymptotic convergence rate of the method with respect to faces of all dimensions is compared with the convergence rate of best approximation polytopes. Explicit expressions are obtained for the asymptotic efficiency, including the case of low dimensions. Theoretical estimates are compared with numerical results.

  8. Approximate Analytical Solutions of the Regularized Long Wave Equation Using the Optimal Homotopy Perturbation Method

    PubMed Central

    Căruntu, Bogdan

    2014-01-01

    The paper presents the optimal homotopy perturbation method, which is a new method to find approximate analytical solutions for nonlinear partial differential equations. Based on the well-known homotopy perturbation method, the optimal homotopy perturbation method presents an accelerated convergence compared to the regular homotopy perturbation method. The applications presented emphasize the high accuracy of the method by means of a comparison with previous results. PMID:25003150

  9. Using the Bollen-Stine Bootstrapping Method for Evaluating Approximate Fit Indices

    PubMed Central

    Kim, Hanjoe; Millsap, Roger

    2014-01-01

    Accepting that a model will not exactly fit any empirical data, global approximate fit indices quantify the degree of misfit. Recent research (Chen et al., 2008) has shown that using fixed conventional cut-points for approximate fit indices can lead to decision errors. Instead of using fixed cut-points for evaluating approximate fit indices, this study focuses on the meaning of approximate fit and introduces a new method to evaluate approximate fit indices. Millsap (2012) introduced a simulation-based method to evaluate approximate fit indices. A limitation of Millsap’s work was that a rather strong assumption of multivariate normality was implied in generating simulation data. In this study, the Bollen-Stine bootstrapping procedure (Bollen & Stine, 1993) is proposed to supplement the former study. When data are non-normal, the conclusions derived from Millsap’s (2012) simulation method and the Bollen-Stine method can differ. Examples are given to illustrate the use of the Bollen-Stine bootstrapping procedure for evaluating RMSEA. Comparisons are made with the simulation method. The results are discussed, and suggestions are given for the use of proposed method. PMID:25558095

  10. Approximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method

    NASA Astrophysics Data System (ADS)

    Bierig, Claudio; Chernov, Alexey

    2016-06-01

    We develop a complete convergence theory for the Maximum Entropy method based on moment matching for a sequence of approximate statistical moments estimated by the Multilevel Monte Carlo method. Under appropriate regularity assumptions on the target probability density function, the proposed method is superior to the Maximum Entropy method with moments estimated by the Monte Carlo method. New theoretical results are illustrated in numerical examples.

  11. Approximate methods to calculate radionuclide discharges for performance assessment of HLW repositories in fractured rock

    SciTech Connect

    Erickson, K.L.; Chu, M.S.Y.; Siegel, M.D.; Beyeler, W.

    1986-12-31

    Three approximate methods appear useful for calculating radionuclide discharges in fractured, porous rock: (1) a semi-infinite-medium approximation where radionuclide diffusion rates into the matrix are calculated assuming a semi-infinite matrix; (2) a linear-driving-force approximation where radionuclide diffusion rates into the matrix are assumed to be proportional to the difference between bulk concentrations in the fracture fluid and in the matrix pore water; and (3) an equivalent-porous-medium approximation where radionuclide diffusion rates into the matrix are calculated assuming that the time rate of change of the bulk radionuclide concentration in the matrix is proportional to the time rate of change of the radionuclide concentration in the fracture fluid. A preliminary evaluation of these approximations was made by considering transport of a single radionuclide in saturated, porous rock containing uniform, parallel fractures.

  12. An approximate method for design and analysis of an ALOHA system

    NASA Technical Reports Server (NTRS)

    Kobayashi, H.; Onozato, Y.; Huynh, D.

    1977-01-01

    An approximate method for the design and performance prediction of a multiaccess communication system which employs the ALOHA packet-switching technique is developed, based on the use of a diffusion process approximation of an ALOHA-like system (with or without time-slotting). A simple closed-form solution for the variable Q(t), a variant of the number of backlog messages at time t, is given in terms of a few system and user parameters. Final results are expressed in terms of ordinary performance measures such as throughput and average delay. Several numerical examples are given to demonstrate the usefulness of the approximation technique developed.

  13. Approximate Solution of Time-Fractional Advection-Dispersion Equation via Fractional Variational Iteration Method

    PubMed Central

    İbiş, Birol

    2014-01-01

    This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE) involving Jumarie's modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM). FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs. PMID:24578662

  14. Approximate solution of time-fractional advection-dispersion equation via fractional variational iteration method.

    PubMed

    Ibiş, Birol; Bayram, Mustafa

    2014-01-01

    This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE) involving Jumarie's modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM). FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs. PMID:24578662

  15. Numerical solution of 2D-vector tomography problem using the method of approximate inverse

    NASA Astrophysics Data System (ADS)

    Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna

    2016-08-01

    We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.

  16. Approximation and error estimation in high dimensional space for stochastic collocation methods on arbitrary sparse samples

    SciTech Connect

    Archibald, Richard K; Deiterding, Ralf; Hauck, Cory D; Jakeman, John D; Xiu, Dongbin

    2012-01-01

    We have develop a fast method that can capture piecewise smooth functions in high dimensions with high order and low computational cost. This method can be used for both approximation and error estimation of stochastic simulations where the computations can either be guided or come from a legacy database.

  17. Quantum Approximate Methods for the Atomistic Modeling of Multicomponent Alloys. Chapter 7

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Garces, Jorge; Mosca, Hugo; Gargano, pablo; Noebe, Ronald D.; Abel, Phillip

    2007-01-01

    This chapter describes the role of quantum approximate methods in the understanding of complex multicomponent alloys at the atomic level. The need to accelerate materials design programs based on economical and efficient modeling techniques provides the framework for the introduction of approximations and simplifications in otherwise rigorous theoretical schemes. As a promising example of the role that such approximate methods might have in the development of complex systems, the BFS method for alloys is presented and applied to Ru-rich Ni-base superalloys and also to the NiAI(Ti,Cu) system, highlighting the benefits that can be obtained from introducing simple modeling techniques to the investigation of such complex systems.

  18. The uniform asymptotic swallowtail approximation - Practical methods for oscillating integrals with four coalescing saddle points

    NASA Technical Reports Server (NTRS)

    Connor, J. N. L.; Curtis, P. R.; Farrelly, D.

    1984-01-01

    Methods that can be used in the numerical implementation of the uniform swallowtail approximation are described. An explicit expression for that approximation is presented to the lowest order, showing that there are three problems which must be overcome in practice before the approximation can be applied to any given problem. It is shown that a recently developed quadrature method can be used for the accurate numerical evaluation of the swallowtail canonical integral and its partial derivatives. Isometric plots of these are presented to illustrate some of their properties. The problem of obtaining the arguments of the swallowtail integral from an analytical function of its argument is considered, describing two methods of solving this problem. The asymptotic evaluation of the butterfly canonical integral is addressed.

  19. Approximate two layer (inviscid/viscous) methods to model aerothermodynamic environments

    NASA Technical Reports Server (NTRS)

    Dejarnette, Fred R.

    1992-01-01

    Approximate inviscid and boundary layer techniques for aerodynamic heating calculations are discussed. An inviscid flowfield solution is needed to provide surface pressures and boundary-layer edge properties. Modified Newtonian pressures coupled with an approximate shock shape will suffice for relatively simple shapes like sphere-cones with cone half-angles between 15 and 45 deg. More accurate approximate methods have been developed which make use of modified Maslen techniques. Slender and large angle sphere-cones and more complex shapes generally require an Euler code, like HALIS, to provide that information. The boundary-layer solution is reduced significantly by using the axisymmetric analog and approximate heating relations developed by Zoby, et al. (1981). Analysis is presented for the calculation of inviscid surface streamlines and metrics. Entropy-layer swallowing effects require coupling the inviscid and boundary-layer solutions.

  20. Model reference adaptive control in fractional order systems using discrete-time approximation methods

    NASA Astrophysics Data System (ADS)

    Abedini, Mohammad; Nojoumian, Mohammad Ali; Salarieh, Hassan; Meghdari, Ali

    2015-08-01

    In this paper, model reference control of a fractional order system has been discussed. In order to control the fractional order plant, discrete-time approximation methods have been applied. Plant and reference model are discretized by Grünwald-Letnikov definition of the fractional order derivative using "Short Memory Principle". Unknown parameters of the fractional order system are appeared in the discrete time approximate model as combinations of parameters of the main system. The discrete time MRAC via RLS identification is modified to estimate the parameters and control the fractional order plant. Numerical results show the effectiveness of the proposed method of model reference adaptive control.

  1. An Extension of the Krieger-Li-Iafrate Approximation to the Optimized-Effective-Potential Method

    SciTech Connect

    Wilson, B.G.

    1999-11-11

    The Krieger-Li-Iafrate approximation can be expressed as the zeroth order result of an unstable iterative method for solving the integral equation form of the optimized-effective-potential method. By pre-conditioning the iterate a first order correction can be obtained which recovers the bulk of quantal oscillations missing in the zeroth order approximation. A comparison of calculated total energies are given with Krieger-Li-Iafrate, Local Density Functional, and Hyper-Hartree-Fock results for non-relativistic atoms and ions.

  2. A numerical method of finding potentiometric titration end-points by use of approximative spline functions.

    PubMed

    Ren, K

    1990-07-01

    A new numerical method of determining potentiometric titration end-points is presented. It consists in calculating the coefficients of approximative spline functions describing the experimental data (e.m.f., volume of titrant added). The end-point (the inflection point of the curve) is determined by calculating zero points of the second derivative of the approximative spline function. This spline function, unlike rational spline functions, is free from oscillations and its course is largely independent of random errors in e.m.f. measurements. The proposed method is useful for direct analysis of titration data and especially as a basis for construction of microcomputer-controlled automatic titrators. PMID:18964999

  3. Approximation methods for control of acoustic/structure models with piezoceramic actuators

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Fang, W.; Silcox, R. J.; Smith, R. C.

    1991-01-01

    The active control of acoustic pressure in a 2-D cavity with a flexible boundary (a beam) is considered. Specifically, this control is implemented via piezoceramic patches on the beam which produces pure bending moments. The incorporation of the feedback control in this manner leads to a system with an unbounded input term. Approximation methods in this manner leads to a system with an unbounded input term. Approximation methods in the context of linear quadratic regulator (LQR) state space control formulation are discussed and numerical results demonstrating the effectiveness of this approach in computing feedback controls for noise reduction are presented.

  4. Laplace transform homotopy perturbation method for the approximation of variational problems.

    PubMed

    Filobello-Nino, U; Vazquez-Leal, H; Rashidi, M M; Sedighi, H M; Perez-Sesma, A; Sandoval-Hernandez, M; Sarmiento-Reyes, A; Contreras-Hernandez, A D; Pereyra-Diaz, D; Hoyos-Reyes, C; Jimenez-Fernandez, V M; Huerta-Chua, J; Castro-Gonzalez, F; Laguna-Camacho, J R

    2016-01-01

    This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems. PMID:27006884

  5. A sequential method for spline approximation with variable knots. [recursive piecewise polynomial signal processing

    NASA Technical Reports Server (NTRS)

    Mier Muth, A. M.; Willsky, A. S.

    1978-01-01

    In this paper we describe a method for approximating a waveform by a spline. The method is quite efficient, as the data are processed sequentially. The basis of the approach is to view the approximation problem as a question of estimation of a polynomial in noise, with the possibility of abrupt changes in the highest derivative. This allows us to bring several powerful statistical signal processing tools into play. We also present some initial results on the application of our technique to the processing of electrocardiograms, where the knot locations themselves may be some of the most important pieces of diagnostic information.

  6. Spectral approximation to advection-diffusion problems by the fictitious interface method

    NASA Astrophysics Data System (ADS)

    Frati, A.; Pasquarelli, F.; Quarteroni, A.

    1993-08-01

    The algorithmic aspects of the 'fictitious interface' method used in numerical approximations of convection-dominated flows are discussed. The solution algorithm presented alternates the advection-equation solution with that of the advection-diffusion equation within complementary subdomains. For the problems presently considered, spatial discretization is obtained by the spectral collocation method via Legendre-Gaussian modes. Attention is given to the the fictitious interface method's application to the Burgers equation.

  7. Fast range-corrected proton dose approximation method using prior dose distribution

    NASA Astrophysics Data System (ADS)

    Park, Peter C.; Cheung, Joey; Zhu, X. Ronald; Sahoo, Narayan; Court, Laurence; Dong, Lei

    2012-06-01

    For robust plan optimization and evaluation purposes, one needs a computationally efficient way to calculate dose distributions and dose-volume histograms (DVHs) under various changes in the variables associated with beam delivery and images. In this study, we report an approximate method for rapid calculation of dose when setup errors and anatomical changes occur during proton therapy. This fast dose approximation method calculates new dose distributions under various circumstances based on the prior knowledge of dose distribution from a reference setting. In order to validate the method, we calculated and compared the dose distributions from our approximation method to the dose distributions calculated from a clinically commissioned treatment planning system which was used as the ground truth. The overall accuracy of the proposed method was tested against varying degrees of setup error and anatomical deformation for selected patient cases. The setup error was simulated by rigid shifts of the patient; while the anatomical deformation was introduced using weekly acquired repeat CT data sets. We evaluated the agreement between the dose approximation method and full dose recalculation using a 3D gamma index and the root-mean-square (RMS) and maximum deviation of the cumulative dose volume histograms (cDVHs). The average passing rate of 3D gamma analysis under 3% dose and 3 mm distance-to-agreement criteria were 96% and 89% for setup errors and severe anatomy changes, respectively. The average of RMS and maximum deviation of the cDVHs under the setup error was 0.5% and 1.5%, respectively for all structures considered. Similarly, the average of RMS and maximum deviations under the weekly anatomical change were 0.6% and 2.7%, respectively. Our results show that the fast dose approximation method was able to account for the density variation of the patient due to the setup and anatomical changes with acceptable accuracy while significantly improving the computation time.

  8. Global collocation methods for approximation and the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Solomonoff, A.; Turkel, E.

    1986-01-01

    Polynomial interpolation methods are applied both to the approximation of functions and to the numerical solutions of hyperbolic and elliptic partial differential equations. The derivative matrix for a general sequence of the collocation points is constructed. The approximate derivative is then found by a matrix times vector multiply. The effects of several factors on the performance of these methods including the effect of different collocation points are then explored. The resolution of the schemes for both smooth functions and functions with steep gradients or discontinuities in some derivative are also studied. The accuracy when the gradients occur both near the center of the region and in the vicinity of the boundary is investigated. The importance of the aliasing limit on the resolution of the approximation is investigated in detail. Also examined is the effect of boundary treatment on the stability and accuracy of the scheme.

