Science.gov

Sample records for pah luminous galaxies

  1. Evolution of luminous IRAS galaxies: Radio imaging

    NASA Technical Reports Server (NTRS)

    Neff, S. G.; Hutchings, J. B.

    1993-01-01

    In a recent study of IRAS galaxies' optical morphologies, we found that luminous IR sources lie in the IR color-luminosity plane in groups which separate out by optical spectroscopic type and also by degree of tidal disturbance. We found that the most luminous steep-IR-spectrum sources are generally galaxies in the initial stages of a major tidal interaction. Galaxies with active nuclei were generally found to have flatter IR spectra, to cover a range of IR luminosity, and to be in the later stages of a tidal interaction. We proposed a sequence of events by which luminous IR sources evolve: they start as interacting or merging galaxies, some develop active nuclei, and most undergo extensive star-formation in their central regions. Another way to study these objects and their individual evolution is to study their radio morphologies. Radio emission may arise at a detectable level from supernovae in star-forming regions and/or the appearance of an active nucleus can be accompanied by a nuclear radio source (which may develop extended structure). Therefore, the compact radio structure may trace the evolution of the inner regions of IRAS-luminous sources. If the radio sources are triggered by the interactions, we would expect to find the radio morphology related to the optical 'interactivity' of the systems. Here, we explore using the radio emission of IRAS galaxies as a possible tracer of galaxy evolution. We present and discuss observations of the compact radio morphology of 111 luminous IRAS-selected active galaxies covering a wide range of IR and optical properties.

  2. Orbital masses of nearby luminous galaxies

    SciTech Connect

    Karachentsev, Igor D.; Kudrya, Yuri N. E-mail: yukudrya@gmail.com

    2014-09-01

    We use observational properties of galaxies accumulated in the Updated Nearby Galaxy Catalog to derive a dark matter mass of luminous galaxies via motions of their companions. The data on orbital-to-stellar mass ratio are presented for 15 luminous galaxies situated within 11 Mpc from us: the Milky Way, M31, M81, NGC 5128, IC342, NGC 253, NGC 4736, NGC 5236, NGC 6946, M101, NGC 4258, NGC 4594, NGC 3115, NGC 3627, and NGC 3368, as well as for a composite suite around other nearby galaxies of moderate and low luminosity. The typical ratio for these galaxies is M {sub orb}/M {sub *} = 31, corresponding to the mean local density of matter Ω {sub m} = 0.09, i.e., one-third of the global cosmic density. This quantity seems to be rather an upper limit of dark matter density, since the peripheric population of the suites may suffer from the presence of fictitious unbound members. We note that the Milky Way and M31 halos have lower dimensions and lower stellar masses than those of the other 13 nearby luminous galaxies. However, the dark-to-stellar mass ratio for both the Milky Way and M31 is typical for other neighboring luminous galaxies. The distortion in the Hubble flow, observed around the Local Group and five other neighboring groups, yields their total masses within the radius of a zero velocity surface, R {sub 0}; these masses are slightly lower than the orbital and virial values. This difference may be due to the effect of dark energy producing a kind of 'mass defect' within R {sub 0}.

  3. Observations of Luminous Infrared Galaxies with Herschel

    NASA Astrophysics Data System (ADS)

    Armus, Lee

    2014-01-01

    A major result of the IRAS survey was the discovery of a large population of luminous infrared galaxies (LIRGs) which emit a significant fraction of their bolometric luminosity in the far-infrared. LIRGs cover the full range of morphologies from isolated disk galaxies, to advanced mergers, exhibiting enhanced star-formation rates and a higher fraction of Active Galactic Nuclei (AGN) compared to less luminous galaxies. A detailed study of low-redshift LIRGs is critical for our understanding of the cosmic evolution of galaxies and black holes, since LIRGs comprise the bulk of the cosmic far-infrared background and dominate the star-formation between 0.5 < z < 1. With ISO, it was possible to measure the full suite of infrared diagnostic lines in local normal and luminous infrared galaxies for the first time, but samples were small and observations challenging. With Herschel, we have been able to study large samples of low-redshift LIRGs, and even probe the physical conditions in poweful starburst galaxies out to significant redshifts. By combining the Herschel data with those from Spitzer, it is now possible to understand the heating and cooling of the dust and gas in complete samples of LIRGs for the first time. I will review recent results from a number of GTO, OTKP and GO programs in an attempt to summarize the advances we have made in understanding star formation and black hole accretion in LIRGs as a direct result of the Herschel mission.

  4. Galaxy Clustering Around Nearby Luminous Quasars

    NASA Technical Reports Server (NTRS)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1996-01-01

    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  5. Over-Luminous Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Forman, William; Mushotzky, Richard (Technical Monitor)

    2004-01-01

    The first paper from our work has been completed and accepted for publication. Another paper presents a study of the ESO 30601 70 galaxy group, combining Chandra, XMM-Newton, and optical observations. We find that the system is a true fossil galaxy group - a group whose optical light is dominated by a single galaxy. The group X-ray emission is composed of a central, dense, cool core (10 kpc in radius) and an isothermal medium beyond the central 10 kpc. The region between 10 and 50 kpc (the cooling radius) has the same temperature as the gas from 50 to 400 kpc, although the gas cooling time between 10 and 50 kpc (2-6 Gyr) is shorter than the Hubble time. Thus, the ESO 3060170 group does not have a group-sized cooling core. We suggest that the group cooling core may have been heated by a central active galactic nucleus (AGN) outburst in the past and that the small, dense, cool core is the truncated relic of a previous cooling core. The Chandra observations also reveal a variety of X-ray features in the central region, including a finger, an edge-like feature, and a small tail, all aligned along a north-south axis, as are the galaxy light and group galaxy distribution. The proposed AGN outburst may cause gas to slosh around the center and produce these asymmetric features. The observed flat temperature profile to 1/3rvir is not consistent with the predicted temperature profile in recent numerical simulations. We compare the entropy profile of the ESO 3060170 group with those of three other groups and find a flatter relation than that predicted by simulations involving only shock heating, S approximately r approximately 0.85. This is direct evidence of the importance of non-gravitational processes in group centers. We derive the mass profiles within 1/3rvir and find that the ESO 3060170 group is the most massive fossil group known.

  6. Evolution of local luminous compact blue galaxies

    NASA Astrophysics Data System (ADS)

    Rabidoux, Katherine; Pisano, Daniel J.

    2015-01-01

    Luminous compact blue galaxies (LCBGs) are a type of very blue, very compact star-forming galaxy that was common at z~1 but is rare in the local universe. While it is clear from this discrepancy that LCBGs must be a rapidly-evolving class of galaxy, it is not clear what type(s) of galaxy they become. Fortunately, since they are bright and nearby, the rare examples of z~0 LCBGs are easily studied across a large range of wavelengths. We have conducted a study of z~0 analogs to the z~1 LCBGs to investigate their galaxy-wide internal properties in order to determine what is triggering their current episode of star formation, for how long the star formation can continue, and what the galaxies may become once their star formation rates decrease from current levels. We have taken resolved H I observations of nine LCBGs and unresolved radio continuum observations of 35 LCBGs and combined this data with archival broad-band data to probe their global properties. We conclude that LCBGs are rotationally-supported, star-forming disk galaxies that, while they may be forming small central bulges or bars, are highly unlikely to evolve into dwarf elliptical, dwarf spheroidal, or elliptical galaxies on their own due to their masses and rotation velocities. LCBGs will likely fade to be spiral galaxies with lower surface brightnesses once their current episodes of star formation conclude. In addition, we have modeled the SEDs of the LCBGs in our sample to determine whether LCBGs' star formation is ramping up or winding down, and for how much longer their current active phase of star formation will last. We have begun to put together a picture of the current evolutionary stage of this class of galaxies, and have better constrained their future evolutionary paths.

  7. Luminous Stars in Galaxies Beyond 3 Mpc

    NASA Astrophysics Data System (ADS)

    Whitmore, B. C.; Wfc3 Science Oversight Committee

    2011-06-01

    I am mainly interested in the formation and destruction of young star clusters in nearby star forming galaxies such as the Antennae, M83, and M51. One of the first analysis steps is to throw out all those pesky stars that keep contaminating my young cluster samples. Recently, spurred on by our new Wide Field Camera 3 (WFC3) Early Release Science data of galaxies including M83, NGC 4214, M82, NGC 2841, and Cen A, we began taking a closer look at the stellar component. Questions we are addressing are: 1) what are the most luminous stars, 2) how can we use them to help study the destruction of star clusters and the population of the field, 3) what fraction of stars, at least the bright stars, are formed in the field, in associations, and in compact clusters. In this contribution we describe some of the beginning steps in this process. More specifically, we describe how we separate stars from clusters in our galaxies, and describe how candidate Luminous Blue Variables (LBVs) and "Single Star" HII (SSHII) regions have been identified.

  8. The Host Galaxies of Nearby, Optically Luminous, AGN

    NASA Astrophysics Data System (ADS)

    Petric, Andreea

    2016-01-01

    Coevolution of galaxies and their central black holes (BH) has been the central theme of much of recent extragalactic astronomical research. Observations of the dynamics of stars and gas in the nuclear regions of nearby galaxies suggest that the majority of spheroidal galaxies in the local Universe contain massive BHs and that the masses of those central BH correlate with the velocity dispersions of the stars in the spheroid and the bulge luminosity. Cold ISM is the basic fuel for star-formation and BH growth so its study is essential to understanding how galaxies evolve.I will present high sensitivity observations taken with the Herschel Space Observatory to measure the cold dust content in a sample of 85 nearby (z <= 0.5) QSOs chosen from the optically luminous broad-line PG QSOs sample (QSO1s) and in a complementary sample of 85 narrow-line QSOs (QSO2s) chosen to match the redshift and optical luminosity distribution of the broad-line targets. The FIR data are combined with NIR and MIR measurements from the Two Micron All Sky Survey and the Wide-Field Infrared Survey Explorer to determine their IR spectral energy distributions which we use to assess and compare the aggregate dust properties of QSO1s and QSO2s. I will also present NIR spectroscopy obtained with Gemini's Near-Infrared Spectrograph of a sub-sample of QSO2s and QSO1s which I use to compare the ratio of cold to warm H2 gas that emits in the NIR in the hosts of QSO1s and QSO2s.Finally I will present a comparison of star-formation in QSO1s and QSO2s. For both QSO1s and QSO2s 3stimates of star-formation rates that are based on the total IR continuum emission correlate with those based on the 11.3 micron PAH feature. However, for the QSO1s, star-formation rates estimated from the FIR continuum are higher than those estimated from the 11.3 micron PAH emission. This result can be attributed to a variety of factors including the possible destruction of the PAHs and that, in some sources, a fraction of the

  9. The Luminous Polycyclic Aromatic Hydrocarbon Emission Features: Applications to High Redshift Galaxies and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shipley, Heath; Papovich, Casey

    2015-08-01

    We provide a new robust star-formation rate (SFR) calibration using the luminosity from polycyclic aromatic hydrogen (PAH) molecules. The PAH features emit strongly in the mid-infrared (mid-IR; 3-19μm), mitigating dust extinction, and they are very luminous, containing 5-10% of the total IR luminosity in galaxies. We derive the calibration of the PAH luminosity as a SFR indicator using a sample of 105 star-forming galaxies covering a range of total IR luminosity, LIR = L(8-1000μm) = 109 - 1012 L⊙ and redshift 0 < z < 0.6. The PAH luminosity correlates linearly with the SFR as measured by the dust-corrected Hα luminosity (using the sum of the Hα and rest-frame 24μm luminosity from Kennicutt et al. 2009), with tight scatter of ~0.15 dex, comparable to the scatter in the dust-corrected Hα SFRs and Paα SFRs. We show this relation is sensitive to galaxy metallicity, where the PAH luminosity of galaxies with Z < 0.7 Z⊙ departs from the linear SFR relationship but in a behaved manor. We derive for this a correction to galaxies below solar metallicity. As a case study for observations with JWST, we apply the PAH SFR calibration to a sample of lensed galaxies at 1 < z < 3 with Spitzer Infrared Spectrograph (IRS) data, and we demonstrate the utility of PAHs to derive SFRs as accurate as those available from any other indicator. This new SFR indicator will be useful for probing the peak of the SFR density of the universe (1 < z < 3) and for studying the coevolution of star-formation and supermassive blackhole accretion contemporaneously in a galaxy.

  10. Spitzer Spectroscopy to Distinguish z>5 Sources of Reionization from z~2 Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Chary, Ranga-Ram; Dickinson, Mark; Lawrence, Charles; Teplitz, Harry

    2008-03-01

    Optical/near-infrared photometric redshifts of 13 red galaxies in GOODS favor z>5 redshift solutions which indicate that they are extremely massive galaxies with stellar masses exceeding 1E11 Msun. If true, these galaxies contribute the bulk of the stellar mass density at z~6 and the past star-formation in these galaxies is responsible for reionizing the intergalactic medium at z>>6. The majority of these galaxies have however found to be faint 24 micron sources which would instead suggest that they are luminous infrared galaxies (LIRGs) with L(IR)~3E11 Lsun at z~2. We propose ultradeep Spitzer/IRS LL spectroscopy which will measure the redshifts of two representative, optically invisible (i>27 mag) sources in this class and distinguish between these two widely disparate hypotheses. The detection of polycyclic aromatic hydrocarbons (PAH) in the spectra of these sources would imply that photometric redshifts of dusty infrared luminous galaxies are unreliable - a fundamental obstacle in estimating the comoving luminosity density of the Universe as a function of redshift. It would allow the shape of the dust extinction curve to be constrained and rule out the Balmer-'break' color selection as a reliable tracer of redshift. By virtue of being the deepest IRS/LL observations, it would yield the first measures of PAH line strengths in high redshift LIRGs. This will help refine the mid-infrared PAH templates that are used to estimate bolometric luminosities of galaxies detected in various mid-infrared surveys, including those which will be undertaken by WISE. The absence of PAH in the proposed spectra would imply the presence of Compton-thick AGN and/or confirm that we have identified the galaxies responsible for reionization without the need for changing the stellar initial mass function at high redshift. Spitzer offers the only opportunity to resolve this important conundrum until the James Webb Space Telescope.

  11. The Most Luminous Galaxies Found by WISE

    NASA Astrophysics Data System (ADS)

    Eisenhardt, Peter; Tsai, Chao-Wei; Wu, Jingwen; Griffith, Roger; Yan, Lin; Stern, Daniel; Stanford, Adam; Blain, Andrew; Benford, Dominic; Bridge, Carrie; Petty, Sara; Assef, Roberto; Donoso, Emilio; Lake, Sean

    2012-08-01

    NASA's Wide-field Infrared Survey Explorer (WISE) has surveyed the entire sky at 3.4, 4.6, 12 and 22 (micron) (W1, W2, W3, and W4), reaching sensitivities hundreds of times deeper than IRAS. We have used WISE photometry to select an all-sky sample of objects which are extremely luminous. The objects are prominent in W4, but faint or undetected in W1 and W2 (W12drops). Followup spectroscopy shows that most of the sources have redshifts z>2. In combination with Herschel photometry, these redshifts lead to typical L_bol > 10^13 L_⊙, with ~10% exceeding 10^14 L_⊙. High resolution adaptive optics imaging shows these objects are typically unlensed. We request NOAO time to obtain redshifts and optical and near IR photometry of the complete all-sky sample of the brightest W12drops, all of which are in our Herschel program. This will fulfill the primary WISE objective of finding the most extreme luminous IR galaxies in the Universe. These superlative objects will be the most fruitful for detailed studies of the physics of star formation, AGN fueling, and feedback in the most active galaxies.

  12. WARM MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Lu, N.; Zhao, Y.; Xu, C. K.; Mazzarella, J. M.; Howell, J.; Appleton, P.; Lord, S.; Schulz, B.; Gao, Y.; Armus, L.; Díaz-Santos, T.; Surace, J.; Isaak, K. G.; Petric, A. O.; Charmandaris, V.; Evans, A. S.; Inami, H.; Iwasawa, K.; Leech, J.; Sanders, D. B.; and others

    2014-06-01

    We present our initial results on the CO rotational spectral line energy distribution (SLED) of the J to J–1 transitions from J = 4 up to 13 from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey. The observed SLEDs change on average from one peaking at J ≤ 4 to a broad distribution peaking around J ∼ 6 to 7 as the IRAS 60-to-100 μm color, C(60/100), increases. However, the ratios of a CO line luminosity to the total infrared luminosity, L {sub IR}, show the smallest variation for J around 6 or 7. This suggests that, for most LIRGs, ongoing star formation (SF) is also responsible for a warm gas component that emits CO lines primarily in the mid-J regime (5 ≲ J ≲ 10). As a result, the logarithmic ratios of the CO line luminosity summed over CO (5–4), (6–5), (7–6), (8–7) and (10–9) transitions to L {sub IR}, log R {sub midCO}, remain largely independent of C(60/100), and show a mean value of –4.13 (≡log R{sub midCO}{sup SF}) and a sample standard deviation of only 0.10 for the SF-dominated galaxies. Including additional galaxies from the literature, we show, albeit with a small number of cases, the possibility that galaxies, which bear powerful interstellar shocks unrelated to the current SF, and galaxies, in which an energetic active galactic nucleus contributes significantly to the bolometric luminosity, have their R {sub midCO} higher and lower than R{sub midCO}{sup SF}, respectively.

  13. Warm Molecular Gas in Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Lu, N.; Zhao, Y.; Xu, C. K.; Gao, Y.; Armus, L.; Mazzarella, J. M.; Isaak, K. G.; Petric, A. O.; Charmandaris, V.; Díaz-Santos, T.; Evans, A. S.; Howell, J.; Appleton, P.; Inami, H.; Iwasawa, K.; Leech, J.; Lord, S.; Sanders, D. B.; Schulz, B.; Surace, J.; van der Werf, P. P.

    2014-06-01

    We present our initial results on the CO rotational spectral line energy distribution (SLED) of the J to J-1 transitions from J = 4 up to 13 from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey. The observed SLEDs change on average from one peaking at J <= 4 to a broad distribution peaking around J ~ 6 to 7 as the IRAS 60-to-100 μm color, C(60/100), increases. However, the ratios of a CO line luminosity to the total infrared luminosity, L IR, show the smallest variation for J around 6 or 7. This suggests that, for most LIRGs, ongoing star formation (SF) is also responsible for a warm gas component that emits CO lines primarily in the mid-J regime (5 <~ J <~ 10). As a result, the logarithmic ratios of the CO line luminosity summed over CO (5-4), (6-5), (7-6), (8-7) and (10-9) transitions to L IR, log R midCO, remain largely independent of C(60/100), and show a mean value of -4.13 (\\equiv log R^SF_midCO) and a sample standard deviation of only 0.10 for the SF-dominated galaxies. Including additional galaxies from the literature, we show, albeit with a small number of cases, the possibility that galaxies, which bear powerful interstellar shocks unrelated to the current SF, and galaxies, in which an energetic active galactic nucleus contributes significantly to the bolometric luminosity, have their R midCO higher and lower than R^SF_midCO, respectively. Based on Herschel observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  14. STAR FORMATION IN TWO LUMINOUS SPIRAL GALAXIES

    SciTech Connect

    Hunter, Deidre A.; Ashburn, Allison; Wright, Teresa; Elmegreen, Bruce G.; Rubin, Vera C.; Józsa, Gyula I. G.; Struve, Christian

    2013-10-01

    We examined star formation in two very luminous (M{sub V} = –22 to –23) Sc-type spiral galaxies, NGC 801 and UGC 2885, using ultra-deep Hα images. We combine these Hα images with UBV and Two-Micron All-Sky Survey JHK images and H I maps to explore the star formation characteristics of disk galaxies at high luminosity. Hα traces star formation in these galaxies to 4-6 disk scale lengths, but the lack of detection of Hα further out is likely due to the loss of Lyman continuum photons. Considering gravitational instabilities alone, we find that the gas and stars in the outer regions are marginally stable in an average sense, but considering dissipative gas and radial and azimuthal forcing, the outer regions are marginally unstable to forming spiral arms. Star formation is taking place in spiral arms, which are regions of locally higher gas densities. Furthermore, we have traced smooth exponential stellar disks over four magnitudes in V-band surface brightness and 4-6 disk scale lengths, in spite of a highly variable gravitational instability parameter. Thus, gravitational instability thresholds do not seem relevant to the stellar disk. One possibility for creating an exponential disk is that the molecular cloud densities and star formation rates have exponential profiles and this fact forces the stellar disk to build up such a profile. Another possibility is that the stellar disk is continuously adjusted to an exponential shape regardless of the star formation profile, for example, through global dynamical processes that scatter stars. However, such scattering processes are only known to operate in spiral systems, in which case they cannot explain the same dilemma of smooth exponential disks observed in dwarf irregular galaxies.

  15. Luminous red galaxies in hierarchical cosmologies

    NASA Astrophysics Data System (ADS)

    Almeida, C.; Baugh, C. M.; Wake, D. A.; Lacey, C. G.; Benson, A. J.; Bower, R. G.; Pimbblet, K.

    2008-06-01

    Luminous red galaxies (LRGs) are much rarer and more massive than L* galaxies. Coupled with their extreme colours, LRGs therefore provide a demanding testing ground for the physics of massive galaxy formation. We present the first self-consistent predictions for the abundance and properties of LRGs in hierarchical structure formation models. We test two published models which use quite different mechanisms to suppress the formation of massive galaxies: the Bower et al. model which invokes `active galactic nuclei (AGN) feedback' to prevent gas from cooling in massive haloes and the Baugh et al. model which relies upon a `superwind' to eject gas before it is turned into stars. Without adjusting any parameters, the Bower et al. model gives an excellent match to the observed luminosity function of LRGs in the Sloan Digital Sky Survey (with a median redshift of z = 0.24) and to their clustering; the Baugh et al. model is less successful in these respects. Both models fail to match the observed abundance of LRGs at z = 0.5 to better than a factor of ~2. In the models, LRGs are typically bulge-dominated systems with stellar masses of ~2 × 1011h-1Msolar and velocity dispersions of σ ~ 250kms-1. Around half of the stellar mass in the model LRGs is already formed by z ~ 2.2 and is assembled into one main progenitor by z ~ 1.5; on average, only 25 per cent of the mass of the main progenitor is added after z ~ 1. LRGs are predicted to be found in a wide range of halo masses, a conclusion which relies on properly taking into account the scatter in the formation histories of haloes. Remarkably, we find that the correlation function of LRGs is predicted to be a power law down to small pair separations, in excellent agreement with observational estimates. Neither the Bower et al. nor the Baugh et al. model is able to reproduce the observed radii of LRGs.

  16. The Luminous Polycyclic Aromatic Hydrocarbon Emission Features: Applications to High Redshift Galaxies and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shipley, Heath V.

    2016-01-01

    For decades, significant work has been applied to calibrating emission from the ultra-violet, nebular emission lines, far-infrared, X-ray and radio as tracers of the star-formation rate (SFR) in distant galaxies. Understanding the exact rate of star-formation and how it evolves with time and galaxy mass has deep implications for how galaxies form. The co-evolution of star-formation and supermassive black hole (SMBH) accretion is one of the key problems in galaxy formation theory. But, many of these SFR indicators are influenced by SMBH accretion in galaxies and result in unreliable SFRs. Utilizing the luminous polycyclic aromatic hydrocarbon (PAH) emission features, I provide a new robust SFR calibration using the luminosity emitted from the PAHs at 6.2μm, 7.7μm and 11.3μm to solve this. The PAH features emit strongly in the mid-infrared (mid-IR; 5-25μm) mitigating dust extinction, containing on average 5-10% of the total IR luminosity in galaxies. I use a sample of 105 star-forming galaxies covering a range of total IR luminosity, LIR = L(8-1000μm) = 109 - 1012 L⊙ and redshift 0 < z < 0.4, with mid-IR spectroscopy from the Spitzer Infrared Spectrograph (IRS), and data covering other SFR indicators (Hα emission and rest-frame 24μm continuum emission). The PAH luminosity correlates linearly with the SFR as measured by the Hα luminosity (corrected for attenuation using the mono-chromatic rest-frame 24μm emission), with a tight scatter of <0.15 dex. The scatter is comparable to that between SFRs derived from the Paα and dust-corrected Hα emission lines. We present a case study in advance of JWST, which will be capable of measuring SFRs (from 8μm rest-frame photometry, i.e. PAHs) in distant galaxies (z ≤ 2) with JWST/MIRI to SFRs as low as ~10 M⊙yr-1, because the PAH features are so bright. We use Spitzer/IRS observations of PAH features in lensed star-forming galaxies at 1 < z < 3 to demonstrate the utility of the PAHs to derive SFRs that agree with

  17. Compact radio sources in luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Parra, Rodrigo

    2007-08-01

    Radio interferometry is an observational technique of high sensitivity and incomparably high spatial resolution. Moreover, because radio waves can freely propagate through interstellar dust and gas, it allows the study of regions of the universe completely obscured at other wavelengths. This thesis reports the observational and theoretical results of my research during the past four years which are mostly based on interferometric radio data. The COLA sample is an infrared selected sample of active star forming galaxies. We conducted 6 cm VLA and VLBI snapshot observations of the northern half of this sample. The radio emission seen at VLA scales is consistent with being powered by star formation activity because it follows the far infrared to radio correlation. We detect 22% of the sample sources in our VLBI snapshots. Based on luminosity arguments, we argue that these sub-parsec VLBI sources are powered by AGN activity. Furthermore, we find that VLBI detections are preferentially found in sources whose VLA scale structures have the highest peak brightnesses suggesting a strong correlation between compact starburst and AGN activity. This observational result is consistent with the theoretical picture of an Eddington-limited nuclear starburst acting as the last valve in the pipeline transporting the gas from kiloparsec scales onto the accretion disc of a buried AGN. Arp 220 is the archetypical ultra luminous infrared galaxy. For many years this source has been known to harbour a compact (~100 pc) cluster of unresolved 18 cm bright sources believed to be bright core collapse supernovae. Using multiwavelength VLBI observations, we obtained for the first time radio spectra for 18 of these sources. We find that over a half of them have spectra consistent with young supernovae. The rest can be better explained as older supernova remnants interacting with the high density starburst ISM. This finding allowed us to constrain the number of possible scenarios for the Arp 220

  18. Morphological classification of local luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Psychogyios, A.; Charmandaris, V.; Diaz-Santos, T.; Armus, L.; Haan, S.; Howell, J.; Le Floc'h, E.; Petty, S. M.; Evans, A. S.

    2016-06-01

    We present analysis of the morphological classification of 89 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS) sample, using non-parametric coefficients and compare their morphology as a function of wavelength. We rely on images that were obtained in the optical (B- and I-band) as well as in the infrared (H-band and 5.8 μm). Our classification is based on the calculation of Gini and the second order of light (M20) non-parametric coefficients, which we explore as a function of stellar mass (M⋆), infrared luminosity (LIR), and star formation rate (SFR). We investigate the relation between M20, the specific SFR (sSFR) and the dust temperature (Tdust) in our galaxy sample. We find that M20 is a better morphological tracer than Gini, as it allows us to distinguish systems that were formed by double systems from isolated and post-merger LIRGs. The effectiveness of M20 as a morphological tracer increases with increasing wavelength, from the B to H band. In fact, the multi-wavelength analysis allows us to identify a region in the Gini-M20 parameter space where ongoing mergers reside, regardless of the band used to calculate the coefficients. In particular, when measured in the H band, a region that can be used to identify ongoing mergers, with minimal contamination from LIRGs in other stages. We also find that, while the sSFR is positively correlated with M20 when measured in the mid-infrared, i.e. star-bursting galaxies show more compact emission, it is anti-correlated with the B-band-based M20. We interpret this as the spatial decoupling between obscured and unobscured star formation, whereby the ultraviolet/optical size of an LIRG experience an intense dust-enshrouded central starburst that is larger that in the mid-infrared since the contrast between the nuclear to the extended disk emission is smaller in the mid-infrared. This has important implications for high redshift surveys of dusty sources, where sizes of galaxies

  19. The Luminous Convolution Model for Galaxy Rotation Curves

    NASA Astrophysics Data System (ADS)

    Rubin, Shanon; Mucci, Maria; Sophia Cisneros Collaboration; Kennard Chng Collaboration; Meagan Crowley Collaboration

    2016-03-01

    The LCM takes as input only the observed luminous matter profile from galaxies, and allows us to confirm these observed data by considering frame-dependent effects from the luminous mass profile of the Milky Way. The LCM is useful when looking at galaxies that have similar total enclosed mass, but varying distributions. For example, variations in luminous matter profiles from a diffuse galaxy correlate to the LCM's five different Milky Way models equally well, but LCM fits for a centrally condensed galaxy distinguish between Milky Way models. In this presentation, we show how the rotation curve data of such galaxies can be used to constrain the Milky Way luminous mass modeling, by the physical characteristics of each galaxy used to interpret the fitting. Current Investigations will be presented showing how the convolved parameters of Keplerian predictions with rotation curve observations can be extracted with respect to the crossing location of the relative curvature versus the assumption of the luminous mass profiles from photometry. Since there currently exists no direct constraint to photometric estimates of the luminous mass in these systems, the LCM gives the first constraint based on the orthogonal measurement of Doppler shifted spectra from characteristic emitters.

  20. Spitzer Observations of Extraplanar PAH Emission from Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Lehner, N.; Howk, J.

    We present Spitzer/IRAC observations of polycylic aromatic hydrocarbon (PAH) emission from interstellar material in the thick disks of normal spiral galaxies. These data show PAHs to be a common constituent of extraplanar material in spirals. The processes that displace this material from the interstellar disks of these systems do not destroy these very small grains. The dust emission features are present far above the galactic planes, extended up to about 2-4 kpc above the midplanes of the galaxies presented in this work. The total extent for which dust can be traced is about half the extent of the DIG. If it is not a sensitivity effect, this suggests that PAHs may be associated with a cold neutral medium that can not be supported at high z.

  1. Ultraluminous Star-forming Galaxies and Extremely Luminous Warm Molecular Hydrogen Emission at z = 2.16 in the PKS 1138-26 Radio Galaxy Protocluster

    NASA Astrophysics Data System (ADS)

    Ogle, P.; Davies, J. E.; Appleton, P. N.; Bertincourt, B.; Seymour, N.; Helou, G.

    2012-05-01

    A deep Spitzer Infrared Spectrograph map of the PKS 1138-26 galaxy protocluster reveals ultraluminous polycyclic aromatic hydrocarbon (PAH) emission from obscured star formation in three protocluster galaxies, including Hα-emitter (HAE) 229, HAE 131, and the central Spiderweb Galaxy. Star formation rates of ~500-1100 M ⊙ yr-1 are estimated from the 7.7 μm PAH feature. At such prodigious formation rates, the galaxy stellar masses will double in 0.6-1.1 Gyr. We are viewing the peak epoch of star formation for these protocluster galaxies. However, it appears that extinction of Hα is much greater (up to a factor of 40) in the two ULIRG HAEs compared to the Spiderweb. This may be attributed to different spatial distributions of star formation-nuclear star formation in the HAEs versus extended star formation in accreting satellite galaxies in the Spiderweb. We find extremely luminous mid-IR rotational line emission from warm molecular hydrogen in the Spiderweb Galaxy, with L(H2 0-0 S(3)) = 1.4 × 1044 erg s-1 (3.7 × 1010 L ⊙), ~20 times more luminous than any previously known H2 emission galaxy (MOHEG). Depending on the temperature, this corresponds to a very large mass of >9 × 106-2 × 109 M ⊙ of T > 300 K molecular gas, which may be heated by the PKS 1138-26 radio jet, acting to quench nuclear star formation. There is >8 times more warm H2 at these temperatures in the Spiderweb than what has been seen in low-redshift (z < 0.2) radio galaxies, indicating that the Spiderweb may have a larger reservoir of molecular gas than more evolved radio galaxies. This is the highest redshift galaxy yet in which warm molecular hydrogen has been directly detected.

  2. Luminous red galaxies in the Sloan digital sky survey

    NASA Astrophysics Data System (ADS)

    Loh, Yeong-Shang

    2004-04-01

    We determine the luminosity function and evolution of 22,562 Luminous Red Galaxies (LRG) with 0.08 < z < 0.44 from the Sloan Digital Sky Survey (SDSS). The universal field galaxy luminosity function with a steep exponential bright end cut-off expected from a Schechter form is confirmed to z ˜ 0.4. We do not discern any evolution in the comoving number density of these luminous early-type galaxies, once biases due to photometric errors are taken into account. Using 2099 deg2 of SDSS imaging data, we search for bright early-type galaxies within 1 h-1 Mpc of LRG with 0.12 < z < 0.38 to study the bright end of the luminosity distribution at this scale. The brightest galaxies (nearly always an LRG) in LRG fields are too bright if other members in the same field are drawn from an exponentially decaying luminosity function. The luminosity gap between the brightest and the second brightest galaxy is large (˜0.8 mag). When the LRG fields were split into group-like and cluster- like environments, the former gives a larger gap. The gap shows little evolution with redshifts, putting stringent constraints on the scenario of the growth of Brightest Cluster (or Group) Galaxies by recent cannibalism of cluster members. We calibrate the observed color-magnitude-redshift relation for early-type galaxies. We use LRGs as spectroscopic references and measure the color of imaging galaxies that clustered around each LRG. We bin these galaxies in redshift and perform an optimal background subtraction to recover the color-magnitude relation. The observed scatter around this color-magnitude relation is also measured. We study the environments of LRG by counting the number of early-type galaxies brighter than M* within 1 h-1 Mpc of the LRG. LRGs are binned in redshift and treated as a single population to infer the evolution trend of their environments. Both the rich optical clusters and moderately X-ray bright clusters host at least one LRG. However, LRG are most common in group

  3. Temperature distribution of dust in luminous IRAS galaxies

    NASA Technical Reports Server (NTRS)

    Carico, David P.

    1989-01-01

    Work is currently in progress to obtain temperature distributions of dust in the most infrared-luminous galaxies. The results presented are of a preliminary nature, representing a zeroth-order approximation. The objects which have been analyzed so far are all galaxies from the Infrared Astronomy Satellite (IRAS) Bright Galaxy Sample with infrared luminosities L sub IR greater than or equal to 10(exp 11) solar luminosity. They are: Arp 220, Mrk 231, Mrk 273, NGC 1614, NGC 3690, NGC 6285/6, and Zw 049.057. The analysis utilized 3.7 micron data from the Palomar 5 m Hale telescope, IRAS data at 12, 25, 60, and 100 microns, and 1 mm continuum data from the CalTech Submillimeter Observatory on Mauna Kea.

  4. The Fate of Luminous Compact Blue Galaxies: An Environmental Approach

    NASA Astrophysics Data System (ADS)

    Crawford, Steven

    2003-07-01

    Luminous Compact Blue Galaxies {LCBGs} are the most rapidly evolving galaxy population between 0.4 < z < 1.0. Despite their small sizes of 2-3 kpc, LCBGs are powerful engines of star formation that dominate the global SFR over that redshift regime. They appear to be a link between local, low-mass HII galaxies and high-z, high-luminosity Lyman Break galaxies. As such, LCBGs may provide an important test of hierarchical structure-formation scenarios. Currently, a debate rages over what LCBGs are: Are we seeing proto-spheroidals or the formation of spiral bulges? We propose to identify a sample of LCBGs in 10 intermediate-z clusters areas from Archive WFPC2 images through photometric structural measurements {e.g., surface brightness, size, and concentration}. These galaxies cannot be resolved in ground-based images. We then will measure the relative number densities and photometric properties of LCBGs in clusters and the field. By combining this comparison with what we know about the morphology-density relationship today, we will gain new insight on the ultimate fate of LCBGs and the differences between galaxy evolution in field and cluster environments. The WFPC2 data, combined with our deep multi-color, ground-based imaging from the WIYN 3.5m telescope will provide the largest data set of intermediate-z LCBGs to date.

  5. THE Mg II CROSS-SECTION OF LUMINOUS RED GALAXIES

    SciTech Connect

    Bowen, David V.; Chelouche, Doron

    2011-01-20

    We describe a search for Mg II {lambda}{lambda}2796, 2803 absorption lines in Sloan Digital Sky Survey (SDSS) spectra of QSOs whose lines of sight pass within impact parameters {rho} {approx} 200 kpc of galaxies with photometric redshifts of z = 0.46-0.6 and errors {Delta}z {approx} 0.05. The galaxies selected have the same colors and luminosities as the Luminous Red Galaxy (LRG) population previously selected from the SDSS. A search for Mg II lines within a redshift interval of {+-}0.1 of a galaxy's photometric redshift shows that absorption by these galaxies is rare: the covering fraction is f({rho}) {approx_equal} 10%-15% between {rho} = 20 kpcand{rho} = 100 kpc, for Mg II lines with rest equivalent widths of W{sub r} {>=} 0.6 A, falling to zero at larger {rho}. There is no evidence that W{sub r} correlates with impact parameter or galaxy luminosity. Our results are consistent with existing scenarios in which cool Mg II-absorbing clouds may be absent near LRGs because of the environment of the galaxies: if LRGs reside in high-mass groups and clusters, either their halos are too hot to retain or accrete cool gas, or the galaxies themselves-which have passively evolving old stellar populations-do not produce the rates of star formation and outflows of gas necessary to fill their halos with Mg II-absorbing clouds. In the rarer cases where Mg II is detected, however, the origin of the absorption is less clear. Absorption may arise from the little cool gas able to reach into cluster halos from the intergalactic medium, or from the few star-forming and/or AGN-like LRGs that are known to exist.

  6. Cosmological information in the intrinsic alignments of luminous red galaxies

    SciTech Connect

    Chisari, Nora Elisa; Dvorkin, Cora E-mail: cdvorkin@ias.edu

    2013-12-01

    The intrinsic alignments of galaxies are usually regarded as a contaminant to weak gravitational lensing observables. The alignment of Luminous Red Galaxies, detected unambiguously in observations from the Sloan Digital Sky Survey, can be reproduced by the linear tidal alignment model of Catelan, Kamionkowski and Blandford (2001) on large scales. In this work, we explore the cosmological information encoded in the intrinsic alignments of red galaxies. We make forecasts for the ability of current and future spectroscopic surveys to constrain local primordial non-Gaussianity and Baryon Acoustic Oscillations (BAO) in the cross-correlation function of intrinsic alignments and the galaxy density field. For the Baryon Oscillation Spectroscopic Survey, we find that the BAO signal in the intrinsic alignments is marginally significant with a signal-to-noise ratio of 1.8 and 2.2 with the current LOWZ and CMASS samples of galaxies, respectively, and increasing to 2.3 and 2.7 once the survey is completed. For the Dark Energy Spectroscopic Instrument and for a spectroscopic survey following the EUCLID redshift selection function, we find signal-to-noise ratios of 12 and 15, respectively. Local type primordial non-Gaussianity, parametrized by f{sub NL} = 10, is only marginally significant in the intrinsic alignments signal with signal-to-noise ratios < 2 for the three surveys considered.

  7. Cosmological information in the intrinsic alignments of luminous red galaxies

    NASA Astrophysics Data System (ADS)

    Chisari, Nora Elisa; Dvorkin, Cora

    2013-12-01

    The intrinsic alignments of galaxies are usually regarded as a contaminant to weak gravitational lensing observables. The alignment of Luminous Red Galaxies, detected unambiguously in observations from the Sloan Digital Sky Survey, can be reproduced by the linear tidal alignment model of Catelan, Kamionkowski & Blandford (2001) on large scales. In this work, we explore the cosmological information encoded in the intrinsic alignments of red galaxies. We make forecasts for the ability of current and future spectroscopic surveys to constrain local primordial non-Gaussianity and Baryon Acoustic Oscillations (BAO) in the cross-correlation function of intrinsic alignments and the galaxy density field. For the Baryon Oscillation Spectroscopic Survey, we find that the BAO signal in the intrinsic alignments is marginally significant with a signal-to-noise ratio of 1.8 and 2.2 with the current LOWZ and CMASS samples of galaxies, respectively, and increasing to 2.3 and 2.7 once the survey is completed. For the Dark Energy Spectroscopic Instrument and for a spectroscopic survey following the EUCLID redshift selection function, we find signal-to-noise ratios of 12 and 15, respectively. Local type primordial non-Gaussianity, parametrized by fNL = 10, is only marginally significant in the intrinsic alignments signal with signal-to-noise ratios < 2 for the three surveys considered.

  8. Mid-infrared Properties of Luminous Infrared Galaxies. II. Probing the Dust and Gas Physics of the GOALS Sample

    NASA Astrophysics Data System (ADS)

    Stierwalt, S.; Armus, L.; Charmandaris, V.; Diaz-Santos, T.; Marshall, J.; Evans, A. S.; Haan, S.; Howell, J.; Iwasawa, K.; Kim, D. C.; Murphy, E. J.; Rich, J. A.; Spoon, H. W. W.; Inami, H.; Petric, A. O.; U, V.

    2014-08-01

    The Great Observatories All-sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here, we present the results of a multi-component, spectral decomposition analysis of the low-resolution mid-infrared (MIR) Spitzer Infrared Spectrograph spectra from 5-38 μm of 244 LIRG nuclei. The detailed fits and high-quality spectra allow for characterization of the individual polycyclic aromatic hydrocarbon (PAH) features, warm molecular hydrogen emission, and optical depths for both silicate dust grains and water ices. We find that starbursting LIRGs, which make up the majority of the GOALS sample, are very consistent in their MIR properties (i.e., τ9.7 μm, τice, neon line ratios, and PAH feature ratios). However, as their EQW6.2 μm decreases, usually an indicator of an increasingly dominant active galactic nucleus (AGN), LIRGs cover a larger spread in these MIR parameters. The contribution from PAH emission to the total IR luminosity (L(PAH)/L(IR)) in LIRGs varies from 2%-29% and LIRGs prior to their first encounter show significantly higher L(PAH)/L(IR) ratios on average. We observe a correlation between the strength of the starburst (represented by IR8 = L IR/L 8 μm) and the PAH fraction at 8 μm but no obvious link between IR8 and the 7.7 to 11.3 PAH ratio, suggesting that the fractional photodissociation region (PDR) emission, and not the overall grain properties, is associated with the rise in IR8 for galaxies off the starburst main sequence. We detect crystalline silicate features in ~6% of the sample but only in the most obscure sources (s 9.7 μm < -1.24). Ice absorption features are observed in ~11% (56%) of GOALS LIRGs (ULIRGs) in sources with a range of silicate depths. Most GOALS LIRGs have L(H2)/L(PAH) ratios elevated above those observed for normal star-forming galaxies and exhibit a trend for increasing L(H2)/L(PAH) ratio with increasing L(H2). While star formation appears to be the

  9. Mid-infrared properties of luminous infrared galaxies. II. Probing the dust and gas physics of the goals sample

    SciTech Connect

    Stierwalt, S.; Armus, L.; Diaz-Santos, T.; Marshall, J.; Haan, S.; Howell, J.; Murphy, E. J.; Inami, H.; Petric, A. O.; Charmandaris, V.; Evans, A. S.; Iwasawa, K.; Kim, D. C.; Rich, J. A.; Spoon, H. W. W.; U, V.

    2014-08-01

    The Great Observatories All-sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here, we present the results of a multi-component, spectral decomposition analysis of the low-resolution mid-infrared (MIR) Spitzer Infrared Spectrograph spectra from 5-38 μm of 244 LIRG nuclei. The detailed fits and high-quality spectra allow for characterization of the individual polycyclic aromatic hydrocarbon (PAH) features, warm molecular hydrogen emission, and optical depths for both silicate dust grains and water ices. We find that starbursting LIRGs, which make up the majority of the GOALS sample, are very consistent in their MIR properties (i.e., τ{sub 9.7μm}, τ{sub ice}, neon line ratios, and PAH feature ratios). However, as their EQW{sub 6.2{sub μm}} decreases, usually an indicator of an increasingly dominant active galactic nucleus (AGN), LIRGs cover a larger spread in these MIR parameters. The contribution from PAH emission to the total IR luminosity (L(PAH)/L(IR)) in LIRGs varies from 2%-29% and LIRGs prior to their first encounter show significantly higher L(PAH)/L(IR) ratios on average. We observe a correlation between the strength of the starburst (represented by IR8 = L{sub IR}/L{sub 8{sub μm}}) and the PAH fraction at 8 μm but no obvious link between IR8 and the 7.7 to 11.3 PAH ratio, suggesting that the fractional photodissociation region (PDR) emission, and not the overall grain properties, is associated with the rise in IR8 for galaxies off the starburst main sequence. We detect crystalline silicate features in ∼6% of the sample but only in the most obscure sources (s{sub 9.7{sub μm}} < –1.24). Ice absorption features are observed in ∼11% (56%) of GOALS LIRGs (ULIRGs) in sources with a range of silicate depths. Most GOALS LIRGs have L(H{sub 2})/L(PAH) ratios elevated above those observed for normal star-forming galaxies and exhibit a trend for increasing L(H{sub 2})/L(PAH

  10. X-raying the Winds of Luminous Active Galaxies

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Chartas, G.; Gallagher, S. C.; Gibson, R. R.; Miller, B. P.

    2009-12-01

    We briefly describe some recent observational results, mainly at X-ray wavelengths, on the winds of luminous active galactic nuclei (AGNs). These winds likely play a significant role in galaxy feedback. Topics covered include (1) Relations between X-ray and UV absorption in Broad Absorption Line (BAL) and mini-BAL quasars; (2) X-ray absorption in radio-loud BAL quasars; and (3) Evidence for relativistic iron K BALs in the X-ray spectra of a few bright quasars. We also mention some key outstanding problems and prospects for future advances; e.g., with the International X-ray Observatory (IXO).

  11. Observing the First Stars in Luminous, Red Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sally; Lindler, Don

    2010-01-01

    Modern cosmological simulations predict that the first stars are to be found today in luminous, red galaxies. Although observing such stars individually against a background of younger, metal-rich stars is impossible, the first stars should make their presence known by their strong, line-free ultraviolet flux. We have found evidence for a UV-bright stellar population in Sloan spectra of LRG's at z=0.4-0.5. We present arguments for interpreting this UV-bright stellar population as the oldest stars, rather than other types of stellar populations (e.g. young stars or blue straggler stars in the dominant, metal-rich stellar population

  12. Luminous Red Galaxies at Z=0.4-0.5

    NASA Technical Reports Server (NTRS)

    Heap, Sally; Lindler, Don

    2009-01-01

    We report on a study of approx.20,000 luminous red galaxies (LRG's) at z=0.4-0.5 observed by the Sloan Digital Sky Survey. In order to differentiate among them, we measured restframe magnitudes, u (3000-3500 A), b (4200-4800 A), and y (5700-6300 A) from the spectra themselves. The galaxies show a significant range in restframe colors and absolute magnitudes. We binned the spectra according to the restframe u-b color and y-band absolute magnitude in order to increase the S/N. We used 3 approaches to estimate the ages and metal content of these binned spectra: via their spectral energy distributions, from spectral-line indices, and by full spectral fitting. The three methods usually produce discordant results

  13. AKARI IRC INFRARED 2.5-5 {mu}m SPECTROSCOPY OF A LARGE SAMPLE OF LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Imanishi, Masatoshi; Nakagawa, Takao; Shirahata, Mai; Ohyama, Yoichi; Onaka, Takashi

    2010-10-01

    We present the results of our systematic infrared 2.5-5 {mu}m spectroscopy of 60 luminous infrared galaxies (LIRGs) with infrared luminosities L{sub IR} = 10{sup 11}-10{sup 12} L{sub sun} and 54 ultraluminous infrared galaxies (ULIRGs) with L{sub IR} {>=} 10{sup 12} L{sub sun}, using the AKARI Infrared Camera (IRC). AKARI IRC slit-less spectroscopy allows us to probe the full range of emission from these galaxies, including spatially extended components. The 3.3 {mu}m polycyclic aromatic hydrocarbon (PAH) emission features, hydrogen recombination emission lines, and various absorption features are detected and used to investigate the properties of these galaxies. Because of the relatively small effect of dust extinction in the infrared range, quantitative discussion of these dusty galaxy populations is possible. For sources with clearly detectable Br{beta} (2.63 {mu}m) and Br{alpha} (4.05 {mu}m) emission lines, the flux ratios are found to be similar to those predicted by case B theory. Starburst luminosities are estimated from both 3.3 {mu}m PAH and Br{alpha} emission, which roughly agree with each other. In addition to the detected starburst activity, a significant fraction of the observed sources display signatures of obscured active galactic nuclei (AGNs), such as low PAH equivalent widths, large optical depths of dust absorption features, and red continuum emission. The energetic importance of optically elusive buried AGNs in optically non-Seyfert galaxies tends to increase with increasing galaxy infrared luminosity, from LIRGs to ULIRGs.

  14. X-Ray Emission from Ultraviolet Luminous Galaxies and Lyman Break Galaxies

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann; Ptak, A. F.; Salim, S.; Heckman, T. P.; Overzier, R.; Mallery, R.; Rich, M.; Strickland, D.; Grimes, J.

    2009-01-01

    We present results from an XMM mini-survey of GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs) that appear to include an interesting subset that are analogs to the distant (3Galaxies (LBGs). The 2-10 kev X-ray emission of LBGs appear to be broadly similar to that of galaxies in the local Universe, possibly indicating similarity in the production of accreting binaries over large evolutionary timescales in the Universe. We have detected luminous X-ray emission from one UVLG that permits basic X-ray spectroscopic analysis, and have direct X-ray constraints on a total of 6 UVLGs. We find evidence for likely large scatter in the assumed X-ray/star-formation rate relation for LBGs.

  15. Optical Spectroscopy of Luminous Infrared Galaxies. I. Nuclear Data

    NASA Astrophysics Data System (ADS)

    Kim, D.-C.; Sanders, D. B.; Veilleux, S.; Mazzarella, J. M.; Soifer, B. T.

    1995-05-01

    A spectroscopic survey of a large sample of luminous infrared galaxies [log (L_ir_/L_sun_)^7^ ~ 10.5-12.5; H_0_ = 75 km s^-1^ Mpc^-1^] has been carried out using the Palomar 5 m telescope,, and the University of Hawaii 2.2 m telescope. Long-slit spectra covering 375o-8000 A at a resolution of ~10 A were obtained of 200 IRAS galaxies, including 114 objects from the IRAS Bright Galaxy Survey, and 86 objects with fainter infrared fluxes selected on the basis of their "warm" far-infrared (S_60_/S_100_) colors. The methods of observation and data reduction are discussed. An atlas of the spectra extracted from the nuclear region of these objects is presented along with a large number of parameters describing the properties of the emission lines, the stellar absorption lines, and the continuum emission that were measured from the spectra. An analysis of these data is presented in a companion paper (Veilleux et al. 1995) along with a discussion of the spatial variations of these parameters in a subsample of twenty-three objects.

  16. ULTRALUMINOUS STAR-FORMING GALAXIES AND EXTREMELY LUMINOUS WARM MOLECULAR HYDROGEN EMISSION AT z = 2.16 IN THE PKS 1138-26 RADIO GALAXY PROTOCLUSTER

    SciTech Connect

    Ogle, P.; Davies, J. E.; Helou, G.; Appleton, P. N.; Bertincourt, B.; Seymour, N.

    2012-05-20

    A deep Spitzer Infrared Spectrograph map of the PKS 1138-26 galaxy protocluster reveals ultraluminous polycyclic aromatic hydrocarbon (PAH) emission from obscured star formation in three protocluster galaxies, including H{alpha}-emitter (HAE) 229, HAE 131, and the central Spiderweb Galaxy. Star formation rates of {approx}500-1100 M{sub Sun} yr{sup -1} are estimated from the 7.7 {mu}m PAH feature. At such prodigious formation rates, the galaxy stellar masses will double in 0.6-1.1 Gyr. We are viewing the peak epoch of star formation for these protocluster galaxies. However, it appears that extinction of H{alpha} is much greater (up to a factor of 40) in the two ULIRG HAEs compared to the Spiderweb. This may be attributed to different spatial distributions of star formation-nuclear star formation in the HAEs versus extended star formation in accreting satellite galaxies in the Spiderweb. We find extremely luminous mid-IR rotational line emission from warm molecular hydrogen in the Spiderweb Galaxy, with L(H{sub 2} 0-0 S(3)) = 1.4 Multiplication-Sign 10{sup 44} erg s{sup -1} (3.7 Multiplication-Sign 10{sup 10} L{sub Sun }), {approx}20 times more luminous than any previously known H{sub 2} emission galaxy (MOHEG). Depending on the temperature, this corresponds to a very large mass of >9 Multiplication-Sign 10{sup 6}-2 Multiplication-Sign 10{sup 9} M{sub Sun} of T > 300 K molecular gas, which may be heated by the PKS 1138-26 radio jet, acting to quench nuclear star formation. There is >8 times more warm H{sub 2} at these temperatures in the Spiderweb than what has been seen in low-redshift (z < 0.2) radio galaxies, indicating that the Spiderweb may have a larger reservoir of molecular gas than more evolved radio galaxies. This is the highest redshift galaxy yet in which warm molecular hydrogen has been directly detected.

  17. Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang, Yiping; Hernán-Caballero, Antonio; Rigopoulou, Dimitra

    2013-03-01

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 × 107 M ⊙ using [Ne III] 15.56 μm and optical [O III] λ5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear ~1.5 kpc region, as estimated from the nuclear 11.3 μm PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  18. LOCAL LUMINOUS INFRARED GALAXIES. III. CO-EVOLUTION OF BLACK HOLE GROWTH AND STAR FORMATION ACTIVITY?

    SciTech Connect

    Alonso-Herrero, Almudena; Hernan-Caballero, Antonio; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang Yiping; Rigopoulou, Dimitra

    2013-03-10

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 Multiplication-Sign 10{sup 7} M{sub Sun} using [Ne III] 15.56 {mu}m and optical [O III] {lambda}5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear {approx}1.5 kpc region, as estimated from the nuclear 11.3 {mu}m PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.

  19. XMM-Newton observations of three interacting luminous infrared galaxies

    SciTech Connect

    Mudd, Dale; Mathur, Smita; Guainazzi, Matteo; Piconcelli, Enrico; Nicastro, Fabrizio; Bianchi, Stefano; Komossa, S.; Vignali, Cristian; Lanzuisi, Giorgio; Fiore, Fabrizio; Maiolino, Roberto

    2014-05-20

    We investigate the X-ray properties of three interacting luminous infrared galaxy systems. In one of these systems, IRAS 18329+5950, we resolve two separate sources. A second and third source, IRAS 19354+4559 and IRAS 20550+1656, have only a single X-ray source detected. We compare the observed emission to point-spread function (PSF) profiles and determine that they are all consistent with the PSF, albeit with large uncertainties for some of our sources. We then model the spectra to determine soft (0.5-2 keV) and hard (2-10 keV) luminosities for the resolved sources and compare these to relationships found in the literature between infrared and X-ray luminosities for starburst galaxies. We obtain luminosities (0.5-10 keV) ranging from 1.7 to 7.3 × 10{sup 41} erg s{sup –1} for our systems. These X-ray luminosities are consistent with predictions for star-formation-dominated sources and thus are most likely due to starbursts, but we cannot conclusively rule out active galactic nuclei.

  20. MODELING THE VERY SMALL SCALE CLUSTERING OF LUMINOUS RED GALAXIES

    SciTech Connect

    Watson, Douglas F.; Berlind, Andreas A.; McBride, Cameron K.; Masjedi, Morad

    2010-01-20

    We model the small-scale clustering of luminous red galaxies (LRGs) in the Sloan Digital Sky Survey. Specifically, we use the halo occupation distribution formalism to model the projected two-point correlation function of LRGs on scales well within the sizes of their host halos (0.016 h {sup -1} Mpc <= r <= 0.42 h {sup -1} Mpc). We start by varying P(N|M), the probability distribution that a dark matter halo of mass M contains N LRGs, and assuming that the radial distribution of satellite LRGs within halos traces the Navarro-Frenk-White (NFW) dark matter density profile. We find that varying P(N|M) alone is not sufficient to match the small-scale data. We next allow the concentration of satellite LRG galaxies to differ from that of dark matter and find that this is also not sufficient. Finally, we relax the assumption of an NFW profile and allow the inner slope of the density profile to vary. We find that this model provides a good fit to the data and the resulting value of the slope is -2.17 +- 0.12. The radial density profile of satellite LRGs within halos is thus not compatible with that of the underlying dark matter, but rather is closer to an isothermal distribution.

  1. Resolved Molecular Gas Properties in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Sliwa, Kazimierz; Wilson, Christine

    2015-08-01

    Luminous infrared galaxies (LIRGs) in the local universe are mergers of gas-rich galaxies. The merger event funnels the molecular gas towards the central kiloparsec, compressing the gas, and triggering an extreme starburst, making LIRGs the perfect laboratory for studying extreme modes of star formation. We use the Submillimeter Array sample and observations of Wilson et al. (2008), supplemented with new CARMA and ALMA observations, to constrain the physical conditions such as temperature, density and column density of the molecular gas in the sample of 7 LIRGs. We use the radiative transfer code RADEX (van der Tak et al. 2007) and a Bayesian likelihood code to fit the most probable physical conditions. Comparison of the molecular gas physical conditions shows that earlier merger stage LIRGs such as Arp 299 and NGC 1614 have denser (> 103cm-1) molecular gas than a later stage merger such as VV 114 and NGC 2623. We measure the CO luminosity to H2 mass conversion factor, αCO, using the radiative transfer analysis results and find that the values are a factor of 4-10 times lower than the Galactic value of 4.3 M⊙ (K km s-1 pc2)-1. We also find unusually large 12CO-to-13CO abundance ratios (> 130), more than 2 times the local Galactic value.

  2. AKARI NEAR-INFRARED SPECTROSCOPY OF LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Lee, Jong Chul; Lee, Myung Gyoon; Hwang, Ho Seong

    2012-09-01

    We present the AKARI near-infrared (NIR; 2.5-5 {mu}m) spectroscopic study of 36 (ultra)luminous infrared galaxies ((U)LIRGs) at z = 0.01-0.4. We measure the NIR spectral features including the strengths of 3.3 {mu}m polycyclic aromatic hydrocarbon emission and hydrogen recombination lines (Br{alpha} and Br{beta}), optical depths at 3.1 and 3.4 {mu}m, and NIR continuum slope. These spectral features are used to identify optically elusive, buried active galactic nuclei (AGNs). We find that half of the (U)LIRGs optically classified as non-Seyferts show AGN signatures in their NIR spectra. Using a combined sample of (U)LIRGs with NIR spectra in the literature, we measure the contribution of buried AGNs to the infrared luminosity from the spectral energy distribution fitting to the IRAS photometry. The contribution of these buried AGNs to the infrared luminosity is 5%-10%, smaller than the typical AGN contribution of (U)LIRGs including Seyfert galaxies (10%-40%). We show that NIR continuum slopes correlate well with WISE [3.4]-[4.6] colors, which would be useful for identifying a large number of buried AGNs using the WISE data.

  3. VIBRATIONALLY EXCITED HCN IN THE LUMINOUS INFRARED GALAXY NGC 4418

    SciTech Connect

    Sakamoto, Kazushi; Aalto, Susanne; Evans, Aaron S.; Wiedner, Martina C.; Wilner, David J.

    2010-12-20

    Infrared pumping and its effect on the excitation of HCN molecules can be important when using rotational lines of HCN to probe dense molecular gas in galaxy nuclei. We report the first extragalactic detection of (sub)millimeter rotational lines of vibrationally excited HCN, in the dust-enshrouded nucleus of the luminous infrared galaxy NGC 4418. We estimate the excitation temperature of T{sub vib} {approx} 230 K between the vibrational ground and excited (v{sub 2} = 1) states. This excitation is most likely due to infrared radiation. At this high vibrational temperature the path through the v{sub 2} = 1 state must have a strong impact on the rotational excitation in the vibrational ground level, although it may not be dominant for all rotational levels. Our observations also revealed nearly confusion-limited lines of CO, HCN, HCO{sup +}, H{sup 13}CN, HC{sup 15}N, CS, N{sub 2}H{sup +}, and HC{sub 3}N at {lambda} {approx} 1 mm. Their relative intensities may also be affected by the infrared pumping.

  4. ULTRA-DEEP MID-INFRARED SPECTROSCOPY OF LUMINOUS INFRARED GALAXIES AT z{approx} 1 AND z {approx} 2

    SciTech Connect

    Fadda, Dario; Yan Lin; Frayer, David T.; Helou, George; Lagache, Guilaine; Marcillac, Delphine; Sajina, Anna; Lutz, Dieter; Wuyts, Stijn; Le Floc'h, Emeric; Caputi, Karina; Spoon, Henrik W. W.; Veilleux, Sylvain; Blain, Andrew E-mail: lyan@ipac.caltech.ed

    2010-08-10

    We present ultra-deep mid-infrared spectra of 48 infrared-luminous galaxies in the GOODS-south field obtained with the Infrared Spectrograph on the Spitzer Space Telescope. These galaxies are selected among faint infrared sources (0.14-0.5 mJy at 24 {mu}m) in two redshift bins (0.76-1.05 and 1.75-2.4) to sample the major contributors to the cosmic infrared background at the most active epochs. We estimate redshifts for 92% of the sample using polycyclic aromatic (PAH) and Si absorption features obtaining, in particular, eight new redshifts difficult to measure from ground-based observations. Only a few of these galaxies (5% at z {approx} 1 and 12% at z {approx} 2) have their total infrared luminosity dominated by emission from active galactic nuclei (AGNs). The averaged mid-IR spectrum of the z {approx} 1 luminous infrared galaxies (LIRGs) is a very good match to the averaged spectrum of local starbursts. The averaged spectrum of the z {approx} 2 ultra-luminous infrared galaxies (ULIRGs), because of a deeper Si absorption, is better fitted by the averaged spectrum of H II-like local ULIRGs. Combining this sample with other published data, we find that 6.2 {mu}m PAH equivalent widths (EW) reach a plateau of {approx} 1 {mu}m for L {sub 24{mu}m} {approx}< 10{sup 11} L{sub sun}. At higher luminosities, EW{sub 6.2{mu}m} anti-correlates with L{sub 24{mu}m}. Intriguingly, high-z ULIRGs and sub-millimeter galaxies (SMGs) lie above the local EW{sub 6.2{mu}m}-L{sub 24{mu}m} relationship suggesting that, at a given luminosity, high-z ULIRGs have AGN contributions to their dust emission lower than those of local counterparts. A quantitative analysis of their morphology shows that most of the luminous IR galaxies have morphologies similar to those of IR-quiet galaxies at the same redshift. All z {approx} 2 ULIRGs of our sample are IR-excess BzK galaxies and most of them have L{sub FIR}/L{sub 1600A} ratios higher than those of starburst galaxies at a given UV slope. The 'IR

  5. Ultra-deep Mid-infrared Spectroscopy of Luminous Infrared Galaxies at z ~ 1 and z ~ 2

    NASA Astrophysics Data System (ADS)

    Fadda, Dario; Yan, Lin; Lagache, Guilaine; Sajina, Anna; Lutz, Dieter; Wuyts, Stijn; Frayer, David T.; Marcillac, Delphine; Le Floc'h, Emeric; Caputi, Karina; Spoon, Henrik W. W.; Veilleux, Sylvain; Blain, Andrew; Helou, George

    2010-08-01

    We present ultra-deep mid-infrared spectra of 48 infrared-luminous galaxies in the GOODS-south field obtained with the Infrared Spectrograph on the Spitzer Space Telescope. These galaxies are selected among faint infrared sources (0.14-0.5 mJy at 24 μm) in two redshift bins (0.76-1.05 and 1.75-2.4) to sample the major contributors to the cosmic infrared background at the most active epochs. We estimate redshifts for 92% of the sample using polycyclic aromatic (PAH) and Si absorption features obtaining, in particular, eight new redshifts difficult to measure from ground-based observations. Only a few of these galaxies (5% at z ~ 1 and 12% at z ~ 2) have their total infrared luminosity dominated by emission from active galactic nuclei (AGNs). The averaged mid-IR spectrum of the z ~ 1 luminous infrared galaxies (LIRGs) is a very good match to the averaged spectrum of local starbursts. The averaged spectrum of the z ~ 2 ultra-luminous infrared galaxies (ULIRGs), because of a deeper Si absorption, is better fitted by the averaged spectrum of H II-like local ULIRGs. Combining this sample with other published data, we find that 6.2 μm PAH equivalent widths (EW) reach a plateau of ~ 1 μm for L 24 μm <~ 1011 L sun. At higher luminosities, EW6.2 μm anti-correlates with L 24 μm. Intriguingly, high-z ULIRGs and sub-millimeter galaxies (SMGs) lie above the local EW6.2 μm-L 24 μm relationship suggesting that, at a given luminosity, high-z ULIRGs have AGN contributions to their dust emission lower than those of local counterparts. A quantitative analysis of their morphology shows that most of the luminous IR galaxies have morphologies similar to those of IR-quiet galaxies at the same redshift. All z ~ 2 ULIRGs of our sample are IR-excess BzK galaxies and most of them have L FIR/L 1600 Å ratios higher than those of starburst galaxies at a given UV slope. The "IR excess" is mostly due to strong 7.7 μm PAH emission and underestimation of UV dust extinction. On the basis of

  6. BARYONS MATTER: WHY LUMINOUS SATELLITE GALAXIES HAVE REDUCED CENTRAL MASSES

    SciTech Connect

    Zolotov, Adi; Dekel, Avishai; Brooks, Alyson M.; Willman, Beth; Governato, Fabio; Quinn, Tom; Pontzen, Andrew; Christensen, Charlotte; Wadsley, James

    2012-12-10

    Using high-resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < M{sub V} < -8) satellite galaxies. These simulations resolve high-density regions, comparable to giant molecular clouds, where stars form. This resolution allows us to adopt a prescription for H{sub 2} formation and destruction that ties star formation to the presence of shielded, molecular gas. Before infall, supernova feedback from the clumpy, bursty star formation captured by this physically motivated model leads to reduced dark matter (DM) densities and shallower inner density profiles in the massive satellite progenitors (M{sub vir} {>=} 10{sup 9} M{sub Sun }, M{sub *} {>=} 10{sup 7} M{sub Sun }) compared with DM-only simulations. The progenitors of the lower mass satellites are unable to maintain bursty star formation histories, due to both heating at reionization and gas loss from initial star-forming events, preserving the steep inner density profile predicted by DM-only simulations. After infall, gas stripping from satellites reduces the total central masses of satellites simulated with DM+baryons relative to DM-only satellites. Additionally, enhanced tidal stripping after infall due to the baryonic disk acts to further reduce the central DM densities of the luminous satellites. Satellites that enter with cored DM halos are particularly vulnerable to the tidal effects of the disk, exacerbating the discrepancy in the central masses predicted by baryon+DM and DM-only simulations. We show that DM-only simulations, which neglect the highly non-adiabatic evolution of baryons described in this work, produce denser satellites with larger central velocities. We provide a simple correction to the central DM mass predicted for satellites by DM-only simulations. We conclude that DM-only simulations should be used with great caution when interpreting kinematic observations

  7. Detection of stacked filament lensing between SDSS luminous red galaxies

    NASA Astrophysics Data System (ADS)

    Clampitt, Joseph; Miyatake, Hironao; Jain, Bhuvnesh; Takada, Masahiro

    2016-04-01

    We search for the lensing signal of massive filaments between 135 000 pairs of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey. We develop a new estimator that cleanly removes the much larger shear signal of the neighbouring LRG haloes, relying only on the assumption of spherical symmetry. We consider two models: a `thick'-filament model constructed from ray-tracing simulations for Λ cold dark matter model, and a `thin'-filament model which models the filament by a string of haloes along the line connecting the two LRGs. We show that the filament lensing signal is in nice agreement with the thick simulation filament, while strongly disfavouring the thin model. The magnitude of the lensing shear due to the filament is below 10-4. Employing the likelihood ratio test, we find a 4.5σ significance for the detection of the filament lensing signal, corresponding to a null hypothesis fluctuation probability of 3 × 10-6. We also carried out several null tests to verify that the residual shear signal from neighbouring LRGs and other shear systematics are minimized.

  8. Stellar Evolutionary Effects on the Abundance of PAHS and SN-Condensed Dust in Galaxies

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2007-01-01

    Spectral aid photometric observations of nearby galaxies show a correlation between the strength of their mid-IR aromatic features and their metal abundance, and a deficiency of these features in low-metallicity galaxies. The aromatic features are most commonly attributed to emission from PAH molecules. In this paper, we suggest that the observed correlation represents a trend of PAH abundance with galactic age, reflecting the delayed injection of PAHs and carbon dust into the ISM, by AGB stars in their final, post-AGB phase of their evolution. These AGB stars are the primary sources of PAHs and carbon dust in galaxies, and recycle their ejecta back to the interstellar medium only after a few hundred million years of evolution on the main sequence. In contrast, more massive stars that explode as Type II supernovae inject their metals and dust almost instantaneously after their formation. After determining the PAH abundances in 35 nearby galaxies, we use a chemical evolution model to show that the delayed injection of carbon dust by AGB stars provides a natural explanation to the dependence of the PAH content, in galaxies with metallicity. We also show that larger dust particles giving rise to the far-IR emission follow a distinct evolutionary trend closely related to the injection of dust by massive stars into the ISM.

  9. Host galaxies of luminous type II AGN: Winds, shocks, and comparisons to The SAMI Galaxy Survey

    NASA Astrophysics Data System (ADS)

    McElroy, Rebecca; Croom, Scott; Pracy, Michael; SAMI Galaxy Survey Team

    2016-01-01

    We present IFS observations of luminous (log(L[O III]/L⊙) > 8.7) local (z < 0.11) type II AGN, and demonstrate that winds are ubiquitous within this sample and have a direct influence on the ISM of the host galaxies. We use both non-parametric (e.g. line width and asymmetry) and multi-Gaussian fitting to decompose the complex emission profiles close to the AGN. We find line widths containing 80% flux in the range 400 - 1600 km/s with a mean of 790 ± 90 km/s, such high velocities are strongly suggestive that these AGN are driving ionized outflows. Additionally, multi-Gaussian fitting reveals that 14/17 of our targets require 3 separate kinematic components in the ionized gas in their central regions. The broadest components of these fits have FWHM = 530 - 2520 km/s, with a mean value of 920 ± 50 km/s. By simultaneously fitting both the Hβ/[O III] and Hα/[N II] complexes we construct ionization diagnostic diagrams for each component. 13/17 of our galaxies show a significant (> 95 %) correlation between the [N II]/Hα ratio and the velocity dispersion of the gas. Such a correlation is the natural consequence of a contribution to the ionization from shock excitation and we argue that this demonstrates that the outflows from these AGN are directly impacting the surrounding ISM within the galaxies. In addition, we use stellar absorption features to measure kinematics for these AGN host galaxies and those of a control sample selected from the SAMI Galaxy Survey to search for evidence of these luminous AGN being preferentially hosted by disturbed or merging systems.

  10. On the Cusp around Central Black Holes in Luminous Elliptical Galaxies.

    PubMed

    Nakano; Makino

    1999-11-10

    In this Letter, we show that a massive black hole (MBH) that falls into the center of a galaxy on the dynamical timescale leaves a weak cusp (rho~r-1&solm0;2) around it, which is in good agreement with the recent observations of luminous elliptical galaxies by the Hubble Space Telescope. Such an event is a natural outcome of the merging of two galaxies that have central MBHs. This is the only known mechanism for forming weak cusps in luminous elliptical galaxies. Therefore, the existence of the weak cusps indicates that the central black holes of luminous elliptical galaxies have fallen to the center from outside, most likely during a major merger event. PMID:10525458

  11. The Luminosity-Metallicity relation of distant luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Liang, Y. C.; Hammer, F.; Flores, H.; Elbaz, D.; Marcillac, D.; Cesarsky, C. J.

    2004-09-01

    One hundred and five 15 \\mum-selected objects in three ISO (Infrared Space Observatory) deep survey fields (CFRS 3h, UDSR and UDSF) are studied on the basis of their high-quality optical spectra with resolution R>1000 from VLT/FORS2. ˜92 objects (88%) have secure redshifts, ranging from 0 to 1.16 with a median value of z_med=0.587. Considerable care is taken in estimating the extinction properties of individual galaxy, which can seriously affect diagnostic diagrams and estimates of star formation rates (SFRs) and of metal abundances. Two independent estimates of the extinction have been made, e.g. Balmer line ratio and energy balance between infrared (IR) and H\\beta luminosities. For most of the sources, we find a good agreement between the two extinction coefficients (within ±0.64 rms in AV, the extinction in V band), with median values of A_V(IR) = 2.36 and A_V(Balmer)= 1.82 for z>0.4 luminous IR galaxies (LIRGs). At z >0.4, our sample show many properties (IR luminosity, continuum color, ionization and extinction) strikingly in common with those of local (IRAS) LIRGs studied by Veilleux et al. (\\cite{Veilleux1995}). Thus, our sample can provide a good representation of LIRGs in the distant Universe. We confirm that most (>77%) ISO 15 μm-selected galaxies are dominated by star formation. Oxygen abundances in interstellar medium in the galaxies are estimated from the extinction-corrected ``strong'' emission line ratios (e.g. \\ion{[O}{ii]}/Hβ, \\ion{[O}{iii]}/Hβ and \\ion{[O}{iii]}/\\ion{[O}{ii]}). The derived 12+log(O/H) values range from 8.36 to 8.93 for the z>0.4 galaxies with a median value of 8.67. Distant LIRGs present a metal content less than half of that of the local bright disks (i.e. L*). Their properties can be reproduced with infall models although one has to limit the infall time to avoid overproduction of metals at late times. The models predict that total masses (gas + stars) of the distant LIRGs are from 1011 M⊙ to ≤1012 M⊙. A

  12. Cosmological constraints from the SDSS luminous red galaxies

    NASA Astrophysics Data System (ADS)

    Tegmark, Max; Eisenstein, Daniel J.; Strauss, Michael A.; Weinberg, David H.; Blanton, Michael R.; Frieman, Joshua A.; Fukugita, Masataka; Gunn, James E.; Hamilton, Andrew J. S.; Knapp, Gillian R.; Nichol, Robert C.; Ostriker, Jeremiah P.; Padmanabhan, Nikhil; Percival, Will J.; Schlegel, David J.; Schneider, Donald P.; Scoccimarro, Roman; Seljak, Uroš; Seo, Hee-Jong; Swanson, Molly; Szalay, Alexander S.; Vogeley, Michael S.; Yoo, Jaiyul; Zehavi, Idit; Abazajian, Kevork; Anderson, Scott F.; Annis, James; Bahcall, Neta A.; Bassett, Bruce; Berlind, Andreas; Brinkmann, Jon; Budavari, Tamás; Castander, Francisco; Connolly, Andrew; Csabai, Istvan; Doi, Mamoru; Finkbeiner, Douglas P.; Gillespie, Bruce; Glazebrook, Karl; Hennessy, Gregory S.; Hogg, David W.; Ivezić, Željko; Jain, Bhuvnesh; Johnston, David; Kent, Stephen; Lamb, Donald Q.; Lee, Brian C.; Lin, Huan; Loveday, Jon; Lupton, Robert H.; Munn, Jeffrey A.; Pan, Kaike; Park, Changbom; Peoples, John; Pier, Jeffrey R.; Pope, Adrian; Richmond, Michael; Rockosi, Constance; Scranton, Ryan; Sheth, Ravi K.; Stebbins, Albert; Stoughton, Christopher; Szapudi, István; Tucker, Douglas L.; vanden Berk, Daniel E.; Yanny, Brian; York, Donald G.

