Science.gov

Sample records for pah degradation ability

  1. Sphingomonas from petroleum-contaminated soils in Shenfu, China and their PAHs degradation abilities.

    PubMed

    Zhou, Lisha; Li, Hui; Zhang, Ying; Han, Siqin; Xu, Hui

    2016-01-01

    Members of the Sphingomonas genus are often isolated from petroleum-contaminated soils due to their unique abilities to degrade polycyclic aromatic hydrocarbons (PAHs), which are important for in situ bioremediation. In this study, a combined phenotypic and genotypic approach using streptomycin-containing medium and Sphingomonas-specific PCR was developed to isolate and identify culturable Sphingomonas strains present in petroleum-contaminated soils in the Shenfu wastewater irrigation zone. Of the 15 soil samples examined, 12 soils yielded yellow streptomycin-resistant colonies. The largest number of yellow colony-forming units (CFUs) could reach 10(5)CFUsg(-1)soil. The number of yellow CFUs had a significant positive correlation (p<0.05) with the ratio of PAHs to total petroleum hydrocarbons (TPH), indicating that Sphingomonas may play a key role in degrading the PAH fraction of the petroleum contaminants at this site. Sixty yellow colonies were selected randomly and analyzed by colony PCR using Sphingomonas-specific primers, out of which 48 isolates had PCR-positive signals. The 48 positive amplicons generated 8 distinct restriction fragment length polymorphism (RFLP) patterns, and 7 out of 8 phylotypes were identified as Sphingomonas by 16S rRNA gene sequencing of the representative strains. Within these 7 Sphingomonas strains, 6 strains were capable of using fluorene as the sole carbon source, while 2 strains were phenanthrene-degrading Sphingomonas. To the best of our knowledge, this is the first report to evaluate the relationship between PAHs contamination levels and culturable Sphingomonas in environmental samples. PMID:26991271

  2. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria.

    PubMed

    Zhu, Xuezhu; Ni, Xue; Waigi, Michael Gatheru; Liu, Juan; Sun, Kai; Gao, Yanzheng

    2016-01-01

    Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs) in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P₁ (Stenotrophomonas sp.) and P₃ (Pseudomonas sp.), which degraded more than 90% of phenanthrene (PHE) within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP), PHE, fluorene (FLR), pyrene (PYR), and benzo(a)pyrene (B(a)P) as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P₁ degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(a)P, and strain P₃ degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(a)P. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days). Compared with strain P₁, strain P₃ has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria. PMID:27517944

  3. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria

    PubMed Central

    Zhu, Xuezhu; Ni, Xue; Waigi, Michael Gatheru; Liu, Juan; Sun, Kai; Gao, Yanzheng

    2016-01-01

    Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs) in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P1 (Stenotrophomonas sp.) and P3 (Pseudomonas sp.), which degraded more than 90% of phenanthrene (PHE) within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP), PHE, fluorene (FLR), pyrene (PYR), and benzo(a)pyrene (B(a)P) as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P1 degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(a)P, and strain P3 degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(a)P. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days). Compared with strain P1, strain P3 has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria. PMID:27517944

  4. Induction of PAH degradation in a phenanthrene-degrading pseudomonad

    SciTech Connect

    Stringfellow, W.T.; Chen, S.H.; Aitken, M.D.

    1995-12-31

    Recent evidence suggests that different polycyclic aromatic hydrocarbon (PAH) substrates are metabolized by common enzymes in PAH-degrading bacteria, implying that inducers for low-molecular-weight PAH degradation may coinduce for the metabolism of higher-molecular-weight compounds. The authors have tested this hypothesis with a well-characterized PAH-degrading bacterium, Pseudomonas saccharophila P-15. Growth of P-15 on salicylate, a metabolite of phenanthrene degradation, and a known inducer for naphthalene degradation, induced the metabolism of both substrates. Several potential inducers were then tested for their effects on metabolism of the four-ring compounds pyrene and fluoranthene, neither of which is a growth substrate for P-15, but both of which can be metabolized by this organism. Incubation of P-15 in the presence of phenanthrene or salicylate induced the metabolism of pyrene and fluoranthene in resting-cell assays. Catechol, another intermediate of naphthalene and phenanthrene degradation, did not induce the metabolism of either compound and interfered with the inducing effect of salicylate. These results have implications for strategies designed to maintain PAH degradation in contaminated environments, particularly for compounds that are degraded slowly or are degraded only by nongrowth metabolism.

  5. STUDIES ON THE MICROBIAL ECOLOGY OF PAH DEGRADATION

    EPA Science Inventory

    Soils with known history of exposure to polycyclic aromatic hydrocarbons (PAHS) were collected from Norway, Germany and the United States and screened for the presence of PAH-degrading bacteria. urified PAH-degrading isolates were characterized by fatty acid profile analysis (GC-...

  6. Use of alternative growth substrates to enhance PAH degradation

    SciTech Connect

    Tittle, P.C.; Liu, Y.T.; Strand, S.E.; Stensel, H.D.

    1995-12-31

    Freshwater and saltwater polycyclic aromatic hydrocarbons (PAH)-degrading enrichments were developed from seed from a manufactured gas plant site and contaminated marine sediment, respectively. Both enrichments were able to maintain specific degradation rates of 3- and 4-ring PAHs after growth with salicylate or phthalate, which increased their biomass concentrations by a factor of 9 to 10. Phthalate was a more effective alternative substrate than was salicylate. Specific degradation rates of phenanthrene and anthracene by the freshwater enrichment were increased after growth with phthalate. Growth with phthalate increased the specific degradation rates of phenanthrene and pyrene by the saltwater enrichment.

  7. Influence of PAHs among other coastal environmental variables on total and PAH-degrading bacterial communities.

    PubMed

    Sauret, Caroline; Tedetti, Marc; Guigue, Catherine; Dumas, Chloé; Lami, Raphaël; Pujo-Pay, Mireille; Conan, Pascal; Goutx, Madeleine; Ghiglione, Jean-François

    2016-03-01

    We evaluated the relative impact of anthropogenic polycyclic aromatic hydrocarbons (PAHs) among biogeochemical variables on total, metabolically active, and PAH bacterial communities in summer and winter in surface microlayer (SML) and subsurface seawaters (SSW) across short transects along the NW Mediterranean coast from three harbors, one wastewater effluent, and one nearshore observatory reference site. At both seasons, significant correlations were found between dissolved total PAH concentrations and PAH-degrading bacteria that formed a gradient from the shore to nearshore waters. Accumulation of PAH degraders was particularly high in the SML, where PAHs accumulated. Harbors and wastewater outfalls influenced drastically and in a different way the total and active bacterial community structure, but they only impacted the communities from the nearshore zone (<2 km from the shore). By using direct multivariate statistical analysis, we confirmed the significant effect of PAH concentrations on the spatial and temporal dynamic of total and active communities in this area, but this effect was putted in perspective by the importance of other biogeochemical variables. PMID:26122564

  8. Photoinduced degradation of PAHs in the presence of ozone

    SciTech Connect

    Schutt, W.S.; Li, Y.; Sigman, M.E. |

    1995-12-31

    Polycyclic Aromatic Hydrocarbons (PAH) are formed from both anthropogenic and natural sources. In order to assess the environmental impact caused by the surface-adsorbed PAHs, the chemical lifetimes of these compounds in the atmosphere must be determined. Although ozone is known to be a primary reactant in the chemical transformation of surface-adsorbed PAHs in the atmosphere, the kinetics of these reactions have not been investigated in detail. In addition to the experimental difficulties that arise in using an oxygen-ozone stream while monitoring the PAH with fluorescence, complications in analyzing the kinetic mechanism also exist. It is difficult to determine whether the ozone or oxygen initially quenches the excited state of PAH. Ozone could enhance the degradation rate by simply reacting with a product derived from the excited state of PAH and oxygen. The focus of this study is to demonstrate the use of fluorescence spectroscopy in monitoring the degradation of PAH adsorbed on a three dimensional particle in the presence of gaseous ozone free from the interference of oxygen. More specifically, the experimental procedure will involve the generation of an ozone-nitrogen gas stream to be used in the investigation of dark and photochemical reactions between ozone and naphthalene. The absence of oxygen in the system will allow for the accurate monitoring of PAH fluorescence decay due solely to ozone quenching. It will also aid in the determination of the reaction mechanism. This is the first time that the direct interaction of ozone with an excited state of PAH has been demonstrated.

  9. Strong Impact on the Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Community of a PAH-Polluted Soil but Marginal Effect on PAH Degradation when Priming with Bioremediated Soil Dominated by Mycobacteria▿

    PubMed Central

    Johnsen, Anders R.; Schmidt, Stine; Hybholt, Trine K.; Henriksen, Sidsel; Jacobsen, Carsten S.; Andersen, Ole

    2007-01-01

    Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificially polluted with PAHs and primed with bioremediated soil showed a fast, 100- to 1,000-fold increase in numbers of culturable phenanthrene-, pyrene-, and fluoranthene degraders and a 160-fold increase in copy numbers of the mycobacterial PAH dioxygenase gene pdo1. A nonpolluted microcosm primed with bioremediated soil showed a high rate of survival of the introduced degrader community during the 112 days of incubation. A nonprimed control microcosm containing pristine soil artificially polluted with PAHs showed only small increases in the numbers of culturable PAH degraders and no pdo1 genes. Initial PAH degradation rates were highest in the primed microcosm, but later, the degradation rates were comparable in primed and nonprimed soil. Thus, the proliferation and persistence of the introduced, soil-adapted degraders had only a marginal effect on PAH degradation. Given the small effect of priming with bioremediated soil and the likely presence of PAH degraders in almost all PAH-contaminated soils, it seems questionable to prime PAH-contaminated soil with bioremediated soil as a means of large-scale soil bioremediation. PMID:17209064

  10. Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacterium spp. and the degradation in soil.

    PubMed

    Zeng, Jun; Lin, Xiangui; Zhang, Jing; Li, Xuanzhen

    2010-11-15

    The goal of this study was to isolate PAHs degraders that can utilize PAHs associated with soil particulates and investigate the biodegradation of PAHs on agar plate, in liquid culture and soil. Two Mycobacterium strains (NJS-1 and NJS-P) were isolated from PAHs-contaminated farmland soil using enrichment based on soil slurry. The isolates could degrade five test PAHs including pyrene, phenanthrene, fluoranthene, anthracene and benzo[a]pyrene on plate, but showed different effects in liquid culture, especially for fluoranthene. Isolate NJS-1 was capable of utilizing benzo[a]pyrene as a sole carbon and energy source, and an enhanced degradation was observed when pyrene was supplied as cometabolic substrate. Reintroduction of the isolates into sterile contaminated soil resulted in a significant removal of aged pyrene and fluoranthene (over 40%) in 2-months incubation. In pyrene-spiked soil, the degradation of pyrene and fluoranthene increased to 90% and 50%, respectively. Comparing PAHs degradation on plate, in liquid culture and soil, we can conclude that there was corresponding degradation in different test systems. In addition, the degradation of aged PAHs in soil suggested the potential application of two isolates in further bioremediation. PMID:20724073

  11. Correlations between PAH bioavailability, degrading bacteria, and soil characteristics during PAH biodegradation in five diffusely contaminated dissimilar soils.

    PubMed

    Crampon, M; Bureau, F; Akpa-Vinceslas, M; Bodilis, J; Machour, N; Le Derf, F; Portet-Koltalo, F

    2014-01-01

    The natural biodegradation of seven polycyclic aromatic hydrocarbons (PAHs) by native microorganisms was studied in five soils from Normandy (France) from diffusely polluted areas, which can also pose a problem in terms of surfaces and amounts of contaminated soils. Bioavailability tests using cyclodextrin-based extractions were performed. The natural degradation of low molecular weight (LMW) PAHs was not strongly correlated to their bioavailability due to their sorption to geosorbents. Conversely, the very low degradation of high molecular weight (HMW) PAHs was partly correlated to their poor availability, due to their sorption on complexes of organic matter and kaolinites or smectites. A principal component analysis allowed us to distinguish between the respective degradation behaviors of LMW and HMW PAHs. LMW PAHs were degraded in less than 2-3 months and were strongly influenced by the relative percentage of phenanthrene-degrading bacteria over total bacteria in soils. HMW PAHs were not significantly degraded, not only because they were less bioavailable but also because of a lack of degrading microorganisms. Benzo[a]pyrene stood apart since it was partly degraded in acidic soils, probably because of a catabolic cooperation between bacteria and fungi. PMID:24671402

  12. Cells on fibers to degrade PAH and upgrade coal

    SciTech Connect

    Clyde, R.

    1997-12-31

    There are over 2000 sites contaminated with PAH`s from coal burning plants. White rot fungus degrades phenanthrene and anthracene, but the fungus needs air to grow. When grown on old cardboard boxes and buried, air is entrapped in the corrugations for growth of the fungus. When holes are put in the valleys of the corrugations and rotated in a half full reactor, drops are formed. Mass transfer to drops is much faster than to a flat surface, as described in Patent 5,256,570, so the fungus grows faster. Low rank coal can be upgraded to more valuable products with the fungus, say some Australians, but the problem is supplying oxygen. Celite can be entrapped in the fibers to ferment coal derived synthesis gas. The paper describes these processes.

  13. Composition and morphology characterization of exopolymeric substances produced by the PAH-degrading fungus of Mucor mucedo.

    PubMed

    Jia, Chunyun; Li, Xiaojun; Allinson, Graeme; Liu, Changfeng; Gong, Zongqiang

    2016-05-01

    To explore the role of exopolymeric substances (EPS) in the process of polycyclic aromatic hydrocarbons (PAH) biodegradation, the characteristics of EPS isolated from a PAH-degrading fungus were investigated firstly by spectrometric determination, microscopic observation, Fourier transform-infrared spectroscopy (FT-IR), and three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM), and then the PAH-degrading ability of isolated EPS was evaluated. The EPS compositions and morphology varied significantly with the extraction methods. EPS were mainly composed of proteins, carbohydrate, and humic-like substances, and the cation exchange resin (CER)-extracted EPS were granular while other EPS samples were all powders. Heating was the most effective treatment method, followed by the CER, centrifugation, and ultrasonication methods. However, 3D-EEM data demonstrated that heating treatment makes the mycelia lyse the most. Overall, therefore, the CER was the best EPS extraction method for Mucor mucedo (M. mucedo). The PAH degradation results indicated that 87 % of pyrene and 81 % of benzo[a]pyrene (B[a]P) were removed by M. mucedo over 12 days and 9 % more pyrene and 7 % more B[a]P were reduced after CER-extracted EPS addition of 465 mg l(-1). The investigation of EPS characterization and EPS enhancing PAH biodegradation is the premise for further in-depth exploration of the role of EPS contribution to PAH biodegradation. PMID:26782320

  14. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review

    PubMed Central

    Ghosal, Debajyoti; Ghosh, Shreya; Dutta, Tapan K.; Ahn, Youngho

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed toward removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of PAHs. The main

  15. Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation.

    PubMed

    Chang, Yi-Tang; Lee, Jiunn-Fwu; Liu, Keng-Hua; Liao, Yi-Fen; Yang, Vivian

    2016-03-01

    Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation. PMID:25739840

  16. Photolysis degradation of polyaromatic hydrocarbons (PAHs) on surface sandy soil.

    PubMed

    El-Saeid, Mohamed H; Al-Turki, Ali M; Nadeem, Mahmoud E A; Hassanin, Ashraf S; Al-Wabel, Mohamed I

    2015-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are potent environmental pollutants, and some of them have been identified as carcinogenic and mutagenic. To advance the knowledge of the environmental fate of PAHs, we systematically investigated the influence of different UV wavelengths irradiation on photolysis of PAHs on sandy soil under tow wavelengths (254 and 306 nm) UV irradiation for six PAHs. In addition, kinetic model and influence of several parameters on PAHs photolysis have been studied. The results obtained indicated that UV radiation with a wavelength of 306 nm was more efficient in the photolysis of the polycyclic aromatic hydrocarbons. Our results showed that fluoranthene (Flt) was the fastest in decomposition, has the greatest value for the coefficient of photolysis (7.4 × 10(-3) h(-1)), and has less half-life, reaching 94 h when using a wavelength of 254 nm. The results indicated that the pyrene (Pyr) was more resistant to photolysis in comparison with indeno(1,2,3-cd) pyrene (IP) and fluoranthene (Flt). The results indicate that photolysis is a successful way to remediate the six studied PAHs compounds. PMID:25586619

  17. Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium.

    PubMed

    Zafra, German; Taylor, Todd D; Absalón, Angel E; Cortés-Espinosa, Diana V

    2016-11-15

    In this study, we used a taxonomic and functional metagenomic approach to analyze some of the effects (e.g. displacement, permanence, disappearance) produced between native microbiota and a previously constructed Polycyclic Aromatic Hydrocarbon (PAH)-degrading microbial consortium during the bioremediation process of a soil polluted with PAHs. Bioaugmentation with a fungal-bacterial consortium and biostimulation of native microbiota using corn stover as texturizer produced appreciable changes in the microbial diversity of polluted soils, shifting native microbial communities in favor of degrading specific populations. Functional metagenomics showed changes in gene abundance suggesting a bias towards aromatic hydrocarbon and intermediary degradation pathways, which greatly favored PAH mineralization. In contrast, pathways favoring the formation of toxic intermediates such as cytochrome P450-mediated reactions were found to be significantly reduced in bioaugmented soils. PAH biodegradation in soil using the microbial consortium was faster and reached higher degradation values (84% after 30 d) as a result of an increased co-metabolic degradation when compared with other mixed microbial consortia. The main differences between inoculated and non-inoculated soils were observed in aromatic ring-hydroxylating dioxygenases, laccase, protocatechuate, salicylate and benzoate-degrading enzyme genes. Based on our results, we propose that several concurrent metabolic pathways are taking place in soils during PAH degradation. PMID:27484946

  18. Biodegradation Ability and Catabolic Genes of Petroleum-Degrading Sphingomonas koreensis Strain ASU-06 Isolated from Egyptian Oily Soil

    PubMed Central

    Mostafa, Yasser M.; Shoreit, Ahmed

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are serious pollutants and health hazards. In this study, 15 PAHs-degrading bacteria were isolated from Egyptian oily soil. Among them, one Gram-negative strain (ASU-06) was selected and biodegradation ability and initial catabolic genes of petroleum compounds were investigated. Comparison of 16S rRNA gene sequence of strain ASU-06 to published sequences in GenBank database as well as phylogenetic analysis identified ASU-06 as Sphingomonas koreensis. Strain ASU-06 degraded 100, 99, 98, and 92.7% of 100 mg/L naphthalene, phenanthrene, anthracene, and pyrene within 15 days, respectively. When these PAHs present in a mixed form, the enhancement phenomenon appeared, particularly in the degradation of pyrene, whereas the degradation rate was 98.6% within the period. This is the first report showing the degradation of different PAHs by this species. PCR experiments with specific primers for catabolic genes alkB, alkB1, nahAc, C12O, and C23O suggested that ASU-06 might possess genes for aliphatic and PAHs degradation, while PAH-RHDαGP gene was not detected. Production of biosurfactants and increasing cell-surface hydrophobicity were investigated. GC/MS analysis of intermediate metabolites of studied PAHs concluded that this strain utilized these compounds via two main pathways, and phthalate was the major constant product that appeared in each day of the degradation period. PMID:25177681

  19. Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bai, X.; Sheng, H.; Jiao, L.; Zhou, H.; Shao, Z.

    2014-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants, which can be transferred to a long distance and tend to accumulation in marine sediment. However, PAHs distribution and natural bioattenuation is less known in open sea, especially in the Arctic Ocean. In this report, sediment samples were collected at four sites from the Chukchi Plateau to Makarov Basin in the summer of 2010. PAH composition and total concentrations were examined with GC-MS, we found that the concentrations of 16 EPA-priority PAHs varied from 2.0 to 41.6 ng g-1 dry weight in total and decreased with sediment depths and as well as from the southern to northern sites. Among the targeted PAHs, phenanthrene was relatively abundant in all sediments. To learn the diversity of bacteria involved in PAHs degradation in situ, the 16S rRNA gene of the total environmental DNA was analyzed with Illumina high throughput sequencing (IHTS). In all the sediments, occurred the potential degraders including Cycloclasticus, Pseudomonas, Halomonas, Pseudoalteromonas, Marinomonas, Bacillus, Dietzia, Colwellia, Acinetobacter, Alcanivorax, Salinisphaera and Shewanella, with Dietzia as the most abundant. Meanwhile on board, enrichment with PAHs was initiated and repeated transfer in laboratory to obtain the degrading consortia. Most above mentioned bacteria in addition to Hahella, Oleispira, Oceanobacter and Hyphomonas, occurred alternately as a predominant member in enrichment cultures from different sediments, as revealed with IHTS and PCR-DGGE. To reconfirm their role in PAH degradation, 40 different bacteria were isolated and characterized, among which Cycloclasticus and Pseudomonas showed the best degradation capability under low temperature. Taken together, PAHs and PAH-degrading bacteria were widespread in the deep-sea sediments of the Arctic Ocean. We propose that bacteria of Cycloclasticus, Pseudomonas, Pseudoalteromonas, Halomonas, Marinomonas and Dietzia may play the most important role

  20. Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bai, X.; Sheng, H.; Jiao, L.; Zhou, H.; Shao, Z.

    2015-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are common organic pollutants that can be transferred long distances and tend to accumulate in marine sediments. However, less is known regarding the distribution of PAHs and their natural bioattenuation in the open sea, especially the Arctic Ocean. In this report, sediment samples were collected at four sites from the Chukchi Plateau to the Makarov Basin in the summer of 2010. PAH compositions and total concentrations were examined with GC-MS. The concentrations of 16 EPA-priority PAHs varied from 2.0 to 41.6 ng g-1 dry weight and decreased with sediment depth and movement from the southern to the northern sites. Among the targeted PAHs, phenanthrene was relatively abundant in all sediments. The 16S rRNA gene of the total environmental DNA was analyzed with Illumina high-throughput sequencing (IHTS) to determine the diversity of bacteria involved in PAH degradation in situ. The potential degraders including Cycloclasticus, Pseudomonas, Halomonas, Pseudoalteromonas, Marinomonas, Bacillus, Dietzia, Colwellia, Acinetobacter, Alcanivorax, Salinisphaera and Shewanella, with Dietzia as the most abundant, occurred in all sediment samples. Meanwhile, enrichment with PAHs was initiated onboard and transferred to the laboratory for further enrichment and to obtain the degrading consortia. Most of the abovementioned bacteria in addition to Hahella, Oleispira, Oceanobacter and Hyphomonas occurred alternately as predominant members in the enrichment cultures from different sediments based on IHTS and PCR-DGGE analysis. To reconfirm their role in PAH degradation, 40 different bacteria were isolated and characterized, among which Cycloclasticus Pseudomonas showed the best degradation capability under low temperatures. Taken together, PAHs and PAH-degrading bacteria were widespread in the deep-sea sediments of the Arctic Ocean. We propose that bacteria of Cycloclasticus, Pseudomonas, Pseudoalteromonas, Halomonas, Marinomonas and Dietzia may

  1. PAHs in soils: Sorption versus degradation - elucidation of rate-limiting processes

    NASA Astrophysics Data System (ADS)

    Herklotz, Ilka; Gocht, Tilman; Grathwohl, Peter

    2010-05-01

    Polycyclic aromatic hydrocarbons (PAHs) belong to the class of persistent organic pollutants, and are of special interest due to their ubiquituous distribution in the environment at relatively high concentrations. Subsequent to their emmission into the environment through incomplete combustion processes of natural and anthropogenic sources (e.g. vulcano eruptions, forest fires, industry, traffic), PAHs can be transported over long distances. Following atmospheric deposition they accumulate in particular in top-soils and have been found to be stable over long periods of time (decades to centuries). Based on that this study targets on the elucidation of the long-term PAH-fate in top-soils by means of degradation experiments under well-controlled laboratory conditions with well mixed batch experiments at a water to solids ratio 10:1. From a rural site in the Black Forest Mountains, Germany, top-soil samples were taken, which contains approximately 7-8 mg Σ18 PAHs per kg soil. This soil was sieved through 2 mm to sort out stones, roots- and leaf-parts and homogenised afterwards. Within the first month of incubation a depletion of native PAHs were observed. However, an exhaustive sequential extraction using accelerated solvent extraction with 3 cycles of acteone and 4 cycles of toluene (100 bar pressure, 10 min static time, 100°C and 150°C respectively) revealed a reduced extractability of PAHs subsequent to incubation. In order to stimulate PAH degradation a second experiment with a higher water to solid ratio (1000:1) was carried out, and phenanthrene was spiked to the water phase of this set up. Results revealed a reduction of phenanthrene concentration more likely to be due to sorption rather than degradation. The set up was changed to aqueous soil solutions without soil in the batch and spiked again with phenanthrene. Degradation of phenanthrene occurred within 10 days in these batches. The experiments show that the microorganisms present in the Black Forest

  2. PAH degradation and redox control in an electrode enhanced sediment cap

    PubMed Central

    Yan, Fei; Reible, Danny D.

    2012-01-01

    Capping is typically used to control contaminant release from the underlying sediments. However, the presence of conventional sediment caps will often eliminate or slow natural degradation that might otherwise occur at the surface sediment. The objective of this study was to explore the potential of a novel reactive capping, an electrode enhanced cap for the remediation of PAH contaminated sediment. The study on electrode enhanced biodegradation of PAH in slurries showed that naphthalene concentration decreased from ~1000 μg/L to ~50 μg/L, and phenanthrene decreased from ~150 μg/L to ~30 μg/L in ElectroBioReactor within 4 days, and the copy numbers of PAH degrading genes increased by almost 2 orders of magnitude. In a cap microcosm, two carbon electrodes were emplaced within a sediment cap with an applied potential of 2 V. The anode was placed at the sediment-cap interface encouraging oxidizing conditions. Oxidation and Reduction Potential (ORP) profiles showed redox potential approximately 60-100 mV higher at the sediment-cap interface with the application of voltage than in controls. Vertical profiles of phenanthrene porewater concentration were obtained by PDMS-coated fiber, and results showed that phenanthrene at the depth of 0-0.5 cm below the anode was degraded to ~70% of the initial concentration within 10 weeks. PAH degrading genes showed an increase of approximately 1 order of magnitude at the same depth. The no power controls showed no degradation of PAH. These findings suggest that electrode enhanced capping can be used to control redox potential, provide microbial electron acceptor, and stimulate PAH degradation. PMID:23329859

  3. Isolation, fingerprinting and genetic identification of indigenous PAHs degrading bacteria from oil-polluted soils.

    PubMed

    Alrumman, Sulaiman A; Hesham, Abd El-Latif; Alamri, Saad A

    2016-01-01

    In the present study, thirty five bacterial isolates were obtained from hydrocarbon-contaminated soil samples using an enrichment method. These isolates were tested to grow on mineral salt medium containing anthracene or phenanthrene as sole carbon source. Only five isolates showed the ability to degrade these compounds. RAPD-PCR fingerprinting was carried out for the five isolates, and the DNA patterns revealed that there was no similarity among the examined bacteria whenever the RFLP using four restriction enzymes HaeIII, Msp1, Hinf1 and Taq1 failed to differentiate among them. Five bacterial isolates were grown in high concentration of anthracene and phenanthrene (4% w/v). Two bacterial isolates were selected due to their high ability to grow in the presence of high concentrations of anthracene and phenanthrene. The isolates were identified as Bacillus flexus and Ochrobactrum anthropi, based on DNA sequencing of amplified 16S rRNA gene and phylogenetic analysis. Finally, the ability of these bacterial strains to tolerate and remove different PAHs looked promising for application in bioremediation technologies. PMID:26930863

  4. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry.

    PubMed

    Mousset, Emmanuel; Huguenot, David; van Hullebusch, Eric D; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  5. Use of nutrient supplements to increase the microbial degradation of PAH in contaminated soils

    SciTech Connect

    Carmichael, L.M.; Pfaender, F.K.

    1994-12-31

    The microbial degradation of polycyclic aromatic hydrocarbons (PAH) is often low in soils due to unavailability of PAH and/or to conditions in the soil that are not favorable to microbial activity. As a result, successful bioremediation of PAH contaminated soils may require the addition of supplements to impact PAH availability or soil conditions. This paper reports on the addition of supplements (Triton X-100, Inopol, nutrient buffer, an organic nutrient solution, salicylic acid) on the fate of (9-{sup 14}C) phenanthrene, a model PAH, in creosote contaminated soils. Phenanthrene metabolism was assessed using a mass balance approach that accounts for metabolism of phenanthrene to CO{sub 2}, relative metabolite production, and uptake of phenanthrene into cells. Most of the supplements did not drastically alter the fate of phenanthrene in the contaminated soils. Additions of Inopol, however, increased phenanthrene mineralization, while salicylic acid decreased phenanthrene mineralization but greatly increased the production of polar and water soluble metabolites. All supplements (excluding salicylic acid and the organic nutrient solution) increased populations of heterotrophic microorganisms, as measured by plate counts. Phenanthrene degrader populations, however, were only slightly increased by additions of the nutrient buffer, as measured by the Most Probable Number assay.

  6. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge

    PubMed Central

    Yuan, Jun; Lai, Qiliang; Sun, Fengqin; Zheng, Tianling; Shao, Zongze

    2015-01-01

    The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946–4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments. PMID:26379634

  7. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge.

    PubMed

    Yuan, Jun; Lai, Qiliang; Sun, Fengqin; Zheng, Tianling; Shao, Zongze

    2015-01-01

    The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946-4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments. PMID:26379634

  8. Natural selection of PAH-degrading bacterial guilds at coal-tar disposal sites

    SciTech Connect

    Ghiorse, W.C.; Herrick, J.B.; Sandoli, R.L.; Madsen, E.L.

    1995-06-01

    Microbial activity patterns at buried coal-tar disposal sites have been under investigation for several years to determine the response of naturally occurring microflora to polycyclic aromatic hydrocarbons (PAHs) at the sites. At one site in upstate New York, data have shown enrichment of PAH-degrading bacteria in subsurface contaminated zones but not in uncontaminated zones. Similar work at a Midwestern site showed that the same trends existed in a heterogeneous disposal site except that a borehole outside the plume showed some PAH-mineralization activity. Polymerase chain reaction amplification of DNA extracted from sediment samples from the New York site indicated the presence of naphthalene metabolism genes nahAc and nahR, similar to those found on the NAH7 plasmid of Pseudomonas putida G7. Significant sequence polymorphism was observed in amplified nahAc products, indicating that divergent homologs of nahAc were present in the native community. Protozoan numbers were elevated in sediment samples displaying relatively high PAH-degrading activity, suggesting that a food chain was established based on PAH-degrading bacteria. Removal of the coal-tar source at the site occurred in 1991. In 1992, sampling of three key borehole stations revealed that mixing and backfilling operations had introduced soil microorganisms into the source area and introduced 14C-PAH-mineralization activity into the previously inactive pristine area. Thus removal of the source of the contaminants and restoration at the site have altered the microbial activity patterns outside the contaminant plume as well as in the source area. 15 refs., 3 figs.

  9. Walking the tightrope of bioavailability: growth dynamics of PAH degraders on vapour‐phase PAH

    PubMed Central

    Hanzel, Joanna; Thullner, Martin; Harms, Hauke; Wick, Lukas Y.

    2012-01-01

    Summary Microbial contaminant degradation may either result in the utilization of the compound for growth or act as a protective mechanism against its toxicity. Bioavailability of contaminants for nutrition and toxicity has opposite consequences which may have resulted in quite different bacterial adaptation mechanisms; these may particularly interfere when a growth substrate causes toxicity at high bioavailability. Recently, it has been demonstrated that a high bioavailability of vapour‐phase naphthalene (NAPH) leads to chemotactic movement of NAPH‐degrading Pseudomonas putida (NAH7) G7 away from the NAPH source. To investigate the balance of toxic defence and substrate utilization, we tested the influence of the cell density on surface‐associated growth of strain PpG7 at different positions in vapour‐phase NAPH gradients. Controlled microcosm experiments revealed that high cell densities increased growth rates close (< 2 cm) to the NAPH source, whereas competition for NAPH decreased the growth rates at larger distances despite the high gas phase diffusivity of NAPH. At larger distance, less microbial biomass was likewise sustained by the vapour‐phase NAPH. Such varying growth kinetics is explained by a combination of bioavailability restrictions and NAPH‐based inhibition. To account for this balance, a novel, integrated ‘Best Equation’ describing microbial growth influenced by substrate availability and inhibition is presented. PMID:21951380

  10. Degradation of polycyclic aromatic hydrocarbons (PAHs) present in used motor oil and implications for urban runoff quality

    NASA Astrophysics Data System (ADS)

    Ferreira, M.; Stenstrom, M. K.; Lau, S.

    2013-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are common organic pollutants of urban stormwater runoff due to atmospheric deposition, vehicle-related discharges, and coal tar pavement sealants. The US EPA lists sixteen PAHs as priority pollutants and seven of those are potential carcinogenic compounds. Due to their molecular structure, PAHs tend to attach to particles that will subsequently be deposited as sediments in waterways. This study focuses on the degradation of PAHs present in used motor oil. Four experimental setups were used to simulate volatilization and photooxidation in the degradation of sixteen PAHs as observed for up to 54 days. The volatilization-only experiment showed substantial reduction only in the concentration of Napthalene (Nap). However, photooxidation-only was more efficient in degrading PAHs. In this process, substantial reduction in the concentrations of Nap, Acenapthene (Anthe), Anthracene (ANT), Fluoranthene (FLT), Pyrene (PYR), Benz[a]anthracene (BaA), Benzo[a]pyrene (BaP), Indeno[1,2,3,cd]pyrene (INP), and Benz[g,h,i]perylene (BghiP) were observed as early as five days. The two volatilization-photooxidation experiments exhibited substantial reduction in the concentrations of Fluorene (FLU), Chrysene (CHR) and Benzo[b]fluoranthene (BbF), in addition to the PAHs reduced by photooxidation-only. Phenanthrene (PHE), Fluoranthene (FLT), and Benzo[b]fluoranthene (BbF) only exhibited substantial decreased concentrations after 20 days in the volatilization-photooxidation experiment. One PAH, acenapthylene (Anthy), was not detected in the original sample of used motor oil. The highest degradations were observed in the combined volatilization-photooxidation experiment. In regions with infrequent rainfall, such as Southern California, molecules of PAHs attached to highway particles will have time to undergo degradation prior to transport. Therefore, PAHs may be present in lower concentrations in highway runoff in dry climates than in rainy climates

  11. Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Shao, Zongze; Cui, Zhisong; Dong, Chunming; Lai, Qiliang; Chen, Liang

    2010-05-01

    Little is known about the types and concentrations of polycyclic aromatic hydrocarbons (PAHs) existing in the deep-sea subsurface environment, which is believed to be cold, oligothrophic and of high static pressure. PAHs in the upper layers of the water column are unavoidably subjected to degradation while they are deposited to the sea floor and become embedded in the deep-sea sediment. In this report, a high concentration of PAHs was discovered in the sediment 2.7 m beneath the bottom surface at a water depth of 3962 m on the Mid-Atlantic Ridge (MAR). The total concentration of PAHs was 445 ng (g dry wt sediment) -1. Among the seven detected PAHs, the concentrations of phenanthrene (222 ng g -1) and fluorene (79 ng g -1) were relatively high. In addition, PAH-degrading bacteria were found within the sediments. As in a previously detected site on the MAR, in the PAH-enriched region of this site, a bacterium of the genus Cycloclasticus was found to be the predominant isolate detected by PCR-DGGE analysis. In addition, bacteria of the Halomonas, Marinobacter, Alcanivorax, Thalassospira and Maricaulis genera, were also included in the PAH-degrading community. In summary, a high concentration of PAHs was detected in the subsurface of the deep-sea sediment, and once again, the Cycloclasticus bacterium was confirmed to be a ubiquitous marine PAH degrader even in the subsurface marine environment. Considering the abundance of PAHs therein, biodegradation is thus thought to be inactive, probably because of the low temperature, limited oxygen and/or limited nutrients.

  12. Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil.

    PubMed

    Cébron, Aurélie; Beguiristain, Thierry; Faure, Pierre; Norini, Marie-Paule; Masfaraud, Jean-François; Leyval, Corinne

    2009-10-01

    The polycyclic aromatic hydrocarbon (PAH) contamination, bacterial community, and PAH-degrading bacteria were monitored in aged PAH-contaminated soil (Neuves-Maisons [NM] soil; with a mean of 1,915 mg of 16 PAHs.kg(-1) of soil dry weight) and in the same soil previously treated by thermal desorption (TD soil; with a mean of 106 mg of 16 PAHs.kg(-1) of soil dry weight). This study was conducted in situ for 2 years using experimental plots of the two soils. NM soil was colonized by spontaneous vegetation (NM-SV), planted with Medicago sativa (NM-Ms), or left as bare soil (NM-BS), and the TD soil was planted with Medicago sativa (TD-Ms). The bacterial community density, structure, and diversity were estimated by real-time PCR quantification of the 16S rRNA gene copy number, temporal thermal gradient gel electrophoresis fingerprinting, and band sequencing, respectively. The density of the bacterial community increased the first year during stabilization of the system and stayed constant in the NM soil, while it continued to increase in the TD soil during the second year. The bacterial community structure diverged among all the plot types after 2 years on site. In the NM-BS plots, the bacterial community was represented mainly by Betaproteobacteria and Gammaproteobacteria. The presence of vegetation (NM-SV and NM-Ms) in the NM soil favored the development of a wider range of bacterial phyla (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Verrucomicrobia, Actinobacteria, Firmicutes, and Chloroflexi) that, for the most part, were not closely related to known bacterial representatives. Moreover, under the influence of the same plant, the bacterial community that developed in the TD-Ms was represented by different bacterial species (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria) than that in the NM-Ms. During the 2 years of monitoring, the PAH concentration did not evolve significantly. The abundance of gram-negative (GN

  13. Influence of Vegetation on the In Situ Bacterial Community and Polycyclic Aromatic Hydrocarbon (PAH) Degraders in Aged PAH-Contaminated or Thermal-Desorption-Treated Soil▿ †

    PubMed Central

    Cébron, Aurélie; Beguiristain, Thierry; Faure, Pierre; Norini, Marie-Paule; Masfaraud, Jean-François; Leyval, Corinne

    2009-01-01

    The polycyclic aromatic hydrocarbon (PAH) contamination, bacterial community, and PAH-degrading bacteria were monitored in aged PAH-contaminated soil (Neuves-Maisons [NM] soil; with a mean of 1,915 mg of 16 PAHs·kg−1 of soil dry weight) and in the same soil previously treated by thermal desorption (TD soil; with a mean of 106 mg of 16 PAHs·kg−1 of soil dry weight). This study was conducted in situ for 2 years using experimental plots of the two soils. NM soil was colonized by spontaneous vegetation (NM-SV), planted with Medicago sativa (NM-Ms), or left as bare soil (NM-BS), and the TD soil was planted with Medicago sativa (TD-Ms). The bacterial community density, structure, and diversity were estimated by real-time PCR quantification of the 16S rRNA gene copy number, temporal thermal gradient gel electrophoresis fingerprinting, and band sequencing, respectively. The density of the bacterial community increased the first year during stabilization of the system and stayed constant in the NM soil, while it continued to increase in the TD soil during the second year. The bacterial community structure diverged among all the plot types after 2 years on site. In the NM-BS plots, the bacterial community was represented mainly by Betaproteobacteria and Gammaproteobacteria. The presence of vegetation (NM-SV and NM-Ms) in the NM soil favored the development of a wider range of bacterial phyla (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Verrucomicrobia, Actinobacteria, Firmicutes, and Chloroflexi) that, for the most part, were not closely related to known bacterial representatives. Moreover, under the influence of the same plant, the bacterial community that developed in the TD-Ms was represented by different bacterial species (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria) than that in the NM-Ms. During the 2 years of monitoring, the PAH concentration did not evolve significantly. The abundance of gram-negative (GN

  14. Coupling extraction-flotation with surfactant and electrochemical degradation for the treatment of PAH contaminated hazardous wastes.