  9. Sequential Experimentation: Comparing Stochastic Approximation Methods Which Find the "Right" Value of the Independent Variable.

    ERIC Educational Resources Information Center

    Hummel, Thomas J.; Johnston, Charles B.

    This research investigates stochastic approximation procedures of the Robbins-Monro type. Following a brief introduction to sequential experimentation, attention is focused on formal methods for selecting successive values of a single independent variable. Empirical results obtained through computer simulation are used to compare several formal…

  10. An approximate method for solution to variable moment of inertia problems

    NASA Technical Reports Server (NTRS)

    Beans, E. W.

    1981-01-01

    An approximation method is presented for reducing a nonlinear differential equation (for the 'weather vaning' motion of a wind turbine) to an equivalent constant moment of inertia problem. The integrated average of the moment of inertia is determined. Cycle time was found to be the equivalent cycle time if the rotating speed is 4 times greater than the system's minimum natural frequency.

  11. On increasing the efficiency of the modified method of S-approximations

    NASA Astrophysics Data System (ADS)

    Stepanova, I. E.; Raevskiy, D. N.; Shchepetilov, A. V.

    2016-01-01

    An advanced method for solving the system of linear algebraic equations (SLAE) based on the application of Chebyshev polynomials is described. The modified S-approximations of the elements of gravity field are found by the efficient approaches applied to the solution of SLAE that describes the geophysically informative problem. The results of the mathematical experiment are presented.

  12. Nonlinear programming extensions to rational function approximation methods for unsteady aerodynamic forces

    NASA Technical Reports Server (NTRS)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1988-01-01

    The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.

  13. An approximate analytical method for short-range impulsive orbit rendezvous using relative Lambert solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Zhou, Di; Mortari, Daniele

    2012-12-01

    A new approximate analytical method for the two-body impulsive orbit rendezvous problem with short range is presented. The classical analytical approach derives the initial relative velocity from the state transition matrix of linear relative motion equations. This paper proposes a different analytical approach based on the relative Lambert solutions. An approximate expression for the transfer time is obtained as a function of chaser's and target's semi-major axes difference. This results in first and second order estimates of the chaser's semi-major axis. Singularity points of rendezvous time for the classical and proposed new methods are both analyzed. As compared with the classical method, the new solution is simpler, more accurate, and has fewer singularity points. Moreover, the proposed method can be easily expanded to higher order solutions. A numerical example quantifies the accuracy gain for multiple-revolution cases.

  14. Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1994-01-01

    Some ceramic materials for high temperature applications are partially transparent for radiative transfer. The refractive indices of these materials can be substantially greater than one which influences internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat conduction and heating at the boundaries by convection and radiation. Two-flux and diffusion methods are investigated here to obtain approximate solutions using a simpler formulation than required for exact numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent results for gray and two band spectral calculations. The diffusion method yields a good approximation for spectral behavior in laminated multiple layers if the overall optical thickness is larger than about ten. A hybrid spectral model is developed using the two-flux method in the optically thin bands, and radiative diffusion in bands that are optically thick.

  15. A numerical method for approximating antenna surfaces defined by discrete surface points

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Acosta, R.

    1985-01-01

    A simple numerical method for the quadratic approximation of a discretely defined reflector surface is described. The numerical method was applied to interpolate the surface normal of a parabolic reflector surface from a grid of nine closest surface points to the point of incidence. After computing the surface normals, the geometrical optics and the aperture integration method using the discrete Fast Fourier Transform (FFT) were applied to compute the radiaton patterns for a symmetric and an offset antenna configurations. The computed patterns are compared to that of the analytic case and to the patterns generated from another numerical technique using the spline function approximation. In the paper, examples of computations are given. The accuracy of the numerical method is discussed.

  16. An efficient computer based wavelets approximation method to solve Fuzzy boundary value differential equations

    NASA Astrophysics Data System (ADS)

    Alam Khan, Najeeb; Razzaq, Oyoon Abdul

    2016-03-01

    In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.

  17. Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method.

    PubMed

    Macke, A; Mishchenko, M I; Muinonen, K; Carlson, B E

    1995-10-01

    We report, for the f irst time to our knowledge, comparisons of light-scattering computations for large, randomly oriented, moderately absorbing spheroids based on the geometric-optics approximation and the exact T-matrix method. We show that in most cases the geometric-optics approximation is (much) more accurate for spheroids than for surface-equivalent spheres and can be used in phase function computations (but not in polarization computations) for nonspherical particles with size parameters as small as 60. Differences in the single-scattering albedo between geometric-optics and T-matrix results are surprisingly small, even for small size parameters. PMID:19862208

  18. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods.

    PubMed

    Yang, Z

    1994-09-01

    Two approximate methods are proposed for maximum likelihood phylogenetic estimation, which allow variable rates of substitution across nucleotide sites. Three data sets with quite different characteristics were analyzed to examine empirically the performance of these methods. The first, called the "discrete gamma model," uses several categories of rates to approximate the gamma distribution, with equal probability for each category. The mean of each category is used to represent all the rates falling in the category. The performance of this method is found to be quite good, and four such categories appear to be sufficient to produce both an optimum, or near-optimum fit by the model to the data, and also an acceptable approximation to the continuous distribution. The second method, called "fixed-rates model", classifies sites into several classes according to their rates predicted assuming the star tree. Sites in different classes are then assumed to be evolving at these fixed rates when other tree topologies are evaluated. Analyses of the data sets suggest that this method can produce reasonable results, but it seems to share some properties of a least-squares pairwise comparison; for example, interior branch lengths in nonbest trees are often found to be zero. The computational requirements of the two methods are comparable to that of Felsenstein's (1981, J Mol Evol 17:368-376) model, which assumes a single rate for all the sites. PMID:7932792

  19. Linear decomposition method for approximating arbitrary magnetic field profiles by optimization of discrete electromagnet currents

    SciTech Connect

    Tejero, E. M.; Gatling, G.

    2009-03-15

    A method for approximating arbitrary axial magnetic field profiles for a given solenoidal electromagnet coil array is described. The method casts the individual contributions from each coil as a truncated orthonormal basis for the space within the array. This truncated basis allows for the linear decomposition of an arbitrary profile function, which returns the appropriate currents for each coil to best reproduce the desired profile. We present the mathematical details of the method along with a detailed example of its use. The results from the method are used in a simulation and compared with magnetic field measuremen0008.

  20. Coupled-cluster method: A lattice-path-based subsystem approximation scheme for quantum lattice models

    NASA Astrophysics Data System (ADS)

    Bishop, R. F.; Li, P. H. Y.

    2011-04-01

    An approximation hierarchy, called the lattice-path-based subsystem (LPSUBm) approximation scheme, is described for the coupled-cluster method (CCM). It is applicable to systems defined on a regular spatial lattice. We then apply it to two well-studied prototypical (spin-(1)/(2) Heisenberg antiferromagnetic) spin-lattice models, namely, the XXZ and the XY models on the square lattice in two dimensions. Results are obtained in each case for the ground-state energy, the ground-state sublattice magnetization, and the quantum critical point. They are all in good agreement with those from such alternative methods as spin-wave theory, series expansions, quantum Monte Carlo methods, and the CCM using the alternative lattice-animal-based subsystem (LSUBm) and the distance-based subsystem (DSUBm) schemes. Each of the three CCM schemes (LSUBm, DSUBm, and LPSUBm) for use with systems defined on a regular spatial lattice is shown to have its own advantages in particular applications.

  1. Coupled-cluster method: A lattice-path-based subsystem approximation scheme for quantum lattice models

    SciTech Connect

    Bishop, R. F.; Li, P. H. Y.

    2011-04-15

    An approximation hierarchy, called the lattice-path-based subsystem (LPSUBm) approximation scheme, is described for the coupled-cluster method (CCM). It is applicable to systems defined on a regular spatial lattice. We then apply it to two well-studied prototypical (spin-(1/2) Heisenberg antiferromagnetic) spin-lattice models, namely, the XXZ and the XY models on the square lattice in two dimensions. Results are obtained in each case for the ground-state energy, the ground-state sublattice magnetization, and the quantum critical point. They are all in good agreement with those from such alternative methods as spin-wave theory, series expansions, quantum Monte Carlo methods, and the CCM using the alternative lattice-animal-based subsystem (LSUBm) and the distance-based subsystem (DSUBm) schemes. Each of the three CCM schemes (LSUBm, DSUBm, and LPSUBm) for use with systems defined on a regular spatial lattice is shown to have its own advantages in particular applications.

  2. Evaluation of approximate methods for the prediction of noise shielding by airframe components

    NASA Technical Reports Server (NTRS)

    Ahtye, W. F.; Mcculley, G.

    1980-01-01

    An evaluation of some approximate methods for the prediction of shielding of monochromatic sound and broadband noise by aircraft components is reported. Anechoic-chamber measurements of the shielding of a point source by various simple geometric shapes were made and the measured values compared with those calculated by the superposition of asymptotic closed-form solutions for the shielding by a semi-infinite plane barrier. The shields used in the measurements consisted of rectangular plates, a circular cylinder, and a rectangular plate attached to the cylinder to simulate a wing-body combination. The normalized frequency, defined as a product of the acoustic wave number and either the plate width or cylinder diameter, ranged from 4.6 to 114. Microphone traverses in front of the rectangular plates and cylinders generally showed a series of diffraction bands that matched those predicted by the approximate methods, except for differences in the magnitudes of the attenuation minima which can be attributed to experimental inaccuracies. The shielding of wing-body combinations was predicted by modifications of the approximations used for rectangular and cylindrical shielding. Although the approximations failed to predict diffraction patterns in certain regions, they did predict the average level of wing-body shielding with an average deviation of less than 3 dB.

  3. Rational approximations from power series of vector-valued meromorphic functions

    NASA Technical Reports Server (NTRS)

    Sidi, Avram

    1992-01-01

    Let F(z) be a vector-valued function, F: C yields C(sup N), which is analytic at z = 0 and meromorphic in a neighborhood of z = 0, and let its Maclaurin series be given. In this work we developed vector-valued rational approximation procedures for F(z) by applying vector extrapolation methods to the sequence of partial sums of its Maclaurin series. We analyzed some of the algebraic and analytic properties of the rational approximations thus obtained, and showed that they were akin to Pade approximations. In particular, we proved a Koenig type theorem concerning their poles and a de Montessus type theorem concerning their uniform convergence. We showed how optical approximations to multiple poles and to Laurent expansions about these poles can be constructed. Extensions of the procedures above and the accompanying theoretical results to functions defined in arbitrary linear spaces was also considered. One of the most interesting and immediate applications of the results of this work is to the matrix eigenvalue problem. In a forthcoming paper we exploited the developments of the present work to devise bona fide generalizations of the classical power method that are especially suitable for very large and sparse matrices. These generalizations can be used to approximate simultaneously several of the largest distinct eigenvalues and corresponding eigenvectors and invariant subspaces of arbitrary matrices which may or may not be diagonalizable, and are very closely related with known Krylov subspace methods.

  4. Geometry Optimization without Spin Contamination Error - Approximately Spin Projected Optimization Method -

    SciTech Connect

    Kitagawa, Y.; Saito, T.; Nakanishi, Y.; Ito, M.; Shoji, M.; Kawakami, T.; Okumura, M.; Koizumi, K.; Yamanaka, S.; Yamaguchi, K.

    2007-12-26

    A geometry optimization method based on Yamaguchi's approximate spin projection procedure is presented. This method, which can eliminate an effect of a spin contamination from a broken symmetry solution, is applied to several biradical systems such as CH{sub 2}, Cr{sub 2}(O{sub 2}CCH{sub 3}){sub 4}(H{sub 2}O){sub 2} and an active site of oxygenated hemocyanin. The results show that the spin contamination error in the structure optimized by the BS method is not negligible.

  5. Accumulated approximation: A new method for structural optimization by iterative improvement

    NASA Technical Reports Server (NTRS)

    Rasmussen, John

    1990-01-01

    A new method for the solution of non-linear mathematical programming problems in the field of structural optimization is presented. It is an iterative scheme which for each iteration refines the approximation of objective and constraint functions by accumulating the function values of previously visited design points. The method has proven to be competitive for a number of well-known examples of which one is presented here. Furthermore because of the accumulation strategy, the method produces convergence even when the sensitivity analysis is inaccurate.

  6. A generalized Padé approximation method of solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Bo; Tang, Jia-Shi; Cai, Ping

    2014-12-01

    An intrinsic extension of Padé approximation method, called the generalized Padé approximation method, is proposed based on the classic Padé approximation theorem. According to the proposed method, the numerator and denominator of Padé approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Padé approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Padé approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Padé approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge—Kutta method.

  7. A method for the accurate and smooth approximation of standard thermodynamic functions

    NASA Astrophysics Data System (ADS)

    Coufal, O.

    2013-01-01

    A method is proposed for the calculation of approximations of standard thermodynamic functions. The method is consistent with the physical properties of standard thermodynamic functions. This means that the approximation functions are, in contrast to the hitherto used approximations, continuous and smooth in every temperature interval in which no phase transformations take place. The calculation algorithm was implemented by the SmoothSTF program in the C++ language which is part of this paper. Program summaryProgram title:SmoothSTF Catalogue identifier: AENH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3807 No. of bytes in distributed program, including test data, etc.: 131965 Distribution format: tar.gz Programming language: C++. Computer: Any computer with gcc version 4.3.2 compiler. Operating system: Debian GNU Linux 6.0. The program can be run in operating systems in which the gcc compiler can be installed, see http://gcc.gnu.org/install/specific.html. RAM: 256 MB are sufficient for the table of standard thermodynamic functions with 500 lines Classification: 4.9. Nature of problem: Standard thermodynamic functions (STF) of individual substances are given by thermal capacity at constant pressure, entropy and enthalpy. STF are continuous and smooth in every temperature interval in which no phase transformations take place. The temperature dependence of STF as expressed by the table of its values is for further application approximated by temperature functions. In the paper, a method is proposed for calculating approximation functions which, in contrast to the hitherto used approximations, are continuous and smooth in every temperature interval. Solution method: The approximation functions are

  8. Assessment of approximate computational methods for conical intersections and branching plane vectors in organic molecules

    NASA Astrophysics Data System (ADS)

    Nikiforov, Alexander; Gamez, Jose A.; Thiel, Walter; Huix-Rotllant, Miquel; Filatov, Michael

    2014-09-01

    Quantum-chemical computational methods are benchmarked for their ability to describe conical intersections in a series of organic molecules and models of biological chromophores. Reference results for the geometries, relative energies, and branching planes of conical intersections are obtained using ab initio multireference configuration interaction with single and double excitations (MRCISD). They are compared with the results from more approximate methods, namely, the state-interaction state-averaged restricted ensemble-referenced Kohn-Sham method, spin-flip time-dependent density functional theory, and a semiempirical MRCISD approach using an orthogonalization-corrected model. It is demonstrated that these approximate methods reproduce the ab initio reference data very well, with root-mean-square deviations in the optimized geometries of the order of 0.1 Å or less and with reasonable agreement in the computed relative energies. A detailed analysis of the branching plane vectors shows that all currently applied methods yield similar nuclear displacements for escaping the strong non-adiabatic coupling region near the conical intersections. Our comparisons support the use of the tested quantum-chemical methods for modeling the photochemistry of large organic and biological systems.