    2006-12-01

    We measure the large-scale real-space power spectrum P(k) using luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS) and use this measurement to sharpen constraints on cosmological parameters from the Wilkinson Microwave Anisotropy Probe (WMAP). We employ a matrix-based power spectrum estimation method using Pseudo-Karhunen-Loève eigenmodes, producing uncorrelated minimum-variance measurements in 20 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.01h/Mpcgalaxy samples are consistent, with the former providing higher signal-to-noise. Our results are robust to omitting angular and radial density fluctuations and are consistent between different parts of the sky. They provide a striking confirmation of the predicted large-scale ΛCDM power spectrum. Combining only SDSS LRG and WMAP data places robust constraints on many cosmological parameters that complement prior analyses of multiple data sets. The LRGs provide independent cross-checks on Ωm and the baryon fraction in good agreement with WMAP. Within the context of flat ΛCDM models, our LRG measurements complement WMAP by sharpening the constraints on the matter density, the neutrino density and the tensor amplitude by about a factor of 2, giving Ωm=0.24±0.02 (1σ), ∑mν≲0.9eV (95%) and r<0.3 (95%). Baryon oscillations are clearly detected and provide a robust measurement of the comoving distance to the median survey redshift z=0.35 independent of curvature and dark energy properties. Within the ΛCDM framework, our power spectrum measurement improves the evidence for spatial flatness, sharpening the curvature constraint Ωtot=1.05±0.05 from WMAP alone to Ωtot=1.003±0.010. Assuming Ωtot=1, the equation of state parameter is constrained to w=-0.94±0.09, indicating the potential for more ambitious future LRG measurements to provide precision

  13. WISE: From the Dimmest Stars to the most Luminous Galaxies!

    NASA Astrophysics Data System (ADS)

    Craig, N.; Mendez, B. J.; Wright, E. L.

    2004-12-01

    The Wide-field Infrared Survey Explorer (WISE) Mission, led by UCLA PI Dr. Edward L. Wright is a newly selected MIDEX Mission, scheduled to launch in Summer 2008. WISE will conduct a survey of the entire sky in the infrared (3.5 - 23 microns) with far greater sensitivity than any previous program or mission. WISE will catalogue more than 100,000 asteroids, discover the coolest, dimmest, and nearest stars to the Sun, and determine which are the most luminous galaxies in the Universe. The WISE survey will consist of over a million images, from which hundreds of millions of astronomical objects will be catalogued, providing a vast storehouse of knowledge about the Solar System, the Milky Way, and the Universe. We will discuss our plans for an Education and Public Outreach (E/PO) program for WISE, including how our program will leverage resources from other IR mission E/PO programs such as Spitzer and SOFIA. We will also discuss our plans to partner with the amateur astronomer community to reach out to the K-12 education community, including underserved communities. The University of California, Berkeley's SEGway group from the Space Sciences Laboratory will lead the E/PO efforts of the WISE Mission with formal and informal education partners such as NOAO, Hands-On-Universe, the American Museum of Natural History, Space Science Institute, Space Dynamics Laboratory, the Astronomical Society of the Pacific, and Cornerstone Evaluations. The outreach program of WISE will captivate a wide range of audiences in the formal and informal science education communities with beautiful imagery and engaging science.

  14. The First Hyper-Luminous Infrared Galaxy Discovered by WISE

    NASA Technical Reports Server (NTRS)

    Eisenhardt, Peter R.; Wu, Jingwen; Tsai, Chao-Wei; Assef, Roberto; Benford, Dominic; Blain, Andrew; Bridge, Carrie; Condon, J. J.; Cushing, Michael C.; Cutri, Roc; Evans, Neal J., III; Gelino, Chris; Griffith, Roger L.; Grillmair, Carl J.; Jarrett, Tom; Lonsdale, Carol J.; Masci, Frank J.; Mason, Brian S.; Petty, Sara; Sayers, Jack; Stanford, S. Adam; Stern, Daniel; Wright, Edward L.; Yan, Lin

    2012-01-01

    We report the discovery by the Wide-field Infrared Survey Explorer of the z = 2.452 source WISEJ181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of approximately 1000 extremely luminous "W1W2-dropouts" (sources faint or undetected by WISE at 3.4 and 4.6 micrometers and well detected at 12 or 22 micrometers). The WISE data and a 350 micrometers detection give a minimum bolometric luminosity of 3.7 x 10(exp 13) solar luminosity, with approximately 10(exp 14) solar luminosity plausible. Followup images reveal four nearby sources: a QSO and two Lyman Break Galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate approximately 300 solar mass yr(exp -1), accounting for less than or equal to 10 percent of the bolometric luminosity. Strong 22 micrometer emission relative to 350 micrometer implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is approximately 10? above the far-infrared/radio correlation, indicating an active galactic nucleus is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local MBH-bulge mass relation, the implied Eddington ratio is approximately greater than 4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation.

  15. The luminous polycyclic aromatic hydrocarbon emission features: Applications to high redshift galaxies and active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Shipley, Heath Vernon

    The co-evolution of star-formation and supermassive black hole (SMBH) accretion in galaxies is one of the key problems in galaxy formation theory. Understanding the formation of galaxies, and their subsequent evolution, will be coupled to intensive study of the evolution of SMBHs. This thesis focuses on studying diagnostics of star-formation and SMBH accretion to develop tools to study this co-evolution. Chapter 2 consists of using mid-infrared (mid-IR) spectroscopy from the Spitzer Infrared Spectrograph (IRS) to study the nature of star-formation and SMBH accretion. The mid-IR spectra cover wavelengths 5-38mum, spanning the polycyclic aromatic hydrocarbon (PAH) features and important atomic diagnostic lines. We divide our sample into a subsample of galaxies with Spitzer IRAC colors indicative of warm dust heated by an AGN (IRAGN) and those galaxies whose colors indicate star-formation processes (non-IRAGN). In both the IRAGN and star-forming samples, the luminosity in the PAH features correlates strongly with [Ne II]lambda12.8&mum emission line, from which we conclude that the PAH luminosity directly traces the instantaneous star-formation rate (SFR) in both the IRAGN and star-forming galaxies. There is no measurable difference between the PAH luminosity ratios of L11:3/L7:7 and L6:2/L7:7 for the IRAGN and non-IRAGN, suggesting that AGN do not significantly excite or destroy PAH molecules on galaxy-wide scales. In chapter 3, I calibrate the PAH luminosity as a SFR indicator. We provide a new robust SFR calibration using the luminosity emitted from PAH molecules at 6.2mum, 7.7mum and 11.3mum. The PAH features emit strongly in the mid-IR mitigating dust extinction, containing on average 5--10% of the total IR luminosity in galaxies. We use mid-IR spectroscopy from the Spitzer/IRS, and data covering other SFR indicators (Halpha emission and rest-frame 24mum continuum emission). The PAH luminosity correlates linearly with the SFR as measured by the Halpha luminosity

  16. OBSERVATIONS OF DARK AND LUMINOUS MATTER: THE RADIAL DISTRIBUTION OF SATELLITE GALAXIES AROUND MASSIVE RED GALAXIES

    SciTech Connect

    Tal, Tomer; Wake, David A.; Van Dokkum, Pieter G.

    2012-05-20

    We study the projected radial distribution of satellite galaxies around more than 28,000 luminous red galaxies (LRGs) at 0.28 < z < 0.40 and trace the gravitational potential of LRG groups in the range 15 < r/kpc < 700. We show that at large radii the satellite number-density profile is well fitted by a projected Navarro-Frenk-White (NFW) profile with r{sub s} {approx} 270 kpc and that at small radii this model underestimates the number of satellite galaxies. Utilizing the previously measured stellar light distribution of LRGs from deep imaging stacks, we demonstrate that this small-scale excess is consistent with a non-negligible baryonic mass contribution to the gravitational potential of massive groups and clusters. The combined NFW+scaled stellar profile provides an excellent fit to the satellite number-density profile all the way from 15 kpc to 700 kpc. Dark matter dominates the total mass profile of LRG halos at r > 25 kpc whereas baryons account for more than 50% of the mass at smaller radii. We calculate the total dark-to-baryonic mass ratio and show that it is consistent with measurements from weak lensing for environments dominated by massive early-type galaxies. Finally, we divide the satellite galaxies in our sample into three luminosity bins and show that the satellite light profiles of all brightness levels are consistent with each other outside of roughly 25 kpc. At smaller radii we find evidence for a mild mass segregation with an increasing fraction of bright satellites close to the central LRG.

  17. Stellar Evolutionary Effects on the Abundances of PAH and SN-Condensed Dust in Galaxies

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2007-01-01

    Spectral and photometric observations of nearby galaxies show a correlation between the strength of their mid-IR aromatic features, attributed to PAH molecules, and their metal abundance, leading to a deficiency of these features in low-metallicity galaxies. We suggest that the observed correlation represents a trend of PAH abundance with galactic age, reflecting the delayed injection of carbon dust into the ISM by AGB stars in the final post-AGB phase of their evolution. We also show that larger dust particles giving rise to the far-IR emission follow a distinct evolutionary trend closely related to the injection of dust by massive stars into the ISM.

  18. Unveiling the hearts of luminous and ultra-luminous infrared galaxy mergers with laser guide star adaptive optics

    NASA Astrophysics Data System (ADS)

    Medling, Anne M.

    2013-03-01

    Gas-rich galaxies across cosmic time exhibit one or both of two phenomena: ongoing star formation and an active galactic nucleus indicating current black hole accretion. These two processes are important mechanisms through which galaxies evolve and grow, but their effects are difficult to disentangle. Both will use up some available gas, and both are capable of producing winds strong enough to eject remaining gas from the galaxy. One must look at high spatial resolutions in order to separate the dynamical effects of star formation going on near the nucleus of a galaxy from the black hole growth going on in the nucleus. We present high spatial resolution integral field spectroscopy of fifteen nearby luminous and ultra-luminous infrared galaxies. These systems are extremely bright in the infrared exactly because they host powerful starbursts and active nuclei, which in turn heat the surrounding dust. Our data provide resolved stellar and gaseous kinematics of the central kiloparsec of each of these systems by removing atmospheric blurring with adaptive optics, an observing technique that measures the turbulence in the Earth's atmosphere and then uses a deformable mirror to correct the resulting distortions. Our kinematic maps reveal nuclear disks of gas and stars with radii ˜ a few hundred parsecs surrounding the central black holes. Because the stellar and gas kinematics match well, we conclude that the stars are forming in situ from the gas in the disks. These disks may be the progenitors of kinematically decoupled cores seen in many isolated elliptical galaxies, and may have a significant effect on the merger rate of binary black holes. Additionally, these disks may be used to measure black hole masses which, when combined with host galaxy properties and placed on scaling relations, indicate that black holes grow as or more quickly than their host galaxies during a merger. This suggests that a sudden burst of black hole growth at in the final stages of the merger

  19. MID-INFRARED PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES. I. SPITZER INFRARED SPECTROGRAPH SPECTRA FOR THE GOALS SAMPLE

    SciTech Connect

    Stierwalt, S.; Armus, L.; Surace, J. A.; Inami, H.; Petric, A. O.; Diaz-Santos, T.; Haan, S.; Howell, J.; Marshall, J.; Charmandaris, V.; Kim, D. C.; Mazzarella, J. M.; Chan, B.; Spoon, H. W. W.; Veilleux, S.; Evans, A.; Sanders, D. B.; Appleton, P.; Bothun, G.; Bridge, C. R.; and others

    2013-05-01

    The Great Observatories All-Sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present low resolution Spitzer Infrared Spectrograph spectra covering 5-38 {mu}m and provide a basic analysis of the mid-IR spectral properties observed for nearby LIRGs. In a companion paper, we discuss detailed fits to the spectra and compare the LIRGs to other classes of galaxies. The GOALS sample of 244 nuclei in 180 luminous (10{sup 11} {<=} L {sub IR}/L {sub Sun} < 10{sup 12}) and 22 ultraluminous (L {sub IR}/L {sub Sun} {>=} 10{sup 12}) IR galaxies represents a complete subset of the IRAS Revised Bright Galaxy Sample and covers a range of merger stages, morphologies, and spectral types. The majority (>60%) of the GOALS LIRGs have high 6.2 {mu}m polycyclic aromatic hydrocarbon (PAH) equivalent widths (EQW{sub 6.2{mu}m} > 0.4 {mu}m) and low levels of silicate absorption (s {sub 9.7{mu}m} > -1.0). There is a general trend among the U/LIRGs for both silicate depth and mid-infrared (MIR) slope to increase with increasing L {sub IR}. U/LIRGs in the late to final stages of a merger also have, on average, steeper MIR slopes and higher levels of dust obscuration. Together, these trends suggest that as gas and dust is funneled toward the center of a coalescing merger, the nuclei become more compact and more obscured. As a result, the dust temperature increases also leading to a steeper MIR slope. The sources that depart from these correlations have very low PAH equivalent width (EQW{sub 6.2{mu}m} < 0.1 {mu}m) consistent with their emission being dominated by an active galactic nucleus (AGN) in the MIR. These extremely low PAH EQW sources separate into two distinct types: relatively unobscured sources with a very hot dust component (and thus very shallow MIR slopes) and heavily dust obscured nuclei with a steep temperature gradient. The most heavily dust obscured sources are also the most compact in their MIR

  20. Rapid evolution of the most luminous galaxies during the first 900 million years.

    PubMed

    Bouwens, Rychard J; Illingworth, Garth D

    2006-09-14

    The first 900 million years (Myr) to redshift z approximately 6 (the first seven per cent of the age of the Universe) remains largely unexplored for the formation of galaxies. Large samples of galaxies have been found at z approximately 6 (refs 1-4) but detections at earlier times are uncertain and unreliable. It is not at all clear how galaxies built up from the first stars when the Universe was about 300 Myr old (z approximately 12-15) to z approximately 6, just 600 Myr later. Here we report the results of a search for galaxies at z approximately 7-8, about 700 Myr after the Big Bang, using the deepest near-infrared and optical images ever taken. Under conservative selection criteria we find only one candidate galaxy at z approximately 7-8, where ten would be expected if there were no evolution in the galaxy population between z approximately 7-8 and z approximately 6. Using less conservative criteria, there are four candidates, where 17 would be expected with no evolution. This demonstrates that very luminous galaxies are quite rare 700 Myr after the Big Bang. The simplest explanation is that the Universe is just too young to have built up many luminous galaxies at z approximately 7-8 by the hierarchical merging of small galaxies. PMID:16971943

  1. Nebular Line Emission in z 1 Spitzer Infrared-Luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Krause, John; Papovich, C.; Finkelstein, S.; Willmer, C.; Egami, E.; Conselice, C.; Huang, J.; Koo, D.; Laird, E.; Le Floc'h, E.; Lotz, J.; Maia, M.; Marcillac, D.; Nandra, K.; Webb, T.; Weiner, B.

    2010-01-01

    We present near-infrared (IR) spectroscopic observations from the Multi-Object IR Camera and Spectrograph (MOIRCS) on the Subaru telescope of a sample of 21 IR-luminous galaxies in the approximate range 1 < z < 1.5. These galaxies were selected based on their Spitzer 24-micron flux densities (S(24 micron) > 0.1 mJy) and known spectroscopic redshifts from the All-Wavelength Extended Groth Strip International Survey (AEGIS). We measure rest-frame optical emission line fluxes for H-alpha and [NII], and also [OIII] and H-beta, where available. We use emission-line diagnostics to constrain the origin of the ionization in these objects: processes associated with star formation or AGN (including Seyferts and LINERs). The high-redshift galaxies in our sample have similar [NII] / H-alpha flux ratios compared to low-redshift (z 0.1) IR-luminous galaxies (Kim et al., 1995; Veilleux et al., 1995) for galaxies with implied IR luminosities of 11 < Log L(8-1000 micron) / L sol < 12. However, we find evidence that the IR-luminous galaxies in our sample with implied Log L(8-1000 micron) / L sol > 12 have lower [NII] / H-alpha ratios than low-redshift galaxies with comparable IR luminosity, implying the higher redshift IR-luminous galaxies may have a higher fraction of systems dominated by star formation. We also study the relation of our rest-frame optical emission-line diagnostics to other indicators of AGN activity, including the mid-IR colors and X-ray luminosities. In addition, we compare star-formation-rate indicators from our dust-corrected H-alpha emission line luminosities to those from the mid-to-far IR and compare these as a function of IR luminosity against the low-redshift sample.

  2. Radio continuum properties of luminous infrared galaxies. Identifying the presence of an AGN in the radio

    NASA Astrophysics Data System (ADS)

    Vardoulaki, E.; Charmandaris, V.; Murphy, E. J.; Diaz-Santos, T.; Armus, L.; Evans, A. S.; Mazzarella, J. M.; Privon, G. C.; Stierwalt, S.; Barcos-Muñoz, L.

    2015-02-01

    Context. Luminous infrared galaxies (LIRGs) are systems enshrouded in dust, which absorbs most of their optical/UV emission and radiates it again in the mid- and far-infrared. Radio observations are largely unaffected by dust obscuration, enabling us to study the central regions of LIRGs in an unbiased manner. Aims: The main goal of this project is to examine how the radio properties of local LIRGs relate to their infrared spectral characteristics. Here we present an analysis of the radio continuum properties of a subset of the Great Observatories All-sky LIRG Survey (GOALS), which consists of 202 nearby systems (z< 0.088). Our radio sample consists of 35 systems, containing 46 individual galaxies, that were observed at both 1.49 and 8.44 GHz with the VLA with a resolution of about 1 arcsec (FWHM). The aim of the project is to use the radio imagery to probe the central kpc of these LIRGs in search of active galactic nuclei (AGN). Methods: We used the archival data at 1.49 and 8.44 GHz to create radio-spectral-index maps using the standard relation between flux density Sν and frequency ν, Sν ~ ν- α, where α is the radio spectral index. By studying the spatial variations in α, we classified the objects as radio-AGN, radio-SB, and AGN/SB (a mixture). We identified the presence of an active nucleus using the radio morphology, deviations from the radio/infrared correlation, and spatially resolved spectral index maps, and then correlated this to the usual mid-infrared ([NeV]/[NeII] and [OIV]/[NeII] line ratios and equivalent width of the 6.2 μm PAH feature) and optical (BPT diagram) AGN diagnostics. Results: We find that 21 out of the 46 objects in our sample (~45%) are radio-AGN, 9 out of the 46 (~20%) are classified as starbursts (SB) based on the radio analysis, and 16 (~35%) are AGN/SB. After comparing to other AGN diagnostics we find 3 objects out of the 46 (~7%) that are identified as AGN based on the radio analysis, but are not classified as such based on

  3. DARK AND LUMINOUS MATTER IN THINGS DWARF GALAXIES

    SciTech Connect

    Oh, Se-Heon; De Blok, W. J. G.; Brinks, Elias; Walter, Fabian; Kennicutt, Robert C. Jr. E-mail: edeblok@ast.uct.ac.za E-mail: walter@mpia.de

    2011-06-15

    We present mass models for the dark matter component of seven dwarf galaxies taken from 'The H I Nearby Galaxy Survey' (THINGS) and compare these with those taken from numerical {Lambda} cold dark matter ({Lambda}CDM) simulations. The THINGS high-resolution data significantly reduce observational uncertainties and thus allow us to derive accurate dark matter distributions in these systems. We here use the bulk velocity fields when deriving the rotation curves of the galaxies. Compared to other types of velocity fields, the bulk velocity field minimizes the effect of small-scale random motions more effectively and traces the underlying kinematics of a galaxy more properly. The 'Spitzer Infrared Nearby Galaxies Survey' 3.6 {mu}m and ancillary optical data are used for separating the baryons from their total matter content in the galaxies. The sample dwarf galaxies are found to be dark matter dominated over most radii. The relation between total baryonic (stars + gas) mass and maximum rotation velocity of the galaxies is roughly consistent with the baryonic Tully-Fisher relation calibrated from a larger sample of gas-dominated low-mass galaxies. We find discrepancies between the derived dark matter distributions of the galaxies and those of {Lambda}CDM simulations, even after corrections for non-circular motions have been applied. The observed solid body-like rotation curves of the galaxies rise too slowly to reflect the cusp-like dark matter distribution in cold dark matter halos. Instead, they are better described by core-like models such as pseudo-isothermal halo models dominated by a central constant-density core. The mean value of the logarithmic inner slopes of the mass density profiles is {alpha} = -0.29 {+-} 0.07. They are significantly different from the steep slope of {approx} - 1.0 inferred from previous dark-matter-only simulations, and are more consistent with shallower slopes found in recent {Lambda}CDM simulations of dwarf galaxies in which the effects

  4. Spectroscopic Confirmation of the Dragonfish Association: The Galaxy's Most Luminous OB Association

    NASA Astrophysics Data System (ADS)

    Rahman, Mubdi; Moon, Dae-Sik; Matzner, Christopher D.

    2011-12-01

    Young OB associations with masses greater than 104 M ⊙ have been inferred to exist in the Galaxy but have largely evaded detection. Recently, a candidate OB association has been identified within the most luminous star-forming complex in the Galaxy, the Dragonfish Nebula. We identify 18 young, massive stars with near-infrared spectroscopy from a sample of 50 members within the candidate OB association, including 15 O-type and 3 luminous blue variables or Wolf-Rayet stars. This number matches the expected yield of massive stars from the candidate association, confirming its existence and ability to power the parent star-forming complex. These results demonstrate the existence of a 105 M ⊙ OB association, more powerful than any previously known in the Galaxy, comparable in mass only to Westerlund 1. Further, the results also validate the color selection method used to identify the association, adding credence to others discovered in the same way.

  5. STUDYING LARGE- AND SMALL-SCALE ENVIRONMENTS OF ULTRAVIOLET LUMINOUS GALAXIES

    SciTech Connect

    Basu-Zych, Antara R.; Schiminovich, David; Heinis, Sebastien; Heckman, Tim; Bianchi, Luciana; Overzier, Roderik; Zamojski, Michel; Barlow, Tom A.; Conrow, Tim; Forster, Karl G.; Friedman, Peter G.; Martin, D. Christopher; Morrissey, Patrick; Ilbert, Olivier; Koekemoer, Anton M.; Donas, Jose; Milliard, Bruno; Lee, Young-Wook; Madore, Barry F.; Neff, Susan G.

    2009-07-10

    Studying the environments of 0.4 < z < 1.2 ultraviolet (UV)-selected galaxies, as examples of extreme star-forming galaxies (with star formation rates (SFRs) in the range of 3-30 M{sub sun} yr{sup -1}), we explore the relationship between high rates of star formation, host halo mass, and pair fractions. We study the large- and small-scale environments of local ultraviolet luminous galaxies (UVLGs) by measuring angular correlation functions. We cross-correlate these systems with other galaxy samples: a volume-limited sample (ALL), a blue luminous galaxy sample, and a luminous red galaxy (LRG) sample. We determine the UVLG comoving correlation length to be r{sub 0} = 4.8{sup +11.6}{sub -2.4} h {sup -1} Mpc at (z) = 1.0, which is unable to constrain the halo mass for this sample. However, we find that UVLGs form close (separation <30 kpc) pairs with the ALL sample, but do not frequently form pairs with LRGs. A rare subset of UVLGs, those with the highest FUV surface brightnesses, are believed to be local analogs of high-redshift Lyman break galaxies (LBGs) and are called Lyman break analogs (LBAs). LBGs and LBAs share similar characteristics (i.e., color, size, surface brightness, specific SFRs, metallicities, and dust content). Recent Hubble Space Telescope images of z {approx} 0.2 LBAs show disturbed morphologies, signs of mergers and interactions. UVLGs may be influenced by interactions with other galaxies and we discuss this result in terms of other high star-forming, merging systems.

  6. Distribution of dark and luminous mass in galaxies

    SciTech Connect

    Lovas, Stephen; Kielkopf, John F.

    2014-06-01

    A uniform scale relation between dark and baryonic matter is observed in galaxies over a broad range of physical parameter space. The ratio of dark to baryonic mass is found to increase proportionately with radial distance in observational data spanning a wide dynamic range of morphological type, rotation velocity, radius, surface density, and mass. This close relation between dark and baryonic mass poses a fine-tuning problem for galaxy formation models. Such a uniform scale relation, extending from the inner galactic region to the outermost kinematic data point, may play a role in clarifying the dark matter phenomenon.

  7. Morphological Properties and AGN Content of High Redshift Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan S.; CANDELS Collaboration

    2013-01-01

    We explore the evolution of the morphological properties of (Ultra) Luminous Infrared Galaxies ((U)LIRGs) over cosmic time using a large sample of galaxies from Herschel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between 2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy's position in the star formation rate - stellar mass plane.

  8. Submillimeter Imaging of the Luminous Infrared Galaxy Pair VV114

    NASA Technical Reports Server (NTRS)

    Frayer, D.; Ivison, R. J.; Smail, I.; Yun, M. S.; Armus, L.

    1999-01-01

    We report on 450 and 850 mue observations of the interacting galaxy pair, VV114E+W (IC 1623), taken with the SCUBA camera on the James Clerk Maxwell Telescope, and near-infrared observations taken with UFTI on the UK Infrared Telescope.

  9. IUE observations of luminous blue star associations in irregular galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, S. A.; Hunter, D. A.; Gallagher, J. S., III

    1987-01-01

    Two regions of recent star formation in blue irregular galaxies were observed with the IUE in the short wavelength, low dispersion mode. The spectra indicate that the massive star content is similar in these regions and is best fit by massive stars formed in a burst and now approximately 2.5 to 3.0 million years old.

  10. Adaptive Optics Imaging Survey of Luminous Infrared Galaxies

    SciTech Connect

    Laag, E A; Canalizo, G; van Breugel, W; Gates, E L; de Vries, W; Stanford, S A

    2006-03-13

    We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L{sub FIR} {ge} 10{sup 12} L{sub {circle_dot}}) and 19 new LIGs (with L{sub FIR} {ge} 10{sup 11} L{sub {circle_dot}}). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K{prime}. Galaxy morphologies were determined using the two dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines--four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.

  11. Green Pea Galaxies and Cohorts: Luminous Compact Emission-line Galaxies in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Izotov, Yuri I.; Guseva, Natalia G.; Thuan, Trinh X.

    2011-02-01

    We present a large sample of 803 star-forming luminous compact galaxies (LCGs) in the redshift range z = 0.02-0.63, selected from Data Release 7 of the Sloan Digital Sky Survey (SDSS). The global properties of these galaxies are similar to those of the so-called green pea star-forming galaxies in the redshift range z = 0.112-0.360 and selected from the SDSS on the basis of their green color and compact structure. In contrast to green pea galaxies, our LCGs are selected on the basis of both their spectroscopic and photometric properties, resulting in a ~10 times larger sample, with galaxies spanning a redshift range gsim2 times larger. We find that the oxygen abundances and the heavy element abundance ratios in LCGs do not differ from those of nearby low-metallicity blue compact dwarf galaxies. The median stellar mass of LCGs is ~109 M sun. However, for galaxies with high EW(Hβ), >= 100 Å, it is only ~7 × 108 M sun. The star formation rate in LCGs varies in the large range of 0.7-60 M sun yr-1, with a median value of ~4 M sun yr-1, a factor of ~3 lower than in high-redshift star-forming galaxies at z >~ 3. The specific star formation rates in LCGs are extremely high and vary in the range ~10-9-10-7 yr-1, comparable to those derived in high-redshift galaxies.

  12. Outflows in infrared-luminous galaxies: Absorption-line spectroscopy of starbursts and AGN

    NASA Astrophysics Data System (ADS)

    Rupke, David S.

    Large-scale galactic outflows, better known as superwinds, are driven by the powerful energy reservoirs in star forming and active galaxies. They play a significant role in galaxy formation, galaxy evolution, and the evolution of the intergalactic medium. We have performed a survey of over 100 infrared-luminous galaxies in order to address the exact frequency with which they occur in different galaxy types, the dependence of their properties on those of their host galaxies, and their properties in the most luminous starburst and active galaxies. Most of our sample consists of ultraluminous infrared galaxies (ULIRGs), and we use moderate- resolution spectroscopy of the Na I D interstellar absorption feature (which directly probes the neutral gas phase). We find superwinds in the majority of these galaxies at typical maximum, deprojected velocities of 500 700 km s-1. The detection rate increases with star formation rate (SFR) in starbursts, while the mass outflow rate appears constant with SFR, contrary to theoretical expectations. The resulting mass entrainment efficiencies in ULIRGs are quite low, of order a few percent of the star formation rate. There is some dependence of outflow velocity on host galaxy properties; the outflow velocities in LINERs are higher than those in H II galaxies, and the highest column density gas in each galaxy may have an upper envelope in velocity that increases with SFR. Outflows in most galaxies hosting a dominant AGN have very similar properties to those in starbursts, so discerning their power source is difficult. The velocities in Seyfert 2 outflows may be slightly higher than those in starbursts, and the fraction of neutral gas escaping Seyfert 2s is higher than that in starbursts (˜50% vs. ≲ 20%). The outflows in our Seyfert 1 galaxies have extreme velocities of up to ˜104 km s-1, and two of three Seyfert is with outflows possess broad absorption lines. Finally, we find that spectroscopy of a few galaxies at very high

  13. Star-formation histories of local luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, Miguel; Alonso-Herrero, Almudena; Colina, Luis; Miralles-Caballero, Daniel; Pérez-González, Pablo G.; Arribas, Santiago; Bellocchi, Enrica; Cazzoli, Sara; Díaz-Santos, Tanio; Piqueras López, Javier

    2015-05-01

    We present analysis of the integrated spectral energy distribution (SED) from the ultraviolet (UV) to the far-infrared and Hα of a sample of 29 local systems and individual galaxies with infrared (IR) luminosities between 1011L⊙ and 1011.8L⊙. We combined new narrow-band Hα + [N ii] and broad-band g, r optical imaging taken with the Nordic Optical Telescope (NOT), with archival GALEX, 2MASS, Spitzer, and Herschel data. Their SEDs(photometry and integrated Hα flux) were fitted simultaneously with a modified version of the magphys code using stellar population synthesis models for the UV-near-IR range and thermal emission models for the IR emission taking the energy balance between the absorbed and re-emitted radiation into account. From the SED fits, we derive the star-formation histories (SFH) of these galaxies. For nearly half of them, the star-formation rate appears to be approximately constant during the last few Gyr. In the other half, the current star-formation rate seems to be enhanced by a factor of 3-20 with respect to what occurred ~1 Gyr ago. Objects with constant SFH tend to be more massive than starbursts, and they are compatible with the expected properties of a main-sequence (M-S) galaxy. Likewise, the derived SFHs show that all our objects were M-S galaxies ~1 Gyr ago with stellar masses between 1010.1 and 1011.5 M⊙. We also derived the average extinction (Av = 0.6-3 mag) and the polycyclic aromatic hydrocarbon luminosity to LIR ratio (0.03-0.16) from our fits. We combined the Av with the total IR and Hα luminosities into a diagramthat can be used to identify objects with rapidly changing (increasing or decreasing) SFR during the past 100 Myr. Appendices are available in electronic form at http://www.aanda.orgFITS files for all the reduced images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A78

  14. The Milky Way's Most Luminous Star Clusters: Engines of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Rahman, Mubdi; Matzner, C. D.; Moon, D.

    2012-01-01

    Massive young star clusters and OB associations (M > 104 Msun) dominate the energetic feedback from stars into the interstellar medium. They contain the most massive and luminous stars in the Galaxy, which shape their environments through winds, ionizing flux, radiation pressure, and eventually supernovae, destroying their natal molecular clouds and inflating superbubbles. Few such clusters have been identified in our Galaxy. We systematically investigate the most luminous H II regions, which we identify using the WMAP foreground maps. We find that the 13 most luminous sources produce one-third of the Galaxy's total ionizing luminosity, all with expected powering populations of M > 4×104 Msun. These populations are grouped in small numbers of clusters or associations for each WMAP source. The emission from these regions is dominated by the diffuse component at large radii ( 10-70 pc) indicating a high leaking fraction of ionizing photons. Using 8 micron maps from Spitzer GLIMPSE and published radio recombination line observations, we resolve the large (>1°) WMAP sources into 40 star forming complexes (SFCs) exhibiting shell morphology with evidence of expansion due to a central powering source. We develop a method, based on differential extinction of the galactic disk, to identify the SFC's powering cluster candidates with 2MASS. We identify 25 candidate clusters within the 40 SFCs having extinctions consistent with their distances. With near-infrared spectroscopy from the New Technology Telescope, we have confirmed the existence of the most massive of these associations, the Dragonfish Association, with M = 105 Msun. Of the 50 sampled stars, we identify 2 Luminous Blue Variable candidates, a Wolf-Rayet, and 15 O-type stars, consistent with the yield expected from the candidate contamination rate, verifying the candidate cluster identification method. This investigation produces the most complete picture of the upper-end of the Galaxy's cluster mass function to

  15. Host Galaxies of Luminous Quasars: Structural Properties and the Fundamental Plane

    NASA Astrophysics Data System (ADS)

    Wolf, Marsha J.; Sheinis, Andrew I.

    2008-10-01

    We present stellar velocity dispersion measurements in the host galaxies of ten luminous quasars (MV < -23) using the Ca H&K lines in off-nuclear spectra. We combine these data with effective radii and magnitudes from the literature to place the host galaxies on the fundamental plane (FP) where their properties are compared with other types of galaxies. We find that the radio-loud (RL) QSO hosts have similar properties to massive elliptical galaxies, while the radio-quiet (RQ) hosts are more similar to intermediate-mass galaxies. The RL hosts lie at the upper extreme of the FP due to their large velocity dispersions (langσ*rang = 321 km s-1), low surface brightness (langμ e (r)rang = 20.8 mag arcsec-2), and large effective radii (langRe rang = 11.4 kpc), and have langM *rang = 1.5 × 1012 M sun and langM/Lrang = 12.4. In contrast, properties of the RQ hosts are langσ*rang = 241 km s-1, langM *rang = 4.4 × 1011 M sun, and M/L ~ 5.3. The distinction between these galaxies occurs at σ*~ 300 km s-1, Re ~ 6 kpc, and corresponding M * ~ 5.9 ± 3.5 × 1011 M sun. Our data support previous results that Palomar-Green QSOs are related to gas-rich galaxy mergers that form intermediate-mass galaxies, while RL QSOs reside in massive early-type galaxies, most of which also show signs of recent mergers or interactions. Previous authors have drawn these conclusions by using estimates of the black hole mass and inferring host galaxy properties from that, while here we have relied purely on directly measured host galaxy properties.

  16. EXTENDED [C II] EMISSION IN LOCAL LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Díaz-Santos, T.; Armus, L.; Surace, J. A.; Charmandaris, V.; Stacey, G.; Murphy, E. J.; Haan, S.; Stierwalt, S.; Evans, A. S.; Malhotra, S.; Appleton, P.; Inami, H.; Magdis, G. E.; Elbaz, D.; Van der Werf, P. P.; Meijerink, R.; and others

    2014-06-10

    We present Herschel/PACS observations of extended [C II] 157.7 μm line emission detected on ∼1-10 kpc scales in 60 local luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey. We find that most of the extra-nuclear emission show [C II]/FIR ratios ≥4 × 10{sup –3}, larger than the mean ratio seen in the nuclei, and similar to those found in the extended disks of normal star-forming galaxies and the diffuse interstellar medium of our Galaxy. The [C II] ''deficits'' found in the most luminous local LIRGs are therefore restricted to their nuclei. There is a trend for LIRGs with warmer nuclei to show larger differences between their nuclear and extra-nuclear [C II]/FIR ratios. We find an anti-correlation between [C II]/FIR and the luminosity surface density, Σ{sub IR}, for the extended emission in the spatially resolved galaxies. However, there is an offset between this trend and that found for the LIRG nuclei. We use this offset to derive a beam filling-factor for the star-forming regions within the LIRG disks of ∼6% relative to their nuclei. We confront the observed trend to photo-dissociation region models and find that the slope of the correlation is much shallower than the model predictions. Finally, we compare the correlation found between [C II]/FIR and Σ{sub IR} with measurements of high-redshift starbursting IR-luminous galaxies.

  17. Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146

    SciTech Connect

    Tang, Qing-Wen; Wang, Xiang-Yu; Thomas Tam, Pak-Hin E-mail: phtam@phys.nthu.edu.tw

    2014-10-10

    Recent detections of high-energy gamma-ray emission from starburst galaxies M82 and NGC 253 suggest that starburst galaxies are huge reservoirs of cosmic rays and these cosmic rays convert a significant fraction of their energy into gamma-rays by colliding with the dense interstellar medium. In this paper, we report the search for high-energy gamma-ray emission from several nearby star-forming and starburst galaxies using the 68 month data obtained with the Fermi Large Area Telescope. We found a ∼5.5σ detection of gamma-ray emission above 200 MeV from a source spatially coincident with the location of the luminous infrared galaxy NGC 2146. Also taking into account the temporal and spectral properties of the gamma-ray emission, we suggest that the gamma-ray source is likely to be the counterpart of NGC 2146. The gamma-ray luminosity suggests that cosmic rays in NGC 2146 convert most of their energy into secondary pions, so NGC 2146 is a 'proton calorimeter'. It is also found that NGC 2146 obeys the quasi-linear scaling relation between gamma-ray luminosity and total infrared luminosity for star-forming galaxies, strengthening the connection between massive star formation and gamma-ray emission of star-forming galaxies. Possible TeV emission from NGC 2146 is predicted and the implications for high-energy neutrino emission from starburst galaxies are discussed.

  18. Luminous compact blue galaxies in the local Universe: A key reference for high-redshift studies

    NASA Astrophysics Data System (ADS)

    Pérez Gallego, J.; Guzmán, R.; Castander, F. J.; Garland, C. A.; Pisano, D. J.

    2005-05-01

    Luminous Compact Blue Galaxies (LCBGs) are high surface brightness starburst galaxies, bluer than a typical Sbc and brighter than ˜0.25Lstar. LCBGs have evolved more than any other galaxy class in the last ˜8 Gyr, and are a major contributor to the observed enhancement of the UV luminosity density of the Universe at z≤1. Despite the key role LCBGs may play in galaxy evolution, their statistical properties are still largely unknown. We have selected a complete sample of ˜25 LCBGs within 100 Mpc, after investigating over 106 nearby galaxies from the DR1 of the SDSS database. This sample, although small, provides an excellent reference for comparison with current and future surveys of similar galaxies at high redshift, including the population of Lyman-break galaxies. We present preliminary results of this study using 3D spectroscopic observations obtained over a very wide range in wavelength, using WIYN/DENSEPAK in the optical, FISICA in the infrared, and the VLA at cm wavelengths.

  19. IR Fine-Structure Line Signatures of Central Dust-Bounded Nebulae in Luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Allen, R.; Dudley, C. C.; Satyapal, S.; Luhman, M.; Wolfire, M.; Smith, H. A.

    2004-01-01

    To date, the only far-infrared spectroscopic observations of ultraluminous infrared galaxies have been obtained with the European Space Agency s Infrared Space Observatory Long Wavelength Spectrometer. The spectra of these galaxies are characterized by molecular absorption lines and weak emission lines from photodissociation regions (PDRs), but no far-infrared (greater than 40 microns) lines from ionized regions have been detected. ESA s Herschel Space Observatory, slated for launch in 2007, will likely be able to detect these lines in samples of local and moderate redshift ultra luminous galaxies and to enable measurement of the ionization parameters, the slope of the ionizing continuum, and densities present in the ionized regions of these galaxies. The higher spatial resolution of proposed observatories discussed in this workshop will enable isolation of the central regions of local galaxies and detection of these lines in high-redshift galaxies for study of the evolution of galaxies. Here we discuss evidence for the e.ects of absorption by dust within ionized regions and present the spectroscopic signatures predicted by photoionization modeling of dust-bounded regions.

  20. THE WHIQII SURVEY: METALLICITIES AND SPECTROSCOPIC PROPERTIES OF LUMINOUS COMPACT BLUE GALAXIES

    SciTech Connect

    Tollerud, Erik J.; Barton, Elizabeth J.; Cooke, Jeff; Van Zee, Liese

    2010-01-10

    As part of the WIYN High Image Quality Indiana-Irvine (WHIQII) survey, we present 123 spectra of faint emission-line galaxies, selected to focus on intermediate redshift (0.4 approx< z approx< 0.8) galaxies with blue colors that appear physically compact on the sky. The sample includes 15 true Luminous Compact Blue Galaxies (LCBGs) and an additional 27 slightly less extreme emission-line systems. These galaxies represent a highly evolving class that may play an important role in the decline of star formation since z approx 1, but their exact nature and evolutionary pathways remain a mystery. Here, we use emission lines to determine metallicities and ionization parameters, constraining their intrinsic properties and state of star formation. Some LCBG metallicities are consistent with a 'bursting dwarf' scenario, while a substantial fraction of others are not, further confirming that LCBGs are a highly heterogeneous population but are broadly consistent with the intermediate redshift field. In agreement with previous studies, we observe overall evolution in the luminosity-metallicity relation at intermediate redshift. Our sample, and particularly the LCBGs, occupies a region in the empirical R{sub 23}-O{sub 32} plane that differs from luminous local galaxies and is more consistent with dwarf irregulars at the present epoch, suggesting that cosmic 'downsizing' is observable in even the most fundamental parameters that describe star formation. These properties for our sample are also generally consistent with lying between local galaxies and those at high redshift, as expected by this scenario. Surprisingly, our sample exhibits no detectable correlation between compactness and metallicity, strongly suggesting that at these epochs of rapid star formation, the morphology of compact star-forming galaxies is largely transient.

  1. ULTRA-LUMINOUS X-RAY SOURCES IN THE MOST METAL POOR GALAXIES

    SciTech Connect

    Prestwich, A. H.; Zezas, A.; Jackson, F.; Tsantaki, Maria; Roberts, T. P.; Foltz, R.; Linden, T.; Kalogera, V.

    2013-06-01

    Ultra-luminous X-ray sources (ULX) are X-ray binaries with L{sub x} >10{sup 39} erg s{sup -1}. The most spectacular examples of ULX occur in starburst galaxies and are now understood to be young, luminous high mass X-ray binaries. The conditions under which ULX form are poorly understood, but recent evidence suggests they may be more common in low metallicity systems. Here we investigate the hypothesis that ULX form preferentially in low metallicity galaxies by searching for ULX in a sample of extremely metal poor galaxies (XMPG) observed with the Chandra X-Ray Observatory. XMPG are defined as galaxies with log(O/H) + 12 < 7.65, or less than 5% solar. These are the most metal-deficient galaxies known, and a logical place to find ULX if they favor metal poor systems. We compare the number of ULX (corrected for background contamination) per unit of star formation (N{sub ULX}(SFR)) in the XMPG sample with N{sub ULX}(SFR) in a comparison sample of galaxies with higher metallicities taken from the Spitzer Infrared Galaxy Sample. We find that ULX occur preferentially in the metal poor sample with a formal statistical significance of 2.3{sigma}. We do not see strong evidence for a trend in the formation of ULX in the high metallicity sample: above 12+log(O/H) {approx} 8.0 the efficiency of ULX production appears to be flat. The effect we see is strongest in the lowest metallicity bin. We discuss briefly the implications of these results for the formation of black holes in low metallicity gas.

  2. Buried Quasars in Ultra-luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    We were awarded l00kS of INTEGRAL spacecraft time (Priority A) to observe the ultraluminous infrared galaxy (ULIG) Mrk 2273 in order to measure the integrated flux of the 20-1003 KeV gamma-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN). With this observation we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the hard X-ray and soft gamma-ray backgrounds. Our Priority A 100 kS observation of Mrk 273 was successfully carried out during revolution #73 using 4 separate exposures with the IBIS camera during May, 2003. Our IBIS observations of Mrk 273 were successfully executed, and the source was properly centered in the Field-of-view of the detectors. We are still in the process of interpreting the IBIS gamma-ray data.

  3. The Fate of Luminous Compact Blue Galaxies: Identification of Cluster LCBGs

    NASA Astrophysics Data System (ADS)

    Crawford, S. M.; Bershady, M. A.; Glenn, A. D.; Hoessel, J. G.

    2004-12-01

    Luminous Compact Blue Galaxies (LCBGs) appear to form a link between local, low mass HII galaxies and high-z, high luminosity Lyman Break Galaxies. Accounting for the majority of the star formation at intermediate redshifts (0.3 < z < 0.9), they represent a dominant phase of galaxy evolution; yet the identity of their present-day counterparts is an open question. We have undertaken a major survey of intermediate redshift galaxy clusters in search of LCBGs in order to connect this population of small, but powerful star forming galaxies to their present-day descendants through the morphology-density relationship. In this paper, we present the identification of LCBGs in two galaxy clusters, MS0451-0305 (z=0.538) and CL1604+4304 (z=0.90), and compare the photometric characteristics of cluster LCBGs to field LCBGs and other galaxy types. The LCBGs are identified through their broad and narrow band colors measured from deep imaging with the Mini-Mosaic camera on the WIYN 3.5m telescope. We use photometric redshifts and rest-frame [OII] λ 3727 emission in the narrow band images to identify star-burst galaxies associated with each galaxy clusters. LCBGs are too small for any detailed structural analysis from ground-based data, therefore we derived photometric characteristics (size, surface brightness, concentration, ellipticity, and asymmetry) from Archive HST WFPC2 and ACS imaging of the clusters. This work was supported by HST Archive grant #9917, NSF / AST-0307417, and an award from the Wisconsin Space Grant Corporation.

  4. The Ultra-Luminous X-ray Source Population from the Chandra Archive of Galaxies

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Ghosh, Kajal K.; Tennant, Allen F.; Wu, Kinwah

    2004-01-01

    One hundred fifty-four discrete non-nuclear Ultra-Luminous X-ray (ULX) sources, with spectroscopically-determined intrinsic X-ray luminosities greater than 1 e39 ergs/s, are identified in 82 galaxies observed with Chandra's Advanced CCD Imaging Spectrometer. Source positions, X-ray luminosities, and spectral and timing characteristics are tabulated. Statistical comparisons between these X-ray properties and those of the weaker discrete sources in the same fields (mainly neutron star and stellar-mass black hole binaries) are made. Sources above approximately le38 ergs per second display similar spatial, spectral, color, and variability distributions. In particular, there is no compelling evidence in the sample for a new and distinct class of X-ray object such as the intermediate-mass black holes. 83% of ULX candidates have spectra that can be described as absorbed power laws with index = 1.74 and column density = 2.24e21 l per square centimeter, or approximately 5 times the average Galactic column. About 20% of the ULX's have much steeper indices indicative of a soft, and likely thermal, spectrum. The locations of ULXs in their host galaxies are strongly peaked towards their galaxy centers. The deprojected radial distribution of the ULX candidates is somewhat steeper than an exponential disk, indistinguishable from that of the weaker sources. About 5--15% of ULX candidates are variable during the Chandra observations (which average 39.5 ks). Comparison of the cumulative X-ray luminosity functions of the ULXs to Chandra Deep Field results suggests approximately 25% of the sources may be background objects including 14% of the ULX candidates in the sample of spiral galaxies and 44% of those in elliptical galaxies implying the elliptical galaxy ULX population is severely compromised by background active galactic nuclei. Correlations with host galaxy properties confirm the number and total X-ray luminosity of the ULXs are associated with recent star formation

  5. Galaxy evolution. Black hole feedback in the luminous quasar PDS 456.

    PubMed

    Nardini, E; Reeves, J N; Gofford, J; Harrison, F A; Risaliti, G; Braito, V; Costa, M T; Matzeu, G A; Walton, D J; Behar, E; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Matt, G; Miller, J M; O'Brien, P T; Stern, D; Turner, T J; Ward, M J

    2015-02-20

    The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband x-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow's kinetic power larger than 10(46) ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution. PMID:25700515

  6. Cold Galaxies on FIRE: Modeling the Most Luminous Starbursts in the Universe with Cosmological Zoom Simulations

    NASA Astrophysics Data System (ADS)

    Narayanan, Desika

    2014-10-01

    As the most luminous, heavily star-forming galaxies in the Universe, Submillimeter Galaxies at z 2-4 are key players in galaxy evolution. Since their discovery, SMGs have received significant attention from HST in characterizing their physical morphology, stellar masses, and star formation histories. Unfortunately, these physical constraints have been difficult for theorists to reconcile with galaxy formation simulations. Previous generations of simulations have all either {a} neglected baryons; {b} neglected radiative transfer {and connecting to observations}; or {c} neglected cosmological conditions. Here, we propose to conduct the first ever cosmological hydrodynamic simulations of Submillimeter Galaxy formation that couple with bona fide 3D dust radiative transfer calculations. These ultra-high resolution simulations {parsec-scale} will be the first to resolve the sites of dust obscuration, the cosmic growth history of SMGs, and their evolutionary destiny. Our proposal has two principle goals: {1} Develop the first ever model for SMG formation from cosmological simulations that include both baryons and dust radiative transfer; {2} Capitalize on our parsec-scale resolution to understand the connection between the physical properties of star-forming regions in high-z starbursts, and recent IMF constraints from present-epoch massive galaxies.

  7. A CANDIDATE FOR THE MOST LUMINOUS OB ASSOCIATION IN THE GALAXY

    SciTech Connect

    Rahman, Mubdi; Matzner, Christopher; Moon, Dae-Sik

    2011-02-20

    The Milky Way harbors giant H II regions, which may be powered by star complexes more luminous than any known Galactic OB association. Being across the disk of the Galaxy, however, these brightest associations are severely extinguished and confused. We present a search for one such association toward the most luminous H II region in the recent catalog by Murray and Rahman, which, at {approx}9.7 kpc, has a recombination rate of {approx}7 x 10{sup 51} s{sup -1}. Prior searches have identified only small-scale clustering around the rim of this shell-like region, but the primary association has not previously been identified. We apply a near-infrared color selection and find an overdensity of point sources toward its southern central part. The colors and magnitudes of these excess sources are consistent with O- and early B-type stars at extinctions 0.96 < A{sub K} < 1.2, and they are sufficiently numerous (406 {+-} 102 after subtraction of field sources) to ionize the surrounding H II region, making this a candidate for the most luminous OB association in the Galaxy. We reject an alternate theory, in which the apparent excess is caused by localized extinction, as inconsistent with source demographics.

  8. A Candidate for the Most Luminous OB Association in the Galaxy

    NASA Astrophysics Data System (ADS)

    Rahman, Mubdi; Matzner, Christopher; Moon, Dae-Sik

    2011-02-01

    The Milky Way harbors giant H II regions, which may be powered by star complexes more luminous than any known Galactic OB association. Being across the disk of the Galaxy, however, these brightest associations are severely extinguished and confused. We present a search for one such association toward the most luminous H II region in the recent catalog by Murray & Rahman, which, at ~9.7 kpc, has a recombination rate of ~7 × 1051 s-1. Prior searches have identified only small-scale clustering around the rim of this shell-like region, but the primary association has not previously been identified. We apply a near-infrared color selection and find an overdensity of point sources toward its southern central part. The colors and magnitudes of these excess sources are consistent with O- and early B-type stars at extinctions 0.96 < AK < 1.2, and they are sufficiently numerous (406 ± 102 after subtraction of field sources) to ionize the surrounding H II region, making this a candidate for the most luminous OB association in the Galaxy. We reject an alternate theory, in which the apparent excess is caused by localized extinction, as inconsistent with source demographics.

  9. WISE Discovery of Hyper Luminous Galaxies at z=2-4 and Their Implications for Galaxy and AGN Evolution

    NASA Technical Reports Server (NTRS)

    Tsai, Chao Wei; Eisenhardt, Peter; Wu, Jingwen; Bridge, Carrie; Assef, Roberto; Benford, Dominic; Blain, Andrew; Cutri, Roc; Griffith, Robert L.; Jarrett, Thomas; Lonsdale, Carol; Petty, Sara; Sayers, Jack; Stanford, Adam; Stern, Daniel; Wright, Edward L.; Yan, Lin

    2014-01-01

    On behalf of the WISE Science team, we present the discovery of a class of distant dust-enshrouded galaxies with extremely high luminosity. These galaxies are selected to have extreme red colors in the mid-IR using NASA's Wide-field Infrared Survey Explorer (WISE). They are faint in the optical and near-IR, predominantly at zeta = 2-4, and with IR luminosity > 10(exp 13) Solar Luminosity, making them Hyper-Luminous Infrared Galaxies (HyLIRGs). SEDs incorporating the WISE, Spitzer, and Herschel PACS and SPIRE photometry indicate hot dust dominates the bolometric luminosity, presumably powered by AGN. Preliminary multi-wavelength follow-up suggests that they are different from normal populations in the local M-sigma relation. Their low source density implies that these objects are either intrinsically rare, or a short-lived phase in a more numerous population. If the latter is the case, these hot, dust-enshrouded galaxies may be an early stage in the interplay between AGN and galaxies.

  10. Search for Obscured Nucleus in a Luminous IRAS Galaxy NGC 6240

    NASA Technical Reports Server (NTRS)

    Leighly, Karen

    1999-01-01

    IRAS discovered very luminous objects which emit the vast majority of their radiation in the infrared wavelength. The energy source of such a tremendous amount of emission is not understood. Starburst and active galactic nuclei (AGN) are thought to be the origin of their power. X-ray observations are expected to be able to reveal the characteristics of the AGN component. However, some are very X-ray quiet, because the AGN is thought to be obscured by a large column density. In order to determine the primary luminosity of the nucleus, we need an X-ray observation with a wide energy band at least up to several tens of keV. We propose to observe NGC 6240, one of the luminous IRAS galaxies, to investigate the characteristics of its AGN, which must be obscured by large column density.

  11. SPECTROSCOPIC CONFIRMATION OF THE DRAGONFISH ASSOCIATION: THE GALAXY'S MOST LUMINOUS OB ASSOCIATION

    SciTech Connect

    Rahman, Mubdi; Moon, Dae-Sik; Matzner, Christopher D.

    2011-12-20

    Young OB associations with masses greater than 10{sup 4} M{sub Sun} have been inferred to exist in the Galaxy but have largely evaded detection. Recently, a candidate OB association has been identified within the most luminous star-forming complex in the Galaxy, the Dragonfish Nebula. We identify 18 young, massive stars with near-infrared spectroscopy from a sample of 50 members within the candidate OB association, including 15 O-type and 3 luminous blue variables or Wolf-Rayet stars. This number matches the expected yield of massive stars from the candidate association, confirming its existence and ability to power the parent star-forming complex. These results demonstrate the existence of a 10{sup 5} M{sub Sun} OB association, more powerful than any previously known in the Galaxy, comparable in mass only to Westerlund 1. Further, the results also validate the color selection method used to identify the association, adding credence to others discovered in the same way.

  12. Photometric Redshift Survey Forecast for Luminous Red Galaxies at z 1.0

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosheng; Schlegel, D. J.

    2006-12-01

    We analyzed the data from the DEEP2 Redshift Survey to obtain the number densities for luminous red galaxies between z=0.4 and 1.2. Based on the DEEP photometric data in B, R and I bands and the spectroscopic redshift we synthesized spectrophotometry for the 4000 DEEP galaxies in the extended groth strip (EGS) field, using templates from the Kinney-Calzetti catalog and Coleman, Wu and Weedman. We determined the number densities in the redshift ranges of 0.4luminous red galaxy survey, the sound horizon scale can be measured to an accuracy of 1.2-2% and w to 6-10%. This work has been supported by the Office of Science, U.S. Department of Energy, through contract DE-AC02-05CH11231.

  13. LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS

    SciTech Connect

    Reid, Beth A.; Spergel, David N.; Bode, Paul E-mail: dns@astro.princeton.edu

    2009-09-01

    The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a {approx}10% correction in the underlying power spectrum at k = 0.1 h Mpc{sup -1} and {approx}40% correction at k = 0.2 h Mpc{sup -1} in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the {<=}1% level for k {<=} 0.1 h Mpc{sup -1} and {<=}4% at k = 0.2 h Mpc{sup -1}. The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter {beta} induced by the FOG smearing of the linear redshift space distortions.

  14. CO Spectral Line Energy Distributions of Infrared-Luminous Galaxies and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padeli P.; van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M.

    2010-06-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L IR(8-1000 μm) >~ 1011 L sun), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L IR>1012 L sun), and two powerful local active galactic nuclei (AGNs)—the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293—using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C+ line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these high-redshift starbursts, with genuinely low

  15. Structural Properties and Evidence for Interactions in a Sample of Luminous Blue Compact Galaxies

    NASA Astrophysics Data System (ADS)

    Newton, Cassidy L.; Fanelli, M.; Marcum, P.

    2010-01-01

    Understanding the life cycles of galaxies over cosmic time is a primary effort in modern astrophysics. Here we explore the nature of luminous blue compact galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue optical colors [(B-V) < 0.5], high luminosity (MB < -19), one or more high surface brightness regions, and moderate to high star formation rates [> 5 M(sun) per year]. LBCGs appear to be similar in their global properties to the early evolutionary phases of most galaxies, but are more amenable to detailed analysis due to their low redshifts. We describe an ultraviolet and optical investigation of a sample of 50 LBCGs using UBVR & Hα imagery obtained at McDonald Observatory, ultraviolet photometry from GALEX, and correlative data from IRAS, 2MASS, and SDSS. Using these data, we explore the evolutionary state of LBCGs. In particular, we determine the radial and azimuthal light distributions, explore the spatial extent of ionized gas (e.g., centrally- concentrated versus spatially diffuse), compare multiwavelength measures of the high-mass star formation rate, and quantify the interaction strength using a variety of merger diagnostics. Although selected independent of their environment, most systems display either a close companion or the signature of an interaction such as tails, bridges, and possible polar rings. Interpretation of the assembly history of LBCGs provides insight on massive galaxy evolution at earlier epochs.

  16. The Most Luminous Object in the Universe: Shrouded Quasar or Proto-Galaxy

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.

    1999-01-01

    We have used ASCA to observe the IRAS source FSC 10214+4724, which is identified with a galaxy at a redshift of 2.286. When first discovered, it was believed to be the most luminous object in the universe. Subsequent HST images have established that it is gravitationally-lensed by a foreground cluster. It is still a very powerful object, but not extraordinarily so. Observations at other wavebands have not established whether it is a dust-shrouded quasar or a young, massive galaxy in the process of formation. Since quasars are strong emitters of hard X-rays, while proto-galaxies would not be, and since the opacity of gas and dust is relatively small in the energy regime probed by ASCA (3 to 30 keV in the galaxy rest frame), we undertook these observations to search for a heavily shrouded quasar that might be invisible at lower energies. However, the observations did not detect any emission from this object. This either means that the galaxy is in fact powered by a starburst or that the putative quasar is located behind a very high column density of absorbing gas (N_H > 10(exp 25)/sq cm), so that not even hard X-rays are transmitted. A hidden quasar should be visible in reflected light in X-ray data of higher sensitivity. Observations with NASA's Chandra X-ray Observatory or ESA's XMM are required to settle the matter. No publication resulted from our null result.

  17. A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies.

    PubMed

    McDonald, M; Bayliss, M; Benson, B A; Foley, R J; Ruel, J; Sullivan, P; Veilleux, S; Aird, K A; Ashby, M L N; Bautz, M; Bazin, G; Bleem, L E; Brodwin, M; Carlstrom, J E; Chang, C L; Cho, H M; Clocchiatti, A; Crawford, T M; Crites, A T; de Haan, T; Desai, S; Dobbs, M A; Dudley, J P; Egami, E; Forman, W R; Garmire, G P; George, E M; Gladders, M D; Gonzalez, A H; Halverson, N W; Harrington, N L; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Jones, C; Joy, M; Keisler, R; Knox, L; Lee, A T; Leitch, E M; Liu, J; Lueker, M; Luong-Van, D; Mantz, A; Marrone, D P; McMahon, J J; Mehl, J; Meyer, S S; Miller, E D; Mocanu, L; Mohr, J J; Montroy, T E; Murray, S S; Natoli, T; Padin, S; Plagge, T; Pryke, C; Rawle, T D; Reichardt, C L; Rest, A; Rex, M; Ruhl, J E; Saliwanchik, B R; Saro, A; Sayre, J T; Schaffer, K K; Shaw, L; Shirokoff, E; Simcoe, R; Song, J; Spieler, H G; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Stubbs, C W; Suhada, R; van Engelen, A; Vanderlinde, K; Vieira, J D; Vikhlinin, A; Williamson, R; Zahn, O; Zenteno, A

    2012-08-16

    In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster's lifetime, leading to continuous 'cooling flows' of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates and cool gas masses for these 'cool-core' clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 10(45) erg s(-1)) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers. PMID:22895340

  18. Detection of CO(1 to 0) emission from infrared quasars and luminous Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, D. B.; Scoville, N. Z.; Zensus, A.; Soifer, B. T.; Wilson, T. L.

    1989-01-01

    CO(1 to 0) emission has been detected from the infrared quasar IRAS 07598+6508 and the luminous Seyfert galaxies IRAS 08572+3915 and Markarian 463 with the IRAM 30-m telescope. These objects were selected from a complete list of warm ultraluminous IRAS sources. The maximum redshift observed was 0.149 (cz = 44.621 km/s , IRAS 07598+6508). Assuming the same empirical relationship between CO brightness and H2 surface mass density as has been found for giant molecular clouds in the Milky Way, the mass of H2 gas in these objects is in the range 0.7 - 6 x 10 to the 10th solar masses, more than 2 - 20 times the H2 content of the Galaxy. The infrared and molecular gas properties of these galaxies are similar to other 'warm' ultraluminous infrared galaxies such as Mrk 231, and the UV-excess quasar Mrk 1014. It is suggested that objects such as these represent an important link in the evolution of ultraluminous infrared galaxies into UV-excess quasars.

  19. A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies

    NASA Astrophysics Data System (ADS)

    McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bazin, G.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Egami, E.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hrubes, J. D.; Jones, C.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-van, D.; Mantz, A.; Marrone, D. P.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Miller, E. D.; Mocanu, L.; Mohr, J. J.; Montroy, T. E.; Murray, S. S.; Natoli, T.; Padin, S.; Plagge, T.; Pryke, C.; Rawle, T. D.; Reichardt, C. L.; Rest, A.; Rex, M.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Simcoe, R.; Song, J.; Spieler, H. G.; Stalder, B.; Staniszewski, Z.; Stark, A. A.; Story, K.; Stubbs, C. W.; Šuhada, R.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2012-08-01

    In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster's lifetime, leading to continuous `cooling flows' of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates and cool gas masses for these `cool-core' clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 1045 erg s-1) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.

  20. Monsters in the dark: predictions for luminous galaxies in the early Universe from the BLUETIDES simulation

    NASA Astrophysics Data System (ADS)

    Waters, Dacen; Wilkins, Stephen M.; Di Matteo, Tiziana; Feng, Yu; Croft, Rupert; Nagai, Daisuke

    2016-09-01

    Using deep Hubble and Spitzer observations Oesch et al. have identified a bright (MUV ≈ -22) star-forming galaxy candidate at z ≈ 11. The presence of GN-z11 implies a number density ˜10-6 Mpc-3, roughly an order of magnitude higher than the expected value based on extrapolations from lower redshift. Using the unprecedented volume and high resolution of the BLUETIDES cosmological hydrodynamical simulation, we study the population of luminous rare objects at z > 10. The luminosity function in BLUETIDES implies an enhanced number of massive galaxies, consistent with the observation of GN-z11. We find about 30 galaxies at MUV ≈ -22 at z = 11 in the BLUETIDES volume, including a few objects about 1.5 mag brighter. The probability of observing GN-z11 in the volume probed by Oesch et al. is ˜13 per cent. The predicted properties of the rare bright galaxies at z = 11 in BLUETIDES closely match those inferred from the observations of GN-z11. BLUETIDES predicts a negligible contribution from faint AGN in the observed SED. The enormous increase in volume surveyed by WFIRST will provide observations of ˜1000 galaxies with MUV < -22 beyond z = 11 out to z = 13.5.

  1. Alma observations of nearby luminous infrared galaxies with various agn energetic contributions using dense gas tracers

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2014-07-01

    We present the results of our ALMA Cycle 0 observations, using HCN/HCO{sup +}/HNC J = 4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO{sup +} J = 4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J = 1-0 transition, while there is no clear difference in the HCN-to-HNC J = 4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO{sup +} J = 4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J = 4-3 emission relative to HCO{sup +} J = 4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.

  2. An ALMA Spectral Scan of the Obscured Luminous Infrared Galaxy NGC 4418

    NASA Astrophysics Data System (ADS)

    Costagliola, F.; Sakamoto, K.; Aalto, S.; Muller, S.; Martín, S.

    2015-12-01

    Until recently, the study of the molecular interstellar medium of galaxies has been mostly focused on a few, relatively abundant, molecular species. Recent attempts at modeling the molecular emission of active galaxies have shown that standard high-density tracers do not provide univocal results and are not able to discriminate between different relevant environments (e.g., star-formation vs AGN). Spectral lines surveys allow us to explore the richness of the molecular spectrum of galaxies, provide tighter constrains to astrochemical models, and find new more sensitive tracers of specific gas properties. What started as a time-consuming pioneering work has become now routinely accessible with the advent of ALMA. Here we report the results of the first ALMA spectral scan of an obscured luminous infrared galaxy (LIRG), NGC 4418. The galaxy has a very compact IR core and narrow emission lines that make it the perfect target for the study of vibrationally excited molecules. More than 300 emission lines from 45 molecular species were identified and modeled via an LTE and NLTE analysis. The molecular excitation and abundances derived offer a unique insight into the chemistry of obscured LIRGs.

  3. Luminous clusters of Wolf-Rayet stars in the SBmIII galaxy NGC 4214

    NASA Technical Reports Server (NTRS)

    Sargent, Wallace L. W.; Filippenko, Alexei V.

    1991-01-01

    Observations are reported of strong broad emission lines attributed to WR stars in the spectra of several bright knots in the nearby Magellanic irregular galaxy NGC 4214 (classified as type SBmIII), in addition to the emission produced by the more prevalent WN stars). Data are presented on measurements of the line fluxes, the line equivalent widths, and continuum flux densities in the four observed knots, showing that the strongest WR lines generally appear in knots having the most luminous stellar continuum. The significance of this observation is discussed.

  4. Extra-nuclear starbursts: young luminous Hinge clumps in interacting galaxies

    SciTech Connect

    Smith, Beverly J.; Giroux, Mark L.; Soria, Roberto; Struck, Curtis; Swartz, Douglas A.; Yukita, Mihoko E-mail: girouxm@etsu.edu E-mail: curt@iastate.edu

    2014-03-01

    Hinge clumps are luminous knots of star formation near the base of tidal features in some interacting galaxies. We use archival Hubble Space Telescope (HST) UV/optical/IR images and Chandra X-ray maps along with Galaxy Evolution Explorer UV, Spitzer IR, and ground-based optical/near-IR images to investigate the star forming properties in a sample of 12 hinge clumps in five interacting galaxies. The most extreme of these hinge clumps have star formation rates of 1-9 M {sub ☉} yr{sup –1}, comparable to or larger than the 'overlap' region of intense star formation between the two disks of the colliding galaxy system the Antennae. In the HST images, we have found remarkably large and luminous sources at the centers of these hinge clumps. These objects are much larger and more luminous than typical 'super star clusters' in interacting galaxies, and are sometimes embedded in a linear ridge of fainter star clusters, consistent with star formation along a narrow caustic. These central sources have FWHM diameters of ∼70 pc, compared to ∼3 pc in 'ordinary' super star clusters. Their absolute I magnitudes range from M{sub I} ∼ – 12.2 to –16.5; thus, if they are individual star clusters they would lie near the top of the 'super star cluster' luminosity function of star clusters. These sources may not be individual star clusters, but instead may be tightly packed groups of clusters that are blended together in the HST images. Comparison to population synthesis modeling indicates that the hinge clumps contain a range of stellar ages. This is consistent with expectations based on models of galaxy interactions, which suggest that star formation may be prolonged in these regions. In the Chandra images, we have found strong X-ray emission from several of these hinge clumps. In most cases, this emission is well-resolved with Chandra and has a thermal X-ray spectrum, thus it is likely due to hot gas associated with the star formation. The ratio of the extinction

  5. Sloshing Gas in the Core of the Most Luminous Galaxy Cluster RXJ1347.5-1145

    NASA Technical Reports Server (NTRS)

    Markevitch, Maxim; Giacintucci, S.; Dallacasa, D.; Venturi, T.; Brunetti, G.; Cassano, R.; Athreya, R. M.; Johnson, Ryan E.; Zuhone, John; Jones, Christine; Forman, William R.

    2011-01-01

    We present new constraints on the merger history of the most X-ray luminous cluster of galaxies, RXJ1347.5-1145, based its unique multiwavelength morphology. Our X-ray analysis confirms the core gas is undergoing "sloshing" resulting from a prior, large scale, gravitational perturbation. In combination with extensive multiwavelength observations, the sloshing gas points to the primary and secondary clusters having had at least two prior strong gravitational interactions. The evidence supports a model in which the secondary subcluster with mass M=4.8+/-2.4 x 10(exp 14) Stellar Mass has previously (> or approx.=0.6 Gyr ago) passed by the primary cluster, and has now returned for a subsequent crossing where the subcluster's gas has been completely stripped from its dark matter halo. RXJ1347 is a prime example of how core gas sloshing may be used to constrain the merger histories of galaxy clusters through multiwavelength analyses.

  6. Sloshing Gas in the Core of the Most Luminous Galaxy Cluster RXJ1347.5-1145

    NASA Technical Reports Server (NTRS)

    Johnson, Ryan E.; Zuhone, John; Jones, Christine; Forman, William R.; Markevitvh, Maxim

    2011-01-01

    We present new constraints on the merger history of the most X-ray luminous cluster of galaxies, RXJ1347.5-1145, based on its unique multiwavelength morphology. Our X-ray analysis confirms the core gas is undergoing "sloshing" resulting from a prior, large scale, gravitational perturbation. In combination with extensive multiwavelength observations, the sloshing gas points to the primary and secondary clusters having had at least two prior strong gravitational interactions. The evidence supports a model in which the secondary subcluster with mass M=4.8+/-2.4x10(exp 14) solar Mass has previously (> or approx.0.6 Gyr ago) passed by the primary cluster, and has now returned for a subsequent crossing where the subcluster's gas has been completely stripped from its dark matter halo. RXJ1347 is a prime example of how core gas sloshing may be used to constrain the merger histories of galaxy clusters through multiwavelength analyses.

  7. A Study of Four distant, Extremely X-Ray Luminous Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Tucker, Wallace

    1999-01-01

    We identified the extended Einstein IPC X-ray source 1 E 0657-56 with a previously unknown cluster of galaxies at a redshift of z = 0.296. Optical CCD images show the presence of a gravitational arc in this cluster, and galaxy spectra yield a cluster velocity dispersion of 1213(exp +352) - 191 km/s. X-ray data obtained with the ROSAT HRI and ASCA indicate that 1E 0657-56 is a highly luminous cluster in which a merger of subclusters may be occurring. The temperature of the hot gas in 1E 0657-56 is kT = l7.4 +/- 2.5 (keV) , which makes it an unusually hot cluster, with important cosmological implications. Follow-up work with optical, radio and X-ray telescopes is in progress.

  8. A Herschel Spectroscopic Survey of Warm Molecular Gas in Local Infrared Luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Lu, N.; Zhao, Y.; Xu, C. K.; Gao, Y.; GOALS FTS Team

    2013-03-01

    We describe an on-going 194-671 μm spectroscopic survey of a flux-limited sample of 125 local luminous infrared galaxies (LIRGs) with Herschel SPIRE Fourier Transform Spectrometer (FTS). The survey targets primarily the CO spectral line energy distribution (SLED), from J = 4-3 up to J = 13-12, to probe dense and warm molecular gas that should play an intimate role in star formation and/or active galactic nuclear activities in these galaxies. The program is about 75% finished. At S/N > 5, besides the CO lines, we also detected [N ii] 205 μm and [C i] 370 μm (3 P 2 - 3P1) lines in every target observed. In about half of the observed targets, we also detected [C i] 609 μm (3 P 1 - 3P0).

  9. A Herschel Spectroscopic Survey of Warm Molecular Gas in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Lu, Nanyao Y.; Zhao, Y.; Xu, C. K.; Gao, Y.; Armus, L.; Appleton, P. N.; Charmandaris, V.; Diaz Santos, T.; Evans, A. S.; Howell, J.; Issak, K.; Iwasawa, K.; Leech, J.; Lord, S. D.; Mazzarella, J. M.; Petric, A.; Sanders, D. B.; Schulz, B.; Surace, J. A.; Van der Werf, P.

    2013-01-01

    We describe an on-going Herschel 194-671 micron spectroscopic survey of a flux-limited sample of 125 local luminous infrared galaxies (LIRGs), targeting primarily at the spectral line energy distribution (SLED) of the CO rotational line emission (from J=4-3 up to J=13-12) from warm and dense molecular gas, the [NII] 205 micron line from ionized gas, and the [CI] 370 and 609 micron lines arising mainly from less dense and colder molecular gas where the CO (J=1-0) line is also strong. We present observational results for the first set of 65 sample galaxies that are more or less point sources with respect to the Herschel beams, and show statistical correlations among the shape of the CO SLED, CO line luminosities, IR dust luminosity, and whether a target is known to harbor AGN or not.

  10. SLOSHING GAS IN THE CORE OF THE MOST LUMINOUS GALAXY CLUSTER RXJ1347.5-1145

    SciTech Connect

    Johnson, Ryan E.; Zuhone, John; Jones, Christine; Forman, William R.; Markevitch, Maxim E-mail: cjf@cfa.harvard.edu E-mail: jzuhone@cfa.harvard.edu

    2012-06-01

    We present new constraints on the merger history of the most X-ray luminous cluster of galaxies, RXJ1347.5-1145, based on its unique multiwavelength morphology. Our X-ray analysis confirms that the core gas is undergoing 'sloshing' resulting from a prior, large-scale, gravitational perturbation. In combination with multiwavelength observations, the sloshing gas points to the primary and secondary clusters having had at least two prior strong gravitational interactions. The evidence supports a model in which the secondary subcluster with mass M = 4.8 {+-} 2.4 Multiplication-Sign 10{sup 14} M{sub Sun} has previously ({approx}>0.6 Gyr ago) passed by the primary cluster, and has now returned for a subsequent crossing where the subcluster's gas has been completely stripped from its dark matter halo. RXJ1347 is a prime example of how core gas sloshing may be used to constrain the merger histories of galaxy clusters through multiwavelength analyses.

  11. HERSCHEL OBSERVATIONS OF FAR-INFRARED COOLING LINES IN INTERMEDIATE REDSHIFT (ULTRA)-LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rigopoulou, D.; Magdis, G. E.; Thatte, N.; Hopwood, R.; Clements, D.; Swinyard, B. M.; Pearson, C.; Farrah, D.; Huang, J.-S.; Alonso-Herrero, A.; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Smith, A.; Wang, L.; Riechers, D.; Scott, D.; Vaccari, M.; Valtchanov, I.

    2014-01-20

    We report the first results from a spectroscopic survey of the [C II] 158 μm line from a sample of intermediate redshift (0.2 luminous infrared galaxies, (U)LIRGs (L {sub IR} > 10{sup 11.5} L {sub ☉}), using the Spectral and Photometric Imaging REceiver-Fourier Transform Spectrometer on board the Herschel Space Observatory. This is the first survey of [C II] emission, an important tracer of star formation, at a redshift range where the star formation rate density of the universe increases rapidly. We detect strong [C II] 158 μm line emission from over 80% of the sample. We find that the [C II] line is luminous, in the range (0.8-4) × 10{sup –3} of the far-infrared continuum luminosity of our sources, and appears to arise from photodissociation regions on the surface of molecular clouds. The L{sub [C} {sub II]}/L {sub IR} ratio in our intermediate redshift (U)LIRGs is on average ∼10 times larger than that of local ULIRGs. Furthermore, we find that the L{sub [C} {sub II]}/L {sub IR} and L{sub [CII]}/L{sub CO(1-0)} ratios in our sample are similar to those of local normal galaxies and high-z star-forming galaxies. ULIRGs at z ∼ 0.5 show many similarities to the properties of local normal and high-z star-forming galaxies. Our findings strongly suggest that rapid evolution in the properties of the star-forming regions of (U)LIRGs is likely to have occurred in the last 5 billion years.

  12. AN INTEGRAL FIELD STUDY OF ABUNDANCE GRADIENTS IN NEARBY LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rich, J. A.; Kewley, L. J.; Dopita, M. A.; Torrey, P.; Rupke, D. S. N.

    2012-07-01

    We present for the first time metallicity maps generated using data from the Wide Field Spectrograph on the ANU 2.3 m of 10 luminous infrared galaxies (LIRGs) and discuss the abundance gradients and distribution of metals in these systems. We have carried out optical integral field spectroscopy (IFS) of several LIRGs in various merger phases to investigate the merger process. In a major merger of two spiral galaxies with preexisting disk abundance gradients, the changing distribution of metals can be used as a tracer of gas flows in the merging system as low-metallicity gas is transported from the outskirts of each galaxy to their nuclei. We employ this fact to probe merger properties by using the emission lines in our IFS data to calculate the gas-phase metallicity in each system. We create abundance maps and subsequently derive a metallicity gradient from each map. We compare our measured gradients to merger stage as well as several possible tracers of merger progress and observed nuclear abundances. We discuss our work in the context of previous abundance gradient observations and compare our results to new galaxy merger models that trace metallicity gradient. Our results agree with the observed flattening of metallicity gradients as a merger progresses. We compare our results with new theoretical predictions that include chemical enrichment. Our data show remarkable agreement with these simulations.

