Science.gov

Sample records for palladium-catalyzed cross-coupling reactions

  1. Synthesis of C-15 Vindoline Analogues by Palladium-Catalyzed Cross-Coupling Reactions

    PubMed Central

    Johnson, Peter D.; Sohn, Jeong-Hun

    2008-01-01

    Described are general protocols for the rapid construction of various C-15-substituted analogs of vindoline using palladium-catalyzed cross-coupling reactions. The required bromo- and iodovindolines were prepared in high yield by the reaction of vindoline with N-bromosuccinimide or N-iodosuccinimide, respectively. The study not only led to the synthesis a number of structurally novel vindoline analogues but also opens the door to new strategies for the synthesis of vinblastine, vincristine, and related anticancer agents. Also described is the conversion of ent-tabersonine to ent-vindoline. PMID:16995709

  2. Palladium-Catalyzed Negishi Cross-Coupling Reaction of Aryl Halides with (Difluoromethyl)zinc Reagent.

    PubMed

    Aikawa, Kohsuke; Serizawa, Hiroki; Ishii, Koki; Mikami, Koichi

    2016-08-01

    The palladium-catalyzed Negishi cross-coupling reaction of aryl iodides and bromides with (difluoromethyl)zinc reagent bearing a diamine such as TMEDA is achieved to provide the difluoromethylated aromatic compounds in good to excellent yields. The advantages of (difluoromethyl)zinc reagent are that (1) the derivatives, which possess different stability and reactivity, can be readily prepared via ligand screening and (2) transmetalation of a difluoromethyl group from the zinc reagent to palladium catalyst efficiently proceeds without an activator. PMID:27442347

  3. A General Palladium-Catalyzed Hiyama Cross-Coupling Reaction of Aryl and Heteroaryl Chlorides.

    PubMed

    Yuen, On Ying; So, Chau Ming; Man, Ho Wing; Kwong, Fuk Yee

    2016-05-01

    A general palladium-catalyzed Hiyama cross-coupling reaction of aryl and heteroaryl chlorides with aryl and heteroaryl trialkoxysilanes by a Pd(OAc)2 /L2 catalytic system is presented. A newly developed water addition protocol can dramatically improve the product yields. The conjugation of the Pd/L2 system and the water addition protocol can efficiently catalyze a broad range of electron-rich, -neutral, -deficient, and sterically hindered aryl chlorides and heteroaryl chlorides with excellent yields within three hours and the catalyst loading can be down to 0.05 mol % Pd for the first time. Hiyama coupling of heteroaryl chlorides with heteroaryl silanes is also reported for the first time. The reaction can be easily scaled up 200 times (100 mmol) without any degasification and purification of reactants; this facilitates the practical application in routine synthesis. PMID:26998586

  4. Palladium-catalyzed cross-coupling reactions of aryl boronic acids with aryl halides in water.

    PubMed

    Wang, Shaoyan; Zhang, Zhiqiang; Hu, Zhizhi; Wang, Yue; Lei, Peng; Chi, Haijun

    2009-01-01

    An efficient Suzuki cross-coupling reaction using a variety of aryl halides in neat water was developed. The Pd-catalyzed reaction between aryl bromides or chlorides and phenyl boronic acids was compatible with various functional groups and affords biphenyls in good to excellent yields without requirement of organic cosolvents. The air stability and solubility in water of the palladium-phosphinous acid complexes were considered to facilitate operation of the coupling reaction and product isolation. The reaction conditions including Pd catalyst selection, temperature, base and catalyst recoverability were also investigated. PMID:25084408

  5. Regioselective and Stepwise Syntheses of Functionalized BODIPY Dyes through Palladium-Catalyzed Cross-Coupling Reactions and Direct C-H Arylations.

    PubMed

    Feng, Zeya; Jiao, Lijuan; Feng, Yuanmei; Yu, Changjiang; Chen, Na; Wei, Yun; Mu, Xiaolong; Hao, Erhong

    2016-08-01

    Regioselective and stepwise syntheses of a series of functionalized BODIPY dyes through palladium-catalyzed cross-coupling reactions and direct C-H arylations have been developed. In particular, this method allows the straightforward synthesis of 2,6-dibromo-3,5-diarylBODIPYs and 2-bromo-3-arylBODIPYs from polybrominated BODIPYs. The X-ray structure of intermediates 5a-c indicated that the palladium was first inserted into the C-Br bonds at 3,5-positions of brominated BODIPYs. The resulting 2,6-dibromo-substituted BODIPYs are potential long wavelength photosensitizers which are not easily accessible using previous methods. PMID:27362954

  6. Mechanistic Significance of the Si–O–Pd Bond in the Palladium-Catalyzed Cross-Coupling Reactions of Alkenylsilanolates