  9. Assessment of approximate computational methods for conical intersections and branching plane vectors in organic molecules

    SciTech Connect

    Nikiforov, Alexander; Gamez, Jose A.; Thiel, Walter; Huix-Rotllant, Miquel; Filatov, Michael

    2014-09-28

    Quantum-chemical computational methods are benchmarked for their ability to describe conical intersections in a series of organic molecules and models of biological chromophores. Reference results for the geometries, relative energies, and branching planes of conical intersections are obtained using ab initio multireference configuration interaction with single and double excitations (MRCISD). They are compared with the results from more approximate methods, namely, the state-interaction state-averaged restricted ensemble-referenced Kohn-Sham method, spin-flip time-dependent density functional theory, and a semiempirical MRCISD approach using an orthogonalization-corrected model. It is demonstrated that these approximate methods reproduce the ab initio reference data very well, with root-mean-square deviations in the optimized geometries of the order of 0.1 Å or less and with reasonable agreement in the computed relative energies. A detailed analysis of the branching plane vectors shows that all currently applied methods yield similar nuclear displacements for escaping the strong non-adiabatic coupling region near the conical intersections. Our comparisons support the use of the tested quantum-chemical methods for modeling the photochemistry of large organic and biological systems.

  10. A recursive model-reduction method for approximate inference in Gaussian Markov random fields.

    PubMed

    Johnson, Jason K; Willsky, Alan S

    2008-01-01

    This paper presents recursive cavity modeling--a principled, tractable approach to approximate, near-optimal inference for large Gauss-Markov random fields. The main idea is to subdivide the random field into smaller subfields, constructing cavity models which approximate these subfields. Each cavity model is a concise, yet faithful, model for the surface of one subfield sufficient for near-optimal inference in adjacent subfields. This basic idea leads to a tree-structured algorithm which recursively builds a hierarchy of cavity models during an "upward pass" and then builds a complementary set of blanket models during a reverse "downward pass." The marginal statistics of individual variables can then be approximated using their blanket models. Model thinning plays an important role, allowing us to develop thinned cavity and blanket models thereby providing tractable approximate inference. We develop a maximum-entropy approach that exploits certain tractable representations of Fisher information on thin chordal graphs. Given the resulting set of thinned cavity models, we also develop a fast preconditioner, which provides a simple iterative method to compute optimal estimates. Thus, our overall approach combines recursive inference, variational learning and iterative estimation. We demonstrate the accuracy and scalability of this approach in several challenging, large-scale remote sensing problems. PMID:18229805

  11. Reduced-rank approximations to the far-field transform in the gridded fast multipole method

    NASA Astrophysics Data System (ADS)

    Hesford, Andrew J.; Waag, Robert C.

    2011-05-01

    The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly.

  12. An algorithm for maximum likelihood estimation using an efficient method for approximating sensitivities

    NASA Technical Reports Server (NTRS)

    Murphy, P. C.

    1984-01-01

    An algorithm for maximum likelihood (ML) estimation is developed primarily for multivariable dynamic systems. The algorithm relies on a new optimization method referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). The method determines sensitivities by using slope information from local surface approximations of each output variable in parameter space. The fitted surface allows sensitivity information to be updated at each iteration with a significant reduction in computational effort compared with integrating the analytically determined sensitivity equations or using a finite-difference method. Different surface-fitting methods are discussed and demonstrated. Aircraft estimation problems are solved by using both simulated and real-flight data to compare MNRES with commonly used methods; in these solutions MNRES is found to be equally accurate and substantially faster. MNRES eliminates the need to derive sensitivity equations, thus producing a more generally applicable algorithm.

  13. An analytical technique for approximating unsteady aerodynamics in the time domain

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1980-01-01

    An analytical technique is presented for approximating unsteady aerodynamic forces in the time domain. The order of elements of a matrix Pade approximation was postulated, and the resulting polynomial coefficients were determined through a combination of least squares estimates for the numerator coefficients and a constrained gradient search for the denominator coefficients which insures stable approximating functions. The number of differential equations required to represent the aerodynamic forces to a given accuracy tends to be smaller than that employed in certain existing techniques where the denominator coefficients are chosen a priori. Results are shown for an aeroelastic, cantilevered, semispan wing which indicate a good fit to the aerodynamic forces for oscillatory motion can be achieved with a matrix Pade approximation having fourth order numerator and second order denominator polynomials.

  14. Low-complexity computation of plate eigenmodes with Vekua approximations and the method of particular solutions

    NASA Astrophysics Data System (ADS)

    Chardon, Gilles; Daudet, Laurent

    2013-11-01

    This paper extends the method of particular solutions (MPS) to the computation of eigenfrequencies and eigenmodes of thin plates, in the framework of the Kirchhoff-Love plate theory. Specific approximation schemes are developed, with plane waves (MPS-PW) or Fourier-Bessel functions (MPS-FB). This framework also requires a suitable formulation of the boundary conditions. Numerical tests, on two plates with various boundary conditions, demonstrate that the proposed approach provides competitive results with standard numerical schemes such as the finite element method, at reduced complexity, and with large flexibility in the implementation choices.

  15. An approximate loop transfer recovery method for designing fixed-order compensators

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Prasad, J. V. R.

    1988-01-01

    A method for designing fixed-order dynamic compensators for multivariable time invariant linear systems is presented which is based on the minimization of a linear quadratic performance index. The present formulation is performed in an output feedback setting which uses an observer cononical form to represent the compensator dynamics. Techniques for penalizing the plant and compensator states and for selecting the distribution on initial conditions such that the loop transfer matrix approximates that of a full-state feedback design have been developed. The effectiveness of the method is demonstrated using the examples of the pointing of a flexible structure and a helicopter flight control problem.

  16. A general approximate method for the groundwater response problem caused by water level variation

    NASA Astrophysics Data System (ADS)

    Jiang, Qinghui; Tang, Yuehao

    2015-10-01

    The Boussinesq equation (BEQ) can be used to describe groundwater flow through an unconfined aquifer. Based on 1D BEQ, we present a general approximate method to predict the water table response in a semi-infinite aquifer system with a vertical or sloping boundary. A decomposition method is adopted by separating the original problem into a linear diffusion equation (DE) and two correction functions. The linear DE satisfies all the initial and boundary conditions, reflecting the basic characteristics of groundwater movement. The correction functions quantitatively measure the errors due to the degeneration from the original BEQ to a linear DE. As the correction functions must be linearized to obtain analytical solution forms, the proposed method is an approximate approach. In the case studies, we apply this method to four different situations of water level variation (i.e., constant, sudden, linear and periodic change) resting on vertical or sloping boundaries. The results are compared against numerical results, field data and other analytical solutions, which demonstrate that the proposed method has a good accuracy and versatility over a wide range of applications.

  17. S-curve networks and an approximate method for estimating degree distributions of complex networks

    NASA Astrophysics Data System (ADS)

    Guo, Jin-Li

    2010-12-01

    In the study of complex networks almost all theoretical models have the property of infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 (Internet Protocol version 4) addresses, this paper proposes a forecasting model by using S curve (logistic curve). The growing trend of IPv4 addresses in China is forecasted. There are some reference values for optimizing the distribution of IPv4 address resource and the development of IPv6. Based on the laws of IPv4 growth, that is, the bulk growth and the finitely growing limit, it proposes a finite network model with a bulk growth. The model is said to be an S-curve network. Analysis demonstrates that the analytic method based on uniform distributions (i.e., Barabási-Albert method) is not suitable for the network. It develops an approximate method to predict the growth dynamics of the individual nodes, and uses this to calculate analytically the degree distribution and the scaling exponents. The analytical result agrees with the simulation well, obeying an approximately power-law form. This method can overcome a shortcoming of Barabási-Albert method commonly used in current network research.

  18. New identification method for Hammerstein models based on approximate least absolute deviation

    NASA Astrophysics Data System (ADS)

    Xu, Bao-Chang; Zhang, Ying-Dan

    2016-07-01

    Disorder and peak noises or large disturbances can deteriorate the identification effects of Hammerstein non-linear models when using the least-square (LS) method. The least absolute deviation technique can be used to resolve this problem; however, its absolute value cannot meet the need of differentiability required by most algorithms. To improve robustness and resolve the non-differentiable problem, an approximate least absolute deviation (ALAD) objective function is established by introducing a deterministic function that exhibits the characteristics of absolute value under certain situations. A new identification method for Hammerstein models based on ALAD is thus developed in this paper. The basic idea of this method is to apply the stochastic approximation theory in the process of deriving the recursive equations. After identifying the parameter matrix of the Hammerstein model via the new algorithm, the product terms in the matrix are separated by calculating the average values. Finally, algorithm convergence is proven by applying the ordinary differential equation method. The proposed algorithm has a better robustness as compared to other LS methods, particularly when abnormal points exist in the measured data. Furthermore, the proposed algorithm is easier to apply and converges faster. The simulation results demonstrate the efficacy of the proposed algorithm.

  19. The Wentzel-Kramers-Brillouin approximation method applied to the Wigner function

    NASA Astrophysics Data System (ADS)

    Tosiek, J.; Cordero, R.; Turrubiates, F. J.

    2016-06-01

    An adaptation of the Wentzel-Kramers-Brilluoin method in the deformation quantization formalism is presented with the aim to obtain an approximate technique of solving the eigenvalue problem for energy in the phase space quantum approach. A relationship between the phase σ ( r →) of a wave function exp (" separators=" /i ħ σ ( r →)) and its respective Wigner function is derived. Formulas to calculate the Wigner function of a product and of a superposition of wave functions are proposed. Properties of a Wigner function of interfering states are also investigated. Examples of this quasi-classical approximation in deformation quantization are analysed. A strict form of the Wigner function for states represented by tempered generalised functions has been derived. Wigner functions of unbound states in the Poeschl-Teller potential have been found.

  20. Complex-valued derivative propagation method with approximate Bohmian trajectories for quantum barrier scattering

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Chun

    2015-08-01

    The complex quantum Hamilton-Jacobi equation for the complex action is approximately solved by propagating individual Bohmian trajectories in real space. Equations of motion for the complex action and its spatial derivatives are derived through use of the derivative propagation method. We transform these equations into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. Setting higher-order derivatives equal to zero, we obtain a truncated system of equations of motion describing the rate of change in the complex action and its spatial derivatives transported along approximate Bohmian trajectories. A set of test trajectories is propagated to determine appropriate initial positions for transmitted trajectories. Computational results for transmitted wave packets and transmission probabilities are presented and analyzed for a one-dimensional Eckart barrier and a two-dimensional system involving either a thick or thin Eckart barrier along the reaction coordinate coupled to a harmonic oscillator.

  1. Fluctuations of spherical waves in a turbulent atmosphere: effect of the axisymmetric approximation in computational methods.

    PubMed

    Salomons, E M

    2000-10-01

    The validity of the axisymmetric parabolic-equation (PE) method for line-of-sight sound propagation in a turbulent atmosphere is investigated. The axisymmetric PE method is a finite-difference method for solving a 2D parabolic wave equation, which follows from the 3D wave equation by the assumption of axial symmetry around the vertical axis through the source. It is found that this axisymmetric approximation has a considerable spurious effect on the fluctuations of the sound field. This is concluded from analytical expressions for the log-amplitude and phase variances, derived both for isotropic turbulence and for axisymmetric turbulence. The expressions for axisymmetric turbulence are compared with the results of numerical computations with the PE method. PMID:11051480

  2. Domain decomposition methods for systems of conservation laws: Spectral collocation approximations

    NASA Technical Reports Server (NTRS)

    Quarteroni, Alfio

    1989-01-01

    Hyperbolic systems of conversation laws are considered which are discretized in space by spectral collocation methods and advanced in time by finite difference schemes. At any time-level a domain deposition method based on an iteration by subdomain procedure was introduced yielding at each step a sequence of independent subproblems (one for each subdomain) that can be solved simultaneously. The method is set for a general nonlinear problem in several space variables. The convergence analysis, however, is carried out only for a linear one-dimensional system with continuous solutions. A precise form of the error reduction factor at each iteration is derived. Although the method is applied here to the case of spectral collocation approximation only, the idea is fairly general and can be used in a different context as well. For instance, its application to space discretization by finite differences is straight forward.

  3. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations

    NASA Astrophysics Data System (ADS)

    Wu, Fuke; Tian, Tianhai; Rawlings, James B.; Yin, George

    2016-05-01

    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766-1793 (1996); ibid. 56, 1794-1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.

  4. Approximate-model based estimation method for dynamic response of forging processes

    NASA Astrophysics Data System (ADS)

    Lei, Jie; Lu, Xinjiang; Li, Yibo; Huang, Minghui; Zou, Wei

    2015-03-01

    Many high-quality forging productions require the large-sized hydraulic press machine (HPM) to have a desirable dynamic response. Since the forging process is complex under the low velocity, its response is difficult to estimate. And this often causes the desirable low-velocity forging condition difficult to obtain. So far little work has been found to estimate the dynamic response of the forging process under low velocity. In this paper, an approximate-model based estimation method is proposed to estimate the dynamic response of the forging process under low velocity. First, an approximate model is developed to represent the forging process of this complex HPM around the low-velocity working point. Under guaranteeing the modeling performance, the model may greatly ease the complexity of the subsequent estimation of the dynamic response because it has a good linear structure. On this basis, the dynamic response is estimated and the conditions for stability, vibration, and creep are derived according to the solution of the velocity. All these analytical results are further verified by both simulations and experiment. In the simulation verification for modeling, the original movement model and the derived approximate model always have the same dynamic responses with very small approximate error. The simulations and experiment finally demonstrate and test the effectiveness of the derived conditions for stability, vibration, and creep, and these conditions will benefit both the prediction of the dynamic response of the forging process and the design of the controller for the high-quality forging. The proposed method is an effective solution to achieve the desirable low-velocity forging condition.