    PubMed

    Tran, Lan-Huong; Drogui, Patrick; Mercier, Guy; Blais, Jean-François

    2009-10-30

    The performance of a two-stage process combining extraction of polycyclic aromatic hydrocarbons (PAHs) with an amphoteric surfactant (CAS) followed by electro-oxidation of PAH-foam concentrate was studied for the decontamination of aluminum industry wastes (AIW) and polluted soils. The PAH suspensions extracted from AIW and soils were treated in a 2L-parallelepipedic electrolytic cell containing Ti/RuO2 anodes and stainless steel cathodes. Current densities varying from 4.6 to 18.5 mA cm(-2) have been tested with and without addition of a supporting electrolyte (6.25 to 50 kg Na2SO4 t(-1) of dry waste). The best performance for PAH degradation was obtained while the electrolytic cell was operated during 90 min at a current density of 9.2 mA cm(-2), with a total solids concentration of 2.0%, and in presence 12.5 kg Na(2)SO(4)t(-1). The application of the process on AIW (initial PAH content: 3424 mg kg(-1)) allowed extracting 42% of PAH, whereas 50% of PAH was electrochemically degraded in the resulting foam suspensions. By comparison, 44% to 60% of PAH was extracted from polluted soils (initial PAH content: 1758 to 4160 mg kg(-1)) and 21% to 55% of PAH was oxidized in the foam suspensions. The electrochemical treatment cost (including only electrolyte and energy consumption) recorded in the best experimental conditions varied from 99 to 188 USD $ t(-1) of soils or AIW treated. PMID:19525064

  15. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs

    PubMed Central

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W. C.; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  16. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs.

    PubMed

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W C; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  17. Application of fluorescent antibody and enzyme-linked immunosorbent assays for TCE and PAH degrading bacteria

    SciTech Connect

    Brigmon, R.L.; Franck, M.; Brey, J.; Scott, D.; Lanclos, K.; Fliermans, C.

    1996-07-01

    Historically, methods used to identify methanotrophic and polyaromatic hydrocarbon-degrading (PAH) bacteria in environmental samples have been inadequate because isolation and identification procedures are time-consuming and often fail to separate specific bacteria from other environmental microorganisms. Methanotrophic bacteria have been isolated and characterized from TCE-contaminated soils (Bowman et al. 1993; Fliermans et al., 1988). Fliermans et al., (1988) and others demonstrated that cultures enriched with methane and propane could cometabolically degrade a wide variety of chlorinated aliphatic hydrocarbons including ethylene; 1,2-cisdichloroethylene (c-DCE); 1,2-trans-dichloroethylene (t-DCE); vinyl chloride (VC); toluene; phenol and cresol. Characterization of select microorganisms in the natural setting is important for the evaluation of bioremediation potential and its effectiveness. This realization has necessitated techniques that are selective, sensitive and easily applicable to soils, sediments, and groundwater (Fliermans, et al., 1994). Additionally these techniques can identify and quantify microbial types in situ in real time

  18. Remediation of PAH-contaminated soil at a gas manufacturing plant by a combined two-phase partition system washing and microbial degradation process.

    PubMed

    Gong, Xuan; Xu, Xinyang; Gong, Zongqiang; Li, Xiaojun; Jia, Chunyun; Guo, Meixia; Li, Haibo

    2015-08-01

    The aim of this study was to design a remediation technique using both soil washing and microbial degradation to remove polycyclic aromatic hydrocarbons (PAHs) from contaminated soil. PAH biodegradation by inoculation of Mycobacterium sp. was first tested. The effectiveness of washing agents (Tween 80 solution, biodiesel, and a two-phase partition system (TPPS)) was then evaluated with column experiments. Third, the combination of TPPS washing and microbial degradation was studied. PAH bioavailability before and after biodegradation and the joint remediation was also assessed using hydroxypropyl-β-cyclodextrin (HPCD) extraction. Only phenanthrene and anthracene were noticeably biodegradable when the soil was inoculated with Mycobacterium sp. TPPS containing 2% (v/v) biodiesel and 2.5% (w/v) Tween 80 was used as the washing agent for the joint remediation test because it gave higher PAH extractions than Tween 80 solution with lower doses, and there was less residue in the soil. Joint TPPS washing and microbial degradation gave a total PAH removal of 92.6%, which was much higher than the results from either the biodegradation or washing experiments alone. Removals of all high molecular weight (HMW) PAHs were improved. Bioavailable concentrations of all PAHs decreased significantly after the joint remediation process, indicating that there were reduced risks from all PAHs. The results demonstrate that the combination of TPPS washing and microbial degradation is a useful and innovative process for remediation of PAH-contaminated soils. PMID:25874432

  19. Monitoring the impact of bioaugmentation with a PAH-degrading strain on different soil microbiomes using pyrosequencing.

    PubMed

    Festa, Sabrina; Macchi, Marianela; Cortés, Federico; Morelli, Irma S; Coppotelli, Bibiana M

    2016-08-01

    The effect of bioaugmentation with Sphingobium sp. AM strain on different soils microbiomes, pristine soil (PS), chronically contaminated soil (IPK) and recently contaminated soil (Phe) and their implications in bioremediation efficiency was studied by focusing on the ecology that drives bacterial communities in response to inoculation. AM strain draft genome codifies genes for metabolism of aromatic and aliphatic hydrocarbons. In Phe, the inoculation improved the elimination of phenanthrene during the whole treatment, whereas in IPK no improvement of degradation of any PAH was observed. Through the pyrosequencing analysis, we observed that inoculation managed to increase the richness and diversity in both contaminated microbiomes, therefore, independently of PAH degradation improvement, we observed clues of inoculant establishment, suggesting it may use other resources to survive. On the other hand, the inoculation did not influence the bacterial community of PS. On both contaminated microbiomes, incubation conditions produced a sharp increase on Actinomycetales and Sphingomonadales orders, while inoculation caused a relative decline of Actinomycetales. Inoculation of most diverse microbiomes, PS and Phe, produced a coupled increase of Sphingomonadales, Burkholderiales and Rhizobiales orders, although it may exist a synergy between those genera; our results suggest that this would not be directly related to PAH degradation. PMID:27279417

  20. Degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge with ultrasound and Fenton processes: Effect of system parameters and synergistic effect study.

    PubMed

    Lin, Meiqing; Ning, Xun-an; An, Taicheng; Zhang, Jianhao; Chen, Changmin; Ke, Yaowei; Wang, Yujie; Zhang, Yaping; Sun, Jian; Liu, Jingyong

    2016-04-15

    To establish an efficient oxidation process for the degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge, the effects of various operating parameters were optimized during the ultrasound process, Fenton process and the combined ultrasound-Fenton process. The results showed that the ultrasonic density of 1.80w/cm(3), both H2O2 and Fe(2+) dosages of 140mmol/L and pH 3 were favorable conditions for the degradation of PAHs. The degradation efficiency of high molecular weight PAHs was close to or even higher than that of light molecular weight PAHs. The highest degradation efficiencies of Σ16 PAHs were obtained within 30min in the order of: Fenton (83.5%) >ultrasound-Fenton (75.5%) >ultrasound (45.5%), then the efficiencies were decreased in the other of: ultrasound-Fenton (73.0%) >Fenton (70.3%) >ultrasound (41.4%) in 60min. The extra PAHs were released from the intracellular substances and the cavities of sludge due to the disruption of sludge during the oxidation process. Also, the degradation of PAHs could be inhibited by the other organic matter in the sludge. The combined ultrasound-Fenton process showed more efficient than both ultrasound process and Fenton process not only in the surface of sludge but also in the sludge interior. PMID:26795704

  1. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto.

    PubMed

    Hsu, Ruei-Lin; Lee, Kung-Ta; Wang, Jung-Hao; Lee, Lily Y-L; Chen, Rita P-Y

    2009-01-28

    More than 20 unrelated proteins can form amyloid fibrils in vivo which are related to various diseases, such as Alzheimer's disease, prion disease, and systematic amyloidosis. Amyloid fibrils are an ordered protein aggregate with a lamellar cross-beta structure. Enhancing amyloid clearance is one of the targets of the therapy of these amyloid-related diseases. Although there is debate on whether the toxicity is due to amyloids or their precursors, research on the degradation of amyloids may help prevent or alleviate these diseases. In this study, we explored the amyloid-degrading ability of nattokinase, a fibrinolytic subtilisin-like serine protease, and determined the optimal conditions for amyloid hydrolysis. This ability is shared by proteinase K and subtilisin Carlsberg, but not by trypsin or plasmin. PMID:19117402

  2. Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B.

    PubMed

    Liu, Shasha; Guo, Chuling; Liang, Xujun; Wu, Fengji; Dang, Zhi

    2016-07-01

    Surfactant-mediated bioremediation has been widely applied in decontaminating PAH-polluted sites. However, the impacts of surfactants on the biodegradation of PAHs have been controversial in the past years. To gain a clear insight into the influencing mechanisms, three nonionic surfactants (Tween80, TritonX-100 and Brij30) were selected to systematically investigate their effects on cell surface properties (membrane permeability, functional groups and elements), cell vitality as well as subsequent phenanthrene degradation ability of Sphingomonas sp. GY2B. Results showed that biodegradation of phenanthrene was stimulated by Tween80, slightly inhibited by TritonX-100 and severely inhibited by Brij30, respectively. Positive effect of Tween80 may arise from its role as the additional carbon source for GY2B to increase bacterial growth and activity, as demonstrated by the increasing viable cells in Tween80 amended degradation systems determined by flow cytometry. Although TritonX-100 could inhibit bacterial growth and disrupt cell membrane, its adverse impacts on microbial cells were weaker than Brij30, which may result in its weaker inhibitive extent. Results from this study can provide a rational basis on selecting surfactants for enhancing bioremediation of PAHs. PMID:27045921

  3. Photochemical degradation of hydroxy PAHs in ice: Implications for the polar areas.

    PubMed

    Ge, Linke; Li, Jun; Na, Guangshui; Chen, Chang-Er; Huo, Cheng; Zhang, Peng; Yao, Ziwei

    2016-07-01

    Hydroxyl polycyclic aromatic hydrocarbons (OH-PAHs) are derived from hydroxylated PAHs as contaminants of emerging concern. They are ubiquitous in the aqueous and atmospheric environments and may exist in the polar snow and ice, which urges new insights into their environmental transformation, especially in ice. In present study the simulated-solar (λ > 290 nm) photodegradation kinetics, products and pathways of four OH-PAHs (9-Hydroxyfluorene, 2-Hydroxyfluorene, 1-Hydroxypyrene and 9-Hydroxyphenanthrene) in ice were investigated, and the corresponding implications for the polar areas were explored. It was found that the kinetics followed the pseudo-first-order kinetics with the photolysis quantum yields (Φs) ranging from 7.48 × 10(-3) (1-Hydroxypyrene) to 4.16 × 10(-2) (2-Hydroxyfluorene). These 4 OH-PAHs were proposed to undergo photoinduced hydroxylation, resulting in multiple hydroxylated intermediates, particularly for 9-Hydroxyfluorene. Extrapolation of the lab data to the real environment is expected to provide a reasonable estimate of OH-PAH photolytic half-lives (t1/2,E) in mid-summer of the polar areas. The estimated t1/2,E values ranged from 0.08 h for 1-OHPyr in the Arctic to 54.27 h for 9-OHFl in the Antarctic. In consideration of the lower temperature and less microorganisms in polar areas, the photodegradation can be a key factor in determining the fate of OH-PAHs in sunlit surface snow/ice. To the best of our knowledge, this is the first report on the photodegradation of OH-PAHs in polar areas. PMID:27135699

  4. 16S rDNA-based probes for two polycyclic aromatic hydrocarbon (PAH)-degrading soil Mycobacteria

    SciTech Connect

    Govindaswami, M.; Feldhake, D.J.; Loper, J.C.

    1994-12-31

    PAHs are a class of widespread pollutants, some of which have been shown to be genotoxic, hence the fate of these compounds in the environment is of considerable interest. Research on the biodegradation of 4 and 5 ring PAHs has been limited by the general lack of microbial isolates or consortia which can completely degrade these toxicants. Heitkamp and Cerniglia have described an oxidative soil Mycobacterium-strain PYR-1 that metabolizes pyrene and fluoranthene more rapidly than the 2 and 3 ring naphthalene and phenanthrene; although some metabolites of benzo-(a)-pyrene (BaP) were detected, no mineralization of BaP was observed. In 1991 Grosser et al. reported the isolation of a Mycobacterium sp. which mineralizes pyrene and also causing some mineralization of BaP. Their study describes a comparative analysis of these two strains, which show very similar colony morphology, growth rate and yellow-orange pigmentation. Genetic differences were shown by DNA amplification fingerprinting (DAF) using two arbitrary GC-rich octanucleotide primers, and by sequence comparison of PCR amplified 16S rDNA, although both strains show similarity closest to that of the genus Mycobacteria. These 16S rDNA sequences are in use for the construction of strain-specific DNA probes to monitor the presence, survival and growth of these isolates in PAH-contaminated soils in studies of biodegradation.

  5. Halotolerance, ligninase production and herbicide degradation ability of basidiomycetes strains

    PubMed Central

    Arakaki, R.L.; Monteiro, D.A.; Boscolo, M.; Dasilva, R.; Gomes, E.

    2013-01-01

    Fungi have been recently recognized as organisms able to grow in presence of high salt concentration with halophilic and halotolerance properties and their ligninolytic enzyme complex have an unspecific action enabling their use to degradation of a number of xenobiotic compounds. In this work, both the effect of salt and polyols on growth of the basidiomycetes strains, on their ability to produce ligninolytic enzyme and diuron degradation were evaluated. Results showed that the presence of NaCl in the culture medium affected fungal specimens in different ways. Seven out of ten tested strains had growth inhibited by salt while Dacryopinax elegans SXS323, Polyporus sp MCA128 and Datronia stereoides MCA167 fungi exhibited higher biomass production in medium containing 0.5 and 0.6 mol.L−1 of NaCl, suggesting to be halotolerant. Polyols such as glycerol and mannitol added into the culture media improved the biomass and ligninases production by D. elegans but the fungus did not reveal consumption of these polyols from media. This fungus degraded diuron in medium control, in presence of NaCl as well as polyols, produced MnP, LiP and laccase. PMID:24688513

  6. Aqueous photochemical degradation of hydroxylated PAHs: Kinetics, pathways, and multivariate effects of main water constituents.

    PubMed

    Ge, Linke; Na, Guangshui; Chen, Chang-Er; Li, Jun; Ju, Maowei; Wang, Ying; Li, Kai; Zhang, Peng; Yao, Ziwei

    2016-03-15

    Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) are contaminants of emerging concern in the aquatic environment, so it is of great significance to understand their environmental transformation and toxicity. This study investigated the aqueous photochemical behavior of four OH-PAHs, 9-Hydroxyfluorene (9-OHFL), 2-Hydroxyfluorene, 9-Hydroxyphenanthrene and 1-Hydroxypyrene, under simulated sunlight irradiation (λ>290nm). It was observed that their photodegradation followed the pseudo-first-order kinetics. Based on the determined quantum yields, their calculated solar apparent photodegradation half-lives in surface waters at 45° N latitude ranged from 0.4min for 9-Hydroxyphenanthrene to 7.5×10(3)min for 9-OHFL, indicating that the OH-PAHs would intrinsically photodegrade fast in sunlit surface waters. Furthermore, 9-OHFL as an example was found to undergo direct photolysis, and self-sensitized photooxidation via OH rather than (1)O2 in pure water. The potential photoreactions involved photoinduced hydroxylation, dehydrogenation and isomerization based on product identification by GC-MS/MS. 9-OHFL photodegraded slower in natural waters than in pure water, which was attributed to the integrative effects of the most photoreactive species, such as Fe(III), NO3(-), Cl(-) and humic acid. The photomodified toxicity was further examined using Vibrio fischeri, and it was found that the toxicity of photolyzed 9-OHFL did not decrease significantly (p>0.05) either in pure water or in seawater, implying the comparable or higher toxicity of some intermediates. These results are important for assessing the fate and risks of OH-PAHs in surface waters. PMID:26780142

  7. Preliminary characterization of biosurfactant produced by a PAH-degrading Paenibacillus sp. under thermophilic conditions.

    PubMed

    Mesbaiah, Fatma Zohra; Eddouaouda, Kamel; Badis, Abdelmalek; Chebbi, Alif; Hentati, Dorra; Sayadi, Sami; Chamkha, Mohamed

    2016-07-01

    The capacities of a biosurfactant producing and polycyclic aromatic hydrocarbon (PAH) utilizing bacterium, namely, strain 1C, isolated from an Algerian contaminated soil, were investigated. Strain 1C belonged to the Paenibacillus genus and was closely related to the specie Paenibacillus popilliae, with 16S rRNA gene sequence similarity of 98.4 %. It was able to produce biosurfactant using olive oil as substrate. The biosurfactant production was shown by surface tension (32.6 mN/m) after 24 h of incubation at 45 °C and 150 rpm. The biosurfactant(s) retained its properties during exposure to elevated temperatures (70 °C), relatively high salinity (20 % NaCl), and a wide range of pH values (2-10). The infrared spectroscopy (FTIR) revealed that its chemical structure belonged to lipopeptide class. The critical micelle concentration (CMC) of this biosurfactant was about 0.5 g/l with 29.4 mN/m. In addition, the surface active compound(s) produced by strain 1C enhanced PAH solubility and showed a significant antimicrobial activity against pathogens. In addition to its biosurfactant production, strain 1C was shown to be able to utilize PAHs as the sole carbon and energy sources. Strain 1C as hydrocarbonoclastic bacteria and its interesting surface active agent may be used for cleaning the environments polluted with polyaromatic hydrocarbons. PMID:27053051

  8. Accelerated degradation of PAHs using edaphic biostimulants obtained from sewage sludge and chicken feathers.

    PubMed

    Rodríguez-Morgado, Bruno; Gómez, Isidoro; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel

    2015-12-30

    We studied in the laboratory the bioremediation effects over a 100-day period of three edaphic biostimulants (BS) obtained from sewage sludge (SS) and from two different types of chicken feathers (CF1 and CF2), in a soil polluted with three polycyclic aromatic hydrocarbons (PAH) (phenanthrene, Phe; pyrene, Py; and benzo(a)pyrene, BaP), at a concentration of 100 mg kg(-1) soil. We determined their effects on enzymatic activities and on soil microbial community. Those BS with larger amounts of proteins and a higher proportion of peptides (<300 daltons), exerted a greater stimulation on the soil biochemical properties and microbial community, possibly because low molecular weight proteins can be easily assimilated by soil microorganisms. The soil dehydrogenase, urease, β-glucosidase and phosphatase activities and microbial community decreased in PAH-polluted soil. This decrease was more pronounced in soils contaminated with BaP than with Py and Phe. The application of the BS to PAH-polluted soils decreased the inhibition of the soil biological properties, principally at 7 days into the experiment. This decrease was more pronounced in soils contaminated with BaP than with Py and Phe and was higher in polluted soils amended with CF2, followed by SS and CF1, respectively. PMID:26188866

  9. Diurnal and nocturnal variations of PAHs in the Lhasa atmosphere, Tibetan Plateau: Implication for local sources and the impact of atmospheric degradation processing

    NASA Astrophysics Data System (ADS)

    Liu, Junwen; Li, Jun; Lin, Tian; Liu, Di; Xu, Yue; Chaemfa, Chakra; Qi, Shihua; Liu, Fobang; Zhang, Gan

    2013-04-01

    Due to the unique characteristics, such as intensive radiation, high altitude and low humidity, plateau climate importantly affects the airborne organic contaminants' behavior in the environment. In this study, USEPA priority polycyclic aromatic hydrocarbons (PAHs) and benzo[e]pyrene were detected in the air samples collected at two suburban sites in Lhasa city. The total concentrations of USEPA priority fifteen PAHs (except naphthalene) in the particulate phase ranged from 4.4 to 60 ng/m3, while in the gas phase from 79 to 350 ng/m3. Integrated results of the multiple diagnostic ratios indicated that the major potential sources of PAHs in Lhasa city were local incomplete combustion of wood and cow dung cake. Particulate and gaseous PAH levels in this study displayed two clear and different diurnal and nocturnal concentration patterns, however, no distinct diurnal and nocturnal variation was observed for the total suspended particles (TSP) concentrations. No significant correlation was found between TSP concentrations and particle-bound PAHs, meaning physicochemical processes play an important role in diurnal and nocturnal variations of PAHs in the atmosphere except emission sources in this study. Based on the diurnal and nocturnal changes of the percentage of particulate phase PAHs in total PAHs, it suggested that gas-particle partitioning driven by temperature makes a great contribution to the variations of PAHs concentrations. The most susceptible to transformation between gas and particle phase chemicals are PHE, ANT, FLA, PYR, BaA and CHR. In addition, our observation suggested that atmospheric reaction and photolytic degradation also exert an important impact on the variations of PAHs in both phases in the atmosphere of Lhasa city.

  10. Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium.

    PubMed

    Gallego, Sara; Vila, Joaquim; Tauler, Margalida; Nieto, José María; Breugelmans, Philip; Springael, Dirk; Grifoll, Magdalena

    2014-07-01

    Marine microbial consortium UBF, enriched from a beach polluted by the Prestige oil spill and highly efficient in degrading this heavy fuel, was subcultured in pyrene minimal medium. The pyrene-degrading subpopulation (UBF-Py) mineralized 31 % of pyrene without accumulation of partially oxidized intermediates indicating the cooperation of different microbial components in substrate mineralization. The microbial community composition was characterized by culture dependent and PCR based methods (PCR-DGGE and clone libraries). Molecular analyses showed a highly stable community composed by Alphaproteobacteria (84 %, Breoghania, Thalassospira, Paracoccus, and Martelella) and Actinobacteria (16 %, Gordonia). The members of Thalasosspira and Gordonia were not recovered as pure cultures, but five additional strains, not detected in the molecular analysis, that classified within the genera Novosphingobium, Sphingopyxis, Aurantimonas (Alphaproteobacteria), Alcanivorax (Gammaproteobacteria) and Micrococcus (Actinobacteria), were isolated. None of the isolates degraded pyrene or other PAHs in pure culture. PCR amplification of Gram-positive and Gram-negative dioxygenase genes did not produce results with any of the cultured strains. However, sequences related to the NidA3 pyrene dioxygenase present in mycobacterial strains were detected in UBF-Py consortium, suggesting the representative of Gordonia as the key pyrene degrader, which is consistent with a preeminent role of actinobacteria in pyrene removal in coastal environments affected by marine oil spills. PMID:24356981

  11. Ultrasonically enhanced delivery and degradation of PAHs in a polymer-liquid partitioning system by a microbial consortium.

    PubMed

    Isaza, Pedro A; Daugulis, Andrew J

    2009-09-01

    The current study examined the effects of ultrasonic irradiation on mass transfer and degradation of PAHs, by an enriched consortium, when delivered from polymeric matrices. Rates of release into methanol under sonicated conditions, relative to unmixed cases, for phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene were increased approximately fivefold, when delivered from Desmopan 9370 A (polyurethane). Similar effects were observed in Hytrel and Kraton D4150 K polymers as well as recycled Bridgestone tires. Enhancements were also displayed as shifts to higher release equilibria under sonicated conditions, relative to non-sonicated cases, agreeing with current knowledge in sonochemistry and attributed to cavitation. Ultrasonic effects on microbial activity were also investigated and cell damage was found to be non- permanent with consortium re-growth being observed after sonic deactivation. Finally, the lumped effect of sonication on degradation of phenanthrene delivered from Desmopan was examined under the absence and presence of sonication. Rates of degradation were found to be increased by a factor of four demonstrating the possibility of using ultrasonic irradiation for improved mass transport in solid-liquid systems. Cellular inactivation effects were not evident, and this was attributed to the attenuation of sonic energy arising from the presence of solid polymer materials in the medium. The findings of the study demonstrate that sonication can be used to improve mass transport of poorly soluble compounds in microbial degradations, and alleviate limiting steps of soil remediation processes proposed in previous research. PMID:19418561

  12. Key high molecular weight PAH-degrading bacteria in a soil consortium enriched using a sand-in-liquid microcosm system.

    PubMed

    Tauler, Margalida; Vila, Joaquim; Nieto, José María; Grifoll, Magdalena

    2016-04-01

    A novel biphasic system containing mineral medium and sand coated with a biologically weathered creosote-PAH mixture was developed to specifically enrich the high molecular weight polycyclic aromatic hydrocarbon (HMW PAH)-degrading community from a creosote-polluted soil. This consortium (UBHP) removed 70 % of the total HMW PAHs and their alkyl-derivatives in 12 weeks. Based on a combined culture-dependent/independent approach, including clone library analysis, detection of catabolic genes, metabolomic profiles, and characterization of bacterial isolates, 10 phylotypes corresponding to five major genera (Sphingobium, Sphingomonas, Achromobacter, Pseudomonas, and Mycobacterium) were pointed out as key players within the community. In response to exposure to different single PAHs, members of sphingomonads were associated to the utilization of phenanthrene, fluoranthene, benzo[a]anthracene, and chrysene, while the degradation of pyrene was mainly associated to low-abundance mycobacteria. In addition to them, a number of uncultured phylotypes were detected, being of special relevance a group of Gammaproteobacteria closely related to a group previously associated with pyrene degradation that were here related to benzo(a)anthracene degradation. The overall environmental relevance of these phylotypes was confirmed by pyrosequencing analysis of the microbial community shift in the creosote-polluted soil during a lab-scale biostimulation. PMID:26637425

  13. Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries.

    PubMed Central

    Bauer, J E; Capone, D G

    1988-01-01

    Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both. PMID:3415231

  14. Microcalorimetric investigation of the toxic action of pyrene on the growth of PAH-degrading bacteria Acinetobacter junii.

    PubMed

    Chen, Yanjiao; Yao, Jun; Chen, Ke; Wang, Fei; Zhou, Yong; Chen, Huilun; Gai, Nan; Ceccanti, Brunello; Trebse, Polonca; Zaray, Gyula; Choi, Martin M F; Wong, Ming Hong

    2010-01-01

    A multi-channel thermal activity microcalorimeter was used to determine the pyrene-induced toxic effect on two polycyclic aromatic hydrocarbon (PAH)-degrading bacteria Acinetobacter junii (A. junii) and Bacillus subtilis (B. subtilis). Power-time curves were analyzed and calorimetric parameters including growth rate constant (k), half inhibitory concentration (IC50) and total thermal effect (QT) were obtained. A. junii and B. subtilis were completely inhibited when the concentration of pyrene reached 400 and 160 microg mL(-1), respectively. The relationships between the calorimetric parameters and concentration of pyrene were studied. The growth rate of A. junii decreased with the increase in pyrene concentration at 50-200 microg mL(-1). The growth of biomass for A. junii at various concentrations of pyrene was determined. The count of A. junii after 8 day's incubation reached maximum irrespective of the initial pyrene concentrations ranging from 50 to 200 microg mL(-1) and the smallest stimulative action of pyrene was at 200 microg mL(-1). The variations of biomass during the growth of A. junii were consistent with the microcalorimetric data, indicating that microcalorimetry can be an effective technique to investigate the effect of pyrene on microorganisms. PMID:20390914

  15. Effects of nano bamboo charcoal on PAHs-degrading strain Sphingomonas sp. GY2B.

    PubMed

    She, Bojia; Tao, Xueqin; Huang, Ting; Lu, Guining; Zhou, Zhili; Guo, Chuling; Dang, Zhi

    2016-03-01

    Nano bamboo charcoal (NBC) has been commonly used in the production of textiles, plastics, paint, etc. However, little is known regarding their effects towards the microorganisms. The effects of NBC on phenanthrene degrading strain Sphingomonas sp. GY2B were investigated in the present study. Results showed that the addition of NBC could improve the phenanthrene removal by Sphingomonas sp. GY2B, with removal efficiencies increased by 10.29-18.56% in comparison to the control at 24h, and phenanthrene was almost completely removed at 48h. With the presence of low dose of NBC (20 and 50mgL(-1)), strain GY2B displayed a better growth at 6h, suggesting that NBC was beneficial to the growth of GY2B and thus resulting in the quick removal of phenanthrene from water. However, the growth of strain GY2B in high dose of NBC (200mgL(-1)) was inhibited at 6h, and the inhibition could be attenuated and eliminated after 12h. NBC-effected phenanthrene solubility experiment suggested that NBC makes a negligible contribution to the solubilization of phenanthrene in water. Results of electronic microscopy analysis (SEM and TEM) indicated NBC may interact with the cell membrane, causing the enhanced membrane permeability and then NBC adsorbed on the membrane would enter into the cells. The findings of this work would provide important information for the future usage and long-term environmental risk assessment of NBC. PMID:26655231

  16. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments

    PubMed Central

    Revathy, T.; Jayasri, M. A.; Suthindhiran, K.

    2015-01-01

    The polycyclic aromatic hydrocarbons (PAHs) pollution to the environment is a major threat to the living organisms, and hence the degradation of these PAHs is necessary. Studies on PAHs degrading bacteria have focussed on terrestrial microbes and the potential of marine derived microbes is undermined. Herein we report the isolation and characterization of PAHs degrading Burkholderia sp. from lagoon sediments collected at the Southern coast of India. The strain was Gram negative, rod-shaped, motile, and ∼2–5 μm in length. Based on the phylogenetic data the strain was identified as Burkholderia and designated as VITRSB1. Initial PAHs degradation ability of the strain was assessed using basal salt medium supplemented with diesel, kerosene, toluene, aniline, naphthalene, and phenol. The strain was found to be effectively degrading kerosene, diesel, toluene, and aniline even at higher concentration (1%). However, naphthalene and aniline were degraded only at lower concentration (0.1%) and phenol, camphor, and DAP inhibited the growth of the strain. Furthermore, the degraded end products of the PAHs were determined using FTIR. Notably, none of the end products were found to be toxic to the biosphere. Our results indicate that the isolated Burkholderia sp. could be a prospective candidate for the effective degradation of selective PAHs. PMID:26605106

  17. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments.

    PubMed

    Revathy, T; Jayasri, M A; Suthindhiran, K

    2015-01-01

    The polycyclic aromatic hydrocarbons (PAHs) pollution to the environment is a major threat to the living organisms, and hence the degradation of these PAHs is necessary. Studies on PAHs degrading bacteria have focussed on terrestrial microbes and the potential of marine derived microbes is undermined. Herein we report the isolation and characterization of PAHs degrading Burkholderia sp. from lagoon sediments collected at the Southern coast of India. The strain was Gram negative, rod-shaped, motile, and ∼2-5 μm in length. Based on the phylogenetic data the strain was identified as Burkholderia and designated as VITRSB1. Initial PAHs degradation ability of the strain was assessed using basal salt medium supplemented with diesel, kerosene, toluene, aniline, naphthalene, and phenol. The strain was found to be effectively degrading kerosene, diesel, toluene, and aniline even at higher concentration (1%). However, naphthalene and aniline were degraded only at lower concentration (0.1%) and phenol, camphor, and DAP inhibited the growth of the strain. Furthermore, the degraded end products of the PAHs were determined using FTIR. Notably, none of the end products were found to be toxic to the biosphere. Our results indicate that the isolated Burkholderia sp. could be a prospective candidate for the effective degradation of selective PAHs. PMID:26605106

  18. Degradation Ability of Modified Polyvinyl Alcohol Film for Coating of Fertilizer.

    PubMed

    Zou, Hong-tao; Ling, Yao; Yu, Yang; Zhang, Yu-ling; Yu, Na; Zhang, Yu-long

    2015-11-01

    Using outdoor exposure and cinnamon soil incubation test, by quality changes, infrared spectroscopy and electron microscopic scanning technology, to research the degradation ability of self-developed coated fertilizer films. The results of outdoor exposure and cinnamon soil incubation test showed that all films had certain degradation ability, and the degradation rate increased with the increase of time. Under two kinds of test conditions, the highest degradation rate could reach above 35%. The degradation ability of film citric acid/ PVA was much stronger than epoxy resin/PVA. The degradation ability of citric acid/PVA/diatomite composite film materials was further enhanced because of the addition of diatomite. The epoxy resin/PVA composite film materials, although they had certain degradability, compared to the contrast, the difference was not significant, and adding diatomite can't obviously increase the degradation rate. The results of IR spectroscopy showed that some major functional groups, such as C==O, C==C, ==C--H would be reduced after degradation, and the transmission rate also increased, which showed that the degradation of composite film materials must be happened Scanning electron microscopy showed that the surface becomes rough and uneven, and it also meant the films have some degradation. The results of IR spectroscopy and scanning electron microscopy were consistent with the results of quality change test, and could more objectively represent the degradability of film material. Modified film materials can effectively control nutrient release without causing harm to the soil environment, so it is suitable for the film materials of coated fertilizer. PMID:26978946

  19. Bacteriophages with the Ability to Degrade Uropathogenic Escherichia Coli Biofilms

    PubMed Central

    Chibeu, Andrew; Lingohr, Erika J.; Masson, Luke; Manges, Amee; Harel, Josée; Ackermann, Hans-W.; Kropinski, Andrew M.; Boerlin, Patrick

    2012-01-01

    Escherichia coli-associated urinary tract infections (UTIs) are among the most common bacterial infections in humans. UTIs are usually managed with antibiotic therapy, but over the years, antibiotic-resistant strains of uropathogenic E. coli (UPEC) have emerged. The formation of biofilms further complicates the treatment of these infections by making them resistant to killing by the host immune system as well as by antibiotics. This has encouraged research into therapy using bacteriophages (phages) as a supplement or substitute for antibiotics. In this study we characterized 253 UPEC in terms of their biofilm-forming capabilities, serotype, and antimicrobial resistance. Three phages were then isolated (vB_EcoP_ACG-C91, vB_EcoM_ACG-C40 and vB_EcoS_ACG-M12) which were able to lyse 80.5% of a subset (42) of the UPEC strains able to form biofilms. Correlation was established between phage sensitivity and specific serotypes of the UPEC strains. The phages’ genome sequences were determined and resulted in classification of vB_EcoP_ACG-C91 as a SP6likevirus, vB_EcoM_ACG-C40 as a T4likevirus and vB_EcoS_ACG-M12 as T1likevirus. We assessed the ability of the three phages to eradicate the established biofilm of one of the UPEC strains used in the study. All phages significantly reduced the biofilm within 2–12 h of incubation. PMID:22590682

  20. Bacteriophages with the ability to degrade uropathogenic Escherichia coli biofilms.

    PubMed

    Chibeu, Andrew; Lingohr, Erika J; Masson, Luke; Manges, Amee; Harel, Josée; Ackermann, Hans-W; Kropinski, Andrew M; Boerlin, Patrick

    2012-04-01

    Escherichia coli-associated urinary tract infections (UTIs) are among the most common bacterial infections in humans. UTIs are usually managed with antibiotic therapy, but over the years, antibiotic-resistant strains of uropathogenic E. coli (UPEC) have emerged. The formation of biofilms further complicates the treatment of these infections by making them resistant to killing by the host immune system as well as by antibiotics. This has encouraged research into therapy using bacteriophages (phages) as a supplement or substitute for antibiotics. In this study we characterized 253 UPEC in terms of their biofilm-forming capabilities, serotype, and antimicrobial resistance. Three phages were then isolated (vB_EcoP_ACG-C91, vB_EcoM_ACG-C40 and vB_EcoS_ACG-M12) which were able to lyse 80.5% of a subset (42) of the UPEC strains able to form biofilms. Correlation was established between phage sensitivity and specific serotypes of the UPEC strains. The phages' genome sequences were determined and resulted in classification of vB_EcoP_ACG-C91 as a SP6likevirus, vB_EcoM_ACG-C40 as a T4likevirus and vB_EcoS_ACG-M12 as T1likevirus. We assessed the ability of the three phages to eradicate the established biofilm of one of the UPEC strains used in the study. All phages significantly reduced the biofilm within 2-12 h of incubation. PMID:22590682

  1. Anaerobic degradation of phenanthrene and pyrene in mangrove sediment.

    PubMed

    Chang, Bea-Ven; Chang, I T; Yuan, S Y

    2008-02-01

    This study investigated the anaerobic degradation of the polycyclic aromatic hydrocarbons (PAHs) phenanthrene and pyrene in mangrove sediment from Taiwan. The anaerobic degradation of PAH was enhanced by the addition of acetate, lactate, pyruvate, sodium chloride, cellulose, or zero-valent iron. However, it was inhibited by the addition of humic acid, di-(2-ethylhexyl) phthalate (DEHP), nonylphenol, or heavy metals. Of the microorganism strains isolated from the sediment samples, we found that strain MSA3 (Clostridium pascui), expressed the best ability to biodegrade PAH. The inoculation of sediment with the strain MSA3 could enhance PAH degradation. PMID:18188486

  2. Chemical Oxidation of Complex PAH Mixtures by Base-activated Sodium Persulfate

    NASA Astrophysics Data System (ADS)

    Hauswirth, S.; Miller, C. T.

    2013-12-01

    In situ chemical oxidation (ISCO) is an attractive approach for the remediation of recalcitrant soil and groundwater contaminants. One oxidant that has received significant recent attention is sodium persulfate, which has several advantages, including a relatively long lifetime in porous media, the ability to destroy a wide-range of chemical contaminants, and a high oxidation potential. In this study, we investigated the chemical mechanisms associated with base-activated persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) and assessed the applicability of persulfate to the remediation of porous media contaminated with non-aqueous phase liquid (NAPL) PAH mixtures. Batch experiments were conducted to determine the oxidation kinetics for individual PAH compounds, synthetic PAH mixtures, and manufactured gas plant (MGP) tars. Additional experiments were conducted with added surfactants (Triton X-100, Triton X-45, and Tween 80) to increase PAH mass transfer from the NAPL to the aqueous phase, and with radical scavengers (ethanol and tert-butyl alcohol) to identify the reactive species responsible for degradation. Degradation of total PAHs in the NAPL experiments was as high as 70%. The addition of surfactant increased initial PAH degradation rates, but also greatly increased the rate of base consumption, thereby reducing the overall fraction degraded. The degradation of individual PAHs within the NAPLs varied significantly, with the masses of some compounds remaining largely unchanged. The results of the radical scavenger and single PAH experiments suggest that the observed pattern of degradation in PAH mixtures is the result of a combination of mass transfer considerations and competition for radical species.

  3. On the effects of the dispersant Corexit 9500© during the degradation process of n-alkanes and PAHs in marine sediments.

    PubMed

    Macías-Zamora, J V; Meléndez-Sánchez, A L; Ramírez-Álvarez, N; Gutiérrez-Galindo, E A; Orozco-Borbón, M V

    2014-02-01

    In many coastal countries, oil spill contingency plans include several alternatives for removal of the spilled oil from the ocean. Frequently, these plans include dispersants. Because this process applies chemical substances that may add toxicity to oil that already contains toxic compounds, it is, at times, a controversial method to fight oil pollution. Additionally, local conditions may result in particular complications. We investigated the possible effects of the dispersant Corexit 9500© under conditions similar to those of subtropical oceans. We used fuel oil #6+ diesel as the test mixture. Under certain conditions, at least part of the dispersed oil may reach the sediment, particularly if the dispersant is applied in coastal waters. Nine experimental units were used in this experiment. Similar conditions of water temperature, salinity, air fluxes into the experimental units, and hydrocarbon concentrations in sediments were used. Two treatments and one control, each one with three replicates, were carried out. We concentrated our investigation on sediment, although measurements of water were also taken. Our results suggest that once the oil has penetrated the sediment, no significant differences exist between oil that contains dispersant and oil without dispersant. Noticeable degradation of aliphatic hydrocarbons occurred mainly in the low molecular weight aliphatic hydrocarbons and not in the others. Apparently, degradation of aromatics was easier than that of alkanes. However, some differences were noticed for the degradation of PAHs in the sediment, suggesting a faster degradation under particular conditions in aerobic environments such as under this experiment. PMID:24162369

  4. Removing PAH`s with cells on fibers

    SciTech Connect

    Clyde, R.