    PubMed Central

    2016-01-01

    Through the combination of reaction kinetics (both catalytic and stoichiometric) and solid-state characterization of arylpalladium(II) alkenylsilanolate complexes, the intermediacy of covalent adducts containing Si–O–Pd linkages in the cross-coupling reactions of organosilanolates has been unambiguously established. Two mechanistically distinct pathways have been demonstrated: (1) transmetalation via a neutral 8-Si-4 intermediate that dominates in the cross-coupling of potassium alkenylsilanolates, and (2) transmetalation via an anionic 10-Si-5 intermediate that dominates in the cross-coupling of cesium alkenylsilanolates. Arylpalladium(II) alkenylsilanolate complexes bearing various phosphine ligands (both bidentate and monodentate) have been isolated, fully characterized, and evaluated for their kinetic competence under thermal (stoichiometric) and anionic (catalytic) conditions. Comparison of the rates for thermal and anionic activation demonstrates that intermediates containing the Si–O–Pd linkage are involved in the cross-coupling process. PMID:25945390

  7. Mechanistic Significance of the Si–O–Pd Bond in the Palladium-Catalyzed Cross-Coupling Reactions of Arylsilanolates

    PubMed Central

    2016-01-01

    Through the combination of reaction kinetics (both stoichiometric and catalytic), solution- and solid-state characterization of arylpalladium(II) arylsilanolates, and computational analysis, the intermediacy of covalent adducts containing Si–O–Pd linkages in the cross-coupling reactions of arylsilanolates has been unambiguously established. Two mechanistically distinct pathways have been demonstrated: (1) transmetalation via a neutral 8-Si-4 intermediate that dominates in the absence of free silanolate (i.e., stoichiometric reactions of arylpalladium(II) arylsilanolate complexes), and (2) transmetalation via an anionic 10-Si-5 intermediate that dominates in the cross-coupling under catalytic conditions (i.e., in the presence of free silanolate). Arylpalladium(II) arylsilanolate complexes bearing various phosphine ligands have been isolated, fully characterized, and evaluated for their kinetic competence under thermal (stoichiometric) and anionic (catalytic) conditions. Comparison of the rates for thermal and anionic activation suggested, but did not prove, that intermediates containing the Si–O–Pd linkage were involved in the cross-coupling process. The isolation of a coordinatively unsaturated, T-shaped arylpalladium(II) arylsilanolate complex ligated with t-Bu3P allowed the unambiguous demonstration of the operation of both pathways involving 8-Si-4 and 10-Si-5 intermediates. Three kinetic regimes were identified: (1) with 0.5–1.0 equiv of added silanolate (with respect to arylpalladium bromide), thermal transmetalation via a neutral 8-Si-4 intermediate; (2) with 1.0–5.0 equiv of added silanolate, activated transmetalation via an anionic 10-Si-5 intermediate; and (3) with >5.0 equiv of added silanolate, concentration-independent (saturation) activated transmetalation via an anionic 10-Si-5 intermediate. Transition states for the intramolecular transmetalation of neutral (8-Si-4) and anionic (10-Si-5) intermediates have been located computationally

  8. Palladium-catalyzed oxidative carbonylation reactions.

    PubMed

    Wu, Xiao-Feng; Neumann, Helfried; Beller, Matthias

    2013-02-01

    Palladium-catalyzed coupling reactions have become a powerful tool for advanced organic synthesis. This type of reaction is of significant value for the preparation of pharmaceuticals, agrochemicals, as well as advanced materials. Both, academic as well as industrial laboratories continuously investigate new applications of the different methodologies. Clearly, this area constitutes one of the major topics in homogeneous catalysis and organic synthesis. Among the different palladium-catalyzed coupling reactions, several carbonylations have been developed and widely used in organic syntheses and are even applied in the pharmaceutical industry on ton-scale. Furthermore, methodologies such as the carbonylative Suzuki and Sonogashira reactions allow for the preparation of interesting building blocks, which can be easily refined further on. Although carbonylative coupling reactions of aryl halides have been well established, palladium-catalyzed oxidative carbonylation reactions are also interesting. Compared with the reactions of aryl halides, oxidative carbonylation reactions offer an interesting pathway. The oxidative addition step could be potentially avoided in oxidative reactions, but only few reviews exist in this area. In this Minireview, we summarize the recent development in the oxidative carbonylation reactions. PMID:23307763

  9. Formation of C(sp(3))-C(sp(3)) Bonds by Palladium Catalyzed Cross-Coupling of α-Diazoketones and Allylboronic Acids.

    PubMed

    Belhomme, Marie-Charlotte; Wang, Dong; Szabó, Kálmán J

    2016-05-20

    Palladium catalyzed cross-coupling of allylboronic acids with α-diazoketones was studied. The reaction selectively affords the linear allylic product. The reaction proceeds with formation of a new C(sp(3))-C(sp(3)) bond. The reaction was performed without an external oxidant, likely without the Pd-catalyst undergoing redox reactions. PMID:27166509

  10. Palladium-Catalyzed Ullmann Cross-Coupling/Tandem Reductive Cyclization Route to Key Members of the Uleine Alkaloid Family.