  5. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations.

    PubMed

    Wu, Fuke; Tian, Tianhai; Rawlings, James B; Yin, George

    2016-05-01

    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766-1793 (1996); ibid. 56, 1794-1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence. PMID:27155630

  6. Validity of approximate methods in molecular scattering. III - Effective potential and coupled states approximations for differential and gas kinetic cross sections

    NASA Technical Reports Server (NTRS)

    Monchick, L.; Green, S.

    1977-01-01

    Two dimensionality-reducing approximations, the j sub z-conserving coupled states (sometimes called the centrifugal decoupling) method and the effective potential method, were applied to collision calculations of He with CO and with HCl. The coupled states method was found to be sensitive to the interpretation of the centrifugal angular momentum quantum number in the body-fixed frame, but the choice leading to the original McGuire-Kouri expression for the scattering amplitude - and to the simplest formulas - proved to be quite successful in reproducing differential and gas kinetic cross sections. The computationally cheaper effective potential method was much less accurate.

  7. MIST - MINIMUM-STATE METHOD FOR RATIONAL APPROXIMATION OF UNSTEADY AERODYNAMIC FORCE COEFFICIENT MATRICES

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1994-01-01

    Various control analysis, design, and simulation techniques of aeroservoelastic systems require the equations of motion to be cast in a linear, time-invariant state-space form. In order to account for unsteady aerodynamics, rational function approximations must be obtained to represent them in the first order equations of the state-space formulation. A computer program, MIST, has been developed which determines minimum-state approximations of the coefficient matrices of the unsteady aerodynamic forces. The Minimum-State Method facilitates the design of lower-order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena such as the outboard-wing acceleration response to gust velocity. Engineers using this program will be able to calculate minimum-state rational approximations of the generalized unsteady aerodynamic forces. Using the Minimum-State formulation of the state-space equations, they will be able to obtain state-space models with good open-loop characteristics while reducing the number of aerodynamic equations by an order of magnitude more than traditional approaches. These low-order state-space mathematical models are good for design and simulation of aeroservoelastic systems. The computer program, MIST, accepts tabular values of the generalized aerodynamic forces over a set of reduced frequencies. It then determines approximations to these tabular data in the LaPlace domain using rational functions. MIST provides the capability to select the denominator coefficients in the rational approximations, to selectably constrain the approximations without increasing the problem size, and to determine and emphasize critical frequency ranges in determining the approximations. MIST has been written to allow two types data weighting options. The first weighting is a traditional normalization of the aerodynamic data to the maximum unit value of each aerodynamic coefficient. The second allows weighting the

  8. Accurate gradient approximation for complex interface problems in 3D by an improved coupling interface method

    SciTech Connect

    Shu, Yu-Chen; Chern, I-Liang; Chang, Chien C.

    2014-10-15

    Most elliptic interface solvers become complicated for complex interface problems at those “exceptional points” where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule ( (1D63)) which is double-helix shape and composed of hundreds of atoms.

  9. Accurate gradient approximation for complex interface problems in 3D by an improved coupling interface method

    NASA Astrophysics Data System (ADS)

    Shu, Yu-Chen; Chern, I.-Liang; Chang, Chien C.

    2014-10-01

    Most elliptic interface solvers become complicated for complex interface problems at those “exceptional points” where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule (1D63) which is double-helix shape and composed of hundreds of atoms.

  10. Accuracy considerations for Chebyshev rational approximation method (CRAM) in Burnup calculations

    SciTech Connect

    Pusa, M.

    2013-07-01

    The burnup equations can in principle be solved by computing the exponential of the burnup matrix. However, due to the difficult numerical characteristics of burnup matrices, the problem is extremely stiff and the matrix exponential solution has previously been considered infeasible for an entire burnup system containing over a thousand nuclides. It was recently discovered by the author that the eigenvalues of burnup matrices are generally located near the negative real axis, which prompted introducing the Chebyshev rational approximation method (CRAM) for solving the burnup equations. CRAM can be characterized as the best rational approximation on the negative real axis and it has been shown to be capable of simultaneously solving an entire burnup system both accurately and efficiently. In this paper, the accuracy of CRAM is further studied in the context of burnup equations. The approximation error is analyzed based on the eigenvalue decomposition of the burnup matrix. It is deduced that the relative accuracy of CRAM may be compromised if a nuclide concentration diminishes significantly during the considered time step. Numerical results are presented for two test cases, the first one representing a small burnup system with 36 nuclides and the second one a full a decay system with 1531 nuclides. (authors)

  11. Numerical approximation of Lévy-Feller fractional diffusion equation via Chebyshev-Legendre collocation method

    NASA Astrophysics Data System (ADS)

    Sweilam, N. H.; Abou Hasan, M. M.

    2016-08-01

    This paper reports a new spectral algorithm for obtaining an approximate solution for the Lévy-Feller diffusion equation depending on Legendre polynomials and Chebyshev collocation points. The Lévy-Feller diffusion equation is obtained from the standard diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative. A new formula expressing explicitly any fractional-order derivatives, in the sense of Riesz-Feller operator, of Legendre polynomials of any degree in terms of Jacobi polynomials is proved. Moreover, the Chebyshev-Legendre collocation method together with the implicit Euler method are used to reduce these types of differential equations to a system of algebraic equations which can be solved numerically. Numerical results with comparisons are given to confirm the reliability of the proposed method for the Lévy-Feller diffusion equation.

  12. Quasi-Isotropic Approximation of Geometrical Optics Method as Adequate Electrodynamical Basis for Tokamak Plasma Polarimetry

    NASA Astrophysics Data System (ADS)

    Bieg, Bohdan; Chrzanowski, Janusz; Kravtsov, Yury A.; Orsitto, Francesco

    Basic principles and recent findings of quasi-isotropic approximation (QIA) of a geometrical optics method are presented in a compact manner. QIA was developed in 1969 to describe electromagnetic waves in weakly anisotropic media. QIA represents the wave field as a power series in two small parameters, one of which is a traditional geometrical optics parameter, equal to wavelength ratio to plasma characteristic scale, and the other one is the largest component of anisotropy tensor. As a result, "" QIA ideally suits to tokamak polarimetry/interferometry systems in submillimeter range, where plasma manifests properties of weakly anisotropic medium.

  13. Approximate method for calculating free vibrations of a large-wind-turbine tower structure

    NASA Technical Reports Server (NTRS)

    Das, S. C.; Linscott, B. S.

    1977-01-01

    A set of ordinary differential equations were derived for a simplified structural dynamic lumped-mass model of a typical large-wind-turbine tower structure. Dunkerley's equation was used to arrive at a solution for the fundamental natural frequencies of the tower in bending and torsion. The ERDA-NASA 100-kW wind turbine tower structure was modeled, and the fundamental frequencies were determined by the simplified method described. The approximate fundamental natural frequencies for the tower agree within 18 percent with test data and predictions analyzed.

  14. Parameter inference in small world network disease models with approximate Bayesian Computational methods

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Allingham, David; Lee, Heung Wing Joseph; Small, Michael

    2010-02-01

    Small world network models have been effective in capturing the variable behaviour of reported case data of the SARS coronavirus outbreak in Hong Kong during 2003. Simulations of these models have previously been realized using informed “guesses” of the proposed model parameters and tested for consistency with the reported data by surrogate analysis. In this paper we attempt to provide statistically rigorous parameter distributions using Approximate Bayesian Computation sampling methods. We find that such sampling schemes are a useful framework for fitting parameters of stochastic small world network models where simulation of the system is straightforward but expressing a likelihood is cumbersome.

  15. Implementation of the finite amplitude method for the relativistic quasiparticle random-phase approximation

    NASA Astrophysics Data System (ADS)

    Nikšić, T.; Kralj, N.; Tutiš, T.; Vretenar, D.; Ring, P.

    2013-10-01

    A new implementation of the finite amplitude method (FAM) for the solution of the relativistic quasiparticle random-phase approximation (RQRPA) is presented, based on the relativistic Hartree-Bogoliubov (RHB) model for deformed nuclei. The numerical accuracy and stability of the FAM-RQRPA is tested in a calculation of the monopole response of 22O. As an illustrative example, the model is applied to a study of the evolution of monopole strength in the chain of Sm isotopes, including the splitting of the giant monopole resonance in axially deformed systems.

  16. Perturbative approximation to hybrid equation of motion coupled cluster/effective fragment potential method

    SciTech Connect

    Ghosh, Debashree

    2014-03-07

    Hybrid quantum mechanics/molecular mechanics (QM/MM) methods provide an attractive way to closely retain the accuracy of the QM method with the favorable computational scaling of the MM method. Therefore, it is not surprising that QM/MM methods are being increasingly used for large chemical/biological systems. Hybrid equation of motion coupled cluster singles doubles/effective fragment potential (EOM-CCSD/EFP) methods have been developed over the last few years to understand the effect of solvents and other condensed phases on the electronic spectra of chromophores. However, the computational cost of this approach is still dominated by the steep scaling of the EOM-CCSD method. In this work, we propose and implement perturbative approximations to the EOM-CCSD method in this hybrid scheme to reduce the cost of EOM-CCSD/EFP. The timings and accuracy of this hybrid approach is tested for calculation of ionization energies, excitation energies, and electron affinities of microsolvated nucleic acid bases (thymine and cytosine), phenol, and phenolate.

  17. Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics.

    PubMed

    Chen, Wenan; Larrabee, Beth R; Ovsyannikova, Inna G; Kennedy, Richard B; Haralambieva, Iana H; Poland, Gregory A; Schaid, Daniel J

    2015-07-01

    Two recently developed fine-mapping methods, CAVIAR and PAINTOR, demonstrate better performance over other fine-mapping methods. They also have the advantage of using only the marginal test statistics and the correlation among SNPs. Both methods leverage the fact that the marginal test statistics asymptotically follow a multivariate normal distribution and are likelihood based. However, their relationship with Bayesian fine mapping, such as BIMBAM, is not clear. In this study, we first show that CAVIAR and BIMBAM are actually approximately equivalent to each other. This leads to a fine-mapping method using marginal test statistics in the Bayesian framework, which we call CAVIAR Bayes factor (CAVIARBF). Another advantage of the Bayesian framework is that it can answer both association and fine-mapping questions. We also used simulations to compare CAVIARBF with other methods under different numbers of causal variants. The results showed that both CAVIARBF and BIMBAM have better performance than PAINTOR and other methods. Compared to BIMBAM, CAVIARBF has the advantage of using only marginal test statistics and takes about one-quarter to one-fifth of the running time. We applied different methods on two independent cohorts of the same phenotype. Results showed that CAVIARBF, BIMBAM, and PAINTOR selected the same top 3 SNPs; however, CAVIARBF and BIMBAM had better consistency in selecting the top 10 ranked SNPs between the two cohorts. Software is available at https://bitbucket.org/Wenan/caviarbf. PMID:25948564

  18. Perturbative approximation to hybrid equation of motion coupled cluster/effective fragment potential method.

    PubMed

    Ghosh, Debashree

    2014-03-01

    Hybrid quantum mechanics/molecular mechanics (QM/MM) methods provide an attractive way to closely retain the accuracy of the QM method with the favorable computational scaling of the MM method. Therefore, it is not surprising that QM/MM methods are being increasingly used for large chemical/biological systems. Hybrid equation of motion coupled cluster singles doubles/effective fragment potential (EOM-CCSD/EFP) methods have been developed over the last few years to understand the effect of solvents and other condensed phases on the electronic spectra of chromophores. However, the computational cost of this approach is still dominated by the steep scaling of the EOM-CCSD method. In this work, we propose and implement perturbative approximations to the EOM-CCSD method in this hybrid scheme to reduce the cost of EOM-CCSD/EFP. The timings and accuracy of this hybrid approach is tested for calculation of ionization energies, excitation energies, and electron affinities of microsolvated nucleic acid bases (thymine and cytosine), phenol, and phenolate. PMID:24606347

  19. Method to solve integral equations of the first kind with an approximate input.

    PubMed

    Efros, Victor D

    2012-07-01

    Techniques are proposed for solving integral equations of the first kind with an input known not precisely. The requirement that the solution sought for includes a given number of maxima and minima is imposed. It is shown that when the deviation of the approximate input from the true one is sufficiently small and some additional conditions are fulfilled the method leads to an approximate solution that is necessarily close to the true solution. No regularization is required in the present approach. Requirements on features of the solution at integration limits are also imposed. The problem is treated with the help of an ansatz proposed for the derivative of the solution. The ansatz is the most general one compatible with the above mentioned requirements. The techniques are tested with exactly solvable examples. Inversions of the Lorentz, Stieltjes, and Laplace integral transforms are performed, and very satisfactory results are obtained. The method is useful, in particular, for the calculation of quantum-mechanical reaction amplitudes and inclusive spectra of perturbation-induced reactions in the framework of the integral transform approach. PMID:23005560

  20. Adaptive approximation method for joint parameter estimation and identical synchronization of chaotic systems.

    PubMed

    Mariño, Inés P; Míguez, Joaquín

    2005-11-01

    We introduce a numerical approximation method for estimating an unknown parameter of a (primary) chaotic system which is partially observed through a scalar time series. Specifically, we show that the recursive minimization of a suitably designed cost function that involves the dynamic state of a fully observed (secondary) system and the observed time series can lead to the identical synchronization of the two systems and the accurate estimation of the unknown parameter. The salient feature of the proposed technique is that the only external input to the secondary system is the unknown parameter which needs to be adjusted. We present numerical examples for the Lorenz system which show how our algorithm can be considerably faster than some previously proposed methods. PMID:16383795

  1. Approximate method for solving relaxation problems in terms of material`s damagability under creep

    SciTech Connect

    Nikitenko, A.F.; Sukhorukov, I.V.

    1995-03-01

    The technology of thermoforming under creep and superplasticity conditions is finding increasing application in machine building for producing articles of a preset shape. After a part is made there are residual stresses in it, which lead to its warping. To remove residual stresses, moulded articles are usually exposed to thermal fixation, i.e., the part is held in compressed state at a certain temperature. Thermal fixation is simply the process of residual stress relaxation, following by accumulation of total creep in the material. Therefore the necessity to develop engineering methods for calculating the time of thermal fixation and relaxation of residual stresses to a safe level, not resulting in warping, becomes evident. The authors present an approximate method of calculation of stress-strain rate of a body during relaxation. They use a system of equations which describes a material`s creep, simultaneously taking into account accumulation of damages in it.