    1996-12-31

    There are over 1,500 sites contaminated with polycyclic aromatic hydrocarbons from coal gas plants. White rot fungi degrade PAH`s in soil, but the problem is to supply oxygen needed for growth of the fungus. When old cardboard boxes are buried with the fungus, oxygen is entrapped in the corrugations. A method for growing the fungus quickly is also described. Pseudomonade also degrade PAH and several strains of this bacterium have been grown on fibers. The fibers have high area, and when Celite is entrapped in the fibers, more area is provided.

  5. Metabolic ability and individual characteristics of an atrazine-degrading consortium DNC5.

    PubMed

    Zhang, Ying; Cao, Bo; Jiang, Zhao; Dong, Xiaonan; Hu, Miao; Wang, Zhigang

    2012-10-30

    A stable four-member bacterial consortium, DNC5 that was capable of metabolizing atrazine was isolated from corn-planted soil. The main objective of this paper is to characterize the individual metabolic characteristics and the mutualism of the cultivable members in the consortium DNC5. Substrates utilizing character of each community member indicate that the primary organism in this consortium is Arthrobacter sp. DNS10, which was the only strain capable of mineralizing atrazine to cyanuric acid. Two secondary strains (Bacillus subtilis DNS4 and Variovorax sp. DNS12) utilized cyanuric acid during the atrazine degradation process. Meanwhile, we found that a metabolite (isopropylamine) inhibited the atrazine degrading species Arthrobacter sp. DNS10. The last strain (Arthrobacter sp. DNS9) of this consortium played a role in reducing this inhibition by utilizing isopropylamine for its growth. Altogether this is a new combination of isolates in an atrazine degrading consortium. The growth and the degradation rate of consortium DNC5 were faster than that of the single strain DNS10. The high degradation ability of the consortium showed good potential for atrazine biodegradation. This study will contribute toward a better understanding about metabolic activities of atrazine degrading consortium, which are generally considered to be responsible for atrazine mineralization in the natural environment. PMID:22981745

  6. Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term mixed contaminated soil.

    PubMed

    Kuppusamy, Saranya; Thavamani, Palanisami; Megharaj, Mallavarapu; Lee, Yong Bok; Naidu, Ravi

    2016-11-01

    An isolate of Cupriavidus (strain MTS-7) was identified from a long-term PAHs and heavy metals mixed contaminated soil with the potential to biodegrade both LMW and HMW PAHs with added unique traits of acid and alkali tolerance, heavy metal tolerance, self-nutrient assimilation by N fixation and P solubilization. This strain completely degraded the model 3 (150 mg L(-1) Phe), 4 (150 mg L(-1) Pyr) and 5 (50 mg L(-1) BaP) ring PAHs in 4, 20 and 30 days, respectively. It could mineralize 90-100% of PAHs (200 mg L(-1) of Phe and Pyr) within 15 days across pH ranging from 5 to 8 and even in the presence of toxic metal contaminations. During biodegradation, the minimum inhibitory concentrations were 5 (Cu(2+)) and 3 (Cd(2+), Pb(2+), Zn(2+)) mg L(-1) of the potentially bioavailable metal ions and over 17 mg L(-1) metal levels was lethal for the microbe. Further, it could fix 217-274 μg mL(-1) of N and solubilize 79-135 μg mL(-1) of P while PAHs degradation. MTS-7 as a superior candidate could be thus used in the enhanced bioaugmentation and/or phytoremediation of long-term mixed contaminated sites. PMID:27475295

  7. Kinetics of PAH degradation by a new acid-metal-tolerant Trabulsiella isolated from the MGP site soil and identification of its potential to fix nitrogen and solubilize phosphorous.

    PubMed

    Kuppusamy, Saranya; Thavamani, Palanisami; Megharaj, Mallavarapu; Lee, Yong Bok; Naidu, Ravi

    2016-04-15

    Development of an efficient bioinoculum is considered as an appropriate remedial approach to treat the PAHs-metal mixed contaminated sites. Therefore, we aimed to isolate a degrader able to exert an outstanding PAH catabolic potential with added traits of pH-metal-resistance, N-fix or P-solubilization from a manufactured gas plant site soil. The identified strain (MTS-6) was a first low and high molecular weight (LMW and HMW) PAHs degrading Trabulsiella sp. tolerant to pH 5. MTS-6 completely degraded the model 3 [150mgL(-1) phenanthrene (Phe)], 4 [150mgL(-1) pyrene (Pyr)] and 5 [50mgL(-1) benzo[a]pyrene (BaP)] ring PAHs in 6, 25 and 90 days, respectively. Presence of co-substrate (100mgL(-1) Phe) increased the biodegradation rate constant (k) and decreased the half-life time (t1/2) of HMW PAHs (100mgL(-1) Pyr or 50mgL(-1) BaP). The strain fixed 47μgmL(-1)N and solubilized 58μgmL(-1)P during PAH metabolism and exhibited an EC50 value of 3-4mgL(-1) for Cu, Cd, Pb and Zn. Over 6mgL(-1) metal levels was lethal for the microbe. The identified bacterium (MTS-6) with exceptional multi-functional traits opens the way for its exploitation in the bioremediation of manufactured gas plant sites in a sustainable way by employing bioaugmentation strategy. PMID:26775109

  8. Potential of Endophytic Bacterium Paenibacillus sp. PHE-3 Isolated from Plantago asiatica L. for Reduction of PAH Contamination in Plant Tissues

    PubMed Central

    Zhu, Xuezhu; Jin, Li; Sun, Kai; Li, Shuang; Ling, Wanting; Li, Xuelin

    2016-01-01

    Endophytes are ubiquitous in plants, and they may have a natural capacity to biodegrade polycyclic aromatic hydrocarbons (PAHs). In our study, a phenanthrene-degrading endophytic Paenibacillus sp. PHE-3 was isolated from P. asiatica L. grown in a PAH-contaminated site. The effects of environmental variables on phenanthrene biodegradation by strain PHE-3 were studied, and the ability of strain PHE-3 to use high molecular weight PAH (HMW-PAH) as a sole carbon source was also evaluated. Our results indicated that pH value of 4.0–8.0, temperature of 30 °C–42 °C, initial phenanthrene concentration less than 100 mg·L−1, and some additional nutrients are favorable for the biodegradation of phenanthrene by strain PHE-3. The maximum biodegradation efficiency of phenanthrene was achieved at 99.9% after 84 h cultivation with additional glutamate. Moreover, the phenanthrene biodegradation by strain PHE-3 was positively correlated with the catechol 2,3-dioxygenase activity (ρ = 0.981, p < 0.05), suggesting that strain PHE-3 had the capability of degrading HMW-PAHs. In the presence of other 2-, 3-ringed PAHs, strain PHE-3 effectively degraded HMW-PAHs through co-metabolism. The results of this study are beneficial in that the re-colonization potential and PAH degradation performance of endophytic Paenibacillus sp. PHE-3 may be applied towards reducing PAH contamination in plants. PMID:27347988

  9. Potential of Endophytic Bacterium Paenibacillus sp. PHE-3 Isolated from Plantago asiatica L. for Reduction of PAH Contamination in Plant Tissues.

    PubMed

    Zhu, Xuezhu; Jin, Li; Sun, Kai; Li, Shuang; Ling, Wanting; Li, Xuelin

    2016-01-01

    Endophytes are ubiquitous in plants, and they may have a natural capacity to biodegrade polycyclic aromatic hydrocarbons (PAHs). In our study, a phenanthrene-degrading endophytic Paenibacillus sp. PHE-3 was isolated from P. asiatica L. grown in a PAH-contaminated site. The effects of environmental variables on phenanthrene biodegradation by strain PHE-3 were studied, and the ability of strain PHE-3 to use high molecular weight PAH (HMW-PAH) as a sole carbon source was also evaluated. Our results indicated that pH value of 4.0-8.0, temperature of 30 °C-42 °C, initial phenanthrene concentration less than 100 mg·L(-1), and some additional nutrients are favorable for the biodegradation of phenanthrene by strain PHE-3. The maximum biodegradation efficiency of phenanthrene was achieved at 99.9% after 84 h cultivation with additional glutamate. Moreover, the phenanthrene biodegradation by strain PHE-3 was positively correlated with the catechol 2,3-dioxygenase activity (ρ = 0.981, p < 0.05), suggesting that strain PHE-3 had the capability of degrading HMW-PAHs. In the presence of other 2-, 3-ringed PAHs, strain PHE-3 effectively degraded HMW-PAHs through co-metabolism. The results of this study are beneficial in that the re-colonization potential and PAH degradation performance of endophytic Paenibacillus sp. PHE-3 may be applied towards reducing PAH contamination in plants. PMID:27347988

  10. Characterization of the transcriptome of Achromobacter sp. HZ01 with the outstanding hydrocarbon-degrading ability.

    PubMed

    Hong, Yue-Hui; Deng, Mao-Cheng; Xu, Xiao-Ming; Wu, Chou-Fei; Xiao, Xi; Zhu, Qing; Sun, Xian-Xian; Zhou, Qian-Zhi; Peng, Juan; Yuan, Jian-Ping; Wang, Jiang-Hai

    2016-06-15

    Microbial remediation has become one of the most important strategies for eliminating petroleum pollutants. Revealing the transcript maps of microorganisms with the hydrocarbon-degrading ability contributes to enhance the degradation of hydrocarbons and further improve the effectiveness of bioremediation. In this study, we characterized the transcriptome of hydrocarbon-degrading Achromobacter sp. HZ01 after petroleum treatment for 16h. A total of 38,706,280 and 38,954,413 clean reads were obtained by RNA-seq for the petroleum-treated group and control, respectively. By an effective de novo assembly, 3597 unigenes were obtained, including 3485 annotated transcripts. Petroleum treatment had significantly influenced the transcriptional profile of strain HZ01, involving 742 differentially expressed genes. A part of genes were activated to exert specific physiological functions, whereas more genes were down-regulated including specific genes related to cell motility, genes associated with glycometabolism, and genes coding for ribosomal proteins. Identification of genes related to petroleum degradation revealed that the fatty acid metabolic pathway and a part of monooxygenases and dehydrogenases were activated, whereas the TCA cycle was inactive. Additionally, terminal oxidation might be a major aerobic pathway for the degradation of n-alkanes in strain HZ01. The newly obtained data contribute to better understand the gene expression profiles of hydrocarbon-degrading microorganisms after petroleum treatment, to further investigate the genetic characteristics of strain HZ01 and other related species and to develop cost-effective and eco-friendly strategies for remediation of crude oil-polluted environments. PMID:26915487

  11. Transformation of pWWO in Rhizobium leguminosarum DPT to Engineer Toluene Degrading Ability for Rhizoremediation.

    PubMed

    Goel, Garima; Pandey, Piyush; Sood, Anchal; Bisht, Sandeep; Maheshwari, D K; Sharma, G D

    2012-06-01

    Rhizoremediation of organic xenobiotics is based on interactions between plants and their associated micro-organisms. The present work was designed to engineer a bacterial system having toluene degradation ability along with plant growth promoting characteristics for effective rhizoremediation. pWWO harboring the genes responsible for toluene breakdown was isolated from Pseudomonas putida MTCC 979 and successfully transformed in Rhizobium DPT. This resulted in a bacterial strain (DPT(T)) which had the ability to degrade toluene as well as enhance growth of host plant. The frequency of transformation was recorded 5.7 × 10(-6). DPT produced IAA, siderophore, chitinase, HCN, ACC deaminase, solubilized inorganic phosphate, fixed atmospheric nitrogen and inhibited the growth of Fusarium oxysporum and Macrophomina phaseolina in vitro. During pot assay, 50 ppm toluene in soil was found to inhibit the germination of Cajanus cajan seeds. However when the seeds bacterized with toluene degrading P. putida or R. leguminosarum DPT were sown in pots, again no germination was observed. Non-bacterized as well as bacterized seeds germinated successfully in toluene free soil as control. The results forced for an alternative mode of application of bacteria for rhizoremediation purpose. Hence bacterial suspension was mixed with soil having 50 ppm of toluene. Germination index in DPT treated soil was 100% while in P. putida it was 50%. Untreated soil with toluene restricted the seeds to germinate. PMID:23729882

  12. Compost Grown Agaricus bisporus Lacks the Ability to Degrade and Consume Highly Substituted Xylan Fragments

    PubMed Central

    de Vries, Ronald P.; Gruppen, Harry; Kabel, Mirjam A.

    2015-01-01

    The fungus Agaricus bisporus is commercially grown for the production of edible mushrooms. This cultivation occurs on compost, but not all of this substrate is consumed by the fungus. To determine why certain fractions remain unused, carbohydrate degrading enzymes, water-extracted from mushroom-grown compost at different stages of mycelium growth and fruiting body formation, were analyzed for their ability to degrade a range of polysaccharides. Mainly endo-xylanase, endo-glucanase, β-xylosidase and β-glucanase activities were determined in the compost extracts obtained during mushroom growth. Interestingly, arabinofuranosidase activity able to remove arabinosyl residues from doubly substituted xylose residues and α-glucuronidase activity were not detected in the compost enzyme extracts. This correlates with the observed accumulation of arabinosyl and glucuronic acid substituents on the xylan backbone in the compost towards the end of the cultivation. Hence, it was concluded that compost grown A. bisporus lacks the ability to degrade and consume highly substituted xylan fragments. PMID:26237450

  13. Ectomycorrhizal Fungal Protein Degradation Ability Predicted by Soil Organic Nitrogen Availability.

    PubMed

    Rineau, Francois; Stas, Jelle; Nguyen, Nhu H; Kuyper, Thomas W; Carleer, Robert; Vangronsveld, Jaco; Colpaert, Jan V; Kennedy, Peter G

    2016-03-01

    In temperate and boreal forest ecosystems, nitrogen (N) limitation of tree metabolism is alleviated by ectomycorrhizal (ECM) fungi. As forest soils age, the primary source of N in soil switches from inorganic (NH4 (+) and NO3 (-)) to organic (mostly proteins). It has been hypothesized that ECM fungi adapt to the most common N source in their environment, which implies that fungi growing in older forests would have greater protein degradation abilities. Moreover, recent results for a model ECM fungal species suggest that organic N uptake requires a glucose supply. To test the generality of these hypotheses, we screened 55 strains of 13 Suillus species with different ecological preferences for their in vitro protein degradation abilities. Suillus species preferentially occurring in mature forests, where soil contains more organic matter, had significantly higher protease activity than those from young forests with low-organic-matter soils or species indifferent to forest age. Within species, the protease activities of ecotypes from soils with high or low soil organic N content did not differ significantly, suggesting resource partitioning between mineral and organic soil layers. The secreted protease mixtures were strongly dominated by aspartic peptidases. Glucose addition had variable effects on secreted protease activity; in some species, it triggered activity, but in others, activity was repressed at high concentrations. Collectively, our results indicate that protease activity, a key ectomycorrhizal functional trait, is positively related to environmental N source availability but is also influenced by additional factors, such as carbon availability. PMID:26682855

  14. Prevent the degradation of algicidal ability in Scenedesmus-lysing bacteria using optimized cryopreservation.

    PubMed

    Liao, Chunli; Liu, Xiaobo

    2016-03-01

    With the anthropogenic nutrient loading increasing, the frequency and impacts of harmful algal blooms (HABs) have intensified in recent years. To biocontrol HABs, many corresponding algal-lysing bacteria have been exploited successively. However, there are few studies on an effective algal-lysing culture collection to prevent cells from death and particularly the degradation of algicidal ability to their hosts. An optimized cryopreservation was developed and experiments on the validation of this method on preventing algicidal degradation and effects of this optimized cryopreservation on the survival rate of Scenedesmus-lysing bacterium, Enterobacter NP23, isolated from Scenedesmus sp. community, China, on the algicidal dynamic of Scenedesmus wuhanensis was investigated. The optimized cryoprotectant composition consists of 30.0 g/L gelatin, 48.5 g/L sucrose, and 28.4 g/L glycerol, respectively. Using this approach, the survival rate of NP23 cells can still maintain above 90 % and the algal-lysing rate only decline 4 % after the 18-month cryoprotection. Moreover, the 16 generations' passage experiment showed a significant (p < 0.05) genetic stability of algicidal capacity after 18 months. The growth dynamic of S. wuhanensis was investigated in a 5-L bioreactor during 132 h in the absence or presence of NP23. As a result, NP23 has a significant (p < 0.05) inhibition to S. wuhanensis growth when injected into algal culture in the exponential phase at 60th hour. In addition, S. wuhanensis culture initially with NP23 exhibited a slow growth, performing a prolonged lag phase without a clear stationary phase and then rapidly decreased. Our findings, combined with the capacity of preventing the degradation of algicidal ability collectively suggest that the use of this opitimized cryopreservation may be a promising strategy for maintaining algicidal cells. PMID:26593730

  15. Isolation and characterization of heavy polycyclic aromatic hydrocarbon-degrading bacteria adapted to electrokinetic conditions.

    PubMed

    Li, Fengmei; Guo, Shuhai; Hartog, Niels; Yuan, Ye; Yang, Xuelian

    2016-02-01

    Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria capable of growing under electrokinetic conditions were isolated using an adjusted acclimation and enrichment procedure based on soil contaminated with heavy PAHs in the presence of an electric field. Their ability to degrade heavy PAHs under an electric field was individually investigated in artificially contaminated soils. The results showed that strains PB4 (Pseudomonas fluorescens) and FB6 (Kocuria sp.) were the most efficient heavy PAH degraders under electrokinetic conditions. They were re-inoculated into a polluted soil from an industrial site with a PAH concentration of 184.95 mg kg(-1). Compared to the experiments without an electric field, the degradation capability of Pseudomonas fluorescens and Kocuria sp. was enhanced in the industrially polluted soil under electrokinetic conditions. The degradation extents of total PAHs were increased by 15.4 and 14.0% in the electrokinetic PB4 and FB6 experiments (PB4 + EK and FB6 + EK) relative to the PB4 and FB6 experiments without electrokinetic conditions (PB4 and FB6), respectively. These results indicated that P. fluorescens and Kocuria sp. could efficiently degrade heavy PAHs under electrokinetic conditions and have the potential to be used for the electro-bioremediation of PAH-contaminated soil, especially if the soil is contaminated with heavy PAHs. PMID:26615425

  16. On the Myth and the Reality of the Temporal Validity Degradation of General Mental Ability Test Scores

    ERIC Educational Resources Information Center

    Reeve, Charlie L.; Bonaccio, Silvia

    2011-01-01

    Claims of changes in the validity coefficients associated with general mental ability (GMA) tests due to the passage of time (i.e., temporal validity degradation) have been the focus of an on-going debate in applied psychology. To evaluate whether and, if so, under what conditions this degradation may occur, we integrate evidence from multiple…

  17. Factors influencing the ability of Pseudomonas putida strains epI and II to degrade the organophosphate ethoprophos.

    PubMed

    Karpouzas, D G; Walker, A

    2000-07-01

    Two strains of Pseudomonas putida (epI and epII), isolated previously from ethoprophos-treated soil, were able to degrade ethoprophos (10 mg 1(-1)) in a mineral salts medium plus nitrogen (MSMN) in less than 50 h with a concurrent population growth. Addition of glucose or succinate to MSMN did not influence the degrading ability of Ps. putida epI, but increased the lag phase before rapid degradation commenced with Ps. putida epII. The degrading ability of the two isolates was lost when the pesticide provided the sole source of phosphorus. Degradation of ethoprophos was most rapid when bacterial cultures were incubated at 25 and 37 degrees C. Pseudomonas putida epI was capable of completely degrading ethoprophos at a slow rate at 5 degrees C, compared with Ps. putida epII which could not completely degrade ethoprophos at the same time. Pseudomonas putida epI was capable of degrading ethoprophos when only 60 cells ml(-1) were used as initial inoculum. In contrast, Ps. putida epII was able to totally degrade ethoprophos when inoculum densities of 600 cells ml(-1) or higher were used. In general, longer lag phases accompanied the lower inoculum levels. Both isolates rapidly degraded ethoprophos in MSMN at pHs ranging from 5.5 to 7.6, but not at pH 5 or below. PMID:10945777

  18. Filter Paper Degrading Ability of a Trichoderma Strain With Multinucleate Conidia

    NASA Astrophysics Data System (ADS)

    Toyama, Hideo; Yano, Makiko; Hotta, Takeshi; Toyama, Nobuo

    The multinucleate conidia were produced from the green mature conidia of Trichoderma reesei Rut C-30 strain by colchicine treatment. The strain with higher Filter paper degrading ability was selected among those conidia using a double layer selection medium. The selected strain, JS-2 was able to collapse the filter paper within 15 min but the original strain took 25 min to collapse it completely. Moreover, the amount of reducing sugar in the L-type glass tube of the strain, JS-2, was greater than that of the original strain. The Avicel, CMC-Na, and Salicin hydrolyzing activity of the strain, JS-2, increased 2.1 times, 1.2 times, and 3.6 times higher than that of the original strain.

  19. The Ability of AMSTAR Dechlorination Solution to Remove and Degrade PCBs from Contaminated Surfaces

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline E.

    2006-01-01

    Polychlorinated biphenyls (PCBs) are a group of synthetic aromatic compounds with the general formula C12H(10-x)Cl(-x) that were historically used in industrial paints, caulking material and adhesives, as their properties enhanced structural integrity, reduced flammability and boosted antifungal properties. Although the United States Environmental Protection Agency (USEPA) has banned the manufacture of PCBs since 1979, they have been found in at least 500 of the 1,598 National Priorities List (Superfund) sites identified by the USEPA. Prior to the US EPA's ban on PCB production, PCBs were commonly used as additives in paints and asphalt-based adhesives that were subsequently applied to a variety of structures. Government facilities constructed as early as 1930 utilized PCB-containing binders or PCB-containing paints, which are now leaching into the environment and posing ecological and worker health concerns. In 2006, a commercially available product known as AMSTAR Dechlorination Solution was tested at NASA's Kennedy Space Center for its ability to remove and degrade PCBs from structural materials. This evaluation was requested by the Environmental Security Technology Certification Program (ESTCP) evaluating the ability of NASA's Bimetallic Treatment System (BTS) to remove and degrade PCBs from structural materials. The results of the laboratory testing are to be used to determine if a side-by-side field-scale test comparing BTS to AMSTAR was warranted. A recommended sampling and analysis testing program was submitted to ESTCP that included triplicate screening of AMSTAR's PCB dechlorination capabilities on a variety of surfaces including glass, bare metal, and painted metal coupons. The test procedures, analytical techniques and results obtained are presented in this interim report to ESTCP.

  20. Facilitated Bioavailability of PAHs to Native Soil Bacteria Promoted by Nutrient Addition

    NASA Astrophysics Data System (ADS)

    Pignatello, J. J.; Li, J.

    2006-12-01

    Facilitated bioavailability refers to the ability of an organism to have access to pools of non-labile chemical. Mechanisms proposed for this ability include release of biosurfactants, direct mining of adsorbed chemical, alteration of interfacial chemistry, and passive effects of attached biofilms on molecular diffusion. We investigated the biodegradation by indigenous organisms of a set of 16 standard polycyclic aromatic hydrocarbons (PAHs) in coal tar contaminated soil from a manufactured gas plant site in Connecticut in well- mixed aerobic reactors containing various additives over a 93-106 day period. Parallel desorption experiments were conducted in the presence of a biocide and an excess of Tenax-TA adsorbent beads to simulate desorption to infinite dilution (i.e., maximal concentration gradient for diffusion). Both biotransformation and desorption decreased with PAH ring size, as expected. Biodegradation by native organisms was strongly accelerated by addition of inorganic nutrients (N, P, K, and trace metals). In the absence of added nutrients, the biodegradation resistant fraction correlated well with the desorption resistant fraction. However, in the presence of added nutrients, the extent of biodegradation was greater than the extent of desorption except for the largest compounds, which neither degraded nor desorbed. The ability of nutrients to accelerate degradation of bioavailable PAHs by native cells indicates that the persistence of PAHs for many decades at this site is likely due to nutrient-limited natural attenuation. The surprising result of this study is that application of nutrients promotes `facilitated bioavailability' of PAHs in this soil to indigenous microorganisms.

  1. Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach.

    PubMed

    Arun, A; Raja, P Praveen; Arthi, R; Ananthi, M; Kumar, K Sathish; Eyini, M

    2008-12-01

    The polycyclic aromatic hydrocarbons (PAHs) biodegradation potential of the five basidiomycetes' fungal monocultures and their cocultures was compared with that of a Pseudomonas isolate recovered from oil-spilled soil. As utilization of hydrocarbons by the microorganisms is associated with biosurfactant production, the level of biosurfactant production and its composition by the selected microorganisms was also investigated. The Pseudomonas isolate showed higher ability to degrade three of the five PAHs but the isolate did not produce biosurfactant higher than C. versicolor and P. ostreatus. Among the PAHs, the most effective biodegradation of PAH--pyrene (42%)--was obtained with the fungus C. versicolor. Cocultures involving the fungi and Pseudomonas could not significantly degrade the selected PAHs compounds above that degraded by the most efficient monoculture. A slight increase in pyrene degradation was observed in cocultures of C. versicolor and F. palustris (93.7% pyrene). The crude biosurfactant was biochemically characterized as a multicomponent surfactant consisting of protein and polysaccharides. The PAH biodegradation potential of the basidiomycetes fungi positively correlated with their potential to express ligninolytic enzymes such as lignin peroxidase (Lip), manganese peroxidase (Mnp), and laccase. The present study utilized in silico method such as protein-ligand docking using the FRED in Open Eye software as a tool to assess the level of ligninolytic enzymes and PAHs interactions. The in silico analysis using FRED revealed that of the five PAHs, maximum interaction occurred between pyrene and all the three ligninolytic enzymes. The results of the in silico analysis corroborated with our experimental results showing that pyrene was degraded to the maximum extent by species such as C. versicolor and P. ostreatus. PMID:18975143

  2. Phase-controllable synthesis of nanosized nickel phosphides and comparison of photocatalytic degradation ability

    NASA Astrophysics Data System (ADS)

    Ni, Yonghong; Jin, Lina; Hong, Jianming

    2011-01-01

    In this paper, we employed a facile hydrothermal route to successfully synthesize nanosized nickel phosphide particles with controlled phases via selecting different surfactants at different temperatures and times. The phases of the as-obtained products were determined by X-ray powder diffraction (XRD) patterns and Rietveld refinement of XRD data. The morphologies of the products were characterized by (high resolution) transmission electron microscopy (HR/TEM) and field emission scanning electron microscopy (FESEM). Experiments indicated that pure Ni2P phase could be prepared when nontoxic red phosphorus and nickel dichloride were used as starting materials in the presence of polyvinylpyrrolidone (PVP, 30 K), sodium dodecylbenzene sulfonate (SDBS), cetyltrimethylammonium bromide (CTAB) or polyethylene glycol 10000 (PEG-10000) at 160 °C for 10 h. When acrylamide (AM) was selected as the surfactant, however, pure Ni12P5 phase could be prepared by prolonging the reaction time to 20 h at 160 °C, or enhancing the reaction temperature to 180 °C for 10 h. Furthermore, the experiments indicated that the pure Ni2P phase possessed a stronger photocatalytic degradation ability than the pure Ni12P5 phase.

  3. Phase-controllable synthesis of nanosized nickel phosphides and comparison of photocatalytic degradation ability.

    PubMed

    Ni, Yonghong; Jin, Lina; Hong, Jianming

    2011-01-01

    In this paper, we employed a facile hydrothermal route to successfully synthesize nanosized nickel phosphide particles with controlled phases via selecting different surfactants at different temperatures and times. The phases of the as-obtained products were determined by X-ray powder diffraction (XRD) patterns and Rietveld refinement of XRD data. The morphologies of the products were characterized by (high resolution) transmission electron microscopy (HR/TEM) and field emission scanning electron microscopy (FESEM). Experiments indicated that pure Ni2P phase could be prepared when nontoxic red phosphorus and nickel dichloride were used as starting materials in the presence of polyvinylpyrrolidone (PVP, 30 K), sodium dodecylbenzene sulfonate (SDBS), cetyltrimethylammonium bromide (CTAB) or polyethylene glycol 10000 (PEG-10000) at 160 °C for 10 h. When acrylamide (AM) was selected as the surfactant, however, pure Ni12P5 phase could be prepared by prolonging the reaction time to 20 h at 160 °C, or enhancing the reaction temperature to 180 °C for 10 h. Furthermore, the experiments indicated that the pure Ni2P phase possessed a stronger photocatalytic degradation ability than the pure Ni12P5 phase. PMID:21049133

  4. Uncovering the abilities of Agaricus bisporus to degrade plant biomass throughout its life cycle.

    PubMed

    Patyshakuliyeva, Aleksandrina; Post, Harm; Zhou, Miaomiao; Jurak, Edita; Heck, Albert J R; Hildén, Kristiina S; Kabel, Mirjam A; Mäkelä, Miia R; Altelaar, Maarten A F; de Vries, Ronald P

    2015-08-01

    The economically important edible basidiomycete mushroom Agaricus bisporus thrives on decaying plant material in forests and grasslands of North America and Europe. It degrades forest litter and contributes to global carbon recycling, depolymerizing (hemi-)cellulose and lignin in plant biomass. Relatively little is known about how A. bisporus grows in the controlled environment in commercial production facilities and utilizes its substrate. Using transcriptomics and proteomics, we showed that changes in plant biomass degradation by A. bisporus occur throughout its life cycle. Ligninolytic genes were only highly expressed during the spawning stage day 16. In contrast, (hemi-)cellulolytic genes were highly expressed at the first flush, whereas low expression was observed at the second flush. The essential role for many highly expressed plant biomass degrading genes was supported by exo-proteome analysis. Our data also support a model of sequential lignocellulose degradation by wood-decaying fungi proposed in previous studies, concluding that lignin is degraded at the initial stage of growth in compost and is not modified after the spawning stage. The observed differences in gene expression involved in (hemi-)cellulose degradation between the first and second flushes could partially explain the reduction in the number of mushrooms during the second flush. PMID:26118398

  5. Production of Laccase by Cochliobolus sp. Isolated from Plastic Dumped Soils and Their Ability to Degrade Low Molecular Weight PVC

    PubMed Central

    Sumathi, Tirupati; Sri Lakshmi, Akula; SaiGopal, D. V. R.

    2016-01-01

    One of the utmost man-made problems faced today has been the ever-increasing plastic waste filling the world. It accounts for an estimated 20–30% (by volume) of municipal solid waste in landfill sites worldwide. Research on plastic biodegradation has been steadily growing over the past four decades. Several fungi have been identified that produce enzymes capable of plastic degradation in various laboratory conditions. This paper presents a study that determined the ability of fungi to degrade low molecular weight polyvinyl chloride (PVC) by the enzyme laccase. We have isolated a fungal species, Cochliobolus sp., from plastic dumped soils and they were cultured on Czapek Dox Agar slants at 30°C. The effectiveness of this fungal species on the degradation of commercial low molecular weight polyvinyl chloride (PVC) was studied under laboratory conditions. Significant differences were observed from the FTIR, GC-MS, and SEM results in between control and Cochliobolus sp. treated PVC. PMID:27293894

  6. Production of Laccase by Cochliobolus sp. Isolated from Plastic Dumped Soils and Their Ability to Degrade Low Molecular Weight PVC.

    PubMed

    Sumathi, Tirupati; Viswanath, Buddolla; Sri Lakshmi, Akula; SaiGopal, D V R

    2016-01-01

    One of the utmost man-made problems faced today has been the ever-increasing plastic waste filling the world. It accounts for an estimated 20-30% (by volume) of municipal solid waste in landfill sites worldwide. Research on plastic biodegradation has been steadily growing over the past four decades. Several fungi have been identified that produce enzymes capable of plastic degradation in various laboratory conditions. This paper presents a study that determined the ability of fungi to degrade low molecular weight polyvinyl chloride (PVC) by the enzyme laccase. We have isolated a fungal species, Cochliobolus sp., from plastic dumped soils and they were cultured on Czapek Dox Agar slants at 30°C. The effectiveness of this fungal species on the degradation of commercial low molecular weight polyvinyl chloride (PVC) was studied under laboratory conditions. Significant differences were observed from the FTIR, GC-MS, and SEM results in between control and Cochliobolus sp. treated PVC. PMID:27293894

  7. Biodegradation of PAHs in Soil: Influence of Initial PAHs Concentration

    NASA Astrophysics Data System (ADS)

    Kamil, N. A. F. M.; Talib, S. A.

    2016-07-01

    Most studies on biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) evaluate the effect of initial PAHs concentration in liquid medium. There are limited studies on evaluation in solid medium such as contaminated soil. This study investigated the potential of the bacteria, Corynebacterium urealyticum isolated from municipal sludge in degrading phenanthrene contaminated soil in different phenanthrene concentration. Batch experiments were conducted over 20 days in reactors containing artificially contaminated phenanthrene soil at different concentration inoculated with a bacterial culture. This study established the optimum condition for phenanthrene degradation by the bacteria under nonindigenous condition at 500 mg/kg of initial phenanthrene concentration. High initial concentration required longer duration for biodegradation process compared to low initial concentration. The bacteria can survive for three days for all initial phenanthrene concentrations.

  8. Multimedia Model for Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs in Lake Michigan

    PubMed Central

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) contamination in the U.S. Great Lakes has long been of concern, but information regarding the current sources, distribution, and fate of PAH contamination is lacking, and very little information exists for the potentially more toxic nitro-derivatives of PAHs (NPAHs). This study uses fugacity, food web, and Monte Carlo models to examine 16 PAHs and five NPAHs in Lake Michigan, and to derive PAH and NPAH emission estimates. Good agreement was found between predicted and measured PAH concentrations in air, but concentrations in water and sediment were generally under-predicted, possibly due to incorrect parameter estimates for degradation rates, discharges to water, or inputs from tributaries. The food web model matched measurements of heavier PAHs (≥5 rings) in lake trout, but lighter PAHs (≤4 rings) were overpredicted, possibly due to overestimates of metabolic half-lives or gut/gill absorption efficiencies. Derived PAH emission rates peaked in the 1950s, and rates now approach those in the mid-19th century. The derived emission rates far exceed those in the source inventories, suggesting the need to reconcile differences and reduce uncertainties. Although additional measurements and physiochemical data are needed to reduce uncertainties and for validation purposes, the models illustrate the behavior of PAHs and NPAHs in Lake Michigan, and they provide useful and potentially diagnostic estimates of emission rates. PMID:25373871

  9. The Ability of Bifidobacteria To Degrade Arabinoxylan Oligosaccharide Constituents and Derived Oligosaccharides Is Strain Dependent

    PubMed Central

    Rivière, Audrey; Moens, Frédéric; Selak, Marija; Maes, Dominique; Weckx, Stefan

    2014-01-01

    Arabinoxylan oligosaccharides (AXOS) are prebiotic carbohydrates with promising health-promoting properties that stimulate the activity of specific colon bacteria, in particular bifidobacteria. However, the mechanisms by which bifidobacterial strains break down these compounds in the colon is still unknown. This study investigates AXOS consumption of a large number of bifidobacterial strains (36), belonging to 11 different species, systematically. To determine their degradation mechanisms, all strains were grown on a mixture of arabinose and xylose, xylo-oligosaccharides, and complex AXOS molecules as the sole added energy sources. Based on principal component and cluster analyses of their different arabinose substituent and/or xylose backbone consumption patterns, five clusters that were species independent could be distinguished among the bifidobacterial strains tested. In parallel, the strains were screened for the presence of genes encoding several putative AXOS-degrading enzymes, but no clear-cut correlation could be made with the different degradation mechanisms. The intra- and interspecies differences in the consumption patterns of AXOS indicate that bifidobacterial strains could avoid competition among each other or even could cooperate jointly to degrade these complex prebiotics. The knowledge gained on the AXOS degradation mechanisms in bifidobacteria can be of importance in the rational design of prebiotics with tailor-made composition and thus increased specificity in the colon. PMID:24141124

  10. The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill.

    PubMed

    Kappell, Anthony D; Wei, Yin; Newton, Ryan J; Van Nostrand, Joy D; Zhou, Jizhong; McLellan, Sandra L; Hristova, Krassimira R

    2014-01-01

    The Deepwater Horizon (DWH) blowout resulted in oil transport, including polycyclic aromatic hydrocarbons (PAHs) to the Gulf of Mexico shoreline. The microbial communities of these shorelines are thought to be responsible for the intrinsic degradation of PAHs. To investigate the Gulf Coast beach microbial community response to hydrocarbon exposure, we examined the functional gene diversity, bacterial community composition, and PAH degradation capacity of a heavily oiled and non-oiled beach following the oil exposure. With a non-expression functional gene microarray targeting 539 gene families, we detected 28,748 coding sequences. Of these sequences, 10% were uniquely associated with the severely oil-contaminated beach and 6.0% with the non-oiled beach. There was little variation in the functional genes detected between the two beaches; however the relative abundance of functional genes involved in oil degradation pathways, including polycyclic aromatic hydrocarbons (PAHs), were greater in the oiled beach. The microbial PAH degradation potentials of both beaches, were tested in mesocosms. Mesocosms were constructed in glass columns using sands with native microbial communities, circulated with artificial sea water and challenged with a mixture of PAHs. The low-molecular weight PAHs, fluorene and naphthalene, showed rapid depletion in all mesocosms while the high-molecular weight benzo[α]pyrene was not degraded by either microbial community. Both the heavily oiled and the non-impacted coastal communities showed little variation in their biodegradation ability for low molecular weight PAHs. Massively-parallel sequencing of 16S rRNA genes from mesocosm DNA showed that known PAH degraders and genera frequently associated with oil hydrocarbon degradation represented a major portion of the bacterial community. The observed similar response by microbial communities from beaches with a different recent history of oil exposure suggests that Gulf Coast beach communities are

  11. The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill

    PubMed Central

    Kappell, Anthony D.; Wei, Yin; Newton, Ryan J.; Van Nostrand, Joy D.; Zhou, Jizhong; McLellan, Sandra L.; Hristova, Krassimira R.

    2014-01-01

    The Deepwater Horizon (DWH) blowout resulted in oil transport, including polycyclic aromatic hydrocarbons (PAHs) to the Gulf of Mexico shoreline. The microbial communities of these shorelines are thought to be responsible for the intrinsic degradation of PAHs. To investigate the Gulf Coast beach microbial community response to hydrocarbon exposure, we examined the functional gene diversity, bacterial community composition, and PAH degradation capacity of a heavily oiled and non-oiled beach following the oil exposure. With a non-expression functional gene microarray targeting 539 gene families, we detected 28,748 coding sequences. Of these sequences, 10% were uniquely associated with the severely oil-contaminated beach and 6.0% with the non-oiled beach. There was little variation in the functional genes detected between the two beaches; however the relative abundance of functional genes involved in oil degradation pathways, including polycyclic aromatic hydrocarbons (PAHs), were greater in the oiled beach. The microbial PAH degradation potentials of both beaches, were tested in mesocosms. Mesocosms were constructed in glass columns using sands with native microbial communities, circulated with artificial sea water and challenged with a mixture of PAHs. The low-molecular weight PAHs, fluorene and naphthalene, showed rapid depletion in all mesocosms while the high-molecular weight benzo[α]pyrene was not degraded by either microbial community. Both the heavily oiled and the non-impacted coastal communities showed little variation in their biodegradation ability for low molecular weight PAHs. Massively-parallel sequencing of 16S rRNA genes from mesocosm DNA showed that known PAH degraders and genera frequently associated with oil hydrocarbon degradation represented a major portion of the bacterial community. The observed similar response by microbial communities from beaches with a different recent history of oil exposure suggests that Gulf Coast beach communities are

  12. Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota.