  13. The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.

    1994-01-01

    We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.

  14. OT2_peisenha_2: The Most Luminous Obscured Galaxies and Quasars Revealed by WISE and Herschel

    NASA Astrophysics Data System (ADS)

    Eisenhardt, P.

    2011-09-01

    NASA's Wide-field Infrared Survey Explorer (WISE) has surveyed the entire sky at 3.4, 4.6, 12 and 22 microns (W1, W2, W3, and W4), reaching sensitivities hundreds of times deeper than IRAS. We have used WISE photometry to select an all-sky sample of objects which are extremely luminous. The objects are prominent in W4, but faint or undetected in W1 and W2 (W12drops). Followup spectroscopy of ~ 100 sources shows over 70% of W12drops have redshifts > 1.6, which with OT1 PACS and SPIRE photometry of 27 sources leads to over 1E13 solar luminosities, with ~ 10% exceeding 1E14 solar luminosities. High resolution adaptive optics imaging shows these objects are unlensed. We request 47.3 hours of Herschel time to complete the all-sky sample of the brightest 185 W12 drops, fulfilling the primary WISE objective of finding the most extreme luminous IR galaxies in the Universe. These superlative objects will be the most fruitful for detailed studies of the physics of star formation, AGN fueling, and feedback in the most active galaxies.

  15. Spectroscopy of Luminous Compact Blue Galaxies in Distant Clusters. I. Spectroscopic Data

    NASA Astrophysics Data System (ADS)

    Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A.; Hon, Kimo

    2011-11-01

    We used the DEIMOS spectrograph on the Keck II Telescope to obtain spectra of galaxies in the fields of five distant, rich galaxy clusters over the redshift range 0.5 < z < 0.9 in a search for luminous compact blue galaxies (LCBGs). Unlike traditional studies of galaxy clusters, we preferentially targeted blue cluster members identified via multi-band photometric pre-selection based on imaging data from the WIYN telescope. Of the 1288 sources that we targeted, we determined secure spectroscopic redshifts for 848 sources, yielding a total success rate of 66%. Our redshift measurements are in good agreement with those previously reported in the literature, except for 11 targets which we believe were previously in error. Within our sample, we confirm the presence of 53 LCBGs in the five galaxy clusters. The clusters all stand out as distinct peaks in the redshift distribution of LCBGs with the average number density of LCBGs ranging from 1.65 ± 0.25 Mpc-3 at z = 0.55 to 3.13 ± 0.65 Mpc-3 at z = 0.8. The number density of LCBGs in clusters exceeds the field density by a factor of 749 ± 116 at z = 0.55; at z = 0.8, the corresponding ratio is E = 416 ± 95. At z = 0.55, this enhancement is well above that seen for blue galaxies or the overall cluster population, indicating that LCBGs are preferentially triggered in high-density environments at intermediate redshifts. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  16. Are Luminous cD Halos Formed by the Disruption of Dwarf Galaxies?

    NASA Astrophysics Data System (ADS)

    López-Cruz, Omar; Yee, H. K. C.; Brown, James P.; Jones, Christine; Forman, William

    1997-02-01

    From a total sample of 45 Abell clusters observed by the Einstein X-ray observatory, we present the results on the galaxy luminosity function (LF) for a group of seven clusters that were identified by the morphology of their LFs. The LFs were derived using photometric data to a completeness limit ~5.5 mag below M*. We found that a single Schechter function with an average α ~ -1.0 gives a good fit to these individual LFs within the magnitude range. These seven clusters have common properties, which indicate they form a homogeneous class of dynamically evolved clusters that can be characterized by the presence of a dominant cD galaxy, high richness, symmetrical single-peaked X-ray emission, and high gas mass. On the other hand, steep faint-end slopes (-2.0 <= α <= -1.4) are usually detected in poorer clusters. Our result gives a direct indication that the faint-end slope of the galaxy LF is subject to environmental effects. We propose that the flatness of the faint-end slope in these clusters results from the disruption of a large fraction of dwarf galaxies during the early stages of cluster evolution. The stars and gas from the disrupted galaxies are redistributed throughout the cluster potential during violent relaxation. This heuristic scenario can explain the origin of the luminous halos of cD galaxies and a large fraction of the gas content in the intracluster medium as a by-product. The correlation between the cluster gas mass determined from the modeling of the X-ray emission and the cD halo optical luminosity is presented to support the proposed model.

  17. Morphologies and Color Gradients of Luminous Evolved Galaxies at z ~ 1.5

    NASA Astrophysics Data System (ADS)

    McGrath, Elizabeth J.; Stockton, Alan; Canalizo, Gabriela; Iye, Masanori; Maihara, Toshinori

    2008-07-01

    We have examined in detail the morphologies of seven z ~ 1.5 passively evolving luminous red galaxies using high-resolution HST NICMOS and ACS imaging data. Almost all of these galaxies appear to be relaxed systems, with smooth morphologies at both rest-frame UV and visible wavelengths. Previous results from spectral synthesis modeling favor a single burst of star formation more than 1 Gyr before the observed epoch. The prevalence of old stellar populations, however, does not correlate exclusively with early-type morphologies as it does in the local universe; the light profiles for some of these galaxies appear to be dominated by massive exponential disks. This evidence for massive old disks, along with the apparent uniformity of stellar age across the disk, suggests formation by a mechanism better described as a form of monolithic collapse than as a hierarchical merger. These galaxies could not have undergone a single major merging event since the bulk of their stars were formed, more than 1 Gyr earlier. There is at least one case, however, that appears to be undergoing a "dry merger," which may be an example of the process that converts these unusual galaxies into the familiar spheroids that dominate galaxies comprising old stellar populations at the present epoch. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-10418.

  18. Mapping luminous blue compact galaxies with VIRUS-P. Morphology, line ratios, and kinematics

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; García Lorenzo, B.; Kelz, A.; Roth, M.; Papaderos, P.; Streicher, O.

    2012-11-01

    Context. Blue compact galaxies (BCG) are narrow emission-line systems that undergo a violent burst of star formation. They are compact, low-luminosity galaxies, with blue colors and low chemical abundances, which offer us a unique opportunity to investigate collective star formation and its effects on galaxy evolution in a relatively simple, dynamically unperturbed environment. Spatially resolved spectrophotometric studies of BCGs are essential for a better understanding of the role of starburst-driven feedback processes on the kinematical and chemical evolution of low-mass galaxies near and far. Aims: We carry out an integral field spectroscopy (IFS) study of a sample of luminous BCGs, with the aim to probe the morphology, kinematics, dust extinction, and excitation mechanisms of their warm interstellar medium (ISM). Methods: We obtained IFS data for five luminous BCGs with VIRUS-P, the prototype instrument for the Visible Integral Field Replicable Unit Spectrograph, attached to the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory. VIRUS-P consists of a square array of 247 optical fibers, which covers a 109″ × 109″ field of view, with a spatial sampling of 4farcs2 and a 0.3 filling factor. We observed in the 3550-5850 Å spectral range, with a resolution of 5 Å FWHM. From these data we built two-dimensional maps of the continuum and the most prominent emission-lines ([O ii] λ3727, Hγ, Hβ and [O iii] λ5007), and investigated the morphology of diagnostic emission-line ratios and the extinction patterns in the ISM as well as stellar and gas kinematics. Additionally, from integrated spectra we inferred total line fluxes and luminosity-weighted extinction coefficients and gas-phase metallicities. Results: All galaxies exhibit an overall regular morphology in the stellar continuum, while their warm ISM morphology is more complex: in II Zw 33 and Mrk 314, the star-forming regions are aligned along a chain-structure; Haro 1, NGC 4670 and III Zw 102

  19. OT1_nlu_1: Herschel Spectroscopic Survey of Warm Molecular Gas in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Lu, N.

    2010-07-01

    We propose to survey CO spectral line energy distribution (SLED), from J=4-3 up to J=13-12, on 93 local luminous infrared galaxies (LIRGs; L_{IR} > 1.0E11 L_{sun}) with Herschel SPIRE FTS spectrometer. These galaxies, plus 32 additional LIRGs that will have similar data from existing Herschel programs (mainly the HerCULES project), form a flux-limited subset of the Great Observatories All-Sky LIRGs Survey (GOALS) sample. Our proposal is built on the legacy of GOALS and extends beyond the existing Herschel HerCULES program, which emphasizes more on ULIRGs, to a much needed sample coverage of the more numerous and diverse population of less luminous LIRGs. The data from the proposed observations will not only provide much needed local LIRG templates for future ALMA studies of high-redshift counterparts, but also lend us a powerful diagnostic tool to probe the warm and dense molecular gas that are more closely related to the starburst or AGN activity in the nuclei of LIRGs. The data from this proposal will provide important statistical clues to the interplay between the cold and warm molecular gas, IR luminosity, star formation rate and efficiency, and the diverse properties of LIRGs. Specifically, using the homogeneous CO SLED data from this proposal, together with ground-base, low-order CO line data (mainly J=1-0) and other data that have been compiled for the GOALS sample, we will address the following questions: (1) What is the dominant nuclear power source in individual sample galaxy: starburst or AGN? (2) What are the typical physical properties of warm molecular gas in the nuclei of LIRGs? (3) How do the nuclear warm gas components correlate to the cold gas component, star formation rate and efficiency, dust temperature, etc? and (4) How does molecular gas excitation change along a merger sequence?

  20. Mapping the Spatial Distribution of Molecular Hydrogen and PAH emission in Nearby Galaxies with the Spitzer Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Brunner, Gregory; Dufour, R. J.; Sheth, K.; Armus, L.; Schinnerer, E.; Vogel, S.; Wolfire, M.

    2007-12-01

    We have embarked on an archival program to map the spatial distribution of pure rotational molecular hydrogen (H2) line emission and polycyclic aromatic hydrogen (PAH) emission (from the 6.2, 7.7, 8.6, 11.3, 12.7, and 17.1 micron PAH features) in nearby galaxies using spatially resolved Spitzer IRS spectra acquired as part of the Spitzer Infrared Nearby Galaxies Survey (SINGS) and other Spitzer programs. We present maps of the H2 and PAH emission for several galaxies (M51, M95, and NGC 3521). We compare the emission distributions in order to understand how H2, PAHs, and ionized gas are spatially correlated across dynamically distinct regions in nearby galaxies. This work is based on observations and archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by both AURA grant GO10822.1 and an award issued by JPL/Caltech to Rice University.

  1. UNUSUAL PAH EMISSION IN NEARBY EARLY-TYPE GALAXIES: A SIGNATURE OF AN INTERMEDIATE-AGE STELLAR POPULATION?

    SciTech Connect

    Vega, O.; Bressan, A.; Panuzzo, P.; Granato, G. L.; Silva, L.; Zeilinger, W. W.

    2010-10-01

    We present the analysis of Spitzer-IRS spectra of four early-type galaxies (ETGs), NGC 1297, NGC 5044, NGC 6868, and NGC 7079, all classified as LINERs in the optical bands. Their IRS spectra present the full series of H{sub 2} rotational emission lines in the range 5-38 {mu}m, atomic lines, and prominent polycyclic aromatic hydrocarbon (PAH) features. We investigate the nature and origin of the PAH emission, characterized by unusually low 6-9/11.3 {mu}m interband ratios. After the subtraction of a passive ETG template, we find that the 7-9 {mu}m spectral region requires dust features not normally present in star-forming galaxies. Each spectrum is then analyzed with the aim of identifying their components and origin. In contrast to normal star-forming galaxies, where cationic PAH emission prevails, our 6-14 {mu}m spectra seem to be dominated by large and neutral PAH emission, responsible for the low 6-9/11.3 {mu}m ratios, plus two broad dust emission features peaking at 8.2 {mu}m and 12 {mu}m. These broad components, observed until now mainly in evolved carbon stars and usually attributed to pristine material, contribute approximately 30%-50% of the total PAH flux in the 6-14 {mu}m region. We propose that the PAH molecules in our ETGs arise from fresh carbonaceous material that is continuously released by a population of carbon stars, formed in a rejuvenation episode that occurred within the last few Gyr. The analysis of the MIR spectra allows us to infer that, in order to maintain the peculiar size and charge distributions biased to large and neutral PAHs, this material must be shocked and excited by the weak UV interstellar radiation field of our ETGs.

  2. Luminous red galaxies in clusters: central occupation, spatial distributions and miscentring

    NASA Astrophysics Data System (ADS)

    Hoshino, Hanako; Leauthaud, Alexie; Lackner, Claire; Hikage, Chiaki; Rozo, Eduardo; Rykoff, Eli; Mandelbaum, Rachel; More, Surhud; More, Anupreeta; Saito, Shun; Vulcani, Benedetta

    2015-09-01

    Luminous red galaxies (LRG) from the Sloan Digital Sky Survey are among the best understood samples of galaxies and are employed in a broad range of cosmological studies. In this paper, we study how LRGs occupy massive haloes via counts in clusters and reveal several unexpected trends. Using the red-sequence Matched-filter Probabilistic Percolation (redMaPPer) cluster catalogue, we derive the central occupation of LRGs as a function richness. We show that clusters contain a significantly lower fraction of central LRGs than predicted from the two-point correlation function. At halo masses of 1014.5 M⊙, we find Ncen = 0.73 compared to Ncen = 0.89 from correlation studies. Our central occupation function for LRGs converges to 0.95 at large halo masses. A strong anticorrelation between central luminosity and cluster mass at fixed richness is required to reconcile our results with those based on clustering studies. We derive the probability that the brightest cluster member is not the central galaxy. We find PBNC ≈ 20-30 per cent which is a factor of ˜2 lower than the value found by Skibba et al. Finally, we study the radial offsets of bright non-central LRGs from cluster centres and show that bright non-central LRGs follow a different radial distribution compared to red cluster members. This work demonstrates that even the most massive clusters do not always have an LRG at the centre, and that the brightest galaxy in a cluster is not always the central galaxy.

  3. A Remarkably Luminous Galaxy at z=11.1 Measured with Hubble Space Telescope Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Oesch, P. A.; Brammer, G.; van Dokkum, P. G.; Illingworth, G. D.; Bouwens, R. J.; Labbé, I.; Franx, M.; Momcheva, I.; Ashby, M. L. N.; Fazio, G. G.; Gonzalez, V.; Holden, B.; Magee, D.; Skelton, R. E.; Smit, R.; Spitler, L. R.; Trenti, M.; Willner, S. P.

    2016-03-01

    We present Hubble WFC3/IR slitless grism spectra of a remarkably bright z ≳ 10 galaxy candidate, GN-z11, identified initially from CANDELS/GOODS-N imaging data. A significant spectroscopic continuum break is detected at λ =1.47+/- 0.01 μ {{m}}. The new grism data, combined with the photometric data, rule out all plausible lower redshift solutions for this source. The only viable solution is that this continuum break is the Lyα break redshifted to {z}{grism}={11.09}-0.12+0.08, just ˜400 Myr after the Big Bang. This observation extends the current spectroscopic frontier by 150 Myr to well before the Planck (instantaneous) cosmic reionization peak at z ˜ 8.8, demonstrating that galaxy build-up was well underway early in the reionization epoch at z > 10. GN-z11 is remarkably, and unexpectedly, luminous for a galaxy at such an early time: its UV luminosity is 3× larger than {L}* measured at z ˜ 6-8. The Spitzer IRAC detections up to 4.5 μm of this galaxy are consistent with a stellar mass of ˜109 M⊙. This spectroscopic redshift measurement suggests that James Webb Space Telescope (JWST) will be able to similarly and easily confirm such sources at z > 10 and characterize their physical properties through detailed spectroscopy. Furthermore, WFIRST, with its wide-field near-IR imaging, would find large numbers of similar galaxies and contribute greatly to JWST's spectroscopy, if it is launched early enough to overlap with JWST.

  4. Intrinsic Ellipticity Correlation of SDSS Luminous Red Galaxies and Misalignment with Their Host Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Jing, Y. P.; Li, Cheng

    2009-03-01

    We investigate the orientation correlation of giant elliptical galaxies by measuring the intrinsic ellipticity correlation function of 83,773 luminous red galaxies (LRGs) at redshifts 0.16-0.47 from the Sloan Digital Sky Survey. We have accurately determined the correlation up to 30 h-1 Mpc. Luminosity dependence of the ellipticity correlation is also detected although the error bars are large, while no evidence is found for its redshift evolution between z = 0.2 and z = 0.4. Then we use a cosmological N-body simulation to examine misalignment between the central LRGs and their parent dark matter halos. Central and satellite galaxies are assigned to simulated halos by employing a halo occupation distribution model for the LRGs. The ellipticity correlation is predicted to have the same shape as, but an amplitude about four times higher than, our observation if the central LRGs are perfectly aligned with their host halos. This indicates that the central LRG galaxies are preferentially but not perfectly aligned with their host halos. With the assumption that there is a misalignment angle between a central LRG and its host halo which follows a Gaussian distribution with a zero mean and a width σθ, we obtain a tight constraint on the misalignment parameter, σθ = 35.4+4.0 -3.3 deg. This type of intrinsic ellipticity correlation, if not corrected, can lead to contamination at 5% level to the shear power spectrum in weak lensing surveys of limiting magnitude RAB = 24.5 if the source central galaxies follow the same misalignment distribution as the LRGs.

  5. A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    SciTech Connect

    Magdis, Georgios E.; Rigopoulou, D.; Hopwood, R.; Clements, D.; Huang, J.-S.; Farrah, D.; Pearson, C.; Alonso-Herrero, Almudena; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Perez Fournon, I.; Riechers, D.; Swinyard, B. M.; Thatte, N.; Scott, D.; Valtchanov, I.; Vaccari, M.

    2014-11-20

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ≤ z ≤ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L {sub IR} > 10{sup 11.5} L {sub ☉}). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L {sub C} {sub II}/L {sub FIR} ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L {sub C} {sub II}–L {sub FIR} relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L {sub C} {sub II}/L {sub FIR} ratio and the far-IR color L {sub 60}/L {sub 100} observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L {sub C} {sub II}/L {sub FIR} at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L {sub C} {sub II}/L {sub FIR} ratios, the moderate star formation efficiencies (L {sub IR}/L{sub CO}{sup ′} or L {sub IR}/M{sub H{sub 2}}), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the

  6. Hydrogen fluoride toward luminous nearby galaxies: NGC 253 and NGC 4945

    SciTech Connect

    Monje, R. R.; Lis, D. C.; Phillips, T. G.; Lord, S.; Falgarone, E.; Güsten, R.

    2014-04-10

    We present the detection of hydrogen fluoride (HF) in two luminous nearby galaxies, NGC 253 and NGC 4945 using the Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory. The HF line toward NGC 253 has a P-Cygni profile, while an asymmetric absorption profile is seen toward NGC 4945. The P-Cygni profile in NGC 253 suggests an outflow of molecular gas with a mass of M(H{sub 2}){sub out} ∼ 1 × 10{sup 7} M {sub ☉} and an outflow rate as large as M-dot ∼6.4 M {sub ☉} yr{sup –1}. In the case of NGC 4945, the axisymmetric velocity components in the HF line profile are compatible with the interpretation of a fast-rotating nuclear ring surrounding the nucleus and the presence of inflowing gas. The gas falls into the nucleus with an inflow rate of ≤1.2 M {sub ☉} yr{sup –1}, inside an inner radius of ≤200 pc. The gas accretion rate to the central active galactic nucleus is much smaller, suggesting that the inflow may be triggering a nuclear starburst. From these results, the HF J = 1-0 line is seen to provide an important probe of the kinematics of absorbing material along the sight-line to nearby galaxies with bright dust continuum and a promising new tracer of molecular gas in high-redshift galaxies.

  7. Lensing measurements of the ellipticity of luminous red galaxies dark matter haloes

    NASA Astrophysics Data System (ADS)

    Clampitt, Joseph; Jain, Bhuvnesh

    2016-04-01

    Lensing measurements of the shapes of dark matter haloes can provide tests of gravity theories and possible dark matter interactions. We measure the quadrupole weak lensing signal from the elliptical haloes of 70 000 Sloan Digital Sky Survey luminous red galaxies. We use a new estimator that nulls the spherical halo lensing signal, isolating the shear due to anisotropy in the dark matter distribution. One of the two Cartesian components of our estimator is insensitive to the primary systematic, a spurious alignment of lens and source ellipticities, allowing us to make robust measurements of halo ellipticity. Our best-fitting value for the ellipticity of the surface mass density is 0.24 ± 0.06, which translates to an axis ratio of 0.78. We rule out the hypothesis of no ellipticity at the 4σ confidence level, and ellipticity <0.12 (axis ratio >0.89) at the 2σ level. We discuss how our measurements of halo ellipticity are revised to higher values using estimates of the misalignment of mass and light from simulations. Finally, we apply the same techniques to a smaller sample of redMaPPer galaxy clusters and obtain a 3σ measurement of cluster ellipticity. We discuss how the improved signal-to-noise ratio properties of our estimator can enable studies of halo shapes for different galaxy populations with upcoming surveys.

  8. Hydrogen Fluoride toward Luminous Nearby Galaxies: NGC 253 and NGC 4945

    NASA Astrophysics Data System (ADS)

    Monje, R. R.; Lord, S.; Falgarone, E.; Lis, D. C.; Neufeld, D. A.; Phillips, T. G.; Güsten, R.

    2014-04-01

    We present the detection of hydrogen fluoride (HF) in two luminous nearby galaxies, NGC 253 and NGC 4945 using the Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory. The HF line toward NGC 253 has a P-Cygni profile, while an asymmetric absorption profile is seen toward NGC 4945. The P-Cygni profile in NGC 253 suggests an outflow of molecular gas with a mass of M(H2)out ~ 1 × 107 M ⊙ and an outflow rate as large as dot M ~6.4 M ⊙ yr-1. In the case of NGC 4945, the axisymmetric velocity components in the HF line profile are compatible with the interpretation of a fast-rotating nuclear ring surrounding the nucleus and the presence of inflowing gas. The gas falls into the nucleus with an inflow rate of <=1.2 M ⊙ yr-1, inside an inner radius of <=200 pc. The gas accretion rate to the central active galactic nucleus is much smaller, suggesting that the inflow may be triggering a nuclear starburst. From these results, the HF J = 1-0 line is seen to provide an important probe of the kinematics of absorbing material along the sight-line to nearby galaxies with bright dust continuum and a promising new tracer of molecular gas in high-redshift galaxies.

  9. Lymanα Emission from a Luminous z = 8.68 Galaxy: Implications for Galaxies as Tracers of Cosmic Reionization

    NASA Astrophysics Data System (ADS)

    Zitrin, Adi; Labbé, Ivo; Belli, Sirio; Bouwens, Rychard; Ellis, Richard S.; Roberts-Borsani, Guido; Stark, Daniel P.; Oesch, Pascal A.; Smit, Renske

    2015-09-01

    We report the discovery of Lyman-alpha emission (Lyα) in the bright galaxy EGSY-2008532660 (hereafter EGSY8p7) using the Multi-Object Spectrometer For Infra-Red Exploration spectrograph at the Keck Observatory. First reported by Roberts-Borsani et al., this galaxy was selected for spectroscopic observations because of its photometric redshift ({z}{phot}={8.57}-0.43+0.22), apparent brightness (H{}160=25.26+/- 0.09), and red Spitzer/IRAC [3.6]-[4.5] color indicative of contamination by strong oxygen emission in the [4.5] band. With a total integration of ˜4.3 hr, our data reveal an emission line at ≃11776 Å that we argue is likely Lyα at a redshift of {z}{spec}={8.683}-0.004+0.001, in good agreement with the photometric estimate. The line was detected independently on two nights using different slit orientations and its detection significance is ˜ 7.5σ . An overlapping skyline contributes significantly to the uncertainty on the total line flux, although the significance of the detected line is robust to a variety of skyline-masking procedures. By direct addition and a Gaussian fit, we estimate a 95% confidence range of 1.0-2.5 × 10-17 erg s-1 cm-2, corresponding to a rest-frame equivalent width of 17-42 Å. EGSY8p7 is the most distant spectroscopically confirmed galaxy to date, and the third luminous source in the EGS field beyond {z}{phot}≳ 7.5 with detectable Lyα emission, viewed at a time when the intergalactic medium is believed to be fairly neutral. Although the reionization process was probably patchy, we discuss whether luminous sources with prominent IRAC color excesses may harbor harder ionizing spectra than the dominant fainter population, thereby creating earlier ionized bubbles. Further spectroscopic follow-up of such bright sources promises important insights into the early formation of galaxies.

  10. CO SPECTRAL LINE ENERGY DISTRIBUTIONS OF INFRARED-LUMINOUS GALAXIES AND ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Papadopoulos, Padeli P.; Van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M. E-mail: pvdwerf@strw.leidenuniv.n E-mail: xilouris@astro.noa.g

    2010-06-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L {sub IR}(8-1000 {mu}m) {approx}> 10{sup 11} L {sub sun}), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L {sub IR}>10{sup 12} L {sub sun}), and two powerful local active galactic nuclei (AGNs)-the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293-using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C{sup +} line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these

  11. A MAP OF THE INTEGRATED SACHS-WOLFE SIGNAL FROM LUMINOUS RED GALAXIES

    SciTech Connect

    Granett, Benjamin R.; Neyrinck, Mark C.; Szapudi, Istvan

    2009-08-10

    We construct a map of the time derivative of the gravitational potential traced by Sloan Digital Sky Survey luminous red galaxies (LRGs). The potential decays on large scales due to cosmic acceleration, leaving an imprint on cosmic microwave background (CMB) radiation through the integrated Sachs-Wolfe (ISW) effect. With a template fit, we directly measure this signature on the CMB at a 2{sigma} confidence level. The measurement is consistent with the cross-correlation statistic, strengthening the claim that dark energy is indeed the cause of the correlation. This new approach potentially simplifies the cosmological interpretation. Our constructed linear ISW map shows no evidence for degree-scale cold and hot spots associated with supervoid and supercluster structures. This suggests that the linear ISW effect in a concordance {lambda}CDM cosmology is insufficient to explain the strong CMB imprints from these structures that we previously reported.

  12. HOST GALAXIES OF LUMINOUS TYPE 2 QUASARS AT z {approx} 0.5

    SciTech Connect

    Liu Xin; Greene, Jenny E.; Strauss, Michael A.; Zakamska, Nadia L.; Krolik, Julian H.; Heckman, Timothy M.

    2009-09-10

    We present deep Gemini GMOS optical spectroscopy of nine luminous quasars at redshifts z {approx} 0.5, drawn from the Sloan Digital Sky Survey type 2 quasar sample. Our targets were selected to have high intrinsic luminosities (M{sub V} < -26 mag) as indicated by the [O III] {lambda}5007 A emission-line luminosity (L[{sub OIII}]). Our sample has a median black hole mass of {approx}10{sup 8.8} M{sub sun} inferred assuming the local M {sub BH}-{sigma}{sub *} relation and a median Eddington ratio of {approx}0.7, using stellar velocity dispersions {sigma}{sub *} measured from the G band. We estimate the contamination of the stellar continuum from scattered quasar light based on the strength of broad H{beta}, and provide an empirical calibration of the contamination as a function of L {sub [OIII]}; the scattered-light fraction is {approx}30% of L{sub 5100} for objects with L {sub [OIII]} = 10{sup 9.5} L{sub sun}. Population synthesis indicates that young poststarburst populations (<0.1 Gyr) are prevalent in luminous type 2 quasars, in addition to a relatively old population (>1 Gyr) which dominates the stellar mass. Broad emission complexes around He II {lambda}4686 A with luminosities up to 10{sup 8.3} L{sub sun} are unambiguously detected in three out of the nine targets, indicative of Wolf-Rayet (WR) populations. Population synthesis shows that {approx}5 Myr poststarburst populations contribute substantially to the luminosities (>50% of L{sub 5100}) of all three objects with WR detections. We find two objects with double cores and four with close companions. Our results may suggest that luminous type 2 quasars trace an early stage of galaxy interaction, perhaps responsible for both the quasar and the starburst activity.

  13. The Luminous Infrared Host Galaxy of Short-duration GRB 100206A

    NASA Astrophysics Data System (ADS)

    Perley, D. A.; Modjaz, M.; Morgan, A. N.; Cenko, S. B.; Bloom, J. S.; Butler, N. R.; Filippenko, A. V.; Miller, A. A.

    2012-10-01

    The known host galaxies of short-hard gamma-ray bursts (GRBs) to date are characterized by low to moderate star formation rates (SFRs) and a broad range of stellar masses, in general agreement with models associating the phenomenon with an old progenitor, such as merging neutron stars. In this paper, we positionally associate the recent unambiguously short-hard Swift GRB 100206A with a disk galaxy at redshift z = 0.4068 that is rapidly forming stars at a rate of ~30 M ⊙ yr-1, almost an order of magnitude higher than any previously identified short-GRB host. The galaxy is very red (g - K = 4.3 AB mag), heavily obscured (AV ≈ 2 mag), and has the highest metallicity of any GRB host to date (12 + log[O/H]KD02 = 9.2): it is a classical luminous infrared galaxy (LIRG), with L IR ≈ 4 × 1011 L ⊙. While these properties could be interpreted to support an association of this GRB with recent star formation, modeling of the broadband spectral energy distribution also indicates that a substantial stellar mass of mostly older stars is also present. The specific SFR is modest (sSFR ≈ 0.5 Gyr-1), the current SFR is not substantially elevated above its long-term average, and the host morphology shows no sign of recent merger activity. Our observations are therefore equally consistent with an older progenitor. Given the precedent established by previous short-GRB hosts and the significant fraction of the universe's stellar mass in LIRG-like systems at z >~ 0.3, an older progenitor represents the most likely origin of this event.

  14. THE LUMINOUS INFRARED HOST GALAXY OF SHORT-DURATION GRB 100206A

    SciTech Connect

    Perley, D. A.; Modjaz, M.; Morgan, A. N.; Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Miller, A. A.; Butler, N. R.

    2012-10-20

    The known host galaxies of short-hard gamma-ray bursts (GRBs) to date are characterized by low to moderate star formation rates (SFRs) and a broad range of stellar masses, in general agreement with models associating the phenomenon with an old progenitor, such as merging neutron stars. In this paper, we positionally associate the recent unambiguously short-hard Swift GRB 100206A with a disk galaxy at redshift z = 0.4068 that is rapidly forming stars at a rate of {approx}30 M {sub Sun} yr{sup -1}, almost an order of magnitude higher than any previously identified short-GRB host. The galaxy is very red (g - K = 4.3 AB mag), heavily obscured (A{sub V} Almost-Equal-To 2 mag), and has the highest metallicity of any GRB host to date (12 + log[O/H]{sub KD02} = 9.2): it is a classical luminous infrared galaxy (LIRG), with L {sub IR} Almost-Equal-To 4 Multiplication-Sign 10{sup 11} L {sub Sun }. While these properties could be interpreted to support an association of this GRB with recent star formation, modeling of the broadband spectral energy distribution also indicates that a substantial stellar mass of mostly older stars is also present. The specific SFR is modest (sSFR Almost-Equal-To 0.5 Gyr{sup -1}), the current SFR is not substantially elevated above its long-term average, and the host morphology shows no sign of recent merger activity. Our observations are therefore equally consistent with an older progenitor. Given the precedent established by previous short-GRB hosts and the significant fraction of the universe's stellar mass in LIRG-like systems at z {approx}> 0.3, an older progenitor represents the most likely origin of this event.

  15. The angular power spectra of photometric Sloan Digital Sky Survey luminous red galaxies

    NASA Astrophysics Data System (ADS)

    Thomas, Shaun A.; Abdalla, Filipe B.; Lahav, Ofer

    2011-04-01

    We construct new galaxy angular power spectra Cℓ based on the extended, updated and final Sloan Digital Sky Survey (SDSS) II luminous red galaxy (LRG) photometric redshift survey - MegaZ (DR7). Encapsulating 7746 deg2 we utilize 723 556 photometrically determined LRGs between 0.45 < z < 0.65 in a 3.3 (Gpc h-1)3 spherical harmonic analysis of the galaxy distribution. By combining four photometric redshift bins, we find preliminary parameter constraints of fb≡Ωb/Ωm= 0.173 ± 0.046 and Ωm= 0.260 ± 0.035 assuming H0= 75 km s-1 Mpc-1, ns= 1 and Ωk= 0. These limits are consistent with the cosmic microwave background and the previous data release (DR4). The Cℓ are sensitive to redshift space distortions and therefore we also recast our constraints into a measurement of β≈Ω0.55m/b in different redshift shells. The robustness of these power spectra with respect to a number of potential systematics such as extinction, photometric redshift and ANNz training set extrapolation are examined. The latter includes a cosmological comparison of available photometric redshift estimation codes where we find excellent agreement between template and empirical estimation methods. MegaZ DR7 represents a methodological prototype to next generation surveys such as the Dark Energy Survey and, furthermore, is a photometric precursor to the spectroscopic BOSS survey. Our galaxy catalogue and all power spectra data can be found at .

  16. The Strikingly Uniform, Highly Turbulent Interstellar Medium of the Most Luminous Galaxy in the Universe

    NASA Astrophysics Data System (ADS)

    Díaz-Santos, T.; Assef, R. J.; Blain, A. W.; Tsai, C.-W.; Aravena, M.; Eisenhardt, P.; Wu, J.; Stern, D.; Bridge, C.

    2016-01-01

    Observed at z = 4.601 and with {L}{{bol}} = 3.5 × {10}14 {L}⊙ , W2246-0526 is the most luminous galaxy known in the universe and hosts a deeply buried active galactic nucleus (AGN)/supermassive black hole (SMBH). Discovered using the Wide-field Infrared Survey Explorer, W2246-0526 is classified as a hot dust-obscured galaxy, based on its luminosity and dust temperature. Here, we present spatially resolved ALMA [C ii]157.7 μm observations of W2246-0526, providing unique insight into the kinematics of its interstellar medium (ISM). The measured [C ii] -to-far-infrared ratio is ˜ 2 × {10}-4, implying ISM conditions that compare only with the most obscured, compact starbursts and AGNs in the local universe today. The spatially resolved [C ii] line is strikingly uniform and very broad, 500-600 km s-1 wide, extending throughout the entire galaxy over about 2.5 kpc, with modest shear. Such a large, homogeneous velocity dispersion indicates a highly turbulent medium. W2246-0526 is unstable in terms of the energy and momentum that are being injected into the ISM, strongly suggesting that the gas is being blown away from the system isotropically, likely reflecting a cathartic state on its road to becoming an unobscured quasar. W2246-0526 provides an extraordinary laboratory to study and model the properties and kinematics of gas in an extreme environment under strong feedback, at a time when the universe was 1/10 of its current age: a system pushing the limits that can be reached during galaxy formation.

  17. LUMINOUS X-RAY ACTIVE GALACTIC NUCLEI IN CLUSTERS OF GALAXIES

    SciTech Connect

    Koulouridis, E.; Plionis, M.

    2010-05-10

    We present a study of X-ray active galactic nucleus (AGN) overdensities in 16 Abell clusters, within the redshift range 0.073 < z < 0.279, in order to investigate the effect of the hot inter-cluster environment on the triggering of the AGN phenomenon. The X-ray AGN overdensities, with respect to the field expectations, were estimated for sources with L{sub x} {>=} 10{sup 42} erg s{sup -1} (at the redshift of the clusters) and within an area of 1 h {sup -1} {sub 72} Mpc radius (excluding the core). To investigate the presence or absence of a true enhancement of luminous X-ray AGNs in the cluster area, we also derived the corresponding optical galaxy overdensities, using a suitable range of r-band magnitudes. We always find the latter to be significantly higher (and only in two cases roughly equal) with respect to the corresponding X-ray overdensities. Over the whole cluster sample, the mean X-ray point-source overdensity is a factor of {approx}4 less than that corresponding to bright optical galaxies, a difference which is significant at a >0.995 level, as indicated by an appropriate student's t-test. We conclude that the triggering of luminous X-ray AGNs in rich clusters is strongly suppressed. Furthermore, searching for optical Sloan Digital Sky Survey counterparts of all the X-ray sources, associated with our clusters, we found that about half appear to be background QSOs, while others are background and foreground AGNs or stars. The true overdensity of X-ray point sources, associated with the clusters, is therefore even smaller than what our statistical approach revealed.

  18. EXPLAINING THE [C II]157.7 {mu}m DEFICIT IN LUMINOUS INFRARED GALAXIES-FIRST RESULTS FROM A HERSCHEL/PACS STUDY OF THE GOALS SAMPLE

    SciTech Connect

    Diaz-Santos, T.; Armus, L.; Howell, J. H.; Surace, J. A.; Charmandaris, V.; Murphy, E. J.; Haan, S.; Inami, H.; Malhotra, S.; Meijerink, R.; Stacey, G.; Petric, A. O.; Lu, N.; Veilleux, S.; Van der Werf, P. P.; Lord, S.; Appleton, P.; and others

    2013-09-01

    We present the first results of a survey of the [C II]157.7 {mu}m emission line in 241 luminous infrared galaxies (LIRGs) comprising the Great Observatories All-sky LIRG Survey (GOALS) sample, obtained with the PACS instrument on board the Herschel Space Observatory. The [C II] luminosities, L{sub [C{sub II]}}, of the LIRGs in GOALS range from {approx}10{sup 7} to 2 Multiplication-Sign 10{sup 9} L{sub Sun }. We find that LIRGs show a tight correlation of [C II]/FIR with far-IR (FIR) flux density ratios, with a strong negative trend spanning from {approx}10{sup -2} to 10{sup -4}, as the average temperature of dust increases. We find correlations between the [C II]/FIR ratio and the strength of the 9.7 {mu}m silicate absorption feature as well as with the luminosity surface density of the mid-IR emitting region ({Sigma}{sub MIR}), suggesting that warmer, more compact starbursts have substantially smaller [C II]/FIR ratios. Pure star-forming LIRGs have a mean [C II]/FIR {approx} 4 Multiplication-Sign 10{sup -3}, while galaxies with low polycyclic aromatic hydrocarbon (PAH) equivalent widths (EWs), indicative of the presence of active galactic nuclei (AGNs), span the full range in [C II]/FIR. However, we show that even when only pure star-forming galaxies are considered, the [C II]/FIR ratio still drops by an order of magnitude, from 10{sup -2} to 10{sup -3}, with {Sigma}{sub MIR} and {Sigma}{sub IR}, implying that the [C II]157.7 {mu}m luminosity is not a good indicator of the star formation rate (SFR) for most local LIRGs, for it does not scale linearly with the warm dust emission most likely associated to the youngest stars. Moreover, even in LIRGs in which we detect an AGN in the mid-IR, the majority (2/3) of galaxies show [C II]/FIR {>=} 10{sup -3} typical of high 6.2 {mu}m PAH EW sources, suggesting that most AGNs do not contribute significantly to the FIR emission. We provide an empirical relation between the [C II]/FIR and the specific SFR for star

  19. Kinematics of the ionized gas around ultra-luminous X-ray sources in nearby spiral galaxies.

    NASA Astrophysics Data System (ADS)

    Fuentes-Carrera, Isaura L.; Sánchez Cruces, Mónica; Rosado, Margarita; Benitez-Benitez, Claudia; Salinas-Martínez, Alfredo; Aguilera, Verónica; Cruz-Reyes, Mariana

    2016-07-01

    We present scanning Fabry-Perot observations of the ionized gas surrounding ultra-luminous X-ray sources in four nearby spiral galaxies. We identify non-circular motions that may be associated with either isotropically or beamed expanding gas. Most of the sources observed show asymmetrical distribution of the ionized emission as well as asymmetrical distribution of gas motions. We also study the location of these sources in the context of the whole galaxy in different wavelengths. This work is part of an analysis to determine the nature of these sources and their correlation (if any) with the kinematics of host galaxy.

  20. VizieR Online Data Catalog: Luminous X-ray candidates within D25 of galaxies (Gong+, 2016)

    NASA Astrophysics Data System (ADS)

    Gong, H.; Liu, J.; Maccarone, T.

    2016-02-01

    Using Chandra archive data we conduct a thorough survey of luminous X-ray sources. We directly analyze about 9400 ACIS Observations and cross-correlate the X-ray sources with 77000 galaxies within 250Mpc. The final catalog includes 119 unique luminous X-ray source candidates with LX>3x1040erg/s from 93 galaxies or 41 HLX candidates with LX>1x1041erg/s from 35 galaxies. We derive a moderate contamination rate due to foreground or background sources. We also cross-correlate the catalog with FIRST, perform variability and periodicity tests, and analyze one HLX candidate in particular. Our catalog could be a starting point to perform follow-up observations. (2 data files).

  1. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Luminous Red Galaxy Target Selection

    NASA Astrophysics Data System (ADS)

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; Ross, Ashley J.; Myers, Adam D.; Dawson, Kyle S.; Kneib, Jean-Paul; Percival, Will J.; Bautista, Julian E.; Comparat, Johan; Tinker, Jeremy L.; Schlegel, David J.; Tojeiro, Rita; Ho, Shirley; Lang, Dustin; Rao, Sandhya M.; McBride, Cameron K.; Ben Zhu, Guangtun; Brownstein, Joel R.; Bailey, Stephen; Bolton, Adam S.; Delubac, Timothée; Mariappan, Vivek; Blanton, Michael R.; Reid, Beth; Schneider, Donald P.; Seo, Hee-Jong; Carnero Rosell, Aurelio; Prada, Francisco

    2016-06-01

    We describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer. LRG targets are required to meet a set of color selection criteria and have z-band and i-band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ∼89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.

  2. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Luminous Red Galaxy Target Selection

    NASA Astrophysics Data System (ADS)

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; Ross, Ashley J.; Myers, Adam D.; Dawson, Kyle S.; Kneib, Jean-Paul; Percival, Will J.; Bautista, Julian E.; Comparat, Johan; Tinker, Jeremy L.; Schlegel, David J.; Tojeiro, Rita; Ho, Shirley; Lang, Dustin; Rao, Sandhya M.; McBride, Cameron K.; Ben Zhu, Guangtun; Brownstein, Joel R.; Bailey, Stephen; Bolton, Adam S.; Delubac, Timothée; Mariappan, Vivek; Blanton, Michael R.; Reid, Beth; Schneider, Donald P.; Seo, Hee-Jong; Carnero Rosell, Aurelio; Prada, Francisco

    2016-06-01

    We describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer. LRG targets are required to meet a set of color selection criteria and have z-band and i-band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ˜89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.

  3. The molecular gas in Luminous Infrared Galaxies: a new emergent picture

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; Zhang, Zhi-Yu; Weiss, Axel; van der Werf, Paul; Isaak, Kate; Gao, Yu; Xilouris, Manolis; Greve, Thomas R.

    2013-03-01

    Results from a large, multi-J CO, 13CO, and HCN line survey of Luminous Infrared Galaxies (LIRGs: LIR≥ 1010 L⊙) in the local Universe (z≤0.1), complemented by CO J=4-3 up to J=13-12 observations from the Herschel Space Observatory (HSO), paints a new picture for the average conditions of the molecular gas of the most luminous of these galaxies with turbulence and/or large cosmic ray (CR) energy densities UCR rather than far-UV/optical photons from star-forming sites as the dominant heating sources. Especially in ULIRGs (LIR>1012 L⊙) the Photon Dominated Regions (PDRs) can encompass at most a few % of their molecular gas mass while the large UCR˜ 103 UCR, Galaxy, and the strong turbulence in these merger/starbursts, can volumetrically heat much of their molecular gas to Tkin˜ (100-200) K, unhindered by the high dust extinctions. Moreover the strong supersonic turbulence in ULIRGs relocates much of their molecular gas at much higher average densities (≥104 cm-3) than in isolated spirals (˜ 102-103 cm-3). This renders low-J CO lines incapable of constraining the properties of the bulk of the molecular gas in ULIRGs, with substantial and systematic underestimates of its mass possible when only such lines are used. Finally a comparative study of multi-J HCN lines and CO SLEDs from J=1-0 up to J=13-12 of NGC 6240 and Arp 193 offers a clear example of two merger/starbursts whose similar low-J CO SLEDs, and LIR/LCO,1-0 and LHCN, 1-0/LCO,1-0 ratios (proxies of the so-called SF efficiency and dense gas mass fraction), yield no indications about their strongly diverging CO SLEDs beyond J=4-3, and ultimately the different physical conditions in their molecular ISM. The much larger sensitivity of ALMA and its excellent site in the Atacama desert now allows the observations necessary to assess the dominant energy sources of the molecular gas and its mass in LIRGs without depending on the low-J CO lines.

  4. Evolutionary Paths along the BPT Diagram for Luminous and Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Fiorenza, Stephanie L.; Takeuchi, Tsutomu T.; Małek, Katarzyna E.; Liu, Charles T.

    2014-04-01

    The evolutionary connection between nuclear starbursts and active galactic nuclei (AGNs) in luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies (ULIRGs), which result from galaxy interactions and mergers and produce the bulk of their radiation as infrared (IR) emission, is not well understood. To this effort, we present and examine new spectrophotometric data for five U/LIRGs (1011 < L IR < 1013 L ⊙) within the IRAS 2 Jy Redshift Survey with 0.05 <~ z <~ 0.07. We show that our sample consists almost entirely of composite objects—thus hosting both a nuclear starburst and an AGN—using the BPT diagrams. We then show that for our sample of U/LIRGs the properties that describe their nuclear starbursts and AGNs (e.g., star formation rate, L[O III], optical D parameter, D4000, and EW(Hδ)) are independent of one another, ensuring that no biases affect correlations between these parameters and the object locations on the BPT diagrams. Finally, we derive evolutionary paths on the BPT diagram involving {[N\\,{\\scriptsize{II}}]/H\\alpha } that are based on how these parameters vary between two U/LIRGs positioned at the end-points of these paths. The U/LIRGs at the end-points of a given path represent the beginning and end states of a U/LIRG evolving along that path. These paths may be able to specifically explain how all local U/LIRGs evolve along the BPT diagram, and serve as a starting point for future quantitative analysis on the evolution of U/LIRGs.

  5. Cross-correlation of the extragalactic gamma-ray background with luminous red galaxies

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Horiuchi, Shunsaku; Yoshida, Naoki

    2015-12-01

    Measurements of the cross-correlation between the extragalactic gamma-ray background (EGB) and large-scale structure provide a novel probe of dark matter on extragalactic scales. We focus on luminous red galaxies (LRGs) as optimal targets to search for the signal of dark matter annihilation. We measure the cross-correlation function of the EGB taken from the Fermi Large Area Telescope with the LRGs from the Sloan Digital Sky Survey. Statistical errors are calculated using a large set of realistic mock LRG catalogs. The amplitude of the measured cross-correlation is consistent with null detection. Based on an accurate theoretical model of the distribution of dark matter associated with LRGs, we exclude dark matter annihilation cross-sections over ⟨σ v ⟩=3 ×10-25- 1 0-26 cm3 s-1 for a 10 GeV dark matter. We further investigate systematic effects due to uncertainties in the Galactic gamma-ray foreground emission, which we find to be an order of magnitude smaller than the current statistical uncertainty. We also estimate the contamination from astrophysical sources in the LRGs by using known scaling relations between gamma-ray luminosity and star-formation rate, finding them to be negligibly small. Based on these results, we suggest that LRGs remain ideal targets for probing dark matter annihilation with future EGB measurement and galaxy surveys. Increasing the number of LRGs in upcoming galaxy surveys such as LSST would lead to big improvements of factors of several in sensitivity.

  6. Evolutionary paths along the BPT diagram for luminous and ultraluminous infrared galaxies

    SciTech Connect

    Fiorenza, Stephanie L.; Takeuchi, Tsutomu T.; Małek, Katarzyna E.; Liu, Charles T.

    2014-04-01

    The evolutionary connection between nuclear starbursts and active galactic nuclei (AGNs) in luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies (ULIRGs), which result from galaxy interactions and mergers and produce the bulk of their radiation as infrared (IR) emission, is not well understood. To this effort, we present and examine new spectrophotometric data for five U/LIRGs (10{sup 11} < L {sub IR} < 10{sup 13} L {sub ☉}) within the IRAS 2 Jy Redshift Survey with 0.05 ≲ z ≲ 0.07. We show that our sample consists almost entirely of composite objects—thus hosting both a nuclear starburst and an AGN—using the BPT diagrams. We then show that for our sample of U/LIRGs the properties that describe their nuclear starbursts and AGNs (e.g., star formation rate, L[O III], optical D parameter, D4000, and EW(Hδ)) are independent of one another, ensuring that no biases affect correlations between these parameters and the object locations on the BPT diagrams. Finally, we derive evolutionary paths on the BPT diagram involving [N II]/Hα that are based on how these parameters vary between two U/LIRGs positioned at the end-points of these paths. The U/LIRGs at the end-points of a given path represent the beginning and end states of a U/LIRG evolving along that path. These paths may be able to specifically explain how all local U/LIRGs evolve along the BPT diagram, and serve as a starting point for future quantitative analysis on the evolution of U/LIRGs.

  7. Modelling the colour evolution of luminous red galaxies - improvements with empirical stellar spectra

    NASA Astrophysics Data System (ADS)

    Maraston, Claudia; Strömbäck, G.; Thomas, D.; Wake, D. A.; Nichol, R. C.

    2009-03-01

    Predicting the colours of luminous red galaxies (LRGs) in the Sloan Digital Sky Survey has been a long-standing problem. The g, r, i colours of LRGs are inconsistent with stellar population models over the redshift range 0.1 < z < 0.7. We provide a solution to this problem, through a combination of new astrophysics and a fundamental change to the stellar population modelling. We find that the use of the empirical library of Pickles, in place of theoretical libraries based on model atmosphere calculations, modifies the evolutionary population synthesis predicted colours exactly in the way suggested by the data. The reason is a lower (normalized) flux in the empirical libraries, with respect to the theoretical ones, in the wavelength range 5500-6500 Å. The effect increases with decreasing effective temperature roughly independently of gravity. We also find that other recent libraries such as MILES and STELIB behave the same way. We further verified that [α/Fe] effects on stellar spectra cannot substitute the effect of the empirical library because they make both colours bluer. The astrophysical part of our solution regards the composition of the stellar populations of these massive LRGs. We find that on top of the previous effect one needs to consider a model in which ~3 per cent of the stellar mass is in old metal-poor stars. Other solutions such as an overall slightly subsolar metallicity or young stellar populations can be ruled out by the data. The percentage of the metal-poor subpopulation may be affected by the consideration of abundance-ratio effects though in the framework of present calculations the metal-poor option is favoured. Our new model provides a better fit to the colours of LRGs and gives new insight into the formation histories of these most massive galaxies. The new model will also improve the k- and evolutionary corrections for LRGs which are critical for fully exploiting present and future galaxy surveys.

  8. Understanding the nature of luminous red galaxies (LRGs): connecting LRGs to central and satellite subhaloes

    NASA Astrophysics Data System (ADS)

    Masaki, Shogo; Hikage, Chiaki; Takada, Masahiro; Spergel, David N.; Sugiyama, Naoshi

    2013-08-01

    We develop a novel abundance matching method to construct a mock catalogue of luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS), using catalogues of haloes and subhaloes in N-body simulations for a Λ-dominated cold dark matter model. Motivated by observations suggesting that LRGs are passively evolving, massive early-type galaxies with a typical age ≳5 Gyr, we assume that simulated haloes at z = 2 (z2-halo) are progenitors for LRG-host subhaloes observed today, and we label the most tightly bound particles in each progenitor z2-halo as LRG `stars'. We then identify the subhaloes containing these stars to z = 0.3 (SDSS redshift) in descending order of the masses of z2-haloes until the comoving number density of the matched subhaloes becomes comparable to the measured number density of SDSS LRGs, bar{n}_LRG=10^{-4} h^3 Mpc^{-3}. Once the above prescription is determined, our only free parameter is the number density of haloes identified at z = 2 and this parameter is fixed to match the observed number density at z = 0.3. By tracing subsequent merging and assembly histories of each progenitor z2-halo, we can directly compute, from the mock catalogue, the distributions of central and satellite LRGs and their internal motions in each host halo at z = 0.3. While the SDSS LRGs are galaxies selected by the magnitude and colour cuts from the SDSS images and are not necessarily a stellar-mass-selected sample, our mock catalogue reproduces a host of SDSS measurements: the halo occupation distribution for central and satellite LRGs, the projected autocorrelation function of LRGs, the cross-correlation of LRGs with shapes of background galaxies (LRG-galaxy weak lensing) and the non-linear redshift-space distortion effect, the Finger-of-God effect, in the angle-averaged redshift-space power spectrum. The mock catalogue generated based on our method can be used for removing or calibrating systematic errors in the cosmological interpretation of LRG clustering

  9. THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE {sup 56}Ni PRODUCTION

    SciTech Connect

    Chen, Ting-Wan; Smartt, Stephen J.; Kotak, Rubina; McCrum, Matt; Fraser, Morgan; Bresolin, Fabio; Kudritzki, Rolf-Peter; Pastorello, Andrea; Valenti, Stefano

    2013-02-01

    Super-luminous supernovae have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. While these extremely luminous explosions have been observed from z = 0.1 to 1.55, the closest explosions allow more detailed investigations of their host galaxies. We present a detailed analysis of the host galaxy of SN 2010gx (z = 0.23), one of the best studied super-luminous type Ic supernovae. The host is a dwarf galaxy (M{sub g} = -17.42 {+-} 0.17) with a high specific star formation rate. It has a remarkably low metallicity of 12 + log (O/H) = 7.5 {+-} 0.1 dex as determined from the detection of the [O III] {lambda}4363 line. This is the first reliable metallicity determination of a super-luminous stripped-envelope supernova host. We collected deep multi-epoch imaging with Gemini + GMOS between 240 and 560 days after explosion to search for any sign of radioactive {sup 56}Ni, which might provide further insights on the explosion mechanism and the progenitor's nature. We reach griz magnitudes of m{sub AB} {approx} 26, but do not detect SN 2010gx at these epochs. The limit implies that any {sup 56}Ni production was similar to or below that of SN 1998bw (a luminous type Ic SN that produced around 0.4 M{sub Sun} of {sup 56}Ni). The low volumetric rates of these supernovae ({approx}10{sup -4} of the core-collapse population) could be qualitatively matched if the explosion mechanism requires a combination of low-metallicity (below 0.2 Z{sub Sun }), high progenitor mass (>60 M{sub Sun }) and high rotation rate (fastest 10% of rotators).

  10. SPECTROSCOPY OF LUMINOUS z > 7 GALAXY CANDIDATES AND SOURCES OF CONTAMINATION IN z > 7 GALAXY SEARCHES

    SciTech Connect

    Capak, P.; Jullo, E.; Mobasher, B.; Scoville, N. Z.; Salvato, M.; McCracken, H.; Ilbert, O.; Menendez-Delmestre, K.; Aussel, H.; LeFloch, E.; Carilli, C.; Civano, F.; Elvis, M.; Giavalisco, M.; Kartaltepe, J.; Sanders, D. B.; Leauthaud, A.; Koekemoer, A. M.; Kneib, J.-P.; Schinnerer, E.

    2011-04-01

    We present three bright z{sup +}-dropout candidates selected from deep near-infrared (NIR) imaging of the COSMOS 2 deg{sup 2} field. All three objects match the 0.8-8 {mu}m colors of other published z > 7 candidates but are 3 mag brighter, facilitating further study. Deep spectroscopy of two of the candidates covering 0.64-1.02 {mu}m with Keck-DEIMOS and all three covering 0.94-1.10 {mu}m and 1.52-1.80 {mu}m with Keck-NIRSPEC detects weak spectral features tentatively identified as Ly{alpha} at z = 6.95 and z = 7.69 in two of the objects. The third object is placed at z {approx} 1.6 based on a 24 {mu}m and weak optical detection. A comparison with the spectral energy distributions of known z < 7 galaxies, including objects with strong spectral lines, large extinction, and large systematic uncertainties in the photometry, yields no objects with similar colors. However, the {lambda} > 1 {mu}m properties of all three objects can be matched to optically detected sources with photometric redshifts at z {approx} 1.8, so the non-detection in the i {sup +} and z {sup +} bands is the primary factor which favors a z > 7 solution. If any of these objects are at z {approx} 7, the bright end of the luminosity function is significantly higher at z > 7 than suggested by previous studies, but consistent within the statistical uncertainty and the dark matter halo distribution. If these objects are at low redshift, the Lyman break selection must be contaminated by a previously unknown population of low-redshift objects with very strong breaks in their broadband spectral energy distributions and blue NIR colors. The implications of this result on luminosity function evolution at high redshift are discussed. We show that the primary limitation of z > 7 galaxy searches with broad filters is the depth of the available optical data.

  11. MOLECULAR GAS IN LENSED z >2 QUASAR HOST GALAXIES AND THE STAR FORMATION LAW FOR GALAXIES WITH LUMINOUS ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Riechers, Dominik A.

    2011-04-01

    We report the detection of luminous CO(J = 2{yields}1), CO(J = 3{yields}2), and CO(J = 4{yields}3) emission in the strongly lensed high-redshift quasars B1938+666 (z = 2.059), HE 0230-2130 (z = 2.166), HE 1104-1805 (z = 2.322), and B1359+154 (z = 3.240), using the Combined Array for Research in Millimeter-wave Astronomy. B1938+666 was identified in a 'blind' CO redshift search, demonstrating the feasibility of such investigations with millimeter interferometers. These galaxies are lensing-amplified by factors of {mu}{sub L} {approx_equal} 11-170, and thus allow us to probe the molecular gas in intrinsically fainter galaxies than currently possible without the aid of gravitational lensing. We report lensing-corrected intrinsic CO line luminosities of L'{sub CO} = 0.65-21x10{sup 9} K km s{sup -1} pc{sup 2}, translating to H{sub 2} masses of M(H{sub 2}) = 0.52-17 x 10{sup 9} ({alpha}{sub CO}/0.8) M{sub sun}. To investigate whether or not the active galactic nucleus (AGN) in luminous quasars substantially contributes to L{sub FIR}, we study the L'{sub CO}-L{sub FIR} relation for quasars relative to galaxies without a luminous AGN as a function of redshift. We find no substantial differences between submillimeter galaxies and high-z quasars, but marginal evidence for an excess in L{sub FIR} in nearby low-L{sub FIR} AGN galaxies. This may suggest that an AGN contribution to L{sub FIR} is significant in systems with relatively low gas and dust content, but only minor in the most far-infrared-luminous galaxies (in which L{sub FIR} is dominated by star formation).

  12. The molecular gas in luminous infrared galaxies - I. CO lines, extreme physical conditions and their drivers

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; van der Werf, Paul P.; Xilouris, E. M.; Isaak, K. G.; Gao, Yu; Mühle, S.

    2012-11-01

    We report results from a large molecular line survey of luminous infrared galaxies (LIRGs; L IR ≳1011 L) in the local Universe (z ≤ 0.1), conducted during the last decade with the James Clerk Maxwell Telescope and the IRAM 30-m telescope. This work presents the CO and 13CO line data for 36 galaxies, further augmented by multi-J total CO line luminosities available for other infrared (IR) bright galaxies from the literature. This yields a combined sample of N = 70 galaxies with the star formation (SF) powered fraction of their IR luminosities spanning L IR (*)˜(1010-2×1012) L and a wide range of morphologies. Simple comparisons of their available CO spectral line energy distributions (SLEDs) with local ones, as well as radiative transfer models, discern a surprisingly wide range of average interstellar medium (ISM) conditions, with most of the surprises found in the high-excitation regime. These take the form of global CO SLEDs dominated by a very warm (Tkin ≳100 K) and dense (n ≥ 104 cm-3) gas phase, involving galaxy-sized (˜(few) × 109 M⊙) gas mass reservoirs under conditions that are typically found only for ˜(1-3) per cent of mass per typical SF molecular cloud in the Galaxy. Furthermore, some of the highest excitation CO SLEDs are found in ultraluminous infrared galaxies (ULIRGs; LIR ≥ 1012 L⊙) and surpass even those found solely in compact SF-powered hot spots in Galactic molecular clouds. Strong supersonic turbulence and high cosmic ray energy densities rather than far-ultraviolet/optical photons or supernova remnant induced shocks from individual SF sites can globally warm the large amounts of dense gas found in these merger-driven starbursts and easily power their extraordinary CO line excitation. This exciting possibility can now be systematically investigated with Herschel and the Atacama Large Milimeter Array (ALMA). As expected for an IR-selected (and thus SF rate selected) galaxy sample, only few 'cold' CO SLEDs are found, and for

  13. Host Galaxies of Luminous Type 2 Quasars at z ~ 0.5

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Zakamska, Nadia L.; Greene, Jenny E.; Strauss, Michael A.; Krolik, Julian H.; Heckman, Timothy M.

    2009-09-01

    We present deep Gemini GMOS optical spectroscopy of nine luminous quasars at redshifts z ~ 0.5, drawn from the Sloan Digital Sky Survey type 2 quasar sample. Our targets were selected to have high intrinsic luminosities (MV < -26 mag) as indicated by the [O III] λ5007 Å emission-line luminosity (L [O III]). Our sample has a median black hole mass of ~108.8 M sun inferred assuming the local M BH-σ* relation and a median Eddington ratio of ~0.7, using stellar velocity dispersions σ* measured from the G band. We estimate the contamination of the stellar continuum from scattered quasar light based on the strength of broad Hβ, and provide an empirical calibration of the contamination as a function of L [O III]; the scattered-light fraction is ~30% of L 5100 for objects with L [O III] = 109.5 L sun. Population synthesis indicates that young poststarburst populations (<0.1 Gyr) are prevalent in luminous type 2 quasars, in addition to a relatively old population (>1 Gyr) which dominates the stellar mass. Broad emission complexes around He II λ4686 Å with luminosities up to 108.3 L sun are unambiguously detected in three out of the nine targets, indicative of Wolf-Rayet (WR) populations. Population synthesis shows that ~5 Myr poststarburst populations contribute substantially to the luminosities (>50% of L 5100) of all three objects with WR detections. We find two objects with double cores and four with close companions. Our results may suggest that luminous type 2 quasars trace an early stage of galaxy interaction, perhaps responsible for both the quasar and the starburst activity. Based, in part, on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada

  14. The Relation Between Accretion Rate And Jet Power in X-Ray Luminous Elliptical Galaxies

    SciTech Connect

    Allen, Steven W.; Dunn, R.J.H.; Fabian, A.C.; Taylor, G.B.; Reynolds, C.S.; /Maryland U.

    2006-03-10

    Using Chandra X-ray observations of nine nearby, X-ray luminous elliptical galaxies with good optical velocity dispersion measurements, we show that a tight correlation exists between the Bondi accretion rates calculated from the observed gas temperature and density profiles and estimated black hole masses, and the power emerging from these systems in relativistic jets. The jet powers, which are inferred from the energies and timescales required to inflate cavities observed in the surrounding X-ray emitting gas, can be related to the accretion rates using a power law model of the form log (P{sub Bondi}/10{sup 43} erg s{sup -1}) = A + B log (P{sub jet}/10{sup 43} erg s{sup -1}), with A = 0.62 {+-} 0.15 and B = 0.77 {+-} 0.18. Our results show that a significant fraction of the energy associated with the rest mass of material entering the Bondi accretion radius (2.4{sub -0.7}{sup +1.0} per cent, for P{sub jet} = 10{sup 43} erg s{sup -1}) eventually emerges in the relativistic jets. Our results have significant implications for studies of accretion, jet formation and galaxy formation. The observed tight correlation suggests that the Bondi formulae provide a reasonable description of the accretion process in these systems, despite the likely presence of magnetic pressure and angular momentum in the accreting gas. The similarity of the P{sub Bondi} and P{sub jet} values argues that a significant fraction of the matter entering the accretion radius flows down to regions close to the black holes, where the jets are presumably formed. The tight correlation between P{sub Bondi} and P{sub jet} also suggests that the accretion flows are approximately stable over timescales of a few million years. Our results show that the black hole ''engines'' at the hearts of large elliptical galaxies and groups feed back sufficient energy to stem cooling and star formation, leading naturally to the observed exponential cut off at the bright end of the galaxy luminosity function.

  15. Constraining the Luminous Red Galaxy Halo Occupation Distribution Using Counts-In-Cylinders

    NASA Astrophysics Data System (ADS)

    Reid, Beth A.; Spergel, David N.

    2009-06-01

    The low number density of the Sloan Digital Sky Survey (SDSS) luminous red galaxies (LRGs) suggests that LRGs occupying the same dark matter halo can be separated from pairs occupying distinct dark matter halos with high fidelity. We present a new technique, Counts-in-Cylinders (CiC), to constrain the parameters of the satellite contribution to the LRG halo occupation distribution once the parameters of the central galaxy contribution have been fixed. For a fiber-collision-corrected SDSS spectroscopic LRG subsample at 0.16 < z < 0.36, we find that the CiC multiplicity function is fitted by a halo model where the average number of satellites in a halo of mass M is = ((M - M cut)/M 1)α with M cut = 5.0+1.5 -1.3(+2.9 -2.6) × 1013 M sun, M 1 = 4.95+0.37 -0.26(+0.79 -0.53) × 1014 M sun, and α = 1.035+0.10 -0.17(+0.24 -0.31) at the 68% and 95% confidence levels using a WMAP3 cosmology and z = 0.2 halo catalog. Our method tightly constrains the fraction of LRGs that are satellite galaxies, 6.36+0.38 -0.39%, and the combination M cut/1014 M sun + α = 1.53+0.08 -0.09 at the 95% confidence level, though these constraints may be relaxed when cosmological parameters and the central galaxy parameters are allowed to vary simultaneously. We also find that mocks based on a halo catalog produced by a spherical overdensity finder reproduce both the measured CiC multiplicity function and the projected correlation function, while mocks based on a Friends-of-Friends halo catalog has a deficit of close pairs at ~1 h -1 Mpc separations. Because the CiC method relies on higher order statistics of close pairs, it is robust to the choice of halo finder, and yields mock catalogs reproducing Finger-of-God (FOG) features in the observations probed by the CiC group multiplicity function. In a companion paper, we will apply this technique to optimize FOG compression to eliminate the one-halo contribution to the LRG power spectrum.

  16. HIGHLY IONIZED PLASMA IN THE HALO OF A LUMINOUS SPIRAL GALAXY NEAR z = 0.225

    SciTech Connect

    Narayanan, Anand; Savage, Blair D.; Wakker, Bart P. E-mail: savage@astro.wisc.ed

    2010-04-01

    We present analyses of the physical conditions in the z(O{sub VI})=0.22496 and z(O{sub VI})=0.22638 multiphase absorption systems detected in the ultraviolet Hubble Space Telescope/STIS and FUSE spectra of the quasar H 1821+643 (m{sub V} = 14.2, z{sub em} = 0.297). Both absorbers are likely associated with the extended halo of a {approx}2L*{sub B} Sbc-Sc galaxy situated at a projected distance of {approx}116 h {sup -1}{sub 71} kpc from the sight line. The z = 0.22496 absorber is detected in C II, C III, C IV, O III, O VI, Si II, Si III, and H I (Ly alpha-Lytheta) at >3sigma significance. The components of Si III and Si II are narrow with implied temperatures of T {approx}< 3 x 10{sup 4} K. The low and intermediate ions in this absorber are consistent with an origin in a T {approx} 10{sup 4} K photoionized gas with [Si/H] and [C/H] of {approx}-0.6 dex. In contrast, the broader O VI absorption is likely produced in collisionally ionized plasma under nonequilibrium conditions. The z(O{sub VI})=0.22638 system has broad Ly alpha (BLA) and C III absorption offset by v = -53 km s{sup -1} from O VI. The H I and C III line widths for the BLA imply T = 1.1 x 10{sup 5} K. For non-equilibrium cooling we obtain [C/H] {approx}-1.5 dex and N(H) = 3.2 x 10{sup 18} cm{sup -2} in the BLA. The O VI, offset from the BLA with no detected H I or C III, is likely collisionally ionized at T {approx} 3 x 10{sup 5} K. From the observed multiphase properties and the proximity to a luminous galaxy, we propose that the z = 0.22496 absorber is an extragalactic analog of a highly ionized Galactic HVC, in which the O VI is produced in transition temperature plasma (T {approx} 10{sup 5} K) at the interface layers between the warm (T < 5 x 10{sup 4} K) HVC gas phase and the hot (T {approx}> 10{sup 6} K) coronal halo of the galaxy. The z = 0.22638 O VI-BLA absorber could be tracing a cooling condensing fragment in the nearby galaxy's hot gaseous halo.

  17. Interferometric follow-up of WISE hyper-luminous hot, dust-obscured galaxies

    SciTech Connect

    Wu, Jingwen; Wright, Edward L.; Bussmann, R. Shane; Tsai, Chao-Wei; Eisenhardt, Peter R. M.; Stern, Daniel; Moustakas, Leonidas; Petric, Andreea; Blain, Andrew; Bridge, Carrie R.; Benford, Dominic J.; Assef, Roberto J.; Gelino, Christopher R.

    2014-09-20

    The Wide-field Infrared Survey Explorer (WISE) has discovered an extraordinary population of hyper-luminous dusty galaxies that are faint in the two bluer passbands (3.4 μm and 4.6 μm) but are bright in the two redder passbands of WISE (12 μm and 22 μm). We report on initial follow-up observations of three of these hot, dust-obscured galaxies, or Hot DOGs, using the Combined Array for Research in Millimeter-wave Astronomy and the Submillimeter Array interferometer arrays at submillimeter/millimeter wavelengths. We report continuum detections at ∼1.3 mm of two sources (WISE J014946.17+235014.5 and WISE J223810.20+265319.7, hereafter W0149+2350 and W2238+2653, respectively), and upper limits to CO line emission at 3 mm in the observed frame for two sources (W0149+2350 and WISE J181417.29+341224.8, hereafter W1814+3412). The 1.3 mm continuum images have a resolution of 1''-2'' and are consistent with single point sources. We estimate the masses of cold dust are 2.0 × 10{sup 8} M {sub ☉} for W0149+2350 and 3.9 × 10{sup 8} M {sub ☉} for W2238+2653, comparable to cold dust masses of luminous quasars. We obtain 2σ upper limits to the molecular gas masses traced by CO, which are 3.3 × 10{sup 10} M {sub ☉} and 2.3 × 10{sup 10} M {sub ☉} for W0149+2350 and W1814+3412, respectively. We also present high-resolution, near-IR imaging with the WFC3 on the Hubble Space Telescope for W0149+2653 and with NIRC2 on Keck for W2238+2653. The near-IR images show morphological structure dominated by a single, centrally condensed source with effective radius less than 4 kpc. No signs of gravitational lensing are evident.

  18. Unravelling the morphologies of luminous compact galaxies using the HST/ACS GOODS survey

    NASA Astrophysics Data System (ADS)

    Rawat, A.; Kembhavi, A. K.; Hammer, F.; Flores, H.; Barway, S.

    2007-07-01

    Context: Luminous Compact Galaxies (LCGs) (MB ≤ -20, R1/2 ≤ 4.5 kpc and EW0(OII) ≥ 15 Å) constitute one of the most rapidly evolving galaxy populations over the last ~8 Gyr history of the universe. Due to their inherently compact sizes, any detailed quantitative analysis of their morphologies has proved to be difficult in the past. Hence, the morphologies and thereby the local counterparts of these enigmatic sources have been hotly debated. Aims: Our aim is to use the high angular resolution, deep, multiband HST/ACS imaging data, from the HST/ACS GOODS survey, to study the quantitative morphology of a complete sample of LCGs in the redshift range 0.5≤ z ≤1.2. Methods: We have derived structural parameters for a representative sample of 39 LCGs selected from the GOODS-S HST/ACS field, using full 2-dimensional surface brightness profile fitting of the galaxy images in each of the four filters available. B435W-z850LP color maps are constructed for the sample to aid in the morphological classification. We then use the rest frame B band bulge flux fraction (B/T) to determine the morphological class of galaxies which are well fit by a bulge+disk two dimensional structure. Mergers were essentially identified visually by the presence of multiple maxima of comparable intensity in the rest frame B band images, aided by the color maps to distinguish them from HII regions. We also make use of the Spitzer 24 μ m source catalog of sources in the CDFS to derive the dust enshrouded star formation rates (SFR) for some of the sample LCGs Results: We derive the following morphological mix for our sample of intermediate redshift LCGs: Mergers: ~36%, Disk dominated: ~22%, S0: ~20%, Early types: ~7%, Irr/tadpole: ~15%. We establish that our sample LCGs are intermediate mass objects with stellar mass ranging from 9.44 ≤ Log10(M/M⊙) ≤ 10.96, with a median mass of Log10(M/M⊙)=10.32. We also derive SFR values ranging from a few to ~65 M⊙/year as expected for this class

  19. The Discovery and Characterization of Surprisingly Luminous Galaxy Candidates at 9-10: The Power of Combining HST and Spitzer

    NASA Astrophysics Data System (ADS)

    Illingworth, Garth D.; Oesch, P.; Bouwens, R.; Labbe, I.; XDF/HUDF09 Team

    2014-01-01

    Deep observations with the WFC3/IR camera on HST have pushed the frontier for galaxies in the young universe to 9-11, just ~450 Myr from the Big Bang at the heart of the reionization epoch. However, until recently only a small number of intrinsically very faint galaxies had been identified at these redshifts from extremely deep WFC3/IR data in the XDF/HUDF and the GOODS-South field and from the CLASH cluster survey. This changed with our recent analysis of the completed CANDELS survey data over the GOODS-North/HDF-N field. We discovered four surprisingly bright Lyman-break galaxy candidates at 9-10, the brightest of which has a most probable redshift of 10.2. These sources are a factor ~10-20x more luminous than any previous candidate at redshifts 9-10. The high number of such luminous sources suggests that star-formation was highly stochastic in the very early universe resulting in large field-to-field variance. Furthermore, three of these bright candidates show significant detections in Spitzer/IRAC, substantially enhancing the probability that these galaxies are at 9-10. The IRAC data probes the rest-frame optical light and indicates that these sources already had a stellar mass of 10^9 Msol at a cosmic time of only 450-500 Myr. While the overall star formation rate density of galaxies with SFR>0.7 Msol/yr has been shown to increase rapidly in just 200 Myr from 10 to 8, the discovery of these luminous sources has very promising implications for the detection of galaxies at times significantly earlier than 450 Myr with JWST.

  20. Spectroscopy of Luminous z > 7 Galaxy Candidates and Sources of Contamination in z > 7 Galaxy Searches

    NASA Astrophysics Data System (ADS)

    Capak, P.; Mobasher, B.; Scoville, N. Z.; McCracken, H.; Ilbert, O.; Salvato, M.; Menéndez-Delmestre, K.; Aussel, H.; Carilli, C.; Civano, F.; Elvis, M.; Giavalisco, M.; Jullo, E.; Kartaltepe, J.; Leauthaud, A.; Koekemoer, A. M.; Kneib, J.-P.; LeFloch, E.; Sanders, D. B.; Schinnerer, E.; Shioya, Y.; Shopbell, P.; Tanaguchi, Y.; Thompson, D.; Willott, C. J.

    2011-04-01

    We present three bright z +-dropout candidates selected from deep near-infrared (NIR) imaging of the COSMOS 2 deg2 field. All three objects match the 0.8-8 μm colors of other published z > 7 candidates but are 3 mag brighter, facilitating further study. Deep spectroscopy of two of the candidates covering 0.64-1.02 μm with Keck-DEIMOS and all three covering 0.94-1.10 μm and 1.52-1.80 μm with Keck-NIRSPEC detects weak spectral features tentatively identified as Lyα at z = 6.95 and z = 7.69 in two of the objects. The third object is placed at z ~ 1.6 based on a 24 μm and weak optical detection. A comparison with the spectral energy distributions of known z < 7 galaxies, including objects with strong spectral lines, large extinction, and large systematic uncertainties in the photometry, yields no objects with similar colors. However, the λ > 1 μm properties of all three objects can be matched to optically detected sources with photometric redshifts at z ~ 1.8, so the non-detection in the i + and z + bands is the primary factor which favors a z > 7 solution. If any of these objects are at z ~ 7, the bright end of the luminosity function is significantly higher at z > 7 than suggested by previous studies, but consistent within the statistical uncertainty and the dark matter halo distribution. If these objects are at low redshift, the Lyman break selection must be contaminated by a previously unknown population of low-redshift objects with very strong breaks in their broadband spectral energy distributions and blue NIR colors. The implications of this result on luminosity function evolution at high redshift are discussed. We show that the primary limitation of z > 7 galaxy searches with broad filters is the depth of the available optical data. Based on observations with the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space

  1. Applications of the Halo Model to Large Scale Structure Measurements of the Luminous Red Galaxies

    NASA Astrophysics Data System (ADS)

    Reid, Beth A.; Spergel, D. N.; Bode, P.