  2. The anharmonic oscillator driven by Gaussian noise. Comparison between direct perturbation and Markov approximation methods

    NASA Astrophysics Data System (ADS)

    Pesquera, L.; Blanco, R.

    1987-04-01

    The anharmonic oscillator driven by Gaussian noise is studied in the limit of weak damping using the direct perturbation (DPM) and Markov approximation (MAM) methods. Mean values are obtained to first order in the anharmonic coupling constant g. From a careful treatment of the high-frequency behavior it is concluded that to first order in g the DPM takes high-frequency contributions into account whereas the MAM does not, while both agree if high-frequency contributions are not important. It is also shown that both methods give the same results to second order in g for the quartic anharmonic oscillator. The spectral density of the noise used in stochastic electrodynamics is considered as a particular example.

  3. An additive and lossless watermarking method based on invariant image approximation and Haar wavelet transform.

    PubMed

    Pan, W; Coatrieux, G; Cuppens, N; Cuppens, F; Roux, Ch

    2010-01-01

    In this article, we propose a new additive lossless watermarking scheme which identifies parts of the image that can be reversibly watermarked and conducts message embedding in the conventional Haar wavelet transform coefficients. Our approach makes use of an approximation of the image signal that is invariant to the watermark addition for classifying the image in order to avoid over/underflows. The method has been tested on different sets of medical images and some usual natural test images as Lena. Experimental result analysis conducted with respect to several aspects including data hiding capacity and image quality preservation, shows that our method is one of the most competitive existing lossless watermarking schemes in terms of high capacity and low distortion. PMID:21096246

  4. Estimating the Bias of Local Polynomial Approximation Methods Using the Peano Kernel

    SciTech Connect

    Blair, J.; Machorro, E.; Luttman, A.

    2013-03-01

    The determination of uncertainty of an estimate requires both the variance and the bias of the estimate. Calculating the variance of local polynomial approximation (LPA) estimates is straightforward. We present a method, using the Peano Kernel Theorem, to estimate the bias of LPA estimates and show how this can be used to optimize the LPA parameters in terms of the bias-variance tradeoff. Figures of merit are derived and values calculated for several common methods. The results in the literature are expanded by giving bias error bounds that are valid for all lengths of the smoothing interval, generalizing the currently available asymptotic results that are only valid in the limit as the length of this interval goes to zero.

  5. Replace-approximation method for ambiguous solutions in factor analysis of ultrasonic hepatic perfusion

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Ding, Mingyue; Yuchi, Ming; Hou, Wenguang; Ye, Huashan; Qiu, Wu

    2010-03-01

    Factor analysis is an efficient technique to the analysis of dynamic structures in medical image sequences and recently has been used in contrast-enhanced ultrasound (CEUS) of hepatic perfusion. Time-intensity curves (TICs) extracted by factor analysis can provide much more diagnostic information for radiologists and improve the diagnostic rate of focal liver lesions (FLLs). However, one of the major drawbacks of factor analysis of dynamic structures (FADS) is nonuniqueness of the result when only the non-negativity criterion is used. In this paper, we propose a new method of replace-approximation based on apex-seeking for ambiguous FADS solutions. Due to a partial overlap of different structures, factor curves are assumed to be approximately replaced by the curves existing in medical image sequences. Therefore, how to find optimal curves is the key point of the technique. No matter how many structures are assumed, our method always starts to seek apexes from one-dimensional space where the original high-dimensional data is mapped. By finding two stable apexes from one dimensional space, the method can ascertain the third one. The process can be continued until all structures are found. This technique were tested on two phantoms of blood perfusion and compared to the two variants of apex-seeking method. The results showed that the technique outperformed two variants in comparison of region of interest measurements from phantom data. It can be applied to the estimation of TICs derived from CEUS images and separation of different physiological regions in hepatic perfusion.

  6. Density functional method including weak interactions: Dispersion coefficients based on the local response approximation

    NASA Astrophysics Data System (ADS)

    Sato, Takeshi; Nakai, Hiromi

    2009-12-01

    A new method to calculate the atom-atom dispersion coefficients in a molecule is proposed for the use in density functional theory with dispersion (DFT-D) correction. The method is based on the local response approximation due to Dobson and Dinte [Phys. Rev. Lett. 76, 1780 (1996)], with modified dielectric model recently proposed by Vydrov and van Voorhis [J. Chem. Phys. 130, 104105 (2009)]. The local response model is used to calculate the distributed multipole polarizabilities of atoms in a molecule, from which the dispersion coefficients are obtained by an explicit frequency integral of the Casimir-Polder type. Thus obtained atomic polarizabilities are also used in the damping function for the short-range singularity. Unlike empirical DFT-D methods, the local response dispersion (LRD) method is able to calculate the dispersion energy from the ground-state electron density only. It is applicable to any geometry, free from physical constants such as van der Waals radii or atomic polarizabilities, and computationally very efficient. The LRD method combined with the long-range corrected DFT functional (LC-BOP) is applied to calculations of S22 weakly bound complex set [Phys. Chem. Chem. Phys. 8, 1985 (2006)]. Binding energies obtained by the LC-BOP+LRD agree remarkably well with ab initio references.

  7. Density functional method including weak interactions: Dispersion coefficients based on the local response approximation

    NASA Astrophysics Data System (ADS)

    Sato, Takeshi; Nakai, Hiromi

    2009-12-01

    A new method to calculate the atom-atom dispersion coefficients in a molecule is proposed for the use in density functional theory with dispersion (DFT-D) correction. The method is based on the local response approximation due to Dobson and Dinte [Phys. Rev. Lett. 76, 1780 (1996)], with modified dielectric model recently proposed by Vydrov and van Voorhis [J. Chem. Phys. 130, 104105 (2009)]. The local response model is used to calculate the distributed multipole polarizabilities of atoms in a molecule, from which the dispersion coefficients are obtained by an explicit frequency integral of the Casimir-Polder type. Thus obtained atomic polarizabilities are also used in the damping function for the short-range singularity. Unlike empirical DFT-D methods, the local response dispersion (LRD) method is able to calculate the dispersion energy from the ground-state electron density only. It is applicable to any geometry, free from physical constants such as van der Waals radii or atomic polarizabilities, and computationally very efficient. The LRD method combined with the long-range corrected DFT functional (LC-BOP) is applied to calculations of S22 weakly bound complex set [Phys. Chem. Chem. Phys. 8, 1985 (2006)]. Binding energies obtained by the LC-BOP + LRD agree remarkably well with ab initio references.

  8. Approximate Methods for Analyzing and Controlling Axisymmetric Instabilities of Elongated Tokamak Plasmas.

    NASA Astrophysics Data System (ADS)

    Frantz, Eric Randall

    Elongation and shaping of the tokamak plasma cross -section can allow increased beta and other favorable improvements. As the cross-section is made non-circular, however, the plasma can become unstable against axisymmetric motions, the most predominant one being a nearly uniform displacement in the direction of elongation. Without additional stabilizing mechanisms, this instability has growth rates typically (TURN)10('6)sec('-1). With passive and active feedback from external conductors, the plasma can be significantly slowed down and controlled. In this work, a mathematical formulism for analyzing the vertical instability is developed in which the external conductors are treated (or broken -up) as discrete coils. The circuit equations for the plasma induced currents can be included within the same mathematical framework. The plasma equation of motion and the circuit equations are combined and manipulated into a diagonalized form that can be graphically analyzed to determine the growth rate. An effective mode approximation (EMA) to the dispersion relation in introduced to simplify and approximate the growth rate of the more exact case. Controller voltage equations for active feedback are generalized to include position and velocity feedback and time delay. A position cut-off displacement is added to model finite spatial resolution of the position detectors or a dead-band voltage level. Stability criteria are studied for EMA and the more exact case. The time dependent responses for plasma position controller voltages, and currents are determined from the Laplace transformations. Slow responses are separated from the fast ones (dependent on plasma inertia) using a typical tokamak ordering approximation. The methods developed are applied in numerous examples for the machine geometry and plasma of TNS, an inside-D configuration plasma resembling JET, INTOR, or FED.

  9. An improved approximate-Bayesian model-choice method for estimating shared evolutionary history

    PubMed Central

    2014-01-01

    Background To understand biological diversification, it is important to account for large-scale processes that affect the evolutionary history of groups of co-distributed populations of organisms. Such events predict temporally clustered divergences times, a pattern that can be estimated using genetic data from co-distributed species. I introduce a new approximate-Bayesian method for comparative phylogeographical model-choice that estimates the temporal distribution of divergences across taxa from multi-locus DNA sequence data. The model is an extension of that implemented in msBayes. Results By reparameterizing the model, introducing more flexible priors on demographic and divergence-time parameters, and implementing a non-parametric Dirichlet-process prior over divergence models, I improved the robustness, accuracy, and power of the method for estimating shared evolutionary history across taxa. Conclusions The results demonstrate the improved performance of the new method is due to (1) more appropriate priors on divergence-time and demographic parameters that avoid prohibitively small marginal likelihoods for models with more divergence events, and (2) the Dirichlet-process providing a flexible prior on divergence histories that does not strongly disfavor models with intermediate numbers of divergence events. The new method yields more robust estimates of posterior uncertainty, and thus greatly reduces the tendency to incorrectly estimate models of shared evolutionary history with strong support. PMID:24992937

  10. Multi-scale crystal growth computations via an approximate block Newton method

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Lun, Lisa; Derby, Jeffrey J.

    2010-04-01

    Multi-scale and multi-physics simulations, such as the computational modeling of crystal growth processes, will benefit from the modular coupling of existing codes rather than the development of monolithic, single-application software. An effective coupling approach, the approximate block Newton approach (ABN), is developed and applied to the steady-state computation of crystal growth in an electrodynamic gradient freeze system. Specifically, the code CrysMAS is employed for furnace-scale heat transfer computations and is coupled with the code Cats2D to calculate melt fluid dynamics and phase-change phenomena. The ABN coupling strategy proves to be vastly more reliable and cost efficient than simpler coupling methods for this problem and is a promising approach for future crystal growth models.

  11. Coherent-potential approximation in the tight-binding linear muffin-tin orbital method

    NASA Astrophysics Data System (ADS)

    Singh, Prabhakar P.; Gonis, A.

    1993-07-01

    We describe a consistent approach for applying the coherent-potential approximation (CPA) to the various representations of the linear muffin-tin orbital method. Unlike the previous works of Kudrnovský et al. [Phys. Rev. B 35, 2487 (1987); 41, 7515 (1990)], our results for the ensemble-averaged Green functions in the tight-binding representation yield E- and r-dependent quantities that are consistent with the traditional applications of the single-site CPA. To illustrate the reliability and the usefulness of our approach we compare the nonspherically averaged charge densities, calculated in real space, of ordered NiPt in L10 structure and the substitutionally disordered Ni0.5Pt0.5 on a face-centered-cubic lattice.

  12. Relaxation and approximate factorization methods for the unsteady full potential equation

    NASA Technical Reports Server (NTRS)

    Shankar, V.; Ide, H.; Gorski, J.

    1984-01-01

    The unsteady form of the full potential equation is solved in conservation form, using implicit methods based on approximate factorization and relaxation schemes. A local time linearization for density is introduced to enable solution to the equation in terms of phi, the velocity potential. A novel flux-biasing technique is applied to generate proper forms of the artificial viscosity, to treat hyperbolic regions with shocks and sonic lines present. The wake is properly modeled by accounting not only for jumps in phi, but also for jumps in higher derivatives of phi obtained from requirements of density continuity. The far field is modeled using the Riemann invariants to simulate nonreflecting boundary conditions. Results are presented for flows over airfoils, cylinders, and spheres. Comparisons are made with available Euler and full potential results.

  13. Diffusion approximation-based simulation of stochastic ion channels: which method to use?

    PubMed Central

    Pezo, Danilo; Soudry, Daniel; Orio, Patricio

    2014-01-01

    To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie's method for Markov Chains (MC) simulation is highly accurate, yet it becomes computationally intensive in the regime of a high number of channels. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA). Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties—such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Goldwyn et al., 2011; Linaro et al., 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Güler, 2013; Huang et al., 2013a), comparing all of them in a set of numerical simulations that assess numerical accuracy and computational efficiency on three different models: (1) the original Hodgkin and Huxley model, (2) a model with faster sodium channels, and (3) a multi-compartmental model inspired in granular cells. We conclude that for a low number of channels (usually below 1000 per simulated compartment) one should use MC—which is the fastest and most accurate method. For a high number of channels, we recommend using the method by Orio and Soudry (2012), possibly combined with the method by Schmandt and Galán (2012) for increased speed and slightly reduced accuracy. Consequently, MC modeling may be the best method for detailed multicompartment neuron models—in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels. PMID:25404914

  14. Nonadaptive methods for polyhedral approximation of the Edgeworth—Pareto hull using suboptimal coverings on the direction sphere

    NASA Astrophysics Data System (ADS)

    Lotov, A. V.; Maiskaya, T. S.

    2012-01-01

    For multicriteria convex optimization problems, new nonadaptive methods are proposed for polyhedral approximation of the multidimensional Edgeworth-Pareto hull (EPH), which is a maximal set having the same Pareto frontier as the set of feasible criteria vectors. The methods are based on evaluating the support function of the EPH for a collection of directions generated by a suboptimal covering on the unit sphere. Such directions are constructed in advance by applying an asymptotically effective adaptive method for the polyhedral approximation of convex compact bodies, namely, by the estimate refinement method. Due to the a priori definition of the directions, the proposed EPH approximation procedure can easily be implemented with parallel computations. Moreover, the use of nonadaptive methods considerably simplifies the organization of EPH approximation on the Internet. Experiments with an applied problem (from 3 to 5 criteria) showed that the methods are fairly similar in characteristics to adaptive methods. Therefore, they can be used in parallel computations and on the Internet.

  15. Rational trigonometric approximations using Fourier series partial sums

    NASA Technical Reports Server (NTRS)

    Geer, James F.

    1993-01-01

    A class of approximations (S(sub N,M)) to a periodic function f which uses the ideas of Pade, or rational function, approximations based on the Fourier series representation of f, rather than on the Taylor series representation of f, is introduced and studied. Each approximation S(sub N,M) is the quotient of a trigonometric polynomial of degree N and a trigonometric polynomial of degree M. The coefficients in these polynomials are determined by requiring that an appropriate number of the Fourier coefficients of S(sub N,M) agree with those of f. Explicit expressions are derived for these coefficients in terms of the Fourier coefficients of f. It is proven that these 'Fourier-Pade' approximations converge point-wise to (f(x(exp +))+f(x(exp -)))/2 more rapidly (in some cases by a factor of 1/k(exp 2M)) than the Fourier series partial sums on which they are based. The approximations are illustrated by several examples and an application to the solution of an initial, boundary value problem for the simple heat equation is presented.