    PubMed

    Carvalho, Mariana B; Martins, Isabel; Leitão, Maria C; Garcia, Helga; Rodrigues, Cátia; San Romão, Vitória; McLellan, Iain; Hursthouse, Andrew; Silva Pereira, Cristina

    2009-10-01

    Pentachlorophenol (PCP) bioremediation by the fungal strains amongst the cork-colonising community has not yet been analysed. In this paper, the co- and direct metabolism of PCP by each of the 17 fungal species selected from this community were studied. Using hierarchical data analysis, the isolates were ranked by their PCP bioremediation potential. Fifteen isolates were able to degrade PCP under co-metabolic conditions, and surprisingly Chrysonilia sitophila, Trichoderma longibrachiatum, Mucor plumbeus, Penicillium janczewskii and P. glandicola were able to directly metabolise PCP, leading to its complete depletion from media. PCP degradation intermediates are preliminarily discussed. Data emphasise the significance of these fungi to have an interesting potential to be used in PCP bioremediation processes. PMID:19543759

  13. When less is more: Impact of face processing ability on recognition of visually degraded faces.

    PubMed

    Royer, Jessica; Blais, Caroline; Gosselin, Frédéric; Duncan, Justin; Fiset, Daniel

    2015-10-01

    It is generally thought that faces are perceived as indissociable wholes. As a result, many assume that hiding large portions of the face by the addition of noise or by masking limits or qualitatively alters natural "expert" face processing by forcing observers to use atypical processing mechanisms. We addressed this question by measuring face processing abilities with whole faces and with Bubbles (Gosselin & Schyns, 2001), an extreme masking method thought by some to bias the observers toward the use of atypical processing mechanisms by limiting the use of whole-face strategies. We obtained a strong and negative correlation between individual face processing ability and the number of bubbles (r = -.79), and this correlation remained strong even after controlling for general visual/cognitive processing ability (rpartial = -.72). In other words, the better someone is at processing faces, the fewer facial parts they need to accurately carry out this task. Thus, contrary to what many researchers assume, face processing mechanisms appear to be quite insensitive to the visual impoverishment of the face stimulus. PMID:26168140

  14. Plant biomass degrading ability of the coprophilic ascomycete fungus Podospora anserina.

    PubMed

    Couturier, Marie; Tangthirasunun, Narumon; Ning, Xie; Brun, Sylvain; Gautier, Valérie; Bennati-Granier, Chloé; Silar, Philippe; Berrin, Jean-Guy

    2016-01-01

    The degradation of plant biomass is a major challenge towards the production of bio-based compounds and materials. As key lignocellulolytic enzyme producers, filamentous fungi represent a promising reservoir to tackle this challenge. Among them, the coprophilous ascomycete Podospora anserina has been used as a model organism to study various biological mechanisms because its genetics are well understood and controlled. In 2008, the sequencing of its genome revealed a great diversity of enzymes targeting plant carbohydrates and lignin. Since then, a large array of lignocellulose-acting enzymes has been characterized and genetic analyses have enabled the understanding of P. anserina metabolism and development on plant biomass. Overall, these research efforts shed light on P. anserina strategy to unlock recalcitrant lignocellulose deconstruction. PMID:27263000

  15. Urban sprawl leaves its PAH signature

    USGS Publications Warehouse

    Van Metre, P.C.; Mahler, B.J.; Furlong, E.T.

    2000-01-01

    The increasing vehicle traffic associated with urban sprawl in the United States is frequently linked to degradation of air quality, but its effect on aquatic sediment is less well-recognized. This study evaluates trends in PAHs, a group of contaminants with multiple urban sources, in sediment cores from 10 reservoirs and lakes in six U.S. metropolitan areas. The watersheds chosen represent a range in degree and age of urbanization. Concentrations of PAHs in all 10 reservoirs and lakes increased during the past 20-40 years. PAH contamination of the most recently deposited sediment at all sites exceeded sediment-quality guidelines established by Environment Canada, in some cases by several orders of magnitude. These results add a new chapter to the story told by previous coring studies that reported decreasing concentrations of PAHs after reaching highs in the 1950s. Concurrent with the increase in concentrations is a change in the assemblage of PAHs that indicates the increasing trends are driven by combustion sources. The increase in PAH concentrations tracks closely with increases in automobile use, even in watersheds that have not undergone substantial changes in urban land-use levels since the 1970s.The increasing vehicle traffic associated with urban sprawl in the United States is frequently linked to degradation of air quality, but its effect on aquatic sediment is less well-recognized. This study evaluates trends in PAHs, a group of contaminants with multiple urban sources, in sediment cores from 10 reservoirs and lakes in six U.S. metropolitan areas. The watersheds chosen represent a range in degree and age of urbanization. Concentrations of PAHs in all 10 reservoirs and lakes increased during the past 20-40 years. PAH contamination of the most recently deposited sediment at all sites exceeded sediment-quality guidelines established by Environment Canada, in some cases by several orders of magnitude. These results add a new chapter to the story told by

  16. Oxidative biodegradation pathways of PAHs

    SciTech Connect

    Cerniglia, C.E.

    1993-12-31

    Polycyclic aromatic hydrocarbons (PAHs) constitute a class of hazardous organic chemical consisting of three of more fused benzene rings in linear, angular and cluster arrangements. PAHs mostly occur as a result of fossil fuel combustion, as by-product of industrial processing and during the cooking of foods. A catabolically diverse microbial community, consisting of bacteria, fungi and algae, metabolizes aromatic compounds. Molecular oxygen is essential for the initial hydroxylation of polycyclic aromatic hydrocarbons by microorganisms. In contrast to bacteria, filamentous fungi use hydroxylation as a prelude to detoxification rather than to catabolism and assimilation. The biochemical principles underlying the degradation of polycyclic aromatic hydrocarbons will be discussed. The oxidative pathways of polycyclic aromatic hydrocarbon catabolism will be discussed. Studies will be presented on the relationship between the chemical structure of the polycyclic aromatic hydrocarbon and the rate of polycyclic aromatic hydrocarbon biodegradation in aquatic and terrestrial ecosystems.

  17. Enhanced catalytic oxidation ability of ternary layered double hydroxides for organic pollutants degradation.

    PubMed

    Fahel, Jean; Kim, Sanghoon; Durand, Pierrick; André, Erwan; Carteret, Cédric

    2016-05-10

    Co(2+) and Cu(2+) substituted MgAl layered double hydroxides with an M(2+)/M(3+) atomic ratio of 2.0 were synthesized by a co-precipitation method and fully characterized using various techniques including powder X-ray diffraction, ICP-AES analysis, FT-IR, DR UV-Vis spectroscopy, N2 adsorption-desorption and transmission electron microscopy. The materials revealed a good crystallinity with no phase impurity and successful substitution of cobalt and copper ions in the framework of binary LDH with the target ratio of metals in the sheet. The adsorption characteristics (kinetic and isotherm) and the catalytic oxidation of organic pollutants, methylene blue (cationic dye) and orange II (anionic) were carried out to investigate a potential use of LDH materials as catalysts. In particular, Co3Cu1Al2 LDH exhibited an excellent catalytic activity towards catalytic dye degradation, especially for orange II with good stability and reusability over several times. Furthermore, this LDH material showed good catalytic performance for several chlorophenol compounds, suggesting its practical application in wastewater treatment. Therefore, layered double hydroxides substituted with Co(2+) and Cu(2+) could be promising candidates in various applications, such as the abatement of organic pollutants. PMID:27097543

  18. Conidia immobilization of T-DNA inserted Trichoderma atroviride mutant AMT-28 with dichlorvos degradation ability and exploration of biodegradation mechanism.

    PubMed

    Sun, Wenliang; Chen, Yunpeng; Liu, Lixing; Tang, Jun; Chen, Jie; Liu, Peng

    2010-12-01

    An immobilizing conidia approach was used to study the degradation ability of dichlorvos in Trichoderma atroviride T-DNA insertional mutant AMT-28. Beads with 10(7) immobilized conidia per 100 mL of Na-alginate solution exhibited the highest degradation abilities. The immobilized conidia showed enhanced degradation abilities compared with immobilized or freely suspended mycelia. The immobilized cells kept good storage capacity and reusability. Dichlorvos was confirmed to be completely removed by mycelia of AMT-28 within 7 days using HPLC analysis. The dichlorvos degradation rates in auxotrophic Burk media varied and were significantly affected by nitrogen sources. There was no detectable biosorption and the removal of dichlorvos in AMT-28 was primarily attributed to a kind of Biomineralization process. PMID:20685111

  19. Solubilization, solution equilibria, and biodegradation of PAH's under thermophilic conditions.

    PubMed

    Viamajala, Sridhar; Peyton, Brent M; Richards, Lee A; Petersen, James N

    2007-01-01

    Biodegradation rates of PAHs are typically low at mesophilic conditions and it is believed that the kinetics of degradation is controlled by PAH solubility and mass transfer rates. Solubility tests were performed on phenanthrene, fluorene and fluoranthene at 20 degrees C, 40 degrees C and 60 degrees C and, as expected, a significant increase in the equilibrium solubility concentration and of the rate of dissolution of these polycyclic aromatic hydrocarbons (PAHs) was observed with increasing temperature. A first-order model was used to describe the PAH dissolution kinetics and the thermodynamic property changes associated with the dissolution process (enthalpy, entropy and Gibb's free energy of solution) were evaluated. Further, other relevant thermodynamic properties for these PAHs, including the activity coefficients at infinite dilution, Henry's law constants and octanol-water partition coefficients, were calculated in the temperature range 20-60 degrees C. In parallel with the dissolution studies, three thermophilic Geobacilli were isolated from compost that grew on phenanthrene at 60 degrees C and degraded the PAH more rapidly than other reported mesophiles. Our results show that while solubilization rates of PAHs are significantly enhanced at elevated temperatures, the biodegradation of PAHs under thermophilic conditions is likely mass transfer limited due to enhanced degradation rates. PMID:16934313

  20. Solubilization, Solution Equilibria, and Biodegradation of PAH's under Thermophilic Conditions

    SciTech Connect

    Viamajala, S.; Peyton, B. M.; Richards, L. A.; Petersen, J. N.

    2007-01-01

    Biodegradation rates of PAHs are typically low at mesophilic conditions and it is believed that the kinetics of degradation is controlled by PAH solubility and mass transfer rates. Solubility tests were performed on phenanthrene, fluorene and fluoranthene at 20 C, 40 C and 60 C and, as expected, a significant increase in the equilibrium solubility concentration and of the rate of dissolution of these polycyclic aromatic hydrocarbons (PAHs) was observed with increasing temperature. A first-order model was used to describe the PAH dissolution kinetics and the thermodynamic property changes associated with the dissolution process (enthalpy, entropy and Gibb's free energy of solution) were evaluated. Further, other relevant thermodynamic properties for these PAHs, including the activity coefficients at infinite dilution, Henry's law constants and octanol-water partition coefficients, were calculated in the temperature range 20-60 C. In parallel with the dissolution studies, three thermophilic Geobacilli were isolated from compost that grew on phenanthrene at 60 C and degraded the PAH more rapidly than other reported mesophiles. Our results show that while solubilization rates of PAHs are significantly enhanced at elevated temperatures, the biodegradation of PAHs under thermophilic conditions is likely mass transfer limited due to enhanced degradation rates.

  1. Environmental stability of PAH source indices in pyrogenic tars

    SciTech Connect

    Uhler, A.D.; Emsbo-Mattingly, S.D.

    2006-04-15

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants found in soil, sediments, and airborne particulates. The majority of PAHs found in modern soils and sediments arise from myriad anthropogenic petrogenic and pyrogenic sources. Tars and tar products such as creosote produced from the industrial pyrolysis of coal or oil at former manufactured gas plants (MGPs) or in coking retorts are viscous, oily substances that contain significant concentrations of PAH, usually in excess of 30% w/w. Pyrogenic tars and tar products have unique PAH patterns (source signatures) that are a function of their industrial production. Among pyrogenic materials, certain diagnostic ratios of environmentally recalcitrant 4-, 5- and 6-ring PAHs have been identified as useful environmental markers for tracking the signature of tars and petroleum in the environment. The use of selected PAH source ratios is based on the concept that PAHs with similar properties (i.e., molecular weight, partial pressure, solubility, partition coefficients, and biotic/abiotic degradation) will weather at similar rates in the environment thereby yielding stable ratios. The stability of more than 30 high molecular weight PAH ratios is evaluated during controlled studies of tar evaporation and aerobic biodegradation. The starting materials in these experiments consisted of relatively unweathered tars derived from coal and petroleum, respectively. The PAH ratios from these laboratory studies are compared to those measured in PAH residues found in tar-contaminated soils at a former MGP that operated with a carburetted water gas process.

  2. Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments

    PubMed Central

    Yu, K.S.H.; Wong, A.H.Y.; Yau, K.W.Y.; Wong, Y.S.; Tam, N.F.Y.

    2010-01-01

    The biodegradability of a mixture of PAHs, namely fluorene (Fl), phenanthrene (Phe) and pyrene (Pyr), in mangrove sediment slurry was investigated. At the end of week 4, natural attenuation based on the presence of autochthonous microorganisms degraded more than 99% Fl and Phe but only around 30% of Pyr were degraded. Biostimulation with addition of mineral salt medium degraded over 97% of all three PAHs, showing that nutrient amendment could enhance Pyr degradation. Bioaugmentation with inoculation of a PAH-degrading bacterial consortium enriched from mangrove sediments did not show any promotion effect and the degradation percentages of three PAHs were similar to that by natural attenuation. Some inhibitory effect was observed in bioaugmentation treatment in week 1 with only 50% Fl and 70% Phe degraded. These results indicate that autochthonous microbes may interact and even compete with the enriched consortium during PAH biodegradation. Natural attenuation appeared to be the most appropriate way to remedy Fl- and Phe-contaminated mangrove sediments while biostimulation was more capable to degrade Pyr-contaminated sediments. The study also shows that although a large portion of the added PAHs (more than 95%) was adsorbed onto the sediments at the beginning of the experiment, most PAHs were degraded in 4 weeks, suggesting that the degraders could utilize the adsorbed PAHs efficiently. PMID:16023146

  3. Cellulose-Enriched Microbial Communities from Leaf-Cutter Ant (Atta colombica) Refuse Dumps Vary in Taxonomic Composition and Degradation Ability

    DOE PAGESBeta

    Lewin, Gina R.; Johnson, Amanda L.; Soto, Rolando D. Moreira; Perry, Kailene; Book, Adam J.; Horn, Heidi A.; Pinto-Tomás, Adrián A.; Currie, Cameron R.

    2016-03-21

    Deconstruction of the cellulose in plant cell walls is critical for carbon flow through ecosystems and for the production of sustainable cellulosic biofuels. Our understanding of cellulose deconstruction is largely limited to the study of microbes in isolation, but in nature, this process is driven by microbes within complex communities. In Neotropical forests, microbes in leaf-cutter ant refuse dumps are important for carbon turnover. These dumps consist of decaying plant material and a diverse bacterial community, as shown here by electron microscopy. To study the portion of the community capable of cellulose degradation, we performed enrichments on cellulose using materialmore » from five Atta colombica refuse dumps. The ability of enriched communities to degrade cellulose varied significantly across refuse dumps. 16S rRNA gene amplicon sequencing of enriched samples identified that the community structure correlated with refuse dump and with degradation ability. Overall, samples were dominated by Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. Half of abundant operational taxonomic units (OTUs) across samples were classified within general containing known cellulose degraders, including Acidovorax, the most abundant OTU detected across samples, which was positively correlated with cellulolytic ability. Lastly, a representative Acidovorax strain was isolated, but did not grow on cellulose alone. Phenotypic and compositional analyses of enrichment cultures, such as those presented here, help link community composition with cellulolytic ability and provide insight into the complexity of community-based cellulose degradation.« less

  4. Cellulose-Enriched Microbial Communities from Leaf-Cutter Ant (Atta colombica) Refuse Dumps Vary in Taxonomic Composition and Degradation Ability

    PubMed Central

    Lewin, Gina R.; Johnson, Amanda L.; Soto, Rolando D. Moreira; Perry, Kailene; Book, Adam J.; Horn, Heidi A.; Pinto-Tomás, Adrián A.; Currie, Cameron R.

    2016-01-01

    Deconstruction of the cellulose in plant cell walls is critical for carbon flow through ecosystems and for the production of sustainable cellulosic biofuels. Our understanding of cellulose deconstruction is largely limited to the study of microbes in isolation, but in nature, this process is driven by microbes within complex communities. In Neotropical forests, microbes in leaf-cutter ant refuse dumps are important for carbon turnover. These dumps consist of decaying plant material and a diverse bacterial community, as shown here by electron microscopy. To study the portion of the community capable of cellulose degradation, we performed enrichments on cellulose using material from five Atta colombica refuse dumps. The ability of enriched communities to degrade cellulose varied significantly across refuse dumps. 16S rRNA gene amplicon sequencing of enriched samples identified that the community structure correlated with refuse dump and with degradation ability. Overall, samples were dominated by Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. Half of abundant operational taxonomic units (OTUs) across samples were classified within genera containing known cellulose degraders, including Acidovorax, the most abundant OTU detected across samples, which was positively correlated with cellulolytic ability. A representative Acidovorax strain was isolated, but did not grow on cellulose alone. Phenotypic and compositional analyses of enrichment cultures, such as those presented here, help link community composition with cellulolytic ability and provide insight into the complexity of community-based cellulose degradation. PMID:26999749

  5. Cellulose-Enriched Microbial Communities from Leaf-Cutter Ant (Atta colombica) Refuse Dumps Vary in Taxonomic Composition and Degradation Ability.

    PubMed

    Lewin, Gina R; Johnson, Amanda L; Soto, Rolando D Moreira; Perry, Kailene; Book, Adam J; Horn, Heidi A; Pinto-Tomás, Adrián A; Currie, Cameron R

    2016-01-01

    Deconstruction of the cellulose in plant cell walls is critical for carbon flow through ecosystems and for the production of sustainable cellulosic biofuels. Our understanding of cellulose deconstruction is largely limited to the study of microbes in isolation, but in nature, this process is driven by microbes within complex communities. In Neotropical forests, microbes in leaf-cutter ant refuse dumps are important for carbon turnover. These dumps consist of decaying plant material and a diverse bacterial community, as shown here by electron microscopy. To study the portion of the community capable of cellulose degradation, we performed enrichments on cellulose using material from five Atta colombica refuse dumps. The ability of enriched communities to degrade cellulose varied significantly across refuse dumps. 16S rRNA gene amplicon sequencing of enriched samples identified that the community structure correlated with refuse dump and with degradation ability. Overall, samples were dominated by Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. Half of abundant operational taxonomic units (OTUs) across samples were classified within genera containing known cellulose degraders, including Acidovorax, the most abundant OTU detected across samples, which was positively correlated with cellulolytic ability. A representative Acidovorax strain was isolated, but did not grow on cellulose alone. Phenotypic and compositional analyses of enrichment cultures, such as those presented here, help link community composition with cellulolytic ability and provide insight into the complexity of community-based cellulose degradation. PMID:26999749

  6. Poly(L-lactide)-degrading enzyme production by Actinomadura keratinilytica T16-1 in 3 L airlift bioreactor and its degradation ability for biological recycle.

    PubMed

    Sukkhum, Sukhumaporn; Tokuyama, Shinji; Kitpreechavanich, Vichien

    2012-01-01

    The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at 46° C. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer. PMID:22297224

  7. Laboratory Astrochemistry: Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: (1) objectives, (2) approach and techniques adopted, (3) adaptability to the nature of the problem(s), and (4) results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  8. PAH FIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mattioda, Andrew; Ricca, A.; Tucker, J.; Bauschlicher, C., Jr.; Allamandola, L.

    2009-01-01

    The mid-IR spectra of a majority of astronomical sources are dominated by emission features near 3.3, 6.2, 7.7, and 11.2 µm. These features, formerly referred to as the Unidentified Infrared (UIR) Bands, are now generally thought to originate in free polycyclic aromatic hydrocarbon (PAH) molecules and closely related species. In addition to dominating the 3-20 µm region of the spectrum, they carry some 20-40% of the total IR luminosity from most of these objects. PAHs dominate the mid-IR emission from many galactic and extragalactic objects. As such, this material tracks a wide variety of astronomical processes, making this spectrum a powerful probe of the cosmos Apart from bands in the mid-IR, PAHs have bands spanning the Far-IR (20 to 1000 mm) and these FIR features should be present in astronomical sources. However, with one exception, the FIR spectral characteristics are known only for a few neutral small PAHs trapped in salt pellets or oils at room temperature, data which is not relevant to astrophysics. Furthermore, since most emitting PAHs responsible for the mid-IR astronomical features are ionized, the absence of any experimental or theoretical PAH ion FIR spectra will make it impossible to correctly interpret the FIR data from these objects. In view of the upcoming Herschel space telescope mission and SOFIA's FIR airborne instrumentation, which will pioneer the FIR region, it is now urgent to obtain PAH FIR spectra. This talk will present an overview of the FIR spectroscopy of PAHs.

  9. Rapid Isolation of the Trichoderma Strain with Higher Degrading Ability of a Filter Paper and Superior Proliferation Characteristics Using Avicel Plates and the Double-Layer Selection Medium

    NASA Astrophysics Data System (ADS)

    Toyama, Hideo; Nakano, Megumi; Satake, Yuuki; Toyama, Nobuo

    The cost of cellulase is still a problem for bioethanol production. As the cellulase of Trichoderma reesei is applicable for producing ethanol from cellulosic materials, the cellulase productivity of this fungus should be increased. Therefore, we attempted to develop a system to isolate the strain with higher degrading ability of a filter paper and superior proliferation characteristics among the conidia treated with the mitotic arrester, colchicine. When green mature conidia of T. reesei RUT C-30 were swollen, autopolyploidized, and incubated in the double-layer selection medium containing Avicel, colonies appeared on the surface earlier than the original strain. When such colonies and the original colony were incubated on the Avicel plates, strain B5, one of the colonies derived from the colchicinetreated conidia, showed superior proliferation characteristics. Moreover, when strain B5 and the original strain were compared in the filter paper degrading ability and the cellulose hydrolyzing activity, strain B5 was also superior to the original strain. It was suspected that superior proliferation characteristics of strain B5 reflects higher filter paper degrading ability. Thus, we concluded that the Trichoderma strain with higher degrading ability of a filter paper and superior proliferation characteristics can be isolated using Avicel plates and the double-layer selection medium.

  10. Enhanced bioremediation of PAH contaminated soils from coal processing sites

    SciTech Connect

    Joshi, M.M.; Lee, S.

    1995-12-31

    The polycyclic aromatic hydrocarbons (PAH) are a potential hazard to health due to their carcinogenic, mutagenic nature and acute toxicity and there is an imminent need for remediation of PAH contaminated soils abounding the several coke oven and town gas sites. Aerobic biological degradation of PAHs is an innovative technology and has shown high decontamination efficiencies, complete mineralization of contaminants, and is environmentally safe. The present study investigates the remediation of PAH contaminated soils achieved using Acinetobacter species and fungal strain Phanerochaete Chrysosporium. The soil used for the experiments was an industrially contaminated soil obtained from Alberta Research Council (ARC) primary cleanup facility, Alberta, Canada. Soil characterization was done using High Performance Liquid Chromatography (HPLC) to qualitatively and quantitatively determine the contaminants in the soil. Artificially contaminated soil was also used for some experiments. All the experiments were conducted under completely mixed conditions with suitable oxygen and nutrient amendments. The removal efficiency obtained for various PAHs using the two microorganisms was compared.

  11. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review.

    PubMed

    Lamichhane, Shanti; Bal Krishna, K C; Sarukkalige, Ranjan

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are organic micro pollutants which are persistent compounds in the environment due to their hydrophobic nature. Concerns over their adverse effects in human health and environment have resulted in extensive studies on various types of PAHs removal methods. Sorption is one of the widely used methods as PAHs possess a great sorptive ability into the solid media and their low aqueous solubility property. Several adsorbent media such as activated carbon, biochar, modified clay minerals have been largely used to remove PAHs from aqueous solution and to immobilise PAHs in the contaminated soils. According to the past studies, very high removal efficiency could be achieved using the adsorbents such as removal efficiency of activated carbon, biochar and modified clay mineral were 100%, 98.6% and >99%, respectively. PAHs removal efficiency or adsorption/absorption capacity largely depends on several parameters such as particle size of the adsorbent, pH, temperature, solubility, salinity including the production process of adsorbents. Although many studies have been carried out to remove PAHs using the sorption process, the findings have not been consolidated which potentially hinder to get the correct information for future study and to design the sorption method to remove PAHs. Therefore, this paper summarized the adsorbent media which have been used to remove PAHs especially from aqueous solutions including the factor affecting the sorption process reported in 142 literature published between 1934 and 2015. PMID:26820781

  12. The effects of PAH contamination on soil invertebrate communities

    SciTech Connect

    Snow-Ashbrook, J.L.; Erstfeld, K.M.

    1995-12-31

    Soils were collected from an abandoned industrial site to study the effects of historic polycyclic aromatic hydrocarbons (PAHs) on soil invertebrate communities. Nematode abundance and diversity, microarthropod abundance (orders Collembola and Acarina) and earthworm growth were evaluated. Physical and chemical characteristics of soils may affect both invertebrate community structure and the mobility/bioavailability of pollutants in soils. Soil characteristics were measured and included with PAH data in multiple regression analyses to identify factors which influences the responses observed in the soil invertebrate community. Positive associations were observed between eight invertebrate community endpoints and soil PAH content. For all of these endpoints but one, a higher degree of variability was explained when both PAH content and soil characteristics were considered. It is theorized that the positive response to soil PAH content may be the result of an increased abundance of PAH-degrading soil microbes. Increased microbial abundance could stimulate invertebrate communities by providing a direct food source or increasing the abundance of microbially-produced nutrients. These results suggest that both PAH content and soil characteristics significantly influenced the soil invertebrate community. It is not clear whether these factors influenced the invertebrate community independently, or whether differences in soil characteristics affected the community response by influencing the mobility or bioavailability of PAHs.

  13. Dissipation of PAHs in saturated, dredged sediments: a field trial.

    PubMed

    Smith, K E; Schwab, A P; Banks, M K

    2008-08-01

    Sediments dredged from navigable rivers often contain elevated concentrations of recalcitrant, potentially toxic organic compounds such as polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). The presence of these compounds often requires that the sediments be stored in fully contained disposal facilities. A 3-year field study was conducted at the Jones Island disposal facility in Milwaukee, Wisconsin, to compare bioremediation of PAHs in contaminated dredged sediments in the absence of plants to phytoremediation with Salix nigra (black willow) (SX61), Spartina pectinata (prairie cord grass), Carex aquatalis (lake sedge), Lolium multiflorum (annual rye), and Scirpus fluviatilis (bulrush). Nine PAHs were detected initially in the sediments. Over the 3-year experiment, acenaphthene dissipation ranged from 94% to 100%, whereas anthracene, benzo[a]pyrene and indo[1,2,3-cd]pyrene generally had modest decreases in concentration (0-30% decrease). The remaining five PAHs ranged in degree of disappearance from 23% to 82%. Planted treatments did not enhance PAH dissipation relative to those without plants, but treatments with high biomass yield and high transpiration plant species had significantly less removal of PAHs than unplanted controls. Significant, negative correlations between nitrogen removal and decreases in PAH concentration suggest that competition for nutrients between plants and microorganisms may have impeded the microbial degradation of PAHs in the rhizosphere of the more rapidly growing plant species. PMID:18547603

  14. Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil.

    PubMed

    Song, Mengke; Jiang, Longfei; Zhang, Dayi; Luo, Chunling; Wang, Yan; Yu, Zhiqiang; Yin, Hua; Zhang, Gan

    2016-05-01

    Information on microorganisms possessing the ability to metabolize different polycyclic aromatic hydrocarbons (PAHs) in complex environments helps in understanding PAHs behavior in natural environment and developing bioremediation strategies. In the present study, stable-isotope probing (SIP) was applied to investigate degraders of PAHs in a forest soil with the addition of individually (13)C-labeled phenanthrene, anthracene, and fluoranthene. Three distinct phylotypes were identified as the active phenanthrene-, anthracene- and fluoranthene-degrading bacteria. The putative phenanthrene degraders were classified as belonging to the genus Sphingomona. For anthracene, bacteria of the genus Rhodanobacter were the putative degraders, and in the microcosm amended with fluoranthene, the putative degraders were identified as belonging to the phylum Acidobacteria. Our results from DNA-SIP are the first to directly link Rhodanobacter- and Acidobacteria-related bacteria with anthracene and fluoranthene degradation, respectively. The results also illustrate the specificity and diversity of three- and four-ring PAHs degraders in forest soil, contributes to our understanding on natural PAHs biodegradation processes, and also proves the feasibility and practicality of DNA-based SIP for linking functions with identity especially uncultured microorganisms in complex microbial biota. PMID:26808242

  15. Polynuclear aromatic hydrocarbons (PAHs) in fish from the Arabian Gulf

    SciTech Connect

    DouAbdul, A.A.Z.; Abaychi, J.K.; Al-Edanee, T.E.; Ghani, A.A.; Al-Saad, H.T.

    1987-03-01

    Emphasis has been placed upon the identification and qualification of compounds with potential adverse health effects on humans. Prominent among this group are polynuclear aromatic hydrocarbons (PAHs), several of which are known or suspected carcinogens. PAHs enter the marine environment from a variety of sources including petroleum pollution, industrial and domestic effluents, atmospheric particles, and biosynthesis by plants and microorganisms. Although one-third of the world's oil is produced around the Arabian Gulf, no detailed analysis have been conducted to determine PAHs in this region. Nevertheless, numerous investigations have shown the ability of marine organisms including fish to accumulation PAHs from solution or dispersion in seawater. When fish are harvested, a human health hazard may result. In the present communication, high performance liquid chromatography (HPLC) was used to identify and measure sixteen PAHs priority pollutants issued by US Environmental Protection Agency (EPA) in fourteen species of commercially significant fish from the NW Arabian Gulf.

  16. Specific Residues of PB2 and PA Influenza Virus Polymerase Subunits Confer the Ability for RNA Polymerase II Degradation and Virus Pathogenicity in Mice

    PubMed Central

    Llompart, C. M.

    2014-01-01

    ABSTRACT Influenza virus transcription requires functional coupling with cellular transcription for the cap-snatching process. Despite this fact, RNA polymerase II (RNAP II) is degraded during infection in a process triggered by the viral polymerase. Reassortant viruses from the A/PR/8/34 (PR8) strain that induce (hvPR8) or do not induce (lvPR8) RNAP II degradation led to the identification of PA and PB2 subunits as responsible for the degradation process. Three changes in the PB2 sequence (I105M, N456D, and I504V) and two in PA (Q193H and I550L) differentiate PA and PB2 of lvPR8 from those of hvPR8. Using recombinant viruses, we observed that changes at position 504 of PB2, together with 550 of PA, confer the ability on lvPR8 for RNAP II degradation and, conversely, abolish hvPR8 degradation capacity. Since hvPR8 is more pathogenic than lvPR8 in mice, we tested the potential contribution of RNAP II degradation in a distant viral strain, the 2009 pandemic A/California/04/09 (CAL) virus, whose PA and PB2 subunits are of avian origin. As in the hvPR8 virus, mutations at positions 504 of PB2 and 550 of PA in CAL virus abolished its RNAP II degradation capacity. Moreover, in an in vivo model, the CAL-infected mice lost more body weight, and 75% lethality was observed in this situation compared with 100% survival in mutant-CAL- or mock-infected animals. These results confirm the involvement of specific PB2 and PA residues in RNAP II degradation, which correlates with pathogenicity in mice of viruses containing human or avian polymerase PB2 and PA subunits. IMPORTANCE The influenza virus polymerase induces the degradation of RNAP II, which probably cooperates to avoid the antiviral response. Here, we have characterized two specific residues located in the PA and PB2 polymerase subunits that mediate this degradation in different influenza viruses. Moreover, a clear correlation between RNAP II degradation and in vivo pathogenicity in mice was observed, indicating that the

  17. Degradation of plant cuticles in soils: impact on formation and sorptive ability of humin-mineral matrices.

    PubMed

    Olshansky, Yaniv; Polubesova, Tamara; Chefetz, Benny

    2015-05-01

    Plant cuticles are important precursors for soil organic matter, in particular for soil humin, which is considered an efficient sorbent for organic pollutants. In this study, we examined degradation and transformation of cuticles isolated from fruit and leaves in loamy sand and sandy clay loessial arid brown soils. We then studied sorption of phenanthrene and carbamazepine to humin-mineral matrices isolated from the incubated soils. Low degradation (22%) was observed for agave cuticle in a sandy clay soil system, whereas high degradation (68-78%) was obtained for agave cuticle in a loamy sand soil system and for loamy sand and sandy clay soils amended with tomato cuticle. During incubation, most of the residual organic matter was accumulated in the humin fraction. Sorption of phenanthrene was significantly higher for humin-mineral matrices obtained from soils incubated with plant cuticles as compared with soils without cuticle application. Sorption of carbamazepine to humin-mineral matrices was not affected by cuticle residues. Cooperative sorption of carbamazepine on humin-mineral matrices isolated from sandy clay soil is suggested. Sorption-desorption hysteresis of both phenanthrene and carbamazepine was lower for humin-mineral matrices obtained from soils incubated with plant cuticles as compared with nonamended soils. Our results show that cuticle composition significantly affects the rate and extent of cuticle degradation in soils and that plant cuticle application influences sorption and desorption of polar and nonpolar pollutants by humin-mineral matrices. PMID:26024265

  18. A record of polycyclic aromatic hydrocarbon (PAH) pollution obtained from accreting sediments of the Tamar Estuary, U.K.: evidence for non-equilibrium behaviour of PAH.

    PubMed

    Readman, J W; Mantoura, R F; Rhead, M M

    1987-10-01

    Concentrations of polycyclic aromatic hydrocarbons (PAH) were quantified throughout a 210Po-dated inter-tidal sediment core from the Tamar Estuary, U.K. in order to reconstruct the input history and investigate environmental reactivity of PAH in sediments. The profile recorded is similar to those reported in other aquatic sedimentary studies, with an approximately exponential increase in the concentrations of individual PAH from less than 30 ng (g dry sediment)-1 prior to 1940 to between 100 and 1000 ng (g dry sediment)-1 in contemporary surface sediments. This corresponds to an increased input of total PAH from 0.23 to 21 mg m-2 year-1. The PAH composition is dominated by parent compounds rather than alkylated homologues and is characteristic of pyrogenic sources correlating with increased motor vehicle activity and road runoff into the Tamar. There is a remarkable compositional uniformity of PAH throughout the polluted sediment core, indicating that the biogeochemical transformation and exchange processes (sorption/leaching; microbial breakdown; photo-degradation; etc.) which are known to govern the fate of experimentally-added or petroleum-derived PAH, and which exhibit compound discrimination, appear not to affect PAH in the sediments. Using a linear free energy sediment-water exchange model to simulate the repartitioning and exchange of individual PAH between the surface-mixed layer of sediment and water, we demonstrate that the current PAH concentrations in sediments are between 2 and 5 orders of magnitude greater than those expected from equilibrium partitioning with observed water concentrations. This implies that the PAH input to the sediments has been compositionally uniform and that the PAH are chemically inert. Sorptive exchange with the aqueous phase and hence the potential bioavailability of PAH appear restricted by the existence of occluded and other micro-morphologically inert forms of particle-bound PAH. PMID:3685960

  19. Response of microbial activities and diversity to PAHs contamination at coal tar contaminated land

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Sun, Yujiao; Ding, Aizhong; Zhang, Dan; Zhang, Dayi

    2015-04-01

    Coal tar is one of the most hazardous and concerned organic pollutants and the main hazards are polycyclic aromatic hydrocarbons (PAHs). The indigenous microorganisms in soils are capable to degrade PAHs, with essential roles in biochemical process for PAHs natural attenuation. This study investigated 48 soil samples (from 8 depths of 6 boreholes) in Beijing coking and chemistry plant (China) and revealed the correlation between PAHs contamination, soil enzyme activities and microbial community structure, by 16S rRNA denaturing gradient gel electrophoresis (DGGE). At the site, the key contaminants were identified as naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene, and the total PAHs concentration ranged from 0.1 to 923.9 mg/kg dry soil. The total PAHs contamination level was positively correlated (p<0.05) with the bacteria count (0.9×107-14.2×107 CFU/mL), catalase activities (0.554-6.230 mL 0.02 M KMnO4/g•h) and dehydrogenase activities (1.9-30.4 TF μg/g•h soil), showing the significant response of microbial population and degrading functions to the organic contamination in soils. The PAHs contamination stimulated the PAHs degrading microbes and promoted their biochemical roles in situ. The positive relationship between bacteria count and dehydrogenase activities (p<0.05) suggested the dominancy of PAHs degrading bacteria in the microbial community. More interestingly, the microbial community deterioration was uncovered via the decline of microbial biodiversity (richness from 16S rRNA DGGE) against total PAHs concentration (p<0.05). Our research described the spatial profiles of PAHs contamination and soil microbial functions at the PAHs heavily contaminated sites, offering deeper understanding on the roles of indigenous microbial community in natural attenuation process.

  20. Sedimentary organic biomarkers suggest detrimental effects of PAHs on estuarine microbial biomass during the 20th century in San Francisco Bay, CA, USA.

    PubMed

    Nilsen, Elena B; Rosenbauer, Robert J; Fuller, Christopher C; Jaffe, Bruce J

    2015-01-01

    Hydrocarbon contaminants are ubiquitous in urban aquatic ecosystems, and the ability of some microbial strains to degrade certain polycyclic aromatic hydrocarbons (PAHs) is well established. However, detrimental effects of petroleum hydrocarbon contamination on nondegrader microbial populations and photosynthetic organisms have not often been considered. In the current study, fatty acid methyl ester (FAME) biomarkers in the sediment record were used to assess historical impacts of petroleum contamination on microbial and/or algal biomass in South San Francisco Bay, CA, USA. Profiles of saturated, branched, and monounsaturated fatty acids had similar concentrations and patterns downcore. Total PAHs in a sediment core were on average greater than 20× higher above ∼200 cm than below, which corresponds roughly to the year 1900. Isomer ratios were consistent with a predominant petroleum combustion source for PAHs. Several individual PAHs exceeded sediment quality screening values. Negative correlations between petroleum contaminants and microbial and algal biomarkers - along with high trans/cis ratios of unsaturated FA, and principle component analysis of the PAH and fatty acid records - suggest a negative impacts of petroleum contamination, appearing early in the 20th century, on microbial and/or algal ecology at the site. PMID:25303655

  1. Sources, fate, and effects of PAHs in shallow water environments: a review with special reference to small watercraft

    USGS Publications Warehouse

    Albers, P.H.

    2002-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are aromatic hydrocarbons with two to seven fused carbon (benzene) rings that can have substituted groups attached. Shallow coastal, estuarine, lake, and river environments receive PAHs from treated wastewater, stormwater runoff, petroleum spills and natural seeps, recreational and commercial boats, natural fires, volcanoes, and atmospheric deposition of combustion products. Abiotic degradation of PAHs is caused by photooxidation, photolysis in water, and chemical oxidation. Many aquatic microbes, plants, and animals can metabolize and excrete ingested PAHs; accumulation is associated with poor metabolic capabilities, high lipid content, and activity patterns or distributions that coincide with high concentrations of PAHs. Resistance to biological transformation increases with increasing number of carbon rings. Four- to seven-ring PAHs are the most difficult to metabolize and the most likely to accumulate in sediments. Disturbance by boating activity of sediments, shorelines, and the surface microlayer of water causes water column re-entry of recently deposited or concentrated PAHs. Residence time for PAHs in undisturbed sediment exceeds several decades. Toxicity of PAHs causes lethal and sublethal effects in plants and animals, whereas some substituted PAHs and metabolites of some PAHs cause mutations, developmental malformations, tumors, and cancer. Environmental concentrations of PAHs in water are usually several orders of magnitude below levels that are acutely toxic, but concentrations can be much higher in sediment. The best evidence for a link between environmental PAHs and induction of cancerous neoplasms is for demersal fish in areas with high concentrations of PAHs in the sediment.