    2009-01-01

    The power spectrum of density fluctuations in the evolved universe provides constraints on cosmological parameters that are complementary to the CMB and other astronomical probes. The Sloan Digital Sky Survey (SDSS) Luminous Red Galaxy (LRG) sample probes a volume of 3 Gpc3, and systematic errors in modeling the nonlinearities limit our ability to extract information on the shape of the linear power spectrum. In Chapter 2 of this dissertation we present the technique `Counts-in-Cylinders' (CiC) and use it to measure the multiplicity function of groups of LRGs in SDSS. We use the Halo Occupation Distribution description of the galaxy-matter mapping and N-body simulations to connect this observation with constraints on the distribution of LRGs in dark matter halos. In Chapter 3 we study the effects of resolution on statistics relating to both the large and small scale distributions and motions of matter and dark matter halos. We combine these results to produce a large set of high quality mock LRG catalogs that reproduce the higher order statistics in the density field probed by the CiC technique. Using these catalogs we present a detailed analysis of the method used in Tegmark et al. 2006 to estimate the LRG power spectrum, and find that the large nonlinear correction necessary for their analysis is degenerate with changes in the linear spectrum we wish to constrain. We show that the CiC group-finding method in Chapter 2 can be used to reconstruct the underlying halo density field. The power spectrum of this field has only percent-level deviations from the underlying matter power spectrum, and will therefore provided tighter constraints on cosmological parameters. Techniques presented in this dissertation will be useful for final analysis of the SDSS LRGs and upcoming surveys probing much larger volumes. B.A.R. gratefully acknowledges support from the NSF Graduate Research Fellowship.

  2. VizieR Online Data Catalog: [NII]205um emission in local luminous IR galaxies (Zhao+, 2016)

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Lu, N.; Xu, C. K.; Gao, Y.; Lord, S. D.; Charmandaris, V.; Diaz-Santos, T.; Evans, A.; Howell, J.; Petric, A. O.; van der Werf, P. P.; Sanders, D. B.

    2016-05-01

    The primary sample studied in this paper is from the Herschel open time project Herschel Spectroscopic Survey of Warm Molecular Gas in Local Luminous Infrared Galaxies (OT1nlu1; PI: N. Lu). The observations were conducted with the Herschel SPIRE/FTS in its point source spectroscopy mode and high spectral resolution configuration, yielding a spectral resolution of 0.04/cm (or 1.2GHz) over the spectral coverage of 194-672um. (1 data file).

  3. Faint CO Line Wings in Four Star-forming (Ultra)luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Leroy, Adam K.; Walter, Fabian; Decarli, Roberto; Bolatto, Alberto; Zschaechner, Laura; Weiss, Axel

    2015-09-01

    We report the results of a search for large velocity width, low-intensity line wings—a commonly used signature of molecular outflows—in four low redshift (ultra)luminous infrared galaxies that appear to be dominated by star formation. The targets were drawn from a sample of fourteen targets presented in Chung et al., who showed the stacked CO spectrum of the sample to exhibit 1000 km s-1-wide line wings. We obtained sensitive, wide bandwidth imaging of our targets using the IRAM Plateau de Bure Interferometer. We detect each target at very high significance but do not find the claimed line wings in these four targets. Instead, we constrain the flux in the line wings to be only a few percent. Casting our results as mass outflow rates following Cicone et al. we show them to be consistent with a picture in which very high mass loading factors preferentially occur in systems with high active galactic nucleus contributions to their bolometric luminosity. We identify one of our targets, IRAS 05083 (VII Zw 31), as a candidate molecular outflow.

  4. redMaGiC: selecting luminous red galaxies from the DES Science Verification data

    NASA Astrophysics Data System (ADS)

    Rozo, E.; Rykoff, E. S.; Abate, A.; Bonnett, C.; Crocce, M.; Davis, C.; Hoyle, B.; Leistedt, B.; Peiris, H. V.; Wechsler, R. H.; Abbott, T.; Abdalla, F. B.; Banerji, M.; Bauer, A. H.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Carollo, D.; Kind, M. Carrasco; Carretero, J.; Castander, F. J.; Childress, M. J.; Cunha, C. E.; D'Andrea, C. B.; Davis, T.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Neto, A. Fausti; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Glazebrook, K.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kim, A. G.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lidman, C.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; O'Neill, C. R.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Thaler, J.; Thomas, D.; Uddin, S.; Vikram, V.; Walker, A. R.; Wester, W.; Zhang, Y.; da Costa, L. N.

    2016-09-01

    We introduce redMaGiC, an automated algorithm for selecting Luminous Red Galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the color-cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photozs are very nearly as accurate as the best machine-learning based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalog sampling the redshift range $z\\in[0.2,0.8]$. Our fiducial sample has a comoving space density of $10^{-3}\\ (h^{-1} Mpc)^{-3}$, and a median photoz bias ($z_{spec}-z_{photo}$) and scatter $(\\sigma_z/(1+z))$ of 0.005 and 0.017 respectively. The corresponding $5\\sigma$ outlier fraction is 1.4%. We also test our algorithm with Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8) and Stripe 82 data, and discuss how spectroscopic training can be used to control photoz biases at the 0.1% level.

  5. redMaGiC: Selecting Luminous Red Galaxies from the DES Science Verification Data

    NASA Astrophysics Data System (ADS)

    Rozo, E.; Rykoff, E. S.; Abate, A.; Bonnett, C.; Crocce, M.; Davis, C.; Hoyle, B.; Leistedt, B.; Peiris, H. V.; Wechsler, R. H.; Abbott, T.; Abdalla, F. B.; Banerji, M.; Bauer, A. H.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Carollo, D.; Kind, M. Carrasco; Carretero, J.; Castander, F. J.; Childress, M. J.; Cunha, C. E.; D'Andrea, C. B.; Davis, T.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Neto, A. Fausti; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Glazebrook, K.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kim, A. G.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lidman, C.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; O'Neill, C. R.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Thaler, J.; Thomas, D.; Uddin, S.; Vikram, V.; Walker, A. R.; Wester, W.; Zhang, Y.; da Costa, L. N.

    2016-05-01

    We introduce redMaGiC, an automated algorithm for selecting Luminous Red Galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the color-cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine-learning based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalog sampling the redshift range z ∈ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10-3 (h-1Mpc)-3, and a median photo-z bias (zspec - zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017 respectively. The corresponding 5σ outlier fraction is 1.4%. We also test our algorithm with Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8) and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1% level.

  6. redMaGiC. Selecting Luminous Red Galaxies from the DES Science Verification Data

    SciTech Connect

    Rozo, E.

    2015-07-20

    We introduce redMaGiC, an automated algorithm for selecting Luminous Red Galaxies (LRGs). The algorithm was developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the color-cuts necessary to produce a luminosity-thresholded LRG sam- ple of constant comoving density. Additionally, we demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine-learning based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalog sampling the redshift range z ϵ [0.2,0.8]. Our fiducial sample has a comoving space density of 10-3 (h-1Mpc)-3, and a median photo-z bias (zspec zphoto) and scatter (σz=(1 + z)) of 0.005 and 0.017 respectively.The corresponding 5σ outlier fraction is 1.4%. We also test our algorithm with Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8) and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1% level.

  7. redMaGiC: selecting luminous red galaxies from the DES Science Verification data

    NASA Astrophysics Data System (ADS)

    Rozo, E.; Rykoff, E. S.; Abate, A.; Bonnett, C.; Crocce, M.; Davis, C.; Hoyle, B.; Leistedt, B.; Peiris, H. V.; Wechsler, R. H.; Abbott, T.; Abdalla, F. B.; Banerji, M.; Bauer, A. H.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Carollo, D.; Kind, M. Carrasco; Carretero, J.; Castander, F. J.; Childress, M. J.; Cunha, C. E.; D'Andrea, C. B.; Davis, T.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Neto, A. Fausti; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Glazebrook, K.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kim, A. G.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lidman, C.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; O'Neill, C. R.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Thaler, J.; Thomas, D.; Uddin, S.; Vikram, V.; Walker, A. R.; Wester, W.; Zhang, Y.; da Costa, L. N.

    2016-09-01

    We introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling the redshift range z ∈ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10-3 (h-1 Mpc)-3, and a median photo-z bias (zspec - zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5σ outlier fraction is 1.4 per cent. We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level.

  8. Cosmological baryonic and matter densities from 600000 SDSS luminous red galaxies with photometric redshifts

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Collister, Adrian; Bridle, Sarah; Lahav, Ofer

    2007-02-01

    We analyse MegaZ-LRG, a photometric-redshift catalogue of luminous red galaxies (LRGs) based on the imaging data of the Sloan Digital Sky Survey (SDSS) 4th Data Release. MegaZ-LRG, presented in a companion paper, contains >106 photometric redshifts derived with ANNZ, an artificial neural network method, constrained by a spectroscopic subsample of ~13000 galaxies obtained by the 2dF-SDSS LRG and Quasar (2SLAQ) survey. The catalogue spans the redshift range 0.4 < z < 0.7 with an rms redshift error σz ~ 0.03(1 + z), covering 5914 deg2 to map out a total cosmic volume 2.5h-3Gpc3. In this study we use the most reliable 600000 photometric redshifts to measure the large-scale structure using two methods: (1) a spherical harmonic analysis in redshift slices, and (2) a direct re-construction of the spatial clustering pattern using Fourier techniques. We present the first cosmological parameter fits to galaxy angular power spectra from a photometric-redshift survey. Combining the redshift slices with appropriate covariances, we determine best-fitting values for the matter density Ωm and baryon density Ωb of Ωmh = 0.195 +/- 0.023 and Ωb/Ωm = 0.16 +/- 0.036 (with the Hubble parameter h = 0.75 and scalar index of primordial fluctuations nscalar = 1 held fixed). These results are in agreement with and independent of the latest studies of the cosmic microwave background radiation, and their precision is comparable to analyses of contemporary spectroscopic-redshift surveys. We perform an extensive series of tests which conclude that our power spectrum measurements are robust against potential systematic photometric errors in the catalogue. We conclude that photometric-redshift surveys are competitive with spectroscopic surveys for measuring cosmological parameters in the simplest `vanilla' models. Future deep imaging surveys have great potential for further improvement, provided that systematic errors can be controlled.

  9. Applications of the halo model to large scale structure measurements of the Luminous Red Galaxies

    NASA Astrophysics Data System (ADS)

    Reid, Beth Ann

    The power spectrum of density fluctuations in the evolved universe provides constraints on cosmological parameters that are complementary to cosmic microwave background and other astronomical probes. The Sloan Digital Sky Survey (SDSS) Luminous Red Galaxy (LRG) sample probes a volume of ~ 3 (Gpc) 3 , and systematic errors in modeling the nonlinearities limit our ability to extract information on the shape of the linear power spectrum. There are three main effects that distort the observed power spectrum from the linear power spectrum: nonlinear gravitational evolution, redshift space distortions, and a nonlinear relation between the galaxy density field and the underlying matter density field. In this thesis we introduce a new method to mitigate the latter two distortions and rely on carefully tuned N-body simulations to model the first. In Chapter 2 we present the technique 'Counts-in-Cylinders' (CiC) and use it to measure the multiplicity function of groups of LRGs in SDSS. We use the Halo Occupation Distribution description of the galaxy-matter mapping and N -body simulations to connect this observation with constraints on the distribution of LRGs in dark matter halos. In Chapter 3 we study the effects of resolution on statistics relating to both the large and small scale distributions and motions of matter and dark matter halos. We combine these results to produce a large set of high quality mock LRG catalogs that reproduce the higher order statistics in the density field probed by the CiC technique. Using these catalogs we present a detailed analysis of the method used in Tegmark et al. (2006) to estimate the LRG power spectrum, and find that the large nonlinear correction necessary for their analysis is degenerate with changes in the linear spectrum we wish to constrain. We show that the CiC group-finding method in Chapter 2 can be used to reconstruct the underlying halo density field. The power spectrum of this field has only percent-level deviations from

  10. The [NII] 205 μm Emission in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Zhao, Yinghe; Lu, Nanyao; Xu, C. Kevin; Gao, Yu; Lord, Steven D.; Charmandaris, Vassilis; Diaz-Santos, Tanio; Evans, Aaron; Howell, Justin; Petric, Andreea O.; van der Werf, Paul P.; Sanders, David B.

    2016-03-01

    In this paper, we present the measurements of the [N ii] 205 μm line for a flux-limited sample of 122 (ultra-)luminous infrared galaxies [(U)LIRGs] and 20 additional normal galaxies, obtained with the Herschel Space Observatory (Herschel). We explore the far-infrared (FIR) color dependence of the [N ii] 205 μm (L[N ii]205 μm) to the total infrared (LIR) luminosity ratio, and find that L[N ii]205 μm/LIR only depends modestly on the 70-160 μm flux density ratio ({f}70/{f}160) when {f}70/{f}160≲ 0.6, whereas such dependence becomes much steeper for {f}70/{f}160\\gt 0.6. We also investigate the relation between L[N ii]205 μm and star formation rate (SFR), and show that L[N ii]205 μm has a nearly linear correlation with SFR, albeit the intercept of such a relation varies somewhat with {f}60/{f}100, consistent with our previous conclusion that [N ii] 205 μm emission can serve as an SFR indicator with an accuracy of ˜0.4 dex, or ˜0.2 dex if {f}60/{f}100 is known independently. Furthermore, together with the Infrared Space Observatory measurements of [N ii], we use a total of ˜200 galaxies to derive the local [N ii] 205 μm luminosity function (LF) by tying it to the known IR LF with a bivariate method. As a practical application, we also compute the local SFR volume density ({\\dot{ρ }}{{SFR}}) using the newly derived SFR calibrator and LF. The resulting {log} {\\dot{ρ }}{{SFR}}=-1.96+/- 0.11 {M}⊙ yr-1 Mpc-3 agrees well with previous studies. Finally, we determine the electron densities (ne) of the ionized medium for a subsample of 12 (U)LIRGs with both [N ii] 205 μm and [N ii] 122 μm data, and find that ne is in the range of ˜1-100 cm-3, with a median value of 22 cm-3. Based on Herschel observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  11. LUMINOUS INFRARED GALAXIES WITH THE SUBMILLIMETER ARRAY. III. THE DENSE KILOPARSEC MOLECULAR CONCENTRATIONS OF Arp 299

    SciTech Connect

    Sliwa, Kazimierz; Wilson, Christine D.; Petitpas, Glen R.; Armus, Lee; Juvela, Mika; Matsushita, Satoki; Peck, Alison B.; Yun, Min S. E-mail: wilson@physics.mcmaster.ca E-mail: lee@ipac.caltech.edu E-mail: satoki@asiaa.sinica.edu.tw E-mail: myun@astro.umass.edu

    2012-07-01

    We have used high-resolution ({approx}2.''3) observations of the local (D{sub L} = 46 Mpc) luminous infrared galaxy Arp 299 to map out the physical properties of the molecular gas that provides the fuel for its extreme star formation activity. The {sup 12}CO J = 3-2, {sup 12}CO J = 2-1, and {sup 13}CO J = 2-1 lines were observed with the Submillimeter Array, and the short spacings of the {sup 12}CO J = 2-1 and J = 3-2 observations have been recovered using the James Clerk Maxwell Telescope single dish observations. We use the radiative transfer code RADEX to estimate the physical properties (density, column density, and temperature) of the different regions in this system. The RADEX solutions of the two galaxy nuclei, IC 694 and NGC 3690, are consistent with a wide range of gas components, from warm moderately dense gas with T{sub kin} > 30 K and n(H{sub 2}) {approx} 0.3-3 Multiplication-Sign 10{sup 3} cm{sup -3} to cold dense gas with T{sub kin} {approx} 10-30 K and n(H{sub 2}) > 3 Multiplication-Sign 10{sup 3} cm{sup -3}. The overlap region is shown to have a better constrained solution with T{sub kin} {approx} 10-50 K and n(H{sub 2}) {approx} 1-30 Multiplication-Sign 10{sup 3} cm{sup -3}. We estimate the gas masses and star formation rates of each region in order to derive molecular gas depletion times. The depletion times of all regions (20-50 Myr) are found to be about two orders of magnitude lower than those of normal spiral galaxies. This rapid depletion time can probably be explained by a high fraction of dense gas on kiloparsec scales in Arp 299. We estimate the CO-to-H{sub 2} factor, {alpha}{sub co} to be 0.4 {+-} 0.3(3 Multiplication-Sign 10{sup -4}/x{sub CO}) M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1} for the overlap region. This value agrees well with values determined previously for more advanced merger systems.

  12. VLT adaptive optics search for luminous substructures in the lens galaxy towards SDSS J0924+0219

    NASA Astrophysics Data System (ADS)

    Faure, C.; Sluse, D.; Cantale, N.; Tewes, M.; Courbin, F.; Durrer, P.; Meylan, G.

    2011-12-01

    The anomalous flux ratios between quasar images are suspected of being caused by substructures in lens galaxies. We present new deep and high-resolution H and Ks imaging of the strongly lensed quasar SDSS J0924+0219 obtained using the ESO VLT with adaptive optics and the laser guide star system. SDSS J0924+0219 is particularly interesting because the observed flux ratio between the quasar images vastly disagree with the predictions from smooth mass models. With our adaptive optics observations we find a luminous object, Object L, located ~0.3'' to the north of the lens galaxy, but we show that it cannot be responsible for the anomalous flux ratios. Object L as well as a luminous extension of the lens galaxy to the south are seen in the archival HST/ACS image in the F814W filter. This suggests that Object L is part of a bar in the lens galaxy, as also supported by the presence of a significant disk component in the light profile of the lens galaxy. Finally, we find no evidence of any other luminous substructure that may explain the quasar images flux ratios. However, owing to the persistence of the flux ratio anomaly over time (~7 years), a combination of microlensing and millilensing is the favorite explanation for the observations. Based on observations obtained with the ESO VLT at Paranal observatory (Prog ID 084.A-0762(A); PI: Meylan). Also based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with the CASTLES (Cfa-Arizona Space Telescope LEns Survey) survey (ID: 9744, PI: C. S. Kochanek).

  13. Morphology and Molecular Gas Fractions of Local Luminous Infrared Galaxies as a Function of Infrared Luminosity and Merger Stage

    NASA Astrophysics Data System (ADS)

    Larson, K. L.; Sanders, D. B.; Barnes, J. E.; Ishida, C. M.; Evans, A. S.; U, V.; Mazzarella, J. M.; Kim, D.-C.; Privon, G. C.; Mirabel, I. F.; Flewelling, H. A.

    2016-07-01

    We present a new, detailed analysis of the morphologies and molecular gas fractions (MGFs) for a complete sample of 65 local luminous infrared galaxies from Great Observatories All-Sky Luminous Infrared Galaxies (LIRG) Survey using high resolution I-band images from The Hubble Space Telescope, the University of Hawaii 2.2 m Telescope and the Pan-STARRS1 Survey. Our classification scheme includes single undisturbed galaxies, minor mergers, and major mergers, with the latter divided into five distinct stages from pre-first pericenter passage to final nuclear coalescence. We find that major mergers of molecular gas-rich spirals clearly play a major role for all sources with {L}{IR}\\gt {10}11.5{L}ȯ ; however, below this luminosity threshold, minor mergers and secular processes dominate. Additionally, galaxies do not reach {L}{IR}\\gt {10}12.0{L}ȯ until late in the merger process when both disks are near final coalescence. The mean MGF ({MGF} = {M}{{{H}}2}/({M}* +{M}{{{H}}2})) for non-interacting and early-stage major merger LIRGs is 18 ± 2%, which increases to 33 ± 3%, for intermediate stage major merger LIRGs, consistent with the hypothesis that, during the early-mid stages of major mergers, most of the initial large reservoir of atomic gas (HI) at large galactocentric radii is swept inward where it is converted into molecular gas (H2).

  14. THE ATACAMA COSMOLOGY TELESCOPE: DETECTION OF SUNYAEV-ZEL'DOVICH DECREMENT IN GROUPS AND CLUSTERS ASSOCIATED WITH LUMINOUS RED GALAXIES

    SciTech Connect

    Hand, Nick; Das, Sudeep; Dunkley, Joanna; Hajian, Amir; Appel, John W.; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hincks, Adam D.; Battaglia, Nick; Richard Bond, J.; Devlin, Mark J.; Klein, Jeff; Duenner, Rolando; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hlozek, Renee; Hughes, John P.; Irwin, Kent D.; Kosowsky, Arthur

    2011-07-20

    We present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the luminous red galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope. The LRG sample is divided by luminosity into four bins, and estimates for the central SZ temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y{sub 200} and clustering properties to relate the galaxy luminosity to halo mass. We also use a relation between brightest cluster galaxy luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be around 10{sup 14} M{sub sun}.

  15. Rest-Frame Mid-Infrared Detection of an Extremely Luminous Lyman Break Galaxy with the Spitzer Infrared Spectrograph (IRS)

    NASA Technical Reports Server (NTRS)

    Teplitz, H. I.; Charmandaris, V.; Armus, L.; Appleton, P. N.; Houck, J. R.; Soifer, B. T.; Weedman, D.; Brandl, B. R.; vanCleve, J.; Grillmair, C.; Uchid, K. I.

    2004-01-01

    We present the first rest-frame of approximately 4 microns detection of a Lyman break galaxy. The data were obtained using the 16 microns imaging capability of the Spitzer Infrared Spectrograph. The target object, J134026.44+634433.2, is an extremely luminous Lyman break galaxy at z=2.79, first identified in Sloan Digital Sky Survey (SDSS) spectra (as reported by Bentz et al.). The source is strongly detected with a flux of 0.94 +/- 0.02 mJy. Combining Spitzer and SDSS photometry with supporting ground-based J- and K-band data, we show that the spectral energy distribution is consistent with an actively star-forming galaxy. We also detect other objects in the Spitzer field of view, including a very red mid-infrared source. We find no evidence of a strong lens among the mid-infrared sources.

  16. CLUSTERING OF SLOAN DIGITAL SKY SURVEY III PHOTOMETRIC LUMINOUS GALAXIES: THE MEASUREMENT, SYSTEMATICS, AND COSMOLOGICAL IMPLICATIONS

    SciTech Connect

    Ho, Shirley; White, Martin; Schlegel, David J.; Seljak, Uros; Reid, Beth; Cuesta, Antonio; Padmanabhan, Nikhil; Seo, Hee-Jong; De Putter, Roland; Ross, Ashley J.; Percival, Will J.; Saito, Shun; Schlafly, Eddie; Hernandez-Monteagudo, Carlos; Sanchez, Ariel G.; Blanton, Michael; Skibba, Ramin; Schneider, Don; Mena, Olga; Viel, Matteo; and others

    2012-12-10

    The Sloan Digital Sky Survey (SDSS) surveyed 14,555 deg{sup 2}, and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between z = 0.45 and z = 0.65, constructed from the SDSS using methods described in Ross et al. This data set spans 11,000 deg{sup 2} and probes a volume of 3 h {sup -3} Gpc{sup 3}, making it the largest volume ever used for galaxy clustering measurements. We describe in detail the construction of the survey window function and various systematics affecting our measurement. With such a large volume, high-precision cosmological constraints can be obtained given careful control and understanding of the observational systematics. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at four redshift slices with an accuracy of {approx}15%, with a bin size of {delta}{sub l} = 10 on scales of the baryon acoustic oscillations (BAOs; at l {approx} 40-400). We also apply corrections to the power spectra due to systematics and derive cosmological constraints using the full shape of the power spectra. For a flat {Lambda}CDM model, when combined with cosmic microwave background Wilkinson Microwave Anisotropy Probe 7 (WMAP7) and H{sub 0} constraints from using 600 Cepheids observed by Wide Field Camera 3 (WFC3; HST), we find {Omega}{sub {Lambda}} = 0.73 {+-} 0.019 and H{sub 0} to be 70.5 {+-} 1.6 s{sup -1} Mpc{sup -1} km. For an open {Lambda}CDM model, when combined with WMAP7 + HST, we find {Omega}{sub K} = 0.0035 {+-} 0.0054, improved over WMAP7+HST alone by 40%. For a wCDM model, when combined with WMAP7+HST+SN, we find w = -1.071 {+-} 0.078, and H{sub 0} to be 71.3 {+-} 1.7 s{sup -1} Mpc{sup -1} km, which is competitive with the latest large-scale structure constraints from large spectroscopic

  17. Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics, and Cosmological Implications

    NASA Astrophysics Data System (ADS)

    Ho, Shirley; Cuesta, Antonio; Seo, Hee-Jong; de Putter, Roland; Ross, Ashley J.; White, Martin; Padmanabhan, Nikhil; Saito, Shun; Schlegel, David J.; Schlafly, Eddie; Seljak, Uros; Hernández-Monteagudo, Carlos; Sánchez, Ariel G.; Percival, Will J.; Blanton, Michael; Skibba, Ramin; Schneider, Don; Reid, Beth; Mena, Olga; Viel, Matteo; Eisenstein, Daniel J.; Prada, Francisco; Weaver, Benjamin A.; Bahcall, Neta; Bizyaev, Dimitry; Brewinton, Howard; Brinkman, Jon; Nicolaci da Costa, Luiz; Gott, John R.; Malanushenko, Elena; Malanushenko, Viktor; Nichol, Bob; Oravetz, Daniel; Pan, Kaike; Palanque-Delabrouille, Nathalie; Ross, Nicholas P.; Simmons, Audrey; de Simoni, Fernando; Snedden, Stephanie; Yeche, Christophe

    2012-12-01

    The Sloan Digital Sky Survey (SDSS) surveyed 14,555 deg2, and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between z = 0.45 and z = 0.65, constructed from the SDSS using methods described in Ross et al. This data set spans 11,000 deg2 and probes a volume of 3 h -3 Gpc3, making it the largest volume ever used for galaxy clustering measurements. We describe in detail the construction of the survey window function and various systematics affecting our measurement. With such a large volume, high-precision cosmological constraints can be obtained given careful control and understanding of the observational systematics. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at four redshift slices with an accuracy of ~15%, with a bin size of δ l = 10 on scales of the baryon acoustic oscillations (BAOs; at l ~ 40-400). We also apply corrections to the power spectra due to systematics and derive cosmological constraints using the full shape of the power spectra. For a flat ΛCDM model, when combined with cosmic microwave background Wilkinson Microwave Anisotropy Probe 7 (WMAP7) and H 0 constraints from using 600 Cepheids observed by Wide Field Camera 3 (WFC3; HST), we find ΩΛ = 0.73 ± 0.019 and H 0 to be 70.5 ± 1.6 s-1 Mpc-1 km. For an open ΛCDM model, when combined with WMAP7 + HST, we find Ω K = 0.0035 ± 0.0054, improved over WMAP7+HST alone by 40%. For a wCDM model, when combined with WMAP7+HST+SN, we find w = -1.071 ± 0.078, and H 0 to be 71.3 ± 1.7 s-1 Mpc-1 km, which is competitive with the latest large-scale structure constraints from large spectroscopic surveys such as the SDSS Data Release 7 (DR7) and WiggleZ. We also find that systematic-corrected power spectra give consistent

  18. The FUR to near-IR morphologies of luminous infrared galaxies in the goals sample

    SciTech Connect

    Petty, S. M.; Armus, L.; Díaz-Santos, T.; Howell, J. H.; Surace, J. A.; Charmandaris, V.; Psychogyios, A.; Evans, A. S.; Stierwalt, S.; Floc’h, E. Le; Bridge, C.; Inami, H.

    2014-12-01

    We compare the morphologies of a sample of 20 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS) in the FUV, B, I, and H bands, using the Gini (G) and M{sub 20} parameters to quantitatively estimate the distribution and concentration of flux as a function of wavelength. Hubble Space Telescope (HST) images provide an average spatial resolution of ∼80 pc. While our LIRGs can be reliably classified as mergers across the entire range of wavelengths studied here, there is a clear shift toward more negative M{sub 20} (more bulge-dominated) and a less significant decrease in G values at longer wavelengths. We find no correlation between the derived FUV G-M{sub 20} parameters and the global measures of the IR to FUV flux ratio (IRX). Given the fine resolution in our HST data, this suggests either that the UV morphology and IRX are correlated on very small scales, or that the regions emitting the bulk of the IR emission emit almost no FUV light. We use our multi-wavelength data to simulate how merging LIRGs would appear from z∼0.5–3 in deep optical and near-infrared images such as the Hubble Ultra-Deep Field, and use these simulations to measure the G-M{sub 20} at these redshifts. Our simulations indicate a noticeable decrease in G, which flattens at z⩾2 by as much as 40%, resulting in mis-classifying our LIRGs as disk-like, even in the rest-frame FUV. The higher redshift values of M{sub 20} for the GOALS sources do not appear to change more than about 10% from the values at z∼0. The change in G-M{sub 20} is caused by the surface brightness dimming of extended tidal features and asymmetries, and also the decreased spatial resolution which reduced the number of individual clumps identified. This effect, seen as early as z∼0.5, could easily lead to an underestimate of the number of merging galaxies at high-redshift in the rest-frame FUV.

  19. Quiescent luminous red galaxies as cosmic chronometers: on the significance of mass and environmental dependence

    NASA Astrophysics Data System (ADS)

    Liu, G. C.; Lu, Y. J.; Xie, L. Z.; Chen, X. L.; Zhao, Y. H.

    2016-01-01

    Context. Massive luminous red galaxies (LRGs) are believed to be evolving passively and can be used as cosmic chronometers to estimate the Hubble constant (the differential age method). However, different LRGs may be located in different environments. The environmental effects, if any, on the mean ages of LRGs, and the ages of the oldest LRGs at different redshift, may limit the use of the LRGs as cosmic chronometers. Aims: We aim to investigate the environmental and mass dependence of the formation of "quiescent" LRGs, selected from the Sloan Digital Sky Survey (SDSS) data release 8, and to pave the way for using LRGs as cosmic chronometers. Methods: Using the population synthesis software STARLIGHT, we derive the stellar populations in each LRG through the full spectrum fitting and obtain the mean age distribution and the mean star formation history (SFH) of those LRGs. Results: We find that there is no apparent dependence of the mean age and the SFH of quiescent LRGs on their environment, while the ages of those quiescent LRGs depend weakly on their mass. We compare the SFHs of the SDSS LRGs with those obtained from a semi-analytical galaxy formation model and find that they are roughly consistent with each other if we consider the errors in the STARLIGHT-derived ages. We find that a small fraction of later star formation in LRGs leads to a systematical overestimation (~28%) of the Hubble constant by the differential age method, and the systematical errors in the STARLIGHT-derived ages may lead to an underestimation (~ 16%) of the Hubble constant. However, these errors can be corrected by a detailed study of the mean SFH of those LRGs and by calibrating the STARLIGHT-derived ages with those obtained independently by other methods. Conclusions: The environmental effects do not play a significant role in the age estimates of quiescent LRGs; and the quiescent LRGs as a population can be used securely as cosmic chronometers, and the Hubble constant can be measured

  20. A New Measurement of the Bulk Flow of X-Ray Luminous Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Atrio-Barandela, F.; Ebeling, H.; Edge, A.; Kocevski, D.

    2010-01-01

    We present new measurements of the large-scale bulk flows of galaxy clusters based on five-year WMAP data and a significantly expanded X-ray cluster catalog. Our method probes the flow via measurements of the kinematic Sunyaev-Zel'dovich (SZ) effect produced by the hot gas in moving clusters. It computes the dipole in the cosmic microwave background data at cluster pixels, which preserves the SZ component while integrating down other contributions. Our improved catalog of over 1000 clusters enables us to further investigate possible systematic effects and, thanks to a higher median cluster redshift, allows us to measure the bulk flow to larger scales. We present a corrected error treatment and demonstrate that the more X-ray luminous clusters, while fewer in number, have much larger optical depth, resulting in a higher dipole and thus a more accurate flow measurement. This results in the observed correlation of the dipole derived at the aperture of zero monopole with the monopole measured over the cluster central regions. This correlation is expected if the dipole is produced by the SZ effect and cannot be caused by unidentified systematics (or primary cosmic microwave background anisotropies). We measure that the flow is consistent with approximately constant velocity out to at least [similar, equals]800 Mpc. The significance of the measured signal peaks around 500 h -1 70 Mpc, most likely because the contribution from more distant clusters becomes progressively more diluted by the WMAP beam. However, at present, we cannot rule out that these more distant clusters simply contribute less to the overall motion.

  1. A Search for Moderate-redshift Survivors from the Population of Luminous Compact Passive Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Stockton, Alan; Shih, Hsin-Yi; Larson, Kirsten; Mann, Andrew W.

    2014-01-01

    From a search of a ~2400 deg2 region covered by both the Sloan Digital Sky Survey and UKIRT Infrared Deep Sky Survey databases, we have attempted to identify galaxies at z ~ 0.5 that are consistent with their being essentially unmodified examples of the luminous passive compact galaxies found at z ~ 2.5. After isolating good candidates via deeper imaging, we further refine the sample with Keck moderate-resolution spectroscopy and laser guide star adaptive-optics imaging. For four of the five galaxies that so far remain after passing through this sieve, we analyze plausible star-formation histories based on our spectra in order to identify galaxies that may have survived with little modification from the population formed at high redshift. We find two galaxies that are consistent with having formed >~ 95% of their mass at z > 5. We attempt to estimate masses both from our stellar population determinations and from velocity dispersions. Given the high frequency of small axial ratios, both in our small sample and among samples found at high redshifts, we tentatively suggest that some of the more extreme examples of passive compact galaxies may have prolate morphologies. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  2. Interpreting the IR SED of z~0.3-2.8 IR-Luminous Galaxies and AGN Using Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Roebuck, Eric John; Sajina, Anna; Hayward, Christopher C.; Pope, Alexandra; Kirkpatrick, Allison; Hernquist, Lars E.; Yan, Lin

    2016-01-01

    We use three-dimensional hydrodynamical galaxy merger simulations to further investigate the nature of a sample of 342 24 μm-selected (ultra) luminous infrared galaxies at z~0.3-2.8. All of our sources have low-resolution Spitzer/IRS spectra -- the largest such sample outside the local universe. These spectra allow us to determine that our sample consists of a mixture of star forming galaxies (SFGs), AGN, and composites. We address the question of how well do empirical IR AGN fraction estimates trace the intrinsic AGN fraction (i.e. the AGN-to-total power in the galaxy prior to dust re-processing), including how they relate to galaxy properties such as merger stage, dust/gas content, and star formation rates. We do this by fitting the observed SEDs of our sample with theoretical SEDs based on GADGET hydrodynamic merger simulations additionally processed through the SUNRISE radiative transfer code. We additionally investigate systematic uncertainties associated with these quantities using the goodness of fits to our model library. The key findings are: 1) our simulation-based fits are in broad agreement with the empirical model-based fits, 2) much of the AGN fraction of LIR is missed if the AGN's contribution to heating the host galaxy dust is not accounted for, and 3) the IR AGN fraction traces the intrinsic AGN fraction up to the coalescence stage, however may underestimate the intrinsic AGN fraction post coalescence.

  3. A search for moderate-redshift survivors from the population of luminous compact passive galaxies at high redshift

    SciTech Connect

    Stockton, Alan; Shih, Hsin-Yi; Larson, Kirsten; Mann, Andrew W. E-mail: hsshih@ifa.hawaii.edu E-mail: amann@ifa.hawaii.edu

    2014-01-10

    From a search of a ∼2400 deg{sup 2} region covered by both the Sloan Digital Sky Survey and UKIRT Infrared Deep Sky Survey databases, we have attempted to identify galaxies at z ∼ 0.5 that are consistent with their being essentially unmodified examples of the luminous passive compact galaxies found at z ∼ 2.5. After isolating good candidates via deeper imaging, we further refine the sample with Keck moderate-resolution spectroscopy and laser guide star adaptive-optics imaging. For four of the five galaxies that so far remain after passing through this sieve, we analyze plausible star-formation histories based on our spectra in order to identify galaxies that may have survived with little modification from the population formed at high redshift. We find two galaxies that are consistent with having formed ≳ 95% of their mass at z > 5. We attempt to estimate masses both from our stellar population determinations and from velocity dispersions. Given the high frequency of small axial ratios, both in our small sample and among samples found at high redshifts, we tentatively suggest that some of the more extreme examples of passive compact galaxies may have prolate morphologies.

  4. A multiwavelength and multiscale study of Luminous and Ultraluminous Infrared Galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, Rubén

    2014-10-01

    This dissertation deals with the multiwavelength study of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs, respectively) in the local Universe under different spatial scales. The work is focused on the properties of massive starbursts, the contribution of active galactic nuclei (AGN) and the interplay between both phenomena. The study of local (U)LIRGs is the best scenario where to understand the properties of these objects at cosmological distances, where their luminosity contribution dominates the cosmic infrared background. Our first approach to the study of (U)LIRGs consisted of a spectral line study in the millimeter range, obtained with the IRAM 30m radio-telescope in Pico Veleta, Granada of a subsample of 56 (U)LIRGs from the GOALS project sample. We observed and analyzed spectra of several molecular features, focusing in the study of carbon monoxide (CO), a well-known tracer of cold molecular gas. We explored the relation between them as well as the properties of molecular gas. Besides of the sample characterization, we confirmed the increase of the isotopic ratio 12CO/13CO with the dust temperature, explained by the 12CO optical depth decreasing with temperature. We have also studied the kinematics and gas distribution using the spectral profiles of several molecular transitions. In a second part of this thesis, we analyzed the central kiloparsec region of a sample of 12 LIRGs, stressing the importance of the multiwavelength approach, aimed at deriving the star formation processes of these galaxies, as well as to study the contribution of the putative AGN to the bolometric luminosity in our sample. For one of these LIRGs, NGC1614, we performed a deep multiwavelength study, including data from radio, infrared, optical and X-rays. These data allowed us to establish that the the IR emission in the circumnuclear region is completely dominated by a powerful starburst and, in case it hosts an AGN, its contribution is irrelevant. We also performed

  5. NUSTAR Unveils a Heavily Obscured Low-luminosity Active Galactic Nucleus in the Luminous Infrared Galaxy NGC 6286

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Bauer, F. E.; Treister, E.; Romero-Cañizales, C.; Arevalo, P.; Iwasawa, K.; Privon, G. C.; Sanders, D. B.; Schawinski, K.; Stern, D.; Imanishi, M.

    2016-03-01

    We report the detection of a heavily obscured active galactic nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286 identified in a 17.5 ks Nuclear Spectroscopic Telescope Array observation. The source is in an early merging stage and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra-luminous infrared galaxies in different merger stages. NGC 6286 is clearly detected above 10 keV and by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured (NH ≃(0.95-1.32) × 1024 cm-2) with a column density consistent with being Compton-thick (CT, {log}({N}{{H}}/{{cm}}-2)≥slant 24). The AGN in NGC 6286 has a low absorption-corrected luminosity (L2-10 keV ˜ 3-20 × 1041 erg s-1) and contributes ≲1% to the energetics of the system. Because of its low luminosity, previous observations carried out in the soft X-ray band (<10 keV) and in the infrared did not notice the presence of a buried AGN. NGC 6286 has multiwavelength characteristics typical of objects with the same infrared luminosity and in the same merger stage, which might imply that there is a significant population of obscured low-luminosity AGNs in LIRGs that can only be detected by sensitive hard X-ray observations.

  6. Modelling the spectral energy distribution of galaxies. V. The dust and PAH emission SEDs of disk galaxies

    NASA Astrophysics Data System (ADS)

    Popescu, C. C.; Tuffs, R. J.; Dopita, M. A.; Fischera, J.; Kylafis, N. D.; Madore, B. F.

    2011-03-01

    We present a self-consistent model of the spectral energy distributions (SEDs) of spiral galaxies from the ultraviolet (UV) to the mid-infrared (MIR)/far-infrared (FIR)/submillimeter (submm) based on a full radiative transfer calculation of the propagation of starlight in galaxy disks. This model predicts not only the total integrated energy absorbed in the UV/optical and re-emitted in the infrared/submm, but also the colours of the dust emission based on an explicit calculation of the strength and colour of the UV/optical radiation fields heating the dust, and incorporating a full calculation of the stochastic heating of small dust grains and PAH molecules. The geometry of the translucent components of the model is empirically constrained using the results from the radiation transfer analysis of Xilouris et al. on spirals in the middle range of the Hubble sequence, while the geometry of the optically thick components is constrained from physical considerations with a posteriori checks of the model predictions with observational data. Following the observational constraints, the model has both a distribution of diffuse dust associated with the old and young disk stellar populations as well as a clumpy component arising from dust in the parent molecular clouds in star forming regions. In accordance with the fragmented nature of dense molecular gas in typical star-forming regions, UV light from massive stars is allowed to either freely stream away into the diffuse medium in some fraction of directions or be geometrically blocked and locally absorbed in clumps. These geometrical constraints enable the dust emission to be predicted in terms of a minimum set of free parameters: the central face-on dust opacity in the B-band τ^f_B, a clumpiness factor F for the star-forming regions, the star-formation rate SFR, the normalised luminosity of the old stellar population old and the bulge-to-disk ratio B/D. We show that these parameters are almost orthogonal in their

  7. Colors of Luminous Bulges in Cluster MS 1054-03 and Field Galaxies at Redshifts z~0.83

    NASA Astrophysics Data System (ADS)

    Koo, David C.; Datta, Susmita; Willmer, Christopher N. A.; Simard, Luc; Tran, Kim-Vy; Im, Myungshin

    2005-11-01

    Using Hubble Space Telescope images, we separate the bulgelike (dubbed ``pbulge'') and disklike (``pdisk'') components of 71 galaxies in the rich cluster MS 1054-03 and of 21 in the field. Our key finding is that luminous pbulges are very red, with rest-frame U-B~0.45, while predicted colors are bluer by 0.20 mag. Moreover, these very red colors appear to be independent of environment, pbulge luminosity, pdisk color, and pbulge fraction. These results challenge any model of hierarchical galaxy formation that predicts the colors of distant (z~0.8) luminous field and cluster bulges will differ. Our findings also disagree with other claims that 30% to 50% of bright bulges and elliptical galaxies at z~1 are very blue (U-B<=0). Based on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration; made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 and associated with proposals GO-7372, GTO-5090, and GTO-5109.

  8. The Cambridge-Cambridge x-ray serendipity survey. 2: Classification of x-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, Martin

    1994-01-01

    We present the results of an intermediate-resolution (1.5 A) spectroscopic study of 17 x-ray luminous narrow emission-line galaxies previously identified in the Cambridge-Cambridge ROSAT Serendipity Survey and the Einstein Extended Medium Sensitivity Survey. Emission-line ratios reveal that the sample is composed of ten Seyfert and seven starburst galaxies. Measured linewidths for the narrow H alpha emission lines lie in the range 170 - 460 km s(exp -1). Five of the objects show clear evidence for asymmetry in the (OIII) lambda 5007 emission-line profile. Broad H alpha emission is detected in six of the Seyfert galaxies, which range in type from Seyfert 1.5 to 2. Broad H beta emission is only detected in one Seyfert galaxy. The mean full width at half maximum for the broad lines in the Seyfert galaxies is FWHM = 3900 +/- 1750 km s(exp -1). Broad (FWHM = 2200 +/- 600 km s(exp -1) H alpha emission is also detected in three of the starburst galaxies, which could originate from stellar winds or supernovae remnants. The mean Balmer decrement for the sample is H alpha / H beta = 3, consistent with little or no reddening for the bulk of the sample. There is no evidence for any trend with x-ray luminosity in the ratio of starburst galaxies to Seyfert galaxies. Based on our previous observations, it is therefore likely that both classes of object comprise approximately 10 percent of the 2 keV x-ray background.

  9. 2D kinematical study in local luminous compact blue galaxies. Starburst origin in UCM2325+2318

    NASA Astrophysics Data System (ADS)

    Castillo-Morales, A.; Pérez-Gallego, J.; Gallego, J.; Guzmán, R.; Castander, F.; Garland, C.; Gruel, N.; Pisano, D. J.; Muñoz-Mateos, J. C.; Ocaña, F.; Zamorano, J.

    2013-05-01

    Luminous Compact Blue Galaxies (LCBGs) are small, but vigorously star forming galaxies. Their presence at different redshifts denotes their cosmological relevance and implies that local starburst galaxies, when properly selected, are unique laboratories for studying the complex ecosystem of the star formation process over time. We have selected a representative sample of 22 LCBGs from the SDSS and UCM databases which, although small, provides an excellent reference for comparison with current and future surveys of similar starbursts at high-z. We are carrying out a 2D optical spectroscopic study of this LCBG sample, including spatially resolved maps of kinematics, extinction, SFR and metallicity. This will help us to answer questions regarding the nature of these objects. In this poster we show our results on the kinematical study (Pérez-Gallego et al. 2011) which allows us to classify these galaxies into three different classes: rotating disk (RD) 48%, perturbed rotation (PR) 28% and complex kinematics (CK) 24%. We find 5% of objects show evidence of a recent major merger, 10% of a minor merger, and 45% of a companion. This argues in favor of ongoing interactions with close companions as a mechanism for the enhanced star formation activity in these galaxies. We find only 5% of objects with clear evidence of AGN activity, and 27% with kinematics consistent with SN-driven galactic winds. Therefore, a different mechanism may be responsible for quenching the star formation in LCBGs. The detailed analysis of the physical properties for each galaxy in the sample is on progress and we show in this poster the results on UCM2325+2318 as a prototype LCBG. Between the possible mechanisms to explain the starburst activity in this galaxy, our 2D spectroscopic data support the scenario of an on-going interaction with the possibility for clump B to be the dwarf satellite galaxy (Castillo-Morales et al. 2011, Pérez-Gallego et al. 2010).

  10. Lyα and CIII] Emission in z = 7 - 9 Galaxies: Accelerated Reionization Around Luminous Star Forming Systems?

    NASA Astrophysics Data System (ADS)

    Stark, Daniel P.; Ellis, Richard S.; Charlot, Stéphane; Chevallard, Jacopo; Tang, Mengtao; Belli, Sirio; Zitrin, Adi; Mainali, Ramesh; Gutkin, Julia; Vidal-García, Alba; Bouwens, Rychard; Oesch, Pascal

    2016-09-01

    We discuss new Keck/MOSFIRE spectroscopic observations of four luminous galaxies at z ≃ 7 - 9 selected to have intense optical line emission by Roberts-Borsani et al. (2016). Previous follow-up has revealed Lyα in two of the four galaxies. Our new MOSFIRE observations confirm that Lyα is present in the entire sample. We detect Lyα emission in the galaxy COS-zs7-1, confirming its redshift as zLyα = 7.154, and we detect Lyα in EGS-zs8-2 at zLyα = 7.477, verifying an earlier tentative detection. The ubiquity of Lyα in this sample is puzzling given that the IGM is expected to be significantly neutral over 7 < z < 9. To investigate this result in more detail, we have initiated a campaign to target UV metal lines in the four Lyα emitters as a probe of both the ionizing field and the Lyα velocity offset at early times. Here we present the detection of CIII] emission in the z = 7.73 galaxy EGS-zs8-1, requiring an intense radiation field and moderately low metallicity. We argue that the radiation field is likely to affect the local environment, increasing the transmission of Lyα through the galaxy. Moreover, the centroid of CIII] indicates that Lyα is redshifted by 340 km sec-1. This velocity offset is larger than that seen in less luminous systems, providing an explanation for the transmission of Lyα emission through the IGM. Since the transmission is further enhanced by the likelihood that such systems are also situated in large ionized bubbles, the visibility of Lyα at z > 7 is expected to be strongly luminosity-dependent, with transmission accelerated in systems with intense star formation.

  11. A dual velocity in the highly ionized wind of the luminous narrow line Seyfert galaxy PG 1211+143

    NASA Astrophysics Data System (ADS)

    Pounds, K. A.; Lobban, A.; Reeves, J. N.; Vaughan, S.

    2016-05-01

    An extended XMM-Newton observation of the luminous narrow line Seyfert galaxy PG 1211+143 in 2014 has revealed a complex high velocity outflow, with components distinguished in velocity, ionization and short-term variability. We report here the detection of previously unseen spectral structure in Fe K absorption, finding a second velocity component of the highly ionized wind, apparently co-moving with a low ionization flow detected in the soft X-ray spectrum. Comparison with the first observation in 2001 finds a similar outflow energy rate.

  12. CaII in Luminous Narrow-line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Leighly, Karen; Dietrich, M.

    2009-01-01

    FeII emission is an important component of the low-ionization broad-line emission in quasars, comprising up to 1/3 of the total line emission, and performing as a primary coolant. In addition, FeII potentially can be used as a probe of gas metallicity (i.e., preceding stellar evolution). However, FeII is difficult to study because the Fe+ ion yields a complex spectrum of several hundred-thousand emission lines. CaII has been shown to be a valuable surrogate for FeII, with the H&K lines analogous to the UV FeII, and the IR triplet analogous to optical FeII. The advantage of studying CaII compared with FeII is that while the gross atomic structure is similar, the number of lines is dramatically reduced (five versus thousands). CaII H&K (3934, 3968Å) has rarely been identified in emission in quasars and AGN, possibly because the gas is very optically thick and the emission has been converted to the CaII IR triplet (8498, 85442, 8662Å), or because of absorption in the host galaxy. An exception is the luminous narrow-line quasar PHL 1811, and examination of quasars in the SDSS reveals a number of others that show CaII H&K as well, along with other objects that appear otherwise similar but do not have CaII H&K in their spectra. We present preliminary results from observations using SpeX on the IRTF, NASA's 3m telescope on Mauna Kea, to study CaII IR triplet emission in a sample of quasars both with and without CaII H&K. The sample has a range of optical FeII/Hα914 ratios, and the IR CaII triplet/OI (8446Å) ratio follows roughly the same pattern. This behavior is expected if the IR CaII triplet is analogous to optical FeII, and the OI is produced by Bowen fluorescence. A range of CaII H&K/CaII IR triplet ratios is found. Additional results will be presented.

  13. Where are the Luminous Red Galaxies (LRGs)? Using correlation measurements and lensing to relate LRGs to dark matter haloes

    NASA Astrophysics Data System (ADS)

    Hikage, Chiaki; Mandelbaum, Rachel; Takada, Masahiro; Spergel, David N.

    2013-11-01

    Non-linear redshift-space distortions, the Finger-of-God (FoG) effect, can complicate the interpretation of the galaxy power spectrum. Here, we demonstrate the method proposed by Hikage, Takada & Spergel to use complimentary observations to directly constrain this effect on the data. We use catalogues of Luminous Red Galaxies (LRGs) and photometric galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) to measure the redshift-space power spectrum of LRGs, the cross-correlation of LRGs with the shapes of background photometric galaxies (galaxy-galaxy weak lensing) and the projected cross-correlation of LRGs with photometric galaxies having similar photometric redshifts to the LRG spectroscopic redshift. All of these measurements use a reconstructed halo field. While we use the position of each LRG for single LRG systems, we compare the measurements using different halo-centre proxies for multiple-LRG systems (4.5 per cent of all the haloes): the brightest LRG position (BLRG), the faintest LRG position (FLRG) and their arithmetical mean position (Mean), respectively, in each system. We find significant differences in the measured correlations of different centres, showing consistent off-centring effects in the three observables. By comparing the measurements with a halo model that treats the satellite photometric galaxies as being distributed according to a generalized Navarro, Frenk and White profile, we find that ˜40 (70) per cent of BLRGs (FLRGs) are off-centred satellite galaxies in the multiple-LRG systems. The satellite LRGs have typical off-centring radius of ˜400 kpc h-1, and velocity dispersion of about 500 km s-1 in host haloes with a mean mass of 1.6 × 1014 M⊙ h-1. We show that, if LRGs in the single LRG systems have similar offsets, the residual FoG contamination in the LRG power spectrum can be significant at k ≳ 0.1 h Mpc-1, which may cause a bias in cosmological parameters determined by the shape of the power spectrum, such as

  14. The Atacama Cosmology Telescope: Detection or Sunyaev-Zel'Dovich Decrement in Groups and Clusters Associated with Luminous Red Galaxies

    NASA Technical Reports Server (NTRS)

    Hand, Nick; Appel, John William; Battaglia, Nick; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Hughes, John P.; Irwin, Kent D.; Klein, Jeff; Kosowsky, Arthur; Lin, Yen-Ting; Marriage, Tobias A.; Marsden, Danica; McLaren, Mike; Wollack, Ed

    2010-01-01

    We present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the Luminous Red Galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope (ACT). The LRG sample is divided by luminosity into four bins, and estimates for the central Sunyaev-Zel'dovich temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y(sub 200) and clustering properties to relate the galaxy luminosity bins to mass. We also use a relation between BCG luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be in the range approx.10(exp 13) - 10(exp 14)/h Stellar Mass, a lower range than has been previously probed.

  15. PHOTOMETRIC REDSHIFTS AND SYSTEMATIC VARIATIONS IN THE SPECTRAL ENERGY DISTRIBUTIONS OF LUMINOUS RED GALAXIES FROM SDSS DR7

    SciTech Connect

    Greisel, N.; Seitz, S.; Bender, R.; Saglia, R. P.; Snigula, J.; Drory, N.

    2013-05-10

    We describe the construction of a template set of spectral energy distributions (SEDs) for the estimation of photometric redshifts of luminous red galaxies (LRGs) with a Bayesian template fitting method. By examining the color properties of several publicly available SED sets within a redshift range of 0 < z {approx}< 0.5 and comparing them to Sloan Digital Sky Survey (SDSS) Data Release 7 data, we show that only some of the investigated SEDs approximately match the colors of the LRG data throughout the redshift range, however not at the quantitative level required for precise photometric redshifts. This is because the SEDs of galaxies evolve with time (and redshift) and because at fixed redshift the LRG colors have an intrinsic spread such that they cannot be matched by one SED only. We generate new SEDs by superposing model SEDs of composite stellar populations with a burst model, allowing both components to be reddened by dust, in order to match the data in five different redshift bins. We select a set of SEDs which represents the LRG data in color space within five redshift bins, thus defining our new SED template set for photometric redshift estimates. The results we obtain with the new template set and our Bayesian template fitting photometric redshift code (PhotoZ) are nearly unbiased, with a scatter of {sigma}{sub {Delta}z} = 0.027 (including outliers), a fraction of catastrophic outliers (|z{sub phot} - z{sub spec}|/(1 + z{sub spec}) > 0.15) of {eta} = 0.12%, and a normalized median absolute rest frame deviation (NMAD) of {sigma}{sub NMAD} = 1.48 Multiplication-Sign MAD = 0.017 for non-outliers. We show that templates that optimally describe the brightest galaxies (-24.5 {<=} M{sub R} {<=} -22.7) indeed vary from z = 0.1 to z = 0.5, consistent with aging of the stellar population. Furthermore, we find that templates that optimally describe galaxies at z < 0.1 strongly differ as a function of the absolute magnitude of the galaxies, indicating an increase in

  16. Neutral carbon and CO in 76 (U)LIRGs and starburst galaxy centers. A method to determine molecular gas properties in luminous galaxies

    NASA Astrophysics Data System (ADS)

    Israel, F. P.; Rosenberg, M. J. F.; van der Werf, P.

    2015-06-01

    In this paper we present fluxes in the [ CI ] lines of neutral carbon at the centers of some 76 galaxies with far-infrared luminosities ranging from 109 to 1012L⊙, as obtained with the Herschel Space Observatory and ground-based facilities, along with the line fluxes of the J = 7-6, J = 4-3, J = 2-112CO, and J = 2-113CO transitions. With this dataset, we determine the behavior of the observed lines with respect to each other and then investigate whether they can be used to characterize the molecular interstellar medium (ISM) of the parent galaxies in simple ways and how the molecular gas properties define the model results. In most starburst galaxies, the [ CI ] to 13CO line flux ratio is much higher than in Galactic star-forming regions, and it is correlated to the total far-infrared luminosity. The [ CI ] (1-0)/12CO (4-3), the [ CI ] (2-1)/12CO (7-6), and the [ CI ] (2-1)/(1-0) flux ratios are correlated, and they trace the excitation of the molecular gas. In the most luminous infrared galaxies (LIRGs), the ISM is fully dominated by dense (n( H2) = 104-105 cm-3) and moderately warm (Tkin ≈ 30 K) gas clouds that appear to have low [C°]/[CO] and [13CO]/[12CO] abundances. In less luminous galaxies, emission from gas clouds at lower densities becomes progressively more important, and a multiple-phase analysis is required to determine consistent physical characteristics. Neither the 12CO nor the [ CI ] velocity-integrated line fluxes are good predictors of molecular hydrogen column densities in individual galaxies. In particular, so-called X( [ CI ]) conversion factors are not superior to X( 12CO) factors. The methods and diagnostic diagrams outlined in this paper also provide a new and relatively straightforward means of deriving the physical characteristics of molecular gas in high-redshift galaxies up to z = 5, which are otherwise hard to determine.

  17. THE ROLE OF STARBURST-ACTIVE GALACTIC NUCLEUS COMPOSITES IN LUMINOUS INFRARED GALAXY MERGERS: INSIGHTS FROM THE NEW OPTICAL CLASSIFICATION SCHEME

    SciTech Connect

    Yuan, T.-T.; Kewley, L. J.; Sanders, D. B. E-mail: kewley@ifa.hawaii.ed

    2010-02-01

    We investigate the fraction of starbursts, starburst-active galactic nucleus (AGN) composites, Seyferts, and low-ionization narrow emission-line region galaxies (LINERs) as a function of infrared luminosity (L{sub IR}) and merger progress for approx500 infrared (IR)-selected galaxies. Using the new optical classifications afforded by the extremely large data set of the Sloan Digital Sky Survey, we find that the fraction of LINERs in IR-selected samples is rare (<5%) compared with other spectral types. The lack of strong IR emission in LINERs is consistent with recent optical studies suggesting that LINERs contain AGN with lower accretion rates than in Seyfert galaxies. Most previously classified IR-luminous LINERs are classified as starburst-AGN composite galaxies in the new scheme. Starburst-AGN composites appear to 'bridge' the spectral evolution from starburst to AGN in ULIRGs. The relative strength of the AGN versus starburst activity shows a significant increase at high IR luminosity. In ULIRGs (L{sub IR} > 10{sup 12} L{sub sun}), starburst-AGN composite galaxies dominate at early-intermediate stages of the merger, and AGN galaxies dominate during the final merger stages. Our results are consistent with models for IR-luminous galaxies where mergers of gas-rich spirals fuel both starburst and AGN, and where the AGN becomes increasingly dominant during the final merger stages of the most luminous IR objects.

  18. Stellar mass - Metallicity Relation for AKARI-FMOS Infrared Luminous Galaxies at z~0.9

    NASA Astrophysics Data System (ADS)

    Oi, Nagisa; Matsuhara, Hideo; Goto, Tomo; Pearson, Chris; Buat, Véronique; Malkan, Matthew A.

    2015-08-01

    Heavy elements are synthesized in stars and returned into the interstellar medium reflecting the result of the past star formation activity in a galaxy. Thus, the gas phase metallicity is a key parameter in understanding the processes of the formation and the evolution of a galaxy. Many investigations of stellar mass (M*) and gas phase metallicity (Z) relation (MZ relation), which is more massive galaxies tend to be more metal-rich, and a fundamental relation (FMR), whereby galaxies define a tight surface in the three-dimensional space of M*, Z, and Star Formation Rate (SFR) have done up to z~3.3. However, this relation only holds to ultraviolet, optical, or near-infrared selected star forming galaxies. Since most of star formation activities in galaxies at high-z universe are hidden by dust, to fully understand the MZ relation and its evolution, it is critical to study dusty galaxies.Here, we investigate the MZ relation and FMR for infrared bright galaxies at z~0.9 discovered by AKARI NEP-Deep survey.We estimated the M* and Z from SED fitting using the AKARI NEP-Deep data with its follow-up multi-wavelength photometric data (from X-ray to FIR) and from Halpha-[NII] emission line ratio taken by Subaru/FMOS, respectively. We found that (1) the infrared bright galaxies at z~0.9 is already chemically evolved to the level of star-forming galaxies in the local universe, and (2) the metallicity of our sample is systematically larger than that of the FMR. The results suggest a possibility that metal was actively created in dusty galaxies up to z~1, then outflow blows out dust and gas, suddenly stopping the chemical evolution and star formation activity, and the galaxies end up being what they are today.

  19. The Modes of Star Formation in Luminous and Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan S.; Candels Team

    2015-01-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, LIR>1012 Lsun) are all interacting and merging systems. To date, studies of ULIRGs at high redshift have found a variety of results due to their varying selection effects and small sample sizes. Some studies have found that mergers still dominate the galaxy morphology while others have found a high fraction of morphologically normal or clumpy star forming disks. Near-infrared imaging is crucial for interpreting galaxy structure at high redshift since it probes the rest frame optical light of a galaxy and thus we can compare directly to studies in the local universe. We explore the evolution of the morphological properties of (U)LIRGs over cosmic time using a large sample of galaxies from Herschel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between z~2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy's position in the star formation rate - stellar mass plane. Are galaxies that have specific star formation rates elevated above the main sequence more likely to be mergers?

  20. Probing dark matter in the luminous radio galaxy 3C220.3 and the structure of the z=2.22 SMG/AGN it is lensing.

    NASA Astrophysics Data System (ADS)

    Wilkes, Belinda

    2013-09-01

    The radio galaxy 3C 220.3 (z=0.685) is lensing a submm galaxy (SMG) at z=2.221 housing an AGN. This unique system allows accurate estimates of both stellar and dark mass in the luminous radio galaxy. In addition, the lensing magnification of 7 offers an unprecedented view of the interaction between star formation and AGN feedback in a luminous, dusty galaxy at the peak epoch of cosmic star formation. Our previous 10ks Chandra observation shows X-ray emission throughout the system, including the SMG, but with too few counts to identify the origin(s). We propose deeper Chandra and HST observations to (1) locate the X-ray sources, measure the X-ray properties and independently estimate the bolometric luminosities of both AGN (2) better map the offset between the SMG's UV and dust emission.

  1. Probing dark matter in the luminous radio galaxy 3C220.3 and the structure of the z=2.22 SMG/AGN it is lensing.

    NASA Astrophysics Data System (ADS)

    Wilkes, Belinda

    2013-10-01

    The radio galaxy 3C 220.3 {z=0.685} is lensing a submm galaxy {SMG} at z=2.221 housing an AGN. This unique system allows accurate estimates of both stellar and dark mass in the luminous radio galaxy. In addition, the lensing magnification of 7 offers an unprecedented view of the interaction between star formation and AGN feedback in a luminous, dusty galaxy at the peak epoch of cosmic star formation. Our previous 10ks Chandra observation shows X-ray emission throughout the system, including the SMG, but with too few counts to identify the origin{s}. We propose deeper Chandra and HST observations to {1} locate the X-ray sources, measure the X-ray properties and independently estimate the bolometric luminosities of both AGN {2} better map the offset between the SMG's UV and dust emission.

  2. The Origin and Evolution of (Ultra)Luminous Infrared Galaxies Over Cosmic Time

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan S.; CANDELS Collaboration

    2014-01-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, L_IR>10^12 L_sun) are all interacting and merging systems. To date, studies of ULIRGs at high redshift have found a variety of results due to their varying selection effects and small sample sizes. Some studies have found that mergers still dominate the galaxy morphology while others have found a high fraction of morphologically normal or clumpy star forming disks. Near-infrared imaging is crucial for interpreting galaxy structure at high redshift since it probes the rest frame optical light of a galaxy and thus we can compare directly to studies in the local universe. We explore the evolution of the morphological properties of (U)LIRGs over cosmic time using a large sample of galaxies from Herschel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between 2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy's position in the star formation rate - stellar mass plane.

  3. Are luminous radio-loud active galactic nuclei triggered by galaxy interactions?

    NASA Astrophysics Data System (ADS)

    Ramos Almeida, C.; Bessiere, P. S.; Tadhunter, C. N.; Pérez-González, P. G.; Barro, G.; Inskip, K. J.; Morganti, R.; Holt, J.; Dicken, D.

    2012-01-01

    We present the results of a comparison between the optical morphologies of a complete sample of 46 southern 2 Jy radio galaxies at intermediate redshifts (0.05 < z < 0.7) and those of two control samples of quiescent early-type galaxies: 55 ellipticals at redshifts z ≤ 0.01 from the Observations of Bright Ellipticals at Yale (OBEY) survey, and 107 early-type galaxies at redshifts 0.2 < z < 0.7 in the Extended Groth Strip (EGS). Based on these comparisons, we discuss the role of galaxy interactions in the triggering of powerful radio galaxies (PRGs). We find that a significant fraction of quiescent ellipticals at low and intermediate redshifts show evidence for disturbed morphologies at relatively high surface brightness levels, which are likely the result of past or on-going galaxy interactions. However, the morphological features detected in the galaxy hosts of the PRGs (e.g. tidal tails, shells, bridges, etc.) are up to 2 mag brighter than those present in their quiescent counterparts. Indeed, if we consider the same surface brightness limits, the fraction of disturbed morphologies is considerably smaller in the quiescent population (53 per cent at z < 0.2 and 48 per cent at 0.2 ≤ z < 0.7) than in the PRGs (93 per cent at z < 0.2 and 95 per cent at 0.2 ≤ z < 0.7 considering strong-line radio galaxies only). This supports a scenario in which PRGs represent a fleeting active phase of a subset of the elliptical galaxies that have recently undergone mergers/interactions. However, we demonstrate that only a small proportion (≲20 per cent) of disturbed early-type galaxies are capable of hosting powerful radio sources.

  4. XMM-Newton analysis of a newly discovered, extremely X-ray luminous galaxy cluster at high redshift

    NASA Astrophysics Data System (ADS)

    Thoelken, S.; Schrabback, T.

    2016-06-01

    Galaxy clusters, the largest virialized structures in the universe, provide an excellent method to test cosmology on large scales. The galaxy cluster mass function as a function of redshift is a key tool to determine the fundamental cosmological parameters and especially measurements at high redshifts can e.g. provide constraints on dark energy. The fgas test as a direct cosmological probe is of special importance. Therefore, relaxed galaxy clusters at high redshifts are needed but these objects are considered to be extremely rare in current structure formation models. Here we present first results from an XMM-Newton analysis of an extremely X-ray luminous, newly discovered and potentially cool core cluster at a redshift of z=0.9. We carefully account for background emission and PSF effects and model the cluster emission in three radial bins. Our preliminary results suggest that this cluster is indeed a good candidate for a cool core cluster and thus potentially of extreme value for cosmology.

  5. XMM-NEWTON OBSERVATIONS OF LUMINOUS SOURCES IN NEARBY GALAXIES NGC 4395, NGC 4736, AND NGC 4258

    SciTech Connect

    Akyuz, A.; Avdan, H.; Kayaci, S.; Ozel, M. E.; Sonbas, E.; Balman, S.

    2013-03-15

    We present the results of a study of non-nuclear discrete sources in a sample of three nearby spiral galaxies (NGC 4395, NGC 4736, and NGC 4258) based on XMM-Newton archival data supplemented with Chandra data for spectral and timing analyses. A total of 75 X-ray sources have been detected within the D{sub 25} regions of the target galaxies. The large collecting area of XMM-Newton makes the statistics sufficient to obtain spectral fitting for 16 (about 20%) of these sources. Compiling the extensive archival exposures available, we were able to obtain the detailed spectral shapes of diverse classes of point sources. We have also studied temporal properties of these luminous sources. Eleven of them are found to show short-term (less than 80 ks) variation while eight of them show long-term variation within factors of {approx}2-5 during a time interval of {approx}2-12 years. Timing analysis provides strong evidence that most of these sources are accreting X-ray binary systems. One source that has properties different from others was suspected to be a supernova remnant, and our follow-up optical observation confirmed this. Our results indicate that sources within the three nearby galaxies are showing a variety of source populations, including several ultraluminous X-ray sources, X-ray binaries, transients together with a super soft source, and a background active galactic nucleus candidate.

  6. Triggered or Self-Regulated Star Formation within Intermediate Redshift Luminous Infrared Galaxies. I. Morphologies and Spectral Energy Distributions

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Ammons, M.; Wright, S. A.; Metevier, A.; Steinbring, E.; Max, C.; Koo, D. C.; Larkin, J. E.; Barczys, M.

    2008-04-01

    As part of the Center for Adaptive Optics (AO) Treasury Survey (CATS) we imaged a set of 15 intermediate redshift (z ~ 0.8) luminous infrared (IR) galaxies (LIRGs) with the Keck Laser Guide Star (LGS) AO facility. These galaxies were selected from the Great Observatories Origins Deep Survey (GOODS) southern field, allowing us to combine the high spatial resolution Hubble Space Telescope optical (B, V, i, and z-bands) images with our near-infrared (K'-band) images to study the LIRG morphologies and spatially resolved spectral energy distributions (SEDs). Two thirds of the LIRGs are disk galaxies, with only one third showing some evidence for interactions, minor, or major mergers. In contrast with local LIRG disks (which are primarily barred systems), only 10% of the LIRG disks in our sample contain a prominent bar. While the optical bands tend to show a significant point-like substructure, indicating distributed star formation, the AO K-band images tend to be smooth. They lack point-like structures to a K ~ 23.5 limit. This places an upper bound on the number of red super giants per blue knot at less than 4000. The SEDs of the LIRGs are consistent with distributed dusty star formation, as exhibited by optical to IR colors redder than allowed by old stellar populations alone. This effect is most pronounced in the galaxy cores, possibly indicating central star formation. We also observed a set of 11 intermediate redshift comparison galaxies, selected to be non-ellipticals with apparent K-band magnitudes comparable to the LIRGs. The "normal" (non-LIRG) systems tended to have lower optical luminosity, lower stellar mass, and more irregular morphology than the LIRGs. Half of the "normal" galaxies have SEDs consistent with intermediate aged stellar populations and minimal dust. The other half show evidence for some dusty star formation, usually concentrated in their cores. Our work suggests that the LIRG disk galaxies are similar to large disk systems today, undergoing

  7. Declining rotation curves - The end of a conspiracy. [HI rotation velocity decrease of two galaxies as indication of large luminous to dark mass ratio

    SciTech Connect

    Casertano, S.; Van gorkom, J.H. Pittsburgh Univ., PA Columbia Univ., New York National Radio Astronomy Observatory, Socorro, NM )

    1991-04-01

    Two new H I rotation curves, observed at the Very Large Array as part of a search for galaxies with extended H I envelopes, are presented. The two curves are characterized by a large decrease in rotation velocity (more than 50 km/s, or about 25 percent of the maximum rotation velocity) between 1 and 3 optical radii. The velocity decrease is present on both sides of each galaxy and is not due to projection effects. The decrease in rotation velocity is interpreted as an indication of a large ratio of luminous to dark mass in the luminous regions of these systems. While confirming the idea that dark matter is ubiquitous, the discovery indicates that the match between the properties of luminous and dark matter required by the well-known 'conspiracy' is not perfect. 69 refs.

  8. Studying Cosmic Evolution with the XMM-Newton Distant Cluster Project: X-ray Luminous Galaxy Clusters at z>~1 and their Galaxy Populations

    NASA Astrophysics Data System (ADS)

    Fassbender, Rene

    2008-06-01

    Investigating X-ray luminous galaxy clusters at z>~1 provides a fundamental constraint on evolutionary studies of the largest virialized structures in the Universe, the baryonic matter in form of the hot ICM, their galaxy populations, and the effects of Dark Energy. The main aim of this work is to establish the observational foundation for the XMM-Newton Distant Cluster Project (XDCP). This new serendipitous survey is focused on the most distant systems at z>1, based on the selection of extended X-ray sources, their identification as clusters via two-band imaging, and their final spectroscopic confirmation. Almost 1000 extended sources were selected as cluster candidates from the analysis of 80 deg^2 of deep XMM-Newton archival data, of which 75% could be readily identified as systems at z<~0.6. For the remaining 250 distant cluster candidates a new strategy for their confirmation and redshift estimates was adopted, based on Z- and H-band photometry and the observed Z-H red-sequence color of early-type cluster galaxies. From observations of 25% of the sample, more than 20 X-ray clusters were discovered at a photometric redshift of z>~0.9. The new Z-H method has allowed a cluster sample study over an unprecedented redshift baseline of 0.2<~z<~1.5. From a comparison of the observed color evolution of the red-sequence with model predictions, the formation epoch of early-type galaxies could be constrained as z_f=4.2+-1.1, confirming their well-established old age. The preliminary investigation of the H-band luminosity evolution of 63 BCGs provides for the first time direct observational indications that the most massive cluster galaxies have doubled their stellar mass since z~1.5. The finding that BCGs were assembled in the last 9Gyr is now in qualitative agreement with the latest simulations.

  9. Star Formation and AGN Activity in Luminous and Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan

    2015-08-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, L_IR > 10^12 L⊙) are all interacting and merging systems. We explore the evolution of the morphological and nuclear properties of (U)LIRGs over cosmic time using a large sample of galaxies from Her- schel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between z ˜ 2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We also use rest-frame optical emission line diagnostics, X-ray luminosity, and MIR colors to separate AGN from star-formation dominated galaxies. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy’s position in the star formation rate - stellar mass plane. Are galaxies that have specific star formation rates elevated above the main sequence more likely to be mergers? We investigate how AGN identified with different methods correspond to different morphologies and merger stages as well as position on the star formation rate - stellar mass plane.

  10. Constraining Gamma-Ray Emission from Luminous Infrared Galaxies with Fermi-LAT; Tentative Detection of Arp 220

    NASA Astrophysics Data System (ADS)

    Griffin, Rhiannon D.; Dai, Xinyu; Thompson, Todd A.

    2016-05-01

    Star-forming galaxies produce gamma-rays primarily via pion production, resulting from inelastic collisions between cosmic-ray protons and the interstellar medium (ISM). The dense ISM and high star formation rates of luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs) imply that they should be strong gamma-ray emitters, but so far only two LIRGs have been detected. Theoretical models for their emission depend on the unknown fraction of cosmic-ray protons that escape these galaxies before interacting. We analyze Fermi-LAT data for 82 of the brightest Infrared Astronomical Satellite LIRGs and ULIRGs. We examine each system individually and carry out a stacking analysis to constrain their gamma-ray fluxes. We report the detection of the nearest ULIRG Arp 220 (˜4.6σ). We observe a gamma-ray flux (0.8–100 GeV) of 2.4 × 10‑10 phot cm‑2 s‑1 with a photon index of 2.23 (8.2 × 1041 erg s‑1 at 77 Mpc). We also derive upper limits (ULs) for the stacked LIRGs and ULIRGs. The gamma-ray luminosity of Arp 220 and the stacked ULs agree with calorimetric predictions for dense star-forming galaxies. With the detection of Arp 220, we extend the gamma-ray–IR luminosity correlation to the high-luminosity regime with {log}{L}0.1-100{GeV}=1.25× {log}{L}8-1000μ {{m}}+26.7 as well as the gamma-ray–radio continuum luminosity correlation with {log}{L}0.1-100{GeV}=1.22× {log}{L}1.4{GHz}+13.3. The current survey of Fermi-LAT is on the verge of detecting more LIRGs/ULIRGs in the local universe, and we expect even more detections with deeper Fermi-LAT observations or the next generation of gamma-ray detectors.

  11. Constraining Gamma-Ray Emission from Luminous Infrared Galaxies with Fermi-LAT; Tentative Detection of Arp 220

    NASA Astrophysics Data System (ADS)

    Griffin, Rhiannon D.; Dai, Xinyu; Thompson, Todd A.