  16. Geometry of the steady-state approximation: Perturbation and accelerated convergence methods

    NASA Astrophysics Data System (ADS)

    Roussel, Marc R.; Fraser, Simon J.

    1990-07-01

    The time evolution of two model enzyme reactions is represented in phase space Γ. The phase flow is attracted to a unique trajectory, the slow manifold M, before it reaches the point equilibrium of the system. Locating M describes the slow time evolution precisely, and allows all rate constants to be obtained from steady-state data. The line set M is found by solution of a functional equation derived from the flow differential equations. For planar systems, the steady-state (SSA) and equilibrium (EA) approximations bound a trapping region containing M, and direct iteration and perturbation theory are formally equivalent solutions of the functional equation. The iteration's convergence is examined by eigenvalue methods. In many dimensions, the nullcline surfaces of the flow in Γ form a prism-shaped region containing M, but this prism is not a simple trap for the flow. Two of its edges are EA and SSA. Perturbation expansion and direct iteration are now no longer equivalent procedures; they are compared in a three-dimensional example. Convergence of the iterative scheme can be accelerated by a generalization of Aitken's δ2 extrapolation, greatly reducing the global error. These operations can be carried out using an algebraic manipulative language. Formally, all these techniques can be carried out in many dimensions.

  17. Simple finite element methods for approximating predator-prey dynamics in two dimensions using MATLAB.

    PubMed

    Garvie, Marcus R; Burkardt, John; Morgan, Jeff

    2015-03-01

    We describe simple finite element schemes for approximating spatially extended predator-prey dynamics with the Holling type II functional response and logistic growth of the prey. The finite element schemes generalize 'Scheme 1' in the paper by Garvie (Bull Math Biol 69(3):931-956, 2007). We present user-friendly, open-source MATLAB code for implementing the finite element methods on arbitrary-shaped two-dimensional domains with Dirichlet, Neumann, Robin, mixed Robin-Neumann, mixed Dirichlet-Neumann, and Periodic boundary conditions. Users can download, edit, and run the codes from http://www.uoguelph.ca/~mgarvie/ . In addition to discussing the well posedness of the model equations, the results of numerical experiments are presented and demonstrate the crucial role that habitat shape, initial data, and the boundary conditions play in determining the spatiotemporal dynamics of predator-prey interactions. As most previous works on this problem have focussed on square domains with standard boundary conditions, our paper makes a significant contribution to the area. PMID:25616741

  18. Heats of Segregation of BCC Metals Using Ab Initio and Quantum Approximate Methods

    NASA Technical Reports Server (NTRS)

    Good, Brian; Chaka, Anne; Bozzolo, Guillermo

    2003-01-01

    Many multicomponent alloys exhibit surface segregation, in which the composition at or near a surface may be substantially different from that of the bulk. A number of phenomenological explanations for this tendency have been suggested, involving, among other things, differences among the components' surface energies, molar volumes, and heats of solution. From a theoretical standpoint, the complexity of the problem has precluded a simple, unified explanation, thus preventing the development of computational tools that would enable the identification of the driving mechanisms for segregation. In that context, we investigate the problem of surface segregation in a variety of bcc metal alloys by computing dilute-limit heats of segregation using both the quantum-approximate energy method of Bozzolo, Ferrante and Smith (BFS), and all-electron density functional theory. In addition, the composition dependence of the heats of segregation is investigated using a BFS-based Monte Carlo procedure, and, for selected cases of interest, density functional calculations. Results are discussed in the context of a simple picture that describes segregation behavior as the result of a competition between size mismatch and alloying effects

  19. The Approximate Bayesian Computation methods in the localization of the atmospheric contamination source

    NASA Astrophysics Data System (ADS)

    Kopka, P.; Wawrzynczak, A.; Borysiewicz, M.

    2015-09-01

    In many areas of application, a central problem is a solution to the inverse problem, especially estimation of the unknown model parameters to model the underlying dynamics of a physical system precisely. In this situation, the Bayesian inference is a powerful tool to combine observed data with prior knowledge to gain the probability distribution of searched parameters. We have applied the modern methodology named Sequential Approximate Bayesian Computation (S-ABC) to the problem of tracing the atmospheric contaminant source. The ABC is technique commonly used in the Bayesian analysis of complex models and dynamic system. Sequential methods can significantly increase the efficiency of the ABC. In the presented algorithm, the input data are the on-line arriving concentrations of released substance registered by distributed sensor network from OVER-LAND ATMOSPHERIC DISPERSION (OLAD) experiment. The algorithm output are the probability distributions of a contamination source parameters i.e. its particular location, release rate, speed and direction of the movement, start time and duration. The stochastic approach presented in this paper is completely general and can be used in other fields where the parameters of the model bet fitted to the observable data should be found.

  20. Scalable learning method for feedforward neural networks using minimal-enclosing-ball approximation.

    PubMed

    Wang, Jun; Deng, Zhaohong; Luo, Xiaoqing; Jiang, Yizhang; Wang, Shitong

    2016-06-01

    Training feedforward neural networks (FNNs) is one of the most critical issues in FNNs studies. However, most FNNs training methods cannot be directly applied for very large datasets because they have high computational and space complexity. In order to tackle this problem, the CCMEB (Center-Constrained Minimum Enclosing Ball) problem in hidden feature space of FNN is discussed and a novel learning algorithm called HFSR-GCVM (hidden-feature-space regression using generalized core vector machine) is developed accordingly. In HFSR-GCVM, a novel learning criterion using L2-norm penalty-based ε-insensitive function is formulated and the parameters in the hidden nodes are generated randomly independent of the training sets. Moreover, the learning of parameters in its output layer is proved equivalent to a special CCMEB problem in FNN hidden feature space. As most CCMEB approximation based machine learning algorithms, the proposed HFSR-GCVM training algorithm has the following merits: The maximal training time of the HFSR-GCVM training is linear with the size of training datasets and the maximal space consumption is independent of the size of training datasets. The experiments on regression tasks confirm the above conclusions. PMID:27049545

  1. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process

    PubMed Central

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-01-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications. PMID:20577570

  2. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    NASA Astrophysics Data System (ADS)

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  3. An empirical method for approximating stream baseflow time series using groundwater table fluctuations

    NASA Astrophysics Data System (ADS)

    Meshgi, Ali; Schmitter, Petra; Babovic, Vladan; Chui, Ting Fong May

    2014-11-01

    Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed management. However, to date, in the absence of complex numerical models, baseflow is most commonly estimated using statistically derived empirical approaches that do not directly incorporate physically-meaningful information. On the other hand, Artificial Intelligence (AI) tools such as Genetic Programming (GP) offer unique capabilities to reduce the complexities of hydrological systems without losing relevant physical information. This study presents a simple-to-use empirical equation to estimate baseflow time series using GP so that minimal data is required and physical information is preserved. A groundwater numerical model was first adopted to simulate baseflow for a small semi-urban catchment (0.043 km2) located in Singapore. GP was then used to derive an empirical equation relating baseflow time series to time series of groundwater table fluctuations, which are relatively easily measured and are physically related to baseflow generation. The equation was then generalized for approximating baseflow in other catchments and validated for a larger vegetation-dominated basin located in the US (24 km2). Overall, this study used GP to propose a simple-to-use equation to predict baseflow time series based on only three parameters: minimum daily baseflow of the entire period, area of the catchment and groundwater table fluctuations. It serves as an alternative approach for baseflow estimation in un-gauged systems when only groundwater table and soil information is available, and is thus complementary to other methods that require discharge measurements.

  4. Evaluation of Several Approximate Methods for Calculating the Symmetrical Bending-Moment Response of Flexible Airplanes to Isotropic Atmospheric Turbulence

    NASA Technical Reports Server (NTRS)

    Bennett, Floyd V.; Yntema, Robert T.

    1959-01-01

    Several approximate procedures for calculating the bending-moment response of flexible airplanes to continuous isotropic turbulence are presented and evaluated. The modal methods (the mode-displacement and force-summation methods) and a matrix method (segmented-wing method) are considered. These approximate procedures are applied to a simplified airplane for which an exact solution to the equation of motion can be obtained. The simplified airplane consists of a uniform beam with a concentrated fuselage mass at the center. Airplane motions are limited to vertical rigid-body translation and symmetrical wing bending deflections. Output power spectra of wing bending moments based on the exact transfer-function solutions are used as a basis for the evaluation of the approximate methods. It is shown that the force-summation and the matrix methods give satisfactory accuracy and that the mode-displacement method gives unsatisfactory accuracy.

  5. A novel window based method for approximating the Hausdorff in 3D range imagery.

    SciTech Connect

    Koch, Mark William

    2004-10-01

    Matching a set of 3D points to another set of 3D points is an important part of any 3D object recognition system. The Hausdorff distance is known for it robustness in the face of obscuration, clutter, and noise. We show how to approximate the 3D Hausdorff fraction with linear time complexity and quadratic space complexity. We empirically demonstrate that the approximation is very good when compared to actual Hausdorff distances.

  6. Approximate analysis method for statistical properties of seismic response of secondary system

    SciTech Connect

    Aoki, Shigeru

    1996-12-01

    In this paper, effectiveness of a stationary approximation is examined. The mean square response and the first excursion probability of the secondary system such as pipings and mechanical equipment installed in the primary system such as building subjected to nonstationary random excitation are obtained. Results obtained by stationary approximation are compared with those obtained by nonstationary analysis for various values of damping ratio, natural period and mass ratio of the secondary system to the primary system.

  7. Application of the probabilistic approximate analysis method to a turbopump blade analysis. [for Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Thacker, B. H.; Mcclung, R. C.; Millwater, H. R.

    1990-01-01

    An eigenvalue analysis of a typical space propulsion system turbopump blade is presented using an approximate probabilistic analysis methodology. The methodology was developed originally to investigate the feasibility of computing probabilistic structural response using closed-form approximate models. This paper extends the methodology to structures for which simple closed-form solutions do not exist. The finite element method will be used for this demonstration, but the concepts apply to any numerical method. The results agree with detailed analysis results and indicate the usefulness of using a probabilistic approximate analysis in determining efficient solution strategies.

  8. Transfer induced by core excitation within an extended distorted-wave Born approximation method

    NASA Astrophysics Data System (ADS)

    Gómez-Ramos, M.; Moro, A. M.; Gómez-Camacho, J.; Thompson, I. J.

    2015-07-01

    Background: Dynamic core-excitation effects have been found to be of importance in breakup reactions and may be of relevance when obtaining spectroscopic information from transfer reactions. Purpose: In this paper we extend the distorted-wave Born approximation (DWBA) formalism in order to allow for noncentral components in the core-core term appearing in the transition operator, which allows for dynamic core-excitation effects. Then we study these effects by applying the formalism to different (d ,p ) reactions. Methods: The expression of the nonlocal kernels required for the evaluation of the DWBA amplitudes has been extended so as to include noncentral parts in the core-core interaction. The DWBA scattering amplitude is then obtained by solving the corresponding inhomogeneous equation, with the new computed kernels, and the usual outgoing boundary conditions. A new DWBA code has been developed for this purpose. Results: For 10Be(d ,p ) 11Be , core-excitation effects are found to be almost negligible (<3 %) . The importance of this effect has been found to depend to a large extent on the excitation energy of the core. This has been confirmed in the 30Ne(d ,p ) 31Ne case, for which the excitation energy of the first 2+ state is 0.8 MeV, and the effect of core excitation increases to ≈10 % . Conclusions: We find dynamic core-excitation effects in transfer reactions to have small contributions to cross sections, in general. However, they should not be neglected, since they may modify the spectroscopic information obtained from these reactions and may become of importance in reactions with nuclei with a core with high deformation and low excitation energy.

  9. High-order-harmonic spectra from atoms in intense laser fields: Exact versus approximate methods

    NASA Astrophysics Data System (ADS)

    Pugliese, S. N.; Simonsen, A. S.; Førre, M.; Hansen, J. P.

    2015-08-01

    We compare harmonic spectra from hydrogen based on the numerical solution of the time-dependent Schrödinger equation and three approximate models: (i) the strong field approximation (SFA), (ii) the Coulomb-Volkov modified strong field approximation (CVA), and (iii) the strong field approximation with the stationary phase approximation applied to the momentum integrals (SPSFA). At laser intensities in the range of (1 -3 ) ×1014W/cm 2 we find good agreement when comparing the SFA and CVA with exact results. In general the CVA displays an overall better agreement with ab initio results, which reflects the role of the Coulomb field in the ionization as well as in the recombination process. Furthermore, it is found that the widely used SPSFA breaks down for low-order harmonic generation; i.e., the approximation turns out to be accurate only in the outer part of the harmonic plateau region as well as in the cutoff region. We trace this deficiency to the singularity of the SPSFA associated with short trajectories, i.e., short return times. When removing these, we obtain a version of the SPSFA which works rather well for the entire harmonic spectrum.

  10. Stochastic approximation methods for fusion-rule estimation in multiple sensor systems

    SciTech Connect

    Rao, N.S.V.

    1994-06-01

    A system of N sensors S{sub 1}, S{sub 2},{hor_ellipsis},S{sub N} is considered; corresponding to an object with parameter x {element_of} {Re}{sup d}, sensor S{sub i} yields output y{sup (i)}{element_of}{Re}{sup d} according to an unknown probability distribution p{sub i}(y{sup (i)}{vert_bar}x). A training l-sample (x{sub 1}, y{sub 1}), (x{sub 2}, y{sub 2}),{hor_ellipsis},(x{sub l}, y{sub l}) is given where y{sub i} = (y{sub i}({sup 1}), y{sub i}({sup 2}),{hor_ellipsis},y{sub i}({sup N}) and y{sub i}({sup j}) is the output of S{sub j} in response to input X{sub i}. The problem is to estimate a fusion rule f : {Re}{sup Nd} {yields} {Re}{sup d}, based on the sample, such that the expected square error I(f) = {integral}[x {minus} f(y{sup 1}, y{sup 2},{hor_ellipsis},y{sup N})]{sup 2} p(y{sup 1}, y{sup 2},{hor_ellipsis},y{sup N}){vert_bar}x)p(x)dy{sup 1}dy{sup 2} {hor_ellipsis} dy{sup N}dx is to be minimized over a family of fusion rules {lambda} based on the given l-sample. Let f{sub *} {element_of} {lambda} minimize I(f); f{sub *} cannot be computed since the underlying probability distributions are unknown. Three stochastic approximation methods are presented to compute {cflx f}, such that under suitable conditions, for sufficiently large sample, P[I{cflx f} {minus} I(f{sub *}) > {epsilon}] < {delta} for arbitrarily specified {epsilon} > 0 and {delta}, 0 < {delta} < 1. The three methods are based on Robbins-Monro style algorithms, empirical risk minimization, and regression estimation algorithms.