  2. Effects of alkylphosphates and nitrous oxide on microbial degradation of polycyclic aromatic hydrocarbons.

    PubMed

    Bogan, B W; Lahner, L M; Trbovic, V; Szajkovics, A M; Paterek, J R

    2001-05-01

    We conducted a series of liquid-culture experiments to begin to evaluate the abilities of gaseous sources of nitrogen and phosphorus to support biodegradation of polycyclic aromatic hydrocarbons (PAHs). Nutrients examined included nitrous oxide, as well as triethylphosphate (TEP) and tributylphosphate (TBP). Cultures were established using the indigenous microbial populations from one manufactured gas plant (MGP) site and one crude oil-contaminated drilling field site. Mineralization of phenanthrene was measured under alternative nutrient regimes and was compared to that seen with ammoniacal nitrogen and PO(4). Parallel cultures were used to assess removal of a suite of three- to five-ring PAHs. In summary, the abilities of the different communities to degrade PAH when supplemented with N(2)O, TEP, and TBP were highly variable. For example, in the MGP soil, organic P sources, especially TBP, supported a considerably higher degree of removal of low-molecular-weight PAHs than did PO(4); however, loss of high-molecular-weight compounds was impaired under these conditions. The disappearance of most PAHs was significantly less in the oil field soil when organophosphates were used. These results indicate that the utility of gaseous nutrients for PAH bioremediation in situ may be limited and will very likely have to be assessed on a case-by-case basis. PMID:11319093

  3. Heavy metal effects on the biodegradation of fluorene by Sphingobacterium sp. KM-02 isolated from PAHs-contaminated mine soil

    NASA Astrophysics Data System (ADS)

    Nam, I.; Chon, C.; Jung, K.; Kim, J.

    2012-12-01

    Polycyclic aromatic hydrocarbon compounds (PAHs) are widely distributed in the environment and occur ubiquitously in fossil fuels as well as in products of incomplete combustion and are known to be strongly toxic, often with carcinogenic and mutagenic properties. Fluorene is one of the 16 PAHs included in the list of priority pollutants of the Environmental Protection Agency. The fluorene-degrading bacterial strain Sphingobacterium sp. KM-02 was isolated from PAHs-contaminated soil near an abandoned mine impacted area by selective enrichment techniques. Fluorene added to the Sphingobacterium sp. KM-02 culture as sole carbon and energy source was 78.4% removed within 120 h. A fluorene degradation pathway is tentatively proposed based on mass spectrometric identification of the metabolic intermediates 9-fluorenone, 4-hydroxy-9-fluorenone, and 8-hydroxy-3,4-benzocoumarin. Further the ability of Sphingobacterium sp. KM-02 to bioremediate 100 mg/kg fluorene in mine soil was examined by composting under laboratory conditions. Treatment of microcosm soil with the strain KM-02 for 20 days resulted in a 65.6% reduction in total amounts. These results demonstrate that Sphingobacterium sp. KM-02 could potentially be used in the bioremediation of fluorene from contaminated soil. Mine impacted area comprises considerable amounts of heavy metals such as cadmium, lead, mercury, arsenic, and copper. Although some of these metals are necessary for biological life, excessive quantities often result in the inhibition of essential biological reactions via numerous pathways. A number of reports collectively show that various metals, such as Al, Co, Ni, Cu, Zn, Pb, and Hg at a range of concentrations have adverse effects on the degradation of organic compounds. However, at present there is only limited information on the effect of individual heavy metals on the biological degradation of polyaromatic hydrocarbons (PAHs) including fluorene. Moreover, heavy metal effects were not

  4. Removing PAHs from urban runoff water by combining ozonation and carbon nano-onions.

    PubMed

    Sakulthaew, Chainarong; Comfort, Steve D; Chokejaroenrat, Chanat; Li, Xu; Harris, Clifford E

    2015-12-01

    Ozone (O3) is a chemical oxidant capable of transforming polycyclic aromatic hydrocarbons (PAHs) in urban runoff within minutes but complete oxidation to CO2 can take days to weeks. We developed and tested a flow-through system that used ozone to quickly transform PAHs in a runoff stream and then removed the ozone-transformed PAHs via adsorption to carbon nano-onions (CNOs). To quantify the efficacy of this approach, (14)C-labeled phenanthrene and benzo(a)pyrene, as well as a mixture of 16 unlabeled PAHs were used as test compounds. These PAHs were pumped from a reservoir into a flow-through reactor that continuously ozonated the solution. Outflow from the reactor then went to a chamber that contained CNOs to adsorb the ozone-transformed PAHs and allowed clean water to pass. By adding a microbial consortium to the CNOs following adsorption, we observed that bacteria were able to degrade the adsorbed products and release more soluble, biodegradable products back into solution. Control treatments confirmed that parent PAH structures (i.e., non-ozonated) were not biologically degraded following CNO adsorption and that O3-transformed PAHs were not released from the CNOs in the absence of bacteria. These results support the combined use of ozone, carbon nano-onions with subsequent biological degradation as a means of removing PAHs from urban runoff or a commercial waste stream. PMID:26291912

  5. Evaluating the ability of grass filter strips to contribute to the restoration of degraded agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass filter strips are planted adjacent to agricultural streams in the United States as riparian buffers to reduce nutrient, pesticide, and sediment input into streams. This frequently used agricultural conservation practice is assumed to have the ability to mitigate the effects of agriculture on s...

  6. Quantification of PAHs and oxy-PAHs on airborne particulate matter in Chiang Mai, Thailand, using gas chromatography high resolution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Walgraeve, Christophe; Chantara, Somporn; Sopajaree, Khajornsak; De Wispelaere, Patrick; Demeestere, Kristof; Van Langenhove, Herman

    2015-04-01

    An analytical method using gas chromatography high resolution mass spectrometry was developed for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) and 12 oxygenated PAHs (of which 4 diketones, 3 ketones, 4 aldehydes and one anhydride) on atmospheric particulate matter with an aerodynamic diameter less than 10 μm (PM10). The magnetic sector mass spectrometer was run in multiple ion detection mode (MID) with a mass resolution above 10 000 (10% valley definition) and allows for a selective accurate mass detection of the characteristic ions of the target analytes. Instrumental detection limits between 0.04 pg and 1.34 pg were obtained for the PAHs, whereas for the oxy-PAHs they ranged between 0.08 pg and 2.13 pg. Pressurized liquid extraction using dichloromethane was evaluated and excellent recoveries ranging between 87% and 98% for the PAHs and between 74% and 110% for 10 oxy-PAHs were obtained, when the optimum extraction temperature of 150 °C was applied. The developed method was finally used to determine PAHs and oxy-PAHs concentration levels from particulate matter samples collected in the wet season at 4 different locations in Chiang Mai, Thailand (n = 72). This study brings forward the first concentration levels of oxy-PAHs in Thailand. The median of the sum of the PAHs and oxy-PAHs concentrations was 3.4 ng/m3 and 1.1 ng/m3 respectively, which shows the importance of the group of the oxy-PAHs as PM10 constituents. High molecular weight PAHs contributed the most to the ∑PAHs. For example, benzo[ghi]perylene was responsible for 30-44% of the ∑PAHs. The highest contribution to ∑oxy-PAHs came from 1,8-napthalic anhydride (26-78%), followed by anthracene-9,10-dione (4-27%) and 7H-benzo[de]anthracene-7-one (6-26%). Indications of the degradation of PAHs and/or formation of oxy-PAHs were observed.

  7. Mutation of Candida tropicalis by Irradiation with a He-Ne Laser To Increase Its Ability To Degrade Phenol▿

    PubMed Central

    Jiang, Yan; Wen, Jianping; Jia, Xiaoqiang; Caiyin, Qinggele; Hu, Zongding

    2007-01-01

    Candida tropicalis isolated from acclimated activated sludge was used in this study. Cell suspensions with 5 × 107 cells ml−1 were irradiated by using a He-Ne laser. After mutagenesis, the irradiated cell suspension was diluted and plated on yeast extract-peptone-dextrose (YEPD) medium. Plates with approximately 20 individual colonies were selected, and all individual colonies were harvested for phenol biodegradation. The phenol biodegradation stabilities for 70 phenol biodegradation-positive mutants, mutant strains CTM 1 to 70, ranked according to their original phenol biodegradation potentials, were tested continuously during transfers. Finally, mutant strain CTM 2, which degraded 2,600 mg liter−1 phenol within 70.5 h, was obtained on the basis of its capacity and hereditary stability for phenol biodegradation. The phenol hydroxylase gene sequences were cloned in wild and mutant strains. The results showed that four amino acids were mutated by irradiation with a laser. In order to compare the activity of phenol hydroxylase in wild and mutant strains, their genes were expressed in Escherichia coli BL21(DE3) and enzyme activities were spectrophotometrically determined. It was clear that the activity of phenol hydroxylase was promoted after irradiation with a He-Ne laser. In addition, the cell growth and intrinsic phenol biodegradation kinetics of mutant strain CTM 2 in batch cultures were also described by Haldane's kinetic equation with a wide range of initial phenol concentrations from 0 to 2,600 mg liter−1. The specific growth and degradation rates further demonstrated that the CTM 2 mutant strain possessed a higher capacity to resist phenol toxicity than wild C. tropicalis did. PMID:17085704

  8. Ability of Kocuria varians LTH 1540 To Degrade Putrescine: Identification and Characterization of a Novel Amine Oxidase.

    PubMed

    Callejón, Sara; Sendra, Ramón; Ferrer, Sergi; Pardo, Isabel

    2015-04-29

    This work describes the identification and characterization of an amine oxidase from Kocuria varians LTH 1540 (syn. Micrococcus varians) primarily acting on putrescine. Data from MALDI-TOF MS/MS and the identification of Δ(1)-pyrroline as degradation product from putrescine indicate that the enzyme is a flavin-dependent putrescine oxidase (PuO). Properties of partially purified enzyme have been determined. The enzyme oxidizes diamines, putrescine and cadaverine, and, to a lesser extent, polyamines, such as spermidine, but not monoamines. The kinetic constants (Km and Vmax) for the two major substrates were 94 ± 10 μM and 2.3 ± 0.1 μmol/min·mg for putrescine and 75 ± 5 μM and 0.15 ± 0.02 μmol/min·mg for cadaverine. Optimal temperature and pH were 45 °C and 8.5, respectively. Enzyme was stable until 50 °C. K. varians PuO is sensitive to human flavin-dependent amine oxidase inhibitors and carboxyl-modifying compounds. The new enzyme has been isolated from a bacterial starter used in the manufacture of fermented meat. One of the problems of fermented foods or beverages is the presence of toxic biogenic amines produced by bacteria. The importance of this works lies in the description of a new enzyme able to degrade two of the most abundant biogenic amines (putrescine and cadaverine), the use of which could be envisaged to diminish biogenic amines content in foods in the future. PMID:25817823

  9. Deuterated PAHs in Space

    NASA Technical Reports Server (NTRS)

    Peeters, Els; Allamandola, Louis J.; Bauschlicher, Charles W., Jr.; Hudgins, Douglas M.; Sandford, Scott A.; Tielens, A. G. G. M.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The cosmic deuterium to hydrogen (D/H) ratio is of key importance from a cosmological and stellar evolution perspective since deuterium originates from big-bang nucleosynthesis and is destroyed by stellar thermonuclear reactions. Further, from the interstellar perspective, the galactic distribution of deuterium and the D/H ratio among various molecular species also traces interstellar chemical evolution. Over the past few decades, radio observations have enabled the study of a handful of small, deuterated interstellar species. However, the number of deuterated species detected and environments probed are limited, raising issues of selection effects that hamper generalization and applications to other environments. Infrared spectroscopy of the interstellar medium offers a distinct advantage in this regard as the extent of deuteration of entire chemical families, rather than one species, can be probed. These observations require spaceborne telescopes because the molecular vibrations involving D which produce the strongest IR bands fall in spectral regions which are obscured by terrestrial CO2 absorption. Here we report the tentative detection of the C-D stretching vibration from deuterated interstellar polycyclic aromatic hydrocarbons in the Orion nebula. Since the PAH emission features are widespread and probe many different types of cosmic environments, follow up observations of deuterated PAHs will provide fundamental, far reaching new insight and perspective into galactic and extragalactic processes.

  10. Tankyrase Inhibitors Stimulate the Ability of Tankyrases to Bind Axin and Drive Assembly of β-Catenin Degradation-Competent Axin Puncta.

    PubMed

    Martino-Echarri, Estefania; Brocardo, Mariana G; Mills, Kate M; Henderson, Beric R

    2016-01-01

    Activation of the wnt signaling pathway is a major cause of colon cancer development. Tankyrase inhibitors (TNKSi) have recently been developed to block the wnt pathway by increasing axin levels to promote degradation of the wnt-regulator β-catenin. TNKSi bind to the PARP (poly(ADP)ribose polymerase) catalytic region of tankyrases (TNKS), preventing the PARylation of TNKS and axin that normally control axin levels through ubiquitination and degradation. TNKSi treatment of APC-mutant SW480 colorectal cancer cells can induce axin puncta which act as sites for assembly of β-catenin degradation complexes, however this process is poorly understood. Using this model system, we found that siRNA knockdown of TNKSs 1 and 2 actually blocked the ability of TNKSi drugs to induce axin puncta, revealing that puncta formation requires both the expression and the inactivation of TNKS. Immunoprecipitation assays showed that treatment of cells with TNKSi caused a strong increase in the formation of axin-TNKS complexes, correlating with an increase in insoluble or aggregated forms of TNKS/axin. The efficacy of TNKSi was antagonized by proteasome inhibitors, which stabilized the PARylated form of TNKS1 and reduced TNKSi-mediated assembly of axin-TNKS complexes and puncta. We hypothesise that TNKSi act to stimulate TNKS oligomerization and assembly of the TNKS-axin scaffold that form puncta. These new insights may help in optimising the future application of TNKSi in anticancer drug design. PMID:26930278

  11. Tankyrase Inhibitors Stimulate the Ability of Tankyrases to Bind Axin and Drive Assembly of β-Catenin Degradation-Competent Axin Puncta

    PubMed Central

    Martino-Echarri, Estefania; Brocardo, Mariana G.; Mills, Kate M.; Henderson, Beric R.

    2016-01-01

    Activation of the wnt signaling pathway is a major cause of colon cancer development. Tankyrase inhibitors (TNKSi) have recently been developed to block the wnt pathway by increasing axin levels to promote degradation of the wnt-regulator β-catenin. TNKSi bind to the PARP (poly(ADP)ribose polymerase) catalytic region of tankyrases (TNKS), preventing the PARylation of TNKS and axin that normally control axin levels through ubiquitination and degradation. TNKSi treatment of APC-mutant SW480 colorectal cancer cells can induce axin puncta which act as sites for assembly of β-catenin degradation complexes, however this process is poorly understood. Using this model system, we found that siRNA knockdown of TNKSs 1 and 2 actually blocked the ability of TNKSi drugs to induce axin puncta, revealing that puncta formation requires both the expression and the inactivation of TNKS. Immunoprecipitation assays showed that treatment of cells with TNKSi caused a strong increase in the formation of axin-TNKS complexes, correlating with an increase in insoluble or aggregated forms of TNKS/axin. The efficacy of TNKSi was antagonized by proteasome inhibitors, which stabilized the PARylated form of TNKS1 and reduced TNKSi-mediated assembly of axin-TNKS complexes and puncta. We hypothesise that TNKSi act to stimulate TNKS oligomerization and assembly of the TNKS-axin scaffold that form puncta. These new insights may help in optimising the future application of TNKSi in anticancer drug design. PMID:26930278

  12. TREATMENT OF PAHS AND PCBS USING SULFATE RADICAL-BASED OXIDATION PROCESSES

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in aquatic systems pose serious threat to public health due to their toxicity and potential carcinogenicity [1]. Sulfate radical-based oxidation processes can be effectively used for degradation of these...

  13. BIODEGRADATION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAH) FROM CRUDE OIL IN SANDY-BEACH MICROCOSMS.

    EPA Science Inventory

    Though the lower n-alkanes are considered the most degradable components of crude oil, our experiments with microcosms simulating oiled beaches showed substantial depletion of fluorene, phenanthrene, dibenzothiophene, and other PAH in control treatments consisting of raw seawater...

  14. Ethanol-enhanced bioremediation of PAH-contaminated soils

    SciTech Connect

    Lee, P.H.; Ong, S.K.; Golchin, J.

    1999-07-01

    Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is highly challenging because of the low solubility and strong sorption properties of PAHs to soil organic matter. Two PAH-contaminated soils from former manufactured gas plant (MGP) sites were pretreated with ethanol to enhance the bioavailability of PAH compounds. The biodegradation of various PAHs in the pretreated soils was assessed using soil slurry reactor studies. The time needed to degrade 90% of the total PAH in the pretreated soils was at least 5 days faster than soils that were not pretreated with ethanol. A distinctive advantage with the pretreatment of soils with ethanol was the enhanced removal of 4-ring compounds such as chrysene. Approximately 90% of chrysene in the ethanol-treated soils were removed within 15 days while soils without pretreatment needed more than 30 days to obtain similar removal levels. After 35 days of biotreatment in the slurry reactors, approximately 40% of benzo(a)pyrene were removed in the ethanol-treated soils while only 20% were removed in soils not pretreated with ethanol.

  15. Impact of soil amendments and the plant rhizosphere on PAH behaviour in soil.

    PubMed

    Marchal, Geoffrey; Smith, Kilian E C; Mayer, Philipp; Wollesen de Jonge, Lis; Karlson, Ulrich G

    2014-05-01

    Carbonaceous amendments reduce PAH dissolved concentrations (Cfree), limiting their uptake and toxicity. A soil contaminated with PAHs was mixed with activated carbon (AC), charcoal or compost and planted with radish (Raphanus sativus L.), and Cfree, chemical activities and diffusive uptake of the PAHs measured over 2 months. For AC, Cfree and diffusive uptake were decreased by up to 94% compared to the unamended soil within one week. In addition, the sum chemical activity of the PAHs remained below the threshold for baseline toxicity. In contrast, charcoal and compost only led to modest reductions in Cfree and diffusive uptake, with sum chemical activities that could potentially result in baseline toxicity being observed. Furthermore, both Cfree and diffusive uptake were lower in the planted compared to unplanted soils. Therefore, only AC successfully reduced PAH acute toxicity in the soil, but plant-promoted microbial degradation may also play an important role in PAH attenuation. PMID:24583710

  16. A Second β-Hexosaminidase Encoded in the Streptococcus pneumoniae Genome Provides an Expanded Biochemical Ability to Degrade Host Glycans.

    PubMed

    Robb, Melissa; Robb, Craig S; Higgins, Melanie A; Hobbs, Joanne K; Paton, James C; Boraston, Alisdair B

    2015-12-25

    An important facet of the interaction between the pathogen Streptococcus pneumoniae (pneumococcus) and its human host is the ability of this bacterium to process host glycans. To achieve cleavage of the glycosidic bonds in host glycans, S. pneumoniae deploys a wide array of glycoside hydrolases. Here, we identify and characterize a new family 20 glycoside hydrolase, GH20C, from S. pneumoniae. Recombinant GH20C possessed the ability to hydrolyze the β-linkages joining either N-acetylglucosamine or N-acetylgalactosamine to a wide variety of aglycon residues, thus revealing this enzyme to be a generalist N-acetylhexosaminidase in vitro. X-ray crystal structures were determined for GH20C in a ligand-free form, in complex with the N-acetylglucosamine and N-acetylgalactosamine products of catalysis and in complex with both gluco- and galacto-configured inhibitors O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc), O-(2-acetamido-2-deoxy-D-galactopyranosylidene)amino N-phenyl carbamate (GalPUGNAc), N-acetyl-D-glucosamine-thiazoline (NGT), and N-acetyl-D-galactosamine-thiazoline (GalNGT) at resolutions from 1.84 to 2.7 Å. These structures showed N-acetylglucosamine and N-acetylgalactosamine to be recognized via identical sets of molecular interactions. Although the same sets of interaction were maintained with the gluco- and galacto-configured inhibitors, the inhibition constants suggested preferred recognition of the axial O4 when an aglycon moiety was present (Ki for PUGNAc > GalPUGNAc) but preferred recognition of an equatorial O4 when the aglycon was absent (Ki for GalNGT > NGT). Overall, this study reveals GH20C to be another tool that is unique in the arsenal of S. pneumoniae and that it may implement the effort of the bacterium to utilize and/or destroy the wide array of host glycans that it may encounter. PMID:26491009

  17. Polycyclic Aromatic Acids Are Primary Metabolites of Alkyl-PAHs-A Case Study with Nereis diversicolor.

    PubMed

    Malmquist, Linus M V; Selck, Henriette; Jørgensen, Kåre B; Christensen, Jan H

    2015-05-01

    Although concentrations of alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) in oil-contaminated sediments are higher than those of unsubstituted PAHs, only little attention has been given to metabolism and ecotoxicity of alkyl-PAHs. In this study we demonstrated that metabolism of alkyl-PAHs primarily forms polycyclic aromatic acids (PAAs). We generalize this to other alkyl-PAHs, based on literature and the present study of the metabolism of 1-methylphenanthrene, 3,6-dimethylphenanthrene, and 1-, 2-, 3-, and 6-methylchrysene related to their unsubstituted parent PAHs. Also, we observed that body burdens and production of PAAs was related to the position of the methyl group, showing the same isomer specific preferences as for microbial degradation of alkyl-PAHs. We detected a high production of PAAs, and larger metabolism of alkyl-PAHs than their unsubstituted parent PAHs. We therefore propose that carboxylic acid metabolites of alkyl-PAHs have the potential of constituting a new class of contaminants in marine waters that needs attention in relation to ecological risk assessments. PMID:25827176

  18. Leaching of polycyclic aromatic hydrocarbons (PAHs) from industrial wastewater sludge by ultrasonic treatment.

    PubMed

    Oh, Joo-Yeon; Choi, Sung-Deuk; Kwon, Hye-Ok; Lee, Sung-Eun

    2016-11-01

    Ultrasonic treatment for sludge reduction in wastewater treatment plants (WWTPs) can substantially affect the fate of trace pollutants. However, their fates in the different phases of sludge and mass balances have rarely been reported. In this study, wastewater sludge samples were ultrasonicated at 600W for 0-30min. Then, the leaching of the 16 priority polycyclic aromatic hydrocarbons (PAHs) from the sludge solids (sediment) to the liquid phase (supernatant) was investigated. The total concentration of PAHs (∑16 PAHs) in the sludge sediment (2.10μg/g) was comparable with those of previous worldwide studies. Among the 16 PAHs, naphthalene and acenaphthylene were dominant. The total concentrations of PAHs in the supernatant generally increased with sonication time, indicating that PAHs associated with sludge materials, such as microorganisms, were released into the supernatant. Lighter and more water soluble PAHs were released preferentially into the supernatant in dissolved form, whereas heavier and more hydrophobic PAHs were strongly bound to particles. According to mass balance calculations, 21% of the PAHs in the sludge sediment moved to the supernatant without discernible sonodegradation. An additional experiment for degradation of PAHs supported this interpretation, and several reasons for the no significant sonodegradation were discussed. This result suggests that leaching trace pollutants may significantly contaminate the sludge filtrate after ultrasonic treatment, and therefore their fates should be investigated. PMID:27245957

  19. Identification and analysis of polyaromatic hydrocarbons (PAHs)--biodegrading bacterial strains from refinery soil of India.

    PubMed

    Chaudhary, Priyanka; Sahay, Harmesh; Sharma, Richa; Pandey, Alok Kumar; Singh, Shashi Bala; Saxena, A K; Nain, Lata

    2015-06-01

    Polyaromatic hydrocarbons (PAHs) utilizing bacteria were isolated from soils of seven sites of Mathura refinery, India. Twenty-six bacterial strains with different morphotypes were isolated. These strains were acclimatized to utilize a mixture of four polycyclic aromatic hydrocarbons, i.e., anthracene, fluorene, phenanthrene, and pyrene, each at 50 mg/L concentration as sole carbon source. Out of total isolates, 15 potent isolates were subjected to 16S rDNA sequencing and identified as a member of diverse genera, i.e., Bacillus, Acinetobacter, Stenotrophomonas, Alcaligenes, Lysinibacillus, Brevibacterium, Serratia, and Streptomyces. Consortium of four promising isolates (Acinetobacter, Brevibacterium, Serratia, and Streptomyces) were also investigated for bioremediation of PAH mixture. This consortium was proved to be efficient PAH degrader resulting in 40-70 % degradation of PAH within 7 days. Results of this study indicated that these genera may play an active role in bioremediation of PAHs. PMID:26026847

  20. Trametes meyenii possesses elevated dye degradation abilities under normal nutritional conditions compared to other white rot fungi

    PubMed Central

    2014-01-01

    Several species of white-rot fungi were investigated for their utility in prolonged decolouration of the recalcitrant sulfonated azo dye, amaranth. Trametes pubescens, T. multicolor, T. meyenii and T. versicolor decoloured amaranth azo-dye best on low-nitrogen agar-solidified media whereas Bjerkandera adusta and Phlebia radiata were most effective in low nitrogen medium supplemented with manganese. Trametes cotonea did not decolour effectively under any condition. The decolouring Trametes species were also effective in liquid culture whereas B. adusta and P. radiata were not. Trametes meyenii, T. pubescens and T. multicolor were equal to or better than commonly employed T. versicolor at decolouring amaranth. This is the first study to show the dye decolouration potential of T. meyenii, T. pubescens, and T. multicolor. Supplementing with Mn(II) increased assayable manganese peroxidase activity, but not long-term decolouration, indicating that laccase is the main decolourizing enzyme in these Trametes species. This appears to be because of inadequate Mn3+ chelation required by manganese peroxidase because adding relatively low amounts of malonate enhanced decolouration rates. The ability of Trametes meyenii to simultaneously decolour dye over prolonged periods of time while growing in relatively nutrient-rich medium appears to be unique amongst white-rot fungi, indicating its potential in wastewater bioremediation. PMID:25401075

  1. Isolation of a methanogenic bacterium, Methanosarcina sp. strain FR, for its ability to degrade high concentration of perchloroethylene.

    PubMed

    Cabirol, N; Villemur, R; Perrier, J; Jacob, F; Fouillet, B; Chambon, P

    1998-12-01

    Tetrachloroethylene (PCE) is a toxic compound essentially used as a degreasing and dry-cleaning solvent. A methanogenic and sulfate-reducing consortium that dechlorinates and mineralizes high concentrations of PCE was derived from anaerobically digested sludge obtained from a waste water treatment plant (Bourg-en-Bresse, France). A methanogenic bacterium, strain FR, was isolated from this acclimated consortium. On the basis of morphological and physiological characteristics, strain FR was classified in the genus of Methanosarcina. Phylogeny analysis with the 16S rRNA gene sequence revealed that strain FR is highly related to Methanosarcina mazei and Methanosarcina frisia (99.6 and 99.5% identity, respectively). High concentrations (50-87 microM) of PCE were completely dechlorinated by strain FR cultures at the rate of 76 nM-mg protein(-1).day(-1). PCE dechlorination produced a nonidentified compound. The tracer experiments with [13C]PCE revealed that the product was nonchlorinated. Dechlorination of PCE to trichloroethylene was still active in the presence of boiled cell extract of the strain FR. However, no further dechlorination was observed. This result suggests that a cofactor rather than an enzymatic system is responsible for the first dechlorination of PCE. Dechlorination-active fractions purified from cell extracts on a XAD-4 column revealed the presence of F(420), F(430), and cobamides cofactors. This is the first report of the isolation of a methanogenic bacterium with the ability to dechlorinate high concentrations of PCE to a nonchlorinated product. PMID:10383226

  2. Enrichment, Isolation, and Phylogenetic Identification of Polycyclic Aromatic Hydrocarbon-Degrading Bacteria from Elizabeth River Sediments▿ † §

    PubMed Central

    Hilyard, Edward J.; Jones-Meehan, Joanne M.; Spargo, Barry J.; Hill, Russell T.

    2008-01-01

    The diversity of indigenous bacteria in sediments from several sites in the Elizabeth River (Virginia) able to degrade multiple polycyclic aromatic hydrocarbons (PAHs) was investigated by the use of classical selective enrichment and molecular analyses. Enrichment cultures containing naphthalene, phenanthrene, fluoranthene, or pyrene as a sole carbon and energy source were monitored by denaturing gradient gel electrophoresis (DGGE) to detect changes in the bacterial-community profile during enrichment and to determine whether the representative strains present were successfully cultured. The DGGE profiles of the final enrichments grown solely on naphthalene and pyrene showed no clear relationship with the site from which the inoculum was obtained. The enrichments grown solely on pyrene for two sample sites had >80% similarity, which suggests that common pyrene-degrading strains may be present in these sediments. The final enrichments grown on fluoranthene and phenanthrene remained diverse by site, suggesting that these strains may be influenced by environmental conditions. One hundred and one isolates were obtained, comprising representatives of the actinomycetes and alpha-, beta-, and gammaproteobacteria, including seven novel isolates with 16S rRNA gene sequences less than 98% similar to known strains. The ability to degrade multiple PAHs was demonstrated by mineralization of 14C-labeled substrate and growth in pure culture. This supports our hypothesis that a high diversity of bacterial strains with the ability to degrade multiple PAHs can be confirmed by the combined use of classical selective enrichment and molecular analyses. This large collection of diverse PAH-degrading strains provides a valuable resource for studies on mechanisms of PAH degradation and bioremediation. PMID:18156326

  3. Chemical-assisted phytoremediation of CD-PAHs contaminated soils using Solanum nigrum L.

    PubMed

    Yang, Chuanjie; Zhou, Qixing; Wei, Shuhe; Hu, Yahu; Bao, Yanyu

    2011-09-01

    A well-characterized cadmium (Cd) hyperaccumulating plant Solanum nigrum was grown in Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil that was repeatedly amended with chemicals, including EDTA, cysteine (CY), salicylic acid (Sa), and Tween 80 (TW80), to test individual and combined treatment effects on phytoremediation of Cd-PAHs contaminated soils. Plant growth was negatively affected by exogenous chemicals except for EDTA. S. nigrum could accumulate Cd in tissues without assistant chemicals, while there was no visible effect on the degradation of PAHs. Cysteine had significant effects on phytoextraction of Cd and the highest metal extraction ratio (1.27%) was observed in 0.9 mmol/kg CY treatment. Both salicylic acid and Tween 80 had stimulative effects on the degradation of PAHs and there was the maximal degradation rate (52.6%) of total PAHs while 0.9 mmol/kg Sa was applied. Furthermore, the combined treatment T(0.1EDTA+0.9CY+0.5TW80) and T(0.5EDTA+0.9CY+03Sa) could not only increase the accumulation of Cd in plant tissues, but also promote the degradation of PAHs. These results indicated that S. nigrum might be effective in phytoextracting Cd and enhancing the biodegradation of PAHs in the co-contaminated soils with assistant chemicals. PMID:21972521

  4. The use of ozone in an artificial seawater environment and its ability to degrade Gymnodinium breve toxins

    SciTech Connect

    Schneider, K.R.

    1991-01-01

    The objectives of this research were to establish the practicality of currently used oxidant tests for ozone-treated artificial seawater and to determine the effectiveness of using ozone to reduce toxins associated with Gymnodinium breve, the red tide-causing dinoflagellate found in the Gulf of Mexico off the coast of Florida. In addition to its beneficial role, some emphasis was placed on ascertaining if any harmful by-products could be formed during the ozonation process. Three tests using amperometric titration, potassium iodide (KI) and N,N-diethyl-p-phenylene-diamine (DPD) were performed to determine their ability to detect ozone-produced oxidants in various solutions. These methods yielded different results when bromine and ammonia concentrations were varied in an artificial seawater (ASW) environment. The KI test yielded up to 100 percent higher estimates for each sample than did the amperometric and DPD tests. To test for the possible production of harmful by-products during the ozonation process, ASW samples were spiked with 1 gram of hesperetin. In experiments where the seawater mix was exposed to 27 ppm of ozone prior to the introduction of the organic precursor, small but measurable amounts of tribromomethane were detected via gas chromatography/mass spectroscopy. As the ozone dose was increased to 135 ppm, the recoverable levels of tribromomethane increased. When G. breve toxins were exposed to ozone treatment, samples displayed a three log reduction in the total amount of toxin recovered after ten minutes. Reduction in toxin levels directly correlated with reduction of toxicity as determined by a fish bioassay. It is significant to report that even after 10 minutes of ozonation, comparable to dose levels of that might be used in a commercial depuration facility, some toxins were still recoverable by HPLC analysis.

  5. Generation and distribution of PAHs in the process of medical waste incineration

    SciTech Connect

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-15

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between

  6. Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability

    PubMed Central

    2014-01-01

    Background The genome of Pleurotus ostreatus, an important edible mushroom and a model ligninolytic organism of interest in lignocellulose biorefineries due to its ability to delignify agricultural wastes, was sequenced with the purpose of identifying and characterizing the enzymes responsible for lignin degradation. Results Heterologous expression of the class II peroxidase genes, followed by kinetic studies, enabled their functional classification. The resulting inventory revealed the absence of lignin peroxidases (LiPs) and the presence of three versatile peroxidases (VPs) and six manganese peroxidases (MnPs), the crystal structures of two of them (VP1 and MnP4) were solved at 1.0 to 1.1 Å showing significant structural differences. Gene expansion supports the importance of both peroxidase types in the white-rot lifestyle of this fungus. Using a lignin model dimer and synthetic lignin, we showed that VP is able to degrade lignin. Moreover, the dual Mn-mediated and Mn-independent activity of P. ostreatus MnPs justifies their inclusion in a new peroxidase subfamily. The availability of the whole POD repertoire enabled investigation, at a biochemical level, of the existence of duplicated genes. Differences between isoenzymes are not limited to their kinetic constants. Surprising differences in their activity T50 and residual activity at both acidic and alkaline pH were observed. Directed mutagenesis and spectroscopic/structural information were combined to explain the catalytic and stability properties of the most interesting isoenzymes, and their evolutionary history was analyzed in the context of over 200 basidiomycete peroxidase sequences. Conclusions The analysis of the P. ostreatus genome shows a lignin-degrading system where the role generally played by LiP has been assumed by VP. Moreover, it enabled the first characterization of the complete set of peroxidase isoenzymes in a basidiomycete, revealing strong differences in stability properties and providing

  7. Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition.

    PubMed

    Sharma, Anamika; Singh, Shashi Bala; Sharma, Richa; Chaudhary, Priyanka; Pandey, Alok Kumar; Ansari, Raunaq; Vasudevan, Venugopal; Arora, Anju; Singh, Surender; Saha, Supradip; Nain, Lata

    2016-10-01

    Microbial degradation is a useful tool to prevent chemical pollution in soil. In the present study, in-situ bioremediation of polyaromatic hydrocarbons (PAHs) by microbial consortium consisting of Serratia marcescens L-11, Streptomyces rochei PAH-13 and Phanerochaete chrysosporium VV-18 has been reported. In preliminary studies, the consortium degraded nearly 60-70% of PAHs in broth within 7 days under controlled conditions. The same consortium was evaluated for its competence under natural conditions by amending the soil with ammonium sulphate, paddy straw and compost. Highest microbial activity in terms of dehydrogenase, FDA hydrolase and aryl esterase was recorded on the 5(th) day. The degradation rate of PAHs significantly increased up to 56-98% within 7 days under in-situ however almost complete dissipation (83.50-100%) was observed on the 30(th) day. Among all the co-substrates evaluated, faster degradation of PAHs was observed in compost amended soil wherein fluorene, anthracene, phenanthrene and pyrene degraded with half-life of 1.71, 4.70, 2.04 and 6.14 days respectively. Different degradation products formed were also identified by GC-MS. Besides traces of parent PAHs eleven non-polar and five polar products were identified by direct and silylation reaction respectively. Various products formed indicated that consortium was capable to degrade PAHs by oxidation to mineralization. PMID:27558829

  8. Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget Sound sediments

    SciTech Connect

    Geiselbrecht, A.D.; Herwig, R.P.; Deming, J.W.; Staley, J.T.

    1996-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are primarily released into the environment through anthropomorphic sources. PAH degradation has been known to occur in marine sediments. This paper describes the enumeration, isolation, and preliminary characterization of PAH-degrading strains from Puget Sound sediments. 38 refs., 3 figs., 3 tabs.

  9. Enhancing the Decolorizing and Degradation Ability of Bacterial Consortium Isolated from Textile Effluent Affected Area and Its Application on Seed Germination

    PubMed Central

    Mahmood, Rashid; Ali, Sikander; Hayyat, Muhammad Umar

    2015-01-01

    A bacterial consortium BMP1/SDSC/01 consisting of six isolates was isolated from textile effected soil, sludge, and textile effluent from Hudiara drain near Nishat Mills Limited, Ferozepur Road, Lahore, Pakistan. It was selected because of being capable of degrading and detoxifying red, green, black, and yellow textile dyes. The pH and supplements were optimized to enhance the decolorization ability of the selected consortium. The results indicated that decolorizing ability of consortium for the red, green, black, and yellow dyes was higher as compared to individual strains. The consortium was able to decolorize 84%, 84%, 85%, 85%, and 82% of 200 ppm of red, green, black, yellow, and mixed dyes within 24 h while individual strain required 72 h. On supplementing urea, the consortium decolorized 87, 86, 89, 86, and 83%, respectively, while on supplementing sodium chloride the consortium decolorized 93, 94, 93, 94, and 89% of red, green, black, yellow, and mixed dyes, respectively, which was maximum while in the presence of ascorbic acid and ammonium chloride it showed intermediate results. The effect of untreated and treated dyes was investigated on Zea mays L. (maize) and Sorghum vulgare Pers. (sorghum). This study will help to promote an efficient biotreatment of textile effluents. PMID:25654132

  10. Enhancing the decolorizing and degradation ability of bacterial consortium isolated from textile effluent affected area and its application on seed germination.

    PubMed

    Mahmood, Rashid; Sharif, Faiza; Ali, Sikander; Hayyat, Muhammad Umar

    2015-01-01

    A bacterial consortium BMP1/SDSC/01 consisting of six isolates was isolated from textile effected soil, sludge, and textile effluent from Hudiara drain near Nishat Mills Limited, Ferozepur Road, Lahore, Pakistan. It was selected because of being capable of degrading and detoxifying red, green, black, and yellow textile dyes. The pH and supplements were optimized to enhance the decolorization ability of the selected consortium. The results indicated that decolorizing ability of consortium for the red, green, black, and yellow dyes was higher as compared to individual strains. The consortium was able to decolorize 84%, 84%, 85%, 85%, and 82% of 200 ppm of red, green, black, yellow, and mixed dyes within 24 h while individual strain required 72 h. On supplementing urea, the consortium decolorized 87, 86, 89, 86, and 83%, respectively, while on supplementing sodium chloride the consortium decolorized 93, 94, 93, 94, and 89% of red, green, black, yellow, and mixed dyes, respectively, which was maximum while in the presence of ascorbic acid and ammonium chloride it showed intermediate results. The effect of untreated and treated dyes was investigated on Zea mays L. (maize) and Sorghum vulgare Pers. (sorghum). This study will help to promote an efficient biotreatment of textile effluents. PMID:25654132

  11. Removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay mineral: Bentonite.

    PubMed

    Karaca, Gizem; Baskaya, Hüseyin S; Tasdemir, Yücel

    2016-01-01

    There has been limited study of the removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay minerals. Determining the amount of PAH removal is important in predicting their environmental fate. This study was carried out to the degradation and evaporation of PAHs from bentonite, which is an inorganic clay mineral. UV apparatus was designed specifically for the experiments. The impacts of temperature, UV, titanium dioxide (TiO2), and diethylamine (DEA) on PAH removal were determined. After 24 h, 75 and 44 % of ∑12 PAH in the bentonite were removed with and without UV rays, respectively. DEA was more effective as a photocatalyst than TiO2 during UV application. The ∑12 PAH removal ratio reached 88 % with the addition of DEA to the bentonite. It was concluded that PAHs were photodegraded at high ratios when the bentonite samples were exposed to UV radiation in the presence of a photocatalyst. At the end of all the PAH removal applications, higher evaporation ratios were obtained for 3-ring compounds than for heavier ones. More than 60 % of the amount of ∑12 PAH evaporated consisted of 3-ring compounds. PMID:26531715

  12. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere.