    PubMed

    Tang, Fei; Banwell, Martin G; Willis, Anthony C

    2016-04-01

    The trisubstituted cyclohexenone 12, generated through a palladium-catalyzed Ullmann cross-coupling reaction between o-iodonitrobenzene and a 4,5-trans-disubstituted 2-iodo-2-cyclohexen-1-one, engaged in a tandem reductive cyclization process upon exposure to hydrogen gas in the presence of Raney cobalt. As a result, the 1,5-methanoazocino[4,3-b]indole 13 was obtained and this could be readily elaborated to the racemic modifications of the alkaloids uleine, dasycarpidone, noruleine, and nordasycarpidone (1-4, respectively). PMID:26914482

  11. Phosphine-Free, Heterogeneous Palladium-Catalyzed Atom-Efficient Carbonylative Cross-Coupling of Triarylbismuths with Aryl Iodides: Synthesis of Biaryl Ketones.

    PubMed

    Hao, Wenyan; Liu, Haiyi; Yin, Lin; Cai, Mingzhong

    2016-05-20

    A novel and highly efficient heterogeneous palladium-catalyzed carbonylative cross-coupling of aryl iodides with triarylbismuths has been developed that proceeds smoothly at atmospheric CO pressure and provides a general and powerful tool for the preparation of various valuable biaryl ketones with high atom economy, good to excellent yield, and recyclability of the catalyst. The reaction is the first example of Pd-catalyzed carbonylative cross-coupling for the construction of biaryl ketones using triarylbismuths as substrates. PMID:27129099

  12. Palladium Catalyzed Cross-Coupling of Five-Membered Heterocyclic Silanolates

    PubMed Central

    Denmark, Scott E.; Baird, John D.; Regens, Christopher S.

    2009-01-01

    The preparation of π-rich 2-aryl heterocycles by palladium-catalyzed cross-coupling of sodium heteroarylsilanolates with aryl iodides, bromides and chlorides is described. The cross-coupling process was developed through extensive optimization of the follow key variables: (1) identification of stable, isolable alkali metal silanolates, (2) identification of conditions for preformation and isolation of silanolate salts, (3) judicious choice in the palladium catalyst/ligand combination, and (4) selection of the protecting group on the nitrogen of indole. It was found that the alkali metal silanolates, either isolated or formed in situ, offered a significant rate enhancement and broader substrate scope over the use of silanols activated by Brønsted bases such as NaOt-Bu. In addition, the optimized conditions for the cross-coupling of 2-indolylsilanolates were readily applied to the cross-coupling of 2-pyrrolyl-, 2-furyl-, and 2-thienylsilanolates. PMID:18205384

  13. NiXantphos: A Deprotonatable Ligand for Room-Temperature Palladium-Catalyzed Cross-Couplings of Aryl Chlorides

    PubMed Central

    2015-01-01

    Although the past 15 years have witnessed the development of sterically bulky and electron-rich alkylphosphine ligands for palladium-catalyzed cross-couplings with aryl chlorides, examples of palladium catalysts based on either triarylphosphine or bidentate phosphine ligands for efficient room temperature cross-coupling reactions with unactivated aryl chlorides are rare. Herein we report a palladium catalyst based on NiXantphos, a deprotonatable chelating aryldiphosphine ligand, to oxidatively add unactivated aryl chlorides at room temperature. Surprisingly, comparison of an extensive array of ligands revealed that under the basic reaction conditions the resultant heterobimetallic Pd–NiXantphos catalyst system outperformed all the other mono- and bidentate ligands in a deprotonative cross-coupling process (DCCP) with aryl chlorides. The DCCP with aryl chlorides affords a variety of triarylmethane products, a class of compounds with various applications and interesting biological activity. Additionally, the DCCP exhibits remarkable chemoselectivity in the presence of aryl chloride substrates bearing heteroaryl groups and sensitive functional groups that are known to undergo 1,2-addition, aldol reaction, and O-, N-, enolate-α-, and C(sp2)–H arylations. The advantages and importance of the Pd–NiXantphos catalyst system outlined herein make it a valuable contribution for applications in Pd-catalyzed arylation reactions with aryl chlorides. PMID:24745758

  14. Sequential Processes in Palladium-Catalyzed Silicon-Based Cross-Coupling

    PubMed Central

    Denmark, Scott E.; Liu, Jack H.-C.

    2012-01-01

    Although developed somewhat later, silicon-based cross-coupling has become a viable alternative to the more conventional Suzuki-Miyaura, Stille-Kosugi-Migita, and Negishi cross-coupling reactions because of its broad substrate scope, high stability of silicon-containing reagents, and low toxicity of waste streams. An empowering and yet underappreciated feature unique to silicon-based cross-coupling is the wide range of sequential processes available. In these processes, simple precursors are first converted to complex silicon-containing cross-coupling substrates, and the subsequent silicon-based cross-coupling reaction affords an even more highly functionalized product in a stereoselective fashion. In so doing, structurally simple and inexpensive starting materials are quickly transformed into value-added and densely substituted products. Therefore, sequential processes are often useful in constructing the carbon backbones of natural products. In this review, studies of sequential processes involving silicon-based cross-coupling are discussed. Additionally, the total syntheses that utilize these sequential processes are also presented. PMID:23293392

  15. Palladium-catalyzed coupling reactions of tetrafluoroethylene with arylzinc compounds.

    PubMed

    Ohashi, Masato; Kambara, Tadashi; Hatanaka, Tsubasa; Saijo, Hiroki; Doi, Ryohei; Ogoshi, Sensuke