    2016-05-01

    Star-forming galaxies produce gamma-rays primarily via pion production, resulting from inelastic collisions between cosmic-ray protons and the interstellar medium (ISM). The dense ISM and high star formation rates of luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs) imply that they should be strong gamma-ray emitters, but so far only two LIRGs have been detected. Theoretical models for their emission depend on the unknown fraction of cosmic-ray protons that escape these galaxies before interacting. We analyze Fermi-LAT data for 82 of the brightest Infrared Astronomical Satellite LIRGs and ULIRGs. We examine each system individually and carry out a stacking analysis to constrain their gamma-ray fluxes. We report the detection of the nearest ULIRG Arp 220 (∼4.6σ). We observe a gamma-ray flux (0.8–100 GeV) of 2.4 × 10‑10 phot cm‑2 s‑1 with a photon index of 2.23 (8.2 × 1041 erg s‑1 at 77 Mpc). We also derive upper limits (ULs) for the stacked LIRGs and ULIRGs. The gamma-ray luminosity of Arp 220 and the stacked ULs agree with calorimetric predictions for dense star-forming galaxies. With the detection of Arp 220, we extend the gamma-ray–IR luminosity correlation to the high-luminosity regime with {log}{L}0.1-100{GeV}=1.25× {log}{L}8-1000μ {{m}}+26.7 as well as the gamma-ray–radio continuum luminosity correlation with {log}{L}0.1-100{GeV}=1.22× {log}{L}1.4{GHz}+13.3. The current survey of Fermi-LAT is on the verge of detecting more LIRGs/ULIRGs in the local universe, and we expect even more detections with deeper Fermi-LAT observations or the next generation of gamma-ray detectors.

  12. Constraints on cold dark matter theories from observations of massive x-ray-luminous clusters of galaxies at high redshift

    NASA Technical Reports Server (NTRS)

    Luppino, G. A.; Gioia, I. M.

    1995-01-01

    During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.

  13. Three-dimensional spectroscopy of local luminous compact blue galaxies: kinematic maps of a sample of 22 objects

    NASA Astrophysics Data System (ADS)

    Pérez-Gallego, J.; Guzmán, R.; Castillo-Morales, A.; Gallego, J.; Castander, F. J.; Garland, C. A.; Gruel, N.; Pisano, D. J.; Zamorano, J.

    2011-12-01

    We use three-dimensional optical spectroscopy observations of a sample of 22 local luminous compact blue galaxies (LCBGs) to create kinematic maps. By means of these, we classify the kinematics of these galaxies into three different classes: rotating disc (RD), perturbed rotation (PR) and complex kinematics (CK). We find 48 per cent are RDs, 28 per cent are PRs and 24 per cent are CKs. RDs show rotational velocities that range between ˜50 and ˜200 km s-1, and dynamical masses that range between ˜1 × 109 and ˜3 × 1010 M⊙. We also address the following two fundamental questions through the study of the kinematic maps: (i) What processes are triggering the current starburst in LCBGs? We search our maps of the galaxy velocity fields for signatures of recent interactions and close companions that may be responsible for the enhanced star formation in our sample. We find that 5 per cent of objects show evidence of a recent major merger, 10 per cent of a minor merger and 45 per cent of a companion. This argues in favour of ongoing interactions with close companions as a mechanism for the enhanced star formation activity in these galaxies. (ii) What processes may eventually quench the current starbust in LCBGs? Velocity and velocity width maps, together with emission line ratio maps, can reveal signatures of active galactic nuclei (AGNs) activity or supernova (SN)-driven galactic winds that could halt the current burst. We find only 5 per cent of objects with clear evidence of AGN activity and 27 per cent with kinematics consistent with SN-driven galactic winds. Therefore, a different mechanism may be responsible for quenching the star formation in LCBGs. Finally, from our analysis, we find that the velocity widths of RDs, rather than accounting exclusively for the rotational nature of these objects, may account as well for other kinematic components and may not be good tracers of their dynamical masses.

  14. Searching for the Most UV-Luminous Galaxies in the Distant Universe

    NASA Astrophysics Data System (ADS)

    Stevans, Matthew L.; Finkelstein, Steven L.; Wold, Isak; Gebhardt, Karl; Jogee, Shardha; Papovich, Casey J.; Ciardullo, Robin; Gronwall, Caryl; Acquaviva, Viviana; Casey, Caitlin; HETDEX Team

    2016-01-01

    How galaxies grow and evolve over cosmic time is one of the largest unanswered questions in astronomy. With 50% of the stellar mass in today's galaxies having formed before z~1 (Dickinson et al. 2003) and the cosmic star formation density peaking between 1 < z < 3 (Madau & Dickinson 2014), the epoch at z>3 is particularly important for understanding the rise of the Hubble sequence at later times. We present multi-wavelength photometry from the the unprecedentedly large 28 deg2 Hobby Eberly Telescope Dark Energy Experiment (HETDEX) / Spitzer-HETDEX Exploratory Large Area (SHELA) survey in a study of 800,000 galaxies at redshifts of 1.9 to 3.5 including significant numbers of the most massive and most rare galaxies, unseen in pencil-beam deep field surveys. We use ugriz photometry from the Dark Energy Camera (DECam) and fit galaxy spectral energy distributions (SEDs) with stellar population spectral templates to select LBGs at z~3-4 and measure the rest-frame ultraviolet (UV) luminosity function. Our survey's large area and moderate depth provide a unique view of the bright-end (MAB<-22). Contamination by stellar sources or active galactic nuclei (AGNs) can be ruled out by the inclusion of multi-wavelength data. Probing a volume of 0.5 Gpc3 at 1.9 < z < 3.5, similar to that of the Sloan Digital Sky Survey (SDSS) at z < 0.5, we provide the most definitive constraints for numerical models of cosmic galaxy evolution, expanding our knowledge of galaxy growth during this critical era in cosmic history.

  15. The X-ray halo of an extremely luminous LSB disk galaxy

    NASA Technical Reports Server (NTRS)

    Weiner, Benjamin J.

    2004-01-01

    We are continuing to refine our upper limit on emission from halo gas in Malin 2. The upper limit is, of course, below the detected flux, but is made more difficult to quantify by the disk and possible AGN sources. We are also exploring spectral and spatial-size constraints to help separate the sources of emission. On the theory side, more recent work on the X-ray halo luminosity from halo gas leftover from galaxy formation has lowered the prediction for disk galaxies (e.g. Toft et al. 2002, MNRAS, 335, 799). While our upper limit is well below the original prediction, refinements in model have moved the theoretical goalposts, so that the observation may be consistent with newer models. A recent theoretical development, which our observations of Malin 2 appear to support, is that a substantial amount of mass can be accreted onto galaxies without being heated at a virial shock. The previous standard theory was that gas accreting into a halo hits a virial shock and is heated to high temperatures, which could produce X-ray halos in massive galaxies. Recent models show that "smooth accretion" of matter bypasses the virial shocking (Murali e t al. 2002, ApJ, 571, 1; Birnboim & Dekel 2003, MNRAS, 345, 349). Additionally, new hydrodynamical simulations of galaxy mergers by UCSC graduate student T. J. Cox show that hot gas halos can be created by gas blown out from the merger, taking up orbital energy of the merging galaxies (Cox et al. 2004, ApJ, 607, L87). If mergers rather than virial shocking are the origin of hot gas halos, the existence of an X-ray halo should depend more on past merger activity than halo mass. Then it makes sense that elliptical galaxies and poor groups with ellipticals, which are probably formed in mergers, have X-ray gas halos; while a giant, quiescent LSB disk galaxy like Malin 2, which has never suffered a major merger, does not have an X-ray halo. While both the observational expectations and theoretical models have changed since we began this

  16. An extremely luminous panchromatic outburst from the nucleus of a distant galaxy.

    PubMed

    Levan, A J; Tanvir, N R; Cenko, S B; Perley, D A; Wiersema, K; Bloom, J S; Fruchter, A S; Postigo, A de Ugarte; O'Brien, P T; Butler, N; van der Horst, A J; Leloudas, G; Morgan, A N; Misra, K; Bower, G C; Farihi, J; Tunnicliffe, R L; Modjaz, M; Silverman, J M; Hjorth, J; Thöne, C; Cucchiara, A; Cerón, J M Castro; Castro-Tirado, A J; Arnold, J A; Bremer, M; Brodie, J P; Carroll, T; Cooper, M C; Curran, P A; Cutri, R M; Ehle, J; Forbes, D; Fynbo, J; Gorosabel, J; Graham, J; Hoffman, D I; Guziy, S; Jakobsson, P; Kamble, A; Kerr, T; Kasliwal, M M; Kouveliotou, C; Kocevski, D; Law, N M; Nugent, P E; Ofek, E O; Poznanski, D; Quimby, R M; Rol, E; Romanowsky, A J; Sánchez-Ramírez, R; Schulze, S; Singh, N; van Spaandonk, L; Starling, R L C; Strom, R G; Tello, J C; Vaduvescu, O; Wheatley, P J; Wijers, R A M J; Winters, J M; Xu, D

    2011-07-01

    Variable x-ray and γ-ray emission is characteristic of the most extreme physical processes in the universe. We present multiwavelength observations of a unique γ-ray-selected transient detected by the Swift satellite, accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source. We pinpoint the event to the center of a small, star-forming galaxy at redshift z = 0.3534. Its high-energy emission has lasted much longer than any γ-ray burst, whereas its peak luminosity was ∼100 times higher than bright active galactic nuclei. The association of the outburst with the center of its host galaxy suggests that this phenomenon has its origin in a rare mechanism involving the massive black hole in the nucleus of that galaxy. PMID:21680811

  17. An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy

    NASA Astrophysics Data System (ADS)

    Levan, A. J.; Tanvir, N. R.; Cenko, S. B.; Perley, D. A.; Wiersema, K.; Bloom, J. S.; Fruchter, A. S.; Postigo, A. de Ugarte; O'Brien, P. T.; Butler, N.; van der Horst, A. J.; Leloudas, G.; Morgan, A. N.; Misra, K.; Bower, G. C.; Farihi, J.; Tunnicliffe, R. L.; Modjaz, M.; Silverman, J. M.; Hjorth, J.; Thöne, C.; Cucchiara, A.; Cerón, J. M. Castro; Castro-Tirado, A. J.; Arnold, J. A.; Bremer, M.; Brodie, J. P.; Carroll, T.; Cooper, M. C.; Curran, P. A.; Cutri, R. M.; Ehle, J.; Forbes, D.; Fynbo, J.; Gorosabel, J.; Graham, J.; Hoffman, D. I.; Guziy, S.; Jakobsson, P.; Kamble, A.; Kerr, T.; Kasliwal, M. M.; Kouveliotou, C.; Kocevski, D.; Law, N. M.; Nugent, P. E.; Ofek, E. O.; Poznanski, D.; Quimby, R. M.; Rol, E.; Romanowsky, A. J.; Sánchez-Ramírez, R.; Schulze, S.; Singh, N.; van Spaandonk, L.; Starling, R. L. C.; Strom, R. G.; Tello, J. C.; Vaduvescu, O.; Wheatley, P. J.; Wijers, R. A. M. J.; Winters, J. M.; Xu, D.

    2011-07-01

    Variable x-ray and γ-ray emission is characteristic of the most extreme physical processes in the universe. We present multiwavelength observations of a unique γ-ray-selected transient detected by the Swift satellite, accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source. We pinpoint the event to the center of a small, star-forming galaxy at redshift z = 0.3534. Its high-energy emission has lasted much longer than any γ-ray burst, whereas its peak luminosity was ˜100 times higher than bright active galactic nuclei. The association of the outburst with the center of its host galaxy suggests that this phenomenon has its origin in a rare mechanism involving the massive black hole in the nucleus of that galaxy.

  18. NEAR-INFRARED ADAPTIVE OPTICS IMAGING OF INFRARED LUMINOUS GALAXIES: THE BRIGHTEST CLUSTER MAGNITUDE-STAR FORMATION RATE RELATION

    SciTech Connect

    Randriamanakoto, Z.; Väisänen, P.; Escala, A.; Kankare, E.; Kotilainen, J.; Mattila, S.; Ryder, S.

    2013-10-01

    We have established a relation between the brightest super star cluster (SSC) magnitude in a galaxy and the host star formation rate (SFR) for the first time in the near-infrared (NIR). The data come from a statistical sample of ∼40 luminous IR galaxies (LIRGs) and starbursts utilizing K-band adaptive optics imaging. While expanding the observed relation to longer wavelengths, less affected by extinction effects, it also pushes to higher SFRs. The relation we find, M{sub K} ∼ –2.6log SFR, is similar to that derived previously in the optical and at lower SFRs. It does not, however, fit the optical relation with a single optical to NIR color conversion, suggesting systematic extinction and/or age effects. While the relation is broadly consistent with a size-of-sample explanation, we argue physical reasons for the relation are likely as well. In particular, the scatter in the relation is smaller than expected from pure random sampling strongly suggesting physical constraints. We also derive a quantifiable relation tying together cluster-internal effects and host SFR properties to possibly explain the observed brightest SSC magnitude versus SFR dependency.

  19. Hyper-luminous dust-obscured galaxies discovered by the Hyper Suprime-Cam on Subaru and WISE

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Nagao, Tohru; Strauss, Michael A.; Aoki, Kentaro; Goto, Tomotsugu; Imanishi, Masatoshi; Kawaguchi, Toshihiro; Terashima, Yuichi; Ueda, Yoshihiro; Bosch, James; Bundy, Kevin; Doi, Yoshiyuki; Inami, Hanae; Komiyama, Yutaka; Lupton, Robert H.; Matsuhara, Hideo; Matsuoka, Yoshiki; Miyazaki, Satoshi; Morokuma, Tomoki; Nakata, Fumiaki; Oi, Nagisa; Onoue, Masafusa; Oyabu, Shinki; Price, Paul; Tait, Philip J.; Takata, Tadafumi; Tanaka, Manobu M.; Terai, Tsuyoshi; Turner, Edwin L.; Uchida, Tomohisa; Usuda, Tomonori; Utsumi, Yousuke; Yamada, Yoshihiko; Wang, Shiang-Yu

    2015-10-01

    We present the photometric properties of a sample of infrared (IR) bright dust-obscured galaxies (DOGs). Combining wide and deep optical images obtained with the Hyper Suprime-Cam on the Subaru Telescope and all-sky mid-IR (MIR) images taken with Wide-Field Infrared Survey Explorer, we discovered 48 DOGs with i - Ks > 1.2 and i - [22] > 7.0, where i, Ks, and [22] represent AB magnitude in the i-band, Ks-band, and 22 μm, respectively, in the GAMA 14 hr field (˜ 9 deg2). Among these objects, 31 (˜ 65%) show power-law spectral energy distributions (SEDs) in the near-IR (NIR) and MIR regime, while the remainder show an NIR bump in their SEDs. Assuming that the redshift distribution for our DOGs sample is Gaussian, with mean and sigma z = 1.99 ± 0.45, we calculated their total IR luminosity using an empirical relation between 22 μm luminosity and total IR luminosity. The average value of the total IR luminosity is (3.5 ± 1.1) × 1013 L⊙, which classifies them as hyper-luminous infrared galaxies. We also derived the total IR luminosity function (LF) and IR luminosity density (LD) for a flux-limited subsample of 18 DOGs with 22 μm flux greater than 3.0 mJy and with i-band magnitude brighter than 24 AB magnitude. The derived space density for this subsample is log φ = -6.59 ± 0.11 [Mpc-3]. The IR LF for DOGs including data obtained from the literature is fitted well by a double-power law. The derived lower limit for the IR LD for our sample is ρIR ˜ 3.8 × 107 [L⊙ Mpc-3] and its contributions to the total IR LD, IR LD of all ultra-luminous infrared galaxies, and that of all DOGs are > 3%, > 9%, and > 15%, respectively.

  20. A multi-wavelength view of the central kiloparsec region in the luminous infrared galaxy NGC 1614

    SciTech Connect

    Herrero-Illana, Rubén; Pérez-Torres, Miguel Á.; Alberdi, Antxon; Hernández-García, Lorena; Alonso-Herrero, Almudena; Colina, Luis; Efstathiou, Andreas; Miralles-Caballero, Daniel; Väisänen, Petri; Packham, Christopher C.; Rajpaul, Vinesh; Zijlstra, Albert A.

    2014-05-10

    The Luminous Infrared Galaxy NGC 1614 hosts a prominent circumnuclear ring of star formation. However, the nature of the dominant emitting mechanism in its central ∼100 pc is still under debate. We present sub-arcsecond angular resolution radio, mid-infrared, Paα, optical, and X-ray observations of NGC 1614, aimed at studying in detail both the circumnuclear ring and the nuclear region. The 8.4 GHz continuum emission traced by the Very Large Array and the Gemini/T-ReCS 8.7 μm emission, as well as the Paα line emission, show remarkable morphological similarities within the star-forming ring, suggesting that the underlying emission mechanisms are tightly related. We used a Hubble Space Telescope/NICMOS Paα map of similar resolution to our radio maps to disentangle the thermal free-free and non-thermal synchrotron radio emission, from which we obtained the intrinsic synchrotron power law for each individual region within the central kiloparsec of NGC 1614. The radio ring surrounds a relatively faint, steep-spectrum source at the very center of the galaxy, suggesting that the central source is not powered by an active galactic nucleus (AGN), but rather by a compact (r ≲ 90 pc) starburst (SB). Chandra X-ray data also show that the central kiloparsec region is dominated by SB activity, without requiring the existence of an AGN. We also used publicly available infrared data to model-fit the spectral energy distribution of both the SB ring and a putative AGN in NGC 1614. In summary, we conclude that there is no need to invoke an AGN to explain the observed bolometric properties of the galaxy.

  1. PTF10iya: a short-lived, luminous flare from the nuclear region of a star-forming galaxy

    NASA Astrophysics Data System (ADS)

    Cenko, S. Bradley; Bloom, Joshua S.; Kulkarni, S. R.; Strubbe, Linda E.; Miller, Adam A.; Butler, Nathaniel R.; Quimby, Robert M.; Gal-Yam, Avishay; Ofek, Eran O.; Quataert, Eliot; Bildsten, Lars; Poznanski, Dovi; Perley, Daniel A.; Morgan, Adam N.; Filippenko, Alexei V.; Frail, Dale A.; Arcavi, Iair; Ben-Ami, Sagi; Cucchiara, Antonio; Fassnacht, Christopher D.; Green, Yoav; Hook, Isobel M.; Howell, D. Andrew; Lagattuta, David J.; Law, Nicholas M.; Kasliwal, Mansi M.; Nugent, Peter E.; Silverman, Jeffrey M.; Sullivan, Mark; Tendulkar, Shriharsh P.; Yaron, Ofer

    2012-03-01

    We present the discovery and characterization of PTF10iya, a short-lived (Δt≈ 10 d, with an optical decay rate of ˜0.3 mag d-1), luminous (? mag) transient source found by the Palomar Transient Factory. The ultraviolet/optical spectral energy distribution is reasonably well fitted by a blackbody with T≈ (1-2) × 104 K and peak bolometric luminosity LBB≈ (1-5) × 1044 erg s-1 (depending on the details of the extinction correction). A comparable amount of energy is radiated in the X-ray band that appears to result from a distinct physical process. The location of PTF10iya is consistent with the nucleus of a star-forming galaxy (z= 0.224 05 ± 0.000 06) to within 350 mas (99.7 per cent confidence radius), or a projected distance of less than 1.2 kpc. At first glance, these properties appear reminiscent of the characteristic 'big blue bump' seen in the near-ultraviolet spectra of many active galactic nuclei (AGNs). However, emission-line diagnostics of the host galaxy, along with a historical light curve extending back to 2007, show no evidence for AGN-like activity. We therefore consider whether the tidal disruption of a star by an otherwise quiescent supermassive black hole may account for our observations. Though with limited temporal information, PTF10iya appears broadly consistent with the predictions for the early 'super-Eddington' phase of a solar-type star being disrupted by a ˜107 M⊙ black hole. Regardless of the precise physical origin of the accreting material, the large luminosity and short duration suggest that otherwise quiescent galaxies can transition extremely rapidly to radiate near the Eddington limit; many such outbursts may have been missed by previous surveys lacking sufficient cadence.

  2. NGC 1614 - An IR-luminous merger but not (yet?) an active galaxy

    NASA Technical Reports Server (NTRS)

    Neff, S. G.; Hutchings, J. B.; Standord, S. A.; Unger, S. W.

    1990-01-01

    New observations of the merging galaxy NGC 1614 are described. The system has a nuclear region of QSO-like luminosity, but shows no direct evidence for an active nucleus. It is heavily and unevenly reddened across its nucleus, while infrared imaging also shows a 'ridge' of dust. The inner spiral structure of the galaxy has normal rotation for an inclined disk, as indicated by the H-alpha emission. A linear 'tail' to the S and extended arms to the E have more positive velocities, and probably are the remains of an interacting companion and the tidal plume(s) caused by the collision. The only H I seen in emission appears to coincide with bright knots of H-alpha and forbidden O III emission of the base of the tail. The lack of direct evidence for an active nucleus indicates that if NGC 1614 is a precursor to a Seyfert-like system the AGN has not yet turned on.

  3. Identification of an Extensive Luminous Halo Around the Ringed Spiral Galaxy NGC 7217

    NASA Astrophysics Data System (ADS)

    Buta, R.; van Driel, W.; Braine, J.; Combes, F.

    1993-12-01

    The isolated spiral galaxy NGC 7217 is characterized by flocculent spiral structure and three optical ring-like zones: a stellar nuclear ring, a weak inner pseudoring, and a bright patchy outer ring. The rings all have nearly the same shape and position angle in projection. To understand this kind of ringed galaxy, we have obtained deep CCD BVRI surface photometry and mapping of the CO and HI gas distributions and kinematics. Our images reveal something that was missed in previous studies: a large, nearly round halo of light extending far beyond the outer ring. We interpret this as bulge light which comes back to dominate the luminosity distribution at large radii. Ellipse fits to isophotes out to 240('') radius reveal a minimum axis ratio of 0.83 just outside the outer ring at 90('') , and then a rise to 0.96 at about 140('') . The luminosity profiles are well-fitted by a combined r({1/) 4} bulge and exponential disk model. In all filters, the bulge dominates at all radii, and the bulge-to-total disk ratio is about 2.3 (B). If the minimum axis ratio of 0.83 approximates the apparent flattening of the disk, then NGC 7217 is remarkably axisymmetric. Nevertheless, the I-band image reveals a tightly-wrapped, two-armed spiral pattern in the outer ring region. The outer ring includes 4.5% of the total B luminosity and is the locus of most of the recent star formation in the galaxy; it is also where the HI gas is concentrated. An additional noteworthy feature is a circumnuclear dust ring 1.2 kpc in diameter. Other dust lanes are seen only on the near side of the galaxy. The rings of NGC 7217 could be resonances with a very weak internal perturbation. We are attempting to simulate the structure using the I-band light distribution to help define the potential. But most interesting is the recent discovery of a substantial population of counter-rotating stars in the galaxy (Kuijken 1993, PASP, 105, 1016). One possible explanation for these stars is that the bulge is more

  4. The Dragonfly Galaxy. II. ALMA unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z = 2

    NASA Astrophysics Data System (ADS)

    Emonts, B. H. C.; De Breuck, C.; Lehnert, M. D.; Vernet, J.; Gullberg, B.; Villar-Martín, M.; Nesvadba, N.; Drouart, G.; Ivison, R.; Seymour, N.; Wylezalek, D.; Barthel, P.

    2015-12-01

    The Dragonfly Galaxy (MRC 0152-209), at redshift z ~ 2, is one of the most vigorously star-forming radio galaxies in the Universe. What triggered its activity? We present ALMA Cycle 2 observations of cold molecular CO(6-5) gas and dust, which reveal that this is likely a gas-rich triple merger. It consists of a close double nucleus (separation ~4 kpc) and a weak CO-emitter at ~10 kpc distance, all of which have counterparts in HST/NICMOS imagery. The hyper-luminous starburst and powerful radio-AGN were triggered at this precoalescent stage of the merger. The CO(6-5) traces dense molecular gas in the central region, and complements existing CO(1-0) data, which reveal more widespread tidal debris of cold gas. We also find ~1010 M⊙ of molecular gas with enhanced excitation at the highest velocities. At least 20-50% of this high-excitation, high-velocity gas shows kinematics that suggests it is being displaced and redistributed within the merger, although with line-of-sight velocities of |v| < 500 km s-1, this gas will probably not escape the system. The processes that drive the redistribution of cold gas are likely related to either the gravitational interaction between two kpc-scale discs, or starburst/AGN-driven outflows. We estimate that the rate at which the molecular gas is redistributed is at least [Ṁentity!#x2009!]~ 1200 ± 500 M⊙ yr-1, and could perhaps even approach the star formation rate of ~3000 ± 800 M⊙ yr-1. The fact that the gas depletion and gas redistribution timescales are similar implies that dynamical processes can be important in the evolution of massive high-z galaxies.

  5. Role of active galactic nuclei in the luminous infrared galaxy phase at z ≤ 3

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yi; Hashimoto, Yasuhiro; Foucaud, Sébastien

    2016-03-01

    To understand the interactions between active galactic nuclei (AGNs) and star formation during the evolution of galaxies, we investigate 142 galaxies detected in both X-ray and 70 μm observations in the COSMOS (Cosmic Evolution Survey) field. All of our data are obtained from the archive X-ray point-source catalogues from Chandra and XMM-Newton observations, and the far-infrared 70 μm point-source catalogue from Spitzer-MIPS observations. Although the IRAC [3.6 μm]-[4.5 μm] versus [5.8 μm]-[8.0 μm] colours of our sample indicate that only ˜63 per cent of our sources would be classified as AGNs, the ratio of the rest-frame 2-10 keV luminosity to the total infrared luminosity (8-1000 μm) shows that the entire sample has comparatively higher X-ray luminosity than that expected from pure star-forming galaxies, suggesting the presence of an AGN in all of our sources. From an analysis of the X-ray hardness ratio, we find that sources with both 70 μm and X-ray detection tend to have a higher hardness ratio relative to the whole X-ray-selected source population, suggesting the presence of more X-ray absorption in the 70 μm detected sources. In addition, we find that the observed far-infrared colours of 70 μm detected sources with and without X-ray emission are similar, suggesting the far-infrared emission could be mainly powered by star formation.

  6. The distribution of dark and luminous matter in the unique galaxy cluster merger Abell 2146

    NASA Astrophysics Data System (ADS)

    King, Lindsay J.; Clowe, Douglas I.; Coleman, Joseph E.; Russell, Helen R.; Santana, Rebecca; White, Jacob A.; Canning, Rebecca E. A.; Deering, Nicole J.; Fabian, Andrew C.; Lee, Brandyn E.; Li, Baojiu; McNamara, Brian R.

    2016-06-01

    Abell 2146 (z = 0.232) consists of two galaxy clusters undergoing a major merger. The system was discovered in previous work, where two large shock fronts were detected using the Chandra X-ray Observatory, consistent with a merger close to the plane of the sky, caught soon after first core passage. A weak gravitational lensing analysis of the total gravitating mass in the system, using the distorted shapes of distant galaxies seen with Advanced Camera for Surveys - Wide Field Channel on Hubble Space Telescope, is presented. The highest peak in the reconstruction of the projected mass is centred on the brightest cluster galaxy (BCG) in Abell 2146-A. The mass associated with Abell 2146-B is more extended. Bootstrapped noise mass reconstructions show the mass peak in Abell 2146-A to be consistently centred on the BCG. Previous work showed that BCG-A appears to lag behind an X-ray cool core; although the peak of the mass reconstruction is centred on the BCG, it is also consistent with the X-ray peak given the resolution of the weak lensing mass map. The best-fitting mass model with two components centred on the BCGs yields M200 = 1.1^{+0.3}_{-0.4} × 1015 and 3^{+1}_{-2} × 1014 M⊙ for Abell 2146-A and Abell 2146-B, respectively, assuming a mass concentration parameter of c = 3.5 for each cluster. From the weak lensing analysis, Abell 2146-A is the primary halo component, and the origin of the apparent discrepancy with the X-ray analysis where Abell 2146-B is the primary halo is being assessed using simulations of the merger.

  7. VizieR Online Data Catalog: DYNAMO. Hα luminous galaxies sample (Green+, 2014)

    NASA Astrophysics Data System (ADS)

    Green, A. W.; Glazebrook, K.; McGregor, P. J.; Damjanov, I.; Wisnioski, E.; Abraham, R. G.; Colless, M.; Sharp, R. G.; Crain, R. A.; Poole, G. B.; McCarthy, P. J.

    2014-11-01

    We have selected a representative sample of 67 galaxies classified as star forming in the Max-Planck-Institut fur Astrophysik and Johns Hopkins University (MPA-JHU) value-added catalogue (http://www.mpa-garching.mpg.de/SDSS/DR4/) of the Sloan Digital Sky Survey (SDSS, York et al., 2000AJ....120.1579Y). Integral-field spectroscopic data were obtained using two different telescopes; the 3.9m Anglo-Australian Telescope and the ANU 2.3m Telescope, both situated at Siding Spring Observatory, Australia. (4 data files).

  8. The Molecular Gas in Luminous Infrared Galaxies. II. Extreme Physical Conditions and Their Effects on the X co Factor

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; van der Werf, Paul; Xilouris, E.; Isaak, Kate G.; Gao, Yu

    2012-05-01

    In this work, we conclude the analysis of our CO line survey of luminous infrared galaxies (LIRGs: L IR >~ 1011 L ⊙) in the local universe (Paper I) by focusing on the influence of their average interstellar medium (ISM) properties on the total molecular gas mass estimates via the so-called X co = M(H2)/L co, 1-0 factor. One-phase radiative transfer models of the global CO spectral line energy distributions (SLEDs) yield an X co distribution with langX corang ~ (0.6 ± 0.2) M ⊙ (K km s-1 pc2)-1 over a significant range of average gas densities, temperatures, and dynamic states. The latter emerges as the most important parameter in determining X co, with unbound states yielding low values and self-gravitating states yielding the highest ones. Nevertheless, in many (U)LIRGs where available higher-J CO lines (J = 3-2, 4-3, and/or J = 6-5) or HCN line data from the literature allow a separate assessment of the gas mass at high densities (>=104 cm-3) rather than a simple one-phase analysis, we find that near-Galactic X co ~ (3-6) M ⊙ (K km s-1 pc2)-1 values become possible. We further show that in the highly turbulent molecular gas in ULIRGs, a high-density component will be common and can be massive enough for its high X co to dominate the average value for the entire galaxy. Using solely low-J CO lines to constrain X co in such environments (as has been the practice up until now) may have thus resulted in systematic underestimates of molecular gas mass in ULIRGs, as such lines are dominated by a warm, diffuse, and unbound gas phase with low X co but very little mass. Only well-sampled high-J CO SLEDs (J = 3-2 and higher) and/or multi-J observations of heavy rotor molecules (e.g., HCN) can circumvent such a bias, and the latter type of observations may have actually provided early evidence of it in local ULIRGs. The only way that the global X co of such systems could be significantly lower than Galactic is if the average dynamic state of the dense gas is strongly

  9. Completing the CO spectral line energy distribution for luminous starburst galaxies discovered with the SPT

    NASA Astrophysics Data System (ADS)

    Aravena, Manuel; Weiss, Axel; de Breuck, Carlos; Stark, Antony A.; Marrone, Dan; McIntyre, Vince; Vieira, Joaquin; Greve, Thomas; Chapman, Scott; Murphy, Eric; Aguirre, James; Bothwell, Matt; Gullberg, Bitten

    2013-04-01

    We propose to use ATCA to observe the CO J=3-2 line emission in three gravitationally lensed, highly magnified dusty star-forming galaxies at z~2.5 discovered by the South Pole Telescope (SPT) millimeter survey. The redshifts of all targets were identified by the detection of several J>6 CO emission lines with APEX/Z-Spec and confirmed with VLT optical spectroscopy. Two of the sources have significant detections of the CO 1-0 line with ATCA, while CO 1-0 observations of the other source are being requested in a companion proposal. The proposed observations are critical to complete the CO spectral energy distribution (SLED) of these sources and thus "fill the gap" between the high-J CO observed with APEX/Z-Spec and the CO 1-0 line detected with ATCA. This will allow us to constrain the physical conditions of the interstellar medium by comparing the line strengths with large velocity gradient models. The strong magnification is key, allowing us to characterize the CO emission in galaxies that would be otherwise hard to detect.

  10. Studies of Entropy Distributions in X-ray Luminous Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Cavagnolo, K. W.; Donahue, M. E.; Voit, G. M.; Sun, M.; Evrard, A. E.

    2005-12-01

    We present entropy distributions for a sample of galaxy clusters from the Chandra public archive, which builds on our previous analysis of nine nearby, bright clusters. By studying the entropy distribution within clusters we quantify the effect of radiative cooling, supernovae feedback, and AGN feedback on cluster properties. This expanded sample contains both cooling flow and non-cooling flow clusters while our previous work focused only on classical cooling flow clusters. We also test the predictions of Mathiesen and Evrard (2001) by checking whether the spectral fit temperature is an unbiased estimate of the mass-weighted temperature, and how this estimate effects the calculation of the intracluster medium mass. Temperature and entropy maps for the clusters in our sample using the Voronoi Tesselation method as employed by Statler et al (in preparation) will also be presented. These maps serve as a prelude to future work in which we will investigate how well such maps may represent the "true" projected quantities of a cluster by comparing deprojected real and simulated clusters from our sample and the Virtual Cluster Exploratory, respectively. Our discussion focuses on tying together feedback mechanisms with the breaking of self-similar relations expected in cluster and galaxy formation models.

  11. ROSAT HRI and ASCA Observations of the Spiral Galaxy NGC 6946 and its Northeast Complex of Luminous Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Schlegel, E.; Swank, Jean (Technical Monitor)

    2001-01-01

    Analysis of 80 ks ASCA (Advanced Satellite for Cosmology and Astrophysics) and 60 ks ROSAT HRI (High Resolution Image) observations of the face-on spiral galaxy NGC 6946 are presented. The ASCA image is the first observation of this galaxy above approximately 2 keV. Diffuse emission may be present in the inner approximately 4' extending to energies above approximately 2-3 keV. In the HRI data, 14 pointlike sources are detected, the brightest two being a source very close to the nucleus and a source to the northeast that corresponds to a luminous complex of interacting supernova remnants (SNRs). We detect a point source that lies approximately 30" west of the SNR complex but with a luminosity -1115 of the SNR complex. None of the point sources show evidence of strong variability; weak variability would escape our detection. The ASCA spectrum of the SNR complex shows evidence for an emission line at approximately 0.9 keV that could be either Ne IX at approximately 0.915 keV or a blend of ion stages of Fe L-shell emission if the continuum is fitted with a power law. However, a two-component, Raymond-Smith thermal spectrum with no lines gives an equally valid continuum fit and may be more physically plausible given the observed spectrum below 3 keV. Adopting this latter model, we derive a density for the SNR complex of 10-35 cm(exp -3), consistent with estimates inferred from optical emission-line ratios. The complex's extraordinary X-ray luminosity may be related more to the high density of the surrounding medium than to a small but intense interaction region where two of the complex's SNRs are apparently colliding.

  12. Discovery of a 3.6-hr Eclipsing Luminous X-Ray Binary in the Galaxy NGC 4214

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Rappaport, Saul; Tennant, Allyn F.; Swartz, Douglas A.; Pooley, David; Madhusudhan, N.

    2006-01-01

    We report the discovery of an eclipsing X-ray binary with a 3.62-hr period within 24 arcsec of the center of the dwarf starburst galaxy NGC 4214. The orbital period places interesting constraints on the nature of the binary, and allows for a few very different interpretations. The most likely possibility is that the source lies within NGC 4214 and has an X-ray luminosity of up to 7e38. In this case the binary may well be comprised of a naked He-burning donor star with a neutron-star accretor, though a stellar-mass black-hole accretor cannot be completely excluded. There is no obvious evidence for a strong stellar wind in the X-ray orbital light curve that would be expected from a massive He star; thus, the mass of the He star should be <3-4 solar masses. If correct, this would represent a new class of very luminous X-ray binary----perhaps related to Cyg X-3. Other less likely possibilities include a conventional low-mass X-ray binary that somehow manages to produce such a high X-ray luminosity and is apparently persistent over an interval of years; or a foreground AM Her binary of much lower luminosity that fortuitously lies in the direction of NGC 4214. Any model for this system must accommodate the lack of an optical counterpart down to a limiting magnitude of 22.6 in the visible.

  13. Resolving the Large Scale Spectral Variability of the Luminous Seyfert 1 Galaxy 1H 0419-577

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.

    2004-01-01

    An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below approximately 1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonized thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable soft excess is seen to be an artefact of absorption of the underlying continuum while the core soft emission is attributed to recombination in an extended region of more highly ionised gas. This new analysis underlines the importance of fully accounting for absorption in characterizing AGN X-ray spectra.

  14. A High Resolution, Unobscured View of the Active Regions in (Ultra) Luminous Infrared Galaxies from a VLA 33 GHz Survey

    NASA Astrophysics Data System (ADS)

    Barcos-Muñoz, L.; Leroy, A.; Evans, A.; et al.

    2016-06-01

    I will present a new survey of 33 GHz radio continuum emission from local U/LIRGs carried out using the Karl G. Jansky Very Large Array (VLA). This is the first such survey and it combines high resolution, good sensitivity, and multi-configuration observations that should have sensitivity to emission on all spatial scales. (Ultra) luminous infrared galaxies host some of the most extreme star-forming environments in the local universe, with large reservoirs of molecular gas and dust concentrated in the central few kpc. Our VLA observations allow us to see through the dust in these systems to resolve the sizes of their active regions, which is essential to understand the surface and volume densities of star formation and gas in these extreme systems. I will present the best size measurements to date of the active regions for our 22 targets. I will show what these sizes imply about gas volume and surface density and infrared luminosity surface densities. I will also lay out the physical implications of these values for the strength of star formation and feedback (especially radiative feedback) in extreme environments.

  15. THE BLACK HOLE SPIN AND SOFT X-RAY EXCESS OF THE LUMINOUS SEYFERT GALAXY FAIRALL 9

    SciTech Connect

    Lohfink, Anne M.; Reynolds, Christopher S.; Mushotzky, Richard F.; Miller, Jon M.; Brenneman, Laura W.; Nowak, Michael A.; Fabian, Andrew C.

    2012-10-10

    We present an analysis of all XMM-Newton and Suzaku X-ray spectra of the nearby luminous Seyfert galaxy Fairall 9. Confirming previous analyses, we find robust evidence for a broad iron line associated with X-ray reflection from the innermost accretion disk. By fitting a spectral model that includes a relativistically ionized reflection component, we examine the constraints on the inclination of the inner accretion disk and the black hole spin, and the complications introduced by the presence of a photoionized emission line system. Employing multi-epoch fitting, we attempt to obtain robust and concordant measures of the accretion disk parameters. We also clearly see a soft X-ray excess in Fairall 9. During certain epochs, the soft excess can be described with the same disk reflection component that produces the iron line. However, there are epochs where an additional soft component is required. This can be attributed to either an additional highly ionized, strongly blurred disk reflection component or a new X-ray continuum component.

  16. FAST MOLECULAR OUTFLOWS IN LUMINOUS GALAXY MERGERS: EVIDENCE FOR QUASAR FEEDBACK FROM HERSCHEL

    SciTech Connect

    Veilleux, S.; Meléndez, M.; Sturm, E.; Gracia-Carpio, J.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; Genzel, R.; Tacconi, L.; De Jong, J. A.; Fischer, J.; González-Alfonso, E.; Sternberg, A.; Netzer, H.; Hailey-Dunsheath, S.; Verma, A.; Rupke, D. S. N.; Maiolino, R.; Teng, S. H. E-mail: marcio@astro.umd.edu; and others

    2013-10-10

    We report the results from a systematic search for molecular (OH 119 μm) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 μm silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than –50 km s{sup –1}, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (∼145°) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km s{sup –1}, is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of ∼–1000 km s{sup –1} are measured in several objects, but median outflow velocities are typically ∼–200 km s{sup –1}. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L{sub AGN}/L{sub ☉}) ≥ 11.8 ± 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  17. Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Melendez, M.; Sturm, E.; Garcia-Carpio, J.; Fischer, J.; Gonzalez-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; Genzel, R.; Tacconi, L.; deJong, J. A.; Sternberg, A.; Netzer, H.; Hailey-Dunsheath, S.; Verma, A.; Rupke, D. S. N.; Maiolino, R.; Teng, S. H.; Polisensky, E.

    2013-01-01

    We report the results from a systematic search for molecular (OH 119 micron) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 micron silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than-50 km/s, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (approx. 145 deg.) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km/s is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of approx. -1000 km/s are measured in several objects, but median outflow velocities are typically approx.-200 km/s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L(sub AGN)/L(sub solar)) => 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  18. AGN feedback in X-ray luminous galaxy cluster: PKS 0745-191

    NASA Astrophysics Data System (ADS)

    Sonkamble, Satish Shripati; Vagshette, Nilkanth Dattatray; Patil, Madhav Khushalrao

    2015-08-01

    We present 117 ks Chandra observation of the cooling flow cluster PKS 0745-191 providing evidence of the strong interaction between the radio source associated with the center dominant galaxy PGC 021813 and the intra-cluster gas. This system is one of the strongest cool core cluster, requiring extreme mechanical feedback from its central AGN to offset cooling of the ICM. This analysis has enabled us to detect two pairs of X-ray cavities in the central ˜ 20 kpc region. In addition to the cavities, we have also evidenced relatively cooler X-ray arc and a temperature jump due to the shock front at 92'' (184 kpc) on the western side. 2D temperature maps as well as spectral analysis of X-ray photons extracted from wedge shaped reigns revealed six different cold fronts, 3 along the eastern direction, 2 on the west direction and one in the south direction of the X-ray peak. The apparent positions of cold fronts are found to match with the spiral structure apparent in the X-ray surface brightness distribution of PKS 0745-191 that is probably due to the gas sloshing. The Mach number for this shock is found to be ˜ 1.36. Systematic study of the X-ray cavities revealed a mechanical power of ˜ 2.95 X 1045 erg s-1 and is sufficient to offset the cooling due to radiative loss. We found that the radio source associated with the center dominant galaxy of this cluster is efficient enough to carve the observed cavities. The ratio of radio luminosity to mechanical cavity power is ˜ 10-3 .

  19. Half of the Most Luminous Quasars May Be Obscured: Investigating the Nature of WISE-Selected Hot Dust-Obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Assef, R. J.; Eisenhardt, P. R. M.; Stern, D.; Tsai, C.-W.; Wu, J.; Wylezalek, D.; Blain, A. W.; Bridge, C. R.; Donoso, E.; Gonzales, A.; Griffith, R. L.; Jarrett, T. H.

    2015-05-01

    The Wide-field Infrared Survey Explorer mission has unveiled a rare population of high-redshift (z = 1-4.6), dusty, hyper-luminous galaxies, with infrared luminosities {{L}IR}\\gt {{10}13} {{L}⊙ }, and sometimes exceeding {{10}14} {{L}⊙ }. Previous work has shown that their dust temperatures and overall far-infrared spectral energy distributions (SEDs) are significantly hotter than expected to be powered by star formation. We present here an analysis of the rest-frame optical through mid-infrared SEDs for a large sample of these so-called “hot, dust-obscured galaxies” (Hot DOGs). We find that the SEDs of Hot DOGs are generally well modeled by the combination of a luminous, yet obscured active galactic nuclei (AGNs) that dominates the rest-frame emission at λ \\gt 1 μ m and the bolometric luminosity output, and a less luminous host galaxy that is responsible for the bulk of the rest optical/UV emission. Even though the stellar mass of the host galaxies may be as large as 1011-1012 M⊙, the AGN emission, with a range of luminosities comparable to those of the most luminous QSOs known, require that either Hot DOGs have black hole masses significantly in excess of the local relations, or that they radiate significantly above the Eddington limit, at a level at least 10 times more efficiently than z ˜ 2 QSOs. We show that, while rare, the number density of Hot DOGs is comparable to that of equally luminous but unobscured (i.e., Type 1) QSOs. This may be at odds with the trend suggested at lower luminosities for the fraction of obscured AGNs to decrease with increasing luminosity. That trend may, instead, reverse at higher luminosities. Alternatively, Hot DOGs may not be the torus-obscured counterparts of the known optically selected, largely unobscured, hyper-luminous QSOs, and may represent a new component of the galaxy evolution paradigm. Finally, we discuss the environments of Hot DOGs and statistically show that these objects are in regions as dense as

  20. A population of massive, luminous galaxies hosting heavily dust-obscured gamma-ray bursts: Implications for the use of GRBs as tracers of cosmic star formation

    SciTech Connect

    Perley, D. A.; Levan, A. J.; Tanvir, N. R.; Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Morgan, A. N.; Hjorth, J.; Krühler, T.; Fynbo, J. P. U.; Milvang-Jensen, B.; Fruchter, A.; Kalirai, J.; Jakobsson, P.; Prochaska, J. X.

    2013-12-01

    We present observations and analysis of the host galaxies of 23 heavily dust-obscured gamma-ray bursts (GRBs) observed by the Swift satellite during the years 2005-2009, representing all GRBs with an unambiguous host-frame extinction of A{sub V} > 1 mag from this period. Deep observations with Keck, Gemini, Very Large Telescope, Hubble Space Telescope, and Spitzer successfully detect the host galaxies and establish spectroscopic or photometric redshifts for all 23 events, enabling us to provide measurements of the intrinsic host star formation rates, stellar masses, and mean extinctions. Compared to the hosts of unobscured GRBs at similar redshifts, we find that the hosts of dust-obscured GRBs are (on average) more massive by about an order of magnitude and also more rapidly star forming and dust obscured. While this demonstrates that GRBs populate all types of star-forming galaxies, including the most massive, luminous systems at z ≈ 2, at redshifts below 1.5 the overall GRB population continues to show a highly significant aversion to massive galaxies and a preference for low-mass systems relative to what would be expected given a purely star-formation-rate-selected galaxy sample. This supports the notion that the GRB rate is strongly dependent on metallicity, and may suggest that the most massive galaxies in the universe underwent a transition in their chemical properties ∼9 Gyr ago. We also conclude that, based on the absence of unobscured GRBs in massive galaxies and the absence of obscured GRBs in low-mass galaxies, the dust distributions of the lowest-mass and the highest-mass galaxies are relatively homogeneous, while intermediate-mass galaxies (∼10{sup 9} M {sub ☉}) have diverse internal properties.

  1. SN 2010ay Is a Luminous and Broad-Lined Type Ic Supernova Within a Low-Metallicity Host Galaxy

    NASA Technical Reports Server (NTRS)

    Sanders, N. E.; Soderberg, A. M.; Valenti, S.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E.; Smartt, S.; Hurley, K.; Barthelmy, S. D.; Levesque, E. M.; Narayan, G.; Botticella, M. T.; Briggs, M. S.; Connaughton, V.; Terada, Y.; Gehrels, N.; Golenetskii, S.; Mazets, E.; Cline, T.; von Kienlin, A.; Boynton, W.; Chambers, K. C.; Grav, T.; Heasley, J. N.

    2012-01-01

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3pi survey just approximately 4 days after explosion. The supernova (SN) had a peak luminosity, MR approx. -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v Si (is) approx. 19×10(exp 3) km s-1 at approximately 40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines approximately 2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56Ni, MNi = 0.9 solar mass. Applying scaling relations to the light curve, we estimate a total ejecta mass, Mej (is) approx. 4.7 solar mass, and total kinetic energy, EK (is) approx. 11 × 10(exp 51) erg. The ratio of MNi to Mej is approximately 2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log(O/H)PP04 + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and (is) approximately 0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E(gamma) (is) approximately less than 6 × 10(exp 48) erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E (is) approximately greater than 10(exp 48) erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less-stringent constraints on a weak afterglow like that seen from XRF

  2. SN 2010ay is a Luminous and Broad-lined Type Ic Supernova within a Low-metallicity Host Galaxy

    NASA Astrophysics Data System (ADS)

    Sanders, N. E.; Soderberg, A. M.; Valenti, S.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E.; Smartt, S.; Hurley, K.; Barthelmy, S. D.; Levesque, E. M.; Narayan, G.; Botticella, M. T.; Briggs, M. S.; Connaughton, V.; Terada, Y.; Gehrels, N.; Golenetskii, S.; Mazets, E.; Cline, T.; von Kienlin, A.; Boynton, W.; Chambers, K. C.; Grav, T.; Heasley, J. N.; Hodapp, K. W.; Jedicke, R.; Kaiser, N.; Kirshner, R. P.; Kudritzki, R.-P.; Luppino, G. A.; Lupton, R. H.; Magnier, E. A.; Monet, D. G.; Morgan, J. S.; Onaka, P. M.; Price, P. A.; Stubbs, C. W.; Tonry, J. L.; Wainscoat, R. J.; Waterson, M. F.

    2012-09-01

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3π survey just ~4 days after explosion. The supernova (SN) had a peak luminosity, MR ≈ -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v Si ≈ 19 × 103 km s-1 at ~40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines ~2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56Ni, M Ni = 0.9 M ⊙. Applying scaling relations to the light curve, we estimate a total ejecta mass, M ej ≈ 4.7 M ⊙, and total kinetic energy, EK ≈ 11 × 1051 erg. The ratio of M Ni to M ej is ~2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log (O/H)PP04 + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and ~0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E γ <~ 6 × 1048 erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E >~ 1048 erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less-stringent constraints on a weak afterglow like that seen from XRF 060218. If this SN did not harbor a GRB, these observations challenge the importance of progenitor metallicity for the production of relativistic ejecta and suggest that other parameters

  3. The most luminous H α emitters at z ˜ 0.8-2.23 from HiZELS: evolution of AGN and star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Sobral, David; Kohn, Saul A.; Best, Philip N.; Smail, Ian; Harrison, Chris M.; Stott, John; Calhau, João; Matthee, Jorryt

    2016-04-01

    We use new near-infrared spectroscopic observations to investigate the nature and evolution of the most luminous Hα emitters at z ˜ 0.8-2.23, which evolve strongly in number density over this period, and compare them to more typical Hα emitters. We study 59 luminous Hα emitters with LHα > L_{Hα }^{ast }, roughly equally split per redshift slice at z ˜ 0.8, 1.47 and 2.23 from the HiZELS and CF-HiZELS surveys. We find that, overall, 30 ± 8 per cent are active galactic nuclei [AGNs; 80 ± 30 per cent of these AGNs are broad-line AGNs, BL-AGNs], and we find little to no evolution in the AGN fraction with redshift, within the errors. However, the AGN fraction increases strongly with Hα luminosity and correlates best with LHα/L_{Hα }^{ast }(z). While LHα ≤ L_{Hα }^{ast }(z) Hα emitters are largely dominated by star-forming galaxies (>80 per cent), the most luminous Hα emitters (L_{Hα }>10L_{Hα }^{ast }(z)) at any cosmic time are essentially all BL-AGN. Using our AGN-decontaminated sample of luminous star-forming galaxies, and integrating down to a fixed Hα luminosity, we find a factor of ˜1300 evolution in the star formation rate density from z = 0 to 2.23. This is much stronger than the evolution from typical Hα star-forming galaxies and in line with the evolution seen for constant luminosity cuts used to select `ultraluminous' infrared galaxies and/or sub-millimetre galaxies. By taking into account the evolution in the typical Hα luminosity, we show that the most strongly star-forming Hα-selected galaxies at any epoch (L_{Hα }>L^{ast }_{Hα }(z)) contribute the same fractional amount of ≈15 per cent to the total star formation rate density, at least up to z = 2.23.

  4. Characterizing the chemically enriched circumgalactic medium of ˜38 000 luminous red galaxies in SDSS DR12

    NASA Astrophysics Data System (ADS)

    Huang, Yun-Hsin; Chen, Hsiao-Wen; Johnson, Sean D.; Weiner, Benjamin J.

    2016-01-01

    We report a definitive detection of chemically enriched cool gas around massive quiescent galaxies at z ≈ 0.4-0.7. The result is based on a survey of 37 621 luminous red galaxy (LRG)-quasi-stellar object pairs in SDSS DR12 with projected distance d < 500 kpc. The LRGs are characterized by a predominantly old stellar population (age ≳ 1 Gyr) with 13 per cent displaying [O II] emission features and LINER-like spectra. Both passive and [O II]-emitting LRGs share the same stellar mass distribution with a mean of ≈ 11.4 and a dispersion of 0.2 dex. Both LRG populations exhibit associated strong Mg II absorbers out to d < 500 kpc. The mean gas covering fraction at d ≲ 120 kpc is < κ rangle _{Mg II} > 15 per cent and declines quickly to < κ rangle _{Mg II} ≈ 5 per cent at d ≲ 500 kpc. No clear dependence on stellar mass is detected for the observed Mg II absorption properties. The observed velocity dispersion of Mg II-absorbing gas relative to either passive or [O II]-emitting LRGs is merely 60 per cent of what is expected from virial motion in these massive haloes. While no apparent azimuthal dependence is seen for < κ rangle _{Mg II} around passive LRGs at all radii, a modest enhancement in < κ rangle _{Mg II} is detected along the major axis of [O II]-emitting LRGs at d < 50 kpc. The suppressed velocity dispersion of Mg II-absorbing gas around both passive and [O II]-emitting LRGs, together with an elevated < κ rangle _{Mg II} along the major axis of [O II]-emitting LRGs at d < 50 kpc, provides important insights into the origin of the observed chemically enriched cool gas in LRG haloes. We consider different scenarios and conclude that the observed Mg II absorbers around LRGs are best explained by a combination of cool clouds formed in thermally unstable LRG haloes and satellite accretion through filaments.

  5. Supernova 2013fc in a circumnuclear ring of a luminous infrared galaxy: the big brother of SN 1998S

    NASA Astrophysics Data System (ADS)

    Kangas, T.; Mattila, S.; Kankare, E.; Lundqvist, P.; Väisänen, P.; Childress, M.; Pignata, G.; McCully, C.; Valenti, S.; Vinkó, J.; Pastorello, A.; Elias-Rosa, N.; Fraser, M.; Gal-Yam, A.; Kotak, R.; Kotilainen, J. K.; Smartt, S. J.; Galbany, L.; Harmanen, J.; Howell, D. A.; Inserra, C.; Marion, G. H.; Quimby, R. M.; Silverman, J. M.; Szalai, T.; Wheeler, J. C.; Ashall, C.; Benetti, S.; Romero-Cañizales, C.; Smith, K. W.; Sullivan, M.; Takáts, K.; Young, D. R.

    2016-02-01

    We present photometric and spectroscopic observations of SN 2013fc, a bright type II supernova (SN) in a circumnuclear star-forming ring in the luminous infrared galaxy ESO 154-G010, observed as part of the Public ESO Spectroscopic Survey of Transient Objects. SN 2013fc is both photometrically and spectroscopically similar to the well-studied type IIn SN 1998S and to the bright type II-L SN 1979C. It exhibits an initial linear decline, followed by a short plateau phase and a tail phase with a decline too fast for 56Co decay with full γ-ray trapping. Initially, the spectrum was blue and featureless. Later on, a strong broad (˜8000 km s-1) H α emission profile became prominent. We apply a STARLIGHT stellar population model fit to the SN location (observed when the SN had faded) to estimate a high extinction of AV = 2.9 ± 0.2 mag and an age of 10_{-2}^{+3} Myr for the underlying cluster. We compare the SN to SNe 1998S and 1979C and discuss its possible progenitor star considering the similarities to these events. With a peak brightness of B = -20.46 ± 0.21 mag, SN 2013fc is 0.9 mag brighter than SN 1998S and of comparable brightness to SN 1979C. We suggest that SN 2013fc was consistent with a massive red supergiant (RSG) progenitor. Recent mass loss probably due to a strong RSG wind created the circumstellar matter illuminated through its interaction with the SN ejecta. We also observe a near-infrared excess, possibly due to newly condensed dust.

  6. Sub-kpc star formation law in the local luminous infrared galaxy IC 4687 as seen by ALMA

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, M.; Colina, L.; García-Burillo, S.; Planesas, P.; Usero, A.; Alonso-Herrero, A.; Arribas, S.; Cazzoli, S.; Emonts, B.; Piqueras López, J.; Villar-Martín, M.

    2016-03-01

    We analyze the spatially resolved (250 pc scales) and integrated star formation (SF) law in the local luminous infrared galaxy (LIRG) IC 4687. This is one of the first studies of the SF law on a starburst LIRG at these small spatial scales. We combined new interferometric ALMA CO(2-1) data with existing HST/NICMOS Paα narrowband imaging and VLT/SINFONI near-IR integral field spectroscopy to obtain accurate extinction-corrected SF rate (SFR) and cold molecular gas surface densities (Σgas and ΣSFR). We find that IC 4687 forms stars very efficiently with an average depletion time (tdep) of 160 Myr for the individual 250 pc regions. This is approximately one order of magnitude shorter than the tdep of local normal spirals and also shorter than that of main-sequence high-z objects, even when we use a Galactic αCO conversion factor. This result suggests a bimodal SF law in the ΣSFR∝ΣgasN representation. A universal SF law is recovered if we normalize the Σgas by the global dynamical time. However, at the spatial scales studied here, we find that the SF efficiency (or tdep) does not depend on the local dynamical time for this object. Therefore, an alternative normalization (e.g., free-fall time) should be found if a universal SF law exists at these scales. A FITS file for the reduced datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A44

  7. A comparison of the morphological properties between local and z ∼ 1 infrared luminous galaxies: Are local and high-z (U)LIRGs different?

    SciTech Connect

    Hung, Chao-Ling; Sanders, D. B.; Larson, Kirsten L.; Lee, Nicholas; Li, Yanxia; Lockhart, Kelly; Shih, Hsin-Yi; Barnes, Joshua E.; Casey, Caitlin M.; Koss, Michael; Kartaltepe, Jeyhan S.; Smith, Howard A.

    2014-08-10

    Ultraluminous and luminous infrared galaxies (ULIRGs and LIRGs) are the most extreme star-forming galaxies in the universe and dominate the total star formation rate density at z > 1. In the local universe (z < 0.3), the majority of ULIRGs and a significant portion of LIRGs are triggered by interactions between gas-rich spiral galaxies, yet it is unclear if this is still the case at high z. To investigate the relative importance of galaxy interactions in infrared luminous galaxies, we carry out a comparison of optical morphological properties between local (U)LIRGs and (U)LIRGs at z = 0.5-1.5 based on the same sample selection, morphology classification scheme, and optical morphology at similar rest-frame wavelengths. In addition, we quantify the systematics in comparing local and high-z data sets by constructing a redshifted data set from local (U)LIRGs, in which its data quality mimics the high-z data set. Based on the Gini-M{sub 20} classification scheme, we find that the fraction of interacting systems decreases by ∼8% from local to z ≲ 1, and it is consistent with the reduction between local and redshifted data sets (6{sub −6}{sup +14}%). Based on visual classifications, the merger fraction of local ULIRGs is found to be ∼20% lower compared to published results, and the reduction due to redshifting is 15{sub −8}{sup +10}%. Consequently, the differences of merger fractions between local and z ≲ 1 (U)LIRGs is only ∼17%. These results demonstrate that there is no strong evolution in the fraction of (U)LIRGs classified as mergers at least out to z ∼ 1. At z > 1, the morphology types of ∼30% of (U)LIRGs cannot be determined due to their faintness in the F814W band; thus, the merger fraction measured at z > 1 suffers from large uncertainties.

  8. Comparing FIR, UV and SED star formation rates for IR-luminous galaxies at 1≤z≤2 in CANDELS

    NASA Astrophysics Data System (ADS)

    Pforr, Janine; Dickinson, Mark; Kartaltepe, Jeyhan; Inami, Hanae; Penner, Kyle

    2015-08-01

    Galaxy formation and evolution studies rely on the robust determination of galaxy properties such as stellar masses and star formation rates (SFR). One the one hand these are important to distinguish between star bursting galaxies, normally star forming galaxies and those in the process of quenching and reveal the underlying processes causing these phenomena. On the other hand, they are crucial to derive reliable estimates of global properties like the star formation rate density of the Universe and the stellar mass assembly. We exploit the excellent multi-wavelength data in the GOODS-S, GOODS-N, UDS and COSMOS CANDELS fields ranging from deep ground and space-based optical data, deep-NIR HST data from CANDELS to the deepest FIR PACS data available from CANDELS-Herschel and Pep/GOODS-Herschel to estimate SFRs of IR-luminous galaxies between redshift 1 and 2. We determine SFRs in three different ways:1) from SED-fitting to the optical/IR multi-wavelength data, 2) from far-IR luminosities using 24 micron and Herschel PACS fluxes and 3) from UV slope and UV luminosity measurements. While for the majority of objects the different estimates agree very well, we find a subsample of outliers that are classified as pseudo-quiescent by the SED-fit. We present possible reasons for these misclassifications as well as potential remedies.

  9. ALMA DETECTION OF THE VIBRATIONALLY EXCITED HCN J = 4-3 EMISSION LINE IN THE AGN-HOSTING LUMINOUS INFRARED GALAXY IRAS 20551–4250

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2013-10-01

    We present results from our ALMA Cycle 0 observations, at the frequencies around the HCN, HCO{sup +}, and HNC J = 4-3 transition lines, of the luminous infrared galaxy IRAS 20551–4250 at z = 0.043, which is known to host an energetically important obscured active galactic nucleus (AGN). In addition to the targeted HCN, HCO{sup +}, and HNC J = 4-3 emission lines, two additional strong emission lines are seen, which we attribute to H{sub 2}S and CH{sub 3}CN(+CCH). The HCN-to-HCO{sup +} J = 4-3 flux ratio (∼0.7) is higher than in the other starburst-dominated galaxy (∼0.2) observed in our ALMA Cycle 0 program. We tentatively (∼5σ) detected the vibrationally excited (v {sub 2} = 1) HCN J = 4-3 (l = 1f) emission line, which is important for testing an infrared radiative pumping scenario for HCN. This is the second detection of this molecular transition in external galaxies. The most likely reason for this detection is not only the high flux of this emission line, but also the small molecular line widths observed in this galaxy, suggesting that vibrational excitation of HCN may be relatively common in AGN-hosting galaxies.

  10. SN 2010ay IS A LUMINOUS AND BROAD-LINED TYPE Ic SUPERNOVA WITHIN A LOW-METALLICITY HOST GALAXY

    SciTech Connect

    Sanders, N. E.; Soderberg, A. M.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E.; Valenti, S.; Smartt, S.; Botticella, M. T.; Hurley, K.; Barthelmy, S. D.; Gehrels, N.; Cline, T.; Levesque, E. M.; Narayan, G.; Briggs, M. S.; Connaughton, V.; Terada, Y.; Golenetskii, S.; Mazets, E.; and others

    2012-09-10

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3{pi} survey just {approx}4 days after explosion. The supernova (SN) had a peak luminosity, M{sub R} Almost-Equal-To -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v{sub Si} Almost-Equal-To 19 Multiplication-Sign 10{sup 3} km s{sup -1} at {approx}40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines {approx}2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of {sup 56}Ni, M{sub Ni} = 0.9 M{sub Sun }. Applying scaling relations to the light curve, we estimate a total ejecta mass, M{sub ej} Almost-Equal-To 4.7 M{sub Sun }, and total kinetic energy, E{sub K} Almost-Equal-To 11 Multiplication-Sign 10{sup 51} erg. The ratio of M{sub Ni} to M{sub ej} is {approx}2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log (O/H){sub PP04} + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and {approx}0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E{sub {gamma}} {approx}< 6 Multiplication-Sign 10{sup 48} erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E {approx}> 10{sup 48} erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less

  11. The Most Luminous z ~ 9-10 Galaxy Candidates Yet Found: The Luminosity Function, Cosmic Star-formation Rate, and the First Mass Density Estimate at 500 Myr

    NASA Astrophysics Data System (ADS)

    Oesch, P. A.; Bouwens, R. J.; Illingworth, G. D.; Labbé, I.; Smit, R.; Franx, M.; van Dokkum, P. G.; Momcheva, I.; Ashby, M. L. N.; Fazio, G. G.; Huang, J.-S.; Willner, S. P.; Gonzalez, V.; Magee, D.; Trenti, M.; Brammer, G. B.; Skelton, R. E.; Spitler, L. R.

    2014-05-01

    We present the discovery of four surprisingly bright (H 160 ~ 26-27 mag AB) galaxy candidates at z ~ 9-10 in the complete HST CANDELS WFC3/IR GOODS-N imaging data, doubling the number of z ~ 10 galaxy candidates that are known, just ~500 Myr after the big bang. Two similarly bright sources are also detected in a reanalysis of the GOODS-S data set. Three of the four galaxies in GOODS-N are significantly detected at 4.5σ-6.2σ in the very deep Spitzer/IRAC 4.5 μm data, as is one of the GOODS-S candidates. Furthermore, the brightest of our candidates (at z = 10.2 ± 0.4) is robustly detected also at 3.6 μm (6.9σ), revealing a flat UV spectral energy distribution with a slope β = -2.0 ± 0.2, consistent with demonstrated trends with luminosity at high redshift. Thorough testing and use of grism data excludes known low-redshift contamination at high significance, including single emission-line sources, but as-yet unknown low redshift sources could provide an alternative solution given the surprising luminosity of these candidates. Finding such bright galaxies at z ~ 9-10 suggests that the luminosity function for luminous galaxies might evolve in a complex way at z > 8. The cosmic star formation rate density still shows, however, an order-of-magnitude increase from z ~ 10 to z ~ 8 since the dominant contribution comes from low-luminosity sources. Based on the IRAC detections, we derive galaxy stellar masses at z ~ 10, finding that these luminous objects are typically 109 M ⊙. This allows for a first estimate of the cosmic stellar mass density at z ~ 10 resulting in log _{10}\\rho _{*} = 4.7^{+0.5}_{-0.8} M ⊙ Mpc-3 for galaxies brighter than M UV ~ -18. The remarkable brightness, and hence luminosity, of these z ~ 9-10 candidates will enable deep spectroscopy to determine their redshift and nature, and highlights the opportunity for the James Webb Space Telescope to map the buildup of galaxies at redshifts much earlier than z ~ 10. Based on data obtained with the

  12. SN 2010ay is a Luminous and Broad-lined Type Ic Supernova within a Low-metallicity Host Galaxy

    NASA Technical Reports Server (NTRS)

    Sanders, N. E.; Soderberg, A. M.; Valenti, S.; Chomiuk, L.; Berger, E.; Smartt, S.; Hurley, K.; Barthelmy, S. D.; Chornock, R.; Foley, R. J.; Levesque, E. M.; Narayan, G.; Botticella, M. T.; Briggs, M. S.; Connaughton, V.; Terada, Y.; Gehrels, N.; Golenetskii, S.; Mazets, E.; Cline, T.; von Kienlin, A.; Boynton, W.; Chambers, K. C.; Grav, T.; Heasley, J. N.

    2011-01-01

    We report on our serendipitous pre-discovery detection and detailed follow-up of the broad-lined Type Ic supernova SN2010ay at z approx 0.067 imaged by the Pan-STARRS1 3pi survey just approx 4 days after explosion. Combining our photometric observations with those available in the literature, we estimate the explosion date and the peak luminosity of the SN, M(sub R) approximately equals 20.2 mag, significantly brighter than known GRB-SNe and one of the most luminous SNe Ibc ever discovered. We measure the photospheric expansion velocity of the explosion from our spectroscopic follow-up observations, v(sub ph) approximately equals 19.2 X 10 (exp 3) km/s at approx 40 days after explosion. In comparison with other broad-lined SNe, the characteristic velocity of SN2010ay is 2 - 5 X higher and similar to the measurements for GRB-SNe at comparable epochs. Moreover the velocity declines two times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of Ni-56, M(sub Ni) = 0.9(+0.1/-0.1) solar mass. Our modeling of the light-curve points to a total ejecta mass, M(sub ej) approx 4.7 Solar Mass, and total kinetic energy, E(sub K,51) approximately equals 11. Thus the ratio of M(sub Ni) to M(sub ej) is at least twice as large for SN2010ay than in GRB-SNe and may indicate an additional energy reservoir. We also measure the metallicity (log(O/H) + 12 = 8.19) of the explosion site within the host galaxy using a high S/N optical spectrum. Our abundance measurement places this SN in the low-metallicity regime populated by GRB-SNe, and approx 0.2(0.5) dex lower than that typically measured for the host environments of normal (broad-lined) Ic supernovae. Despite striking similarities to the recent GRB-SN100316D/2010bh, we show that gamma-ray observations rule out an associated GRB with E(sub gamma) approx < 6 X 10(exp 48) erg (25-150 keV). Similarly, our deep

  13. A COSMIC-RAY-DOMINATED INTERSTELLAR MEDIUM IN ULTRA LUMINOUS INFRARED GALAXIES: NEW INITIAL CONDITIONS FOR STAR FORMATION

    SciTech Connect

    Papadopoulos, Padelis P.

    2010-09-01

    The high-density star formation typical of the merger/starburst events that power the large IR luminosities of ultraluminous infrared galaxies (ULIRGs) (L{sub IR}(8-1000 {mu}m) {approx}>10{sup 12} L{sub sun}) throughout the universe results in extraordinarily high cosmic-ray (CR) energy densities of U{sub CR} {approx} few x(10{sup 3}-10{sup 4}) U{sub CR,Gal} permeating their interstellar medium, a direct consequence of the large supernova remnant number densities in such systems. Unlike far-UV photons emanating from numerous star-forming (SF) sites, these large CR energy densities in ULIRGs will volumetrically heat and raise the ionization fraction of dense (n > 10{sup 4} cm{sup -3}) UV-shielded gas cores throughout their compact SF volumes. Such conditions can turn most of the large molecular gas masses found in such systems and their high redshift counterparts ({approx}10{sup 9}-10{sup 10} M {sub sun}) into giant CR-dominated regions (CRDRs) rather than ensembles of photon-dominated regions (PDRs) which dominate in less IR-luminous systems where star formation and molecular gas distributions are much more extended. The molecular gas in CRDRs will have a minimum temperature of T{sub kin} {approx} (80-160) K, and very high ionization fractions of x(e) > 10{sup -6} throughout its UV-shielded dense core, which in turn will fundamentally alter the initial conditions for star formation in such systems. Observational tests of CRDRs can be provided by high-J CO and {sup 13}CO lines or multi-J transitions of any heavy rotor molecules (e.g., HCN) and their isotopologs. Chemical signatures of very high ionization fractions in dense UV-shielded gas such as low [DCO{sup +}]/[HCO{sup +}] and high [HCO{sup +}]/[CO] abundance ratios would be good probes of CRDRs in extreme starbursts. These tests, along with direct measurements of the high CO line brightness temperatures expected over the areas of compact dense gas disks found in ULIRGs, will soon be feasible as sub

  14. Direct Minkowski Functional analysis of large redshift surveys: a new high-speed code tested on the luminous red galaxy Sloan Digital Sky Survey-DR7 catalogue

    NASA Astrophysics Data System (ADS)

    Wiegand, Alexander; Buchert, Thomas; Ostermann, Matthias

    2014-09-01

    As deeper galaxy catalogues are soon to come, it becomes even more important to measure large-scale fluctuations in the catalogues with robust statistics that cover all moments of the galaxy distribution. In this paper, we reinforce a direct analysis of galaxy data by employing the Germ-Grain method to calculate the family of Minkowski Functionals. We introduce a new code, suitable for the analysis of large data sets without smoothing and without the construction of excursion sets. We provide new tools to measure correlation properties, putting emphasis on explicitly isolating non-Gaussian correlations with the help of integral-geometric relations. As a first application, we present the analysis of large-scale fluctuations in the luminous red galaxy sample of Sloan Digital Sky Survey data release 7 data. We find significant deviations from the Λ cold dark matter mock catalogues on samples as large as 500 h- 1 Mpc (more than 3σ) and slight deviations of around 2σ on 700 h- 1 Mpc, and we investigate possible sources of these deviations.

  15. The Most Luminous Heavily Obscured Quasars Have a High Merger Fraction: Morphological Study of WISE-selected Hot Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Han, Yunkun; Fang, Guanwen; Gao, Ying; Zhang, Dandan; Jiang, Xiaoming; Wu, Qiaoqian; Yang, Jun; Li, Zhao

    2016-05-01

    Previous studies have shown that Wide-field Infrared Survey Explorer-selected hyperluminous, hot dust-obscured galaxies (Hot DOGs) are powered by highly dust-obscured, possibly Compton-thick active galactic nuclei (AGNs). High obscuration provides us a good chance to study the host morphology of the most luminous AGNs directly. We analyze the host morphology of 18 Hot DOGs at z ˜ 3 using Hubble Space Telescope/WFC3 imaging. We find that Hot DOGs have a high merger fraction (62 ± 14%). By fitting the surface brightness profiles, we find that the distribution of Sérsic indices in our Hot DOG sample peaks around 2, which suggests that most Hot DOGs have transforming morphologies. We also derive the AGN bolometric luminosity (˜1014 L ⊙) of our Hot DOG sample by using IR spectral energy distributions decomposition. The derived merger fraction and AGN bolometric luminosity relation is well consistent with the variability-based model prediction. Both the high merger fraction in an IR-luminous AGN sample and relatively low merger fraction in a UV/optical-selected, unobscured AGN sample can be expected in the merger-driven evolutionary model. Finally, we conclude that Hot DOGs are merger-driven and may represent a transit phase during the evolution of massive galaxies, transforming from the dusty starburst-dominated phase to the unobscured QSO phase.

  16. The Most Luminous Heavily Obscured Quasars Have a High Merger Fraction: Morphological Study of WISE-selected Hot Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Han, Yunkun; Fang, Guanwen; Gao, Ying; Zhang, Dandan; Jiang, Xiaoming; Wu, Qiaoqian; Yang, Jun; Li, Zhao

    2016-05-01

    Previous studies have shown that Wide-field Infrared Survey Explorer-selected hyperluminous, hot dust-obscured galaxies (Hot DOGs) are powered by highly dust-obscured, possibly Compton-thick active galactic nuclei (AGNs). High obscuration provides us a good chance to study the host morphology of the most luminous AGNs directly. We analyze the host morphology of 18 Hot DOGs at z ∼ 3 using Hubble Space Telescope/WFC3 imaging. We find that Hot DOGs have a high merger fraction (62 ± 14%). By fitting the surface brightness profiles, we find that the distribution of Sérsic indices in our Hot DOG sample peaks around 2, which suggests that most Hot DOGs have transforming morphologies. We also derive the AGN bolometric luminosity (∼1014 L ⊙) of our Hot DOG sample by using IR spectral energy distributions decomposition. The derived merger fraction and AGN bolometric luminosity relation is well consistent with the variability-based model prediction. Both the high merger fraction in an IR-luminous AGN sample and relatively low merger fraction in a UV/optical-selected, unobscured AGN sample can be expected in the merger-driven evolutionary model. Finally, we conclude that Hot DOGs are merger-driven and may represent a transit phase during the evolution of massive galaxies, transforming from the dusty starburst-dominated phase to the unobscured QSO phase.

  17. Optical-faint, Far-infrared-bright Herschel Sources in the CANDELS Fields: Ultra-luminous Infrared Galaxies at z > 1 and the Effect of Source Blending

    NASA Astrophysics Data System (ADS)

    Yan, Haojing; Stefanon, Mauro; Ma, Zhiyuan; Willner, S. P.; Somerville, Rachel; Ashby, Matthew L. N.; Davé, Romeel; Pérez-González, Pablo G.; Cava, Antonio; Wiklind, Tommy; Kocevski, Dale; Rafelski, Marc; Kartaltepe, Jeyhan; Cooray, Asantha; Koekemoer, Anton M.; Grogin, Norman A.

    2014-07-01

    The Herschel very wide field surveys have charted hundreds of square degrees in multiple far-IR (FIR) bands. While the Sloan Digital Sky Survey (SDSS) is currently the best resource for optical counterpart identifications over such wide areas, it does not detect a large number of Herschel FIR sources and leaves their nature undetermined. As a test case, we studied seven "SDSS-invisible," very bright 250 μm sources (S 250 > 55 mJy) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields where we have a rich multi-wavelength data set. We took a new approach to decompose the FIR sources, using the near-IR or the optical images directly for position priors. This is an improvement over the previous decomposition efforts where the priors are from mid-IR data that still suffer from the problem of source blending. We found that in most cases the single Herschel sources are made of multiple components that are not necessarily at the same redshifts. Our decomposition succeeded in identifying and extracting their major contributors. We show that these are all ultra-luminous infrared galaxies at z ~ 1-2 whose high L IR is mainly due to dust-obscured star formation. Most of them would not be selected as submillimeter galaxies. They all have complicated morphologies indicative of mergers or violent instability, and their stellar populations are heterogeneous in terms of stellar masses, ages, and formation histories. Their current ultra-luminous infrared galaxy phases are of various degrees of importance in their stellar mass assembly. Our practice provides a promising starting point for developing an automatic routine to reliably study bright Herschel sources.