    PubMed

    Joner, Erik J; Leyval, Corinne; Colpaert, Jan V

    2006-07-01

    Exploitation of mycorrhizas to enhance phytoremediation of organic pollutants has received attention recently due to their positive effects on establishment of plants in polluted soils. Some evidence exist that ectomycorrhizas enhance the degradation of pollutants of low recalcitrance, while less easily degradable polyaromatic molecules have been degraded only by some of these fungi in vitro. Natural polyaromatic (humic) substances are degraded more slowly in soil where ectomycorrhizal fungi are present, thus phytoremediation of recalcitrant pollutants may not benefit from the presence of these fungi. Using a soil spiked with three polycyclic aromatic hydrocarbons (PAHs) and an industrially polluted soil (1 g kg(-1) of summation operator12 PAHs), we show that the ectomycorrhizal fungus Suillus bovinus, forming hydrophobic mycelium in soil that would easily enter into contact with hydrophobic pollutants, impedes rather than promotes PAH degradation. This result is likely to be a nutrient depletion effect caused by fungal scavenging of mineral nutrients. PMID:16325973

  13. Laboratory Astrochemistry: Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  14. LAND TREATMENT OF TWO PLATEAU MATERIALS CONTAMINATED WITH PAHS

    EPA Science Inventory

    This study was designed to evaluate several treatments for their ability to enhance the biological removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and sediment. Previously land-treated material was used to test the treatments in a 13 week bench scale stu...

  15. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology

    PubMed Central

    Bisht, Sandeep; Pandey, Piyush; Bhargava, Bhavya; Sharma, Shivesh; Kumar, Vivek; Sharma, Krishan D.

    2015-01-01

    The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e. polyaromatic hydrocarbons (PAHs) due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa , Pseudomons fluoresens , Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective. PMID:26221084

  16. Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants.

    PubMed

    Bourceret, Amélia; Leyval, Corinne; de Fouquet, Chantal; Cébron, Aurélie

    2015-01-01

    Rhizoremediation uses root development and exudation to favor microbial activity. Thus it can enhance polycyclic aromatic hydrocarbon (PAH) biodegradation in contaminated soils. Spatial heterogeneity of rhizosphere processes, mainly linked to the root development stage and to the plant species, could explain the contrasted rhizoremediation efficiency levels reported in the literature. Aim of the present study was to test if spatial variability in the whole plant rhizosphere, explored at the centimetre-scale, would influence the abundance of microorganisms (bacteria and fungi), and the abundance and activity of PAH-degrading bacteria, leading to spatial variability in PAH concentrations. Two contrasted rhizospheres were compared after 37 days of alfalfa or ryegrass growth in independent rhizotron devices. Almost all spiked PAHs were degraded, and the density of the PAH-degrading bacterial populations increased in both rhizospheres during the incubation period. Mapping of multiparametric data through geostatistical estimation (kriging) revealed that although root biomass was spatially structured, PAH distribution was not. However a greater variability of the PAH content was observed in the rhizosphere of alfalfa. Yet, in the ryegrass-planted rhizotron, the Gram-positive PAH-degraders followed a reverse depth gradient to root biomass, but were positively correlated to the soil pH and carbohydrate concentrations. The two rhizospheres structured the microbial community differently: a fungus-to-bacterium depth gradient similar to the root biomass gradient only formed in the alfalfa rhizotron. PMID:26599438

  17. Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants

    PubMed Central

    Bourceret, Amélia; Leyval, Corinne; de Fouquet, Chantal; Cébron, Aurélie

    2015-01-01

    Rhizoremediation uses root development and exudation to favor microbial activity. Thus it can enhance polycyclic aromatic hydrocarbon (PAH) biodegradation in contaminated soils. Spatial heterogeneity of rhizosphere processes, mainly linked to the root development stage and to the plant species, could explain the contrasted rhizoremediation efficiency levels reported in the literature. Aim of the present study was to test if spatial variability in the whole plant rhizosphere, explored at the centimetre-scale, would influence the abundance of microorganisms (bacteria and fungi), and the abundance and activity of PAH-degrading bacteria, leading to spatial variability in PAH concentrations. Two contrasted rhizospheres were compared after 37 days of alfalfa or ryegrass growth in independent rhizotron devices. Almost all spiked PAHs were degraded, and the density of the PAH-degrading bacterial populations increased in both rhizospheres during the incubation period. Mapping of multiparametric data through geostatistical estimation (kriging) revealed that although root biomass was spatially structured, PAH distribution was not. However a greater variability of the PAH content was observed in the rhizosphere of alfalfa. Yet, in the ryegrass-planted rhizotron, the Gram-positive PAH-degraders followed a reverse depth gradient to root biomass, but were positively correlated to the soil pH and carbohydrate concentrations. The two rhizospheres structured the microbial community differently: a fungus-to-bacterium depth gradient similar to the root biomass gradient only formed in the alfalfa rhizotron. PMID:26599438

  18. Passive samplers accurately predict PAH levels in resident crayfish.

    PubMed

    Paulik, L Blair; Smith, Brian W; Bergmann, Alan J; Sower, Greg J; Forsberg, Norman D; Teeguarden, Justin G; Anderson, Kim A

    2016-02-15

    Contamination of resident aquatic organisms is a major concern for environmental risk assessors. However, collecting organisms to estimate risk is often prohibitively time and resource-intensive. Passive sampling accurately estimates resident organism contamination, and it saves time and resources. This study used low density polyethylene (LDPE) passive water samplers to predict polycyclic aromatic hydrocarbon (PAH) levels in signal crayfish, Pacifastacus leniusculus. Resident crayfish were collected at 5 sites within and outside of the Portland Harbor Superfund Megasite (PHSM) in the Willamette River in Portland, Oregon. LDPE deployment was spatially and temporally paired with crayfish collection. Crayfish visceral and tail tissue, as well as water-deployed LDPE, were extracted and analyzed for 62 PAHs using GC-MS/MS. Freely-dissolved concentrations (Cfree) of PAHs in water were calculated from concentrations in LDPE. Carcinogenic risks were estimated for all crayfish tissues, using benzo[a]pyrene equivalent concentrations (BaPeq). ∑PAH were 5-20 times higher in viscera than in tails, and ∑BaPeq were 6-70 times higher in viscera than in tails. Eating only tail tissue of crayfish would therefore significantly reduce carcinogenic risk compared to also eating viscera. Additionally, PAH levels in crayfish were compared to levels in crayfish collected 10 years earlier. PAH levels in crayfish were higher upriver of the PHSM and unchanged within the PHSM after the 10-year period. Finally, a linear regression model predicted levels of 34 PAHs in crayfish viscera with an associated R-squared value of 0.52 (and a correlation coefficient of 0.72), using only the Cfree PAHs in water. On average, the model predicted PAH concentrations in crayfish tissue within a factor of 2.4 ± 1.8 of measured concentrations. This affirms that passive water sampling accurately estimates PAH contamination in crayfish. Furthermore, the strong predictive ability of this simple model suggests

  19. Toxicity and photoactivation of PAH mixtures in marine sediment

    SciTech Connect

    Swartz, R.; Ferraro, S.; Lamberson, J.; Cole, F.; Ozretich, R.; Boese, B.; Schults, D.; Behrenfeld, M.; Ankley, G.

    1995-12-31

    The toxicity and toxicological photoactivation of mixtures of sediment-associated fluoranthene, phenanthrene, pyrene, and acenaphthene were determined using standard 10 d sediment toxicity tests with the marine amphipod, Rhepoxynius abronius. The four PAHs were spiked into sediment in a concentration series of either single compounds or an equitoxic mixture. Spiked sediment was stored at 4 C for 28 d before testing. Toxicity tests were conducted under fluorescent lighting. Survivors after 10 d in PAH-contaminated sediment were exposed for 1 h to UV light in the absence of sediment and then tested for their ability to bury in clean sediment. The 10 d LC50s for single PAHs were 3.3, 2.2, 2.8, and 2.3 mg/g oc for fluoranthene, phenanthrene, pyrene, and acenaphthene, respectively. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the equitoxic mixture treatments. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicological interaction of the four PAHs in the mixture was additive, the {Sigma}TU LC50 should equal 1.0. The observed {Sigma}TU LC50 in the mixture was 1.55, indicating the interaction was slightly less than additive. UV enhancement of toxic effects of individual PAHs was correctly predicted by photophysical properties, i.e. pyrene and fluoranthene were photoactivated and phenanthrene and acenaphthene were not. UV effects in the mixture of four PAHs can be explained by the photoactivation of pyrene and fluoranthene alone.

  20. Response of bacterial pdo1, nah, and C12O genes to aged soil PAH pollution in a coke factory area.

    PubMed

    Han, Xue-Mei; Liu, Yu-Rong; Zheng, Yuan-Ming; Zhang, Xiao-Xia; He, Ji-Zheng

    2014-01-01

    Soil pollution caused by polycyclic aromatic hydrocarbons (PAHs) is threatening human health and environmental safety. Investigating the relative prevalence of different PAH-degrading genes in PAH-polluted soils and searching for potential bioindicators reflecting the impact of PAH pollution on microbial communities are useful for microbial monitoring, risk evaluation, and potential bioremediation of soils polluted by PAHs. In this study, three functional genes, pdo1, nah, and C12O, which might be involved in the degradation of PAHs from a coke factory, were investigated by real-time quantitative PCR (qPCR) and clone library approaches. The results showed that the pdo1 and C12O genes were more abundant than the nah gene in the soils. There was a significantly positive relationship between the nah or pdo1 gene abundances and PAH content, while there was no correlation between C12O gene abundance and PAH content. Analyses of clone libraries showed that all the pdo1 sequences were grouped into Mycobacterium, while all the nah sequences were classified into three groups: Pseudomonas, Comamonas, and Polaromonas. These results indicated that the abundances of nah and pdo1 genes were positively influenced by levels of PAHs in soil and could be potential microbial indicators reflecting the impact of soil PAH pollution and that Mycobacteria were one of the most prevalent PAHs degraders in these PAH-polluted soils. Principal component analysis (PCA) and correlation analyses between microbial parameters and environmental factors revealed that total carbon (TC), total nitrogen (TN), and dissolved organic carbon (DOC) had positive effects on the abundances of all PAH-degrading genes. It suggests that increasing TC, TN, and DOC inputs could be a useful way to remediate PAH-polluted soils. PMID:24777329

  1. Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site.

    PubMed

    Blyth, Warren; Shahsavari, Esmaeil; Morrison, Paul D; Ball, Andrew S

    2015-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent contaminants that accumulate in soil, sludge and on vegetation and are produced through activities such as coal burning, wood combustion and in the use of transport vehicles. Naturally occurring surfactants have been known to enhance PAH-removal from soil by improving PAH solubilization thereby increasing PAH-microbe interactions. The aim of this research was to determine if a biosurfactant derived from the leaves of the Australian red ash (Alphitonia excelsa) would enhance bioremediation of a heavily PAH-contaminated soil and to determine how the microbial community was affected. Results of GC-MS analysis show that the extracted biosurfactant was significantly more efficient than the control in regards to the degradation of total 16 US EPA priority PAHs (78.7% degradation compared to 62.0%) and total petroleum hydrocarbons (TPH) (92.9% degradation compared to 44.3%). Furthermore the quantification of bacterial genes by qPCR analysis showed that there was an increase in the number of gene copies associated with Gram positive PAH-degrading bacteria. The results suggest a commercial potential for the use of the Australian red ash tree as a source of biosurfactant for use in the accelerated degradation of hydrocarbons. PMID:26217887

  2. Adsorption and transformation of PAHs from water by a laccase-loading spider-type reactor.

    PubMed

    Niu, Junfeng; Dai, Yunrong; Guo, Huiyuan; Xu, Jiangjie; Shen, Zhenyao

    2013-03-15

    The remediation of polycyclic aromatic hydrocarbons (PAHs) polluted waters has become a concern as a result of the widespread use of PAHs and their adverse impacts on water ecosystems and human health. To remove PAHs rapidly and efficiently in situ, an active fibrous membrane, laccase-loading spider-type reactor (LSTR) was fabricated by electrospinning a poly(D,L-lactide-co-glycolide) (PDLGA)/laccase emulsion. The LSTR is composed of beads-in-string structural core-shell fibers, with active laccase encapsulated inside the beads and nanoscale pores on the surface of the beads. This structure can load more laccase and retains higher activity than do linear structural core-shell fibers. The LSTR achieves the efficient removal/degradation of PAHs in water, which is attributed to not only the protection of the laccase activity by the core-shell structure but also the pre-concentration (adsorption) of PAHs on the surface of the LSTR and the concentration of laccase in the beads. Moreover, the effects of pH, temperature and dissolved organic matter (DOM) concentration on the removal of PAHs by the LSTR, in comparison with that by free laccase, have been taken into account. A synergetic mechanism including adsorption, directional migration and degradation for PAH removal is proposed. PMID:23385205

  3. Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads.

    PubMed Central

    Stringfellow, W T; Aitken, M D

    1995-01-01

    Polynuclear aromatic hydrocarbons (PAHs) typically exist as complex mixtures in contaminated soils, yet little is known about the biodegradation of PAHs in mixtures. We have isolated two physiologically diverse bacteria, Pseudomonas stutzeri P-16 and P. saccharophila P-15, from a creosote-contaminated soil by enrichment on phenanthrene as the sole carbon source and studied their ability to metabolize several other two- and three-ring PAHs. Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene served as growth substrates for both organisms, while fluorene was only cometabolized. We also studied the effects of these compounds on initial rates of phenanthrene uptake in binary mixtures. Lineweaver-Burk analysis of kinetic measurements was used to demonstrate competitive inhibition of phenanthrene uptake by all four compounds, suggesting that multiple PAHs are being transformed by a common enzyme pathway in whole cells. Estimates of the inhibition coefficient, Ki, are reported for each compound. The occurrence of competitive metabolic processes in physiologically diverse organisms suggests that competitive metabolism may be a common phenomenon among PAH-degrading organisms. PMID:7887615

  4. Source apportionment of sediment PAHs in Lake Calumet, Chicago: application of factor analysis with nonnegative constraints.

    PubMed

    Bzdusek, Philip A; Christensen, Erik R; Li, An; Zou, Qimeng

    2004-01-01

    A factor analysis model with nonnegative constraints (FA) was used to apportion the sources of PAHs found in sediments of Lake Calumet and surrounding wetlands in southeast Chicago. Source profiles and contributions, with uncertainties, are determined with no prior knowledge of sources. The model includes scaling and backscaling of data with average PAH concentrations without sample normalization. This work is a follow-up to a study that used a chemical mass balance (CMB8.2) model to apportion sources to the same data set. Literature source profiles, modified based on gas/particle partitioning of individual PAHs, from eight PAH sources were considered for comparison. FA results for a two-source solution indicate coke oven (45%) and traffic (55%) are the primary PAH sources to Lake Calumet sediments. A six-source FA solution indicates that coke oven (47%) and traffic (45%) related sources are major PAH sources and wood burning-coal residential (2.3%) is a minor PAH source. From the six-source solution, two coke oven profiles are observed, a standard coke oven profile (33%), and a degraded or second coke oven profile (14%) low in phenanthrene and pyrene. Observed traffic related sources include gasoline engine (36%) exhaust and traffic tunnel air (9.3%). This work supports the previous study of Lake Calumet PAHs by CMB model. In addition, FA provides new insights since wood burning and secondary coke oven profiles were not recognized in the CMB model. PMID:14740723

  5. Comparison of PAH Biodegradation and Desorption Kinetics During Bioremediation of Aged Petroleum Hydrocarbon Contaminated Soils

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.

    2000-09-20

    It is commonly assumed that mass-transfer limitations are the cause for slow and incomplete biodegradation of PAHs in aged soils. In order to test this hypothesis, the biodegradation rate and the abiotic release rate were measured and compared for selected PAHs in three different soils. It was found that PAH biodegradation was not mass-transfer limited during slurry bioremediation of an aged loamy soil. By contrast, PAH biodegradation rates were much larger than abiotic release rates in kaolinite clay indicating that sorbed-phase PAHs can apparently be biodegraded directly from mineral surfaces without prior desorption or dissolution into the aqueous phase. A comparison of PAH biodegradation rates and abiotic release rates at termination of the slurry bioremediation treatment revealed that abiotic release rates are much larger than the respective biodegradation rates. In addition, it was found that the number of hydrocarbon degraders decreased by four orders of magnitude during the bioremediation treatment. It can therefore be concluded that the slow and incomplete biodegradation of PAHs is not caused by mass-transfer limitations but rather by microbial factors. Consequently, the residual PAHs that remain after extensive bioremediation treatment are still bioavailable and for that reason could pose a greater risk to environmental receptors than previously thought.

  6. Draft Genome Sequence of Pannonibacter phragmitetus Strain CGMCC9175, a Halotolerant Polycyclic Aromatic Hydrocarbon-Degrading Bacterium

    PubMed Central

    Jin, Decai; Zhou, Lisha; Zhang, Zhuo

    2016-01-01

    Pannonibacter phragmitetus CGMCC9175 is a halotolerant polycyclic aromatic hydrocarbon (PAH)-degrading bacterium isolated from PAH-contaminated intertidal zone sediment. Here, we report the 5.7-Mb draft genome sequence of this strain, which will provide insights into the diversity of Pannonibacter and the mechanism of PAH degradation in sediments. PMID:26823598

  7. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors.

    PubMed

    Zhang, Yanyan; Dong, Sijun; Wang, Hongou; Tao, Shu; Kiyama, Ryoiti

    2016-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are often detected in the environment and are regarded as endocrine disruptors. We here designated mixtures of PAHs in the environment as environmental PAHs (ePAHs) to discuss their effects collectively, which could be different from the sum of the constituent PAHs. We first summarized the biological impact of environmental PAHs (ePAHs) found in the atmosphere, sediments, soils, and water as a result of human activities, accidents, or natural phenomena. ePAHs are characterized by their sources and forms, followed by their biological effects and social impact, and bioassays that are used to investigate their biological effects. The findings of the bioassays have demonstrated that ePAHs have the ability to affect the endocrine systems of humans and animals. The pathways that mediate cell signaling for the endocrine disruptions induced by ePAHs and PAHs have also been summarized in order to obtain a clearer understanding of the mechanisms responsible for these effects without animal tests; they include specific signaling pathways (MAPK and other signaling pathways), regulatory mechanisms (chromatin/epigenetic regulation, cell cycle/DNA damage control, and cytoskeletal/adhesion regulation), and cell functions (apoptosis, autophagy, immune responses/inflammation, neurological responses, and development/differentiation) induced by specific PAHs, such as benz[a]anthracene, benzo[a]pyrene, benz[l]aceanthrylene, cyclopenta[c,d]pyrene, 7,12-dimethylbenz[a]anthracene, fluoranthene, fluorene, 3-methylcholanthrene, perylene, phenanthrene, and pyrene as well as their derivatives. Estrogen signaling is one of the most studied pathways associated with the endocrine-disrupting activities of PAHs, and involves estrogen receptors and aryl hydrocarbon receptors. However, some of the actions of PAHs are contradictory, complex, and unexplainable. Although several possibilities have been suggested, such as direct interactions between PAHs and

  8. Effect of pre-heating on the chemical oxidation efficiency: implications for the PAH availability measurement in contaminated soils.

    PubMed

    Biache, Coralie; Lorgeoux, Catherine; Andriatsihoarana, Sitraka; Colombano, Stéfan; Faure, Pierre

    2015-04-01

    Three chemical oxidation treatments (KMnO4, H2O2 and Fenton-like) were applied on three PAH-contaminated soils presenting different properties to determine the potential use of these treatments to evaluate the available PAH fraction. In order to increase the available fraction, a pre-heating (100 °C under N2 for one week) was also applied on the samples prior oxidant addition. PAH and extractable organic matter contents were determined before and after treatment applications. KMnO4 was efficient to degrade PAHs in all the soil samples and the pre-heating slightly improved its efficiency. H2O2 and Fenton-like treatments presented low efficiency to degrade PAH in the soil presenting poor PAH availability, however, the PAH degradation rates were improved with the pre-heating. Consequently H2O2-based treatments (including Fenton-like) are highly sensitive to contaminant availability and seem to be valid methods to estimate the available PAH fraction in contaminated soils. PMID:25557939

  9. Microbial populations related to PAH biodegradation in an aged biostimulated creosote-contaminated soil.

    PubMed

    Lladó, Salvador; Jiménez, Nuria; Viñas, Marc; Solanas, Anna Maria

    2009-09-01

    A previous bioremediation survey on a creosote-contaminated soil showed that aeration and optimal humidity promoted depletion of three-ringed polycyclic aromatic hydrocarbons (PAHs), but residual concentrations of four-ringed benzo(a)anthracene (B(a)A) and chrysene (Chry) remained. In order to explain the lack of further degradation of heavier PAHs such as four-ringed PAHs and to analyze the microbial population responsible for PAH biodegradation, a chemical and microbial molecular approach was used. Using a slurry incubation strategy, soil in liquid mineral medium with and without additional B(a)A and Chry was found to contain a powerful PAH-degrading microbial community that eliminated 89% and 53% of the added B(a)A and Chry, respectively. It is hypothesized that the lack of PAH bioavailability hampered their further biodegradation in the unspiked soil. According to the results of the culture-dependent and independent techniques Mycobacterium parmense, Pseudomonas mexicana, and Sphingobacterials group could control B(a)A and Chry degradation in combination with several microorganisms with secondary metabolic activity. PMID:19153811

  10. Native Michigan plants stimulate soil microbial species changes and PAH remediation at a legacy steel mill.

    PubMed

    Thomas, John C; Cable, Edward; Dabkowski, Robert T; Gargala, Stephanie; McCall, Daniel; Pangrazzi, Garett; Pierson, Adam; Ripper, Mark; Russell, Donald K; Rugh, Clayton L

    2013-01-01

    A 1.3-acre phytoremediation site was constructed to mitigate polyaromatic hydrocarbon (PAH) contamination from a former steel mill in Michigan. Soil was amended with 10% (v/v) compost and 5% (v/v) poultry litter. The site was divided into twelve 11.89 m X 27.13 m plots, planted with approximately 35,000 native Michigan perennials, and soils sampled for three seasons. Soil microbial density generally increased in subplots of Eupatorium perfoliatum (boneset), Aster novae-angliae (New England aster), Andropogon gerardii (big bluestem), and Scirpus atrovirens (green bulrush) versus unplanted subplots. Using enumeration assays with root exudates, PAH degrading bacteria were greatest in soils beneath plants. Initially predominant, Arthrobacter were found capable of degrading a PAH cocktail in vitro, especially upon the addition of root exudate. Growth of some Arthrobacter isolates was stimulated by root exudate. The frequency of Arthrobacter declined in planted subplots with a concurrent increase in other species, including secondary PAH degraders Bacillus and Nocardioides. In subplots supporting only weeds, an increase in Pseudomonas density and little PAH removal were observed. This study supports the notion that a dynamic interplay between the soil, bacteria, and native plant root secretions likely contributes to in situ PAH phytoremediation. PMID:23487982

  11. Polycyclic aromatic hydrocarbons (PAHs) in plastic pellets: variability in the concentration and composition at different sediment depths in a sandy beach.

    PubMed

    Fisner, Mara; Taniguchi, Satie; Moreira, Fabiana; Bícego, Márcia C; Turra, Alexander

    2013-05-15

    Plastic pellets have the ability to adsorb organic pollutants such as PAHs. This study analyzed the variability in the concentration and composition of PAHs on plastic pellets sampled up to 1m deep in the sediment of a sandy beach. The toxic potential of PAHs was analyzed, and the possible sources of contamination are discussed. The total PAHs varied, with the highest concentrations in the surface layer; the priority PAHs showed a different pattern. PAHs at greater depths did not reach toxicity levels above the PEL. The composition of PAHs differed between pellets from the shallower and from deeper sediment layers, and was suggested a mixture of sources. These results provided the first information on the depth distribution of PAHs in sandy beaches, associated with plastic pellets; and evidenced the potential environmental risk. Similarly to the abundance of pellets, the toxic potential is underestimated in surface samples. PMID:23582976

  12. Identification of petroleum hydrocarbons using a reduced number of PAHs selected by Procrustes rotation.

    PubMed

    Fernández-Varela, R; Andrade, J M; Muniategui, S; Prada, D; Ramírez-Villalobos, F

    2010-04-01

    Identifying petroleum-related products released into the environment is a complex and difficult task. To achieve this, polycyclic aromatic hydrocarbons (PAHs) are of outstanding importance nowadays. Despite traditional quantitative fingerprinting uses straightforward univariate statistical analyses to differentiate among oils and to assess their sources, a multivariate strategy based on Procrustes rotation (PR) was applied in this paper. The aim of PR is to select a reduced subset of PAHs still capable of performing a satisfactory identification of petroleum-related hydrocarbons. PR selected two subsets of three (C(2)-naphthalene, C(2)-dibenzothiophene and C(2)-phenanthrene) and five (C(1)-decahidronaphthalene, naphthalene, C(2)-phenanthrene, C(3)-phenanthrene and C(2)-fluoranthene) PAHs for each of the two datasets studied here. The classification abilities of each subset of PAHs were tested using principal components analysis, hierarchical cluster analysis and Kohonen neural networks and it was demonstrated that they unraveled the same patterns as the overall set of PAHs. PMID:20005532

  13. Bacterial communities and enzyme activities of PAHs polluted soils.

    PubMed

    Andreoni, V; Cavalca, L; Rao, M A; Nocerino, G; Bernasconi, S; Dell'Amico, E; Colombo, M; Gianfreda, L

    2004-11-01

    Three soils (i.e. a Belgian soil, B-BT, a German soil, G, and an Italian agricultural soil, I-BT) with different properties and hydrocarbon-pollution history with regard to their potential to degrade phenanthrene were investigated. A chemical and microbiological evaluation of soils was done using measurements of routine chemical properties, bacterial counts and several enzyme activities. The three soils showed different levels of polycyclic aromatic hydrocarbons (PAHs), being their contamination strictly associated to their pollution history. High values of enzyme activities and culturable heterotrophic bacteria were detected in the soil with no or negligible presence of organic pollutants. Genetic diversity of soil samples and enrichment cultures was measured as bands on denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA sequences from the soil and enrichment community DNAs. When analysed by Shannon index (H'), the highest genetic biodiversity (H'=2.87) was found in the Belgian soil B-BT with a medium-term exposition to PAHs and the poorest biodiversity (H'=0.85) in the German soil with a long-term exposition to alkanes and PAHs and where absence, or lower levels of enzyme activities were measured. For the Italian agricultural soil I-BT, containing negligible amounts of organic pollutants but the highest Cu content, a Shannon index=2.13 was found. The enrichment of four mixed cultures capable of degrading solid phenanthrene in batch liquid systems was also studied. Phenanthrene degradation rates in batch systems were culture-dependent, and simple (one-slope) and complex (two-slope) kinetic behaviours were observed. The presence of common bands of microbial species in the cultures and in the native soil DNA indicated that those strains could be potential in situ phenanthrene degraders. Consistent with this assumption are the decrease of PAH and phenanthrene contents of Belgian soil B-BT and the isolation of phenanthrene-degrading bacteria. From

  14. Biodegradation of PAHs and PCBs in soils and sludges

    USGS Publications Warehouse

    Liu, L.; Tindall, J.A.; Friedel, M.J.

    2007-01-01

    Results from a multi-year, pilot-scale land treatment project for PAHs and PCBs biodegradation were evaluated. A mathematical model, capable of describing sorption, sequestration, and biodegradation in soil/water systems, is applied to interpret the efficacy of a sequential active-passive biotreatment process of organic chemicals on remediation sites. To account for the recalcitrance of PAHs and PCBs in soils and sludges during long-term biotreatment, this model comprises a kinetic equation for organic chemical intraparticle sequestration process. Model responses were verified by comparison to measurements of biodegradation of PAHs and PCBs in land treatment units; a favorable match was found between them. Model simulations were performed to predict on-going biodegradation behavior of PAHs and PCBs in land treatment units. Simulation results indicate that complete biostabilization will be achieved when the concentration of reversibly sorbed chemical (S RA) reduces to undetectable levels, with a certain amount of irreversibly sequestrated residual chemical (S IA) remaining within the soil particle solid phase. The residual fraction (S IA) tends to lose its original chemical and biological activity, and hence, is much less available, toxic, and mobile than the "free" compounds. Therefore, little or no PAHs and PCBs will leach from the treatment site and constitutes no threat to human health or the environment. Biotreatment of PAHs and PCBs can be terminated accordingly. Results from the pilot-scale testing data and model calculations also suggest that a significant fraction (10-30%) of high-molecular-weight PAHs and PCBs could be sequestrated and become unavailable for biodegradation. Bioavailability (large K d , i.e., slow desorption rate) is the key factor limiting the PAHs degradation. However, both bioavailability and bioactivity (K in Monod kinetics, i.e., number of microbes, nutrients, and electron acceptor, etc.) regulate PCBs biodegradation. The sequential

  15. Degradation of oil by fungi isolated from Gulf of Mexico beaches.

    PubMed

    Simister, R L; Poutasse, C M; Thurston, A M; Reeve, J L; Baker, M C; White, H K

    2015-11-15

    Fungi of the Ascomycota phylum were isolated from oil-soaked sand patties collected from beaches following the Deepwater Horizon oil spill. To examine their ability to degrade oil, fungal isolates were grown on oiled quartz at 20°C, 30°C and 40°C. Consistent trends in oil degradation were not related to fungal species or temperature and all isolates degraded variable quantities of oil (32-65%). Fungal isolates preferentially degraded short (PAH) compounds were also degraded by the fungal isolates (42-84% total degraded), with a preference for low molecular weight over high molecular weight PAHs. Overall, these findings contribute to our understanding of the capacity of fungi to degrade oil in the coastal marine environment. PMID:26323859

  16. Enrichment and characterization of sulfate reducing, naphthalene degrading microorganisms

    NASA Astrophysics Data System (ADS)

    Steffen, Kümmel; Florian-Alexander, Herbst; Márcia, Duarte; Dietmar, Pieper; Jana, Seifert; Bergen Martin, von; Hans-Hermann, Richnow; Carsten, Vogt

    2014-05-01

    Polycyclic aromatic hydrocarbons (PAH) are pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. PAH are widely distributed in the environment by accidental discharges during the transport, use and disposal of petroleum products, and during forest and grass fires. Caused by their hydrophobic nature, PAH basically accumulate in sediments from where they are slowly released into the groundwater. Although generally limited by the low water solubility of PAH, microbial degradation is one of the major mechanisms leading to the complete clean-up of PAH-contaminated sites. Whereas organisms and biochemical pathways responsible for the aerobic breakdown of PAH are well known, anaerobic PAH biodegradation is less understood; only a few anaerobic PAH degrading cultures have been described. We studied the anaerobic PAH degradation in a microcosm approach to enrich anaerobic PAH degraders. Anoxic groundwater and sediment samples were used as inoculum. Groundwater samples were purchased from the erstwhile gas works facility and a former wood impregnation site. In contrast, sources of sediment samples were a former coal refining area and an old fuel depot. Samples were incubated in anoxic mineral salt medium with naphthalene as sole carbon source and sulfate as terminal electron acceptor. Grown cultures were characterized by feeding with 13C-labeled naphthalene, 16S rRNA gene sequencing using an Illumina® approach, and functional proteome analyses. Finally, six enrichment cultures able to degrade naphthalene under anoxic conditions were established. First results point to a dominance of identified sequences affiliated to the freshwater sulfate-reducing strain N47, which is a known anaerobic naphthalene degrader, in four out of the six enrichments. In those enrichments, peptides related to the pathway of anoxic naphthalene degradation in N47 were abundant. Overall the data underlines the importance of Desulfobacteria for natural

  17. Climate change impact on the PAH photodegradation in soils: Characterization and metabolites identification.

    PubMed

    Marquès, Montse; Mari, Montse; Audí-Miró, Carme; Sierra, Jordi; Soler, Albert; Nadal, Martí; Domingo, José L

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are airborne pollutants that are deposited on soils. As climate change is already altering temperature and solar radiation, the global warming is suggested to impact the environmental fate of PAHs. This study was aimed at evaluating the effect of climate change on the PAH photodegradation in soils. Samples of Mediterranean soils were subjected to different temperature and light radiation conditions in a climate chamber. Two climate scenarios were considered according to IPCC projections: 1) a base (B) scenario, being temperature and light intensity 20°C and 9.6W/m(2), respectively, and 2) a climate change (CC) scenario, working at 24°C and 24W/m(2), respectively. As expected, low molecular weight PAHs were rapidly volatilized when increasing both temperature and light intensity. In contrast, medium and high molecular weight PAHs presented different photodegradation rates in soils with different texture, which was likely related to the amount of photocatalysts contained in both soils. In turn, the hydrogen isotopic composition of some of the PAHs under study was also investigated to verify any degradation process. Hydrogen isotopes confirmed that benzo(a)pyrene is degraded in both B and CC scenarios, not only under light but also in the darkness, revealing unknown degradation processes occurring when light is lacking. Potential generation pathways of PAH photodegradation by-products were also suggested, being a higher number of metabolites formed in the CC scenario. Consequently, in a more or less near future, although humans might be less exposed to PAHs, they could be exposed to new metabolites of these pollutants, which might be even more toxic. PMID:26859521

  18. Evident bacterial community changes but only slight degradation when polluted with pyrene in a red soil

    PubMed Central

    Ren, Gaidi; Ren, Wenjie; Teng, Ying; Li, Zhengao

    2015-01-01

    Understanding the potential for Polycyclic aromatic hydrocarbons (PAH) degradation by indigenous microbiota and the influence of PAHs on native microbial communities is of great importance for bioremediation and ecological evaluation. Various studies have focused on the bacterial communities in the environment where obvious PAH degradation was observed, little is known about the microbiota in the soil where poor degradation was observed. Soil microcosms were constructed with a red soil by supplementation with a high-molecular-weight PAH (pyrene) at three dosages (5, 30, and 70 mg ⋅ kg-1). Real-time PCR was used to evaluate the changes in bacterial abundance and pyrene dioxygenase gene (nidA) quantity. Illumina sequencing was used to investigate changes in diversity, structure, and composition of bacterial communities. After 42 days of incubation, no evident degradation was observed. The poor degradation ability was associated with the stability or significant decrease of abundance of the nidA gene. Although the abundance of the bacterial 16S rRNA gene was not affected by pyrene, the bacterial richness and diversity were decreased with increasing dosage of pyrene and the community structure was changed. Phylotypes affected by pyrene were comprehensively surveyed: (1) at the high taxonomic level, seven of the abundant phyla/classes (relative abundance >1.0%) including Chloroflexi, AD3, WPS-2, GAL5, Alphaproteobacteria, Actinobacteria, and Deltaproteobacteria and one rare phylum Crenarchaeota were significantly decreased by at least one dosage of pyrene, while three phyla/classes (Acidobacteria, Betaproteobacteria, and Gammaproteobacteria) were significantly increased; and (2) at the lower taxonomic level, the relative abundances of twelve orders were significantly depressed, whereas those of nine orders were significantly increased. This work enhanced our understanding of the biodegradation potential of pyrene in red soil and the effect of pyrene on soil ecosystems

  19. INTERACTION OF PAH-RELATED COMPOUNDS WITH THE ALPHA AND BETA ISOFORMS OF ESTROGEN RECEPTOR. (R826192)

    EPA Science Inventory

    The ability of several 4- and 5-ring polycyclic aromatic hydrocarbons (PAHs), heterocyclic PAHs, and their monohydroxy derivatives to interact with the estrogen receptor (ER) alpha and beta isoforms was examined. Only compounds possessing a hydroxyl group were able to compete wit...

  20. Biodegradation of PAH`s in sediment-slurry processes

    SciTech Connect

    Hughes, J.B.; Beckles, D.; Chandra, S.

    1995-12-31

    The focus of this research was to examine biodegradation of polynuclear aromatic hydrocarbons (PAHs) in lab scale slurry reactors. The studies summarized in this paper focused on the rate and extent of contaminant release from the sediments, oxygen demand of anaerobic sediments, and the rate and extent of PAH biodegradation achieved. Mass balances were used in all cases. The studies identified several factors which may influence the design or operation of bioreactors used for sediment remediation. Mixing had the greatest effect on the rate and extent of contaminant release; solids loading and aeration had little or no effect in mixed reactors. In unmixed reactors, aerated systems showed faster rates of contaminant release than unaerated systems, indicating that the aeration process itself provides some degree of mixing. The maximum extent of mineralization appeared to be reached within five days in mixed systems; significantly lower mineralization was seen in reactors with insufficient mixing.

  1. Unique ability of BiOBr to decarboxylate d-Glu and d-MeAsp in the photocatalytic degradation of microcystin-LR in water.

    PubMed

    Yanfen, Fang; Yingping, Huang; Jing, Yang; Pan, Wang; Genwei, Cheng

    2011-02-15

    Bismuth oxide bromide, BiOBr, was used to catalyze the degradation of microcystin-LR (MC-LR) in water at neutral pH under visible light. During the investigation, twelve intermediates from MC-LR decomposition were identified by LC-MS. In addition to attacking MC-LR at the typically susceptible sites (i.e., the conjugated double bond of the Adda chain and terminal unsaturated bond of the Mdha chain), the BiOBr photocatalyst has the remarkable ability to decarboxylate the free acid groups on d-glutamic acid (Glu) and methyl-d-aspartic acid (MeAsp). This reactivity has not been previously observed with TiO2 photocatalysis or with other MC-LR treatments in which decarboxylation does not occur until the MC-LR ring has been cleaved or mineralized to CO2. Some expected intermediate products were detected with oxygen-18 labeling by using H2(18)O as the solvent to confirm that the decarboxylation process is mediated by BiOBr. Results from characterizing the intermediates as well as oxygen-18 labeling studies indicates that oxidative decarboxylation of MC-LR by BiOBr photocatalysis is not always initiated by hydroxyl radical attack (and/or interaction with a hole followed by hydrolysis) proposed mechanism in TiO2 photocatalysis, whereas likely caused by a direct interaction between photoinduced hole of BiOBr and free carboxyl groups of MC-LR. This unusual decarboxylation behavior seems to be associated with the particular valence band and conduction band state of BiOBr photocatalyst. Also under BiOBr catalysis, a very stable guanidine group of l-arginine (l-Arg) that is nonreactive with TiO2 photocatalysis is converted to an amino group and subsequently oxidized to a nitro group during the decomposition of MC-LR. This reaction sequence is also related to decarboxylation because the guanidine conversion requires a completely or partially decarboxylated precursor. Our results indicate that BiOBr, a photocatalyst that selectively destroys sites crucial to MC-LR toxicity, shows

  2. PAH emission from the industrial boilers.

    PubMed

    Li, C; Mi, H; Lee, W; You, W; Wang, Y

    1999-10-01

    Polycyclic aromatic hydrocarbons (PAHs) emitted from 25 industrial boilers were investigated. The fuels used for these 25 boilers included 21 heavy oil, two diesel, a co-combustion of heavy oil and natural gas (HO+NG) and a co-combustion of coke oven gas and blast furnace gas (COG+BFG) boilers. PAH samples from the stack flue gas (gas and particle phases) of these 25 boilers were collected by using a PAH stack sampling system. Twenty one individual PAHs were analyzed primarily by a gas chromatography/mass spectrometer (GC/MS). Total-PAH concentration in the flue gas of 83 measured data for these 25 boiler stacks ranged between 29.0 and 4250 microg/m(3) and averaged 488 microg/m(3). The average of PAH-homologue mass (F%) counted for the total-PAH mass was 54.7%, 9.47% and 15.3% for the 2-ring, 3-ring and 4-ring PAHs, respectively. The PAHs in the stack flue gas were dominant in the lower molecular weight PAHs. The emission factors (EFs) of total-PAHs were 13,300, 2920, 2880 and 208 microg/kg-fuel for the heavy oil, diesel, HO+NG and COG+BFG fueled-boiler, respectively. Nap was the most predominant PAH occurring in the stack flue gas. In addition, the EF of 21 individual PAHs in heavy-oil boiler were almost the highest among the four various fueled-boilers except for those of FL and BkF in the diesel boiler. Furthermore, the EF of total-PAHs or BaP for heavy oil were both one order of magnitude higher than that for the diesel-fueled boiler. PMID:10502602

  3. HAZARDOUS WASTE DEGRADATION BY WOOD DEGRADING FUNGI

    EPA Science Inventory

    The persistence and toxicity of many hazardous waste constituents indicates that the environment has limited capacity to degrade such materials. he competence and presence of degrading organisms significantly effects our ability to treat and detoxify these hazardous waste chemica...