    2011-03-16

    Organofluorine compounds are widely used in all aspects of the chemical industry. Although tetrafluoroethylene (TFE) is an example of an economical bulk organofluorine feedstock, the use of TFE is mostly limited to the production of poly(tetrafluoroethylene) and copolymers with other alkenes. Furthermore, no catalytic transformation of TFE that involves carbon-fluorine bond activation has been reported to date. We herein report the first example of a palladium-catalyzed coupling reaction of TFE with arylzinc reagents in the presence of lithium iodide, giving α,β,β-trifluorostyrene derivatives in excellent yields. PMID:21322557

  16. Palladium-Catalyzed, Enantioselective Heine Reaction

    PubMed Central

    2016-01-01

    Aziridines are important synthetic intermediates for the generation of nitrogen-containing molecules. N-Acylaziridines undergo rearrangement by ring expansion to produce oxazolines, a process known as the Heine reaction. The first catalytic, enantioselective Heine reaction is reported for meso-N-acylaziridines where a palladium(II)–diphosphine complex is employed. The highly enantioenriched oxazoline products are valuable organic synthons and potential ligands for transition-metal catalysis. PMID:27398262

  17. Accessing Molecularly Complex Azaborines: Palladium-Catalyzed Suzuki–Miyaura Cross-Couplings of Brominated 2,1-Borazaronaphthalenes and Potassium Organotrifluoroborates

    PubMed Central

    2015-01-01

    Despite their potential applications in both medicinal chemistry and materials science, there have been limited reports on the functionalization of 2,1-borazaronaphthalenes since their discovery in 1959. To access new chemical space and build molecular complexity, the Suzuki–Miyaura cross-coupling of brominated 2,1-borazaronaphthalenes has been investigated. The palladium-catalyzed cross-coupling proceeds with an array of potassium (hetero)aryltrifluoroborates in high yield with low catalyst loadings under mild reaction conditions. By the use of a high-yielding bromination of various 2,1-borazaronaphthalenes to generate electrophilic azaborine species, a library of 3-(hetero)aryl and 3,6-diaryl-2,1-borazaronaphthalenes has been synthesized. PMID:24984003

  18. Direct preparation of N-quaternized and N-oxidized polycyclic azines by palladium-catalyzed cross-coupling. An unequivocal isomer synthesis

    SciTech Connect

    Zoltewicz, J.A.; Cruskie, M.P. Jr.; Dill, C.D.

    1995-01-13

    The authors report several examples of unequivocal isomer preparations using palladium-catalyzed cross-coupling to yield N-oxides and N-quaternized polycyclic azines. This approach serves as a model for such syntheses where selective N-quaternization, N-oxidation, or other types of N-functionalization of several rings is now possible in a regioncontrolled manner.

  19. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    EPA Science Inventory

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  20. Palladium-catalyzed dehydrogenation/oxidative cross-coupling sequence of β-heteroatom-substituted ketones.

    PubMed

    Moon, Youngtaek; Kwon, Daeil; Hong, Sungwoo

    2012-11-01

    Concise and selective: the title one-pot sequence allows formation of the enone functionality and subsequent cross-coupling. The process provides access to highly functionalized cyclic enolones and enaminones from readily accessible β-heteroatom-substituted cyclic ketones. PMID:23038616

  1. Intramolecular transfer of {open_quotes}CO{close_quotes} from ({eta}{sup 6}-arene)Cr(CO){sub 3} complexes in stille-type palladium-catalyzed cross coupling reactions

    SciTech Connect

    Caldirola, P.; Chowdhury, R.; Johansson, A.M.; Hacksell, U.

    1995-12-31

    The reaction between [{eta}{sup 6}-(trialkylstannyl)benzene]Cr(CO){sub 3} complexes and different electrophiles such as iodobenzene and aryltriflate and the coupling between (tributylphenyl)stannane and the Cr(CO){sub 3} complex of chlorobenzene have been studied. Products from two different types of reactions were observed: (1) benzophenone along with the alkylarylketone, resulting from a carbonylative coupling, and (2) biphenyl, arising from a direct coupling.

  2. B-N, B-O, and B-CN Bond Formation via Palladium-Catalyzed Cross-Coupling of B-Bromo-Carboranes.

    PubMed

    Dziedzic, Rafal M; Saleh, Liban M A; Axtell, Jonathan C; Martin, Joshua L; Stevens, Simone L; Royappa, A Timothy; Rheingold, Arnold L; Spokoyny, Alexander M

    2016-07-27

    Carboranes are boron-rich molecules that can be functionalized through metal-catalyzed cross-coupling. Here, for the first time, we report the use of bromo-carboranes in palladium-catalyzed cross-coupling for efficient B-N, B-O, and unprecedented B-CN bond formation. In many cases bromo-carboranes outperform the traditionally utilized iodo-carborane species. This marked difference in reactivity is leveraged to circumvent multistep functionalization by directly coupling small nucleophiles (-OH, -NH2, and -CN) and multiple functional groups onto the boron-rich clusters. PMID:27384544

  3. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize.