  18. OPTICAL-FAINT, FAR-INFRARED-BRIGHT HERSCHEL SOURCES IN THE CANDELS FIELDS: ULTRA-LUMINOUS INFRARED GALAXIES AT z > 1 AND THE EFFECT OF SOURCE BLENDING

    SciTech Connect

    Yan, Haojing; Stefanon, Mauro; Ma, Zhiyuan; Willner, S. P.; Ashby, Matthew L. N.; Somerville, Rachel; Davé, Romeel; Pérez-González, Pablo G.; Cava, Antonio; Wiklind, Tommy; Kocevski, Dale; Rafelski, Marc; Kartaltepe, Jeyhan; Cooray, Asantha; Koekemoer, Anton M.; Grogin, Norman A.

    2014-07-01

    The Herschel very wide field surveys have charted hundreds of square degrees in multiple far-IR (FIR) bands. While the Sloan Digital Sky Survey (SDSS) is currently the best resource for optical counterpart identifications over such wide areas, it does not detect a large number of Herschel FIR sources and leaves their nature undetermined. As a test case, we studied seven ''SDSS-invisible'', very bright 250 μm sources (S {sub 250} > 55 mJy) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields where we have a rich multi-wavelength data set. We took a new approach to decompose the FIR sources, using the near-IR or the optical images directly for position priors. This is an improvement over the previous decomposition efforts where the priors are from mid-IR data that still suffer from the problem of source blending. We found that in most cases the single Herschel sources are made of multiple components that are not necessarily at the same redshifts. Our decomposition succeeded in identifying and extracting their major contributors. We show that these are all ultra-luminous infrared galaxies at z ∼ 1-2 whose high L {sub IR} is mainly due to dust-obscured star formation. Most of them would not be selected as submillimeter galaxies. They all have complicated morphologies indicative of mergers or violent instability, and their stellar populations are heterogeneous in terms of stellar masses, ages, and formation histories. Their current ultra-luminous infrared galaxy phases are of various degrees of importance in their stellar mass assembly. Our practice provides a promising starting point for developing an automatic routine to reliably study bright Herschel sources.

  19. Measurements of H(z) and DA(z) from the two-dimensional two-point correlation function of Sloan Digital Sky Survey luminous red galaxies

    NASA Astrophysics Data System (ADS)

    Chuang, Chia-Hsun; Wang, Yun

    2012-10-01

    We present a method for measuring the Hubble parameter, H(z), and angular diameter distance, DA(z), from the two-dimensional two-point correlation function and validate it using LasDamas mock galaxy catalogues. Applying our method to the sample of luminous red galaxies from the Sloan Digital Sky Survey Data Release 7, we measure H(z=0.35)≡H(0.35)=82.1-4.9+4.8 km s-1 Mpc -1 and DA(z=0.35)≡DA(0.35)=1048-58+60 Mpc without assuming a dark energy model or a flat universe. We find that the derived measurements of H(0.35) rs(zd)/c and DA(0.35)/rs(zd) [where rs(zd) is the sound horizon at the drag epoch] are nearly uncorrelated, have tighter constraints and are more robust with respect to possible systematic effects. Our galaxy clustering measurements of {H(0.35) rs(zd)/c,DA(0.35)/rs(zd)}={0.0434±0.0018,6.60±0.26} (with the correlation coefficient r = 0.0604) can be used to combine with cosmic microwave background and any other cosmological data sets to constrain dark energy. Our results represent the first measurements of H(z) and DA(z) (or H(z) rs(zd)/c and DA(0.35)/rs(zd)) from galaxy clustering data. Our work has significant implications for future surveys in establishing the feasibility of measuring both H(z) and DA(z) from galaxy clustering data.

  20. Galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z = 1.58. Red-sequence formation, massive galaxy assembly, and central star formation activity

    NASA Astrophysics Data System (ADS)

    Fassbender, R.; Nastasi, A.; Santos, J. S.; Lidman, C.; Verdugo, M.; Koyama, Y.; Rosati, P.; Pierini, D.; Padilla, N.; Romeo, A. D.; Menci, N.; Bongiorno, A.; Castellano, M.; Cerulo, P.; Fontana, A.; Galametz, A.; Grazian, A.; Lamastra, A.; Pentericci, L.; Sommariva, V.; Strazzullo, V.; Šuhada, R.; Tozzi, P.

    2014-08-01

    Context. Recent observational progress has enabled the detection of galaxy clusters and groups out to very high redshifts and for the first time allows detailed studies of galaxy population properties in these densest environments in what was formerly known as the "redshift desert" at z> 1.5. Aims: We aim to investigate various galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z = 1.58, which constitutes the most extreme currently known matter-density peak at this redshift. Methods: We analyzed deep VLT/HAWK-I near-infrared data with an image quality of 0.5'' and limiting Vega magnitudes (50% completeness) of 24.2 in J- and 22.8 in the Ks band, complemented by similarly deep Subaru imaging in i and V, Spitzer observations at 4.5 μm, and new spectroscopic observations with VLT/FORS 2. Results: We detect a cluster-associated excess population of about 90 galaxies, most of them located within the inner 30'' (250 kpc) of the X-ray centroid, which follows a centrally peaked, compact NFW galaxy surface-density profile with a concentration of c200 ≃ 10. Based on the Spitzer 4.5 μm imaging data, we measure a total enclosed stellar mass of M∗500 ≃ (6.3 ± 1.6) × 1012 M⊙ and a resulting stellar mass fraction of f∗,500 = M∗,500/M500 = (3.3 ± 1.4)%, consistent with local values. The total J- and Ks-band galaxy luminosity functions of the core region yield characteristic magnitudes J* and Ks* consistent with expectations from simple zf = 3 burst models. However, a detailed look at the morphologies and color distributions of the spectroscopically confirmed members reveals that the most massive galaxies are undergoing a very active mass-assembly epoch through merging processes. Consequently, the bright end of the cluster red sequence is not in place, while a red-locus population is present at intermediate magnitudes [Ks*, Ks* + 1.6], which is then sharply truncated at magnitudes fainter than Ks* + 1.6. The dominant

  1. Ultra-luminous X-Ray Sources in HARO II and the Role of X-Ray Binaries in Feedback in Lyα Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Prestwich, A. H.; Jackson, F.; Kaaret, P.; Brorby, M.; Roberts, T. P.; Saar, S. H.; Yukita, M.

    2015-10-01

    Lyman Break Analogs (LBAs) are local proxies of high-redshift Lyman Break Galaxies. Spatially resolved studies of nearby starbursts have shown that Lyman continuum and line emission are absorbed by dust and that the Lyα is resonantly scattered by neutral hydrogen. In order to observe Lyα emission from star-forming regions, some source of feedback is required to blow the neutral gas away from the starburst to prevent scattering and allow the Lyα emission to escape. We show that there are two X-ray point sources embedded in the diffuse emission of the LBA galaxy Haro 11. CXOU J003652.4-333316 (abbreviated to Haro 11 X-1) is an extremely luminous (L{}{{X}}˜ {10}41 erg s-1), spatially compact source with a hard-X-ray spectrum. We suggest that the X-ray emission from Haro 11 X-1 is dominated by a single accretion source. This might be an active galactic nucleus or a source similar to the extreme black hole binary (BHB) M82 X-1. The hard X-ray spectrum indicates that Haro 11 X-1 may be a BHB in a low accretion state. In this case, the very high X-ray luminosity suggests an intermediate mass black hole that could be the seed for formation of a supermassive black hole. Source CXOU J003652.7-33331619.5 (abbreviated Haro 11 X-2) has an X-ray luminosity of {L}{{X}}˜ 5× {10}40 erg s-1 and a soft X-ray spectrum (power-law photon index Γ ˜ 2.2). This strongly suggests that Haro 11 X-2 is an X-ray binary in the ultra luminous state (i.e., an Ultra Luminous X-ray source, ULX). Haro 11 X-2 is coincident with the star-forming knot that is the source of the Lyα emission. The association of a ULX with Lyα emission raises the possibility that strong winds from X-ray binaries play an important role in injecting mechanical power into the interstellar medium, thus blowing away neutral material from the starburst region and allowing the Lyα to escape. We suggest that feedback from X-ray binaries may play a significant role in allowing Lyα emission to escape from galaxies in the

  2. CH+(1-0) Line Detection in a High-z Hyper-Luminous Galaxy SDP17b: the First Probe of a Massive Turbulent Region

    NASA Astrophysics Data System (ADS)

    Falgarone, E.; Zwaan, M.; Godard, B.; Bussmann, S.; Bergin, E.; Omont, A.; Bournaud, F.; Elbaz, D.; Andreani, P.

    2015-12-01

    We illustrate the power of CH+ spectroscopy at high spectral resolution with the first detection by ALMA of a CH+(J=1-0) line in an hyper-luminous galaxy, SDP17b at z=2.3. Unlike other molecular tracers, the unique chemical and spectroscopic properties of the CH+ cation make it a tracer of the turbulent energy trail, from its scale of injection to that of dissipation at which CH+ forms. In SDP17b, CH+ emission and absorption are detected. The emission line is broad and the absorption is seen against the dust continuum and the emission. The absorption probes a massive turbulent region of low density, while the emission may arise in a large number of irradiated shocks that could be located in the large turbulent region or in the star-forming disk.

  3. LACERTA I AND CASSIOPEIA III. TWO LUMINOUS AND DISTANT ANDROMEDA SATELLITE DWARF GALAXIES FOUND IN THE 3{pi} PAN-STARRS1 SURVEY

    SciTech Connect

    Martin, Nicolas F.; Laevens, Benjamin P. M.; Slater, Colin T.; Bell, Eric F.; Schlafly, Edward F.; Morganson, Eric; Rix, Hans-Walter; Bernard, Edouard J.; Ferguson, Annette M. N.; Finkbeiner, Douglas P.; Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Tonry, John L.; Wainscoat, Richard J.; Price, Paul A.

    2013-07-20

    We report the discovery of two new dwarf galaxies, Lacerta I/Andromeda XXXI (Lac I/And XXXI) and Cassiopeia III/Andromeda XXXII (Cas III/And XXXII), in stacked Pan-STARRS1 r{sub P1}- and i{sub P1}-band imaging data. Both are luminous systems (M{sub V} {approx} -12) located at projected distances of 20. Degree-Sign 3 and 10. Degree-Sign 5 from M31. Lac I and Cas III are likely satellites of the Andromeda galaxy with heliocentric distances of 756{sup +44}{sub -28} kpc and 772{sup +61}{sub -56} kpc, respectively, and corresponding M31-centric distances of 275 {+-} 7 kpc and 144{sup +6}{sub -4} kpc. The brightest of recent Local Group member discoveries, these two new dwarf galaxies owe their late discovery to their large sizes (r{sub h} = 4.2{sup +0.4}{sub -0.5} arcmin or 912{sup +124}{sub -93} pc for Lac I; r{sub h} = 6.5{sup +1.2}{sub -1.0} arcmin or 1456 {+-} 267 pc for Cas III) and consequently low surface brightness ({mu}{sub 0} {approx} 26.0 mag arcsec{sup -2}), as well as to the lack of a systematic survey of regions at large radii from M31, close to the Galactic plane. This latter limitation is now alleviated by the 3{pi} Pan-STARRS1 survey, which could lead to the discovery of other distant Andromeda satellite dwarf galaxies.

  4. Spectroscopy of luminous infrared galaxies at 2 microns: 1. The ultraluminous galaxies (L(sub IR) approximately greater than 10 (exp 12) solar luminosity)

    NASA Technical Reports Server (NTRS)

    Goldader, Jeffrey D.; Joseph, R. D.; Doyon, Rene; Sanders, D. B.

    1995-01-01

    We present high-quality spectra covering the K window at a resolving power of 340 for a sample of 13 ultraluminous (L(sub IR) approximately greater than 10(exp 12) solar luminosity) infrared-selected galaxies, and line fluxes for a comparison sample of 24 lower luminosity galaxies. The 2 micrometers spectra of 10 of the ultraluminous galaxies are characterized by emission and absorption features commonly associated with stars and star formation; two others have the red power-law spectra and Br gamma line widths of Seyfert 1 galaxies; the final galaxy has strong emission from hot dust. We have found no broad-line active nuclei not already known from optical observations, despite the fact that the extinction at 2 micrometers is 1/10 that at optical wavelengths; any putative Seyfert 1 nuclei must be deeply buried. Powerful continua and emission lines from H2 and Br gamma are detected in all the ultraluminous galaxies. Comparing the H2 1-0 S(1), Br gamma, and 2 micrometers and far-infrared luminosities to those of the lower luminosity galaxies yields several major results. First, the dereddened Br gamma emission, relative to the far-infrared luminosity is significantly depressed in the ultraluminous sample, when compared to the lower luminosity galaxies. Five of the ultraluminous galaxies have L(sub Br gamma)L(sub IR) ratios lower than for any of the comparison objects. Second, the H2 1-0 S(1) luminosity is also responsible, directly or indirectly, for producing the excited H2, and that the H2 apparently comes from optically thin regions in both classes of objects. Third, eight of the 13 ultraluminous systems have lower 2 micrometers/far-infrared luminosity ratios than any of the lower luminosity galaxies, and five of these are the galaxies also deficient in Br gamma. These three findings may be understood if the the H2, Br gamma, and 2 mircometers continua in the ultraluminous galaxies arise from spatially distinct regions, with the continuum and Br gamma largely

  5. Discovery of a Very X-Ray Luminous Galaxy Cluster at Z=0.89 in the Wide Angle ROSAT Pointed Survey

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Jones, L. R.; Fairley, B. W.; Perlman, E.; Scharf, C.; Horner, D.

    2001-02-01

    We report the discovery of the galaxy cluster Cl J1226.9+3332 in the Wide Angle ROSAT Pointed Survey (WARPS). At z=0.888 and LX=1.1×1045 h-250 ergs s-1 (0.5-2.0 keV), Cl J1226.9+3332 is the most distant X-ray luminous cluster currently known. The mere existence of this system represents a huge problem for Ω0=1 world models. At the modest (off-axis) resolution of the ROSAT Position Sensitive Proportional Counter observation in which the system was detected, Cl J1226.9+3332 appears relaxed; an off-axis High Resolution Imager observation confirms this impression and rules out significant contamination from point sources. However, in moderately deep optical images (R and I band), the cluster exhibits signs of substructure in its apparent galaxy distribution. A first crude estimate of the velocity dispersion of the cluster galaxies based on six redshifts yields a high value of 1650 km s-1, indicative of a very massive cluster and/or the presence of substructure along the line of sight. While a more accurate assessment of the dynamical state of this system requires much better data at both optical and X-ray wavelengths, the high mass of the cluster has already been unambiguously confirmed by a very strong detection of the Sunyaev-Zeldovich effect in its direction. Using Cl J1226.9+3332 and Cl J0152.7-1357 (z=0.835), the second most distant X-ray luminous cluster currently known and also a WARPS discovery, we obtain a first estimate of the cluster X-ray luminosity function at 0.85×1044 h-250 ergs s-1 (0.5-2.0 keV). Using the best currently available data, we find the comoving space density of very distant, massive clusters to be in excellent agreement with the value measured locally (z<0.3) and conclude that negative evolution is not required at these luminosities out to z~1. Our findings are in conflict with earlier claims of highly significant (>3 σ) negative evolution already at 0.3

  6. AN ULTRAVIOLET ULTRA-LUMINOUS LYMAN BREAK GALAXY AT Z = 2.78 IN NDWFS BOOeTES FIELD {sup ,} {sup ,}

    SciTech Connect

    Bian Fuyan; Fan Xiaohui; Jiang Linhua; McGreer, Ian; Wang Ran; Dey, Arjun; Green, Richard F.; Maiolino, Roberto; Walter, Fabian; Lin, Yen-Ting

    2012-10-01

    We present one of the most ultraviolet (UV) luminous Lyman break galaxies (LBGs; J1432+3358) at z = 2.78, discovered in the NOAO Deep Wide-Field Survey Booetes field. The R-band magnitude of J1432+3358 is 22.29 AB, more than two magnitudes brighter than typical L* LBGs at this redshift. The deep z-band image reveals two components of J1432+3358 separated by 1.''0 with a flux ratio of 3:1. The high signal-to-noise ratio rest-frame UV spectrum shows Ly{alpha} emission line and interstellar medium absorption lines. The absence of N V and C IV emission lines, and the non-detection in X-ray and radio wavelengths and mid-infrared (MIR) colors indicates weak or no active galactic nuclei (<10%) in this galaxy. The galaxy shows a broader line profile, with a FWHM of about 1000 km s{sup -1} and a larger outflow velocity ( Almost-Equal-To 500 km s{sup -1}) than those of typical z {approx} 3 LBGs. The physical properties are derived by fitting the spectral energy distribution (SED) with stellar synthesis models. The dust extinction, E(B - V) = 0.12, is similar to that in normal LBGs. The star formation rates (SFRs) derived from the SED fitting and the dust-corrected UV flux are consistent with each other, {approx}300 M{sub Sun} yr{sup -1}, and the stellar mass is (1.3 {+-} 0.3) Multiplication-Sign 10{sup 11} M{sub Sun }. The SFR and stellar mass in J1432+3358 are about an order of magnitude higher than those in normal LBGs. The SED-fitting results support that J1432+3358 has a continuous star formation history, with a star formation episode of 6.3 Multiplication-Sign 10{sup 8} yr. The morphology of J1432+3358 and its physical properties suggest that J1432+3358 is in an early phase of a 3:1 merger process. The unique properties and the low space number density ({approx}10{sup -7} Mpc{sup -3}) are consistent with the interpretation that such galaxies are either found in a short unobscured phase of the star formation or that a small fraction of intensive star-forming galaxies are

  7. THE DENSITY PROFILES OF MASSIVE, RELAXED GALAXY CLUSTERS. II. SEPARATING LUMINOUS AND DARK MATTER IN CLUSTER CORES

    SciTech Connect

    Newman, Andrew B.; Ellis, Richard S.; Treu, Tommaso; Sand, David J.

    2013-03-01

    We present stellar and dark matter (DM) density profiles for a sample of seven massive, relaxed galaxy clusters derived from strong and weak gravitational lensing and resolved stellar kinematic observations within the centrally located brightest cluster galaxies (BCGs). In Paper I of the series, we demonstrated that the total density profile derived from these data, which span three decades in radius, is consistent with numerical DM-only simulations at radii {approx}> 5-10 kpc, despite the significant contribution of stellar material in the core. Here, we decompose the inner mass profiles of these clusters into stellar and dark components. Parameterizing the DM density profile as a power law {rho}{sub DM}{proportional_to}r {sup -{beta}} on small scales, we find a mean slope ({beta}) = 0.50 {+-} 0.10(random){sup +0.14} {sub -0.13}(systematic). Alternatively, cored Navarro-Frenk-White (NFW) profiles with (log r {sub core}/kpc) = 1.14 {+-} 0.13{sup +0.14} {sub -0.22} provide an equally good description. These density profiles are significantly shallower than canonical NFW models at radii {approx}< 30 kpc, comparable to the effective radii of the BCGs. The inner DM profile is correlated with the distribution of stars in the BCG, suggesting a connection between the inner halo and the assembly of stars in the central galaxy. The stellar mass-to-light ratio inferred from lensing and stellar dynamics is consistent with that inferred using stellar population synthesis models if a Salpeter initial mass function is adopted. We compare these results to theories describing the interaction between baryons and DM in cluster cores, including adiabatic contraction models and the possible effects of galaxy mergers and active galactic nucleus feedback, and evaluate possible signatures of alternative DM candidates.

  8. Constraints on primordial non-Gaussianity from WMAP7 and luminous red galaxies power spectrum and forecast for future surveys

    SciTech Connect

    De Bernardis, Francesco; Serra, Paolo; Cooray, Asantha; Melchiorri, Alessandro

    2010-10-15

    We place new constraints on the primordial local non-Gaussianity parameter f{sub NL} using recent cosmic microwave background anisotropy and galaxy clustering data. We model the galaxy power spectrum according to the halo model, accounting for a scale-dependent bias correction proportional to f{sub NL}/k{sup 2}. We first constrain f{sub NL} in a full 13 parameters analysis that includes 5 parameters of the halo model and 7 cosmological parameters. Using the WMAP7 CMB data and the SDSS DR4 galaxy power spectrum, we find f{sub NL}=171{sub -139}{sup +140} at 68% C.L. and -69

  9. A Luminous X-Ray Flare from the Nucleus of the Dormant Bulgeless Spiral Galaxy NGC 247

    NASA Astrophysics Data System (ADS)

    Feng, Hua; Ho, Luis C.; Kaaret, Philip; Tao, Lian; Yamaoka, Kazutaka; Zhang, Shuo; Grisé, Fabien

    2015-07-01

    NGC 247 is a nearby late-type bulgeless spiral galaxy that contains an inactive nucleus. We report a serendipitous discovery of an X-ray flare from the galaxy center with a luminosity of up to 2× {10}39 erg s-1 in the 0.3-10 keV band with XMM-Newton. A Chandra observation confirms that the new X-ray source is spatially coincident with the galaxy nucleus. The XMM-Newton data revealed a hard power-law spectrum with a spectral break near 3-4 keV, no pulsations on timescales longer than 150 ms, and a flat power spectrum consistent with Poisson noise from 1 mHz to nearly 10 Hz. Follow-up observations with Swift detected a second flux peak followed by a luminosity drop by a factor of almost 20. The spectral and temporal behaviors of the nuclear source are consistent with the scenario that the flare was due to an outburst of a low-mass X-ray binary that contains a stellar-mass black hole emitting near its Eddington limit at the peak. However, it cannot be ruled out that the sudden brightening in the nucleus was due to accretion onto a possible low-mass nuclear black hole, fed by a tidally disrupted star or a gas cloud; the Monitor of All-sky X-ray Image observations limit the peak luminosity of the flare to less than ˜ {10}43 erg s-1, suggesting that it is either a low-mass black hole or an inefficient tidal disruption event.

  10. Luminous and Dark Matter Profiles from Galaxies to Clusters: Bridging the Gap with Group-scale Lenses

    NASA Astrophysics Data System (ADS)

    Newman, Andrew B.; Ellis, Richard S.; Treu, Tommaso

    2015-11-01

    Observations of strong gravitational lensing, stellar kinematics, and larger-scale tracers enable accurate measures of the distribution of dark matter (DM) and baryons in massive early-type galaxies (ETGs). While such techniques have been applied to galaxy-scale and cluster-scale lenses, the paucity of intermediate-mass systems with high-quality data has precluded a uniform analysis of mass-dependent trends. With the aim of bridging this gap, we present new observations and analyses of 10 group-scale lenses at < z> =0.36, characterized by Einstein radii {θ }{{Ein}}=2\\buildrel{\\prime\\prime}\\over{.} 5-5\\buildrel{\\prime\\prime}\\over{.} 1 and a mean halo mass of {M}200={10}14.0 {M}ȯ . We measure a mean concentration c200 = 5.0 ± 0.8 consistent with unmodified cold dark matter halos. By combining our data with other lens samples, we analyze the mass structure of ETGs in 1013 {M}ȯ –1015 {M}ȯ halos using homogeneous techniques. We show that the slope of the total density profile γtot within the effective radius depends on the stellar surface density, as demonstrated previously, but also on the halo mass. We analyze these trends using halo occupation models and resolved stellar kinematics with the goal of testing the universality of the DM profile. Whereas the central galaxies of clusters require a shallow inner DM density profile, group-scale lenses are consistent with a Navarro–Frenk–White profile or one that is slightly contracted. The largest uncertainties arise from the sample size and likely radial gradients in stellar populations. We conclude that the net effect of baryons on the DM distribution may not be universal, but more likely varies with halo mass due to underlying trends in star formation efficiency and assembly history.

  11. A Luminous Lyα-emitting Galaxy at Redshift z = 6.535: Discovery and Spectroscopic Confirmation

    NASA Astrophysics Data System (ADS)

    Rhoads, James E.; Xu, Chun; Dawson, Steve; Dey, Arjun; Malhotra, Sangeeta; Wang, JunXian; Jannuzi, Buell T.; Spinrad, Hyron; Stern, Daniel

    2004-08-01

    We present a redshift z=6.535 galaxy discovered by its Lyα emission in a 9180 Å narrowband image from the Large Area Lyman Alpha survey. The Lyα line luminosity (1.1×1043 ergs s-1) is among the largest known for star-forming galaxies at z~6.5. The line shows the distinct asymmetry that is characteristic of high-redshift Lyα. The 2 σ lower bound on the observer-frame equivalent width is greater than 530 Å. This is hard to reconcile with a neutral intergalactic medium (IGM) unless the Lyα line is intrinsically strong and is emitted from its host galaxy with an intrinsic Doppler shift of several hundred km s-1. If the IGM is ionized, it corresponds to a rest-frame equivalent width greater than 40 Å after correcting for Lyα forest absorption. We also present a complete spectroscopic follow-up of the remaining candidates with line flux greater than 2×10-17 ergs cm-2 s-1 in our 1200 arcmin2 narrowband image. These include another galaxy with a strong emission line at 9136 Å and no detected continuum flux, which, however, is most likely an [O III] λ5007 source at z=0.824, on the basis of a weak detection of the [O III] λ4959 line. The data presented in this paper were obtained at the Kitt Peak National Observatory, the Gemini Observatory, and the W. M. Keck Observatory. Kitt Peak National Observatory, National Optical Astronomy Observatory, is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation (NSF). The Gemini Observatory is operated by AURA under a cooperative agreement with the NSF on behalf of the Gemini partnership: the NSF (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council, CNPq (Brazil), and CONICET (Argentina). The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the

  12. DEEP SPITZER 24 {mu}m COSMOS IMAGING. I. THE EVOLUTION OF LUMINOUS DUSTY GALAXIES-CONFRONTING THE MODELS

    SciTech Connect

    Le Floc'h, Emeric; Ilbert, Olivier; Riguccini, Laurie; Kartaltepe, Jeyhan; Sanders, David; Aussel, Herve; Feruglio, Chiara; Frayer, David T.; Salvato, Mara; Capak, Peter; Scoville, Nick; Arnouts, Stephane; Surace, Jason; Sheth, Kartik; Yan Lin; Rodighiero, Giulia; Heinis, Sebastien; McCracken, Henry Joy; Thompson, David; Koekemoer, Anton

    2009-09-20

    We present the first results obtained from the identification of {approx}30,000 sources in the Spitzer/24 {mu}m observations of the COSMOS field at S{sub 24{mu}m} {approx}> 80 {mu}Jy. Using accurate photometric redshifts ({sigma} {sub z} {approx} 0.12 at z {approx} 2 for 24 {mu}m sources with i {sup +} {approx}< 25 mag AB) and simple extrapolations of the number counts at faint fluxes, we resolve with unprecedented detail the buildup of the mid-infrared background across cosmic ages. We find that {approx}50% and {approx}80% of the 24 {mu}m background intensity originate from galaxies at z {approx}< 1 and z {approx}< 2, respectively, supporting the scenario where highly obscured sources at very high redshifts (z {approx}> 2) contribute only marginally to the cosmic infrared background. Assuming flux-limited selections at optical wavelengths, we also find that the fraction of i {sup +}-band sources with 24 {mu}m detection strongly increases up to z {approx} 2 as a consequence of the rapid evolution that star-forming galaxies have undergone with look-back time. Nonetheless, this rising trend shows a clear break at z {approx} 1.3, probably due to k-correction effects implied by the complexity of spectral energy distributions in the mid-infrared. Finally, we compare our results with the predictions from different models of galaxy formation. We note that semianalytical formalisms currently fail to reproduce the redshift distributions observed at 24 {mu}m. Furthermore, the simulated galaxies at S {sub 24{mu}m} > 80 {mu}Jy exhibit R-K colors much bluer than observed and the predicted K-band fluxes are systematically underestimated at z {approx}> 0.5. Unless these discrepancies mainly result from an incorrect treatment of extinction in the models they may reflect an underestimate of the predicted density of high-redshift massive sources with strong ongoing star formation, which would point to more fundamental processes and/or parameters (e.g., initial mass function

  13. THE MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES. II. EXTREME PHYSICAL CONDITIONS AND THEIR EFFECTS ON THE X{sub co} FACTOR

    SciTech Connect

    Papadopoulos, Padelis P.; Van der Werf, Paul; Xilouris, E.; Isaak, Kate G.; Gao, Yu E-mail: pvdwerf@strw.leidenuniv.nl E-mail: kisaak@rssd.esa.int

    2012-05-20

    In this work, we conclude the analysis of our CO line survey of luminous infrared galaxies (LIRGs: L{sub IR} {approx}> 10{sup 11} L{sub Sun }) in the local universe (Paper I) by focusing on the influence of their average interstellar medium (ISM) properties on the total molecular gas mass estimates via the so-called X{sub co} = M(H{sub 2})/L{sub co,1-0} factor. One-phase radiative transfer models of the global CO spectral line energy distributions (SLEDs) yield an X{sub co} distribution with (X{sub co}) {approx} (0.6 {+-} 0.2) M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1} over a significant range of average gas densities, temperatures, and dynamic states. The latter emerges as the most important parameter in determining X{sub co}, with unbound states yielding low values and self-gravitating states yielding the highest ones. Nevertheless, in many (U)LIRGs where available higher-J CO lines (J = 3-2, 4-3, and/or J = 6-5) or HCN line data from the literature allow a separate assessment of the gas mass at high densities ({>=}10{sup 4} cm{sup -3}) rather than a simple one-phase analysis, we find that near-Galactic X{sub co} {approx} (3-6) M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1} values become possible. We further show that in the highly turbulent molecular gas in ULIRGs, a high-density component will be common and can be massive enough for its high X{sub co} to dominate the average value for the entire galaxy. Using solely low-J CO lines to constrain X{sub co} in such environments (as has been the practice up until now) may have thus resulted in systematic underestimates of molecular gas mass in ULIRGs, as such lines are dominated by a warm, diffuse, and unbound gas phase with low X{sub co} but very little mass. Only well-sampled high-J CO SLEDs (J = 3-2 and higher) and/or multi-J observations of heavy rotor molecules (e.g., HCN) can circumvent such a bias, and the latter type of observations may have actually provided early evidence of it in local ULIRGs. The only

  14. New Constraints on Dark Energy from the ObservedGrowth of the Most X-ray Luminous Galaxy Clusters

    SciTech Connect

    Mantz, A.; Allen, S.W.; Ebeling, H.; Rapetti, D.

    2007-10-15

    We present constraints on the mean matter density, {Omega}{sub m}, normalization of the density fluctuation power spectrum, {sigma}{sub 8}, and dark energy equation of state parameter, w, obtained from the X-ray luminosity function of the Massive Cluster Survey (MACS) in combination with the local BCS and REFLEX galaxy cluster samples. Our analysis incorporates the mass function predictions of Jenkins et al. (2001), a mass-luminosity relation calibrated using the data of Reiprich and Bohringer (2002), and standard priors on the Hubble constant, H{sub 0}, and mean baryon density, {Omega}{sub b} h{sup 2}. We find {Omega}{sub m}=0.27 {sup +0.06} {sub -0.05} and {sigma}{sub 8}=0.77 {sup +0.07} {sub -0.06} for a spatially flat, cosmological constant model, and {Omega}{sub m}=0.28 {sup +0.08} {sub -0.06}, {sigma}{sub 8}=0.75 {+-} 0.08 and w=-0.97 {sup +0.20} {sub -0.19} for a flat, constant-w model. Our findings constitute the first precise determination of the dark energy equation of state from measurements of the growth of cosmic structure in galaxy clusters. The consistency of our result with w=-1 lends strong additional support to the cosmological constant model. The constraints are insensitive to uncertainties at the 10-20 percent level in the mass function and in the redshift evolution o the mass-luminosity relation; the constraint on dark energy is additionally robust against our choice of priors and known X-ray observational biases affecting the mass-luminosity relation. Our results compare favorably with those from recent analyses of type Ia supernovae, cosmic microwave background anisotropies, the X-ray gas mass fraction of relaxed galaxy clusters and cosmic shear. A simplified combination of the luminosity function data with supernova, cosmic microwave background and cluster gas fraction data using importance sampling yields the improved constraints {Omega}{sub m}=0.263 {+-} 0.014, {sigma}{sub 8}=0.79 {+-} 0.02 and w=-1.00 +- 0.05.

  15. The Gravitational Shear-Intrinsic Ellipticity Correlation Functions of Luminous Red Galaxies in Observation and in the ΛCDM Model

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Jing, Y. P.

    2009-03-01

    We examine whether the gravitational shear-intrinsic ellipticity (GI) correlation function of the luminous red galaxies (LRGs) can be modeled with the distribution function of a misalignment angle advocated recently by Okumura et al. For this purpose, we have accurately measured the GI correlation for the LRGs in the Data Release 6 (DR6) of the Sloan Digital Sky Survey (SDSS), which confirms the results of Hirata et al. who used the DR4 data. By comparing the GI correlation functions in the simulation and in the observation, we find that the GI correlation can be modeled in the current ΛCDM model if the misalignment follows a Gaussian distribution with a zero mean and a typical misalignment angle σθ = 34.9+1.9 -2.1 degrees. We also find a correlation between the axis ratios and intrinsic alignments of LRGs. This effect should be taken into account in theoretical modeling of the GI and intrinsic ellipticity-ellipticity correlations for weak lensing surveys.

  16. THE SL2S GALAXY-SCALE LENS SAMPLE. II. COSMIC EVOLUTION OF DARK AND LUMINOUS MASS IN EARLY-TYPE GALAXIES

    SciTech Connect

    Ruff, Andrea J.; Marshall, Philip J.; Treu, Tommaso; Auger, Matthew W.; Gavazzi, Raphael; Brault, Florence

    2011-02-01

    We present a joint gravitational lensing and stellar-dynamical analysis of 11 early-type galaxies (median deflector redshift z{sub d} = 0.5) from Strong Lenses in the Legacy Survey (SL2S). Using newly measured redshifts and stellar velocity dispersions from Keck spectroscopy with lens models from Paper I, we derive the total mass-density slope inside the Einstein radius for each of the 11 lenses. The average total density slope is found to be ({gamma}') = 2.16{sup +0.09}{sub -0.09} ({rho}{sub tot}{proportional_to}r{sup -}{gamma}'), with an intrinsic scatter of 0.25{sup +0.10}{sub -0.07}. We also determine the dark matter fraction for each lens within half the effective radius, R{sub eff}/2, and find the average-projected dark matter mass fraction to be 0.42{sup +0.08}{sub -0.08} with a scatter of 0.20{sup +0.09}{sub -0.07} for a Salpeter initial mass function. By combining the SL2S results with those from the Sloan Lens ACS Survey (median z{sub d} = 0.2) and the Lenses Structure and Dynamics Survey (median z{sub d} = 0.8), we investigate cosmic evolution of {gamma}' and find a mild trend {partial_derivative}({gamma}')/{partial_derivative}z{sub d} = -0.25{sup +0.10}{sub -0.12}. This suggests that the total density profile of massive galaxies has become slightly steeper over cosmic time. If this result is confirmed by larger samples, it would indicate that dissipative processes played some role in the growth of massive galaxies since z {approx} 1.

  17. Ultramassive (about 10 to the 11th solar mass) dark core in the luminous infrared galaxy NGC 6240?

    NASA Technical Reports Server (NTRS)

    Bland-Hawthorn, Jonathan; Wilson, Andrew S.; Tully, R. Brent

    1991-01-01

    The first complete kinematic maps for the superluminous IR galaxy NGC 6240 are reported. The data reveal two dynamical disks that exhibit radically different rotation and are closely spaced in velocity and position. One disk is roughly aligned with the major axis of the near-IR continuum and exhibits flat rotation out to about 20 arsec in radius, centered on the doubled nucleus seen at optical, near-IR, and radio wavelengths. The rotation turns over at r(t1) roughly 7.2 arcsec with a peak-to-peak velocity amplitude of roughly 280/sin i1 km/s, where i1 is the disk inclination. The rotation curve of the second disk comprises an unresolved or marginally resolved central velocity gradient with a peak-to-peak amplitude of roughly 800/sin i2 km/s within r(t2) of 2.5 arcsec, and a faster than Keplerian dropoff outside r(t2). The peak rotation implies a compact mass M2 greater than 4.5 x 10 to the 10th solar mass/sin-squared i2 within a radius of 1.2 kpc.

  18. The evolution of and starburst-agn connection in luminous and ultraluminous infrared galaxies and their link to globular cluster formation

    NASA Astrophysics Data System (ADS)

    Fiorenza, Stephanie Lynn

    The evolutionary connection between nuclear starbursts and active galactic nuclei (AGN) in luminous infrared galaxies (LIRGs; 1011 < LIR < 1012 L[special character omitted]) and ultraluminous infrared galaxies (ULIRGs; 1012 < LIR < 1013 L[special character omitted]), which result from galaxy interactions and mergers and produce the bulk of their radiation as infrared (IR) emission, is not well understood. To this effort, I first spectroscopically examine U/LIRGs (1011 < LIR < 1013 L[special character omitted]) within the IRAS 2 Jansky Redshift Survey with 0.05 < z < 0.16. Using new spectrophotometric data, I classify the primary source of IR radiation as being a nuclear starburst or a type of AGN by using the Baldwin-Phillips-Terlevich (BPT) diagrams. I show that for the U/LIRGs in my sample the properties that describe their nuclear starbursts and AGN (e.g. star formation rate (SFR), L[O III], optical D parameter, D4000, and EW(Hdelta)) are independent of one another, ensuring that no biases affect correlations between these properties and objects' locations on the BPT diagrams. I then derive evolutionary paths on the BPT diagram involving [N II]/Halpha that are based on how these properties vary between two U/LIRGs positioned at the end-points. The paths involve U/LIRGs that decrease in SFR and increase in AGN activity. Paths with U/LIRGs that evolve into high luminosity AGN likely do so due to recent, strong starbursts. Second, to study how the properties of the IR power sources in U/LIRGs vary, I use a combination of photometric data points that I carefully measure (using photometry from SDSS, 2MASS, WISE, and Spitzer) and that I retrieve from catalogues (IRAS, AKARI, and ISO) to perform UV to FIR SED-fitting with CIGALE (Code Investigating GALaxy Emission) for 34 U/LIRGs from the IRAS 2 Jy Redshift Survey with 0.01 < z < 0.16. I find evidence that the nuclear starburst forms first in U/LIRGs, and also find that U/LIRGs with relatively similar SFRs show

  19. A STATE TRANSITION OF THE LUMINOUS X-RAY BINARY IN THE LOW-METALLICITY BLUE COMPACT DWARF GALAXY I Zw 18

    SciTech Connect

    Kaaret, Philip; Feng Hua

    2013-06-10

    We present a measurement of the X-ray spectrum of the luminous X-ray binary in I Zw 18, the blue compact dwarf galaxy with the lowest known metallicity. We find the highest flux yet observed, corresponding to an intrinsic luminosity near 1 Multiplication-Sign 10{sup 40} erg s{sup -1} establishing it as an ultraluminous X-ray source (ULX). The energy spectrum is dominated by disk emission with a weak or absent Compton component and there is no significant timing noise; both are indicative of the thermal state of stellar-mass black hole X-ray binaries and inconsistent with the Compton-dominated state typical of most ULX spectra. A previous measurement of the X-ray spectrum shows a harder spectrum that is well described by a power law. Thus, the binary appears to exhibit spectral states similar to those observed from stellar-mass black hole binaries. If the hard state occurs in the range of luminosities found for the hard state in stellar-mass black hole binaries, then the black hole mass must be at least 85 M{sub Sun }. Spectral fitting of the thermal state shows that disk luminosities for which thin disk models are expected to be valid are produced only for relatively high disk inclinations, {approx}> 60 Degree-Sign , and rapid black hole spins. We find a{sub *} > 0.98 and M > 154 M{sub Sun} for a disk inclination of 60 Degree-Sign . Higher inclinations produce higher masses and somewhat lower spins.

  20. Ionized outflows in luminous type 2 AGNs at z < 0.6: no evidence for significant impact on the host galaxies

    NASA Astrophysics Data System (ADS)

    Villar-Martín, M.; Arribas, S.; Emonts, B.; Humphrey, A.; Tadhunter, C.; Bessiere, P.; Cabrera Lavers, A.; Ramos Almeida, C.

    2016-04-01

    We investigate the presence of extended ionized outflows in 18 luminous type 2 AGNs (11 quasars and 7 high luminosity Seyfert 2s) at 0.3galaxies accross spatial scales ≳ 1-2 kpc.

  1. Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya

    2003-01-01

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  2. REGARDING THE LINE-OF-SIGHT BARYONIC ACOUSTIC FEATURE IN THE SLOAN DIGITAL SKY SURVEY AND BARYON OSCILLATION SPECTROSCOPIC SURVEY LUMINOUS RED GALAXY SAMPLES

    SciTech Connect

    Kazin, Eyal A.; Blanton, Michael R.; Scoccimarro, Roman; McBride, Cameron K.; Berlind, Andreas A.

    2010-08-20

    We analyze the line-of-sight baryonic acoustic feature in the two-point correlation function {xi} of the Sloan Digital Sky Survey luminous red galaxy (LRG) sample (0.16 < z < 0.47). By defining a narrow line-of-sight region, r{sub p} < 5.5 h {sup -1} Mpc, where r{sub p} is the transverse separation component, we measure a strong excess of clustering at {approx}110 h {sup -1} Mpc, as previously reported in the literature. We also test these results in an alternative coordinate system, by defining the line of sight as {theta} < 3{sup 0}, where {theta} is the opening angle. This clustering excess appears much stronger than the feature in the better-measured monopole. A fiducial {Lambda}CDM nonlinear model in redshift space predicts a much weaker signature. We use realistic mock catalogs to model the expected signal and noise. We find that the line-of-sight measurements can be explained well by our mocks as well as by a featureless {xi} = 0. We conclude that there is no convincing evidence that the strong clustering measurement is the line-of-sight baryonic acoustic feature. We also evaluate how detectable such a signal would be in the upcoming Baryon Oscillation Spectroscopic Survey (BOSS) LRG volume. Mock LRG catalogs (z < 0.6) suggest that (1) the narrow line-of-sight cylinder and cone defined above probably will not reveal a detectable acoustic feature in BOSS; (2) a clustering measurement as high as that in the current sample can be ruled out (or confirmed) at a high confidence level using a BOSS-sized data set; (3) an analysis with wider angular cuts, which provide better signal-to-noise ratios, can nevertheless be used to compare line-of-sight and transverse distances, and thereby constrain the expansion rate H(z) and diameter distance D{sub A}(z).

  3. Ionized outflows in luminous type 2 AGNs at z < 0.6: no evidence for significant impact on the host galaxies

    NASA Astrophysics Data System (ADS)

    Villar-Martín, M.; Arribas, S.; Emonts, B.; Humphrey, A.; Tadhunter, C.; Bessiere, P.; Cabrera Lavers, A.; Ramos Almeida, C.

    2016-07-01

    We investigate the presence of extended ionized outflows in 18 luminous type 2 AGNs (11 quasars and 7 high-luminosity Seyfert 2s) at 0.3 < z < 0.6 based on VLT-FORS2 spectroscopy. We infer typical lower limits on the radial sizes of the outflows Ro ≳ several × 100 pc and upper limits Ro ≲ 1-2 kpc. Our results are inconsistent with related studies which suggest that large scale (Ro ˜ several-15 kpc) are ubiquitous in QSO2. We study the possible causes of discrepancy and propose that seeing smearing is the cause of the large inferred sizes. The implications in our understanding of the feedback phenomenon are important since the mass Mo (through the density), mass injection skew3dot{M}_o and energy injection dot{E}_o rates of the outflows become highly uncertain. One conclusion seems unavoidable: Mo, skew3dot{M}_o and dot{E}_o are modest or low compared with previous estimations. We obtain typically Mo ≲ (0.4-22) × 106 M⊙ (median 1.1 × 106 M⊙) assuming n = 1000 cm-3. These are ˜102-104 times lower than values reported in the literature. Even under the most favourable assumptions, we obtain \\dot{M}_o ≲ 10 M⊙ yr-1 in general, 100-1000 times lower than claimed in related studies. Although the uncertainties are large, it is probable that these are lower than typical star-forming rates. In conclusion, no evidence is found supporting that typical outflows can affect the interstellar medium of the host galaxies across spatial scales ≳ 1-2 kpc.

  4. PAHs in the halo of NGC 5529

    NASA Astrophysics Data System (ADS)

    Irwin, J. A.; Kennedy, H.; Parkin, T.; Madden, S.

    2007-11-01

    We present sensitive ISO λ 6.7~μm observations of the edge-on galaxy, NGC 5529, finding an extensive MIR halo around NGC 5529. The emission is dominated by PAHs in this band. The PAH halo has an exponential scale height of 3.7 kpc but can still be detected as far as ≈10 kpc from the plane to the limits of the high dynamic range (1770/1) data. This is the most extensive PAH halo yet detected in a normal galaxy. This halo shows substructure and the PAHs likely originate from some type of disk outflow. PAHs are long-lived in a halo environment and therefore continuous replenishment from the disk is not required (unless halo PAHs are also being destroyed or removed), consistent with the current low SFR of the galaxy. The PAHs correlate spatially with halo Hα emission, previously observed by Miller & Veilleux (2003, ApJS, 148, 383); both components are likely excited/ionized by in-disk photons that are leaking into the halo. The presence of halo gas may be related to the environment of NGC 5529 which contains at least 17 galaxies in a small group of which NGC 5529 is the dominant member. Of these, we have identified two new companions from the SDSS.

  5. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  6. The most luminous z ∼ 9-10 galaxy candidates yet found: The luminosity function, cosmic star-formation rate, and the first mass density estimate at 500 Myr

    SciTech Connect

    Oesch, P. A.; Illingworth, G. D.; Magee, D.; Van Dokkum, P. G.; Momcheva, I.; Ashby, M. L. N.; Fazio, G. G.; Huang, J.-S.; Willner, S. P.; Gonzalez, V.; Trenti, M.; Brammer, G. B.; Skelton, R. E.; Spitler, L. R.

    2014-05-10

    We present the discovery of four surprisingly bright (H {sub 160} ∼ 26-27 mag AB) galaxy candidates at z ∼ 9-10 in the complete HST CANDELS WFC3/IR GOODS-N imaging data, doubling the number of z ∼ 10 galaxy candidates that are known, just ∼500 Myr after the big bang. Two similarly bright sources are also detected in a reanalysis of the GOODS-S data set. Three of the four galaxies in GOODS-N are significantly detected at 4.5σ-6.2σ in the very deep Spitzer/IRAC 4.5 μm data, as is one of the GOODS-S candidates. Furthermore, the brightest of our candidates (at z = 10.2 ± 0.4) is robustly detected also at 3.6 μm (6.9σ), revealing a flat UV spectral energy distribution with a slope β = –2.0 ± 0.2, consistent with demonstrated trends with luminosity at high redshift. Thorough testing and use of grism data excludes known low-redshift contamination at high significance, including single emission-line sources, but as-yet unknown low redshift sources could provide an alternative solution given the surprising luminosity of these candidates. Finding such bright galaxies at z ∼ 9-10 suggests that the luminosity function for luminous galaxies might evolve in a complex way at z > 8. The cosmic star formation rate density still shows, however, an order-of-magnitude increase from z ∼ 10 to z ∼ 8 since the dominant contribution comes from low-luminosity sources. Based on the IRAC detections, we derive galaxy stellar masses at z ∼ 10, finding that these luminous objects are typically 10{sup 9} M {sub ☉}. This allows for a first estimate of the cosmic stellar mass density at z ∼ 10 resulting in log{sub 10} ρ{sub ∗}=4.7{sub −0.8}{sup +0.5} M {sub ☉} Mpc{sup –3} for galaxies brighter than M {sub UV} ∼ –18. The remarkable brightness, and hence luminosity, of these z ∼ 9-10 candidates will enable deep spectroscopy to determine their redshift and nature, and highlights the opportunity for the James Webb Space Telescope to map the buildup of

  7. Exploring the molecular chemistry and excitation in obscured luminous infrared galaxies. An ALMA mm-wave spectral scan of NGC 4418

    NASA Astrophysics Data System (ADS)

    Costagliola, F.; Sakamoto, K.; Muller, S.; Martín, S.; Aalto, S.; Harada, N.; van der Werf, P.; Viti, S.; Garcia-Burillo, S.; Spaans, M.

    2015-10-01

    Context. Extragalactic observations allow the study of molecular chemistry and excitation under physical conditions which may differ greatly from those found in the Milky Way. The compact, obscured nuclei (CON) of luminous infrared galaxies (LIRG) combine large molecular columns with intense infrared (IR), ultra-violet (UV), and X- radiation and represent ideal laboratories for the study of the chemistry of the interstellar medium (ISM) under extreme conditions. Aims: Our aim was to obtain for the first time a multi-band spectral scan of a LIRG, and to derive molecular abundances and excitation to be compared to other Galactic and extragalactic environments. Methods: We obtained an ALMA Cycle 0 spectral scan of the dusty LIRG NGC 4418, spanning a total of 70.7 GHz in bands 3, 6, and 7. We use a combined local thermal equilibrium (LTE) and non-LTE (NLTE) fit of the spectrum in order to identify the molecular species and to derive column densities and excitation temperatures. We derive molecular abundances and compare them with other Galactic and extragalactic sources by means of a principal component analysis. Results: We detect 317 emission lines from a total of 45 molecular species, including 15 isotopic substitutions and 6 vibrationally excited variants. Our LTE/NLTE fit find kinetic temperatures from 20 to 350 K, and densities between 105 and 107 cm-3. The spectrum is dominated by vibrationally excited HC3N, HCN, and HNC, with vibrational temperatures from 300 to 450 K. We find that the chemistry of NCG 4418 is characterized by high abundances of HC3N, SiO, H2S, and c-HCCCH but a low CH3OH abundance. A principal component analysis shows that NGC 4418 and Arp 220 share very similar molecular abundances and excitation, which clearly set them apart from other Galactic and extragalactic environments. Conclusions: Our spectral scan confirms that the chemical complexity in the nucleus of NGC 4418 is one of the highest ever observed outside our Galaxy. The similar

  8. Variability and Spectral Studies of Luminous Seyfert 1 Galaxy Fairall 9. Search for the Reflection Component is a Quasar: RXTE and ASCA Observation of a Nearby Radio-Quiet Quasar MR 2251-178

    NASA Technical Reports Server (NTRS)

    Leighly, Karen M.

    1999-01-01

    Monitoring observations with interval of 3 days using RXTE (X Ray Timing Explorer) of the luminous Seyfert 1 galaxy Fairall 9 were performed for one year. The purpose of the observations were to study the variability of Fairall 9 and compare the results with those from the radio-loud object 3C 390.3. The data has been received and analysis is underway, using the new background model. An observation of the quasar MR 2251-178 was made in order to determine whether or not it has a reflection component. Older background models gave an unacceptable subtraction and analysis is underway using the new background model. The observation of NGC 6300 showed that the X-ray spectrum from this Seyfert 2 galaxy appears to be dominated by Compton reflection.

  9. Resolving the Large Scale Spectral Variability of the Luminous Seyfert 1 Galaxy 1H 0419-577: Evidence for a New Emission Component and Absorption by Cold Dense Matter

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.

    2004-01-01

    An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below -1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable soft excess then appears to be an artefact of absorption of the underlying continuum while the core soft emission can be attributed to re- combination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.

  10. Luminous presence

    NASA Astrophysics Data System (ADS)

    Dawson, Paula

    2008-02-01

    The Luminous Presence project examines the use of standard film language in the framing, angle and of points of view of holographic subjects though eight digital holographic stereograms; seven 25 x 25 cm, Hail, Water, Rain, Snow, Sun, Text, Imprint and 1.5 x 1 m, Luminous Presences i. However, before embarking on a discussion of how filmic language can be used in digital holograms it is first important to explain why this line of investigation could be fruitful. Undoubtedly several of the compositional practices which sprung up and evolved throughout the development of the diverse forms of the holographic medium have contributed to a unique hologram pictorial language, however it is well known that the reading of visual imagery of any type relies a great deal on the viewer's knowledge of and experience of other images .The lens-recorded imagery of film is a far more familiar language than that of holograms and the correlation between certain filmic pictorial conventions and emotional responses are well documented and understood. ii . In short the language of film contains a highly nuanced vocabulary of shot types and lens types (which may be criticised as being formulaic) yet are effective in lending emotion to figures.

  11. Developing PAHs as Probes of Physical Conditions: Fitting PAH Spectra with the Ames PAH IR Spectral Database

    NASA Astrophysics Data System (ADS)

    Allamandola, Louis

    It is quite clear from the Infrared Space Observatory (ISO) and Spitzer Space Telescope results that we live in a molecular universe and that the mid-infrared is aglow in emission from polycyclic aromatic hydrocarbons (PAHs). Observationally, PAHs are easily identified by their characteristic emission spectrum, they are intrinsically strong emitters, and they dominate the emission in star forming galaxies in the mid-infrared, comprising 10-20% of the energy emitted in the infrared. These characteristics make them useful probes even for distant objects. The exceptional spectra provided by the ISO and Spitzer observatories have revealed in detail how the PAH features vary between different classes of objects and spatially within extended objects, showing that the details in the emission spectrum depend on the specific PAH molecules present, their size, ionization state, structure etc., and therefore reflect conditions within the emission zones. Thus, understanding the origin and evolution of this important family of molecules, how they interact with and control their environment, and how the details in their emission spectra reflect local conditions, is a fundamental goal of astrophysics. Advances in laboratory studies and computer-based calculations of PAHs now allow us to delve into the details of PAH spectral behavior seen by both ISO and Spitzer. We propose to model PAH spectra observed in reflection nebulae, HII regions, planetary nebulae, YSOs, AGB stars, and galaxies using laboratory and theoretically generated spectra from the NASA Ames PAH IR Spectroscopic Database to advance our understanding of the factors that determine the PAH spectra that we see in objects both near and far.

  12. A HERSCHEL SURVEY OF THE [N II] 205 {mu}m LINE IN LOCAL LUMINOUS INFRARED GALAXIES: THE [N II] 205 {mu}m EMISSION AS A STAR FORMATION RATE INDICATOR

    SciTech Connect

    Zhao Yinghe; Gao Yu; Lu, Nanyao; Xu, C. Kevin; Lord, S.; Howell, J.; Appleton, P.; Mazzarella, J.; Schulz, B.; Isaak, K. G.; Charmandaris, V.; Diaz-Santos, T.; Surace, J.; Evans, A.; Iwasawa, K.; Leech, J.; Petric, A. O.; Sanders, D. B.; Van der Werf, P. P.

    2013-03-01

    We present, for the first time, a statistical study of [N II] 205 {mu}m line emission for a large sample of local luminous infrared galaxies using Herschel Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (SPIRE FTS) data. For our sample of galaxies, we investigate the correlation between the [N II] luminosity (L{sub [N{sub II]}}) and the total infrared luminosity (L{sub IR}), as well as the dependence of L{sub [N{sub II]}}/L{sub IR} ratio on L{sub IR}, far-infrared colors (IRAS f{sub 60}/f{sub 100}), and the [O III] 88 {mu}m to [N II] luminosity ratio. We find that L{sub [N{sub II]}} correlates almost linearly with L{sub IR} for non-active galactic nucleus galaxies (all having L{sub IR} < 10{sup 12} L{sub Sun }) in our sample, which implies that L{sub [N{sub II]}} can serve as a star formation rate tracer which is particularly useful for high-redshift galaxies that will be observed with forthcoming submillimeter spectroscopic facilities such as the Atacama Large Millimeter/submillimeter Array. Our analysis shows that the deviation from the mean L{sub [N{sub II]}}-L{sub IR} relation correlates with tracers of the ionization parameter, which suggests that the scatter in this relation is mainly due to the variations in the hardness, and/or ionization parameter, of the ambient galactic UV field among the sources in our sample.

  13. HUBBLE SPACE TELESCOPE ACS IMAGING OF THE GOALS SAMPLE: QUANTITATIVE STRUCTURAL PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES WITH L{sub IR} > 10{sup 11.4} L{sub Sun}

    SciTech Connect

    Kim, D.-C.; Evans, A. S.; Privon, G. C. E-mail: aevans@virginia.edu; and others

    2013-05-10

    A Hubble Space Telescope/Advanced Camera for Surveys study of the structural properties of 85 luminous and ultraluminous (L{sub IR} > 10{sup 11.4} L{sub Sun }) infrared galaxies (LIRGs and ULIRGs) in the Great Observatories All-sky LIRG Survey (GOALS) sample is presented. Two-dimensional GALFIT analysis has been performed on F814W ''I-band'' images to decompose each galaxy, as appropriate, into bulge, disk, central point-spread function (PSF) and stellar bar components. The fraction of bulge-less disk systems is observed to be higher in LIRGs (35%) than in ULIRGs (20%), with the disk+bulge systems making up the dominant fraction of both LIRGs (55%) and ULIRGs (45%). Further, bulge+disk systems are the dominant late-stage merger galaxy type and are the dominant type for LIRGs and ULIRGs at almost every stage of galaxy-galaxy nuclear separation. The mean I-band host absolute magnitude of the GOALS galaxies is -22.64 {+-} 0.62 mag (1.8{sup +1.4}{sub -0.4} L{sup *}{sub I}), and the mean bulge absolute magnitude in GOALS galaxies is about 1.1 mag fainter than the mean host magnitude. Almost all ULIRGs have bulge magnitudes at the high end (-20.6 to -23.5 mag) of the GOALS bulge magnitude range. Mass ratios in the GOALS binary systems are consistent with most of the galaxies being the result of major mergers, and an examination of the residual-to-host intensity ratios in GOALS binary systems suggests that smaller companions suffer more tidal distortion than the larger companions. We find approximately twice as many bars in GOALS disk+bulge systems (32.8%) than in pure-disk mergers (15.9%) but most of the disk+bulge systems that contain bars are disk-dominated with small bulges. The bar-to-host intensity ratio, bar half-light radius, and bar ellipticity in GOALS galaxies are similar to those found in nearby spiral galaxies. The fraction of stellar bars decreases toward later merger stages and smaller nuclear separations, indicating that bars are destroyed as the merger

  14. SPIDER - VI. The central dark matter content of luminous early-type galaxies: Benchmark correlations with mass, structural parameters and environment

    NASA Astrophysics Data System (ADS)

    Tortora, C.; La Barbera, F.; Napolitano, N. R.; de Carvalho, R. R.; Romanowsky, A. J.

    2012-09-01

    We analyse the central dark-matter (DM) content of ˜4500 massive (M★ ≳ 1010 M⊙), low-redshift (z < 0.1), early-type galaxies (ETGs), with high-quality ugrizY JHK photometry and optical spectroscopy from the Sloan Digital Sky Survey and the UKIRT Infrared Deep Sky Survey (UKIDSS). We estimate the 'central' fraction of DM within the K-band effective radius, Reff, using spherically symmetric isotropic galaxy models. We discuss the role of systematics in stellar mass estimates, dynamical modelling, and velocity dispersion anisotropy. The main results of the present work are the following: (1) DM fractions increase systematically with both structural parameters (i.e. Reff and Sérsic index, n) and mass proxies (central velocity dispersion, stellar and dynamical mass), as in previous studies, and decrease with central stellar density. (2) All correlations involving DM fractions are caused by two fundamental ones with galaxy effective radius and central velocity dispersion. These correlations are independent of each other, so that ETGs populate a central-DM plane (DMP), i.e. a correlation among fraction of total-to-stellar mass, effective radius, and velocity dispersion, whose scatter along the total-to-stellar mass axis amounts to ˜0.15 dex. (3) In general, under the assumption of an isothermal or a constant M/L profile for the total mass distribution, a Chabrier initial mass function (IMF) is favoured with respect to a bottom-heavier Salpeter IMF, as the latter produces negative (i.e. unphysical) DM fractions for more than 50 per cent of the galaxies in our sample. For a Chabrier IMF, the DM estimates agree with Λ cold dark matter toy-galaxy models based on contracted DM-halo density profiles. We also find agreement with predictions from hydrodynamical simulations. (4) The central DM content of ETGs does not depend significantly on the environment where galaxies reside, with group and field ETGs having similar DM trends.

  15. HerMES: The rest-frame UV emission and a lensing model for the z = 6.34 luminous dusty starburst galaxy HFLS3

    SciTech Connect

    Cooray, Asantha; Calanog, Jae; Casey, C. M.; Ma, Brian; Osage, W. A.; Wardlow, Julie L.; Bock, J.; Bridge, C.; Burgarella, D.; Bussmann, R. S.; Clements, D.; Conley, A.; Farrah, D.; Fu, H.; Gavazzi, R.; Ivison, R. J.; La Porte, N.; Lo Faro, B.; Magdis, G.; Oliver, S. J.; and others

    2014-07-20

    We discuss the rest-frame ultraviolet emission from the starbursting galaxy HFLS3 at a redshift of 6.34. The galaxy was discovered in Herschel/SPIRE data due to its red color in the submillimeter wavelengths from 250 to 500 μm. Keck/NIRC2 K{sub s}-band adaptive optics imaging data showed two potential near-IR counterparts near HFLS3. Previously, the northern galaxy was taken to be in the foreground at z = 2.1, while the southern galaxy was assumed to be HFLS3's near-IR counterpart. The recently acquired Hubble/WFC3 and Advanced Camera for Surveys (ACS) imaging data show conclusively that both optically bright galaxies are in the foreground at z < 6. A new lensing model based on the Hubble imaging data and the millimeter-wave continuum emission yields a magnification factor of 2.2 ± 0.3, with a 95% confidence upper limit on the magnification of 3.5. When corrected for lensing, the instantaneous star formation rate is 1320 M{sub ☉} yr{sup –1}, with the 95% confidence lower limit around 830 M{sub ☉} yr{sup –1}. The dust and stellar masses of HFLS3 from the same spectral energy distribution (SED) models are at the level of 3 × 10{sup 8} M{sub ☉} and ∼5 × 10{sup 10} M{sub ☉}, respectively, with large systematic uncertainties on assumptions related to the SED model. With Hubble/WFC3 images, we also find diffuse near-IR emission about 0.5 arcsec (∼3 kpc) to the southwest of HFLS3 that remains undetected in the ACS imaging data. The emission has a photometric redshift consistent with either z ∼ 6 or a dusty galaxy template at z ∼ 2.

  16. HerMES: The Rest-frame UV Emission and a Lensing Model for the z = 6.34 Luminous Dusty Starburst Galaxy HFLS3

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha; Calanog, Jae; Wardlow, Julie L.; Bock, J.; Bridge, C.; Burgarella, D.; Bussmann, R. S.; Casey, C. M.; Clements, D.; Conley, A.; Farrah, D.; Fu, H.; Gavazzi, R.; Ivison, R. J.; La Porte, N.; Lo Faro, B.; Ma, Brian; Magdis, G.; Oliver, S. J.; Osage, W. A.; Pérez-Fournon, I.; Riechers, D.; Rigopoulou, D.; Scott, Douglas; Viero, M.; Watson, D.

    2014-07-01

    We discuss the rest-frame ultraviolet emission from the starbursting galaxy HFLS3 at a redshift of 6.34. The galaxy was discovered in Herschel/SPIRE data due to its red color in the submillimeter wavelengths from 250 to 500 μm. Keck/NIRC2 K s -band adaptive optics imaging data showed two potential near-IR counterparts near HFLS3. Previously, the northern galaxy was taken to be in the foreground at z = 2.1, while the southern galaxy was assumed to be HFLS3's near-IR counterpart. The recently acquired Hubble/WFC3 and Advanced Camera for Surveys (ACS) imaging data show conclusively that both optically bright galaxies are in the foreground at z < 6. A new lensing model based on the Hubble imaging data and the millimeter-wave continuum emission yields a magnification factor of 2.2 ± 0.3, with a 95% confidence upper limit on the magnification of 3.5. When corrected for lensing, the instantaneous star formation rate is 1320 M ⊙ yr-1, with the 95% confidence lower limit around 830 M ⊙ yr-1. The dust and stellar masses of HFLS3 from the same spectral energy distribution (SED) models are at the level of 3 × 108 M ⊙ and ~5 × 1010 M ⊙, respectively, with large systematic uncertainties on assumptions related to the SED model. With Hubble/WFC3 images, we also find diffuse near-IR emission about 0.5 arcsec (~3 kpc) to the southwest of HFLS3 that remains undetected in the ACS imaging data. The emission has a photometric redshift consistent with either z ~ 6 or a dusty galaxy template at z ~ 2.

  17. STAR FORMATION RATES FOR STARBURST GALAXIES FROM ULTRAVIOLET, INFRARED, AND RADIO LUMINOSITIES

    SciTech Connect

    Sargsyan, Lusine A.; Weedman, Daniel W. E-mail: dweedman@isc.astro.cornell.edu

    2009-08-20

    We present a comparison of star formation rates (SFR) determined from mid-infrared 7.7 {mu}m polycyclic aromatic hydrocarbon (PAH) luminosity [SFR(PAH)], from 1.4 GHz radio luminosity [SFR(radio)], and from far-ultraviolet luminosity [SFR(UV)] for a sample of 287 starburst galaxies with z < 0.5 having Spitzer IRS observations. The previously adopted relation log [SFR(PAH)] = log [{nu}L {sub {nu}}(7.7 {mu}m)] - 42.57 {+-} 0.2, for SFR in M{sub sun} yr{sup -1} and {nu}L {sub {nu}}(7.7 {mu}m) the luminosity at the peak of the 7.7 {mu}m PAH feature in erg s{sup -1}, is found to agree with SFR(radio). Comparing with SFR(UV) determined independently from ultraviolet observations of the same sources with the Galaxy Evolution Explorer mission (not corrected for dust extinction), the median log [SFR(PAH)/SFR(UV)] = 1.67, indicating that only 2% of the ultraviolet continuum typically escapes extinction by dust within a starburst. This ratio SFR(PAH)/SFR(UV) depends on infrared luminosity, with the form log [SFR(PAH)/SFR(UV)] = (0.53 {+-} 0.05)log [{nu}L{sub {nu}}(7.7 {mu}m)] - 21.5 {+-} 0.18, indicating that more luminous starbursts are also dustier. Using our adopted relation between {nu}L{sub {nu}}(7.7 {mu}m) and L {sub ir}, this becomes log [SFR(PAH)/SFR(UV)]= (0.53 {+-} 0.05)log L{sub ir} - 4.11 {+-} 0.18, for L{sub ir} in L{sub sun}. Only blue compact dwarf galaxies show comparable or greater SFR(UV) compared to SFR(PAH). We also find that the ratio SFR(PAH)/SFR(UV) is similar to that in infrared-selected starbursts for a sample of Markarian starburst galaxies originally selected using optical classification, which implies that there is no significant selection effect in SFR(PAH)/SFR(UV) using starburst galaxies discovered by Spitzer. These results indicate that SFRs determined with ultraviolet luminosities require dust corrections by a factor of {approx}10 for typical local starbursts but this factor increases to >700 for the most luminous starbursts at z {approx} 2

  18. Exploring Cluster Physics with High-Resolution Sunyaev--Zel'dovich Effect Images and X-Ray Data: The Case of the Most X-Ray-Luminous Galaxy Cluster RX J1347-1145

    NASA Astrophysics Data System (ADS)

    Kitayama, Tetsu; Komatsu, Eiichiro; Ota, Naomi; Kuwabara, Takeshi; Suto, Yasushi; Yoshikawa, Kohji; Hattori, Makoto; Matsuo, Hiroshi

    2004-02-01

    Foreseeing the era of high spatial resolution measurements of the Sunyaev-Zel'dovich effect (SZE) in clusters of galaxies, we present a prototype analysis of this sort combined with Chandra X-ray data. It is applied specifically to RX J1347-1145 at z = 0.451, the most X-ray-luminous galaxy cluster known, for which the highest resolution SZE and X-ray images are currently available. We demonstrate that the combined analysis yields a unique probe of complex structures in the intracluster medium, offering determinations of their temperature, density, and line-of-sight extent. For a subclump in RX J1347-1145, previously discovered in our SZE map, the temperature inferred after removing the foreground and background components is well in excess of 20keV, indicating that the cluster has recently undergone a violent merger. Excluding the region around this subclump, the SZE signals in submillimeter to centimeter bands (350, 150, and 21GHz) are all consistent with those expected from Chandra X-ray observations. We further present a temperature deprojection technique based on the SZE and X-ray images, without any knowledge of spatially resolved X-ray spectroscopy. The methodology presented here will be applicable to a statistical sample of clusters available in the future SZE surveys.

  19. Chandra Observations of Diffuse Gas and Luminous X-Ray Sources around the X-Ray-bright Elliptical Galaxy NGC 1600

    NASA Astrophysics Data System (ADS)

    Sivakoff, Gregory R.; Sarazin, Craig L.; Carlin, Jeffrey L.

    2004-12-01

    We observed the X-ray-bright E3 galaxy NGC 1600 and nearby members of the NGC 1600 group with the Chandra X-Ray Observatory ACIS-S3 to study their X-ray properties. Unresolved emission dominates the observation; however, we resolved some of the emission into 71 sources, most of which are low-mass X-ray binaries associated with NGC 1600. Twenty-one of the sources have LX>2×1039 ergs s-1 (0.3-10.0 keV; assuming they are at the distance of NGC 1600), marking them as ultraluminous X-ray point source (ULX) candidates; we expect that only 11+/-2 are unrelated foreground/background sources. NGC 1600 may have the largest number of ULX candidates in an early-type galaxy to date; however, cosmic variance in the number of background active galactic nuclei cannot be ruled out. The spectrum and luminosity function (LF) of the resolved sources are more consistent with sources found in other early-type galaxies than with sources found in star-forming regions of galaxies. The source LF and the spectrum of the unresolved emission both indicate that there are a large number of unresolved point sources. We propose that these sources are associated with globular clusters (GCs) and that NGC 1600 has a large GC specific frequency. Observations of the GC population in NGC 1600 would be very useful for testing this prediction. Approximately 50%-75% of the unresolved flux comes from diffuse gaseous emission. The spectral fits, hardness ratios, and X-ray surface brightness profile all point to two gas components. We interpret the soft inner component (a<~25'', kT~0.85 keV) as the interstellar medium of NGC 1600 and the hotter outer component (a>~25'', kT~1.5 keV) as the intragroup medium of the NGC 1600 group. The X-ray image shows several interesting structures. First, there is a central region of excess emission that is roughly cospatial with Hα and dust filaments immediately west of the center of NGC 1600. There appear to be holes in the X-ray emission to the north and south of the

  20. Polycyclic aromatic hydrocarbon and mid-infrared continuum emission in a z > 4 submillimeter galaxy

    SciTech Connect

    Riechers, Dominik A.; Pope, Alexandra; Daddi, Emanuele; Elbaz, David; Carilli, Christopher L.; Walter, Fabian; Hodge, Jacqueline; Morrison, Glenn E.; Dickinson, Mark; Dannerbauer, Helmut

    2014-05-01

    We report the detection of 6.2 μm polycyclic aromatic hydrocarbon (PAH) and rest-frame 4-7 μm continuum emission in the z = 4.055 submillimeter galaxy GN20, using the Infrared Spectrograph on board the Spitzer Space Telescope. This represents the first detection of PAH emission at z > 4. The strength of the PAH emission feature is consistent with a very high star formation rate of ∼1600 M {sub ☉} yr{sup –1}. We find that this intense starburst powers at least ∼1/3 of the faint underlying 6 μm continuum emission, with an additional, significant (and perhaps dominant) contribution due to a power-law-like hot dust source, which we interpret to likely be a faint, dust-obscured active galactic nucleus (AGN). The inferred 6 μm AGN continuum luminosity is consistent with a sensitive upper limit on the hard X-ray emission as measured by the Chandra X-Ray Observatory if the previously undetected AGN is Compton-thick. This is in agreement with the finding at optical/infrared wavelengths that the galaxy and its nucleus are heavily dust-obscured. Despite the strong power-law component enhancing the mid-infrared continuum emission, the intense starburst associated with the photon-dominated regions that give rise to the PAH emission appears to dominate the total energy output in the infrared. GN20 is one of the most luminous starburst galaxies known at any redshift, embedded in a rich protocluster of star-forming galaxies. This investigation provides an improved understanding of the energy sources that power such exceptional systems, which represent the extreme end of massive galaxy formation at early cosmic times.

  1. A TALE OF THREE GALAXIES: ANOMALOUS DUST PROPERTIES IN IRAS F10398+1455, IRAS F21013–0739, AND SDSS J0808+3948

    SciTech Connect

    Xie, Yanxia; Hao, Lei; Li, Aigen

    2014-10-20

    On a galactic scale, the 9.7 μm silicate emission is usually only seen in type 1 active galactic nuclei (AGNs). They usually also display a flat emission continuum at ∼5-8 μm and the absence of polycyclic aromatic hydrocarbon (PAH) emission bands. In contrast, starburst galaxies, luminous infrared (IR) galaxies, and ultraluminous IR galaxies exhibit a red 5-8 μm emission continuum, strong 9.7 μm and 18 μm silicate absorption features, and strong PAH emission bands. Here, we report the detection of anomalous dust properties by the Spitzer/Infrared Spectrograph in three galaxies (IRAS F10398+1455, IRAS F21013-0739, and SDSS J0808+3948) which are characterized by the simultaneous detection of a red 5-8 μm emission continuum, the 9.7 and 18 μm silicate emission features, as well as strong PAH emission bands. These apparently contradictory dust IR emission properties are discussed in terms of iron-poor silicate composition, carbon dust deficit, small grain size, and low dust temperature in the young AGN phase of these three galaxies.

  2. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  3. Starburst or AGN dominance in submm-luminous candidate AGN

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Alexander, Dave; Aretxaga, Itziar; Blain, Andrew; Chapman, Scott; Clements, Dave; Dunlop, James; Dunne, Loretta; Dye, Simon; Farrah, Duncan; Hughes, David; Ivison, Rob; Kim, Sungeun; Menendez-Delmestre, Karin; Oliver, Sebastian; Page, Mat; Pope, Alexandra; Rowan-Robinson, Michael; Scott, Douglas; Smail, Ian; Swinbank, Mark; Vaccari, Mattia; van Kampen, Eelco

    2008-03-01

    It is widely believed that starbursts/ULIRGs and AGN activity are triggered by galaxy interactions and merging; and sub-mm selected galaxies (SMGs) seem to be simply high redshift ULIRGs, observed near the peak of activity. In this evolutionary picture every SMG would host an AGN, which would eventually grow a black hole strong enough to blow off all of the gas and dust leaving an optically luminous QSO. In order to probe this evolutionary sequence, a crucial sub-sample to focus on would be the 'missing link' sources, which demonstrate both strong starburst and AGN signatures and to determine if the starburst is the main power source even in SMGs when we have evidence that an AGN is present. The best way to determine if a dominant AGN is present is to look in the mid-IR for their signatures, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We have selected a sample of SMGs which are good candidates for harboring powerful AGN on the basis of their IRAC colours (S8um/S4.5um>2). Once we confirm these SMGs are AGN-dominated, we can then perform an audit of the energy balance between star-formation and AGN within this special sub-population of SMGs where the BH has grown appreciably to begin heating the dust emission. The proposed observations with IRS will probe the physics of how SMGs evolve from a cold-dust starburst-dominated ULIRG to an AGN/QSO by measuring the level of the mid-IR continuum, PAH luminosity, and Si absorption in these intermediate `transitory' AGN/SMGs.

  4. NEAR-INFRARED SURVEY OF THE GOODS-NORTH FIELD: SEARCH FOR LUMINOUS GALAXY CANDIDATES AT z {approx}> 6.5 {sup ,}

    SciTech Connect

    Hathi, Nimish P.; Mobasher, Bahram; Capak, Peter; Wang, Wei-Hao; Ferguson, Henry C.