  4. Particulate PAH emissions from residential biomass combustion: time-resolved analysis with aerosol mass spectrometry.

    PubMed

    Eriksson, A C; Nordin, E Z; Nyström, R; Pettersson, E; Swietlicki, E; Bergvall, C; Westerholm, R; Boman, C; Pagels, J H

    2014-06-17

    Time-resolved emissions of particulate polycyclic aromatic hydrocarbons (PAHs) and total organic particulate matter (OA) from a wood log stove and an adjusted pellet stove were investigated with high-resolution time-of-flight aerosol mass spectrometry (AMS). The highest OA emissions were found during the addition of log wood on glowing embers, that is, slow burning pyrolysis conditions. These emissions contained about 1% PAHs (of OA). The highest PAH emissions were found during fast burning under hot air starved combustion conditions, in both stoves. In the latter case, PAHs contributed up to 40% of OA, likely due to thermal degradation of other condensable species. The distribution of PAHs was also shifted toward larger molecules in these emissions. AMS signals attributed to PAHs were found at molecular weights up to 600 Da. The vacuum aerodynamic size distribution was found to be bimodal with a smaller mode (Dva ∼ 200 nm) dominating under hot air starved combustion and a larger sized mode dominating under slow burning pyrolysis (Dva ∼ 600 nm). Simultaneous reduction of PAHs, OA and total particulate matter from residential biomass combustion may prove to be a challenge for environmental legislation efforts as these classes of emissions are elevated at different combustion conditions. PMID:24866381

  5. Transformation of PAHs during ethanol-Fenton treatment of an aged gasworks' soil.

    PubMed

    Lundstedt, Staffan; Persson, Ylva; Oberg, Lars

    2006-11-01

    PAH-contaminated soil from a former gasworks site was treated with Fenton's reagent in a number of lab-scale slurry reactors. The degradation result obtained by traditional Fenton oxidation and Fenton oxidation preceded by ethanol treatment were compared. The ethanol pre-treatment enhanced the depletion of all PAHs in the soil by facilitating their desorption from the soil matrix. However, some PAHs, especially anthracene, benzo[a]pyrene and perylene, were more extensively depleted than other PAHs with fewer or equal numbers of fused rings, indicating that the hydroxyl radicals react faster with these PAHs than with other kinds. The ethanol present in the slurry also appeared to influence the relative reactivity of the PAHs. Furthermore, the enhanced oxidation that occurred in the ethanol pre-treated soil resulted in the accumulation of oxidation products. For example, 1-indanone, anthracene-9,10-dione, 1-methylanthracenedione, 2-methylanthracenedione, 1,8-naphthalic anhydride, benz[a]anthracene-7,12-dione and two compounds tentatively identified as hydroxy-9-fluorenones were found at higher concentrations after the treatment than before it. The accumulation was most evident for the quinones, and in many cases it could be attributed to extensive oxidation of their parent PAHs, although the total oxidation efficiency in this study was relatively poor. PMID:16735053

  6. Similar PAH Fate in Anaerobic Digesters Inoculated with Three Microbial Communities Accumulating Either Volatile Fatty Acids or Methane

    PubMed Central

    Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique

    2015-01-01

    Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10 % to 30 %, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH

  7. Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane.

    PubMed

    Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique

    2015-01-01

    Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH removal

  8. Microbial Factors Rather Than Bioavailability Limit the Rate and Extent of PAH Biodegradation in Aged Crude Oil Contaminated Model Soils

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.

    2002-08-01

    The rate and extent of PAH biodegradation in a set of aged, crude oil contaminated model soils were measured in 90-week slurry bioremediation experiments. Soil properties such as organic matter content, mineral type, particle diameter, surface area, and porosity did not significantly influence the PAH biodegradation kinetics among the ten different model soils. A comparison of aged and freshly spiked soils indicates that aging affects the biodegradation rates and extents only for higher molecular weight PAHs while the effects of aging are insignificant for 3-ring PAHs and total PAHs. In all model soils with the exception of kaolinite clay, the rate of abiotic desorption was faster than the rate of biodegradation during the initial phase of bioremediation treatment indicating that PAH biodegradation was limited by microbial factors. Similarly, any of the higher molecular weight PAHs that were still present after 90 weeks of treatment were released rapidly during abiotic desorption tests which demonstrates that bioavailability limitations were not responsible for the recalcitrance of these hydrocarbons. Indeed, an analysis of microbial counts indicates that a severe reduction in hydrocarbon degrader populations may be responsible for the observed incomplete PAH biodegradation. It can therefore be concluded that the recalcitrance of PAHs during bioremediation is not necessarily due to bioavailability limitations and that these residual contaminants might, therefore, pose a greater risk to environmental receptors than previously thought.

  9. Butanol extraction to predict bioavailability of PAHs in soil.

    PubMed

    Liste, Hans-Holger; Alexander, Martin

    2002-02-01

    The feasibility of a mild-solvent extraction procedure to predict the bioavailability of individual polycyclic aromatic hydrocarbons (PAHs) in soil was assessed. The quantities that were degraded during the course of biodegradation of phenanthrene and pyrene in soil with or without plants correlated with the amounts extracted by n-butanol, with R2 values of 0.971 and 0.994, respectively. Six consecutive groups of earthworms removed ca. 70% of the pyrene remaining after extensive biodegradation, a value similar to the quantity extracted by n-butanol. The amount of chrysene aged in sterilized soil that was extracted by n-butanol was not statistically different from the quantities assimilated by earth-worms (Eisenia fetida) introduced into the soil. Such a mild extraction procedure may be useful as a means of predicting PAH bioavailability. PMID:11999764

  10. PAH Emission at the Bright Locations of PDRs: the grandPAH Hypothesis

    NASA Astrophysics Data System (ADS)

    Andrews, H.; Boersma, C.; Werner, M. W.; Livingston, J.; Allamandola, L. J.; Tielens, A. G. G. M.

    2015-07-01

    The polycyclic aromatic hydrocarbon (PAH) emission observed in the Spitzer Infrared Spectrograph spectra of bright mid-IR locations of NGC 7023, NGC 2023, and NGC 1333 was analyzed. These objects show large variations in PAH band ratios when studied through spectral mapping. Nevertheless, the mid-IR spectra at these bright spots show a remarkably similar PAH emission. We used the NASA Ames PAH IR Spectroscopic Database to fit the observations and analyze the derived PAH populations. Our results show that PAH emission in the 5-15 μm range appears to be rather insensitive to variations of the radiation field. Similar PAH populations of neutral small to medium-sized PAHs (˜50%), with ionized species contributing in slightly less than 50%, provide very good fits. Analyzing the degeneracy of the results shows that subtle (but intrinsic) variations in the emission properties of individual PAHs lead to observable differences in the resulting spectra. On top of this, we found that variations of <30% in the PAH abundances would lead to noticeable spectral differences between the three photodissociation regions (PDRs). Therefore, PAH populations must be remarkably similar at these different lines of sight. To account for this, we suggest the concept of grandPAHs as a unique mixture of the most stable PAHs emitting at these spots. Using NGC 7023 as an example, the grandPAHs refer to the robust PAH population that results from the intense processing of PAHs at the border limit between the PDR and the molecular cloud, where, due to the UV radiation that destroys the PAH population, the abundance of PAHs starts decreasing as we move toward the star.

  11. Predicting toxicity to Hyalella azteca in pyrogenic-impacted sediments-Do we need to analyze for all 34 PAHs?

    PubMed

    Geiger, Stephen C; Azzolina, Nicholas A; Nakles, David V; Hawthorne, Steven B

    2016-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are major drivers of risk at many urban and/or industrialized sediment sites. The US Environmental Protection Agency (USEPA) currently recommends using measurements of 18 parent + 16 groups of alkylated PAHs (PAH-34) to assess the potential for sediment-bound PAHs to impact benthic organisms at these sites. ASTM Method D7363-13 was developed to directly measure low-level sediment porewater PAH concentrations. These concentrations are then compared to ambient water criteria (final chronic values [FCVs]) to assess the potential for impact to benthic organisms. The interlaboratory validation study that was used to finalize ASTM D7363-13 was developed using 24 of the 2-, 3-, and 4-ring PAHs (PAH-24) that are included in the USEPA PAH-34 analyte list. However, it is the responsibility of the user of ASTM Method D7363 to establish a test method to quantify the remaining 10 higher molecular weight PAHs that make up PAH-34. These higher molecular weight PAHs exhibit extremely low saturation solubilities that make their detection difficult in porewater, which has proven difficult to implement in a contract laboratory setting. As a result, commercial laboratories are hesitant to conduct the method on the entire PAH-34 analyte list. This article presents a statistical comparison of the ability of the PAH-24 and PAH-34 porewater results to predict survival of the freshwater amphipod Hyalella azteca, using the original 269 sediment samples used to gain ASTM D7363 Method approval. The statistical analysis shows that the PAH-24 are statistically indistinguishable from the PAH-34 for predicting toxicity. These results indicate that the analysis of freely dissolved porewater PAH-24 is sufficient for making risk-based decisions based on benthic invertebrate toxicity (survival and growth). This reduced target analyte list should result in a cost-saving for stakeholders and broader implementation of the method at PAH-impacted sediment sites

  12. Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an aged gasworks soil.

    PubMed

    Lundstedt, Staffan; Haglund, Peter; Oberg, Lars

    2003-07-01

    The goals of this study were to investigate the relative degradation rates of polycyclic aromatic compounds (PACs) in contaminated soil, and to assess whether persistent oxidation products are formed during their degradation. Samples were taken on five occasions during a pilot-scale bioslurry treatment of soil from a former gasworks site. More than 100 PACs were identified in the soil, including unsubstituted polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs (alkyl-PAHs), heterocyclic PACs, and oxygenated PAHs (oxy-PAHs), such as ketones, quinones, and coumarins. During the treatment, the low molecular weight PAHs and heterocyclics were degraded faster than the high molecular weight compounds. The unsubstituted PAHs also appear to have degraded more quickly than the corresponding alkyl-PAHs and nitrogen-containing heterocyclics. No new oxidation products that were not present in the untreated soil were identified after the soil treatment. However, oxy-PAHs that were present in the untreated soil were generally degraded more slowly than the parent compounds, suggesting that they were formed during the treatment or that they are more persistent. Two oxidation products, 1-acenaphthenone and 4-oxapyrene-5-one, were found at significantly higher concentrations at the end of the study. Because oxy-PAHs can be acutely toxic, mutagenic, or carcinogenic, we suggest that this group of compounds should also be monitored during the treatment of PAH-contaminated soil. PMID:12836964

  13. Modeling aerosol surface chemistry and gas-particle interaction kinetics with K2-SURF: PAH oxidation

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Garland, R.; Pöschl, U.

    2009-04-01

    Atmospheric aerosols are ubiquitous in the atmosphere. They have the ability to impact cloud properties, radiative balance and provide surfaces for heterogeneous reactions. The uptake of gaseous species on aerosol surfaces impacts both the aerosol particles and the atmospheric budget of trace gases. These subsequent changes to the aerosol can in turn impact the aerosol chemical and physical properties. However, this uptake, as well as the impact on the aerosol, is not fully understood. This uncertainty is due not only to limited measurement data, but also a dearth of comprehensive and applicable modeling formalizations used for the analysis, interpretation and description of these heterogeneous processes. Without a common model framework, comparing and extrapolating experimental data is difficult. In this study, a novel kinetic surface model (K2-SURF) [Ammann & Pöschl, 2007; Pöschl et al., 2007] was used to describe the oxidation of a variety of polycyclic aromatic hydrocarbons (PAHs). Integrated into this consistent and universally applicable kinetic and thermodynamic process model are the concepts, terminologies and mathematical formalizations essential to the description of atmospherically relevant physicochemical processes involving organic and mixed organic-inorganic aerosols. Within this process model framework, a detailed master mechanism, simplified mechanism and parameterizations of atmospheric aerosol chemistry are being developed and integrated in analogy to existing mechanisms and parameterizations of atmospheric gas-phase chemistry. One of the key aspects to this model is the defining of a clear distinction between various layers of the particle and surrounding gas phase. The processes occurring at each layer can be fully described using known fluxes and kinetic parameters. Using this system there is a clear separation of gas phase, gas-surface and surface bulk transport and reactions. The partitioning of compounds can be calculated using the flux

  14. Carcinogenic PAH in waterpipe charcoal products.

    PubMed

    Sepetdjian, Elizabeth; Saliba, Najat; Shihadeh, Alan

    2010-11-01

    Because narghile waterpipe (shisha, hooka) smoking normally involves the use of burning charcoal, smoke inhaled by the user contains constituents originating from the charcoal in addition to those from the tobacco. We have previously found that charcoal accounts for most of the polyaromatic hydrocarbons (PAH) and carbon monoxide in the smoke of the waterpipe, both of which are present in alarming quantities. Because charcoal manufacturing conditions favor formation of PAH, it is reasonable to assume that charcoal sold off the shelf may be contaminated by PAH residues. These residues may constitute a significant fraction of the PAH inhaled by the waterpipe user and those in her/his vicinity. We measured PAH residues on three kinds of raw waterpipe charcoal sampled from Beirut stores and cafés. We found that PAH residues in raw charcoal can account for more than half of the total PAH emitted in the mainstream and sidestream smoke, and about one sixth of the carcinogenic 5- and 6-ring PAH compounds. Total PAH content of the three charcoal types varied systematically by a factor of six from the charcoal with the least to the greatest PAH residue. These findings indicate the possibility of regulating charcoal carcinogen content. PMID:20807559

  15. Carcinogenic PAH in waterpipe charcoal products

    PubMed Central

    Sepetdjian, Elizabeth; Saliba, Najat; Shihadeh, Alan

    2010-01-01

    Because narghile waterpipe (shisha, hooka) smoking normally involves the use of burning charcoal, smoke inhaled by the user contains constituents originating from the charcoal in addition to those from the tobacco. We have previously found that charcoal accounts for most of the polyaromatic hydrocarbons (PAH) and carbon monoxide in the smoke of the waterpipe, both of which are present in alarming quantities. Because charcoal manufacturing conditions favor formation of PAH, it is reasonable to assume that charcoal sold off the shelf may be contaminated by PAH residues. These residues may constitute a significant fraction of the PAH inhaled by the waterpipe user and those in her/his vicinity. We measured PAH residues on three kinds of raw waterpipe charcoal sampled from Beirut stores and cafés. We found that PAH residues in raw charcoal can account for more than half of the total PAH emitted in the mainstream and sidestream smoke, and about one sixth of the carcinogenic 5- and 6-ring PAH compounds. Total PAH content of the three charcoal types varied systematically by a factor of six from the charcoal with the least to the greatest PAH residue. These findings indicate the possibility of regulating charcoal carcinogen content. PMID:20807559

  16. The hydrogen coverage of interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Barker, J. R.; Cohen, M.; Tielens, Alexander G. G. M.; Allamandola, Louis J.; Barker, J. R.; Barker, J. R.

    1986-01-01

    The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a UV photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense UV fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments.

  17. The hydrogen coverage of interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Allamandola, L. J.; Barker, J. R.; Cohen, M.

    1987-01-01

    The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a UV photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense UV fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments.

  18. Numerical and genetic analysis of polycyclic aromatic hydrocarbon-degrading mycobacteria.

    PubMed

    Kim, Yong-Hak; Engesser, Karl-H; Cerniglia, Carl E

    2005-07-01

    Ability to degrade high molecular weight polycyclic aromatic hydrocarbons (PAHs) has been found in diverse species of fast-growing mycobacteria. This study included several PAH-degrading mycobacteria from heavily contaminated sites and an uncontaminated humus soil in the Natural Park, Schwäbische Alb, Germany. The numerical analysis with a total of 131 tests showed that isolates from humus soil and contaminated sites had similar substrate utilization patterns for primary alcohols from ethanol to pentanol, 1,4-butanediol, benzyl alcohol, hexadecane, ethyl acetate, fluoranthene, phenanthrene, and pyrene as the sole carbon and energy (C/E) sources. Significant differences between the two subgroups isolated from humus soil and contaminated sites were observed in the utilization of polyalcoholic sugars, including adonitol, D: -arabitol, L: -arabitol, erythritol, inositol, rhamnose, sorbitol, and xylitol. Among isolates from humus soil, strain PYR100 showed high similarity in 16S rDNA sequence with M. vanbaalenii strain PYR-1 (=DSM 7251, 100%) and M. austroafricanum ATCC 33464 (99.9%). In addition to the numerical analysis, the 16S-23S intergenic spacer sequence was useful for discriminating between the closely related strains PYR100 and PYR-1 (98% similarity). The patterns of the variable V2 and V3 regions in the ribosomal RNA gene corresponding to Escherichia coli positions 179 to 197 and 1006 to 1023, respectively, were useful for dividing fast-growing and thermosensitive PAH-degrading mycobacteria into ten subgroups consistent with the phylogenetic positions. PMID:16132428

  19. Efficient biodegradation of phenanthrene by a novel strain Massilia sp. WF1 isolated from a PAH-contaminated soil.

    PubMed

    Wang, Haizhen; Lou, Jun; Gu, Haiping; Luo, Xiaoyan; Yang, Li; Wu, Laosheng; Liu, Yong; Wu, Jianjun; Xu, Jianming

    2016-07-01

    A novel phenanthrene (PHE)-degrading strain Massilia sp. WF1, isolated from PAH-contaminated soil, was capable of degrading PHE by using it as the sole carbon source and energy in a range of pH (5.0-8.0), temperatures (20-35 °C), and PHE concentrations (25-400 mg L(-1)). Massilia sp. WF1 exhibited highly effective PHE-degrading ability that completely degraded 100 mg L(-1) of PHE over 2 days at optimal conditions (pH 6.0, 28 °C). The kinetics of PHE biodegradation by Massilia sp. WF1 was well represented by the Gompertz model. Results indicated that PHE biodegradation was inhibited by the supplied lactic acid but was promoted by the supplied carbon sources of glucose, citric acid, and succinic acid. Salicylic acid (SALA) and phthalic acid (PHTA) were not utilized by Massilia sp. WF1 and had no obvious effect on PHE biodegradation. Only two metabolites, 1-hydroxy-2-naphthoic acid (1H2N) and PHTA, were identified in PHE biodegradation process. Quantitatively, nearly 27.7 % of PHE was converted to 1H2N and 30.3 % of 1H2N was further metabolized to PHTA. However, the PHTA pathway was broken and the SALA pathway was ruled out in PHE biodegradation process by Massilia sp. WF1. PMID:27026540

  20. Tourmaline combined with Phanerochaete chrysosporium to remediate agricultural soil contaminated with PAHs and OCPs.

    PubMed

    Wang, Cuiping; Yu, Li; Zhang, Zhiyuan; Wang, Baolin; Sun, Hongwen

    2014-01-15

    The potential application on tourmaline was explored. The combination of tourmaline and Phanerochaete chrysosporium was conducted to remediate the field soil from the Dagu Drainage River bank of Tianjin in China. The total PAH and OCP concentrations in the soil were 6.4±0.05 and 145.9±1.9mg/kg, respectively. During the 60 day remediation program, the remediation degradation rates of all the 16 U.S. EPA priority PAHs and OCPs were 53.2±4.7% and 43.5±3.1%, respectively. The PAH and OCP removal rates were 31.9±2.9% and 26.4±1.8%, respectively, in soil with the addition of tourmaline, and the removal rates were 40.5±2.3% and 34.2±3.9%, respectively, in soil with the addition of P. chrysosporium. Thus, the combination of tourmaline and P. chrysosporium promoted the bioremediation rate of PAHs and OCPs in the soil, compared with the rates obtained using tourmaline or P. chrysosporium individually for the remediation of PAH and OCP degradation. In addition, tourmaline can promote the generation of soil hydrogen peroxidase and invertase enzyme, significantly increase the indigenous bacterial community and the number of PAH and OCP-degraders compared to those in the control, and reduce the soil humic acid content. Hence, the present study provides a potential alternative for the remediation of soils contaminated by PAHs and OCPs. PMID:24333677

  1. PAH phototoxicity: Identification of sensitive marine infaunal crustaceans and the effects of alkylation

    SciTech Connect

    Boese, B.; Swartz, R.; Lamberson, J.

    1995-12-31

    The toxicity of some polycyclic aromatic hydrocarbons (PAHs) has been shown to be greatly enhanced in the presence of UV light. The objectives of the research were to: (1) test for PAH phototoxicity using seven marine infaunal crustacean species, (2) determine if the sensitivity to PAH phototoxicity was related to their potential exposure to sunlight in nature, and (3) determine if alkylation alters PAH phototoxicity. The first objective was accomplished by exposing test species to fluoranthene in 4-day, water-only bioassays. Survivors of the tests were then exposed to UV light in an exposure chamber for one hour. The differences between EC50s (the ability to bury in sediment) before and after UV exposure were used to access phototoxicity. The results indicated that species having the greatest potential for natural exposure to sunlight were the least sensitive UV-enhanced fluoranthene toxicity. The amphipod, Rhepoxynius abronius, which in nature has the least potential for exposure to sunlight among the organisms tested, was the most sensitive. Rhepoxynius abronius was subsequently used in a series of tests to determine if alkylation of PAHs alters phototoxicity. This was done by conducting standard 10-day sediment bioassay using alkylated and unalkylated PAHs. As in the water-only tests, EC{sub 50}s were determined before and after UV light exposures. The results indicated that alkylation of PAHs, in general, did not alter phototoxicity.

  2. Novel Phenanthrene-Degrading Bacteria Identified by DNA-Stable Isotope Probing

    PubMed Central

    Luo, Chunling; Zhang, Dayi; Zhang, Gan

    2015-01-01

    Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ. PMID:26098417

  3. Determination of polyoxymethylene (POM)--water partition coefficients for oxy-PAHs and PAHs.

    PubMed

    Josefsson, Sarah; Arp, Hans Peter H; Kleja, Dan Berggren; Enell, Anja; Lundstedt, Staffan

    2015-01-01

    Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are a class of ubiquitously occurring pollutants of which little is known. They can be co-emitted with PAHs or formed from PAHs in the environment. The environmental fate and risk of oxy-PAHs are difficult to assess due to a lack of methods to quantify their pore water concentrations. One sampler that can be used to determine freely dissolved concentrations of organic contaminants is polyoxymethylene (POM). In this study, POM - water partition coefficients (KPOM) were determined for 11 oxy-PAHs. KPOM values of 8 PAHs with similar hydrophobicities as the oxy-PAHs were determined for comparison. Results showed that logKPOM values ranged from 2.64 to 4.82 for the PAHs (2-4 rings), similar to previously determined values. LogKPOM values for investigated oxy-PAHs ranged from 0.96 to 5.36. The addition of carbonylic oxygen on a parent PAH generally lowered KPOM by 0.5 to 1.0 log units, which is attributable to the presence of carbonylic oxygens increasing water solubility. The KPOM values presented here will facilitate simultaneous assessments of freely dissolved water concentrations of oxy-PAHs and PAHs in environmental media. PMID:25460771

  4. [Pollution Characteristics and Ecological Risk Assessment of PAHs in Water and Fishes from Daqing Lakes].

    PubMed

    Wang, Xiao-di; Zang, Shu-ying; Zhang, Yu-hong; Wang, Fan; Yang, Xing; Zuo, Yi-long

    2015-11-01

    of anthracene in the gill tissue of Cyprinus carpio were significantly greater than those in the Hypophthalmichthys molitrix, while other 15 PAHs concentrations had no difference between the two species. Among the different tissues of Hypophthalmichthys molitrix or Cyprinus carpio, the concentrations of PAHs in the liver and kidney tissues which are the important tissues of PAHs accumulation were significantly greater than those in the muscle, gill and brain tissues of fish because of their pervasion ability of pollutants. The results of ecological risks of PAHs in water samples to different aquatic organism species and health risk of PAHs to human through the consumption of fish showed that low ecological risk to aquatic organism species and health risk of PAHs in the muscle of Hypophthalmichthys molitrix and Cyprinus carpio to human were observed in the 4 lake groups. PMID:26911021

  5. Alternative techniques to HPCD to evaluate the bioaccessible fraction of soil-associated PAHs and correlation to biodegradation efficiency.

    PubMed

    Crampon, M; Bodilis, J; Le Derf, F; Portet-Koltalo, F

    2016-08-15

    The total amount of polycyclic aromatic hydrocarbons (PAHs) in soils, given by exhaustive chemical extractions, does not relate directly to environmental risk, since only a fraction may be accessible to soil organisms. The rapid PAH desorbing fraction (Frap), which is weakly and reversibly sorbed to soils, is called the bioaccessible fraction, and can be estimated by non-exhaustive aqueous extractions. In order to better estimate Frap, different mild-extractants were tested, such as various cyclodextrins, surfactants and butanol. Their extractability performances were correlated to the Kd partition coefficients of seven PAHs obtained through sorption isotherms from five soils, but also to the PAHs molecular size and to the amounts of organic matter and of some clays (smectites and kaolinites). If hydroxypropyl-β-cyclodextrin was actually a good extractant to assess PAH accessibility, the polymer of carboxymethyl-β-cyclodextrin (pCMCD) was better (with a lower cost) to estimate the rapid mass transfer between soil particles and the soil solution, depending also on soil ageing. But Frap, estimated through pCMCD extractions, did not reflect the biodegradation of the PAHs after three months in soil microcosms. The chemical method underestimated the dissipation of 3-4 ring PAHs and overestimated that of 5-6 ring PAHs. So biodegradation was not only limited by PAHs mass-transfer, but also by biological factors, favoring the access of microorganisms to residual strongly sorbed fractions of 3-4 ring PAHs, and inhibiting the degradation of accessible but highly toxic 5-6 ring PAHs. PMID:27136727

  6. Reactivity of polycyclic aromatic compounds (PAHs, NPAHs and OPAHs) adsorbed on natural aerosol particles exposed to atmospheric oxidants

    NASA Astrophysics Data System (ADS)

    Ringuet, Johany; Albinet, Alexandre; Leoz-Garziandia, Eva; Budzinski, Hélène; Villenave, Eric

    2012-12-01

    Reactivity of polycyclic aromatic compounds (PACs) adsorbed on natural aerosol particles exposed to different atmospheric oxidants (O3, OH and NO2/O3 mixture) was studied. Decay of polycyclic aromatic hydrocarbons (PAHs) and formation/decay of oxygenated PAHs (OPAHs) and nitrated PAHs (NPAHs) were monitored. Overall, benzo[a]pyrene appeared to be the most reactive PAH (degradation of 50%). Only its nitrated derivative, 6-nitrobenzo[a]pyrene, was significantly formed explaining just 0.4% of reacted benzo[a]pyrene. No other nitrated or oxygenated benzo[a]pyrene derivatives were detected. Interestingly, B[e]P and In[1,2,3,c,d]P, which are usually considered as quite stable PAHs, also underwent decay in all experiments. In presence of O3, ketones were significantly formed but their amount was not totally explained by decay of parent PAH. These results suggest that PAH derivatives could be formed from the reaction of other compounds than their direct parent PAHs and raise the question to know if the oxidation of methyl-PAHs, identified in vehicle-exhausts, could constitute this missing source of OPAHs. NPAHs were significantly formed in presence of O3/NO2 and OH. Surprisingly, NPAH formation was clearly observed during O3 experiments. Nitrated species, already associated with aerosol particles (NO3-, NO2-) or formed by ozonation of particulate nitrogen organic matter, could react with PAHs to form NPAHs. Heterogeneous formation of 2-nitropyrene from pyrene oxidation was for the first time observed, questioning its use as an indicator of NPAH formation in gaseous phase. Equally, formation of 2-nitrofluoranthene by heterogeneous reaction of fluoranthene with O3/NO2 was clearly shown, while only its formation by homogeneous processes (gaseous phase) is reported in the literature. Finally, results obtained highlighted the dependence of heterogeneous PAH reactivity with the substrate nature and the importance to focus reactivity studies on natural particles, whatever the

  7. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil

    EPA Science Inventory

    The influence of persulfate activation methods on polycyclic aromatic hydrocarbons (PAHs) degradation was investigated and included thermal, citrate chelated iron, and alkaline, and a hydrogen peroxide(H2O2)-persulfate binary mixture. Thermal activation (60◦C) resulted in t...

  8. DESTRUCTION OF PAHS AND PCBS IN WATER USING SULFATE RADICAL-BASED CATALYTIC ADVANCED OXIDATION PROCESSES

    EPA Science Inventory

    A new class of advanced oxidation processes (AOPs) based on sulfate radicals is being tested for the degradation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in aqueous solution. These AOPs are based on the generation of sulfate radicals through...

  9. Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in sludge organic matter pools as a driving force of their fate during anaerobic digestion.

    PubMed

    Aemig, Quentin; Chéron, Claire; Delgenès, Nadine; Jimenez, Julie; Houot, Sabine; Steyer, Jean-Philippe; Patureau, Dominique

    2016-02-01

    The fate of organic matter during anaerobic digestion of sewage sludge was studied in batch systems thanks to a sequential chemical fractionation of the particulate phase coupled to fluorescence spectroscopy. Polycyclic Aromatic Hydrocarbons (PAHs) distribution within the organic pools was characterized from their analysis in the residual fraction after each extraction. Both methods were combined to understand the link between PAHs presence in organic pools and their spectral characterization after extraction. Two batch systems (sludge and inoculum mixture) were set up to study the impact of PAHs spiking on their fate and distribution. The sequential fractionation allowed us to extract and characterize about 50% of total Chemical Oxygen Demand. Moreover, fluorescence spectroscopy helped us to understand the organic pools evolution: the most easily extracted pools composed of protein-like molecules were highly degraded meaning that chemical accessibility mimics the bioaccessibility to degrading microorganisms. PAHs were present in all pools of organic matter but native PAHs were mainly present in low accessible (hardly extractable) fractions and during anaerobic digestion, they accumulated in the non-accessible (non extractable) fraction. Spiked PAHs were more dissipated during anaerobic digestion since spiking made them present in more accessible fractions. During the anaerobic digestion, contrary to native PAHs, spiked ones relocated toward less accessible organic fractions confirming the ageing phenomenon. PCA analysis showed that, in spiked mixture, PAHs presence in organic pools is linked to both PAHs physical-chemical properties and quality/quantity of the associated organic pools. PMID:26690050

  10. Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil.

    PubMed

    Kuśmierz, Marcin; Oleszczuk, Patryk; Kraska, Piotr; Pałys, Edward; Andruszczak, Sylwia

    2016-03-01

    In the present study the persistence of polycyclic aromatic hydrocarbons (PAHs) applied with biochar to acidic soil (loamy sand) was studied in two and half year field experiment. An experiment was carried out in three experimental plots (15 m(2) each). The biochar was introduced in the following doses: soil without fertilization - control (C-BC00), soil with 30 t ha(-1) (B-BC30) and soil with 45 t ha(-1) (A-BC45) of biochar. Biochar addition to soils resulted in an increase in the PAHs content from 0.239 μg g(-1) in control soil to 0.526 μg g(-1) and 1.310 μg g(-1) in 30 and 45 t ha(-1) biochar-amended soil respectively. However during the experimental period the PAHs content decreased to a level characteristic for the control soil. The highest losses of PAHs were observed during the first 105 days of the experiment. Three and four rings PAHs were the most susceptible for degradation and leaching. Migration of PAHs from 0-10 cm to 10-20 cm soil horizon was also observed. PMID:26735727

  11. CLASSIFICATION OF PAH-DEGRADING BACTERIA BY PAH UTILIZATION PATTERNS AND THE COMPARISON OF METABOLIC PRODUCTS

    EPA Science Inventory

    Bacterial strains capable of using either phenanthrene, fluoranthene, or pyrene as sole carbon and energy sources were isolated from 16 different soil samples collected from the United States, Germany, and Norway. Thirty one strains were isolated on fluoranthene and the other twe...

  12. Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil.

    PubMed

    Sawulski, Przemyslaw; Clipson, Nicholas; Doyle, Evelyn

    2014-11-01

    Development of successful bioremediation strategies for environments contaminated with recalcitrant pollutants requires in-depth knowledge of the microorganisms and microbial processes involved in degradation. The response of soil microbial communities to three polycyclic aromatic hydrocarbons, phenanthrene (3-ring), fluoranthene (4-ring) and benzo(a)pyrene (5-ring), was examined. Profiles of bacterial, archaeal and fungal communities were generated using molecular fingerprinting techniques (TRFLP, ARISA) and multivariate statistical tools were employed to interpret the effect of PAHs on community dynamics and composition. The extent and rate of PAH removal was directly related to the chemical structure, with the 5-ring PAH benzo(a)pyrene degraded more slowly than phenathrene or fluoranthene. Bacterial, archaeal and fungal communities were all significantly affected by PAH amendment, time and their interaction. Based on analysis of clone libraries, Actinobacteria appeared to dominate in fluoranthene amended soil, although they also represented a significant portion of the diversity in phenanthrene amended and unamended soils. In addition there appeared to be more γ-Proteobacteria and less Bacteroidetes in soil amended with either PAH compared to the control. The soil bacterial community clearly possessed the potential to degrade PAHs as evidenced by the abundance of PAH ring hydroxylating (PAH-RHDα) genes from both gram negative (GN) and gram positive (GP) bacteria in PAH-amended and control soils. Although the dioxygenase gene from GP bacteria was less abundant in soil than the gene associated with GN bacteria, significant (p < 0.001) increases in the abundance of the GP PAH-RHDα gene were observed during phenanthrene and fluoranthene degradation, whereas there was no significant difference in the abundance of the GN PAH-RHDα gene during the course of the experiment. Few studies to-date have examined the effect of pollutants on more than one microbial

  13. Bioremediation of poly-aromatic hydrocarbon (PAH)-contaminated soil by composting

    SciTech Connect

    Loick, N.; Hobbs, P.J.; Hale, M.D.C.; Jones, D.L.

    2009-07-01

    This paper presents a comprehensive and critical review of research on different co-composting approaches to bioremediate hydrocarbon contaminated soil, organisms that have been found to degrade PAHs, and PAH breakdown products. Advantages and limitations of using certain groups of organisms and recommended areas of further research effort are identified. Studies investigating the use of composting techniques to treat contaminated soil are broad ranging and differ in many respects, which makes comparison of the different approaches very difficult. Many studies have investigated the use of specific bio-additives in the form of bacteria or fungi with the aim of accelerating contaminant removal; however, few have employed microbial consortia containing organisms from both kingdoms despite knowledge suggesting synergistic relationships exist between them in contaminant removal. Recommendations suggest that further studies should attempt to systemize the investigations of composting approaches to bio-remediate PAH-contaminated soil, to focus on harnessing the biodegradative capacity of both bacteria and fungi to create a cooperative environment for PAH degradation, and to further investigate the array of PAHs that can be lost during the composting process by either leaching or volatilization.

  14. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity.

    PubMed

    Chibwe, Leah; Geier, Mitra C; Nakamura, Jun; Tanguay, Robert L; Aitken, Michael D; Simonich, Staci L Massey

    2015-12-01

    The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (prebioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (postbioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, postbioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental toxicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, postbioremediation (p < 0.05). In addition, a statistically significant increase in developmental toxicity was measured in one polar soil extract fraction, postbioremediation (p < 0.05). A series of morphological abnormalities, including peculiar caudal fin malformations and hyperpigmentation in the tail, were measured in several soil extract fractions in embryonic zebrafish, both pre- and postbioremediation. The increased toxicity measured postbioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase postbioremediation. However, the increased toxicity measured postbioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1

  15. Infrared fluorescence from PAHs in the laboratory

    NASA Technical Reports Server (NTRS)

    Cherchneff, Isabelle; Barker, John R.

    1989-01-01

    Several celestial objects, including UV rich regions of planetary and reflection nebulae, stars, H II regions, and extragalactic sources, are characterized by the unidentified infrared emission bands (UIR bands). A few years ago, it was proposed that polycyclic aromatic hydrocarbon species (PAHs) are responsible for most of the UIR bands. This hypothesis is based on a spectrum analysis of the observed features. Comparisons of observed IR spectra with lab absorption spectra of PAHs support the PAH hypothesis. An example spectrum is represented, where the Orion Bar 3.3 micron spectrum is compared with the absorption frequencies of the PAHs Chrysene, Pyrene, and Coronene. The laser excited 3.3 micron emission spectrum is presented from a gas phase PAH (azulen). The infrared fluorescence theory (IRF) is briefly explained, followed by a description of the experimental apparatus, a report of the results, and discussion.

  16. Exploring the ability of Sphingobacterium sp. ATM to degrade textile dye Direct Blue GLL, mixture of dyes and textile effluent and production of polyhydroxyhexadecanoic acid using waste biomass generated after dye degradation.

    PubMed

    Tamboli, Dhawal P; Kurade, Mayur B; Waghmode, Tatoba R; Joshi, Swati M; Govindwar, Sanjay P

    2010-10-15

    The degradation of textile effluent using microorganisms has been studied extensively, but disposal of generated biomass after dye degradation is a serious problem. Among all tested microorganisms, isolated Sphingobacterium sp. ATM effectively decolorized (100%) the dye Direct Blue GLL (DBGLL) and simultaneously it produced (64%) polyhydroxyhexadecanoic acid (PHD). The organism decolorized DBGLL at 300 mg l(-1) concentration within 24 h of dye addition and gave optimum production of PHD. The organism also decolorized three combinations of mixture of dyes. The organism decolorized textile effluent too when it was combined with medium. The organism produced a maximum of 66% and 61% PHD while decolorizing mixture of dyes and textile effluent respectively. Molasses was found to be more significant within all carbon sources used. The activity of polyhydroxyalkanoate (PHA) synthase was found to be higher after 24 h of addition of DBGLL. The enzymes responsible for dye degradation, viz. veratryl alcohol oxidase, laccase, DCIP (2,6-dichlorophenol-indophenol) reductase, riboflavin reductase, and azo reductase were found to be induced during decolorization process of DBGLL and mixture of dyes. There was significant reduction in chemical oxygen demand (COD) and biological oxygen demand (BOD). FTIR analysis of samples before and after decolorization of dye confirmed the biotransformation of DBGLL. PMID:20591565

  17. Tenax TA extraction to understand the rate-limiting factors in methyl-β-cyclodextrin-enhanced bioremediation of PAH-contaminated soil.