    PubMed

    Johansson Seechurn, Carin C C; Kitching, Matthew O; Colacot, Thomas J; Snieckus, Victor

    2012-05-21

    In 2010, Richard Heck, Ei-ichi Negishi, and Akira Suzuki joined the prestigious circle of Nobel Laureate chemists for their roles in discovering and developing highly practical methodologies for C-C bond construction. From their original contributions in the early 1970s the landscape of the strategies and methods of organic synthesis irreversibly changed for the modern chemist, both in academia and in industry. In this Review, we attempt to trace the historical origin of these powerful reactions, and outline the developments from the seminal discoveries leading to their eminent position as appreciated and applied today. PMID:22573393

  4. Cross-coupling reactions of organosilicon compounds: new concepts and recent advances.

    PubMed

    Denmark, Scott Eric; Sweis, Ramzi Farah

    2002-12-01

    This review highlights the rapid evolution of the newly-developed class of palladium-catalyzed cross-coupling reactions of organosilicon compounds. A myriad of heteroatom-containing silicon moieties (silyl hydrides, siletanes, silanols, silyl ethers, orthosiliconates, di- and polysiloxanes and pyridylsilanes) undergo mild and stereospecific cross-coupling. The diversity of methods for introduction of silicon groups into organic molecules and the range of organic electrophiles that can be used are emphasized. PMID:12499586

  5. Synthesis of Cyclooctatetraenes through a Palladium-Catalyzed Cascade Reaction.

    PubMed

    Blouin, Sarah; Gandon, Vincent; Blond, Gaëlle; Suffert, Jean

    2016-06-13

    Reported is a cascade reaction leading to fully substituted cyclooctatetraenes. This unexpected transformation likely proceeds through a unique 8π electrocyclization reaction of a ene triyne. DFT computations provide the mechanistic basis of this surprizing reaction. PMID:27135905

  6. Assembly of 3-Sulfenylbenzofurans and 3-Sulfenylindoles by Palladium-Catalyzed Cascade Annulation/Arylthiolation Reaction.

    PubMed

    Li, Jianxiao; Li, Chunsheng; Yang, Shaorong; An, Yanni; Wu, Wanqing; Jiang, Huanfeng

    2016-04-01

    A novel and efficient palladium-catalyzed cascade annulation/arylthiolation reaction has been developed to afford functionalized 3-sulfenylbenzofuran and 3-sulfenylindole derivatives in moderate to good yields from readily available 2-alkynylphenols and 2-alkynylamines in ionic liquids. This protocol provides a valuable synthetic tool for the assembly of a wide range of 3-sulfenylbenzofuran and 3-sulfenylindole derivatives with high atom- and step-economy and exceptional functional group tolerance. Moreover, the employment of ionic liquids under mild reaction conditions makes this transformation green and practical. Furthermore, this approach enriched current C-S bond formation chemistry, making a valuable and practical method in synthetic and medicinal chemistry. PMID:26980622

  7. Highly efficient palladium-catalyzed hydrostannation of ethyl ethynyl ether

    PubMed Central

    Andrews, Ian P.; Kwon, Ohyun

    2008-01-01

    The palladium-catalyzed hydrostannation of acetylenes is widely exploited in organic synthesis as a means of forming vinyl stannanes for use in palladium-catalyzed cross-coupling reactions. Application of this methodology to ethyl ethynyl ether results in an enol ether that is challenging to isolate from the crude reaction mixture because of incompatibility with typical silica gel chromatography. Reported here is a highly efficient procedure for the palladium-catalyzed hydrostannation of ethyl ethynyl ether using 0.1% palladium(0) catalyst and 1.0 equiv of tributyltin hydride. The product obtained is a mixture of regioisomers that can be carried forward with exclusive reaction of the β-isomer. This method is highly reproducible; relative to previously reported procedures, it is more economical and involves a more facile purification procedure. PMID:20011027

  8. Development of Safe and Scalable Continuous-Flow Methods for Palladium-Catalyzed Aerobic Oxidation Reactions.

    PubMed

    Ye, Xuan; Johnson, Martin D; Diao, Tianning; Yates, Matthew H; Stahl, Shannon S

    2010-01-01

    The synthetic scope and utility of Pd-catalyzed aerobic oxidation reactions has advanced significantly over the past decade, and these reactions have potential to address important green-chemistry challenges in the pharmaceutical industry. This potential has been unrealized, however, because safety concerns and process constraints hinder large-scale applications of this chemistry. These limitations are addressed by the development of a continuous-flow tube reactor, which has been demonstrated on several scales in the aerobic oxidation of alcohols. Use of a dilute oxygen gas source (8% O(2) in N(2)) ensures that the oxygen/organic mixture never enters the explosive regime, and efficient gas-liquid mixing in the reactor minimizes decomposition of the homogeneous catalyst into inactive Pd metal. These results provide the basis for large-scale implementation of palladium-catalyzed (and other) aerobic oxidation reactions for pharmaceutical synthesis. PMID:20694169