    2012-09-20

    We present near-infrared (NIR; J and K{sub s}) survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field. The publicly available imaging data were obtained using the MOIRCS instrument on the 8.2 m Subaru and the WIRCam instrument on the 3.6 m Canada-France-Hawaii Telescope (CFHT). These observations fulfill a serious wavelength gap in the GOODS-N data, i.e., lack of deep NIR observations. We combine the Subaru/MOIRCS and CFHT/WIRCam archival data to generate deep J- and K{sub s}-band images, covering the full GOODS-N field ({approx}169 arcmin{sup 2}) to an AB magnitude limit of {approx}25 mag (3{sigma}). We applied z{sub 850}-band dropout color selection criteria, using the NIR data generated here. We have identified two possible Lyman break galaxy (LBG) candidates at z {approx}> 6.5 with J {approx}< 24.5. The first candidate is a likely LBG at z {approx_equal} 6.5 based on a weak spectral feature tentatively identified as Ly{alpha} line in the deep Keck/DEIMOS spectrum, while the second candidate is a possible LBG at z {approx_equal} 7 based on its photometric redshift. These z{sub 850}-dropout objects, if confirmed, are among the brightest such candidates found so far. At z {approx}> 6.5, their star formation rate is estimated as 100-200 M{sub Sun} yr{sup -1}. If they continue to form stars at this rate, they assemble a stellar mass of {approx}5 Multiplication-Sign 10{sup 10} M{sub Sun} after about 400 million years, becoming the progenitors of massive galaxies observed at z {approx_equal} 5. We study the implication of the z{sub 850}-band dropout candidates discovered here, in constraining the bright end of the luminosity function and understanding the nature of high-redshift galaxies.

  5. OT2_dbrisbin_1: A z=1-2 oxygen survey. II. PAH-selected star forming and AGN sources

    NASA Astrophysics Data System (ADS)

    Brisbin, D.

    2011-09-01

    We are conducting a survey of the [CII] 158um line from galaxies at redshifts 1-2 using our grating spectrometer, ZEUS on the CSO. Our first 13 galaxy survey showed that luminous star forming galaxies in this epoch have moderate intensity kpc-scale star formation likely an extension of the Schmidt-Kennicutt law to very high gas mass fractions. Our AGN dominated systems have similarly large scale, but significantly more intense star formation suggesting punctuated, collision-induced star formation. We were awarded OT1 PACS spectroscopy and PACS/SPIRE photometry of these sources to observe the oxygen [OI], [OIII], and [OIV] fine-structure lines and far-IR continuum to characterize the star formation and AGN activity in these sources. Only two of our sources have been observed to date, but with good astrophysical success. Since the OT1 submission, we have detected 11 more z ~1-2 sources in [CII] with ZEUS. Here we propose an OT2 oxygen line/far-IR continuum study for 10 of these new sources. The new source list significantly enhances our OT1 survey in that (1) we nearly double our sample greatly increasing statistical significance of the results (2) the new group includes 7 Spitzer/PAH sources. PAH emission arises from PDRs tracing the photo-electric heating, while the [CII] and [OI] lines trace the cooling. PAHS therefore trace star formation and, since the features are extremely bright, are excellent redshift indicators. Future missions (e.g. JWST and SPICA/SAFARI) will rely on PAH spectroscopy at high z. It is therefore vital to study PAH emission and its relationship to star formation. The proposed work explores this connection at redshifts 1-2, near the peak of star formation per unit co-moving volume over cosmic time. In this interval ZEUS and PACs share a great synergy with well-matched sensitivities enabling detections of [CII] and oxygen in a wide variety of systems.

  6. VLT-VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies. II. Evidence for shock ionization caused by tidal forces in the extra-nuclear regions of interacting and merging LIRGs

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Arribas, S.; Colina, L.; Rodríguez-Zaurín, J.; Alonso-Herrero, A.; García-Marín, M.

    2010-07-01

    Context. Luminous infrared galaxies (LIRGs) are an important class of objects in the low-z universe bridging the gap between normal spirals and the strongly interacting and starbursting ultraluminous infrared galaxies (ULIRGs). Since a large fraction of the stars in the Universe have been formed in these objects, LIRGs are also relevant in a high-z context. Studies of the two-dimensional physical properties of LIRGs are still lacking. Aims: We aim to understand the nature and origin of the ionization mechanisms operating in the extra-nuclear regions of LIRGs as a function of the interaction phase and infrared luminosity. Methods: This study uses optical integral field spectroscopy (IFS) data obtained with VIMOS. Our analysis is based on over 25 300 spectra of 32 LIRGs covering all types of morphologies (isolated galaxies, interacting pairs, and advanced mergers), and the entire 1011-1012 L⊙ infrared luminosity range. Results: We found strong evidence for shock ionization, with a clear trend with the dynamical status of the system. Specifically, we quantified the variation with interaction phase of several line ratios indicative of the excitation degree. While the [N ii]λ6584/Hα ratio does not show any significant change, the [S ii]λλ6717,6731/Hα and [O i]λ6300/Hα ratios are higher for more advanced interaction stages. Velocity dispersions are higher than in normal spirals and increase with the interaction class (medians of 37, 46, and 51 km s-1 for class 0-2, respectively). We constrained the main mechanisms causing the ionization in the extra-nuclear regions (typically for distances ranging from ~0.2-2.1 kpc to ~0.9-13.2 kpc) using diagnostic diagrams. Isolated systems are mainly consistent with ionization caused by young stars. Large fractions of the extra-nuclear regions in interacting pairs and more advanced mergers are consistent with ionization caused by shocks of vs ⪉ 200 km s-1. This is supported by the relation between the excitation degree and

  7. PAH bombardment by energetic particles: models and astrophysical implications

    NASA Astrophysics Data System (ADS)

    Micelotta, E.; Jones, A.; Tielens, A.

    2011-05-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of the Interstellar Medium (ISM) of galaxies. Interstellar PAHs are apparently able to withstand the rigors of the harsh environment of the ISM for some some 100 million years and thus are resilient against processing by UV and X-ray photons and supernova shock waves. PAHs in space are mainly studied through their characteristic emission bands, due to infrared fluorescence following the absorption of UV photons. This is the reason why the photophysics of PAHs in space has been extensively investigated. On the other hand, PAHs are also strongly affected by collisional processes, i.e. bombardment by high-velocity ions and electrons, arising from interstellar shocks, hot gas and cosmic rays. However, very little was known about the physics of the interaction between PAHs and high energy particles, especially in terms of PAH damage and destruction. This lack of information had made the interpretation of PAH observations difficult in regions subjected to such processes. Our research aims to fill this key gap in our understanding of the physics behind collisional processing of PAHs and to clarify how this affects the PAH evolution in the astrophysical context. We first describe the models we have developed, that take into account the molecular nature of the target PAH and allow for the first time a quantitative description of the collisional processing of PAH molecules by ions and electrons with energies between 10 eV and 10 keV (in shocks and hot gas) and between 5 MeV and 10 GeV (in cosmic rays). Specific models were needed because PAHs are molecules and not small solid fragments, thus the classical approach from solid state physics cannot be applied. We then show the applications of our models to observations, estimating the lifetime of PAHs against collisional processing in specific objects. We discuss the astrophysical implications of our findings on the considered sample, which

  8. Duodenal luminal nutrient sensing

    PubMed Central

    Rønnestad, Ivar; Akiba, Yasutada; Kaji, Izumi; Kaunitz, Jonathan D

    2016-01-01

    The gastrointestinal mucosa is exposed to numerous chemical substances and microorganisms, including macronutrients, micronutrients, bacteria, endogenous ions, and proteins. The regulation of mucosal protection, digestion, absorption and motility is signaled in part by luminal solutes. Therefore, luminal chemosensing is an important mechanism enabling the mucosa to monitor luminal conditions, such as pH, ion concentrations, nutrient quantity, and microflora. The duodenal mucosa shares luminal nutrient receptors with lingual taste receptors in order to detect the five basic tastes, in addition to essential nutrients, and unwanted chemicals. The recent ‘de-orphanization’ of nutrient sensing G protein-coupled receptors provides an essential component of the mechanism by which the mucosa senses luminal nutrients. In this review, we will update the mechanisms of and underlying physiological and pathological roles in luminal nutrient sensing, with a main focus on the duodenal mucosa. PMID:25113991

  9. Infrared spectra of interstellar deuteronated PAHs

    NASA Astrophysics Data System (ADS)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter

    2015-08-01

    Polycyclic Aromatic Hydrocarbon (PAH) molecules have emerged as a potential constituent of the ISM that emit strong features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7 μm with weaker and blended features in the 3-20μm region. These features are proposed to arise from the vibrational relaxation of PAH molecules on absorption of background UV photons (Tielens 2008). These IR features have been observed towards almost all types of astronomical objects; say H II regions, photodissociation regions, reflection nebulae, planetary nebulae, young star forming regions, external galaxies, etc. A recent observation has proposed that interstellar PAHs are major reservoir for interstellar deuterium (D) (Peeters et al. 2004). According to the `deuterium depletion model' as suggested by Draine (2006), some of the Ds formed in the big bang are depleted in PAHs, which can account for the present value of D/H in the ISM. Hence, study of deuterated PAHs (PADs) is essential in order to measure D/H in the ISM.In this work, we consider another probable category of the large PAH family, i.e. Deuteronated PAHs (DPAH+). Onaka et al. have proposed a D/H ratio which is an order of magnitude smaller than the proposed value of D/H by Draine suggesting that if Ds are depleted in PAHs, they might be accommodated in large PAHs (Onaka et al. 2014). This work reports a `Density Functional Theory' calculation of large deuteronated PAHs (coronene, ovalene, circumcoronene and circumcircumcoronene) to determine the expected region of emission features and to find a D/H ratio that is comparable to the observational results. We present a detailed analysis of the IR spectra of these molecules and discuss the possible astrophysical implications.ReferencesDraine B. T. 2006, in ASP Conf. Ser. 348, Proc. Astrophysics in the Far Ultraviolet: Five Years of Discovery with FUSE, ed. G. Sonneborn, H. Moos, B-G Andersson (San Francisco, CA:ASP) 58Onaka T., Mori T. I., Sakon I., Ohsawa R., Kaneda H., Okada Y., Tanaka M

  10. Multi-wavelength seds of Herschel-selected galaxies in the cosmos field

    SciTech Connect

    Lee, Nicholas; Sanders, D. B.; Casey, Caitlin M.; Hung, Chao-Ling; Scoville, N. Z.; Capak, Peter; Bock, J.; Le Floc'h, Emeric; Aussel, Hervé; Ilbert, Olivier; Kartaltepe, Jeyhan S.; Roseboom, Isaac; Oliver, S. J.; Salvato, Mara; Aravena, M.; Berta, S.; Riguccini, L.; Symeonidis, M.

    2013-12-01

    We combine Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver maps of the full 2 deg{sup 2} Cosmic Evolution Survey (COSMOS) field with existing multi-wavelength data to obtain template and model-independent optical-to-far-infrared spectral energy distributions (SEDs) for 4218 Herschel-selected sources with log(L {sub IR}/L {sub ☉}) = 9.4-13.6 and z = 0.02-3.54. Median SEDs are created by binning the optical to far-infrared (FIR) bands available in COSMOS as a function of infrared luminosity. Herschel probes rest-frame wavelengths where the bulk of the infrared radiation is emitted, allowing us to more accurately determine fundamental dust properties of our sample of infrared luminous galaxies. We find that the SED peak wavelength (λ{sub peak}) decreases and the dust mass (M {sub dust}) increases with increasing total infrared luminosity (L {sub IR}). In the lowest infrared luminosity galaxies (log(L {sub IR}/L {sub ☉}) = 10.0-11.5), we see evidence of polycyclic aromatic hydrocarbon (PAH) features (λ ∼ 7-9 μm), while in the highest infrared luminosity galaxies (L {sub IR} > 10{sup 12} L {sub ☉}) we see an increasing contribution of hot dust and/or power-law emission, consistent with the presence of heating from an active galactic nucleus (AGN). We study the relationship between stellar mass and star formation rate of our sample of infrared luminous galaxies and find no evidence that Herschel-selected galaxies follow the SFR/M {sub *} 'main sequence' as previously determined from studies of optically selected, star-forming galaxies. Finally, we compare the mid-infrared to FIR properties of our infrared luminous galaxies using the previously defined diagnostic, IR8 ≡ L {sub IR}/L {sub 8}, and find that galaxies with L {sub IR} ≳ 10{sup 11.3} L {sub ☉} tend to systematically lie above (× 3-5) the IR8 'infrared main sequence', suggesting either suppressed PAH emission or an increasing contribution from

  11. The role of submillimetre galaxies in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Pope, Erin Alexandra

    2007-08-01

    estimate of the redshift, s(D z /(1 + z )) = 0.07. The median redshift of the secure submm counterparts is 2.0. Using X-ray and mid-IR imaging data, only 5% of the secure counterparts show strong evidence for an active galactic nucleus (AGN) dominating the IR luminosity. This thesis also presents deep Spitzer mid-IR spectroscopy of 13 of these SMGs in order to determine the contribution from AGN and starburst emission to the IR luminosity. I find strong polycyclic aromatic hydrocarbon (PAH) emission features in all of the targets, while only 2/13 SMGs have a significant mid-IR rising power-law component which would indicate an AGN. In the high signal-to- noise ratio composite spectrum of the SMGs I find that the AGN component contributes at most 30% of the mid-IR luminosity, implying that the total LIR in SMGs is dominated by star formation and not AGN emission. I also find that the SMGs lie on the relation between the luminosity of the main PAH features and L IR established for local starburst galaxies, confirming that the PAH luminosity can be used as a proxy for the star formation rate. Interestingly, local ULIRGs, which are often thought to be the low redshift analogues of SMGs, lie off these relations, as they appear deficient in PAH luminosity for a given L IR . In terms of an evolutionary scenario for IR luminous galaxies, SMGs are consistent with being an earlier phase in the massive merger (compared with other local or high redshift ULIRGs) in which the AGN has not yet become strong enough to heat the dust and dilute the PAH emission. I further investigate the overlap between high redshift infrared and submm populations using a statistical stacking analysis to measure the contribution of near- and mid-IR galaxy populations to the 850 mm submm background. For the first time, it is found that the 850 mm background can be completely resolved into individual galaxies and the bulk of these galaxies lie at z [Special characters omitted.] 3. Additionally I present a

  12. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  13. Laboratory Astrochemistry: Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: (1) objectives, (2) approach and techniques adopted, (3) adaptability to the nature of the problem(s), and (4) results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  14. PAH FIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mattioda, Andrew; Ricca, A.; Tucker, J.; Bauschlicher, C., Jr.; Allamandola, L.

    2009-01-01

    The mid-IR spectra of a majority of astronomical sources are dominated by emission features near 3.3, 6.2, 7.7, and 11.2 µm. These features, formerly referred to as the Unidentified Infrared (UIR) Bands, are now generally thought to originate in free polycyclic aromatic hydrocarbon (PAH) molecules and closely related species. In addition to dominating the 3-20 µm region of the spectrum, they carry some 20-40% of the total IR luminosity from most of these objects. PAHs dominate the mid-IR emission from many galactic and extragalactic objects. As such, this material tracks a wide variety of astronomical processes, making this spectrum a powerful probe of the cosmos Apart from bands in the mid-IR, PAHs have bands spanning the Far-IR (20 to 1000 mm) and these FIR features should be present in astronomical sources. However, with one exception, the FIR spectral characteristics are known only for a few neutral small PAHs trapped in salt pellets or oils at room temperature, data which is not relevant to astrophysics. Furthermore, since most emitting PAHs responsible for the mid-IR astronomical features are ionized, the absence of any experimental or theoretical PAH ion FIR spectra will make it impossible to correctly interpret the FIR data from these objects. In view of the upcoming Herschel space telescope mission and SOFIA's FIR airborne instrumentation, which will pioneer the FIR region, it is now urgent to obtain PAH FIR spectra. This talk will present an overview of the FIR spectroscopy of PAHs.

  15. Harnessing High Redshift Beacons: IRS Spectra of Lensed Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Siana, Brian; Coppin, Kristen; Ebeling, Harald; Edge, Alastair; Ellis, Richard; Kneib, Jean-Paul; Pettini, Max; Richard, Johan; Smail, Ian; Swinbank, Mark; Teplitz, Harry

    2007-05-01

    Star-formation at high redshift occurs in two types of galaxies: dusty Ultra-Luminous Infrared Galaxies (ULIRGs) and UV-bright Lyman Break Galaxies (LBGs). In both populations dust absorbs most of the ultraviolet (UV) light from young stars and re-emits the energy in the infrared (IR). Therefore, detailed studies of the dust and the infrared SEDs of these galaxies are critical for understanding these important evolutionary stages in galaxy formation. ULIRGs at z ~ 2-3 are luminous enough for both submm detection and Spitzer IRS spectroscopy, so much has been learned recently about their interstellar medium and IR SEDs. LBGs are too faint to be detected with submm imaging or IRS spectroscopy so little can be discovered about their dust content and IR SEDs prior to JWST and ALMA. Fortunately, there exist a few rare examples of LBGs which are strongly lensed by a foreground cluster or galaxy, and are magnified by factors of 10-30. We can therefore study in detail the infrared properties of this otherwise inaccessible population. Our group will obtain (in an approved Cycle-3 program) IRS spectroscopy of the most famous LBG, cB58, but it is clearly dangerous to draw wide-ranging conclusions about the LBG population based on this single object. We therefore propose for a detailed Spitzer study of the only other known bright lensed LBGs: the 'Cosmic Eye' and the '8-O'clock Arc'. The requested program uses IRS spectroscopy, IRS Peak-Up 16 micron, MIPS 70 micron, and IRAC imaging to fully characterize the gas and dust in the ISM of these galaxies and determine the shape of the IR SEDs. Together, the three lensed sources span the full range of star-formation rates and dust attenuation levels observed in LBGs. Therefore, we can correlate these properties with the infrared SEDs and emission-line properties (PAHs) and apply the correlations when examining the entire LBG population.

  16. Galaxy formation

    SciTech Connect

    Silk, J.

    1984-11-01

    Implications of the isotropy of the cosmic microwave background on large and small angular scales for galaxy formation are reviewed. In primeval adiabatic fluctuations, a universe dominated by cold, weakly interacting nonbaryonic matter, e.g., the massive photino is postulated. A possible signature of photino annihilation in our galactic halo involves production of cosmic ray antiprotons. If the density is near its closure value, it is necessary to invoke a biasing mechanism for suppressing galaxy formation throughout most of the universe in order to reconcile the dark matter density with the lower astronomical determinations of the mean cosmological density. A mechanism utilizing the onset of primordial massive star formation to strip gaseous protogalaxies is described. Only the densest, early collapsing systems form luminous galaxies. (ESA)

  17. Properties of unusually luminous supernovae

    NASA Astrophysics Data System (ADS)

    Pan, Tony Shih Arng

    This thesis is a theoretical study of the progenitors, event rates, and observational properties of unusually luminous supernova (SN), and aims to identify promising directions for future observations. In Chapter 2, we present model light curves and spectra of pair-instability supernovae (PISNe) over a range of progenitor masses and envelope structures for Pop III stars. We calculate the rates and detectability of PISNe, core-collapse supernovae (CCSNe), and Type Ia SNe at the Epoch of Reionization with the James Webb Space Telescope (JWST), which can be used to determine the contribution of Pop III versus Pop II stars toward ionizing the universe. Although CCSNe are the least intrinsically luminous supernovae, Chapter 5 shows that a JWST survey targeting known galaxy clusters with Einstein radii > 35" should discover gravitationally lensed CCSNe at redshifts exceeding z = 7--8. In Chapter 3, we explain the Pop II/I progenitors of observed PISNe in the local universe can be created via mergers in runaway collisions in young, dense star clusters, despite copious mass loss via line-driven winds. The PISN rate from this mechanism is consistent with the observed volumetric rate, and the Large Synoptic Survey Telescope could discover ~102 such PISNe per year. In Chapter 4, we identify 10 star clusters which may host PISN progenitors with masses up to 600 solar masses formed via runaway collisions. We estimate the probabilities of these very massive stars being in eclipsing binaries to be ≳ 30%, and find that their transits can be detected even under the contamination of the background cluster light, due to mean transit depths of ~10 6 solar luminosities. In Chapter 6, we show that there could be X-ray analogues of optically super-luminous SNe that are powered by the conversion of the kinetic energy of SN ejecta into radiation upon its collision with a dense but optically-thin circumstellar shell. We find shell configurations that can convert a large fraction of the SN

  18. Destruction and survival of polycyclic aromatic hydrocarbons in active galaxies

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1992-01-01

    Infrared spectra of dusty galactic environments often contain emission features attributed to polycyclic aromatic hydrocarbons or PAHs, which can be considered to be very small grains or very large molecules. Although IR spectra of starburst galaxies almost always show these emission features, similar spectra of active galaxies are usually featureless. Even in those active galaxies that do exhibit PAH emission, the PAHs still appear to be eradicated from the nuclear region. This dichotomy suggests that PAHs are destroyed by the intense hard radiation field from an AGN. Laboratory experiments show that certain PAHs are, in fact, so effectively destroyed by individual EUV and X-ray photons that they cannot survive even at kiloparsec distances from active nuclei. Regions within active galaxies that do show PAH emission must therefore be shielded from the central X-ray source by a substantial column density of X-ray absorbing gas.

  19. Nonlinear Pulsation Modeling of Luminous Blue Variables

    SciTech Connect

    Despain, Kate M.; Guzik, Joyce A.; Cox, Arthur N.

    1997-12-31

    Using an updated version of the Ostlie and Cox (1993) nonlinear hydrodynamics code, we show the results of Luminous Blue Variable (LBV) envelope models based on evolution models of initial mass 50-80 M solar. including mass loss. The models use OPAL opacities, contain 60-120 Lagrangian zones, include time dependent convection, and are given an initial photospheric radial velocity amplitude of 1 km/sec. Our goal is to explain the reason for the LBV instability strip and suggest a cause for LBV outbursts observed in massive stars in our Galaxy as well as the LMC and SMC.

  20. Luminous variables in the Quintuplet cluster

    NASA Astrophysics Data System (ADS)

    Glass, I. S.; Matsumoto, S.; Carter, B. S.; Sekiguchi, K.

    1999-03-01

    We report observations of variability amongst the stars of the `Quintuplet' cluster located about 30 pc in projection from the centre of the Galaxy. Two of the five cocoon star members, which may be protostars or peculiar Wolf-Rayet stars, are seen to vary slowly with moderate amplitude (0.4-0.5 mag). The bright star within the `Pistol' H ii region, suspected of being a luminous blue variable (LBV), has in fact been found to show variability, confirming its tentative classification. A second nearby presumed LBV also varies. One of the apparent Quintuplet members is likely to be a Mira variable along the same line of sight.

  1. THE TOTAL LUMINOUS EFFICIENCY OF LUMINOUS BACTERIA.

    PubMed

    Harvey, E N

    1925-09-18

    Methods are described for measuring the light emitted by an emulsion of luminous bacteria of given thickness, and calculating the light emitted by a single bacterium, measuring 1.1 x 2.2 micra, provided there is no absorption of light in the emulsion. At the same time, the oxygen consumed by a single bacterium was measured by recording the time for the bacteria to use up .9 of the oxygen dissolved in sea water from air (20 per cent oxygen). The luminescence intensity does not diminish until the oxygen concentration falls below 2 per cent, when the luminescence diminishes rapidly. Above 2 per cent oxygen (when the oxygen dissolving in sea water from pure oxygen at 760 mm. Hg pressure = 100 per cent) the bacteria use equal amounts of oxygen in equal times, while below 2 per cent oxygen it seems very likely that rate of oxygen absorption is proportional to oxygen concentration. By measuring the time for a tube of luminous bacteria of known concentration saturated with air (20 per cent oxygen) to begin to darken (2 per cent oxygen) we can calculate the oxygen absorbed by one bacterium per second. The bacteria per cc. are counted on a blood counting slide or by a centrifugal method, after measuring the volume of a single bacterium (1.695 x 10(-12) cc.). Both methods gave results in good agreement with each other. The maximum value for the light from a single bacterium was 24 x 10(-14) lumens or 1.9 x 10(-14) candles. The maximum value for lumen-seconds per mg. of oxygen absorbed was 14. The average value for lumen-seconds per mg. O(2) was 9.25. The maximum values were selected in calculating the efficiency of light production, since some of the bacteria counted may not be producing light, although they may still be using oxygen. The "diet" of the bacteria was 60 per cent glycerol and 40 per cent peptone. To oxidize this mixture each mg. of oxygen would yield 3.38 gm. calories or 14.1 watts per second. 1 lumen per watt is therefore produced by a normal bacterium which

  2. Computational astrophysics: Monstrous galaxies unmasked

    NASA Astrophysics Data System (ADS)

    Davé, Romeel

    2015-09-01

    The enigma of how the most luminous galaxies arise is closer to being solved. New simulations show that these are long-lived massive galaxies powered by prodigious gas infall and the recycling of supernova-driven outflows. See Letter p.496

  3. AKARI IRC 2.5-5 μm spectroscopy of infrared galaxies over a wide luminosity range

    SciTech Connect

    Ichikawa, Kohei; Ueda, Yoshihiro; Imanishi, Masatoshi; Nakagawa, Takao; Shirahata, Mai; Kaneda, Hidehiro; Oyabu, Shinki

    2014-10-20

    We present the result of a systematic infrared 2.5-5 μm spectroscopic study of 22 nearby infrared galaxies over a wide infrared luminosity range (10{sup 10} L {sub ☉} < L {sub IR} < 10{sup 13} L {sub ☉}) obtained from the AKARI Infrared Camera (IRC). The unique band of the AKARI IRC spectroscopy enables us to access both the 3.3 μm polycyclic aromatic hydrocarbon (PAH) emission feature from star-forming activity and the continuum of torus-dust emission heated by an active galactic nucleus (AGN). Applying our AGN diagnostics to the AKARI spectra, we discover 14 buried AGNs. The large fraction of buried AGNs suggests that AGN activity behind the dust is almost ubiquitous in ultra-/luminous infrared galaxies (U/LIRGs). We also find that both the fraction and energy contribution of buried AGNs increase with infrared luminosity from 10{sup 10} L {sub ☉} to 10{sup 13} L {sub ☉}, including normal infrared galaxies with L {sub IR} < 10{sup 11} L {sub ☉}. The energy contribution from AGNs in the total infrared luminosity is only ∼7% in LIRGs and ∼20% in ULIRGs, suggesting that the majority of the infrared luminosity originates from starburst activity. Using the PAH emission, we investigate the luminosity relation between star formation and AGNs. We find that these infrared galaxies exhibit higher star formation rates than optically selected Seyfert galaxies with the same AGN luminosities, implying that infrared galaxies could be an early evolutionary phase of AGN.

  4. Pulsations and outbursts of luminous blue variables

    SciTech Connect

    Cox, A.N.; Guzik, J.A.; Soukup, M.S.; Despain, K.M.

    1997-06-01

    We propose an outburst mechanism for the most luminous stars in our and other galaxies. These million solar luminosity stars, with masses (after earlier mass loss) of between 20 and maybe 70 solar masses, are pulsationally unstable for both radial and low-degree nonradial modes. Some of these modes are ``strange,`` meaning mostly that the pulsations are concentrated near the stellar surface and have very rapid growth rates in linear theory. The pulsation driving is by both the high iron line opacity (near 150,000 K) and the helium opacity (near 30,000 K) kappa effects. Periods range from 5 to 40 days. Depending on the composition, pulsations periodically produce luminosities above the Eddington limit for deep layers. The radiative luminosity creates an outward push that readily eases the very low gamma envelope to very large outburst radii. A key point is that a super-Eddington luminosity cannot be taken up by the sluggish convection rapidly enough to prevent an outward acceleration of much of the envelope. As the helium abundance in the envelope stellar material increases by ordinary wind mass loss and the luminous blue variable outbursts, the opacity in the deep pulsation driving layers decreases. This makes the current Eddington luminosity even higher so that pulsations can then no longer give radiative luminosities exceeding the limit. For the lower mass and luminosity luminous blue variables there is considerably less iron line opacity driving, and pulsations are almost all caused by the helium ionization kappa effect.

  5. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  6. Mid- to far-infrared properties of star-forming galaxies and active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Magdis, G. E.; Rigopoulou, D.; Helou, G.; Farrah, D.; Hurley, P.; Alonso-Herrero, A.; Bock, J.; Burgarella, D.; Chapman, S.; Charmandaris, V.; Cooray, A.; Dai, Y. Sophia; Dale, D.; Elbaz, D.; Feltre, A.; Hatziminaoglou, E.; Huang, J.-S.; Morrison, G.; Oliver, S.; Page, M.; Scott, D.; Shi, Y.

    2013-10-01

    We study the mid- to far-IR properties of a 24 μm-selected flux-limited sample (S24> 5 mJy) of 154 intermediate redshift (⟨ z ⟩ ~ 0.15), infrared luminous galaxies, drawn from the 5 Milli-Jansky Unbiased Spitzer Extragalactic Survey. By combining existing mid-IR spectroscopy and new Herschel SPIRE submm photometry from the Herschel Multi-tiered Extragalactic Survey, we derived robust total infrared luminosity (LIR) and dust mass (Mdust) estimates and infered the relative contribution of the AGN to the infrared energy budget of the sources. We found that the total (8-1000 μm) infrared emission of galaxies with weak 6.2 μm PAH emission (EW6.2 ≤ 0.2 μm) is dominated by AGN activity, while for galaxies with EW6.2> 0.2 μm more than 50% of the LIR arises from star formation. We also found that for galaxies detected in the 250-500 μm Herschel bands an AGN has a statistically insignificant effect on the temperature of the cold dust and the far-IR colours of the host galaxy, which are primarily shaped by star formation activity. For star-forming galaxies we reveal an anti-correlation between the LIR-to-rest-frame 8 μm luminosity ratio, IR8 ≡ LIR/L8 and the strength of PAH features. We found that this anti-correlation is primarily driven by variations in the PAHsemission, and not by variations in the 5-15 μm mid-IR continuum emission. Using the [Ne iii]/[Ne ii] line ratio as a tracer of the hardness of the radiation field, we confirm that galaxies with harder radiation fields tend to exhibit weaker PAH features, and found that they have higher IR8 values and higher dust-mass-weighted luminosities (LIR/Mdust), the latter being a proxy for the dust temperature (Td). We argue that these trends originate either from variations in the environment of the star-forming regions or are caused by variations in the age of the starburst. Finally, we provide scaling relations that will allow estimating LIR, based on single-band observations with the mid-infrared instrument

  7. Spectroscopic properties of polycyclic aromatic hydrocarbons (PAHs) and astrophysical implications.

    PubMed

    d'Hendecourt, L; Ehrenfreund, P

    1997-01-01

    PAHs (polycyclic aromatic hydrocarbons) are probably present as a mixture of neutral and ionized species and are responsible for the set of infrared emission bands in the 2-15 microns regions, which are observed in many different objects like reflection and planetary nebulae and external galaxies. PAHs are suggested to be the most abundant free organic molecules and ubiquitous in space. PAHs might also exist in the solid phase, included in interstellar ices in dense clouds. A complex aromatic network is expected on interstellar grains in the diffuse interstellar medium. The existence of an aromatic kerogen-like structure in carbonaceous meteorites and its similarity with interstellar spectra suggests a link between interstellar matter and primitive Solar System bodies. PMID:11541329

  8. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria.

    PubMed

    Zhu, Xuezhu; Ni, Xue; Waigi, Michael Gatheru; Liu, Juan; Sun, Kai; Gao, Yanzheng

    2016-01-01

    Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs) in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P₁ (Stenotrophomonas sp.) and P₃ (Pseudomonas sp.), which degraded more than 90% of phenanthrene (PHE) within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP), PHE, fluorene (FLR), pyrene (PYR), and benzo(a)pyrene (B(a)P) as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P₁ degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(a)P, and strain P₃ degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(a)P. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days). Compared with strain P₁, strain P₃ has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria. PMID:27517944

  9. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria

    PubMed Central

    Zhu, Xuezhu; Ni, Xue; Waigi, Michael Gatheru; Liu, Juan; Sun, Kai; Gao, Yanzheng

    2016-01-01

    Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs) in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P1 (Stenotrophomonas sp.) and P3 (Pseudomonas sp.), which degraded more than 90% of phenanthrene (PHE) within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP), PHE, fluorene (FLR), pyrene (PYR), and benzo(a)pyrene (B(a)P) as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P1 degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(a)P, and strain P3 degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(a)P. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days). Compared with strain P1, strain P3 has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria. PMID:27517944

  10. Deuterated PAHs in Space

    NASA Technical Reports Server (NTRS)

    Peeters, Els; Allamandola, Louis J.; Bauschlicher, Charles W., Jr.; Hudgins, Douglas M.; Sandford, Scott A.; Tielens, A. G. G. M.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The cosmic deuterium to hydrogen (D/H) ratio is of key importance from a cosmological and stellar evolution perspective since deuterium originates from big-bang nucleosynthesis and is destroyed by stellar thermonuclear reactions. Further, from the interstellar perspective, the galactic distribution of deuterium and the D/H ratio among various molecular species also traces interstellar chemical evolution. Over the past few decades, radio observations have enabled the study of a handful of small, deuterated interstellar species. However, the number of deuterated species detected and environments probed are limited, raising issues of selection effects that hamper generalization and applications to other environments. Infrared spectroscopy of the interstellar medium offers a distinct advantage in this regard as the extent of deuteration of entire chemical families, rather than one species, can be probed. These observations require spaceborne telescopes because the molecular vibrations involving D which produce the strongest IR bands fall in spectral regions which are obscured by terrestrial CO2 absorption. Here we report the tentative detection of the C-D stretching vibration from deuterated interstellar polycyclic aromatic hydrocarbons in the Orion nebula. Since the PAH emission features are widespread and probe many different types of cosmic environments, follow up observations of deuterated PAHs will provide fundamental, far reaching new insight and perspective into galactic and extragalactic processes.

  11. The Most Luminous Supernovae

    NASA Astrophysics Data System (ADS)

    Sukhbold, Tuguldur; Woosley, S. E.

    2016-04-01

    Recent observations have revealed a stunning diversity of extremely luminous supernovae, seemingly increasing in radiant energy without bound. We consider simple approximate limits for what existing models can provide for the peak luminosity and total radiated energy for non-relativistic, isotropic stellar explosions. The brightest possible supernova is a Type I explosion powered by a sub-millisecond magnetar with field strength B ∼ few × {10}13 G. In extreme cases, such models might reach a peak luminosity of 2× {10}46 {erg} {{{s}}}-1 and radiate a total energy of up to 4× {10}52 {erg}. Other less luminous models are also explored, including prompt hyper-energetic explosions in red supergiants, pulsational-pair instability supernovae, pair-instability supernovae, and colliding shells. Approximate analytic expressions and limits are given for each case. Excluding magnetars, the peak luminosity is near 3× {10}44 {erg} {{{s}}}-1 for the brightest models and the corresponding limit on total radiated energy is 3× {10}51 {erg}. Barring new physics, supernovae with a light output over 3× {10}51 erg must be rotationally powered, either during the explosion itself or after, the most obvious candidate being a rapidly rotating magnetar. A magnetar-based model for the recent transient event, ASASSN-15lh is presented that strains, but does not exceed the limits of what the model can provide.

  12. Massive spheroids in formation: A spectroscopic study of (sub)mm galaxies

    NASA Astrophysics Data System (ADS)

    Lutz, Dieter; Baker, Andrew; Dannerbauer, Helmut; Genzel, Reinhard; Klein, Randolf; Lehnert, Matthew; Sternberg, Amiel; Sturm, Eckhard; Tacconi, Linda

    2004-09-01

    During the last few years, submm and mm surveys and follow-up thereof have revolutionized our view of the high redshift universe by showing that a substantial fraction of star formation and AGN activity at high redshift occurs in luminous dusty galaxies. These objects likely represent a key step in the formation of massive galaxies and pose a crucial challenge for our understanding of galaxy formation and of the co-evolution of spheroids and central black holes. Given their dusty nature, extinction-insensitive tools of rest frame mid-infrared spectroscopy are uniquely suited to provide a deeper understanding of starburst and AGN activity and of the physical conditions in these galaxies. We have pioneered these techniques using data from the Infrared Space Observatory and applied them to local ultraluminous infrared galaxies. Deep Spitzer-IRS spectroscopy now makes it possible for the first time to detect PAH emission features, AGN continua, and signatures of absorption in faint but important high redshift targets. We propose to obtain high quality rest-frame ~5.5-9.5micron low-resolution IRS spectra of a moderate size sample spanning the full range of properties of the submm and mm population in an unbiased way, by selection from blank field and cluster lens surveys only. Our targets include the brightest high z submm and mm sources with interferometric identification and range from optically well-detected galaxies to very faint sources with K_Vega>22.5. These data will allow us to (i) determine or confirm redshifts, (ii) determine the relative importance of star formation and AGN and search for trends of the starburst/AGN energy production ratio within the population, (iii) search for indicators giving further clues to the prevailing physical conditions, like signatures of extreme obscuration. Quality of spectra and an unbiased sample are decisive in using the power of mid-infrared spectroscopy to answer these questions on the pivotal (sub)mm galaxy population.

  13. LUMINOUS SATELLITES VERSUS DARK SUBHALOS: CLUSTERING IN THE MILKY WAY

    SciTech Connect

    Bozek, Brandon; Wyse, Rosemary F. G.; Gilmore, Gerard

    2013-08-01

    The observed population of the Milky Way satellite galaxies offers a unique testing ground for galaxy formation theory on small scales. Our novel approach was to investigate the clustering of the known Milky Way satellite galaxies and to quantify the amount of substructure within their distribution using a two-point correlation function statistic in each of three spaces: configuration space, line-of-sight velocity space, and four-dimensional (4D) phase space. These results were compared to those for three sets of subhalos in the Via Lactea II cold dark matter (CDM) simulation defined to represent the luminous dwarfs. We found no evidence at a significance level above 2{sigma} of substructure within the distribution of the Milky Way satellite galaxies in any of the three spaces. The 'luminous' subhalo sets are more strongly clustered than are the Milky Way satellites in all three spaces and over a broader range of scales in 4D phase space. Each of the 'luminous' subhalo sets are clustered as a result of substructure within their line-of-sight velocity space distributions at greater than 3{sigma} significance, whereas the Milky Way satellite galaxies are randomly distributed in line-of-sight velocity space. While our comparison is with only one CDM simulation, the inconsistencies between the Milky Way satellite galaxies and the Via Lactea II subhalo sets for all clustering methods suggest a potential new 'small-scale' tension between CDM theory and the observed Milky Way satellites. Future work will obtain a more robust comparison between the observed Milky Way satellites and CDM theory by studying additional simulations.

  14. Galaxies et trous noirs supermassifs

    NASA Astrophysics Data System (ADS)

    Collin-Zahn, Suzy

    2016-08-01

    A few percents of galaxies are classified as « active ». An active galaxy is a galaxy whose nucleus emits more energy than the whole galaxy in the form of electromagnetic radiation, relativistic particles, or mechanical energy. It is activated by a supermassive black hole fueled by matter falling on it, whose characteristics (Eddington luminosity, spin) are recalled. The class includes quasars and Seyfert galaxies. All massive "non active" galaxies contain a supermassive black hole, but there is not enough matter in its environment so as the nucleus becomes luminous. Different items are considered in the paper : how supermassive black holes are fueled, the accretion disc, the jets and the winds, the unified model of active galaxies, how are determined the masses of supermassive black holes, and what is the relation between the evolution of galaxies and supermassive black holes.

  15. Radio structures in QSO-galaxy pairs

    NASA Technical Reports Server (NTRS)

    Akujor, Chidi E.

    1990-01-01

    It is now generally agreed that if quasars and nearby low redshift galaxies are associated, then there should be luminous connections between them. However, most of the observational evidence being presented is in the optical domain, whereas such evidence should also exist at radio frequencies. The author is, therefore, investigating some quasar-galaxy pairs at radio frequencies to search for luminous connections and other structural peculiarities. Radio maps of some of these sources are presented.

  16. Removing PAH`s with cells on fibers

    SciTech Connect

    Clyde, R.

    1996-12-31

    There are over 1,500 sites contaminated with polycyclic aromatic hydrocarbons from coal gas plants. White rot fungi degrade PAH`s in soil, but the problem is to supply oxygen needed for growth of the fungus. When old cardboard boxes are buried with the fungus, oxygen is entrapped in the corrugations. A method for growing the fungus quickly is also described. Pseudomonade also degrade PAH and several strains of this bacterium have been grown on fibers. The fibers have high area, and when Celite is entrapped in the fibers, more area is provided.

  17. Lidar Luminance Quantizer

    NASA Technical Reports Server (NTRS)

    Quilligan, Gerard; DeMonthier, Jeffrey; Suarez, George

    2011-01-01

    This innovation addresses challenges in lidar imaging, particularly with the detection scheme and the shapes of the detected signals. Ideally, the echoed pulse widths should be extremely narrow to resolve fine detail at high event rates. However, narrow pulses require wideband detection circuitry with increased power dissipation to minimize thermal noise. Filtering is also required to shape each received signal into a form suitable for processing by a constant fraction discriminator (CFD) followed by a time-to-digital converter (TDC). As the intervals between the echoes decrease, the finite bandwidth of the shaping circuits blends the pulses into an analog signal (luminance) with multiple modes, reducing the ability of the CFD to discriminate individual events

  18. Astronomy. ASASSN-15lh: A highly super-luminous supernova.

    PubMed

    Dong, Subo; Shappee, B J; Prieto, J L; Jha, S W; Stanek, K Z; Holoien, T W-S; Kochanek, C S; Thompson, T A; Morrell, N; Thompson, I B; Basu, U; Beacom, J F; Bersier, D; Brimacombe, J; Brown, J S; Bufano, F; Chen, Ping; Conseil, E; Danilet, A B; Falco, E; Grupe, D; Kiyota, S; Masi, G; Nicholls, B; Olivares E, F; Pignata, G; Pojmanski, G; Simonian, G V; Szczygiel, D M; Woźniak, P R

    2016-01-15

    We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of Mu ,AB = -23.5 ± 0.1 and bolometric luminosity Lbol = (2.2 ± 0.2) × 10(45) ergs s(-1), which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (MK ≈ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1 ± 0.2) × 10(52) ergs, challenging the magnetar model for its engine. PMID:26816375

  19. ASASSN-15lh: A highly super-luminous supernova

    NASA Astrophysics Data System (ADS)

    Dong, Subo; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Thompson, T. A.; Morrell, N.; Thompson, I. B.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Brown, J. S.; Bufano, F.; Chen, Ping; Conseil, E.; Danilet, A. B.; Falco, E.; Grupe, D.; Kiyota, S.; Masi, G.; Nicholls, B.; Olivares E., F.; Pignata, G.; Pojmanski, G.; Simonian, G. V.; Szczygiel, D. M.; Woźniak, P. R.

    2016-01-01

    We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of Mu,AB = -23.5 ± 0.1 and bolometric luminosity Lbol = (2.2 ± 0.2) × 1045 ergs s-1, which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (MK ≈ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1 ± 0.2) × 1052 ergs, challenging the magnetar model for its engine.

  20. Identifying Luminous AGN in Deep Surveys: Revised IRAC Selection Criteria

    NASA Astrophysics Data System (ADS)

    Donley, Jennifer; Koekemoer, A. M.; Brusa, M.; Capak, P.; Cardamone, C. N.; Civano, F.; Ilbert, O.; Impey, C. D.; Kartaltepe, J.; Miyaji, T.; Salvato, M.; Sanders, D. B.; Trump, J. R.; Zamorani, G.

    2012-01-01

    Spitzer IRAC selection is a powerful tool for identifying luminous AGN. The AGN selection wedges currently in use, however, are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGN and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high redshift star-forming galaxies selected via the BzK, DRG, LBG, and SMG criteria. At QSO-luminosities of log L(2-10 keV)>44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 37% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 51% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log NH >= 23.7). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGN, it is incomplete to low-luminosity and host-dominated AGN.

  1. Laboratory Astrochemistry: Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  2. Dissipative processes in galaxy formation.

    PubMed Central

    Silk, J

    1993-01-01

    A galaxy commences its life in a diffuse gas cloud that evolves into a predominantly stellar aggregation. Considerable dissipation of gravitational binding energy occurs during this transition. I review here the dissipative processes that determine the critical scales of luminous galaxies and the generation of their morphology. The universal scaling relations for spirals and ellipticals are shown to be sensitive to the history of star formation. Semiphenomenological expressions are given for star-formation rates in protogalaxies and in starbursts. Implications are described for elliptical galaxy formation and for the evolution of disk galaxies. PMID:11607396

  3. Evidence for Merging or Disruption of Red Galaxies from the Evolution of Their Clustering

    SciTech Connect

    White, Martin; White, Martin; Zheng, Zheng; Brown, Michael J. I.; Dey, Arjun; Jannuzi, Buell T.

    2006-11-29

    The formation and evolution of massive red galaxies form a crucial test of theories of galaxy formation based on hierarchical assembly. In this Letter we use observations of the clustering of luminous red galaxies from the Boötes field and N-body simulations to argue that about of the most luminous satellite galaxies appear to undergo merging or disruption within massive halos between and 0.5.

  4. The Luminous Convolution Model-The light side of dark matter

    NASA Astrophysics Data System (ADS)

    Cisneros, Sophia; Oblath, Noah; Formaggio, Joe; Goedecke, George; Chester, David; Ott, Richard; Ashley, Aaron; Rodriguez, Adrianna

    2014-03-01

    We present a heuristic model for predicting the rotation curves of spiral galaxies. The Luminous Convolution Model (LCM) utilizes Lorentz-type transformations of very small changes in the photon's frequencies from curved space-times to construct a dynamic mass model of galaxies. These frequency changes are derived using the exact solution to the exterior Kerr wave equation, as opposed to a linearized treatment. The LCM Lorentz-type transformations map between the emitter and the receiver rotating galactic frames, and then to the associated flat frames in each galaxy where the photons are emitted and received. This treatment necessarily rests upon estimates of the luminous matter in both the emitter and the receiver galaxies. The LCM is tested on a sample of 22 randomly chosen galaxies, represented in 33 different data sets. LCM fits are compared to the Navarro, Frenk & White (NFW) Dark Matter Model and to the Modified Newtonian Dynamics (MOND) model when possible. The high degree of sensitivity of the LCM to the initial assumption of a luminous mass to light ratios (M/L), of the given galaxy, is demonstrated. We demonstrate that the LCM is successful across a wide range of spiral galaxies for predicting the observed rotation curves. Through the generous support of the MIT Dr. Martin Luther King Jr. Fellowship program.

  5. Ultra Luminous X-ray Sources

    NASA Astrophysics Data System (ADS)

    Webb, N. A.; Godet, O.

    2015-12-01

    Ultra Luminous X-ray sources (ULXs) are X-ray bright objects that are not coincident with the central nucleus of the host galaxy and which have luminosities that exceed the Eddington limit for a stellar mass black hole, typically L > 3 × 10^{39} erg s^{-1} for a black hole of 20 M_⊙. The nature of these objects is still unclear. However, it is possible that these sources do not form a single class of objects. Many ULXs may house stellar mass black holes accreting at super-Eddington rates, even if the physical mechanism for such high accretion rates is still not understood. Some ULXs may contain intermediate mass black holes (˜1 × 10^{2} - ˜1 × 10^{5} M_⊙). These elusive black holes are thought to be the building blocks of the more massive supermassive black holes, observed at the centre of many galaxies. Other ULXs may not be accreting black holes at all. Recent evidence for the different types of ULXs is presented in this paper.

  6. Dark and visible matter in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Persic, M.; Salucci, P.

    1988-01-01

    Rotation-curve profiles are used to determine the dark-to-luminous mass ratio within the disk size for 43 spiral galaxies. It is noted that faint galaxies are halo-dominated and that bright galaxies are disk-dominated in the disk regions. The luminosity sequence is shown to be a dark-to-luminous sequence. By removing the dark-matter contribution from the velocity at the disk edge, the dispersion affecting the luminosity-kinematics relation is found to decrease in comparison with the conventional Tully-Fisher correlation.

  7. Superluminous Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity Lr = 8-14L* (4.3-7.5 × 1044 erg s-1). These super spiral galaxies are also giant and massive, with diameter D = 57-134 kpc and stellar mass Mstars = 0.3-3.4 × 1011M⊙. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and Lr > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5-65 M⊙ yr-1 place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  8. Studying AGN Feedback with Galactic Outflows in Luminous Obscured Quasar

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Lei

    2016-01-01

    Feedback from Active galactic nuclei (AGN) has been proposed as an important quenching mechanism to suppress star formation in massive galaxies. We investigate the most direct form of AGN feedback - galactic outflows - in the most luminous obscured AGN (L>10^45 erg/s) from the SDSS sample in the nearby universe (z<0.2). Using ALMA and Magellan observations to target molecular and ionized outflows, we find that luminous AGN can impact the dynamics and phase of the galactic medium, and confirm the complex multi-phase and multi-scaled nature of the feedback phenomenon. In particular, we found that most of these luminous AGN hosts ionized outflows. The outflow size, velocity, and energetics correlate with the AGN luminosity, and can be very extended (r > 10 kpc) and fast (v > 1000 km/s) for the most luminous ones. I end with presenting a new technique to find extended ionized outflows using broadband imaging surveys, and to characterize their occurrence rate, morphology, size distribution, and their dependence on the AGN luminosity. This technique will open a new window for feedback studies in the era of large-scale optical imaging surveys, e.g., HSC and then LSST.

  9. On the Social Traits of Luminous Blue Variables

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Weis, Kerstin; Davidson, Kris; Gordon, Michael S.

    2016-07-01

    In a recent paper, Smith & Tombleson state that the luminous blue variables (LBVs) in the Milky Way and the Magellanic Clouds are isolated; they are not spatially associated with young O-type stars. They propose a novel explanation that would overturn the standard view of LBVs. In this paper we test their hypothesis for the LBVs in M31 and M33, as well as the LMC and SMC. We show that in M31 and M33 the LBVs are associated with luminous young stars and supergiants that are appropriate to their luminosities and positions on the H-R diagram. Moreover, in the Smith and Tombleson scenario most of the LBVs should be runaway stars, but the stars’ velocities are consistent with their positions in the respective galaxies. In the Magellanic Clouds, those authors’ sample was a mixed population. We reassess their analysis, removing seven stars that have no clear relation to LBVs. When we separate the more massive classical and the less luminous LBVs, the classical LBVs have a distribution similar to the late O-type stars, while the less luminous LBVs have a distribution like the red supergiants. None of the confirmed LBVs have high velocities or are candidate runaway stars. These results support the accepted description of LBVs as evolved massive stars that have shed a lot of mass and are now close to their Eddington limit.

  10. How Do Galaxies Grow?

    NASA Astrophysics Data System (ADS)

    2008-08-01

    to the most massive galaxies belonging to clusters. "Most surprising is that in three of the four groups, the brightest galaxy also has a bright companion galaxy. These galaxy pairs are merging systems," says Tran. The brightest galaxy in each group can be ordered in a time sequence that shows how luminous galaxies continue to grow by merging until recently, that is, in the last 5 billion years. It appears that due to the most recent episode of this 'galactic cannibalism', the brightest galaxies became at least 50% more massive. This discovery provides unique and powerful validation of hierarchical formation as manifested in both galaxy and cluster assembly. "The stars in these galaxies are already old and so we must conclude that the recent merging did not produce a new generation of stars," concludes Tran. "Most of the stars in these galaxies were born at least 7 billion years ago." The team is composed of Kim-Vy H. Tran (Institute for Theoretical Physics, University of Zürich, Switzerland), John Moustakas (New York University, USA), Anthony H. Gonzalez and Stefan J. Kautsch (University of Florida, Gainesville, USA), and Lei Bai and Dennis Zaritsky (Steward Observatory, University of Arizona, USA). The results presented here are published in the Astrophysical Journal Letters: "The Late Stellar Assembly Of Massive Cluster Galaxies Via Major Merging", by Tran et al.

  11. The Theory of Forming Submillimetre Galaxies

    NASA Astrophysics Data System (ADS)

    Narayanan, Desika

    2015-02-01

    Submillimetre-selected galaxies are the most luminous, heavily star-forming galaxies in the Universe. While this field has exploded observationally over the past decade and a half, theorists have struggled to develop a concordance model for their origin. Here, I review the major theoretical efforts in this field. I then present a newly developed model for the origin of this enigmatic population of galaxies.

  12. Statistics of associations among IR galaxies

    NASA Technical Reports Server (NTRS)

    Gallimore, Jack F.; Keel, William C.

    1990-01-01

    In the course of expanding the search of Kleinmann et. al. (1988) for distant, infrared-luminous objects, the authors noticed (as is often remarked) that a large number of infrared-selected galaxies have close neighbors or show merger characteristics (e.g., tidal tails, distorted disks). Because the sample size is large (567 infrared galaxies and 2182 field galaxies), this sample is ideal for statistically examining the importance of interactions among infrared galaxies. In particular, the authors compare the nearest-neighbor distribution and the two-point correlation function of their sample with that of a control sample of field galaxies.

  13. Dark matter in massive galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2013-07-01

    The spatial distributions of luminous and dark matter in massive early-type galaxies (ETGs) reflect the formation processes which shaped these systems. This article reviews the predictions of cosmological simulations for the dark and baryonic components of ETGs, and the observational constraints from lensing, hydrostatic X-ray gas atmospheres, and outer halo stellar dynamics.

  14. Spectropolarimetry of hot, luminous stars

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, Regina E.

    1994-01-01

    I review polarimetric observations of presumably single, hot luminous stars. The stellar types discussed are OB stars. B(e) supergiants, Luminous Blue Variables (LBV), Wolf-Rayet (W-R) stars, and type II supernovae (SN). It is shown that variable, intrinsic polarization is a common phenomenon in that part of the Hertzsprung-Russell (HR) diagram which these stars occupy. However, much observational work remains to be done before we can answer the most basic, statistical questions about the polarimetric properties of different groups of hot, luminous stars. Insight into the diagnostic power of polarization observations has been gained, but cannot be exploited without detailed models. Thus, while polarimetric observations do tell us that the mass-loss processes of all types of massive stars are time-dependent and anisotropic, the significance that this might have for the accuracy of their stellar parameters and evolutionary paths remains elusive.

  15. The molecular cloud content of early type galaxies

    NASA Technical Reports Server (NTRS)

    Wiklind, Tommy; Henkel, Christian

    1990-01-01

    A survey of the CO content of early type galaxies led to 24 new detections, mostly lenticular galaxies. The galaxies, which are situated in both the Northern and Southern Hemispheres, were selected as being far-IR luminous compared to their blue luminosity, and situated at distances less than about 50 Mpc (H sub o=100 km/s Mpc(-1). Results for some early galaxies (NGC 404, NGC 3593 and NGC 4369 are given.

  16. Biodegradation of PAHs in Soil: Influence of Initial PAHs Concentration

    NASA Astrophysics Data System (ADS)

    Kamil, N. A. F. M.; Talib, S. A.

    2016-07-01

    Most studies on biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) evaluate the effect of initial PAHs concentration in liquid medium. There are limited studies on evaluation in solid medium such as contaminated soil. This study investigated the potential of the bacteria, Corynebacterium urealyticum isolated from municipal sludge in degrading phenanthrene contaminated soil in different phenanthrene concentration. Batch experiments were conducted over 20 days in reactors containing artificially contaminated phenanthrene soil at different concentration inoculated with a bacterial culture. This study established the optimum condition for phenanthrene degradation by the bacteria under nonindigenous condition at 500 mg/kg of initial phenanthrene concentration. High initial concentration required longer duration for biodegradation process compared to low initial concentration. The bacteria can survive for three days for all initial phenanthrene concentrations.

  17. Biodegradation of PAH`s in sediment-slurry processes

    SciTech Connect

    Hughes, J.B.; Beckles, D.; Chandra, S.

    1995-12-31

    The focus of this research was to examine biodegradation of polynuclear aromatic hydrocarbons (PAHs) in lab scale slurry reactors. The studies summarized in this paper focused on the rate and extent of contaminant release from the sediments, oxygen demand of anaerobic sediments, and the rate and extent of PAH biodegradation achieved. Mass balances were used in all cases. The studies identified several factors which may influence the design or operation of bioreactors used for sediment remediation. Mixing had the greatest effect on the rate and extent of contaminant release; solids loading and aeration had little or no effect in mixed reactors. In unmixed reactors, aerated systems showed faster rates of contaminant release than unaerated systems, indicating that the aeration process itself provides some degree of mixing. The maximum extent of mineralization appeared to be reached within five days in mixed systems; significantly lower mineralization was seen in reactors with insufficient mixing.

  18. The galaxy ancestor problem

    NASA Astrophysics Data System (ADS)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  19. 78 FR 70964 - Luminant Generation Company, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Luminant Generation Company, LLC AGENCY: Nuclear Regulatory Commission. ACTION: Combined license... for four consecutive weeks of a combined license (COL) application from Luminant Generation...

  20. 78 FR 66785 - Luminant Generation Company, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Luminant Generation Company, LLC AGENCY: Nuclear Regulatory Commission. ACTION: Notice of receipt... consecutive weeks of ] a combined license (COL) application from Luminant Generation Company, LLC....

  1. 78 FR 68100 - Luminant Generation Company, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Luminant Generation Company, LLC AGENCY: U.S. Nuclear Regulatory Commission (NRC). ACTION... consecutive weeks of a combined license (COL) application from Luminant Generation Company, LLC....

  2. 78 FR 69710 - Luminant Generation Company, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Luminant Generation Company, LLC AGENCY: U.S. Nuclear Regulatory Commission (NRC). ACTION... consecutive weeks of a combined license (COL) application from Luminant Generation Company, LLC....

  3. Effect of stevioside on PAH transport by isolated perfused rabbit renal proximal tubule.

    PubMed

    Jutabha, P; Toskulkao, C; Chatsudthipong, V

    2000-09-01

    Stevioside, a non-caloric sweetening agent, is used as a sugar substitute. An influence of stevioside on renal function has been suggested, but little is known about its effect on tubular function. Therefore, the present study was designed to explore the direct effect of stevioside on transepithelial transport of p-aminohippurate (PAH) in isolated S2 segments of rabbit proximal renal tubules using in vitro microperfusion. Addition of stevioside at a concentration of 0.45 mM to either the tubular lumen, bathing medium, or both at the same time had no effect on transepithelial transport of PAH. Similarly, a concentration of 0.70 mM (maximum solubility in the buffer) when present in the lumen, had no effect on PAH transport. However, this concentration in the bathing medium inhibited PAH transport significantly by about 25-35%. The inhibitory effect of stevioside was gradually abolished after it was removed from the bath. Addition of 0.70 mM stevioside to both lumen and bathing medium at the same time produced no added inhibitory effect. Stevioside at this concentration has no effect on Na+/K+-ATPase activity as well as cell ATP content. These findings suggest that stevioside, at a pharmacological concentration of 0.70 mM, inhibits transepithelial transport of PAH by interfering with the basolateral entry step, the rate-limiting step for transepithelial transport. The lack of effect of stevioside on transepithelial transport of PAH on the luminal side and its reversible inhibitory effect on the basolateral side indicate that stevioside does not permanently change PAH transport and should not harm renal tubular function at normal human intake levels. PMID:11007537

  4. PAH emission from the industrial boilers.

    PubMed

    Li, C; Mi, H; Lee, W; You, W; Wang, Y

    1999-10-01

    Polycyclic aromatic hydrocarbons (PAHs) emitted from 25 industrial boilers were investigated. The fuels used for these 25 boilers included 21 heavy oil, two diesel, a co-combustion of heavy oil and natural gas (HO+NG) and a co-combustion of coke oven gas and blast furnace gas (COG+BFG) boilers. PAH samples from the stack flue gas (gas and particle phases) of these 25 boilers were collected by using a PAH stack sampling system. Twenty one individual PAHs were analyzed primarily by a gas chromatography/mass spectrometer (GC/MS). Total-PAH concentration in the flue gas of 83 measured data for these 25 boiler stacks ranged between 29.0 and 4250 microg/m(3) and averaged 488 microg/m(3). The average of PAH-homologue mass (F%) counted for the total-PAH mass was 54.7%, 9.47% and 15.3% for the 2-ring, 3-ring and 4-ring PAHs, respectively. The PAHs in the stack flue gas were dominant in the lower molecular weight PAHs. The emission factors (EFs) of total-PAHs were 13,300, 2920, 2880 and 208 microg/kg-fuel for the heavy oil, diesel, HO+NG and COG+BFG fueled-boiler, respectively. Nap was the most predominant PAH occurring in the stack flue gas. In addition, the EF of 21 individual PAHs in heavy-oil boiler were almost the highest among the four various fueled-boilers except for those of FL and BkF in the diesel boiler. Furthermore, the EF of total-PAHs or BaP for heavy oil were both one order of magnitude higher than that for the diesel-fueled boiler. PMID:10502602

  5. Oxidative biodegradation pathways of PAHs

    SciTech Connect

    Cerniglia, C.E.

    1993-12-31

    Polycyclic aromatic hydrocarbons (PAHs) constitute a class of hazardous organic chemical consisting of three of more fused benzene rings in linear, angular and cluster arrangements. PAHs mostly occur as a result of fossil fuel combustion, as by-product of industrial processing and during the cooking of foods. A catabolically diverse microbial community, consisting of bacteria, fungi and algae, metabolizes aromatic compounds. Molecular oxygen is essential for the initial hydroxylation of polycyclic aromatic hydrocarbons by microorganisms. In contrast to bacteria, filamentous fungi use hydroxylation as a prelude to detoxification rather than to catabolism and assimilation. The biochemical principles underlying the degradation of polycyclic aromatic hydrocarbons will be discussed. The oxidative pathways of polycyclic aromatic hydrocarbon catabolism will be discussed. Studies will be presented on the relationship between the chemical structure of the polycyclic aromatic hydrocarbon and the rate of polycyclic aromatic hydrocarbon biodegradation in aquatic and terrestrial ecosystems.

  6. Extremely Luminous Far-infrared Sources (ELFS)

    NASA Technical Reports Server (NTRS)

    Harwit, Martin; Houck, James R.; Soifer, B. Thomas; Palumbo, Giorgio G. C.

    1987-01-01

    The Infrared Astronomical Satellite (IRAS) survey uncovered a class of Extremely Luminous Far Infrared Sources (ELFS), exhibiting luminosities up to and occasionally exceeding 10 to the 12th power L sub 0. Arguments are presented to show that sources with luminosities L equal to or greater than 3 x 10 to the 10th power L sub 0 may represent gas rich galaxies in collision. The more conventional explanation of these sources as sites of extremely active star formation fails to explain the observed low optical luminosities of ELFS as well as their high infrared excess. In contrast, a collisional model heats gas to a temperature of approx. 10 to the 6th power K where cooling takes place in the extreme ultraviolet. The UV is absorbed by dust and converted into far infrared radiation (FIR) without generation of appreciable optical luminosity. Gas recombination as it cools generates a Lyman alpha photon only once for every two extreme ultraviolet approx. 50eV photons emitted by the 10 to the 6th power gas. That accounts for the high infrared excess. Finally, the model also is able to explain the observed luminosity distribution of ELFS as well as many other traits.

  7. PAH Emission at the Bright Locations of PDRs: the grandPAH Hypothesis

    NASA Astrophysics Data System (ADS)

    Andrews, H.; Boersma, C.; Werner, M. W.; Livingston, J.; Allamandola, L. J.; Tielens, A. G. G. M.

    2015-07-01

    The polycyclic aromatic hydrocarbon (PAH) emission observed in the Spitzer Infrared Spectrograph spectra of bright mid-IR locations of NGC 7023, NGC 2023, and NGC 1333 was analyzed. These objects show large variations in PAH band ratios when studied through spectral mapping. Nevertheless, the mid-IR spectra at these bright spots show a remarkably similar PAH emission. We used the NASA Ames PAH IR Spectroscopic Database to fit the observations and analyze the derived PAH populations. Our results show that PAH emission in the 5-15 μm range appears to be rather insensitive to variations of the radiation field. Similar PAH populations of neutral small to medium-sized PAHs (˜50%), with ionized species contributing in slightly less than 50%, provide very good fits. Analyzing the degeneracy of the results shows that subtle (but intrinsic) variations in the emission properties of individual PAHs lead to observable differences in the resulting spectra. On top of this, we found that variations of <30% in the PAH abundances would lead to noticeable spectral differences between the three photodissociation regions (PDRs). Therefore, PAH populations must be remarkably similar at these different lines of sight. To account for this, we suggest the concept of grandPAHs as a unique mixture of the most stable PAHs emitting at these spots. Using NGC 7023 as an example, the grandPAHs refer to the robust PAH population that results from the intense processing of PAHs at the border limit between the PDR and the molecular cloud, where, due to the UV radiation that destroys the PAH population, the abundance of PAHs starts decreasing as we move toward the star.

  8. The X-ray properties of normal galaxies

    NASA Technical Reports Server (NTRS)

    Long, K. S.

    1982-01-01

    The results of an Einstein Observatory study of 51 nearby normal galaxies, including the Large and Small Magellanic Clouds and M31, are reported. The X-ray luminosity of normal galaxies is about 0.0002 of the optical luminosity and shows no strong correlation with morphological type. Approximately 30 new supernova remnants were recognized in the Magellanic Clouds. Over 90 sources were detected in M31, of which at least 20 are identified with globular clusters. The number of luminous sources detected in the nearest galaxies per unit mass are similar to the number found in the Galaxy. Individual X-ray sources in the arms of nearby spirals can be very luminous; seven with luminosities in excess of 10 to the 39th ergs/s have been found. The nuclei of some, but not all, normal galaxies are luminous X-ray sources. Possible reasons for this emission are considered.

  9. Carcinogenic PAH in waterpipe charcoal products

    PubMed Central

    Sepetdjian, Elizabeth; Saliba, Najat; Shihadeh, Alan

    2010-01-01

    Because narghile waterpipe (shisha, hooka) smoking normally involves the use of burning charcoal, smoke inhaled by the user contains constituents originating from the charcoal in addition to those from the tobacco. We have previously found that charcoal accounts for most of the polyaromatic hydrocarbons (PAH) and carbon monoxide in the smoke of the waterpipe, both of which are present in alarming quantities. Because charcoal manufacturing conditions favor formation of PAH, it is reasonable to assume that charcoal sold off the shelf may be contaminated by PAH residues. These residues may constitute a significant fraction of the PAH inhaled by the waterpipe user and those in her/his vicinity. We measured PAH residues on three kinds of raw waterpipe charcoal sampled from Beirut stores and cafés. We found that PAH residues in raw charcoal can account for more than half of the total PAH emitted in the mainstream and sidestream smoke, and about one sixth of the carcinogenic 5- and 6-ring PAH compounds. Total PAH content of the three charcoal types varied systematically by a factor of six from the charcoal with the least to the greatest PAH residue. These findings indicate the possibility of regulating charcoal carcinogen content. PMID:20807559

  10. Carcinogenic PAH in waterpipe charcoal products.

    PubMed

    Sepetdjian, Elizabeth; Saliba, Najat; Shihadeh, Alan

    2010-11-01

    Because narghile waterpipe (shisha, hooka) smoking normally involves the use of burning charcoal, smoke inhaled by the user contains constituents originating from the charcoal in addition to those from the tobacco. We have previously found that charcoal accounts for most of the polyaromatic hydrocarbons (PAH) and carbon monoxide in the smoke of the waterpipe, both of which are present in alarming quantities. Because charcoal manufacturing conditions favor formation of PAH, it is reasonable to assume that charcoal sold off the shelf may be contaminated by PAH residues. These residues may constitute a significant fraction of the PAH inhaled by the waterpipe user and those in her/his vicinity. We measured PAH residues on three kinds of raw waterpipe charcoal sampled from Beirut stores and cafés. We found that PAH residues in raw charcoal can account for more than half of the total PAH emitted in the mainstream and sidestream smoke, and about one sixth of the carcinogenic 5- and 6-ring PAH compounds. Total PAH content of the three charcoal types varied systematically by a factor of six from the charcoal with the least to the greatest PAH residue. These findings indicate the possibility of regulating charcoal carcinogen content. PMID:20807559

  11. The hydrogen coverage of interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Barker, J. R.; Cohen, M.; Tielens, Alexander G. G. M.; Allamandola, Louis J.; Barker, J. R.; Barker, J. R.

    1986-01-01

    The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a UV photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense UV fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments.

  12. The hydrogen coverage of interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Allamandola, L. J.; Barker, J. R.; Cohen, M.

    1987-01-01

    The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a UV photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense UV fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments.

  13. The dark side of galaxy formation.

    PubMed

    Smail, Ian

    2002-12-15

    I discuss the discovery of a population of extremely luminous, but very dusty and very distant, galaxies in the submillimetre (submm) waveband. Almost all the light emitted by the stars in these galaxies is absorbed by interstellar dust (which is produced by the same stars) and re-radiated in the far-infrared. This leaves little to be detected at optical wavelengths and results in most of these galaxies being effectively invisible in even the deepest optical images obtainable with the Hubble space telescope. Yet this population contributes most of the light emitted by galaxies at wavelengths of lambda > or approximately equal 100 microm over the lifetime of the Universe. Together with other observations, this suggests that perhaps up to half of all the stars seen in galaxies today were formed in very dusty regions in the early Universe. Hence, studying the galaxies detected in the submm wavebands is critical for developing and testing models of galaxy formation and evolution. Individually, these luminous submm galaxies are forming stars a thousand times faster than our Galaxy is at the present-day, sufficiently fast to form all the stars in the most luminous galaxy in the local Universe within a short period, up to ca. 0.1-1 Gyr. Detailed study of a handful of examples of this population confirm these estimates and unequivocally identify the bulk of this submm-selected population with dusty, star-burst galaxies in the very distant Universe. The extreme faintness of this population in the optical and near-infrared wavebands, resulting from their obscuration by dust, means that our understanding of the detailed nature of these galaxies is only slowly growing. I give a brief summary of the properties of these highly obscured systems and describe the wide range of facilities currently being developed that will greatly aid in their study. PMID:12626261

  14. Chromospheres of Luminous Cool Stars

    NASA Astrophysics Data System (ADS)

    Dupree, Andrea K.; Avrett, Eugene

    2015-08-01

    Ultraviolet imaging of Alpha Orionis (Betelgeuse) reveals a complex variable chromospheric structure. Such atmospheres in luminous cool stars can affect features in the optical spectrum. Constructing semi-empiricalmodel atmospheres of luminous stars including the temperature rise due to a chromosphere allows us to predict potential effects on optical transitions. The radiative transfer code, PANDORA, calculates line strengths in a LTE or non-LTE formulation, spherical symmetry, and includes velocity fields when present. Various aspects of the line calculations and their impact on equivalent widths will be discussed including developing appropriate chromospheric models, comparison to a pure radiative equilibrium model, transitions sensitive to non-LTE and the effects of a realistic spherical non-LTE approximation as compared to a plane-parallel approximation. We discuss the extent to which a chromosphere can impact the determination of stellar abundances.

  15. Coma cluster of galaxies

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  16. Galaxy Evolution Across The Redshift Desert

    NASA Astrophysics Data System (ADS)

    Kotulla, Ralf

    2010-01-01

    GALEV evolutionary synthesis models are an ideal tool to study the formation and evolution of galaxies. I present a large model grid that contains undisturbed E and Sa-Sd type galaxies as well as a wide range of models undergoing starbursts of various strengths and at different times and also includes the subsequent post-starburst phases for these galaxies. This model grid not only allows to describe and refine currently used color selection criteria for Lyman Break Galaxies, BzK galaxies, Extremely Red Objects (ERO) and both Distant and Luminous Red Galaxies (DRG, LRG). It also gives accurate stellar masses, gas fractions, star formation rates, metallicities and burst strengths for an unprecedentedly large sample of galaxies with multi-band photometry. We find, amongst other things, that LBGs are most likely progenitors of local early type spiral galaxies and low-mass ellipticals. We are for the first time able to reproduce E+A features in EROs by post-starbursts as an alternative to dusty starforming galaxies and predict how to discriminate between these scenarios. Our results from photometric analyses perfectly agree with all available spectroscopic information and open up a much wider perspective, including the bulk of the less luminous and more typical galaxy population, in the redshift desert and beyond. All model data are available online at http://www.galev.org.

  17. Measuring star formation rates in blue galaxies

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Hunter, Deidre A.

    1987-01-01

    The problems associated with measurements of star formation rates in galaxies are briefly reviewed, and specific models are presented for determinations of current star formation rates from H alpha and Far Infrared (FIR) luminosities. The models are applied to a sample of optically blue irregular galaxies, and the results are discussed in terms of star forming histories. It appears likely that typical irregular galaxies are forming stars at nearly constant rates, although a few examples of systems with enhanced star forming activity are found among HII regions and luminous irregular galaxies.

  18. Starburst or AGN Dominance in Submillimetre-Luminous Candidate AGN?

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Pope, Alexandra; Menéndez-Delmestre, Karín; Alexander, David M.; Dunlop, James

    2010-06-01

    It is widely believed that ultraluminous infrared (IR) galaxies and active galactic nuclei (AGN) activity are triggered by galaxy interactions and merging, with the peak of activity occurring at z~2, where submillimetre galaxies are thousands of times more numerous than local ULIRGs. In this evolutionary picture, submillimetre galaxies (SMGs) would host an AGN, which would eventually grow a black hole (BH) strong enough to blow off all of the gas and dust leaving an optically luminous QSO. To probe this evolutionary sequence we have focussed on the `missing link' sources, which demonstrate both strong starburst (SB) and AGN signatures, in order to determine if the SB is the main power source even in SMGs when we have evidence that an AGN is present from their IRAC colours. The best way to determine if a dominant AGN is present is to look for their signatures in the mid-infrared with the Spitzer IRS, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We present the results of our audit of the energy balance between star-formation and AGN within this special sub-population of SMGs-where the BH has grown appreciably to begin heating the dust emission.

  19. Tidally triggered galaxy formation. I - Evolution of the galaxy luminosity function

    NASA Astrophysics Data System (ADS)

    Lacey, Cedric; Silk, Joseph

    1991-11-01

    Motivated by accumulating evidence that large-scale galactic star formation is initiated and sustained by tidal interactions, a phenomenological model is developed for the galaxy luminosity function, commencing from a galaxy mass function that is predicted by a hierarchical model of structure formation such as the cold dark matter dominated cosmology. The epoch of luminous galaxy formation and the galactic star-formation rate are determined by the environment. Gas cooling and star-formation feedback are incorporated; the present epoch luminosity function of bright galaxies and the distribution of galaxy colors are well reproduced. Biasing, via the preferential formation of luminous galaxies in denser regions associated with groups of clusters, is a natural outcome of this tidally triggered star-formation model. A large frequency is inferred of 'failed' galaxies, prematurely stripped by supernova-driven winds, that populate groups and clusters in the form of low surface brightness gas-poor dwarfs, and of 'retarded' galaxies, below the threshold for effective star formation, in the field, detectable as gas-rich, extremely low surface brightness objects. Predictions are presented for the evolution with redshift of the distribution of characteristic star formation timescales, galaxy ages, and colors. Estimates are also made of galaxy number counts, and it is suggested that dwarf galaxies undergoing bursts of star formation at z of about 1 may dominate the counts at the faintest magnitudes.

  20. SPITZER IRS SPECTRAL MAPPING OF THE TOOMRE SEQUENCE: SPATIAL VARIATIONS OF PAH, GAS, AND DUST PROPERTIES IN NEARBY MAJOR MERGERS

    SciTech Connect

    Haan, S.; Armus, L.; Laine, S.; Surace, J. A.; Diaz-Santos, T.; Beirao, P.; Stierwalt, S.; Charmandaris, V.; Smith, J. D.; Schweizer, F.; Murphy, E. J.; Brandl, B.; Evans, A. S.; Hibbard, J. E.; Yun, M.; Jarrett, T. H.