  11. Exponential-fitted methods for integrating stiff systems of ordinary differential equations: Applications to homogeneous gas-phase chemical kinetics

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.

    1984-01-01

    Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.

  12. A Novel Method of the Generalized Interval-Valued Fuzzy Rough Approximation Operators

    PubMed Central

    Xue, Tianyu; Xue, Zhan'ao; Cheng, Huiru; Liu, Jie; Zhu, Tailong

    2014-01-01

    Rough set theory is a suitable tool for dealing with the imprecision, uncertainty, incompleteness, and vagueness of knowledge. In this paper, new lower and upper approximation operators for generalized fuzzy rough sets are constructed, and their definitions are expanded to the interval-valued environment. Furthermore, the properties of this type of rough sets are analyzed. These operators are shown to be equivalent to the generalized interval fuzzy rough approximation operators introduced by Dubois, which are determined by any interval-valued fuzzy binary relation expressed in a generalized approximation space. Main properties of these operators are discussed under different interval-valued fuzzy binary relations, and the illustrative examples are given to demonstrate the main features of the proposed operators. PMID:25162065

  13. Approximation methods for inverse problems involving the vibration of beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    Two cubic spline based approximation schemes for the estimation of structural parameters associated with the transverse vibration of flexible beams with tip appendages are outlined. The identification problem is formulated as a least squares fit to data subject to the system dynamics which are given by a hybrid system of coupled ordinary and partial differential equations. The first approximation scheme is based upon an abstract semigroup formulation of the state equation while a weak/variational form is the basis for the second. Cubic spline based subspaces together with a Rayleigh-Ritz-Galerkin approach were used to construct sequences of easily solved finite dimensional approximating identification problems. Convergence results are briefly discussed and a numerical example demonstrating the feasibility of the schemes and exhibiting their relative performance for purposes of comparison is provided.

  14. Development of approximate method to analyze the characteristics of latent heat thermal energy storage system

    SciTech Connect

    Saitoh, T.S.; Hoshi, Akira

    1999-07-01

    numerical methods (e.g. Saitoh and Kato, 1994). In addition, close-contact melting heat transfer characteristics including melt flow in the liquid film under inner wall temperature distribution were analyzed and simple approximate equations were already presented by Saitoh and Hoshi (1997). In this paper, the authors will propose an analytical solution on combined close-contact and natural convection melting in horizontal cylindrical and spherical capsules, which is useful for the practical capsule bed LHTES system.

  15. An integer order approximation method based on stability boundary locus for fractional order derivative/integrator operators.

    PubMed

    Deniz, Furkan Nur; Alagoz, Baris Baykant; Tan, Nusret; Atherton, Derek P

    2016-05-01

    This paper introduces an integer order approximation method for numerical implementation of fractional order derivative/integrator operators in control systems. The proposed method is based on fitting the stability boundary locus (SBL) of fractional order derivative/integrator operators and SBL of integer order transfer functions. SBL defines a boundary in the parametric design plane of controller, which separates stable and unstable regions of a feedback control system and SBL analysis is mainly employed to graphically indicate the choice of controller parameters which result in stable operation of the feedback systems. This study reveals that the SBL curves of fractional order operators can be matched with integer order models in a limited frequency range. SBL fitting method provides straightforward solutions to obtain an integer order model approximation of fractional order operators and systems according to matching points from SBL of fractional order systems in desired frequency ranges. Thus, the proposed method can effectively deal with stability preservation problems of approximate models. Illustrative examples are given to show performance of the proposed method and results are compared with the well-known approximation methods developed for fractional order systems. The integer-order approximate modeling of fractional order PID controllers is also illustrated for control applications. PMID:26876378

  16. Stochastic Approximation Methods for Latent Regression Item Response Models. Research Report. ETS RR-09-09

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2009-01-01

    This paper presents an application of a stochastic approximation EM-algorithm using a Metropolis-Hastings sampler to estimate the parameters of an item response latent regression model. Latent regression models are extensions of item response theory (IRT) to a 2-level latent variable model in which covariates serve as predictors of the…

  17. An Alternating Least Squares Method for the Weighted Approximation of a Symmetric Matrix.

    ERIC Educational Resources Information Center

    ten Berge, Jos M. F.; Kiers, Henk A. L.

    1993-01-01

    R. A. Bailey and J. C. Gower explored approximating a symmetric matrix "B" by another, "C," in the least squares sense when the squared discrepancies for diagonal elements receive specific nonunit weights. A solution is proposed where "C" is constrained to be positive semidefinite and of a fixed rank. (SLD)

  18. Interfacing relativistic and nonrelativistic methods. III. Atomic 4-spinor expansions and integral approximations

    NASA Astrophysics Data System (ADS)

    Dyall, Kenneth G.; Enevoldsen, Thomas

    1999-12-01

    Two approximations to the normalized elimination of the small component are presented which enable the work of a relativistic calculation to be substantially reduced. The first involves fixing the ratio of the large and small components in atomic calculations, which corresponds to a basis set expansion in terms of positive energy atomic 4-spinors. The second involves the definition of a local, i.e., center-dependent, fine structure constant, which has the effect of making atoms with α=0 nonrelativistic. A series of test calculations on a variety of molecules and properties indicates that the errors incurred in the first approximation are negligible. In the second approximation, the errors are dependent on the property, the chemical environment and the atomic number. For the second period elements the errors in the approximation are for chemical purposes negligible. In the third period this is true for many properties, but for some, such as ligand-metal binding energies, there are discrepancies which may be a cause for concern in more accurate calculations. Beyond the third period it is usually necessary to treat atoms relativistically.

  19. The method of local linear approximation in the theory of nonlinear functional-differential equations

    SciTech Connect

    Slyusarchuk, Vasilii E

    2010-10-06

    Conditions for the existence of solutions to the nonlinear functional-differential equation (d{sup m}x(t))/dt{sup m} + (fx)(t)=h(t), t element of R in the space of functions bounded on the axes are obtained by using local linear approximation to the operator F. Bibliography: 21 items.

  20. Closure to new results for an approximate method for calculating two-dimensional furrow infiltration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a discussion paper, Ebrahimian and Noury (2015) raised several concerns about an approximate solution to the two-dimensional Richards equation presented by Bautista et al (2014). The solution is based on a procedure originally proposed by Warrick et al. (2007). Such a solution is of practical i...

  1. Insights on the local density approximation plasma polarization shift as provided by the optimum potential method

    SciTech Connect

    Wilson, B.; Liberman, D.A.

    1995-01-18

    The plasma polarization shift computed with a Local Density Functional model of an ion-sphere model is compared with results calculated using an optimum central field effective exchange potential. Indications are that the bulk of the shift is an artifact of the approximate exchange functional describing the interaction between bound and continuum orbitals in the LDA.

  2. Approximate method for calculating the radiation from a moving charge in the presence of a complex object.

    PubMed

    Belonogaya, Ekaterina S; Tyukhtin, Andrey V; Galyamin, Sergey N

    2013-04-01

    An approximate method for calculating the radiation from a moving charge in the presence of a dielectric object is developed. The method is composed of two steps. The first step is calculation of the field in the medium without considering the external boundaries of the object, and the second step is an approximate (ray-optical) calculation of the wave propagation outside the object. As a test problem, we consider the case of a charge crossing a dielectric plate. Computations of the field are performed using exact and approximate methods. It is shown that the results agree well. Additionally, we apply the method under consideration to the case of a cone-shaped object with a vacuum channel. The radiation energy spectral density as a function of the location of the observation point and the problem's parameters is given. In particular, the convergent radiation effect is described. PMID:23679539

  3. Approaching Phosphorescence Lifetimes in Solution: The Two-Component Polarizable-Embedding Approximate Coupled-Cluster Method.

    PubMed

    Krause, Katharina; Bauer, Mirko; Klopper, Wim

    2016-06-14

    Theoretical description of phosphorescence lifetimes in the condensed phase requires a method that takes into account both spin-orbit coupling and solvent-solute interactions. To obtain such a method, we have coupled our recently developed two-component coupled-cluster method with singles and approximated doubles to a polarizable environment. With this new method, we investigate how different solvents effect the electronic phosphorescence energies and lifetimes of 4H-pyran-4-thione. PMID:27158835

  4. A Diffusion Approximation and Numerical Methods for Adaptive Neuron Models with Stochastic Inputs.

    PubMed

    Rosenbaum, Robert

    2016-01-01

    Characterizing the spiking statistics of neurons receiving noisy synaptic input is a central problem in computational neuroscience. Monte Carlo approaches to this problem are computationally expensive and often fail to provide mechanistic insight. Thus, the field has seen the development of mathematical and numerical approaches, often relying on a Fokker-Planck formalism. These approaches force a compromise between biological realism, accuracy and computational efficiency. In this article we develop an extension of existing diffusion approximations to more accurately approximate the response of neurons with adaptation currents and noisy synaptic currents. The implementation refines existing numerical schemes for solving the associated Fokker-Planck equations to improve computationally efficiency and accuracy. Computer code implementing the developed algorithms is made available to the public. PMID:27148036

  5. A Diffusion Approximation and Numerical Methods for Adaptive Neuron Models with Stochastic Inputs

    PubMed Central

    Rosenbaum, Robert

    2016-01-01

    Characterizing the spiking statistics of neurons receiving noisy synaptic input is a central problem in computational neuroscience. Monte Carlo approaches to this problem are computationally expensive and often fail to provide mechanistic insight. Thus, the field has seen the development of mathematical and numerical approaches, often relying on a Fokker-Planck formalism. These approaches force a compromise between biological realism, accuracy and computational efficiency. In this article we develop an extension of existing diffusion approximations to more accurately approximate the response of neurons with adaptation currents and noisy synaptic currents. The implementation refines existing numerical schemes for solving the associated Fokker-Planck equations to improve computationally efficiency and accuracy. Computer code implementing the developed algorithms is made available to the public. PMID:27148036

  6. Vibration suppression with approximate finite dimensional compensators for distributed systems: Computational methods and experimental results

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, Ralph C.; Wang, Yun

    1994-01-01

    Based on a distributed parameter model for vibrations, an approximate finite dimensional dynamic compensator is designed to suppress vibrations (multiple modes with a broad band of frequencies) of a circular plate with Kelvin-Voigt damping and clamped boundary conditions. The control is realized via piezoceramic patches bonded to the plate and is calculated from information available from several pointwise observed state variables. Examples from computational studies as well as use in laboratory experiments are presented to demonstrate the effectiveness of this design.

  7. The Investigation of Optimal Discrete Approximations for Real Time Flight Simulations

    NASA Technical Reports Server (NTRS)

    Parrish, E. A.; Mcvey, E. S.; Cook, G.; Henderson, K. C.

    1976-01-01

    The results are presented of an investigation of discrete approximations for real time flight simulation. Major topics discussed include: (1) consideration of the particular problem of approximation of continuous autopilots by digital autopilots; (2) use of Bode plots and synthesis of transfer functions by asymptotic fits in a warped frequency domain; (3) an investigation of the various substitution formulas, including the effects of nonlinearities; (4) use of pade approximation to the solution of the matrix exponential arising from the discrete state equations; and (5) an analytical integration of the state equation using interpolated input.

  8. Approximation methods for the solution of inverse problems in lake and sea sediment core analysis

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1985-01-01

    A theoretical model employing one-dimensional (depth) transport equations to describe vertical redistribution of ocean-floor and lake-floor sediment (particulates, volcanic ash, microtektites, or radioactive tracers) by episodic and nonepisodic events including bioturbation is developed analytically and demonstrated. The principles underlying the model are explained; the model equations are derived; the inverse problem of identifying the depth-dependent bioturbation coefficient is addressed; two approximation theorems are presented; and numerical results for two sample problems are presented graphically. It is suggested that compatification, porosity effects, and depth-dependent sedimentation be taken into account when formulating future models.

  9. Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrodinger equations

    SciTech Connect

    Liang, Xiao; Khaliq, Abdul Q. M.; Xing, Yulong

    2015-01-23

    In this paper, we study a local discontinuous Galerkin method combined with fourth order exponential time differencing Runge-Kutta time discretization and a fourth order conservative method for solving the nonlinear Schrödinger equations. Based on different choices of numerical fluxes, we propose both energy-conserving and energy-dissipative local discontinuous Galerkin methods, and have proven the error estimates for the semi-discrete methods applied to linear Schrödinger equation. The numerical methods are proven to be highly efficient and stable for long-range soliton computations. Finally, extensive numerical examples are provided to illustrate the accuracy, efficiency and reliability of the proposed methods.

  10. A simple approximate method for obtaining spanwise lift distributions over swept wings

    NASA Technical Reports Server (NTRS)

    Diederich, Franklin W

    1948-01-01

    It is shown how Schrenk's empirical method of estimating the lift distribution over straight wings can be adapted to swept wings by replacing the elliptical distribution by a new "ideal" distribution which varies with sweep.The application of the method is discussed in detail and several comparisons are made to show the agreement of the proposed method with more rigorous ones. It is shown how first-order compressibility corrections applicable to subcritical speeds may be included in this method.

  11. A multistage differential transformation method for approximate solution of Hantavirus infection model

    NASA Astrophysics Data System (ADS)

    Gökdoğan, Ahmet; Merdan, Mehmet; Yildirim, Ahmet

    2012-01-01

    The goal of this study is presented a reliable algorithm based on the standard differential transformation method (DTM), which is called the multi-stage differential transformation method (MsDTM) for solving Hantavirus infection model. The results obtanied by using MsDTM are compared to those obtained by using the Runge-Kutta method (R-K-method). The proposed technique is a hopeful tool to solving for a long time intervals in this kind of systems.

  12. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions

    NASA Astrophysics Data System (ADS)

    Bisetti, Fabrizio

    2012-06-01

    Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components.