  9. Palladium-catalyzed reactions in the synthesis of 3- and 4-substituted indoles. 4

    SciTech Connect

    Hegedus, L.S.; Sestrick, M.R.; Michaelson, E.T.; Harrington, P.J. )

    1989-08-18

    4-Bromo-1-tosylindole (1) was converted to tricyclic indole enone 11, a potential intermediate in the synthesis of tetracyclic ergot alkaloids, by a series of palladium-catalyzed processes. Attempts to construct the ergot D ring by the hetero-Diels-Alder reaction of enone 11 and 1-azabutadiene 12 produced not the expected (4 + 2) adduct 13 but the benz(cd)indoline derivative 14 resulting from attack of the aza diene at the indole 2-position. The thermodynamic stability of the naphthol nucleus makes enone 11 generally susceptible to attack at the indole 2-position, as evidenced by the attack of hydride and methyl cuprate nucleophiles at this portion forming indolines 16 and 17, respectively.

  10. Palladium-catalyzed cross-coupling of styrenes with aryl methyl ketones in ionic liquids: direct access to cyclopropanes.

    PubMed

    Cotugno, Pietro; Monopoli, Antonio; Ciminale, Francesco; Milella, Antonella; Nacci, Angelo

    2014-12-01

    The combined use of Pd(OAc)2 , Cu(OAc)2 , and dioxygen in molten tetrabutylammonium acetate (TBAA) promotes an unusual cyclopropanation reaction between aryl methyl ketones and styrenes. The process is a dehydrogenative cyclizing coupling that involves a twofold CH activation at the α-position of the ketone. The substrate scope highlights the flexibility of the catalyst; a reaction mechanism is also proposed. PMID:25283684

  11. A palladium-catalyzed intramolecular carbonylative annulation reaction for the synthesis of 4,5-fused tricyclic 2-quinolones.

    PubMed

    Zhang, Xiwu; Liu, Haichao; Jia, Yanxing

    2016-06-01

    A concise and efficient synthetic route to 4,5-fused tricyclic 2-quinolones through the palladium-catalyzed carbonylative annulation of alkyne-tethered N-substituted o-iodoanilines has been developed. This reaction proceeds smoothly under mild reaction conditions and exhibits exceptional tolerance to a variety of functional groups. It has been successfully applied to the efficient synthesis of BI 224436, an HIV integrase inhibitor. PMID:27225232

  12. Synthesis of chiral biphenol-based diphosphonite ligands and their application in palladium-catalyzed intermolecular asymmetric allylic amination reactions.

    PubMed

    Shi, Ce; Chien, Chih-Wei; Ojima, Iwao

    2011-02-01

    A library of new 2,2'-bis(diphenylphosphinoyloxy)-1,1'-binaphthyl (binapo)-type chiral diphosphonite ligands was designed and synthesized based on chiral 3,3',5,5',6,6'-hexasubstituted biphenols. These bop ligands have exhibited excellent efficiency in a palladium-catalyzed intermolecular allylic amination reaction, which provides a key intermediate for the total synthesis of Strychnos indole alkaloids with enantiopurities of up to 96% ee. PMID:21254441

  13. Palladium-Catalyzed α-Arylation of Zinc Enolates of Esters: Reaction Conditions and Substrate Scope

    PubMed Central

    Hama, Takuo; Ge, Shaozhong; Hartwig, John F.

    2013-01-01

    The intermolecular α-arylation of esters by palladium-catalyzed coupling of aryl bromides with zinc enolates of esters is reported. Reactions of three different types of zinc enolates have been developed. α-Arylation of esters occurs in high yields with isolated Reformatsky reagents, with Reformatsky reagents generated from α-bromo esters and activated zinc, and with zinc enolates generated by quenching lithium enolates of esters with zinc chloride. The use of zinc enolates, instead of alkali metal enolates, greatly expands the scope of the arylation of esters. The reactions occur at room temperature or at 70 °C with bromoarenes containing cyano, nitro, ester, keto, fluoro, enolizable hydrogen, hydroxyl or amino functionality and with bromopyridines. The scope of esters encompasses acyclic acetates, propionates, and isobutyrates, α-alkoxyesters, and lactones. The arylation of zinc enolates of esters was conducted with catalysts bearing the hindered pentaphenylferrocenyl di-tert-butylphosphine (Q-phos) or the highly reactive dimeric Pd(I) complex {[P(t-Bu)3]PdBr}2. PMID:23931445

  14. Palladium-Catalyzed Synthesis of N-Aryl Carbamates

    PubMed Central

    Vinogradova, Ekaterina V.; Park, Nathaniel H.; Fors, Brett P.; Buchwald, Stephen L.

    2013-01-01

    An efficient synthesis of aryl carbamates was achieved by introducing alcohols into the reaction of palladium-catalyzed cross-coupling of ArX (X = Cl, OTf) with sodium cyanate. The use of aryl triflates as electrophilic components in this transformation allowed for an expanded substrate scope for direct synthesis of aryl isocyanates. This methodology provides direct access to major carbamate protecting groups, S-thiocarbamates, and diisocyanate precursors to polyurethane materials. PMID:23441814

  15. Imparting Catalyst-Control upon Classical Palladium-Catalyzed Alkenyl C–H Bond Functionalization Reactions

    PubMed Central

    Sigman, Matthew S.; Werner, Erik W.