    2011-12-01

    We have mapped the key mid-IR diagnostics in eight major merger systems of the Toomre sequence (NGC 4676, NGC 7592, NGC 6621, NGC 2623, NGC 6240, NGC 520, NGC 3921, and NGC 7252) using the Spitzer Infrared Spectrograph. With these maps, we explore the variation of the ionized-gas, polycyclic aromatic hydrocarbon (PAH), and warm gas (H{sub 2}) properties across the sequence and within the galaxies. While the global PAH interband strength and ionized gas flux ratios ([Ne III]/[Ne II]) are similar to those of normal star-forming galaxies, the distribution of the spatially resolved PAH and fine structure line flux ratios is significantly different from one system to the other. Rather than a constant H{sub 2}/PAH flux ratio, we find that the relation between the H{sub 2} and PAH fluxes is characterized by a power law with a roughly constant exponent (0.61 {+-} 0.05) over all merger components and spatial scales. While following the same power law on local scales, three galaxies have a factor of 10 larger integrated (i.e., global) H{sub 2}/PAH flux ratio than the rest of the sample, even larger than what it is in most nearby active galactic nuclei. These findings suggest a common dominant excitation mechanism for H{sub 2} emission over a large range of global H{sub 2}/PAH flux ratios in major mergers. Early-merger systems show a different distribution between the cold (CO J = 1-0) and warm (H{sub 2}) molecular gas components, which is likely due to the merger interaction. Strong evidence for buried star formation in the overlap region of the merging galaxies is found in two merger systems (NGC 6621 and NGC 7592) as seen in the PAH, [Ne II], [Ne III], and warm gas line emission, but with no apparent corresponding CO (J = 1-0) emission. The minimum of the 11.3/7.7 {mu}m PAH interband strength ratio is typically located in the nuclei of galaxies, while the [Ne III/[Ne II] ratio increases with distance from the nucleus. Our findings also demonstrate that the variations of

  1. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  2. The role of galaxy interaction in the SFR-M {sub *} relation: characterizing morphological properties of Herschel-selected galaxies at 0.2 < z < 1.5

    SciTech Connect

    Hung, Chao-Ling; Sanders, D. B.; Casey, C. M.; Lee, N.; Barnes, J. E.; Koss, M.; Larson, K. L.; Lockhart, K.; Man, A. W. S.; Mann, A. W.; Capak, P.; Kartaltepe, J. S.; Le Floc'h, E.; Riguccini, L.; Scoville, N.; Symeonidis, M.

    2013-12-01

    Galaxy interactions/mergers have been shown to dominate the population of IR-luminous galaxies (L {sub IR} ≳ 10{sup 11.6} L {sub ☉}) in the local universe (z ≲ 0.25). Recent studies based on the relation between galaxies' star formation rates and stellar mass (the SFR-M {sub *} relation or the {sup g}alaxy main sequence{sup )} have suggested that galaxy interaction/mergers may only become significant when galaxies fall well above the galaxy main sequence. Since the typical SFR at a given M {sub *} increases with redshift, the existence of the galaxy main sequence implies that massive, IR-luminous galaxies at high z may not necessarily be driven by galaxy interactions. We examine the role of galaxy interactions in the SFR-M {sub *} relation by carrying out a morphological analysis of 2084 Herschel-selected galaxies at 0.2 < z < 1.5 in the COSMOS field. Using a detailed visual classification scheme, we show that the fraction of 'disk galaxies' decreases and the fraction of 'irregular' galaxies increases systematically with increasing L {sub IR} out to z ≲ 1.5 and z ≲ 1.0, respectively. At L {sub IR} >10{sup 11.5} L {sub ☉}, ≳ 50% of the objects show evident features of strongly interacting/merger systems, where this percentage is similar to the studies of local IR-luminous galaxies. The fraction of interacting/merger systems also systematically increases with the deviation from the SFR-M {sub *} relation, supporting the view that galaxies falling above the main sequence are more dominated by mergers than the main-sequence galaxies. Meanwhile, we find that ≳ 18% of massive IR-luminous 'main-sequence galaxies' are classified as interacting systems, where this population may not evolve through the evolutionary track predicted by a simple gas exhaustion model.

  3. Determination of polyoxymethylene (POM)--water partition coefficients for oxy-PAHs and PAHs.

    PubMed

    Josefsson, Sarah; Arp, Hans Peter H; Kleja, Dan Berggren; Enell, Anja; Lundstedt, Staffan

    2015-01-01

    Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are a class of ubiquitously occurring pollutants of which little is known. They can be co-emitted with PAHs or formed from PAHs in the environment. The environmental fate and risk of oxy-PAHs are difficult to assess due to a lack of methods to quantify their pore water concentrations. One sampler that can be used to determine freely dissolved concentrations of organic contaminants is polyoxymethylene (POM). In this study, POM - water partition coefficients (KPOM) were determined for 11 oxy-PAHs. KPOM values of 8 PAHs with similar hydrophobicities as the oxy-PAHs were determined for comparison. Results showed that logKPOM values ranged from 2.64 to 4.82 for the PAHs (2-4 rings), similar to previously determined values. LogKPOM values for investigated oxy-PAHs ranged from 0.96 to 5.36. The addition of carbonylic oxygen on a parent PAH generally lowered KPOM by 0.5 to 1.0 log units, which is attributable to the presence of carbonylic oxygens increasing water solubility. The KPOM values presented here will facilitate simultaneous assessments of freely dissolved water concentrations of oxy-PAHs and PAHs in environmental media. PMID:25460771

  4. First Results from the ISO-IRAS Faint Galaxy Survey

    NASA Technical Reports Server (NTRS)

    Wolstencroft, R. D.; Wehrle, A. E.; Levine, D. A.

    1997-01-01

    We present the first result from the ISO-IRAS Faint Galaxy Survey (IIFGS), a program designed to obtain ISO observations of the most distant and luminous galaxies in the IRAS Faint Source Survey by filling short gaps in the ISO observing schedule with pairs of 12um ISOCAM AND 90um ISOPHOT observation.

  5. Nuclear sources in galaxies

    NASA Astrophysics Data System (ADS)

    Elvis, M.

    In the local Universe most massive black holes at the centers of galaxies are not luminous quasars. Is this because (1) they are starved of gas, (2) they accrete without emitting radiation, (3) they refuse to eat, ejecting the incoming material, or (4) they are storing up matter in an accretion disk to feast later?With Chandra ACIS we have imaged a pilot sample of 6 nearby (D 30 Mpc) elliptical galaxies chosen to be especially quiescent based on the careful optical spectroscopy of Ho, measured black hole masses (Mbh > 10(7)Msol), and with existing X-ray upper limits (Lx 10(40)erg/s) implying far sub-Eddington accretion. In these galaxies we can measure, or limit, the diffuse hot interstellar medium, and so constrain the Bondi accretion rate.Faint X-ray emission is detected at or around the nucleus in each galaxy. The morphology of these weak X-ray sources is complex. The X-ray colors of the sources can be determined, and a moderate quality spectrum for one was obtained. We discuss these results against the possible explanations of black hole quiescence.On the other hand, a few percent of all galaxies shows evidence for nuclear activity and a brief review of the high energy emission from Active Galactic Nuclei is given.

  6. Tidal alignment of galaxies

    NASA Astrophysics Data System (ADS)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  7. Diffuse and Dense Gas in Nearby Luminous Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Saito, T.; Iono, D.; Ueda, J.; Yun, M. S.; Nakanishi, K.; Imanishi, M.; Hagiwara, Y.; Kaneko, H.; Komugi, S.; Espada, D.; Motohara, K.; Sugai, H.; Yamashita, T.; Tateuchi, K.; Lee, M.; Michiyama, T.; Kawabe, R.

    2015-12-01

    We present high resolution (0".2 - 2."0) ALMA cycle 2 observations of the IR-bright mid-stage merger VV 114 (band 3), the minor merger NGC 1614 (band 3/6), and the early-stage merger NGC 3110 (band 3), which are supplemented with the cycle 0 observations of VV 114 (band 3/7) and NGC 1614 (band 7/9). These observations include the CO (1-0), CO (2-1), 13CO (1-0), 13CO (2-1), CO (3-2), CO (6-5), HCN (4-3), and HCO+ (4-3) emission as well as continuum emission. We find that VV 114 has a multi-phase ISM (e.g., extended CO arms [˜ 10 kpc], a 13CO filament [˜ 6 kpc], and compact HCN sources [< 200 pc]), while NGC 1614 shows a rotating molecular ring with the radius of 240 pc, which is detected in the all molecular lines above. NGC 3110 shows two asymmetric molecular spiral arms and a strong bar. The CN (1-0), C18O (2-1), CS (2-1), and CH3OH (2-1) emission are also detected. Diagnosing detected lines using line intensity ratios, we suggest that an AGN, starbursts, and shocks are important drivers of the chemistry of VV 114, while merger and bar-induced starburst activities dominate the chemistry of NGC 1614 and NGC 3110, respectively.

  8. Largescale QSO - Galaxy Correlations Revisited

    NASA Astrophysics Data System (ADS)

    Bartelmann, M.; Schneider, P.

    1993-04-01

    Fugmann (1990) claimed indications for correlations between Lick galaxies and high-redshift, radio-loud background sources. We re- analyze these correlations using an improved statistical method based on Spearman's rank-order test, which we have introduced recently (Bartelmann & Schneider 1993). To our surprise, we are not able to reproduce Fugmann's results, but we detect a significant correlation between moderate-redshift sources from the 1-Jansky catalog and Lick galaxies, which increases when we apply an optical flux limit to the source sample. We interpret these empirical results in terms of an amplification bias caused by gravitational light deflection by dark matter; in particular, we argue that the observed large-scale QSO-galaxy correlations can provide a proof for the association of luminous matter (galaxies) with dark matter.

  9. Galaxies in extreme environments: Isolated galaxies versus compact groups

    NASA Astrophysics Data System (ADS)

    Durbala, Adriana

    2009-06-01

    This Dissertation comprises two distinct studies of galaxies in dramatically different environments: extreme isolation versus compact groups. We emphasize empirically how "nature" (i.e. internal, secular processes) plays the dominant role in defining the evolution of isolated galaxies and how "nurture" dictates the fate of galaxies in very crowded environments. Two chapters report on a detailed photometric study of a well-defined sample of N ~100 isolated Sb-Sc spiral galaxies. Data source is Sloan Digital Sky Survey. Using i-band images we perform three kinds of measures: (a) bulge/disk/bar decomposition, (b) CAS parametrization (Concentration, Asymmetry, Clumpiness), and (c) Fourier decomposition/analysis of spiral arms and bar properties including dynamical measures of the torque. Having quantified a large set of properties we look for: (i) the interplay between different components of the same galaxy, (ii) trends along the morphological sequence Sb-Sbc-Sc, and (iii) statistical differences between our "isolated" sample and samples of galaxies of similar morphology constructed without regard for isolation. We find that the majority of isolated late-type disk galaxies host pseudobulges rather than classical bulges. The pseudobulges probably form through internal secular processes and bars may play an important role. A clear separation is noted between Sb and Sbc/Sc in various measures, i.e. the former are redder, brighter, have larger disks and bars, more luminous bulges, are more concentrated, more symmetric and dumpier than the latter. Isolated galaxies host larger bars than galaxies in samples defined without isolation constraints. Longer bars are not necessarily stronger, but show a higher contrast in Fourier analysis. Another chapter is a multiwavelength study of Seyfert's Sextet, the highest density galaxy aggregate in the local Universe. Four of its five galaxies are interpreted as remnant bulges of accreted spirals and are now embedded in a luminous halo

  10. Infrared fluorescence from PAHs in the laboratory

    NASA Technical Reports Server (NTRS)

    Cherchneff, Isabelle; Barker, John R.

    1989-01-01

    Several celestial objects, including UV rich regions of planetary and reflection nebulae, stars, H II regions, and extragalactic sources, are characterized by the unidentified infrared emission bands (UIR bands). A few years ago, it was proposed that polycyclic aromatic hydrocarbon species (PAHs) are responsible for most of the UIR bands. This hypothesis is based on a spectrum analysis of the observed features. Comparisons of observed IR spectra with lab absorption spectra of PAHs support the PAH hypothesis. An example spectrum is represented, where the Orion Bar 3.3 micron spectrum is compared with the absorption frequencies of the PAHs Chrysene, Pyrene, and Coronene. The laser excited 3.3 micron emission spectrum is presented from a gas phase PAH (azulen). The infrared fluorescence theory (IRF) is briefly explained, followed by a description of the experimental apparatus, a report of the results, and discussion.

  11. The heating of mid-infrared dust in the nearby galaxy M33: A testbed for tracing galaxy evolution

    SciTech Connect

    Calapa, Marie D.; Calzetti, Daniela; Draine, Bruce T. E-mail: calzetti@astro.umass.edu; and others

    2014-04-01

    Infrared emission is an invaluable tool for quantifying star formation in galaxies. Because the 8 μm polycyclic aromatic hydrocarbon (PAH) emission has been found to correlate with other well-known star formation tracers, it has widely been used as a star formation rate (SFR) tracer. There are, however, studies that challenge the accuracy and reliability of the 8 μm emission as a SFR tracer. Our study, part of the Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) M33 Extended Survey (HERM33ES) open time key program, aims at addressing this issue by analyzing the infrared emission from the nearby spiral galaxy M33 at the high spatial scale of ∼75 pc. Combining data from the Herschel Space Observatory and the Spitzer Space Telescope, we find that the 8 μm emission is better correlated with the 250 μm emission, which traces cold interstellar gas, than with the 24 μm emission. Furthermore, the L(8)/L(250) ratio is more tightly correlated with the 3.6 μm emission, a tracer of evolved stellar populations and stellar mass, than with a combination of Hα and 24 μm emission, a tracer of SFR. The L(8)/L(24) ratio is highly depressed in 24 μm luminous regions, which correlate with known H II regions. We also compare our results with the dust emission models by Draine and Li. We confirm that the depression of 8 μm PAH emission near star-forming regions is higher than what is predicted by models; this is possibly an effect of increased stellar radiation from young stars destroying the dust grains responsible for the 8 μm emission as already suggested by other authors. We find that the majority of the 8 μm emission is fully consistent with heating by the diffuse interstellar medium, similar to what recently determined for the dust emission in M31 by Draine et al. We also find that the fraction of 8 μm emission associated with the diffuse

  12. The Heating of Mid-infrared Dust in the Nearby Galaxy M33: A Testbed for Tracing Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Calapa, Marie D.; Calzetti, Daniela; Draine, Bruce T.; Boquien, Médéric; Kramer, Carsten; Xilouris, Manolis; Verley, Simon; Braine, Jonathan; Relaño, Monica; van der Werf, Paul; Israel, Frank; Hermelo, Israel; Albrecht, Marcus

    2014-04-01

    Infrared emission is an invaluable tool for quantifying star formation in galaxies. Because the 8 μm polycyclic aromatic hydrocarbon (PAH) emission has been found to correlate with other well-known star formation tracers, it has widely been used as a star formation rate (SFR) tracer. There are, however, studies that challenge the accuracy and reliability of the 8 μm emission as a SFR tracer. Our study, part of the Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) M33 Extended Survey (HERM33ES) open time key program, aims at addressing this issue by analyzing the infrared emission from the nearby spiral galaxy M33 at the high spatial scale of ~75 pc. Combining data from the Herschel Space Observatory and the Spitzer Space Telescope, we find that the 8 μm emission is better correlated with the 250 μm emission, which traces cold interstellar gas, than with the 24 μm emission. Furthermore, the L(8)/L(250) ratio is more tightly correlated with the 3.6 μm emission, a tracer of evolved stellar populations and stellar mass, than with a combination of Hα and 24 μm emission, a tracer of SFR. The L(8)/L(24) ratio is highly depressed in 24 μm luminous regions, which correlate with known H II regions. We also compare our results with the dust emission models by Draine & Li. We confirm that the depression of 8 μm PAH emission near star-forming regions is higher than what is predicted by models; this is possibly an effect of increased stellar radiation from young stars destroying the dust grains responsible for the 8 μm emission as already suggested by other authors. We find that the majority of the 8 μm emission is fully consistent with heating by the diffuse interstellar medium, similar to what recently determined for the dust emission in M31 by Draine et al. We also find that the fraction of 8 μm emission associated with the diffuse

  13. IDENTIFYING LUMINOUS ACTIVE GALACTIC NUCLEI IN DEEP SURVEYS: REVISED IRAC SELECTION CRITERIA

    SciTech Connect

    Donley, J. L.; Koekemoer, A. M.; Brusa, M.; Salvato, M.; Capak, P.; Cardamone, C. N.; Civano, F.; Ilbert, O.; Impey, C. D.; Kartaltepe, J. S.; Miyaji, T.; Sanders, D. B.; Trump, J. R.

    2012-04-01

    Spitzer/IRAC selection is a powerful tool for identifying luminous active galactic nuclei (AGNs). For deep IRAC data, however, the AGN selection wedges currently in use are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGNs and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high-redshift star-forming galaxies selected via the BzK, distant red galaxy, Lyman-break galaxy, and submillimeter galaxy criteria. At QSO luminosities of log L{sub 2-10keV}(erg s{sup -1}) {>=}44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 38% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 52% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log N{sub H} (cm{sup -2}) = 23.5 {+-} 0.4). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGNs, it is incomplete to low-luminosity and host-dominated AGNs.

  14. ASAS-SN Discovery of Two Probable Luminous Supernovae in Mrk 0283a and 2MASX J14021617+3339415

    NASA Astrophysics Data System (ADS)

    Masi, G.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Danilet, A. B.; Simonian, G.; Basu, U.; Beacom, J. F.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Brimacombe, J.; Falco, E.; Wozniak, P. R.; Szczygiel, D.; Pojmanski, G.; Fernandez, J. M.; Kiyota, S.; Nicholls, B.; Nicolas, J.

    2015-07-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered two luminous new transient sources, most likely supernovae, in the galaxies Mrk 0283a and 2MASX J14021617+3339415.

  15. Primeval galaxies and cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Szalay, Alexander S.

    1987-01-01

    In the context of the cold dark matter theory for the large-scale matter distribution, the onset of galaxy formation is a gradual process, with star formation being initiated at z = about 10 and reaching a peak for luminous galaxies at z = about 1. The mass function of galaxy cores matches the observed quasar luminosity function at z = 2-3. Primeval galaxies are envisaged as a collection of many interacting and merging clumps, attaining a peak luminosity that is an order of magnitude below that achieved in models in which galaxy formation is initiated abruptly. Hence, ongoing searches for primeval galaxies would not necessarily have been successful unless they are designed to find moderately low-luminosity, low-surface-brigtness extended objects at low redshift.

  16. Multimedia Model for Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs in Lake Michigan

    PubMed Central

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) contamination in the U.S. Great Lakes has long been of concern, but information regarding the current sources, distribution, and fate of PAH contamination is lacking, and very little information exists for the potentially more toxic nitro-derivatives of PAHs (NPAHs). This study uses fugacity, food web, and Monte Carlo models to examine 16 PAHs and five NPAHs in Lake Michigan, and to derive PAH and NPAH emission estimates. Good agreement was found between predicted and measured PAH concentrations in air, but concentrations in water and sediment were generally under-predicted, possibly due to incorrect parameter estimates for degradation rates, discharges to water, or inputs from tributaries. The food web model matched measurements of heavier PAHs (≥5 rings) in lake trout, but lighter PAHs (≤4 rings) were overpredicted, possibly due to overestimates of metabolic half-lives or gut/gill absorption efficiencies. Derived PAH emission rates peaked in the 1950s, and rates now approach those in the mid-19th century. The derived emission rates far exceed those in the source inventories, suggesting the need to reconcile differences and reduce uncertainties. Although additional measurements and physiochemical data are needed to reduce uncertainties and for validation purposes, the models illustrate the behavior of PAHs and NPAHs in Lake Michigan, and they provide useful and potentially diagnostic estimates of emission rates. PMID:25373871

  17. Apparent speed increases at low luminance

    PubMed Central

    Vaziri-Pashkam, Maryam; Cavanagh, Patrick

    2009-01-01

    To investigate the effect of luminance on apparent speed, subjects adjusted the speed of a low-luminance rotating grating (0.31 cd/m2) to match that of a high-luminance one (1260 cd/m2). Above 4 Hz, subjects overestimated the speed of the low-luminance grating. This overestimation increased as a function of temporal rate and reached 30% around 10 Hz temporal rates. The speed overestimation became significant once the lower luminance was 2.4 log units lower than the high luminance comparison. Next the role of motion smear in speed overestimation was examined. First it was shown that the length of the perceived motion smear increased at low luminances. Second, the length of the visible smear was manipulated by changing the presentation time of the stimuli. Speed overestimation was reduced at shorter presentation times. Third the speed of a blurred stimulus was compared to a stimulus with sharp edges and the blurred stimulus was judged to move faster. These results indicate that the length of motion smear following a target contributes to its perceived speed and that this leads to speed overestimation at low luminance where motion traces lengthen because of increased persistence. PMID:19146275

  18. Dusty Massive Stars: the Origin of the Luminous Optical Transient in M85

    NASA Astrophysics Data System (ADS)

    Prieto, J. L.; Kistler, M. D.; Stanek, K. Z.; Thompson, T. A.; Kochanek, C. S.; Beacom, J. F.

    2008-07-01

    We report analysis of pre-discovery archival Spitzer data of the luminous transient in the Virgo galaxy M85 (Kulkarni et al. 2007, Nature, 447, 458; Pastorello et al. 2007, Nature, 449, 1) obtained on UT Dec. 28.72, 2005 (PI: Andreas Zezas), 8.8 days before the optical discovery of the transient reported by the KAIT supernova search (Jan 6.6, 2006).

  19. Observing PAH Hydrogenation with Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Cassidy, A. M.; Nilsson, L.; Balog, R.; Thrower, J.; Jorgensen, B.; Hornekaer, L.

    2011-05-01

    The interaction between thin films of polycyclic aromatic hydrocarbons (PAHs) and atomic H has been studied using scanning tunneling microscopy (STM). Observational evidence suggests that hydrogenated PAHs are located in regions of the interstellar medium (ISM) where there are high concentrations of molecular hydrogen (H2)1. It has previously been postulated that hydrogenated PAHs act as catalysts for the formation of H22. While many studies have focused on the role of ionic PAHs in the formation of H23, here we consider the role of neutral species. Neutral PAHs are expected to be stable and to condense on grain surfaces present in dense interstellar clouds, in regions of low UV flux4. PAH molecules were deposited in thin films under ultra high vacuum (UHV) conditions. Monolayer films were subsequently characterised using STM, at liquid N2 temperatures. The films were then exposed to thermally-cracked atomic H and were again characterised using STM. Contrast in the STM images showed submolecular changes to the electronic structure of the PAH molecules only after exposure to atomic H. This suggests the formation of superhydrogenated species. DFT calculations have predicted that such superhydrogenated species are stable and can act as catalysts for the formation of H2 through abstraction reactions5. Complimentary thermal desorption experiments support these findings.

  20. Diurnal and nocturnal measurements of PAH, nitro-PAH, and oxy-PAH compounds in atmospheric particulate matter of a sugar cane burning region

    NASA Astrophysics Data System (ADS)

    Souza, Kely F.; Carvalho, Lilian R. F.; Allen, Andrew G.; Cardoso, Arnaldo A.

    2014-02-01

    Polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, and oxy-PAHs were studied in the atmospheric particulate matter of a subtropical rural region (São Paulo State, Brazil) affected by emissions from sugar cane burning. Diurnal and nocturnal samples were collected from May to June of 2010. In general, average PAH concentrations were significantly higher at night, suggesting that the compounds were predominantly emitted to the atmosphere during biomass burning (which was mainly performed at night). The maximum average PAH concentration was found for benzo[b]fluoranthene at night (2.9 ± 5.4 ng m-3). Among the nitro-PAH compounds, the highest average concentrations were obtained for 9-nitrophenanthrene in diurnal and nocturnal samples (1.5 ± 1.2 and 1.3 ± 2.1 ng m-3, respectively). In contrast to the PAH and nitro-PAH compounds, the oxy-PAHs could not be directly associated with sugar cane burning. The most abundant oxy-PAH compound was benzanthrone (1.6 ± 1.3 ng m-3) at night, followed by 9,10-anthraquinone (1.1 ± 0.9 ng m-3) and 9-fluorenone (0.4 ± 0.1 ng m-3) during the day. A correlation matrix was used to explore the origins of the different compounds. The data suggested that during the daytime, direct emissions (mainly in vehicle exhaust) contributed to the presence of PAHs, nitro-PAHs, and oxy-PAHs in air. Photochemical production also appeared to be a source of the majority of nitro-PAHs and oxy-PAHs, while photolysis could have contributed to removal of the nitro-PAHs during the daytime. At night, sugar cane burning emissions were the primary source of the PAHs and nitro-PAHs, with additional sources also contributing to the levels of oxy-PAHs in the atmosphere.

  1. Luminous efficiency functions at higher intensities

    NASA Astrophysics Data System (ADS)

    Harrington, Lawrence Kent

    Two psychophysical measurement techniques, flicker photometry and successive heterochromatic brightness matching, were used to measure changes in luminance efficiency functions with increasing levels of light adaptation. Both measurement techniques were performed using the same optical system and the same seven healthy adults as subjects. Measurements were taken at four reference stimulus intensities, 1, 10, 100 and 1000 foot-lamberts. Luminous efficiency was found to depend on both the technique and the reference stimulus intensity with which the measurements were taken. For heterochromatic brightness matching, luminous efficiency increased for longer wavelengths as reference intensity increased. Peak luminous efficiency shifted from approximately 540nm to greater than 600nm with increasing intensity for all seven subjects. Peak luminous efficiency was constant for flicker photometry across all intensities but the function narrowed slightly at 100 foot-lamberts.

  2. Urban sprawl leaves its PAH signature

    USGS Publications Warehouse

    Van Metre, P.C.; Mahler, B.J.; Furlong, E.T.

    2000-01-01

    The increasing vehicle traffic associated with urban sprawl in the United States is frequently linked to degradation of air quality, but its effect on aquatic sediment is less well-recognized. This study evaluates trends in PAHs, a group of contaminants with multiple urban sources, in sediment cores from 10 reservoirs and lakes in six U.S. metropolitan areas. The watersheds chosen represent a range in degree and age of urbanization. Concentrations of PAHs in all 10 reservoirs and lakes increased during the past 20-40 years. PAH contamination of the most recently deposited sediment at all sites exceeded sediment-quality guidelines established by Environment Canada, in some cases by several orders of magnitude. These results add a new chapter to the story told by previous coring studies that reported decreasing concentrations of PAHs after reaching highs in the 1950s. Concurrent with the increase in concentrations is a change in the assemblage of PAHs that indicates the increasing trends are driven by combustion sources. The increase in PAH concentrations tracks closely with increases in automobile use, even in watersheds that have not undergone substantial changes in urban land-use levels since the 1970s.The increasing vehicle traffic associated with urban sprawl in the United States is frequently linked to degradation of air quality, but its effect on aquatic sediment is less well-recognized. This study evaluates trends in PAHs, a group of contaminants with multiple urban sources, in sediment cores from 10 reservoirs and lakes in six U.S. metropolitan areas. The watersheds chosen represent a range in degree and age of urbanization. Concentrations of PAHs in all 10 reservoirs and lakes increased during the past 20-40 years. PAH contamination of the most recently deposited sediment at all sites exceeded sediment-quality guidelines established by Environment Canada, in some cases by several orders of magnitude. These results add a new chapter to the story told by

  3. Local Group dwarf galaxies: nature and nurture

    NASA Astrophysics Data System (ADS)

    Sawala, Till; Scannapieco, Cecilia; White, Simon

    2012-02-01

    We investigate the formation and evolution of dwarf galaxies in a high-resolution, hydrodynamical cosmological simulation of a Milky Way sized halo and its environment. Our simulation includes gas cooling, star formation, supernova feedback, metal enrichment and ultraviolet heating. In total, 90 satellites and more than 400 isolated dwarf galaxies are formed in the simulation, allowing a systematic study of the internal and environmental processes that determine their evolution. We find that 95 per cent of satellite galaxies are gas free at z= 0, and identify three mechanisms for gas loss: supernova feedback, tidal stripping and photoevaporation due to re-ionization. Gas-rich satellite galaxies are only found with total masses above ˜5 × 109 M⊙. In contrast, for isolated dwarf galaxies, a total mass of ˜109 M⊙ constitutes a sharp transition; less massive galaxies are predominantly gas free at z= 0, more massive, isolated dwarf galaxies are often able to retain their gas. In general, we find that the total mass of a dwarf galaxy is the main factor which determines its star formation, metal enrichment and its gas content, but that stripping may explain the observed difference in gas content between field dwarf galaxies and satellites with total masses close to 109 M⊙. We also find that a morphological transformation via tidal stripping of infalling, luminous dwarf galaxies whose dark matter is less concentrated than their stars cannot explain the high total mass-to-light ratios of the faint dwarf spheroidal galaxies.

  4. Luminous and variable stars in M31 and M33. II. Luminous blue variables, candidate LBVs, Fe II emission line stars, and other supergiants

    SciTech Connect

    Humphreys, Roberta M.; Davidson, Kris; Weis, Kerstin; Bomans, D. J.; Burggraf, Birgitta E-mail: kweis@astro.rub.de

    2014-07-20

    An increasing number of non-terminal eruptions are being found in the numerous surveys for optical transients. Very little is known about these giant eruptions, their progenitors and their evolutionary state. A greatly improved census of the likely progenitor class, including the most luminous evolved stars, the luminous blue variables (LBVs), and the warm and cool hypergiants is now needed for a complete picture of the final pre-supernova stages of very massive stars. We have begun a survey of the evolved and unstable luminous star populations in several nearby resolved galaxies. In this second paper on M31 and M33, we review the spectral characteristics, spectral energy distributions, circumstellar ejecta, and evidence for mass loss for 82 luminous and variable stars. We show that many of these stars have warm circumstellar dust including several of the Fe II emission line stars, but conclude that the confirmed LBVs in M31 and M33 do not. The confirmed LBVs have relatively low wind speeds even in their hot, quiescent or visual minimum state compared to the B-type supergiants and Of/WN stars which they spectroscopically resemble. The nature of the Fe II emission line stars and their relation to the LBV state remains uncertain, but some have properties in common with the warm hypergiants and the sgB[e] stars. Several individual stars are discussed in detail. We identify three possible candidate LBVs and three additional post-red supergiant candidates. We suggest that M33-013406.63 (UIT301,B416) is not an LBV/S Dor variable, but is a very luminous late O-type supergiant and one of the most luminous stars or pair of stars in M33.

  5. Integral field spectroscopy of QSO host galaxies

    NASA Astrophysics Data System (ADS)

    Jahnke, K.; Wisotzki, L.; Sánchez, S. F.; Christensen, L.; Becker, T.; Kelz, A.; Roth, M. M.

    2004-02-01

    We describe a project to study the state of the ISM in ˜20 low redshift (z<0.3) QSO host galaxies observed with the PMAS integral field spectrograph. We describe the development of the method to access the stellar and gas components of the spectrum without the strong nuclear emission, in order to access the host galaxy properties in the central region. It shows that integral field spectroscopy promises to be very efficient in studying the gas distribution and its velocity field, and also the spatially resolved stellar population in the host galaxies of luminous AGN.

  6. Rebuilding Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Major Observing Programme Leads to New Theory of Galaxy Formation Summary Most present-day large galaxies are spirals, presenting a disc surrounding a central bulge. Famous examples are our own Milky Way or the Andromeda Galaxy. When and how did these spiral galaxies form? Why do a great majority of them present a massive central bulge? An international team of astronomers [1] presents new convincing answers to these fundamental questions. For this, they rely on an extensive dataset of observations of galaxies taken with several space- and ground-based telescopes. In particular, they used over a two-year period, several instruments on ESO's Very Large Telescope. Among others, their observations reveal that roughly half of the present-day stars were formed in the period between 8,000 million and 4,000 million years ago, mostly in episodic burst of intense star formation occurring in Luminous Infrared Galaxies. From this and other evidence, the astronomers devised an innovative scenario, dubbed the "spiral rebuilding". They claim that most present-day spiral galaxies are the results of one or several merger events. If confirmed, this new scenario could revolutionise the way astronomers think galaxies formed. PR Photo 02a/05: Luminosity - Oxygen Abundance Relation for Galaxies (VLT) PR Photo 02b/05: The Spiral Rebuilding Scenario A fleet of instruments How and when did galaxies form? How and when did stars form in these island universes? These questions are still posing a considerable challenge to present-day astronomers. Front-line observational results obtained with a fleet of ground- and space-based telescopes by an international team of astronomers [1] provide new insights into these fundamental issues. For this, they embarked on an ambitious long-term study at various wavelengths of 195 galaxies with a redshift [2] greater than 0.4, i.e. located more than 4000 million light-years away. These galaxies were studied using ESO's Very Large Telescope, as well as the

  7. Moderately luminous Type II supernovae

    NASA Astrophysics Data System (ADS)

    Inserra, C.; Pastorello, A.; Turatto, M.; Pumo, M. L.; Benetti, S.; Cappellaro, E.; Botticella, M. T.; Bufano, F.; Elias-Rosa, N.; Harutyunyan, A.; Taubenberger, S.; Valenti, S.; Zampieri, L.

    2013-07-01

    Context. Core-collapse Supernovae (CC-SNe) descend from progenitors more massive than about 8 M⊙. Because of the young age of the progenitors, the ejecta may eventually interact with the circumstellar medium (CSM) via highly energetic processes detectable in the radio, X-ray, ultraviolet (UV) and, sometimes, in the optical domains. Aims: In this paper we present ultraviolet, optical and near infrared observations of five Type II SNe, namely SNe 2009dd, 2007pk, 2010aj, 1995ad, and 1996W. Together with few other SNe they form a group of moderately luminous Type II events. We investigate the photometric similarities and differences among these bright objects. We also attempt to characterise them by analysing the spectral evolutions, in order to find some traces of CSM-ejecta interaction. Methods: We collected photometry and spectroscopy with several telescopes in order to construct well-sampled light curves and spectral evolutions from the photospheric to the nebular phases. Both photometry and spectroscopy indicate a degree of heterogeneity in this sample. Modelling the data of SNe 2009dd, 2010aj and 1995ad allows us to constrain the explosion parameters and the properties of the progenitor stars. Results: The light curves have luminous peak magnitudes (-16.95 < MB < -18.70). The ejected masses of 56Ni for three SNe span a wide range of values (2.8 × 10-2 M⊙ < M(56Ni)< 1.4 × 10-1 M⊙), while for a fourth (SN 2010aj) we could determine a stringent upper limit (7 × 10-3 M⊙). Clues of interaction, such as the presence of high velocity (HV) features of the Balmer lines, are visible in the photospheric spectra of SNe 2009dd and 1996W. For SN 2007pk we observe a spectral transition from a Type IIn to a standard Type II SN. Modelling the observations of SNe 2009dd, 2010aj and 1995ad with radiation hydrodynamics codes, we infer kinetic plus thermal energies of about 0.2-0.5 foe, initial radii of 2-5 × 1013 cm and ejected masses of ~5.0-9.5 M⊙. Conclusions: These

  8. Empirical measurements of massive galaxy and active galaxy evolution

    NASA Astrophysics Data System (ADS)

    Cool, Richard Jacob

    Using new wide-area galaxy redshift surveys, we explore the evolution of the most massive galaxies and the most luminous quasars in the universe over much of cosmic history. Quasars and massive red galaxies both are extremes; the most luminous high redshift quasars likely play a key role in shaping their nearby environment and the universe as a whole. The most massive galaxies represent the end points of galaxy evolution and contain a fossil record of the galaxy evolution process. Using the AGES redshift survey completed with the MMT and the Hectospec multi- object spectrograph as well as new z -band observations of the NOAO Deep Wide- Field Survey Bootes field, we report the discovery of three new quasars at z > 5. We explore new mid-infrared selection in light of these three new quasars and place constraints on the slope of the high-redshift quasar luminosity function. At lower redshift (0.1< z <0.4) we measure the scatter in red galaxy colors around the optical red-sequence using imaging and spectroscopy from the Sloan Digital Sky Survey. With our sample of nearly 20,000 massive early-type galaxies ( L [Special characters omitted.] 2.2 L *), we find that the scatter around the color-magnitude relation is quite small in colors studied. Each of three model star formation histories can reproduce the scatter we measure, none of the models produce color distributions matching those observed. We measure the evolution of the LRG luminosity function in the redshift range 0.1< z <0.9. We find that the LRG population has evolved little beyond the passive fading of its stellar populations since z ~ 0.9. The most massive (L > 3 L *) red galaxies have grown by less than 50% (at 99% confidence) since z = 0.9 in stark contrast to the factor of 2 to 4 growth observed in the L * red galaxy population over the same epoch. Finally, we introduce the PRIsm MUlti-object Survey (PRIMUS), a new redshift survey aimed at collecting ~300,000 galaxy spectra over 10 deg 2 to z ~ 1. We

  9. A NEW TEST OF THE STATISTICAL NATURE OF THE BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Lin, Yen-Ting; Ostriker, Jeremiah P.; Miller, Christopher J.

    2010-06-01

    A novel statistic is proposed to examine the hypothesis that all cluster galaxies are drawn from the same luminosity distribution (LD). In such a 'statistical model' of galaxy LD, the brightest cluster galaxies (BCGs) are simply the statistical extreme of the galaxy population. Using a large sample of nearby clusters, we show that BCGs in high luminosity clusters (e.g., L {sub tot} {approx}> 4 x 10{sup 11} h {sup -2} {sub 70} L {sub sun}) are unlikely (probability {<=}3 x 10{sup -4}) to be drawn from the LD defined by all red cluster galaxies more luminous than M{sub r} = -20. On the other hand, BCGs in less luminous clusters are consistent with being the statistical extreme. Applying our method to the second brightest galaxies, we show that they are consistent with being the statistical extreme, which implies that the BCGs are also distinct from non-BCG luminous, red, cluster galaxies. We point out some issues with the interpretation of the classical tests proposed by Tremaine and Richstone (TR) that are designed to examine the statistical nature of BCGs, investigate the robustness of both our statistical test and those of TR against difficulties in photometry of galaxies of large angular size, and discuss the implication of our findings on surveys that use the luminous red galaxies to measure the baryon acoustic oscillation features in the galaxy power spectrum.

  10. Ring Around a Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Telescope Science Institute astronomers are giving the public chances to decide where to aim NASA's Hubble Space Telescope. Guided by 8,000 Internet voters, Hubble has already been used to take a close-up, multi-color picture of the most popular object from a list of candidates, the extraordinary 'polar-ring' galaxy NGC 4650A. Located about 130 million light-years away, NGC 4650A is one of only 100 known polar-ring galaxies. Their unusual disk-ring structure is not yet understood fully. One possibility is that polar rings are the remnants of colossal collisions between two galaxies sometime in the distant past, probably at least 1 billion years ago. What is left of one galaxy has become the rotating inner disk of old red stars in the center. Meanwhile, another smaller galaxy which ventured too close was probably severely damaged or destroyed. The bright bluish clumps, which are especially prominent in the outer parts of the ring, are regions containing luminous young stars, examples of stellar rebirth from the remnants of an ancient galactic disaster. The polar ring appears to be highly distorted. No regular spiral pattern stands out in the main part of the ring, and the presence of young stars below the main ring on one side and above on the other shows that the ring is warped and does not lie in one plane. Determining the typical ages of the stars in the polar ring is an initial goal of our Polar Ring Science Team that can provide a clue to the evolution of this unusual galaxy. The HST exposures were acquired by the Hubble Heritage Team, consisting of Keith Noll, Howard Bond, Carol Christian, Jayanne English, Lisa Frattare, Forrest Hamilton, Anne Kinney and Zolt Levay, and guest collaborators Jay Gallagher (University of Wisconsin-Madison), Lynn Matthews (National Radio Astronomy Observatory-Charlottesville), and Linda Sparke (University of Wisconsin-Madison).

  11. PAH in the laboratory and interstellar space

    NASA Technical Reports Server (NTRS)

    Wdowiak, Thomas J.; Flickinger, Gregory C.; Boyd, David A.

    1989-01-01

    The theory that polycyclic aromatic hydrocarbons (PAHs) are a constituent of the interstellar medium, and a source of the IR emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 microns is being studied using PAH containing acid insoluble residue of the Orgueil CI meteorite and coal tar. FTIR spectra of Orgueil PAH material that has undergone thermal treatment, and a solvent insoluble fraction of coal tar that has been exposed to hydrogen plasma are presented. The UV excided luminescence spectrum of a solvent soluble coal tar film is also shown. Comparison of the lab measurements with observations appears to support the interstellar PAH theory, and shows the process of dehydrogenation expected to take place in the interstellar medium.

  12. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  13. Amphibian responses to photoinduced toxicity of PAHs

    SciTech Connect

    Hatch, A.C.; Burton, G.A. Jr.

    1995-12-31

    Amphibians are essential components of many ecosystems, yet little information exists on their sensitivity to environmental stressors. Recent evidence shows amphibian diversity is declining. Others have suggested this decline is a result of increasing ultraviolet (UV) light levels. Polycyclic aromatic hydrocarbons (PAHs) are widespread pollutants in the aquatic environment and their toxicity is increased in the presence of UV light. Embryos of two frogs (Rana pipiens and Xenopus laevis) were exposed to a PAH, fluoranthene, to evaluate amphibian responses to this common contaminant in the presence of sunlight. Hatching rate and development were measured in field and laboratory exposures at multiple concentrations and varying UV intensities. Hatching rate was relatively unaffected, while newly hatched larvae were sensitive to low (ug/L) concentrations. Response was related to both PAH concentration and UV intensity. Results suggest that PAH contamination in the aquatic environment may contribute to declines in amphibian populations.

  14. Metabolomic analysis to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish

    PubMed Central

    Elie, Marc R.; Choi, Jaewoo; Nkrumah-Elie, Yasmeen M.; Gonnerman, Gregory D.; Stevens, Jan F.; Tanguay, Robert L.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives are ubiquitously present in diesel exhaust, atmospheric particulate matter and soils sampled in urban areas. Therefore, inhalation or non-dietary ingestion of both PAHs and oxy-PAHs are major routes of exposure for people; especially young children living in these localities. While there has been extensive research on the parent PAHs, limited studies exist on the biological effects of oxy-PAHs which have been shown to be more soluble and more mobile in the environment. Additionally, investigations comparing the metabolic responses resulting from parent PAHs and oxy-PAHs exposures have not been reported. To address these current gaps, an untargeted metabolomics approach was conducted to examine the in vivo metabolomic profiles of developing zebrafish (Danio rerio) exposed to 4 µM of benz[a]anthracene (BAA) or benz[a]anthracene-7, 12-dione (BAQ). By integrating multivariate, univariate and pathway analyses, a total of 62 metabolites were significantly altered after 5 days of exposure. The marked perturbations revealed that both BAA and BAQ affect protein biosynthesis, mitochondrial function, neural development, vascular development and cardiac function. Our previous transcriptomic and genomic data were incorporated in this metabolomics study to provide a more comprehensive view of the relationship between PAH and oxy-PAH exposures on vertebrate development. PMID:26001975

  15. Metabolomic analysis to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish.

    PubMed

    Elie, Marc R; Choi, Jaewoo; Nkrumah-Elie, Yasmeen M; Gonnerman, Gregory D; Stevens, Jan F; Tanguay, Robert L

    2015-07-01

    Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives are ubiquitously present in diesel exhaust, atmospheric particulate matter and soils sampled in urban areas. Therefore, inhalation or non-dietary ingestion of both PAHs and oxy-PAHs are major routes of exposure for people; especially young children living in these localities. While there has been extensive research on the parent PAHs, limited studies exist on the biological effects of oxy-PAHs which have been shown to be more soluble and more mobile in the environment. Additionally, investigations comparing the metabolic responses resulting from parent PAHs and oxy-PAHs exposures have not been reported. To address these current gaps, an untargeted metabolomics approach was conducted to examine the in vivo metabolomic profiles of developing zebrafish (Danio rerio) exposed to 4 µM of benz[a]anthracene (BAA) or benz[a]anthracene-7,12-dione (BAQ). By integrating multivariate, univariate and pathway analyses, a total of 63 metabolites were significantly altered after 5 days of exposure. The marked perturbations revealed that both BAA and BAQ affect protein biosynthesis, mitochondrial function, neural development, vascular development and cardiac function. Our previous transcriptomic and genomic data were incorporated in this metabolomics study to provide a more comprehensive view of the relationship between PAH and oxy-PAH exposures on vertebrate development. PMID:26001975

  16. The red/infrared evolution in galaxies - Effect of the stars on the asymptotic giant branch

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Wright, Edward L.

    1987-01-01

    The effect of including the asymptotic giant branch (AGB) population in a spectral synthesis model of galaxy evolution is examined. Stars on the AGB are luminous enough and also evolve rapidly enough to affect the evolution of red and infrared colors in galaxies. The validity of using infrared colors as distance indicators to galaxies is then investigated in detail. It is found that for z of 1 or less infrared colors of model galaxies behave linearly with redshift.

  17. Laboratory Studies of Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  18. Molecular Spectroscopy in Astrophysics: Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A long-term laboratory effort has been undertaken to measure the physical and chemical characteristics of these carbon molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The laboratory results will be discussed as well as the implications for astronomy and for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. We will also present the new generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.

  19. The Cores of Elliptical Galaxies in Coma

    NASA Astrophysics Data System (ADS)

    Lucey, John

    1995-07-01

    The cores of galaxies are astrophysically unique. They canhost high energy nuclei, star formation and perhaps even blackholes. HST observations have established that the cores ofellipticals are related to their global properties, and so canbe used as diagnostics of the physical processes occurring atthe time of formation. HST images of galaxy cores havedistinguished two different types of core luminosity profiles:`soft' and `hard' types. It is suggested that luminous, slowlyrotating galaxies have `soft' cores and the less luminousdisky galaxies have `hard' cores. This can be interpreted interms of a formation scenario based on a merger hierarchy inwhich the low luminosity systems experience highly dissipativemergers, but as the luminous systems are assembled the mergersbecome increasingly stellar. In this picture, the type of corea galaxy generates is intimately related to its evolutionaryhistory, i.e. the degree of interaction/merging experiencedand the availability of cold gas. In turn, this should notonly depend on luminosity but also on the galaxy's localenvironment. Here we propose to test the gaseous/stellarmerger picture by imaging a set of Coma cluster ellipticalsfrom a wide range of cluster radii. In the gas poorenvironment of the cluster core there may be insufficent coldgas for the low luminosity galaxies to form `hard' cores.Similarly, at the cluster turnround radius even luminousgalaxies may have experienced a dissipative core formation andpossess

  20. A search for gravitational lensing among highly luminous quasars - New results

    NASA Astrophysics Data System (ADS)

    Magain, P.; Remy, M.; Surdej, J.; Swings, J.-P.; Smette, A.

    Images of highly luminous QSOs are analyzed to determine whether the gravitational magnification of the background QSO by matter associated with the foreground galaxies accounts for the excess of galaxies in the fields of distant QSOs. Galaxy detection is increased by utilizing red-filter images, 40 taken with the EFOSC at the ESO 3.6-m telescope and 43 taken with a direct CCD camera at the ESO/MPI 2.2-m telescope. The R-magnitude ranges from 22.5 to 23.0 for the sample, for which the number of galaxies is counted by eye, showing 45 galaxies of radio and optical type. The overdensity found is not as pronounced as that of Fugmann (1988) or that of Webster et al. (1988). A systematic subtraction of the point spread function is also described to investigate the idea that some galaxies responsible for the QSO light magnification are within the inner 3-arcsec circle. The galaxies very close to the line-of-sight are theorized to contribute significantly to the magnification of these QSOs.

  1. The distribution of dark and luminous matter inferred from extended rotation curves

    NASA Astrophysics Data System (ADS)

    Bottema, Roelof; Pestaña, José Luis G.

    2015-04-01

    A better understanding of the formation of mass structures in the Universe can be obtained by determining the amount and distribution of dark and luminous matter in spiral galaxies. To investigate such matters a sample of 12 galaxies, most with accurate distances, has been composed of which the luminosities are distributed regularly over a range spanning two and a half orders of magnitude. Of the observed high quality and extended rotation curves of these galaxies decompositions have been made, for four different schemes, each with two free parameters. For a `maximum disc fit' the rotation curves can be well matched, yet a large range of mass-to-light (M/L) ratios for the individual galaxies is required. For the alternative gravitational theory of MOND (Modified Newtonian Dynamics) the rotation curves can be explained if the fundamental parameter associated with MOND is allowed as a free parameter. Fixing that parameter leads to a disagreement between the predicted and observed rotation curves for a few galaxies. When cosmologically motivated NFW dark matter haloes are assumed, the rotation curves for the least massive galaxies can, by no means, be reproduced; cores are definitively preferred over cusps. Finally, decompositions have been made for a pseudo-isothermal halo combined with a universal M/L ratio. For the latter, the light of each galactic disc and bulge has been corrected for extinction and has been scaled by the effect of stellar population. This scheme can successfully explain the observed rotations and leads to submaximum disc mass contributions. Properties of the resulting dark matter haloes are described and a ratio between dark and baryonic mass of ˜9 for the least, and of ˜5, for the most luminous galaxies has been determined, at the outermost measured rotation.

  2. Optical coherence tomography investigations of ceramic lumineers

    NASA Astrophysics Data System (ADS)

    Fernandes, Luana O.; Graça, Natalia D. R. L.; Melo, Luciana S. A.; Silva, Claudio H. V.; Gomes, Anderson S. L.

    2016-02-01

    Lumineers are veneer laminates used as an alternative for aesthetic dental solutions of the highest quality, but the only current means of its performance assessment is visual inspection. The objective of this study was to use the Optical Coherence Tomography (OCT) technique working in spectral domain to analyze in vivo in a single patient, 14 lumineers 180 days after cementation. It was possible to observe images in various kinds of changes in the cementing line and the laminate. It was concluded that the OCT is an effective and promising method to clinical evaluation of the cementing line in lumineers.

  3. Dust near luminous ultraviolet stars

    NASA Technical Reports Server (NTRS)

    Henry, Richard C.

    1993-01-01

    This report describes research activities related to the Infrared Astronomical Satellite (IRAS) sky survey. About 745 luminous stars were examined for the presence of interstellar dust heated by a nearby star. The 'cirrus' discovered by IRAS is thermal radiation from interstellar dust at moderate and high galactic latitudes. The IRAS locates the dust which must (at some level) scatter ultraviolet starlight, although it was expected that thermal emission would be found around virtually every star, most stars shown no detectable emission. And the emission found is not uniform. It is not that the star is embedded in 'an interstellar medium', but rather what is found are discrete clouds that are heated by starlight. An exception is the dearth of clouds near the very hottest stars, implying that the very hottest stars play an active role with respect to destroying or substantially modifying the dust clouds over time. The other possibility is simply that the hottest stars are located in regions lacking in dust, which is counter-intuitive. A bibliography of related journal articles is attached.

  4. Dust near luminous ultraviolet stars

    NASA Technical Reports Server (NTRS)

    Henry, Richard C.

    1992-01-01

    More than 700 luminous stars in the infrared astronomical satellite (IRAS) Skyflux plates were examined for the presence of dust heated by a nearby star. This dust may be distinguished from the ubiquitous cool cirrus by its higher temperature and thus enhanced 60 micron emission. More than 120 dust clouds were found around only 106 of the stars with a volume filling factor of 0.006 and an intercloud separation of 46 pc. A region of dust smoothly distributed through the volume of space heated by the star could not be found and hence an upper limit of 0.05 cm(exp -3) is placed on the equivalent gas density in the intercloud regions. The clouds have an average density of 0.22 cm(exp -3) and a radius of 1.9 pc, albeit with wide variations in their properties. Two different scale heights of 140 and 540 pc were found. This was interpreted as evidence for different distributions of dust in and out of the galactic disk.

  5. Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection

    NASA Astrophysics Data System (ADS)

    Banfield, J. K.; Wong, O. I.; Willett, K. W.; Norris, R. P.; Rudnick, L.; Shabala, S. S.; Simmons, B. D.; Snyder, C.; Garon, A.; Seymour, N.; Middelberg, E.; Andernach, H.; Lintott, C. J.; Jacob, K.; Kapińska, A. D.; Mao, M. Y.; Masters, K. L.; Jarvis, M. J.; Schawinski, K.; Paget, E.; Simpson, R.; Klöckner, H.-R.; Bamford, S.; Burchell, T.; Chow, K. E.; Cotter, G.; Fortson, L.; Heywood, I.; Jones, T. W.; Kaviraj, S.; López-Sánchez, Á. R.; Maksym, W. P.; Polsterer, K.; Borden, K.; Hollow, R. P.; Whyte, L.

    2015-11-01

    We present results from the first 12 months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170 000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Galaxy Zoo uses 1.4 GHz radio images from both the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) and the Australia Telescope Large Area Survey (ATLAS) in combination with mid-infrared images at 3.4 μm from the Wide-field Infrared Survey Explorer (WISE) and at 3.6 μm from the Spitzer Space Telescope. We present the early analysis of the WISE mid-infrared colours of the host galaxies. For images in which there is >75 per cent consensus among the Radio Galaxy Zoo cross-identifications, the project participants are as effective as the science experts at identifying the host galaxies. The majority of the identified host galaxies reside in the mid-infrared colour space dominated by elliptical galaxies, quasi-stellar objects and luminous infrared radio galaxies. We also find a distinct population of Radio Galaxy Zoo host galaxies residing in a redder mid-infrared colour space consisting of star-forming galaxies and/or dust-enhanced non-star-forming galaxies consistent with a scenario of merger-driven active galactic nuclei (AGN) formation. The completion of the full Radio Galaxy Zoo project will measure the relative populations of these hosts as a function of radio morphology and power while providing an avenue for the identification of rare and extreme radio structures. Currently, we are investigating candidates for radio galaxies with extreme morphologies, such as giant radio galaxies, late-type host galaxies with extended radio emission and hybrid morphology radio sources.

  6. Far-ir Pah Spectroscopy And The Identification Of An Individual Astronomical Pah Molecule

    NASA Astrophysics Data System (ADS)

    Boersma, Christiaan; Allamandola, L. J.; Bauschlicher, C. W.; Ricca, A.; Mattioda, A. L.; Hudgins, D.; Cami, J.; Peeters, E.; Sánchez de Armas, F.; Puerta Saborido, G.

    2010-05-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are widespread across the Universe and influence many stages of the Galactic lifecycle. The presence of PAHs has been well established and the rich mid-IR PAH spectrum is now commonly used as a probe into inter(stellar) environments. With a new spectral window opening up in the far-IR, the quest for identifying a unique member of the interstellar PAH family has begun. To guide this search, the far-IR (> 20 μm) spectra of different sets of PAHs are investigated using the NASA Ames PAH IR Spectroscopic Database - a large coherent set (> 600 spectra) of laboratory measured and DFT computed infrared spectra of PAHs from C10H8 to C130H28. These sets explore the influence of size, shape, charge and composition on the far-IR PAH spectrum. The far-IR is the domain of the so- called `drumhead’ modes and other molecular vibrations involving low order bending vibrations of the carbon skeleton as a whole. As for drums, these modes are considered to be very molecule and shape specific and promise to be a key diagnostic for specific PAHs. Here, the sensitivity of these `drumhead’ modes to size and shape is assessed by comparing the frequencies of the lowest drumhead modes of a family of circular shaped (the coronene `family') and rhombus shaped (the pyrene `family') PAH molecules. From the study of the far-IR PAH spectra of different sets as well as from the analysis of the `drumhead’ modes, some suggestions for an observing strategy are made.

  7. SPATIALLY RESOLVED POLYCYCLIC AROMATIC HYDROCARBON EMISSION FEATURES IN NEARBY, LOW METALLICITY, STAR-FORMING GALAXIES

    SciTech Connect

    Haynes, Korey; Cannon, John M.; Skillman, Evan D.; Gehrz, Robert; Jackson, Dale C. E-mail: khaynes5@gmu.ed E-mail: gehrz@astro.umn.ed

    2010-11-20

    Low-resolution, mid-infrared Spitzer/IRS spectral maps are presented for three nearby, low-metallicity dwarf galaxies (NGC 55, NGC 3109, and IC 5152) for the purpose of examining the spatial distribution and variation of polycyclic aromatic hydrocarbon (PAH) emission. The sample straddles a metallicity of 12 + log(O/H) {approx} 8, a transition point below which PAH intensity empirically drops and the character of the interstellar medium changes. We derive quantitative radiances of PAH features and atomic lines on both global and spatially resolved scales. The Spitzer spectra, combined with extensive ancillary data from the UV through the mid-infrared, allow us to examine changes in the physical environments and in PAH feature radiances down to a physical scale of {approx}50 pc. We discuss correlations between various PAH emission feature and atomic line radiances. The (6.2 {mu}m)/(11.3 {mu}m), (7.7 {mu}m)/(11.3 {mu}m), (8.6 {mu}m)/(11.3 {mu}m), (7.7 {mu}m)/(6.2 {mu}m), and (8.6 {mu}m)/(6.2 {mu}m) PAH radiance ratios are found to be independent of position across all three galaxies, although the ratios do vary from galaxy to galaxy. As seen in other galaxies, we find no variation in the grain size distribution as a function of local radiation field strength. Absolute PAH feature intensities as measured by a ratio of PAH/(24 {mu}m) radiances are seen to vary both positionally within a given galaxy and from one galaxy to another when integrated over the full observed extent of each system. We examine direct comparisons of CC mode PAH ratios (7.7 {mu}m)/(6.2 {mu}m) and (8.6 {mu}m)/(6.2 {mu}m) to the mixed (CC/CH) mode PAH ratio (7.7 {mu}m)/(11.3 {mu}m). We find little variation in either mode and no difference in trends between modes. While the local conditions change markedly over the observed regions of these galaxies, the properties of PAH emission show a remarkable degree of uniformity.

  8. Planning and Measuring Luminance Contrast in Staircases.

    PubMed

    Houck, Leif D; Gundersen, Kristoffer; Strengen, Ola

    2016-01-01

    Norwegian legislation has requirements concerning luminance contrast for different elements in staircases. This paper investigates how architects work to meet the requirements, how to measure the actual built luminance contrasts and finally 21 staircases are measured using two different methods. The results show that some architects do not reflect on luminance contrasts at all, some use their "experience" and some try to measure the reflectance value of different materials during planning. The investigations also reveal that there is not any official predefined way to control luminance contrast, and this investigation shows that different approaches will give different results. To perform the measuring of the built staircases, it has been necessary to develop a defined measuring method. The results of the measuring generally shows that only a few of the staircases studied fully meet the legislation requirements. PMID:27534331

  9. SUBMILLIMETER GALAXY NUMBER COUNTS AND MAGNIFICATION BY GALAXY CLUSTERS

    SciTech Connect

    Lima, Marcos; Jain, Bhuvnesh; Devlin, Mark; Aguirre, James

    2010-07-01

    We present an analytical model that reproduces measured galaxy number counts from surveys in the wavelength range of 500 {mu}m-2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function that has been gravitationally lensed by galaxy clusters in the mass range 10{sup 13}-10{sup 15} M{sub sun}. This simple model reproduces both the low-flux and the high-flux end of the number counts reported by the BLAST, SCUBA, AzTEC, and South Pole Telescope (SPT) surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clusters (magnification factors of 10-30). This interpretation implies that submillimeter (submm) and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submm galaxies detected at wavelengths larger than 500 {mu}m lie at redshifts greater than 2.

  10. Eta Carinae and Other Luminous Blue Variables

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.

    2006-01-01

    Luminous Blue Variables (LBVs) are believed to be evolved, extremely massive stars close to the Eddington Limit and hence prone to bouts of large-scale, unstable mass loss. I discuss current understanding of the evolutionary state of these objects, the role duplicity may play and known physical characteristics of these stars using the X-ray luminous LBVs Eta Carinae and HD 5980 as test cases.

  11. Simultaneous chromatic and luminance human electroretinogram responses

    PubMed Central

    Parry, Neil R A; Murray, Ian J; Panorgias, Athanasios; McKeefry, Declan J; Lee, Barry B; Kremers, Jan

    2012-01-01

    The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic–achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats’ ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing. PMID:22586211

  12. Galaxy dynamics in clustered environments

    NASA Astrophysics Data System (ADS)

    Pereira, Maria J. R. R.

    Galaxy orientations have been studied statistically for over 70 years now, but it is only recently that alignments have been found on scales larger than those of close interacting pairs. Large scale alignments between galaxies and their surrounding tidal fields are expected to occur during formation, but what happens when these galaxies fall into larger systems? Can their orientations tell us anything about the accretion process itself? In this dissertation I will focus on the radial alignment of satellite galaxies, in which a satellite's long axis points preferentially toward the center of its host. I present observational evidence for this type of galaxy alignment in the SDSS DR3 using a sample of X-ray selected massive clusters. Then, using results from N-body cosmological simulations, I will argue that this effect is the result of a secular tidal interaction between the galaxies and their host potential. The analysis shows that subhalos are effectively torqued by their host throughout their orbits, so that their major axes tend to be aligned with the gradient of the host potential. The significant discrepancy between the magnitude of the effect as seen in these simulations and that detected in observations motivates the work of the next chapter, where I perform numerical experiments on idealized, high resolution N-body models of elliptical galaxies. These experiments show that the more centrally concentrated luminous components of galaxies take longer to react to the external torque, and, in the particular case of mildly eccentric orbits, their orientations can figure rotate in periodic patterns that are not radially aligned on average. The mechanism is more effective on galaxies that have larger triaxialities, but the overall effect of torquing is to make galaxies rounder, since radially misaligned galaxies tend to become more spherical as they are torqued towards equilibrium. In the last chapter, I briefly discuss the impact of these results for galaxy

  13. The Assembly of Galaxy Clusters

    SciTech Connect

    Berrier, Joel C.; Stewart, Kyle R.; Bullock, James S.; Purcell, Chris W.; Barton, Elizabeth J.; Wechsler, Risa H.

    2008-05-16

    We study the formation of fifty-three galaxy cluster-size dark matter halos (M = 10{sup 14.0-14.76} M{sub {circle_dot}}) formed within a pair of cosmological {Lambda}CDM N-body simulations, and track the accretion histories of cluster subhalos with masses large enough to host {approx} 0.1L{sub *} galaxies. By associating subhalos with cluster galaxies, we find the majority of galaxies in clusters experience no 'pre-processing' in the group environment prior to their accretion into the cluster. On average, {approx} 70% of cluster galaxies fall into the cluster potential directly from the field, with no luminous companions in their host halos at the time of accretion; and less than {approx} 12% are accreted as members of groups with five or more galaxies. Moreover, we find that cluster galaxies are significantly less likely to have experienced a merger in the recent past ({approx}< 6 Gyr) than a field halo of the same mass. These results suggest that local, cluster processes like ram-pressure stripping, galaxy harassment, or strangulation play the dominant role in explaining the difference between cluster and field populations at a fixed stellar mass; and that pre-evolution or past merging in the group environment is of secondary importance for setting cluster galaxy properties for most clusters. The accretion times for z = 0 cluster members are quite extended, with {approx} 20% incorporated into the cluster halo more than 7 Gyr ago and {approx} 20% within the last 2 Gyr. By comparing the observed morphological fractions in cluster and field populations, we estimate an approximate time-scale for late-type to early-type transformation within the cluster environment to be {approx} 6 Gyr.

  14. ROSAT observations of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Pietsch, W.; Truemper, J.

    1993-12-01

    First results of pointed and All Sky Survey observations of galaxies with the X-ray observatory satellite ROSAT are reported. During observations of the Magellanic Clouds and the Andromeda galaxy new super-soft X-ray sources have been detected. This new class of luminous X-ray sources may help to solve the millisecond pulsar progenitor problem. Due to the improved sensitivity and longer observation times of ROSAT new X-ray point sources have been resolved in several nearby galaxies. The diffuse emission of the Large Magellanic Cloud that was already reported by HEAO 2 (EINSTEIN) has been mapped in detail. It shows a lot of fine structure and temperatures around 5 x 106 K. The improved low energy response of ROSAT led to the discovery of 106 K gas from the spiral galaxy M101 and the halo of the starburst galaxy NGC 253. No diffuse emission was detected from the halo of the edge-on spiral galaxy NGC 5907.

  15. EXTENDED HOT HALOS AROUND ISOLATED GALAXIES OBSERVED IN THE ROSAT ALL-SKY SURVEY

    SciTech Connect

    Anderson, Michael E.; Bregman, Joel N.; Dai, Xinyu E-mail: jbregman@umich.edu

    2013-01-10

    We place general constraints on the luminosity and mass of hot X-ray-emitting gas residing in extended 'hot halos' around nearby massive galaxies. We examine stacked images of 2165 galaxies from the 2MASS Isolated Galaxy Catalog as well as subsets of this sample based on galaxy morphology and K-band luminosity. We detect X-ray emission at high confidence (ranging up to nearly 10{sigma}) for each subsample of galaxies. The average L{sub X} within 50 kpc is 1.0 {+-} 0.1 (statistical) {+-}0.2 (systematic) Multiplication-Sign 10{sup 40} erg s{sup -1}, although the early-type galaxies are more than twice as luminous as the late-type galaxies. Using a spatial analysis, we also find evidence for extended emission around five out of seven subsamples (the full sample, the luminous galaxies, early-type galaxies, luminous late-type galaxies, and luminous early-type galaxies) at 92.7%, 99.3%, 89.3%, 98.7%, and 92.1% confidence, respectively. Several additional lines of evidence also support this conclusion and suggest that about 1/2 of the total emission is extended, and about 1/3 of the extended emission comes from hot gas. For the sample of luminous galaxies, which has the strongest evidence for extended emission, the average hot gas mass is 4 Multiplication-Sign 10{sup 9} M {sub Sun} within 50 kpc and the implied accretion rate is 0.4 M {sub Sun} yr{sup -1}.

  16. Investigating the Enigmatic Ultraviolet 2175 A Extinction Feature and Correlation with Infrared Aromatic/PAH emission in M101

    NASA Astrophysics Data System (ADS)

    Gordon, Karl

    2011-10-01

    The 2175 Angstrom ultraviolet dust extinction feature has been known for more than 45 years, but the source of the extinction has yet to be positively identified. One of the leading contenders in dust grain models is small aromatic/PAHs grains. Through IR observations of HII regions in the spiral galaxy M101, PAHs have measured emission strengths that dramatically weaken at large radii and ionizations. The parameter space of these HII regions in terms of metallicity, ionization, and PAH emission strengths is the largest of any known galaxy. To explore the connection between the 2175 A extinction feature and IR aromatic/PAH emission strengths, we propose to observe the six regions in M101 {5 HII and the nucleus} using near-UV and far-UV gratings {G230L/G140L} with the MAMA detectors on STIS. The STIS instrument provides the opportunity to obtain high S/N UV spectra integrated over the same large spatial scales of the previous IR observations { 78 square arcsec} in minimal time {2 orbits per region}. From the measured spectra, we will employ stellar evolutionary synthesis and radiative transfer models to extract the intrinsic strength of the 2175 A extinction feature. The 2175 A features strengths will be compared with the published emission strengths of five different aromatic/PAH features in all six regions. If the 2175 A feature is associated with aromatic/PAHs grains, we will see a strong correlation. The lack of a strong correlation will imply the need for significant modification of leading dust models.

  17. Centaurus A galaxy, type EO peculiar elliptical, also radio source

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Centaurus A galaxy, type EO peculiar elliptical, also radio source. CTIO 4-meter telescope, 1975. NGC 5128, a Type EO peculiar elliptical galaxy in the constellation Centaurus. This galaxy is one of the most luminous and massive galaxies known and is a strong source of both radio and X-ray radiation. Current theories suggest that the nucleus is experiencing giant explosions involving millions of stars and that the dark band across the galactic disk is material being ejected outward. Cerro Toloto 4-meter telescope photo. Photo credit: National Optical Astronomy Observatories

  18. ISO observations of the interacting galaxy Markarian 297. with the powerful supernova remnant 1982aa

    NASA Astrophysics Data System (ADS)

    Metcalfe, L.; O'Halloran, B.; McBreen, B.; Delaney, M.; Burgdorf, M.; Leech, K.; Barr, P.; Clavel, J.; Coia, D.; Hanlon, L.; Gallais, P.; Laureijs, R.; Smith, N.

    2005-12-01

    Markarian (Mkn) 297 is a complex system comprised of two interacting galaxies that has been modelled with a variety of scenarios. Observations of this system were made with the Infrared Space Observatory (ISO) using the ISOCAM, ISOPHOT and LWS instruments. ISOCAM maps at 6.7 μm, 7.7 μm, 12 μm and 14.3 μm are presented which, together with PHT-S spectrometry of the central interacting region, probe the dust obscured star formation and the properties of the organic dust. The ISOCAM observations reveal that the strongest emission in the four bands is at a location completely unremarkable at visible and near-IR (e.g. 2MASS) wavelengths, and does not coincide with the nuclear region of either colliding galaxy. This striking characteristic has also been observed in the overlap region of the colliding galaxies in the Antennae (NGC 4038/4039), the intragroup region of Stephan's Quintet, and in IC 694 in the interacting system Arp 299, and again underlines the importance of infrared observations in understanding star formation in colliding/merging systems. At 15 μm, the hidden source in Mkn 297 is, respectively, 14.6 and 3.8 times more luminous than the hidden sources in the Antennae (NGC 4038/4039) and Stephan's Quintet. Numerical simulations of the Mkn 297 system indicate that a co-planar radial penetration between two disk galaxies yielded the observed wing formation in the system about 1.5 × 108 years after the collision. A complex emission pattern with knots and ridges of emission was detected with ISOCAM. The 7.7 μm map predominantly shows the galaxy in emission from the 7.7 μm feature attributed to PAHs (Polycyclic Aromatic Hydrocarbons). The 14.3/7.7 μm ratio is greater than unity over most of the galaxy, implying widespread strong star formation. Strong emission features were detected in the ISOPHOT spectrum, while [O I], [O III] and [C II] emission lines were seen with LWS. Using data from the three instruments, luminosities and masses for two dust

  19. Jets and Outflows in Radio Galaxies: Implications for AGN Feedback

    NASA Astrophysics Data System (ADS)

    Torresi, Eleonora; Grandi, Paola; Costantini, Elisa; Palumbo, Giorgio G. C.

    One of the main debated astrophysical problems is the role of the AGN feedback in galaxy formation. It is known that massive black holes have a profound effect on the formation and evolution of galaxies, but how black holes and galaxies communicate is still an unsolved problem. For Radio Galaxies, feedback studies have mainly focused on jet/cavity systems in the most massive and X-ray luminous galaxy clusters. The recent high-resolution detection of warm absorbers in some Broad Line Radio Galaxies allow us to investigate the interplay between the nuclear engine and the surrounding medium from a different perspective. We report on the detection of warm absorbers in two Broad Line Radio Galaxies, 3C 382 and 3C 390.3, and discuss the physical and energetic properties of the absorbing gas. Finally, we attempt a comparison between radio-loud and radio-quiet outflows.

  20. The environment of D and cD galaxies

    NASA Technical Reports Server (NTRS)

    Beers, T. C.; Geller, M. J.

    1983-01-01

    The Dressler (1980) morphological sample of galaxies in clusters is used in an investigation of bright galaxy spatial distribution, which has established that such galaxies with luminous extended halos as the D or cD lie on significant cluster galaxy distribution peaks irrespective of whether they are the brightest cluster member. The mean distance of bright D and cD galaxies from local density peaks is of the order of their halo scales, and the positions of bright galaxies of other morphological types are consistent with their being drawn at random from each morphological population. It is noted that local density peaks with associated d ocD galaxies have a mean density 2-3 times greater than peaks without a D or cD.

  1. The brightest of reionizing galaxies (BoRG) survey

    NASA Astrophysics Data System (ADS)

    Trenti, Michele

    2012-09-01

    Until now, investigating the early stages of galaxy formation has been primarily the realm of theoretical modeling and computer simulations, which require many physical ingredients and are challenging to test observationally. However, the latest Hubble Space Telescope observations in the near infrared are shedding new light on the properties of galaxies within the first billion years after the Big Bang, including our recent discovery of the most distant proto-cluster of galaxies at redshift z ~ 8. Here, I compare predictions from models of primordial and metal-enriched star formation during the dark ages with the latest Hubble observations of galaxies during the epoch of reionization. I focus in particular on the luminosity function and on galaxy clustering as measured from our Hubble Space Telescope Brightest of Reionizing Galaxies (BoRG) survey. BoRG has the largest area coverage to find luminous and rare z ~ 8 sources that are among the first galaxies to have formed in the Universe.

  2. On the driving force of PAH production

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1989-01-01

    The kinetic factors affecting the production of polycyclic aromatic hydrocarbons (PAH) in high-temperature pyrolysis and combustion environments are analyzed. A lumped kinetic model representing polymerization-type growth by one irreversible step and two reversible steps is considered. It is shown that at high temperatures, PAH growth is controlled by the superequilibrium of hydrogen atoms; at low temperatures and low H2 concentrations, the PAH growth rate is proportional to the rate of the H-abstraction of a hydrogen atom from aromatic molecules; while at low temperatures and high H2 concentrations, it is controlled by the thermodynamics of the H-abstraction and the kinetics of acetylene addition to aromatic radicals. The presence of oxygen mainly affects the small-molecule reactions during the induction period.

  3. Evolution of radio galaxies to z = 1

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Neff, S. G.; Weadock, J.; Roberts, L.; Ryneveld, S.; Gower, A. C.

    1994-01-01

    We report Very Large Array (VLA) A-configuration studies of a sample of 49 radio galaxies at redshift less than 1. These were selected with no prior knowledge of their morphology and were chosen to match the redshift and luminosity distribution of a previously studied sample of radio-loud quasars. We compare the radio galaxies with the quasar sample and also with a sample of 29 radio galaxies selected for steep spectrum and double-lobe structure. We find that the radio galaxies have more luminous lobes and mostly weaker cores, and there is no population of one-sided sources associated with the galaxies. The radio galaxies' lobe length ratios and lobe power ratios differ from quasars. The overall sizes of the two types of sources are similar, but the radio galaxies have a 3 times larger upper envelope. The distribution of bend angles is similar but the radio galaxies have fewer very bent and straight sources. We discuss these and other comparisons in detail and suggest that while quasars appear to be viewed within a cone and radio galaxies outside it, the two types of source also have intrinsic differences, and both have individual growth and evolution scenarios. This is supported by previously observed differences in optical properties between the two source types.

  4. Missing dark matter in dwarf galaxies?

    NASA Astrophysics Data System (ADS)

    Oman, Kyle A.; Navarro, Julio F.; Sales, Laura V.; Fattahi, Azadeh; Frenk, Carlos S.; Sawala, Till; Schaller, Matthieu; White, Simon D. M.

    2016-08-01

    We use cosmological hydrodynamical simulations of the APOSTLE project to examine the fraction of baryons in $\\Lambda$CDM haloes that collect into galaxies. This `galaxy formation efficiency' correlates strongly and with little scatter with halo mass, dropping steadily towards dwarf galaxies. The baryonic mass of a galaxy may thus be used to place a lower limit on total halo mass and, consequently, on its asymptotic maximum circular velocity. A number of dwarfs seem to violate this constraint, having baryonic masses up to ten times higher than expected from their rotation speeds, or, alternatively, rotating at only half the speed expected for their mass. Taking the data at face value, either these systems have formed galaxies with extraordinary efficiency - highly unlikely given their shallow potential wells - or they inhabit haloes with extreme deficits in their dark matter content. This `missing dark matter' is reminiscent of the inner mass deficits of galaxies with slowly-rising rotation curves, but extends to regions larger than the luminous galaxies themselves, disfavouring explanations based on star formation-induced `cores' in the dark matter. An alternative could be that galaxy inclination errors have been underestimated, and that these are just systems where inferred mass profiles have been compromised by systematic uncertainties in interpreting the velocity field. This should be investigated further, since it might provide a simple explanation not only for missing-dark-matter galaxies but also for other challenges to our understanding of the inner structure of cold dark matter haloes.

  5. Spiderwebs and Flies: Observing Massive Galaxy Formation in Action

    NASA Astrophysics Data System (ADS)

    Miley, George

    2009-07-01

    Distant luminous radio galaxies are among the brightest known galaxies in the early Universe, pinpoint likely progenitors of dominant cluster galaxies and are unique laboratories for studying massive galaxy formation. Spectacular images with the ACS and NICMOS of one such object, the "Spiderweb Galaxy" at z = 2.2, show in exquisite detail, hierarchical merging occurring 11 Gyr ago. By imaging 3 additional Spiderweb-like galaxies we wish to study this potentially crucial phase of massive galaxy evolution, when hierarchical merging, galaxy downsizing and