    PubMed

    Sun, Mingming; Luo, Yongming; Teng, Ying; Christie, Peter; Jia, Zhongjun; Li, Zhengao

    2013-06-01

    The effectiveness of many bioremediation systems for PAH-contaminated soil may be constrained by low contaminant bioaccessibility due to limited aqueous solubility or large sorption capacity. Information on the extent to which PAHs can be readily biodegraded is of vital importance in the decision whether or not to remediate a contaminated soil. In the present study the rate-limiting factors in methyl-β-cyclodextrin (MCD)-enhanced bioremediation of PAH-contaminated soil were evaluated. MCD amendment at 10 % (w/w) combined with inoculation with the PAH-degrading bacterium Paracoccus sp. strain HPD-2 produced maximum removal of total PAHs of up to 35 %. The desorption of PAHs from contaminated soil was determined before and after 32 weeks of bioremediation. 10 % (w/w) MCD amendment (M2) increased the Tenax extraction of total PAHs from 12 to 30 % and promoted degradation by up to 26 % compared to 6 % in the control. However, the percentage of Tenax extraction for total PAHs was much larger than that of degradation. Thus, in the control and M2 treatment it is likely that during the initial phase the bioaccessibility of PAHs is high and biodegradation rates may be limited by microbial processes. On the other hand, when the soil was inoculated with the PAH-degrading bacterium (CKB and MB2), the slowly and very slowly desorbing fractions (F sl and F vl ) became larger and the rate constants of slow and very slow desorption (k sl and k vl ) became extremely small after bioremediation, suggesting that desorption is likely rate limiting during the second, slow phase of biotransformation. These results have practical implications for site risk assessment and cleanup strategies. PMID:23001628

  18. Developing PAHs as Probes of Physical Conditions: Fitting PAH Spectra with the Ames PAH IR Spectral Database

    NASA Astrophysics Data System (ADS)

    Allamandola, Louis

    It is quite clear from the Infrared Space Observatory (ISO) and Spitzer Space Telescope results that we live in a molecular universe and that the mid-infrared is aglow in emission from polycyclic aromatic hydrocarbons (PAHs). Observationally, PAHs are easily identified by their characteristic emission spectrum, they are intrinsically strong emitters, and they dominate the emission in star forming galaxies in the mid-infrared, comprising 10-20% of the energy emitted in the infrared. These characteristics make them useful probes even for distant objects. The exceptional spectra provided by the ISO and Spitzer observatories have revealed in detail how the PAH features vary between different classes of objects and spatially within extended objects, showing that the details in the emission spectrum depend on the specific PAH molecules present, their size, ionization state, structure etc., and therefore reflect conditions within the emission zones. Thus, understanding the origin and evolution of this important family of molecules, how they interact with and control their environment, and how the details in their emission spectra reflect local conditions, is a fundamental goal of astrophysics. Advances in laboratory studies and computer-based calculations of PAHs now allow us to delve into the details of PAH spectral behavior seen by both ISO and Spitzer. We propose to model PAH spectra observed in reflection nebulae, HII regions, planetary nebulae, YSOs, AGB stars, and galaxies using laboratory and theoretically generated spectra from the NASA Ames PAH IR Spectroscopic Database to advance our understanding of the factors that determine the PAH spectra that we see in objects both near and far.

  19. Land treatment of PAH-contaminated soil: Performance measured by chemical and toxicity assays

    SciTech Connect

    Sayles, G.D.; Acheson, C.M.; Kupferle, M.J.; Shan, Y.; Zhou, Q.; Meier, J.R.; Chang, L.; Brenner, R.C.

    1999-12-01

    The performance of a soil remediation process can be determined by measuring the reduction in target soil contaminant concentrations and by assessing the treatment's ability to lower soil toxicity. Land treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former wood-treating site was simulated at pilot scale in temperature-controlled sol pans. Nineteen two- through six-ring PAHs were monitored with time (initial total PAHs = 2,800 mg/kg). Twenty-five weeks of treatment yielded a final total PAH level of 1,160 mg/kg. Statistically significant decreases in concentrations were seen in total, two-, three-, and four-ring PAHs. Carcinogenic and five- and six-ring PAHs showed no significant change in concentration. Land treatment resulted in significant toxicity reduction based on root elongation, Allium chromosomal aberration, and solid-phase Microtox bioassays. Acute toxicity, as measured by the earthworm survival assay, was significantly reduced and completely removed. The Ames spiral plate mutagenicity assay revealed that the untreated soil was slightly mutagenic and that treatment may have reduced mutagenicity. The variety of results generated from the chemical and toxicity assays emphasize the need for conducting a battery of such tests to fully understand soil remediation processes.

  20. Electronically Excited States of Anisotropically Extended Singly-Deprotonated PAH Anions.

    PubMed

    Theis, Mallory L; Candian, Alessandra; Tielens, Alexander G G M; Lee, Timothy J; Fortenberry, Ryan C

    2015-12-31

    Polycyclic aromatic hydrocarbons (PAHs) play a significant role in the chemistry of the interstellar medium (ISM) as well as in hydrocarbon combustion. These molecules can have high levels of diversity with the inclusion of heteroatoms and the addition or removal of hydrogens to form charged or radical species. There is an abundance of data on the cationic forms of these molecules, but there have been many fewer studies on the anionic species. The present study focuses on the anionic forms of deprotonated PAHs. It has been shown in previous work that PAHs containing nitrogen heteroatoms (PANHs) have the ability to form valence excited states giving anions electronic absorption features. This work analyzes how the isoelectronic pure PAHs behave under similar structural constructions. Singly deprotonated forms of benzene, naphthalene, anthracene, and tetracene classes are examined. None of the neutral-radicals possess dipole moments large enough to support dipole-bound excited states in their corresponding closed-shell anions. Even though the PANH anion derivatives support valence excited states for three-ringed structures, it is not until four-ringed structures of the pure PAH anion derivatives that valence excited states are exhibited. However, anisotropically extended PAHs larger than tetracene will likely exhibit valence excited states. The relative energies for the anion isomers are very small for all of the systems in this study. PMID:26645382

  1. Modulation of hemocyte activities in oysters (Crassostrea virginica) upon exposure to PAHs

    SciTech Connect

    Chu, F.L.E.; Volety, A.K.; Lingenfelser, J.T.; Hale, R.C.

    1995-12-31

    Hemocyte activities were assessed in oysters exposed to sediment sorbed PAHs. Dose of 0 or 30 g daily for 60 days (Experiment 1) and 0, 60, or 120 g three times/week for 41 days (Experiment 2) were used. In vitro effects of water soluble fractions (WSFs) prepared from sediment collected from a heavily polluted area on the hemocyte activities were also evaluated. To some extent, exposure of oysters to sediment sorbed PAHs (sPAHs) modulated the oyster hemocyte activities. In Experiment 1, 30 day exposure to sPAHs reduced the hemocytes` ability to incorporate {sup 14}C-labeled thymine, uridine and leucine. After 60 days of exposure, the overall uptake of these three components by hemocytes declined in both control and sPAHs exposed oysters and no significant difference was noted. However, after 60 days of exposure, phagocytic, chemotactic and chemiluminescence responses were significantly lower in hemocytes from sPAHs exposed than from control oysters. In Experiment 2, no difference was noted in thymidine, uridine and leucine uptake by oyster hemocytes between 14 and 30 days exposure, but uptake of these compounds increased at the end of the experiment in all groups including controls. Phagocytosis did not differ between treatments nor change with exposure time. No difference was observed in chemiluminescence measured at the end of 41 days among treatments. In vitro exposure of hemocytes to 100% WSF significantly stimulated mitochondrial dehydrogenases production (MTT reduction expressed as % of control), compared to hemocytes exposed to 25 and 50% WSF.

  2. Observing PAH Hydrogenation with Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Cassidy, A. M.; Nilsson, L.; Balog, R.; Thrower, J.; Jorgensen, B.; Hornekaer, L.

    2011-05-01

    The interaction between thin films of polycyclic aromatic hydrocarbons (PAHs) and atomic H has been studied using scanning tunneling microscopy (STM). Observational evidence suggests that hydrogenated PAHs are located in regions of the interstellar medium (ISM) where there are high concentrations of molecular hydrogen (H2)1. It has previously been postulated that hydrogenated PAHs act as catalysts for the formation of H22. While many studies have focused on the role of ionic PAHs in the formation of H23, here we consider the role of neutral species. Neutral PAHs are expected to be stable and to condense on grain surfaces present in dense interstellar clouds, in regions of low UV flux4. PAH molecules were deposited in thin films under ultra high vacuum (UHV) conditions. Monolayer films were subsequently characterised using STM, at liquid N2 temperatures. The films were then exposed to thermally-cracked atomic H and were again characterised using STM. Contrast in the STM images showed submolecular changes to the electronic structure of the PAH molecules only after exposure to atomic H. This suggests the formation of superhydrogenated species. DFT calculations have predicted that such superhydrogenated species are stable and can act as catalysts for the formation of H2 through abstraction reactions5. Complimentary thermal desorption experiments support these findings.

  3. PAHs in the halo of NGC 5529

    NASA Astrophysics Data System (ADS)

    Irwin, J. A.; Kennedy, H.; Parkin, T.; Madden, S.

    2007-11-01

    We present sensitive ISO λ 6.7~μm observations of the edge-on galaxy, NGC 5529, finding an extensive MIR halo around NGC 5529. The emission is dominated by PAHs in this band. The PAH halo has an exponential scale height of 3.7 kpc but can still be detected as far as ≈10 kpc from the plane to the limits of the high dynamic range (1770/1) data. This is the most extensive PAH halo yet detected in a normal galaxy. This halo shows substructure and the PAHs likely originate from some type of disk outflow. PAHs are long-lived in a halo environment and therefore continuous replenishment from the disk is not required (unless halo PAHs are also being destroyed or removed), consistent with the current low SFR of the galaxy. The PAHs correlate spatially with halo Hα emission, previously observed by Miller & Veilleux (2003, ApJS, 148, 383); both components are likely excited/ionized by in-disk photons that are leaking into the halo. The presence of halo gas may be related to the environment of NGC 5529 which contains at least 17 galaxies in a small group of which NGC 5529 is the dominant member. Of these, we have identified two new companions from the SDSS.

  4. ELECTROCHEMICAL DEGRADATION OF PERSISTANCE POLLUTANTS IN GROUNDWATER AND SEDIMENTS

    EPA Science Inventory

    Electrochemical Degradation (ECD) utilizes redox potential at the anode and the cathode to oxidize and/or reduce organic contaminants. ECD of environmentally persistence pollutants such chlorinate solvents, PCBs, and PAHs, although theoretically possible, has not been experimenta...

  5. Diversity of metabolic capacities among strains degrading polycyclic aromatic hydrocarbons

    SciTech Connect

    Bouchez, M.; Besnaienou, B.; Blanchet, D.; Vandecasteele, J.P.

    1995-12-31

    Strains of Pseudomonas and Rhodococcus genera were isolated for their capacity to use, as a sole carbon and energy source, one of the following polycyclic aromatic hydrocarbons (PAHs): naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), fluoranthene (FLT), and pyrene (PYR). The range of PAHs supporting growth of these pure strains was usually restricted, but several other hydrocarbons were used by Rhodococcus sp. All strains could grow on simple organic acids. Maximal specific growth rates ({mu}{sub max}) of all strains on their PAH growth substrates were determined by respirometry. No clear relationships between {mu}{sub max} values and the molecular weight or water solubility of PAHs were apparent, but Pseudomonas sp. exhibited the highest {mu}{sub max} values. Carbon balances for PAH biodegradation were established. Differences between strains were observed, but high mineralization rates and low production of soluble metabolites were obtained for all PAHs. Bacterial biomass represented 16% to 35% of the carbon consumed. Strain diversity was also apparent in the interactions observed in the degradation of a mixture of two PAHs by individual strains, which often involved inhibition of PAH substrate degradation, with or without cometabolization of the second PAH.

  6. Application of supercritical fluid extraction (SFE) to predict bioremediation efficacy of long-term composting of PAH-contaminated soil

    SciTech Connect

    Toma Cajthaml; Vaclav Sasek

    2005-11-01

    Supercritical fluid extraction (SFE) with pure carbon dioxide was used to obtain desorption curves of PAHs from four contaminated industrial soils. These were from a former gas works, a former tar processing plant, a former wood presentation plant, and a former gas-holder site. Total PAH concentrations ranged from 1495 to 2439 mg/kg. The desorption curves were fitted with a simple two-site model to determine the rapidly released fraction (F) representing bioavailability of PAHs. The F data obtained under various SFE pressures were compared with degradation results of a composting method applied on the soils. After composting and consequent long-term maturation, the residual PAH contaminations ranged from 4 to 36% of the original values. A possible explanation of the result variations is the different bioavailability of the pollutants. The best correlations between degradation results and F fraction were obtained applying 50{sup o}C and 300 bar. The F values gave very good agreement with degradation efficiencies and the total regression coefficients (r{sup 2}) ranged from 0.81 to 0.99. The degradation results together with bioavailable fractions appeared to be consistent with organic carbon contents in the soils and with volatile fractions of organics. The results indicate that SFE could be a rapid test to predict bioremediation results of composting of PAH-contaminated soils. 23 refs., 2 figs., 3 tabs.

  7. Diurnal and nocturnal measurements of PAH, nitro-PAH, and oxy-PAH compounds in atmospheric particulate matter of a sugar cane burning region

    NASA Astrophysics Data System (ADS)

    Souza, Kely F.; Carvalho, Lilian R. F.; Allen, Andrew G.; Cardoso, Arnaldo A.

    2014-02-01

    Polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, and oxy-PAHs were studied in the atmospheric particulate matter of a subtropical rural region (São Paulo State, Brazil) affected by emissions from sugar cane burning. Diurnal and nocturnal samples were collected from May to June of 2010. In general, average PAH concentrations were significantly higher at night, suggesting that the compounds were predominantly emitted to the atmosphere during biomass burning (which was mainly performed at night). The maximum average PAH concentration was found for benzo[b]fluoranthene at night (2.9 ± 5.4 ng m-3). Among the nitro-PAH compounds, the highest average concentrations were obtained for 9-nitrophenanthrene in diurnal and nocturnal samples (1.5 ± 1.2 and 1.3 ± 2.1 ng m-3, respectively). In contrast to the PAH and nitro-PAH compounds, the oxy-PAHs could not be directly associated with sugar cane burning. The most abundant oxy-PAH compound was benzanthrone (1.6 ± 1.3 ng m-3) at night, followed by 9,10-anthraquinone (1.1 ± 0.9 ng m-3) and 9-fluorenone (0.4 ± 0.1 ng m-3) during the day. A correlation matrix was used to explore the origins of the different compounds. The data suggested that during the daytime, direct emissions (mainly in vehicle exhaust) contributed to the presence of PAHs, nitro-PAHs, and oxy-PAHs in air. Photochemical production also appeared to be a source of the majority of nitro-PAHs and oxy-PAHs, while photolysis could have contributed to removal of the nitro-PAHs during the daytime. At night, sugar cane burning emissions were the primary source of the PAHs and nitro-PAHs, with additional sources also contributing to the levels of oxy-PAHs in the atmosphere.

  8. Microbial degradation of polycyclic aromatic hydrocarbon and cyanide in soils from manufactured gas plant sites

    SciTech Connect

    Ho, YiFong.

    1993-01-01

    The microbial clean-up of cyanide and polycyclic aromatic hydrocarbon (PAH) in soils from manufactured gas plant (MGP) sites is the subject of this study. Cyanide was examined for its inhibition on microbial PAH degradation by an MGP-soil isolate identified as a strain of Pseudomonas aeruginosa by classical differential methods as well as 16S rRNA oligonucleotide probes. A strong cyanide-degrading Bacillus pumilus (ATCC No. 7061) strain was used for facilitating cyanide degradation thereby enhancing PAH biodegradation in this soil. This research has validated cyanide interference with the PAH degrader and shown that adding Bacillus pumilus accomplishes the removal of cyanide which subsequently allows Pseudomonas aeruginosa to metabolize PAHs. In addition to the biodegradation of cyanide and lower ring numbered PAHs, the microbial degradation of 4-ring polycyclic aromatic hydrocarbons (PAHs) by using a mixed culture obtained from another former coal tar contaminated site was also studied. The rate of biotransformation and the abiotic loss due to volatilization were monitored. The 3-ring PAH used in this project was phenanthrene and the 4-ring PAHs used were fluoranthene and pyrene. The results showed that volatilization loss of naphthalene in the control system was substantial while volatilization of higher molecular weight PAH compounds (fluoranthene and pyrene) was negligible. The biodegradation rates of phenanthrene, fluoranthene and pyrene are 6.56, 1.59 and 0.82 mg/L/day, respectively or 65.6, 15.9, 8.2 mg/gram of cells/day assuming 100 mg cells/L in the system. This study indicates that biodegradation of 3- and 4-ring PAHs by mixed cultures obtained from PAH contaminated sites is very promising. These studies will contribute to the understanding of PAH and cyanide removal from MGP and provide information for the design of a bioremediation project to reclaim unusable land that was contaminated through the previous coal gasification process.

  9. Involvement of the Ligninolytic System of White-Rot and Litter-Decomposing Fungi in the Degradation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Pozdnyakova, Natalia N.

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are natural and anthropogenic aromatic hydrocarbons with two or more fused benzene rings. Because of their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, PAHs are a significant environmental concern. Ligninolytic fungi, such as Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus, have the capacity of PAH degradation. The enzymes involved in the degradation of PAHs are ligninolytic and include lignin peroxidase, versatile peroxidase, Mn-peroxidase, and laccase. This paper summarizes the data available on PAH degradation by fungi belonging to different ecophysiological groups (white-rot and litter-decomposing fungi) under submerged cultivation and during mycoremediation of PAH-contaminated soils. The role of the ligninolytic enzymes of these fungi in PAH degradation is discussed. PMID:22830035

  10. Polycyclic aromatic hydrocarbon-degrading bacteria from aviation fuel spill site at Ibeno, Nigeria.

    PubMed

    John, R C; Essien, J P; Akpan, S B; Okpokwasili, G C

    2012-06-01

    Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were isolated from aviation fuel contaminated soil at Inua Eyet Ikot in Ibeno, Nigeria. PAH-degrading bacteria in the contaminated soil were isolated by enrichment culture technique. Isolates with high PAH degrading potential characterized by their extensive growth on PAH-supplemented minimal salt medium were screened for their naphthalene, phenanthrene and chrysene degradability. The screening medium which contained selected PAHs as the sole source of carbon and energy showed that Micrococcus varians AFS-2, Pseudomonas putida AFS-3 and Alcaligenes faecalis AFS-5 exhibited a concentration-dependent growth in all the PAH-compounds tested. There were visible changes in the color of growth medium suggesting the production of different metabolites. Their acclimation to different PAH substrates was also evident as A. faecalis AFS-5 isolated from chrysene grew well on other less complex aromatic compounds. The isolate exhibited best growth (0.44 OD(600)) when exposed to 10 ppm of chrysene for 5 days and could utilize up to 90 ppm of chrysene. This isolate and others with strong PAH-degrading potentials are recommended for bioremediation of PAHs in aviation fuel-contaminated sites in the tropics. PMID:22456728

  11. Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies

    SciTech Connect

    Holman, Hoi-Ying N.; Nieman, Karl; Sorensen, Darwin L.; Miller, Charles D.; Martin, Michael C.; Borch, Thomas; McKinney, Wayne R.; Sims, Ronald C.

    2001-09-26

    The role of humic acid (HA) in the biodegradation of toxic polycyclic aromatic hydrocarbons (PAHs) has been the subject of controversy, particularly in unsaturated environments. By utilizing an infrared spectromicroscope and a very bright, nondestructive synchrotron photon source, we monitored in situ and, over time, the influence of HA on the progression of degradation of pyrene (a model PAH) by a bacterial colony on a magnetite surface. Our results indicate that HA dramatically shortens the onset time for PAH biodegradation from 168 to 2 h. In the absence of HA, it takes the bacteria about 168 h to produce sufficient glycolipids to solubilize pyrene and make it bioavailable for biodegradation. These results will have large implications for the bioremediation of contaminated soils.

  12. Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil.

    PubMed

    Meynet, Paola; Hale, Sarah E; Davenport, Russell J; Cornelissen, Gerard; Breedveld, Gijs D; Werner, David

    2012-05-01

    We collected urban soil samples impacted by polycyclic aromatic hydrocarbons (PAHs) from a sorbent-based remediation field trial to address concerns about unwanted side-effects of 2% powdered (PAC) or granular (GAC) activated carbon amendment on soil microbiology and pollutant biodegradation. After three years, total microbial cell counts and respiration rates were highest in the GAC amended soil. The predominant bacterial community structure derived from denaturing gradient gel electrophoresis (DGGE) shifted more strongly with time than in response to AC amendment. DGGE band sequencing revealed the presence of taxa with closest affiliations either to known PAH degraders, e.g. Rhodococcus jostii RHA-1, or taxa known to harbor PAH degraders, e.g. Rhodococcus erythropolis, in all soils. Quantification by real-time polymerase chain reaction yielded similar dioxygenases gene copy numbers in unamended, PAC-, or GAC-amended soil. PAH availability assessments in batch tests showed the greatest difference of 75% with and without biocide addition for unamended soil, while the lowest PAH availability overall was measured in PAC-amended, live soil. We conclude that AC had no detrimental effects on soil microbiology, AC-amended soils retained the potential to biodegrade PAHs, but the removal of available pollutants by biodegradation was most notable in unamended soil. PMID:22455603

  13. Effect of Activated Carbon Amendment on Bacterial Community Structure and Functions in a PAH Impacted Urban Soil

    PubMed Central

    2012-01-01

    We collected urban soil samples impacted by polycyclic aromatic hydrocarbons (PAHs) from a sorbent-based remediation field trial to address concerns about unwanted side-effects of 2% powdered (PAC) or granular (GAC) activated carbon amendment on soil microbiology and pollutant biodegradation. After three years, total microbial cell counts and respiration rates were highest in the GAC amended soil. The predominant bacterial community structure derived from denaturing gradient gel electrophoresis (DGGE) shifted more strongly with time than in response to AC amendment. DGGE band sequencing revealed the presence of taxa with closest affiliations either to known PAH degraders, e.g. Rhodococcus jostii RHA-1, or taxa known to harbor PAH degraders, e.g. Rhodococcus erythropolis, in all soils. Quantification by real-time polymerase chain reaction yielded similar dioxygenases gene copy numbers in unamended, PAC-, or GAC-amended soil. PAH availability assessments in batch tests showed the greatest difference of 75% with and without biocide addition for unamended soil, while the lowest PAH availability overall was measured in PAC-amended, live soil. We conclude that AC had no detrimental effects on soil microbiology, AC-amended soils retained the potential to biodegrade PAHs, but the removal of available pollutants by biodegradation was most notable in unamended soil. PMID:22455603

  14. Inhibition of free DNA degradation by the deformation of DNA exposed to trace polycyclic aromatic hydrocarbon contaminants.

    PubMed

    Kang, Fuxing; Gao, Yanzheng; Wang, Qian

    2010-12-01

    A rapid inhibitory effect of polycyclic aromatic hydrocarbons (PAHs) on DNA degradation was examined by conventional spectral analysis and microtitration. The purpose was to determine whether PAHs inhibited free DNA degradation by the enzyme DNase I. The results showed that model PAHs phenanthrene and pyrene combined with free DNA to decelerate DNA degradation by DNase I. Phenanthrene-induced inhibition was stronger than that of pyrene. Trace level of PAHs did not induce DNase I deactivation. The DNase I enzyme exhibited only slight shifts in IR absorption bands related to amide II and III upon PAH exposure, and no change was observed with other bands. The decelerating degradation of DNA is attributed to the changes in structure, backbone composition, and guanine constituents of DNA induced by PAHs inserted into double strands, and to the imidazole-like derivates from the combination of imidazole rings with pyrene. PMID:21053946

  15. Amphibian responses to photoinduced toxicity of PAHs

    SciTech Connect

    Hatch, A.C.; Burton, G.A. Jr.

    1995-12-31

    Amphibians are essential components of many ecosystems, yet little information exists on their sensitivity to environmental stressors. Recent evidence shows amphibian diversity is declining. Others have suggested this decline is a result of increasing ultraviolet (UV) light levels. Polycyclic aromatic hydrocarbons (PAHs) are widespread pollutants in the aquatic environment and their toxicity is increased in the presence of UV light. Embryos of two frogs (Rana pipiens and Xenopus laevis) were exposed to a PAH, fluoranthene, to evaluate amphibian responses to this common contaminant in the presence of sunlight. Hatching rate and development were measured in field and laboratory exposures at multiple concentrations and varying UV intensities. Hatching rate was relatively unaffected, while newly hatched larvae were sensitive to low (ug/L) concentrations. Response was related to both PAH concentration and UV intensity. Results suggest that PAH contamination in the aquatic environment may contribute to declines in amphibian populations.

  16. PAH in the laboratory and interstellar space

    NASA Technical Reports Server (NTRS)

    Wdowiak, Thomas J.; Flickinger, Gregory C.; Boyd, David A.

    1989-01-01

    The theory that polycyclic aromatic hydrocarbons (PAHs) are a constituent of the interstellar medium, and a source of the IR emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 microns is being studied using PAH containing acid insoluble residue of the Orgueil CI meteorite and coal tar. FTIR spectra of Orgueil PAH material that has undergone thermal treatment, and a solvent insoluble fraction of coal tar that has been exposed to hydrogen plasma are presented. The UV excided luminescence spectrum of a solvent soluble coal tar film is also shown. Comparison of the lab measurements with observations appears to support the interstellar PAH theory, and shows the process of dehydrogenation expected to take place in the interstellar medium.

  17. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  18. Metabolomic analysis to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish

    PubMed Central

    Elie, Marc R.; Choi, Jaewoo; Nkrumah-Elie, Yasmeen M.; Gonnerman, Gregory D.; Stevens, Jan F.; Tanguay, Robert L.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives are ubiquitously present in diesel exhaust, atmospheric particulate matter and soils sampled in urban areas. Therefore, inhalation or non-dietary ingestion of both PAHs and oxy-PAHs are major routes of exposure for people; especially young children living in these localities. While there has been extensive research on the parent PAHs, limited studies exist on the biological effects of oxy-PAHs which have been shown to be more soluble and more mobile in the environment. Additionally, investigations comparing the metabolic responses resulting from parent PAHs and oxy-PAHs exposures have not been reported. To address these current gaps, an untargeted metabolomics approach was conducted to examine the in vivo metabolomic profiles of developing zebrafish (Danio rerio) exposed to 4 µM of benz[a]anthracene (BAA) or benz[a]anthracene-7, 12-dione (BAQ). By integrating multivariate, univariate and pathway analyses, a total of 62 metabolites were significantly altered after 5 days of exposure. The marked perturbations revealed that both BAA and BAQ affect protein biosynthesis, mitochondrial function, neural development, vascular development and cardiac function. Our previous transcriptomic and genomic data were incorporated in this metabolomics study to provide a more comprehensive view of the relationship between PAH and oxy-PAH exposures on vertebrate development. PMID:26001975

  19. Metabolomic analysis to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish.

    PubMed

    Elie, Marc R; Choi, Jaewoo; Nkrumah-Elie, Yasmeen M; Gonnerman, Gregory D; Stevens, Jan F; Tanguay, Robert L

    2015-07-01

    Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives are ubiquitously present in diesel exhaust, atmospheric particulate matter and soils sampled in urban areas. Therefore, inhalation or non-dietary ingestion of both PAHs and oxy-PAHs are major routes of exposure for people; especially young children living in these localities. While there has been extensive research on the parent PAHs, limited studies exist on the biological effects of oxy-PAHs which have been shown to be more soluble and more mobile in the environment. Additionally, investigations comparing the metabolic responses resulting from parent PAHs and oxy-PAHs exposures have not been reported. To address these current gaps, an untargeted metabolomics approach was conducted to examine the in vivo metabolomic profiles of developing zebrafish (Danio rerio) exposed to 4 µM of benz[a]anthracene (BAA) or benz[a]anthracene-7,12-dione (BAQ). By integrating multivariate, univariate and pathway analyses, a total of 63 metabolites were significantly altered after 5 days of exposure. The marked perturbations revealed that both BAA and BAQ affect protein biosynthesis, mitochondrial function, neural development, vascular development and cardiac function. Our previous transcriptomic and genomic data were incorporated in this metabolomics study to provide a more comprehensive view of the relationship between PAH and oxy-PAH exposures on vertebrate development. PMID:26001975

  20. In-situ Phytoremediation of PAH and PCB Contaminated Marine Sediments with Eelgrass (Zostera marina)

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.; Thom, Ronald M.; Cullinan, Valerie I.

    2009-10-01

    In view of the fact that there are presently no cost-effective in-situ treatment technologies for contaminated sediments, a 60 week long phytoremediation feasibility study was conducted in seawater-supplied outdoor ponds to determine whether eelgrass (Zostera marina) is capable of removing polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from submerged marine sediments. It was determined that all PAHs and PCBs, independent of the number of aromatic rings and degree of chlorination, respectively, were removed to a much larger extent in planted sediments compared to unplanted controls. After 60 weeks of treatment, the concentration of total PAHs decreased by 73% in planted sediments but only 25% in unplanted controls. Similarly, total PCBs declined by 60% in the presence of plants while none were removed in the unplanted sediment. Overall, PAH and PCB biodegradation was greatest in the sediment layer that contained most of the eelgrass roots. Abiotic desorption tests conducted at week 32 confirmed that the phytoremediation process was not controlled by mass-transfer or bioavailability limitations since all PAHs and PCBs desorbed rapidly and to a large extent from the sediment. PAHs were detected in both roots and shoots, with root and shoot bioaccumulation factors for total PAHs amounting to approximately 3 and 1, respectively, after 60 weeks of phytoremediation treatment. Similarly, the root bioccumulation factor for total PCBs was around 4, while no PCBs were detected in the eelgrass leaves at the end of the experiment. The total mass fraction of PAHs and PCBs absorbed and translocated by plant biomass during the 60 week period was insignificant, amounting to less than 0.5% of the total mass of PAHs and PCBs which was initially present in the sediment. Finally, the number of total heterotrophic bacteria and hydrocarbon degraders was slightly but not statistically significantly greater in planted sediments than in unplanted controls

  1. Laboratory Studies of Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  2. Molecular Spectroscopy in Astrophysics: Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A long-term laboratory effort has been undertaken to measure the physical and chemical characteristics of these carbon molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The laboratory results will be discussed as well as the implications for astronomy and for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. We will also present the new generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.

  3. Design and field-scale implementation of an "on site" bioremediation treatment in PAH-polluted soil.

    PubMed

    Pelaez, A I; Lores, I; Sotres, A; Mendez-Garcia, C; Fernandez-Velarde, C; Santos, J A; Gallego, J L R; Sanchez, J

    2013-10-01

    An "on site" bioremediation program was designed and implemented in soil polluted with polycyclic aromatic hydrocarbons (PAHs), especially naphthalene. We began by characterizing the soil's physical and chemical properties. A microbiological screening corroborated the presence of microorganisms capable of metabolizing PAHs. We then analyzed the viability of bioremediation by developing laboratory microcosms and pilot scale studies, to optimize the costs and time associated with remediation. The treatment assays were based on different types of biostimulants, such as a slow or fast-release fertilizer, combined with commercial surfactants. Once the feasibility of the biostimulation was confirmed, a real-scale bioremediation program was undertaken in 900 m(3) of contaminated soil. The three-step design reduced PAH contamination by 94.4% at the end of treatment (161 days). The decrease in pollutants was concomitant with the selection of autochthonous bacteria capable of degrading PAHs, with Bacillus and Pseudomonas the most abundant genera. PMID:23867700

  4. Development of a novel kinetic model for the analysis of PAH biodegradation in the presence of lead and cadmium co-contaminants.

    PubMed

    Deary, Michael E; Ekumankama, Chinedu C; Cummings, Stephen P

    2016-04-15

    We report on the results of a 40 week study in which the biodegradation of 16 US EPA polycyclic aromatic hydrocarbons (PAHs) was followed in microcosms containing soil of high organic carbon content (11%) in the presence and absence of lead and cadmium co-contaminants. The total spiked PAH concentration was 2166mg/kg. Mercury amendment was also made to give an abiotic control. A novel kinetic model has been developed to explain the observed biphasic nature of PAH degradation. The model assumes that PAHs are distributed across soil phases of varying degrees of bioaccessibility. The results of the analysis suggest that overall percentage PAH loss is dependent on the respective rates at which the PAHs (a) are biodegraded by soil microorganisms in pore water and bioaccessible soil phases and (b) migrate from bioaccessible to non-bioaccessible soil phases. In addition, migration of PAHs to non-bioaccessible and non-Soxhlet-extractable soil phases associated with the humin pores gives rise to an apparent removal process. The presence of metal co-contaminants shows a concentration dependent inhibition of the biological degradation processes that results in a reduction in overall degradation. Lead appears to have a marginally greater inhibitory effect than cadmium. PMID:26785214

  5. LAND TREATMENT OF PAH-CONTAMINATED SOIL: PERFORMANCE MEASURED BY CHEMICAL AND TOXICITY ASSAYS

    EPA Science Inventory

    The performance of a soil remediation process can be determined by measuring the reduction in target soil contaminant concentrations and by assessing the treatment's ability to lower soil toxicity. Land treatment of polycyclic armomatic hydrocarbon (PAH)-contaminated soil from a ...

  6. LAND TREATMENT OF PAH-CONTAMINATED SOIL: PERFORMANCE MEASURED BY CHEMICAL AND TOXICITY ASSAYS

    EPA Science Inventory

    The performance of a soil remediation process can be determined by measuring the reduction in target soil contaminant concentrations and by assessing the treatment's ability to lower soil toxicity. Land treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a ...

  7. Fungal Community Successions in Rhizosphere Sediment of Seagrasses Enhalus acoroides under PAHs Stress

    PubMed Central

    Ling, Juan; Zhang, Yanying; Wu, Meilin; Wang, Youshao; Dong, Junde; Jiang, Yufeng; Yang, Qingsong; Zeng, Siquan

    2015-01-01

    Seagrass meadows represent one of the highest productive marine ecosystems and are of great ecological and economic values. Recently, they have been confronted with worldwide decline. Fungi play important roles in sustaining the ecosystem health as degraders of polycyclic aromatic hydrocarbons (PAHs), but fewer studies have been conducted in seagrass ecosystems. Hence, we investigated the dynamic variations of the fungal community succession under PAH stress in rhizosphere sediment of seagrasses Enhalus acoroides in this study. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), quantitative PCR (qPCR) and a clone library have been employed to analyze the fungal community’s shifts. Sequencing results of DGGE and the clone library showed that the predominant species belong to phyla Ascomycota and Basidiomycota. The abundance of three groups decreased sharply over the incubation period, whereas they demonstrated different fungal diversity patterns. Both the exposure time and the PAH concentrations affected the microbial diversity as assessed by PCR-DGGE analysis. Redundancy analysis (RDA) indicated that significant factors driving community shifts were ammonium and pH (p < 0.05). Significant amounts of the variations (31.1%) were explained by pH and ammonium, illustrating that those two parameters were the most likely ones to influence or be influenced by the fungal communities’ changes. Investigation results also indicated that fungal communities in seagrass meadow were very sensitive to PAH-induced stress and may be used as potential indicators for the PAH contamination. PMID:26096007

  8. Fungal Community Successions in Rhizosphere Sediment of Seagrasses Enhalus acoroides under PAHs Stress.

    PubMed

    Ling, Juan; Zhang, Yanying; Wu, Meilin; Wang, Youshao; Dong, Junde; Jiang, Yufeng; Yang, Qingsong; Zeng, Siquan

    2015-01-01

    Seagrass meadows represent one of the highest productive marine ecosystems and are of great ecological and economic values. Recently, they have been confronted with worldwide decline. Fungi play important roles in sustaining the ecosystem health as degraders of polycyclic aromatic hydrocarbons (PAHs), but fewer studies have been conducted in seagrass ecosystems. Hence, we investigated the dynamic variations of the fungal community succession under PAH stress in rhizosphere sediment of seagrasses Enhalus acoroides in this study. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), quantitative PCR (qPCR) and a clone library have been employed to analyze the fungal community's shifts. Sequencing results of DGGE and the clone library showed that the predominant species belong to phyla Ascomycota and Basidiomycota. The abundance of three groups decreased sharply over the incubation period, whereas they demonstrated different fungal diversity patterns. Both the exposure time and the PAH concentrations affected the microbial diversity as assessed by PCR-DGGE analysis. Redundancy analysis (RDA) indicated that significant factors driving community shifts were ammonium and pH (p < 0.05). Significant amounts of the variations (31.1%) were explained by pH and ammonium, illustrating that those two parameters were the most likely ones to influence or be influenced by the fungal communities' changes. Investigation results also indicated that fungal communities in seagrass meadow were very sensitive to PAH-induced stress and may be used as potential indicators for the PAH contamination. PMID:26096007

  9. Far-ir Pah Spectroscopy And The Identification Of An Individual Astronomical Pah Molecule

    NASA Astrophysics Data System (ADS)

    Boersma, Christiaan; Allamandola, L. J.; Bauschlicher, C. W.; Ricca, A.; Mattioda, A. L.; Hudgins, D.; Cami, J.; Peeters, E.; Sánchez de Armas, F.; Puerta Saborido, G.

    2010-05-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are widespread across the Universe and influence many stages of the Galactic lifecycle. The presence of PAHs has been well established and the rich mid-IR PAH spectrum is now commonly used as a probe into inter(stellar) environments. With a new spectral window opening up in the far-IR, the quest for identifying a unique member of the interstellar PAH family has begun. To guide this search, the far-IR (> 20 μm) spectra of different sets of PAHs are investigated using the NASA Ames PAH IR Spectroscopic Database - a large coherent set (> 600 spectra) of laboratory measured and DFT computed infrared spectra of PAHs from C10H8 to C130H28. These sets explore the influence of size, shape, charge and composition on the far-IR PAH spectrum. The far-IR is the domain of the so- called `drumhead’ modes and other molecular vibrations involving low order bending vibrations of the carbon skeleton as a whole. As for drums, these modes are considered to be very molecule and shape specific and promise to be a key diagnostic for specific PAHs. Here, the sensitivity of these `drumhead’ modes to size and shape is assessed by comparing the frequencies of the lowest drumhead modes of a family of circular shaped (the coronene `family') and rhombus shaped (the pyrene `family') PAH molecules. From the study of the far-IR PAH spectra of different sets as well as from the analysis of the `drumhead’ modes, some suggestions for an observing strategy are made.

  10. Infrared spectra of interstellar deuteronated PAHs

    NASA Astrophysics Data System (ADS)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter

    2015-08-01

    Polycyclic Aromatic Hydrocarbon (PAH) molecules have emerged as a potential constituent of the ISM that emit strong features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7 μm with weaker and blended features in the 3-20μm region. These features are proposed to arise from the vibrational relaxation of PAH molecules on absorption of background UV photons (Tielens 2008). These IR features have been observed towards almost all types of astronomical objects; say H II regions, photodissociation regions, reflection nebulae, planetary nebulae, young star forming regions, external galaxies, etc. A recent observation has proposed that interstellar PAHs are major reservoir for interstellar deuterium (D) (Peeters et al. 2004). According to the `deuterium depletion model' as suggested by Draine (2006), some of the Ds formed in the big bang are depleted in PAHs, which can account for the present value of D/H in the ISM. Hence, study of deuterated PAHs (PADs) is essential in order to measure D/H in the ISM.In this work, we consider another probable category of the large PAH family, i.e. Deuteronated PAHs (DPAH+). Onaka et al. have proposed a D/H ratio which is an order of magnitude smaller than the proposed value of D/H by Draine suggesting that if Ds are depleted in PAHs, they might be accommodated in large PAHs (Onaka et al. 2014). This work reports a `Density Functional Theory' calculation of large deuteronated PAHs (coronene, ovalene, circumcoronene and circumcircumcoronene) to determine the expected region of emission features and to find a D/H ratio that is comparable to the observational results. We present a detailed analysis of the IR spectra of these molecules and discuss the possible astrophysical implications.ReferencesDraine B. T. 2006, in ASP Conf. Ser. 348, Proc. Astrophysics in the Far Ultraviolet: Five Years of Discovery with FUSE, ed. G. Sonneborn, H. Moos, B-G Andersson (San Francisco, CA:ASP) 58Onaka T., Mori T. I., Sakon I., Ohsawa R., Kaneda H., Okada Y., Tanaka M