  13. Introducing AN Interpolation Method to Efficiently Implement AN Approximate Maximum Likelihood Estimator for the Hurst Exponent

    NASA Astrophysics Data System (ADS)

    Chang, Yen-Ching

    2015-10-01

    The efficiency and accuracy of estimating the Hurst exponent have been two inevitable considerations. Recently, an efficient implementation of the maximum likelihood estimator (MLE) (simply called the fast MLE) for the Hurst exponent was proposed based on a combination of the Levinson algorithm and Cholesky decomposition, and furthermore the fast MLE has also considered all four possible cases, including known mean, unknown mean, known variance, and unknown variance. In this paper, four cases of an approximate MLE (AMLE) were obtained based on two approximations of the logarithmic determinant and the inverse of a covariance matrix. The computational cost of the AMLE is much lower than that of the MLE, but a little higher than that of the fast MLE. To raise the computational efficiency of the proposed AMLE, a required power spectral density (PSD) was indirectly calculated by interpolating two suitable PSDs chosen from a set of established PSDs. Experimental results show that the AMLE through interpolation (simply called the interpolating AMLE) can speed up computation. The computational speed of the interpolating AMLE is on average over 24 times quicker than that of the fast MLE while remaining the accuracy very close to that of the MLE or the fast MLE.

  14. Newton's method applied to finite-difference approximations for the steady-state compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Bailey, Harry E.; Beam, Richard M.

    1991-01-01

    Finite-difference approximations for steady-state compressible Navier-Stokes equations, whose two spatial dimensions are written in generalized curvilinear coordinates and strong conservation-law form, are presently solved by means of Newton's method in order to obtain a lifting-airfoil flow field under subsonic and transonnic conditions. In addition to ascertaining the computational requirements of an initial guess ensuring convergence and the degree of computational efficiency obtainable via the approximate Newton method's freezing of the Jacobian matrices, attention is given to the need for auxiliary methods assessing the temporal stability of steady-state solutions. It is demonstrated that nonunique solutions of the finite-difference equations are obtainable by Newton's method in conjunction with a continuation method.

  15. A summary of methods for approximating salt creep and disposal room closure in numerical models of multiphase flow

    SciTech Connect

    Freeze, G.A.; Larson, K.W.; Davies, P.B.

    1995-10-01

    Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time.

  16. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    SciTech Connect

    Kim, S.

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  17. Method of adiabatic modes in research of smoothly irregular integrated optical waveguides: zero approximation

    SciTech Connect

    Egorov, A A; Sevast'yanov, L A; Sevast'yanov, A L

    2014-02-28

    We consider the application of the method of adiabatic waveguide modes for calculating the propagation of electromagnetic radiation in three-dimensional (3D) irregular integrated optical waveguides. The method of adiabatic modes takes into account a three-dimensional distribution of quasi-waveguide modes and explicit ('inclined') tangential boundary conditions. The possibilities of the method are demonstrated on the example of numerical research of two major elements of integrated optics: a waveguide of 'horn' type and a thin-film generalised waveguide Luneburg lens by the methods of adiabatic modes and comparative waveguides. (integral optical waveguides)

  18. Two-stream approximations to radiative transfer in planetary atmospheres - A unified description of existing methods and a new improvement

    NASA Technical Reports Server (NTRS)

    Meador, W. E.; Weaver, W. R.

    1980-01-01

    Existing two-stream approximations to radiative transfer theory for particulate media are shown to be represented by identical forms of coupled differential equations if the intensity is replaced by integrals of the intensity over hemispheres. One set of solutions thus suffices for all methods and provides convenient analytical comparisons. The equations also suggest modifications of the standard techniques so as to duplicate exact solutions for thin atmospheres and thus permit accurate determinations of the effects of typical aerosol layers. Numerical results for the plane albedos of plane-parallel atmospheres are given for conventional and modified Eddington approximations, conventional and modified two-point quadrature schemes, the hemispheric-constant method and the delta-function method, all for comparison with accurate discrete-ordinate solutions. A new two-stream approximation is introduced that reduces to the modified Eddington approximation in the limit of isotropic phase functions and to the exact solution in the limit of extreme anisotropic scattering. Comparisons of plane albedos and transmittances show the new method to be generally superior over a wide range of atmospheric conditions (including cloud and aerosol layers), especially in the case of nonconservative scattering.

  19. A new analytic approximation method for the non-zero angular momentum states of the Hulthén potential

    NASA Astrophysics Data System (ADS)

    Dutt, Ranabir; Mukherji, Uma

    1982-08-01

    We propose a new approximation scheme to obtain analytic expressions for the bond-state energies and eigenfunctions for any arbitrary bound nl-state of the Hulthén potential. The predicted energies Enl are in excellent agreement with the perturbative results of Lai and Lin. The scope for an extension of the method to the continuum states is also discussed.

  20. A 3D finite element ALE method using an approximate Riemann solution

    DOE PAGESBeta

    Chiravalle, V. P.; Morgan, N. R.

    2016-08-09

    Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less

  1. High order filtering methods for approximating hyberbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Lafon, F.; Osher, S.

    1990-01-01

    In the computation of discontinuous solutions of hyperbolic systems of conservation laws, the recently developed essentially non-oscillatory (ENO) schemes appear to be very useful. However, they are computationally costly compared to simple central difference methods. A filtering method which is developed uses simple central differencing of arbitrarily high order accuracy, except when a novel local test indicates the development of spurious oscillations. At these points, the full ENO apparatus is used, maintaining the high order of accuracy, but removing spurious oscillations. Numerical results indicate the success of the method. High order of accuracy was obtained in regions of smooth flow without spurious oscillations for a wide range of problems and a significant speed up of generally a factor of almost three over the full ENO method.

  2. Flux vector splitting and approximate Newton methods. [for solution of steady Euler equations

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.; Pulliam, T. H.

    1983-01-01

    In the present investigation, the basic approach is employed to view an iterative scheme as Newton's method or as a modified Newton's method. Attention is given to various modified Newton methods which can arise from differencing schemes for the Euler equations. Flux vector splitting is considered as the basic spatial differencing technique. This technique is based on the partition of a flux vector into groups which have certain properties. The Euler equations fluxes can be split into two groups, the first group having a flux Jacobian with all positive eigenvalues, and the second group having a flux Jacobian with all negative eigenvalues. Flux vector splitting based on a velocity-sound speed split is considered along with the use of numerical techniques to analyze nonlinear systems, and the steady Euler equations for quasi-one-dimensional flow in a nozzle. Results are given for steady flows with shocks.

  3. Iterative and direct methods employing distributed approximating functionals for the reconstruction of a potential energy surface from its sampled values

    NASA Astrophysics Data System (ADS)

    Szalay, Viktor

    1999-11-01

    The reconstruction of a function from knowing only its values on a finite set of grid points, that is the construction of an analytical approximation reproducing the function with good accuracy everywhere within the sampled volume, is an important problem in all branches of sciences. One such problem in chemical physics is the determination of an analytical representation of Born-Oppenheimer potential energy surfaces by ab initio calculations which give the value of the potential at a finite set of grid points in configuration space. This article describes the rudiments of iterative and direct methods of potential surface reconstruction. The major new results are the derivation, numerical demonstration, and interpretation of a reconstruction formula. The reconstruction formula derived approximates the unknown function, say V, by linear combination of functions obtained by discretizing the continuous distributed approximating functional (DAF) approximation of V over the grid of sampling. The simplest of contracted and ordinary Hermite-DAFs are shown to be sufficient for reconstruction. The linear combination coefficients can be obtained either iteratively or directly by finding the minimal norm least-squares solution of a linear system of equations. Several numerical examples of reconstructing functions of one and two variables, and very different shape are given. The examples demonstrate the robustness, high accuracy, as well as the caveats of the proposed method. As to the mathematical foundation of the method, it is shown that the reconstruction formula can be interpreted as, and in fact is, frame expansion. By recognizing the relevance of frames in determining analytical approximation to potential energy surfaces, an extremely rich and beautiful toolbox of mathematics has come to our disposal. Thus, the simple reconstruction method derived in this paper can be refined, extended, and improved in numerous ways.

  4. An approximate-reasoning-based method for screening flammable gas tanks

    SciTech Connect

    Eisenhawer, S.W.; Bott, T.F.; Smith, R.E.

    1998-03-01

    High-level waste (HLW) produces flammable gases as a result of radiolysis and thermal decomposition of organics. Under certain conditions, these gases can accumulate within the waste for extended periods and then be released quickly into the dome space of the storage tank. As part of the effort to reduce the safety concerns associated with flammable gas in HLW tanks at Hanford, a flammable gas watch list (FGWL) has been established. Inclusion on the FGWL is based on criteria intended to measure the risk associated with the presence of flammable gas. It is important that all high-risk tanks be identified with high confidence so that they may be controlled. Conversely, to minimize operational complexity, the number of tanks on the watchlist should be reduced as near to the true number of flammable risk tanks as the current state of knowledge will support. This report presents an alternative to existing approaches for FGWL screening based on the theory of approximate reasoning (AR) (Zadeh 1976). The AR-based model emulates the inference process used by an expert when asked to make an evaluation. The FGWL model described here was exercised by performing two evaluations. (1) A complete tank evaluation where the entire algorithm is used. This was done for two tanks, U-106 and AW-104. U-106 is a single shell tank with large sludge and saltcake layers. AW-104 is a double shell tank with over one million gallons of supernate. Both of these tanks had failed the screening performed by Hodgson et al. (2) Partial evaluations using a submodule for the predictor likelihood for all of the tanks on the FGWL that had been flagged previously by Whitney (1995).

  5. High order filtering methods for approximating hyperbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Lafon, F.; Osher, S.

    1991-01-01

    The essentially nonoscillatory (ENO) schemes, while potentially useful in the computation of discontinuous solutions of hyperbolic conservation-law systems, are computationally costly relative to simple central-difference methods. A filtering technique is presented which employs central differencing of arbitrarily high-order accuracy except where a local test detects the presence of spurious oscillations and calls upon the full ENO apparatus to remove them. A factor-of-three speedup is thus obtained over the full-ENO method for a wide range of problems, with high-order accuracy in regions of smooth flow.

  6. Spectral approximation methods and error estimates for Caputo fractional derivative with applications to initial-value problems

    NASA Astrophysics Data System (ADS)

    Duan, Beiping; Zheng, Zhoushun; Cao, Wen

    2016-08-01

    In this paper, we revisit two spectral approximations, including truncated approximation and interpolation for Caputo fractional derivative. The two approaches have been studied to approximate Riemann-Liouville (R-L) fractional derivative by Chen et al. and Zayernouri et al. respectively in their most recent work. For truncated approximation the reconsideration partly arises from the difference between fractional derivative in R-L sense and Caputo sense: Caputo fractional derivative requires higher regularity of the unknown than R-L version. Another reason for the reconsideration is that we distinguish the differential order of the unknown with the index of Jacobi polynomials, which is not presented in the previous work. Also we provide a way to choose the index when facing multi-order problems. By using generalized Hardy's inequality, the gap between the weighted Sobolev space involving Caputo fractional derivative and the classical weighted space is bridged, then the optimal projection error is derived in the non-uniformly Jacobi-weighted Sobolev space and the maximum absolute error is presented as well. For the interpolation, analysis of interpolation error was not given in their work. In this paper we build the interpolation error in non-uniformly Jacobi-weighted Sobolev space by constructing fractional inverse inequality. With combining collocation method, the approximation technique is applied to solve fractional initial-value problems (FIVPs). Numerical examples are also provided to illustrate the effectiveness of this algorithm.

  7. A Discontinuous Galerkin Method for Parabolic Problems with Modified hp-Finite Element Approximation Technique

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki; Bey, Kim S.; Hou, Gene J. W.

    2004-01-01

    A recent paper is generalized to a case where the spatial region is taken in R(sup 3). The region is assumed to be a thin body, such as a panel on the wing or fuselage of an aerospace vehicle. The traditional h- as well as hp-finite element methods are applied to the surface defined in the x - y variables, while, through the thickness, the technique of the p-element is employed. Time and spatial discretization scheme based upon an assumption of certain weak singularity of double vertical line u(sub t) double vertical line 2, is used to derive an optimal a priori error estimate for the current method.

  8. Window-based method for approximating the Hausdorff in three-dimensional range imagery

    DOEpatents

    Koch, Mark W.

    2009-06-02

    One approach to pattern recognition is to use a template from a database of objects and match it to a probe image containing the unknown. Accordingly, the Hausdorff distance can be used to measure the similarity of two sets of points. In particular, the Hausdorff can measure the goodness of a match in the presence of occlusion, clutter, and noise. However, existing 3D algorithms for calculating the Hausdorff are computationally intensive, making them impractical for pattern recognition that requires scanning of large databases. The present invention is directed to a new method that can efficiently, in time and memory, compute the Hausdorff for 3D range imagery. The method uses a window-based approach.

  9. Integral approximants for functions of higher monodromic dimension

    SciTech Connect

    Baker, G.A. Jr.

    1987-01-01

    In addition to the description of multiform, locally analytic functions as covering a many sheeted version of the complex plane, Riemann also introduced the notion of considering them as describing a space whose ''monodromic'' dimension is the number of linearly independent coverings by the monogenic analytic function at each point of the complex plane. I suggest that this latter concept is natural for integral approximants (sub-class of Hermite-Pade approximants) and discuss results for both ''horizontal'' and ''diagonal'' sequences of approximants. Some theorems are now available in both cases and make clear the natural domain of convergence of the horizontal sequences is a disk centered on the origin and that of the diagonal sequences is a suitably cut complex-plane together with its identically cut pendant Riemann sheets. Some numerical examples have also been computed.

  10. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements

    PubMed Central

    2007-01-01

    Several modifications that have been made to the NDDO core-core interaction term and to the method of parameter optimization are described. These changes have resulted in a more complete parameter optimization, called PM6, which has, in turn, allowed 70 elements to be parameterized. The average unsigned error (AUE) between calculated and reference heats of formation for 4,492 species was 8.0 kcal mol−1. For the subset of 1,373 compounds involving only the elements H, C, N, O, F, P, S, Cl, and Br, the PM6 AUE was 4.4 kcal mol−1. The equivalent AUE for other methods were: RM1: 5.0, B3LYP 6–31G*: 5.2, PM5: 5.7, PM3: 6.3, HF 6–31G*: 7.4, and AM1: 10.0 kcal mol−1. Several long-standing faults in AM1 and PM3 have been corrected and significant improvements have been made in the prediction of geometries. Figure Calculated structure of the complex ion [Ta6Cl12]2+ (footnote): Reference value in parenthesis Electronic supplementary material The online version of this article (doi:10.1007/s00894-007-0233-4) contains supplementary material, which is available to authorized users. PMID:17828561