    2011-01-01

    Conspectus The functional group transformations carried out by the palladium-catalyzed Wacker and Heck reactions are radically different, but they are both alkenyl C-H bond functionalization reactions that have found extensive use in organic synthesis. The synthetic community depends heavily on these important reactions, but selectivity issues arising from control by the substrate, rather than control by the catalyst, have prevented the realization of their full potential. Because of important similarities in the respective selectivity-determining nucleopalladation and β-hydride elimination steps of these processes, we posit that the mechanistic insight garnered through the development of one of these catalytic reactions may be applied to the other. In this Account, we detail our efforts to develop catalyst-controlled variants of both the Wacker oxidation and the Heck reaction to address synthetic limitations and provide mechanistic insight into the underlying organometallic processes of these reactions. In contrast to previous reports, we discovered that electrophilic palladium catalysts with non-coordinating counterions allowed for the use of a Lewis basic ligand to efficiently promote TBHP-mediated Wacker oxidation reactions of styrenes. This discovery led to the mechanistically guided development of a Wacker reaction catalyzed by a palladium complex with a bidentate ligand. This ligation may prohibit coordination of allylic heteroatoms, thereby allowing for the application of the Wacker oxidation to substrates that were poorly behaved under classical conditions. Likewise, we unexpectedly discovered that electrophilic Pd-σ-alkyl intermediates are capable of distinguishing between electronically inequivalent C–H bonds during β-hydride elimination. As a result, we have developed E-styrenyl selective oxidative Heck reactions of previously unsuccessful electronically non-biased alkene substrates using arylboronic acid derivatives. The mechanistic insight gained

  16. Palladium-catalyzed Heck-type reaction of oximes with allylic alcohols: synthesis of pyridines and azafluorenones.

    PubMed

    Zheng, Meifang; Chen, Pengquan; Wu, Wanqing; Jiang, Huanfeng

    2016-01-01

    We describe herein a palladium-catalyzed Heck-type reaction of O-acetyl ketoximes and allylic alcohols to synthesise pyridines. This protocol allows the robust synthesis of pyridines and azafluorenones in good to excellent yields with tolerance of various functional groups under mild conditions. The reaction is supposed to go through an oxidative addition of oximes to palladium(0) complexes, generating an alkylideneamino-palladium(II) species, which is utilized as a key intermediate to capture the nonbiased alkenes for carbon-carbon bond formation. PMID:26496814

  17. The Enantioselective Construction of Tetracyclic Diterpene Skeletons with Friedel-Crafts Alkylation and Palladium-catalyzed Cycloalkenylation Reactions

    PubMed Central

    Burke, Sarah J.; Mehta, Sharan K.; Appenteng, Roselyn

    2015-01-01

    Due to the profound extent to which natural products inspire medicinal chemists in drug discovery, there is demand for innovative syntheses of these often complex materials. This article describes the synthesis of tricarbocyclic natural product architectures through an extension of the enantioselective Birch-Cope sequence with intramolecular Friedel-Crafts alkylation reactions. Additionally, palladium-catalyzed enol silane cycloalkenylation of the tricarbocyclic structures afforded the challenging bicyclo[3.2.1]octane C/D ring system found in the gibberellins and the ent-kauranes, two natural products with diverse medicinal value. In the case of the ent-kaurane derivative, an unprecedented alkene rearrangement converted four alkene isomers to one final product. PMID:25598198

  18. Development of Chiral Bis-hydrazone Ligands for the Enantioselective Cross-Coupling Reactions of Aryldimethylsilanolates

    PubMed Central

    2015-01-01

    A palladium-catalyzed, enantioselective, aryl–aryl cross-coupling reaction using 1-naphthyldimethylsilanolates and chiral bis-hydrazone ligands has been developed. A family of glyoxal bis-hydrazone ligands containing various 2,5-diarylpyrrolidine groups was prepared to evaluate the influence of ligand structure on the rate and enantioselectivity of the cross-coupling. New synthetic routes to the 1-amino-2,5-diarylpyrrolidines were developed to enable the structure/reactivity–selectivity studies. Role reversal experiments of aryldimethylsilanolates and aryl bromides result in biaryl products with the same configuration and similar enantioselectivities implying that reductive elimination is the stereodetermining step. The origin of stereoselectivity is rationalized through computational modeling of diarylpalldium(II) complex which occurs through a conrotatory motion for the two aryl groups undergoing C–C bond formation. PMID:25494058

  19. Palladium-Catalyzed Arylation of Fluoroalkylamines

    PubMed Central

    Brusoe, Andrew T.; Hartwig, John F.

    2015-01-01

    We report the synthesis of fluorinated anilines by palladium-catalyzed coupling of fluoroalkylamines with aryl bromides and aryl chlorides. The products of these reactions are valuable because anilines typically require the presence of an electron-withdrawing substituent on nitrogen to suppress aerobic or metabolic oxidation, and the fluoroalkyl groups have steric properties and polarity distinct from those of more common electron-withdrawing amide and sulfonamide units. The fluoroalkylaniline products are unstable under typical conditions for C–N coupling reactions (heat and strong base). However, the reactions conducted with the weaker base KOPh, which has rarely been used in cross-coupling to form C–N bonds, occurred in high yield in the presence of a catalyst derived from commercially available AdBippyPhos and [Pd(allyl)Cl]2. Under these conditions, the reactions occur with low catalyst loadings (<0.50 mol % for most substrates) and tolerate the presence of various functional groups that react with the strong bases that are typically used in Pd-catalyzed C–N cross-coupling reactions of aryl halides. The resting state of the catalyst is the phenoxide complex, (BippyPhosPd(Ar)OPh); due to the electron-withdrawing property of the fluoroalkyl substituent, the turnover-limiting step of the reaction is reductive elimination to form the C–N bond. PMID:26065341

  20. On the Triple Role of Fluoride Ions in Palladium-Catalyzed Stille Reactions.

    PubMed

    Hervé, Marius; Lefèvre, Guillaume; Mitchell, Emily A; Maes, Bert U W; Jutand, Anny

    2015-12-01

    The mechanism of Stille reactions (cross-coupling of ArX with Ar'SnnBu3 ) performed in the presence of fluoride ions is established. A triple role for fluoride ions is identified from kinetic data on the rate of the reactions of trans-[ArPdBr(PPh3 )2 ] (Ar=Ph, p-(CN)C6 H4 ) with Ar'SnBu3 (Ar'=2-thiophenyl) in the presence of fluoride ions. Fluoride ions promote the rate-determining transmetallation by formation of trans-[ArPdF(PPh3 )2 ], which reacts with Ar'SnBu3 (Ar'=Ph, 2-thiophenyl) at room temperature, in contrast to trans-[ArPdBr(PPh3 )2 ], which is unreactive. However, the concentration ratio [F(-) ]/[Ar'SnBu3 ] must not be too high, because of the formation of unreactive anionic stannate [Ar'Sn(F)Bu3 ](-) . This rationalises the two kinetically antagonistic roles exerted by the fluoride ions that are observed experimentally, and is found to be in agreement with the kinetic law. In addition, fluoride ions promote reductive elimination from trans-[ArPdAr'(PPh3 )2 ] generated in the transmetallation step. PMID:26548772

  1. Palladium-Catalyzed 6-Endo Selective Alkyl-Heck Reactions: Access to 5-Phenyl-1,2,3,6-tetrahydropyridine Derivatives.

    PubMed

    Dong, Xu; Han, Ying; Yan, Fachao; Liu, Qing; Wang, Ping; Chen, Kexun; Li, Yueyun; Zhao, Zengdian; Dong, Yunhui; Liu, Hui

    2016-08-01

    A new type of palladium-catalyzed 6-endo-selective alkyl-Heck reaction of unactivated alkyl iodides has been described. This strategy provides efficient access to a variety of 5-phenyl-1,2,3,6-tetrahydropyridine derivatives, which are important structural motifs for bioactive molecules. This process displays a broad substrate scope with excellent 6-endo selectivity. Mechanistic investigations reveal that this alkyl-Heck reaction performs via a hybrid palladium-radical process. PMID:27409716

  2. Aqueous-Phase Palladium-Catalyzed Coupling. A Green Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Harper, Brandy A.; Chance Rainwater, J.; Birdwhistell, Kurt; Knight, D. Andrew

    2002-06-01

    An upper-level inorganic/organic experiment presents important concepts in modern green chemistry. A water-soluble modified triphenylphosphine ligand is prepared and used to prepare a water-soluble palladium catalyst. The palladium catalyst is formed in situ and used for the aqueous, homogenous, palladium-catalyzed cross-coupling reaction of iodobenzene and diethyl phosphite. The product is diethyl phenylphosphonate.

    Featured on the Cover

  3. Organozinc Chemistry Enabled by Micellar Catalysis. Palladium-Catalyzed Cross-Couplings between Alkyl and Aryl Bromides in Water at Room Temperature

    PubMed Central

    Duplais, Christophe; Krasovskiy, Arkady; Lipshutz, Bruce H.

    2012-01-01

    Negishi-like cross-couplings between (functionalized) alkyl and aryl bromides are described. Despite the fact that organozinc reagents are intolerant of water, their formation as well as their use in an aqueous micellar environment is discussed herein. Each component of this complex series of events leading up to C–C bond formation has an important role which has been determined insofar as the type of zinc, amine ligand, surfactant, and palladium catalyst are concerned. In particular, the nature of the surfactant has been found to be crucial in order to obtain synthetically useful results involving highly reactive, moisture-sensitive organometallics. Neither organic solvent nor heat is required for these cross-couplings to occur; just add water. PMID:23539206

  4. The copper-free Sonogashira cross-coupling reaction promoted by palladium complexes of nitrogen-containing chelating ligands in neat water at room temperature.

    PubMed

    Zhong, Hong; Wang, Jinyun; Li, Liuyi; Wang, Ruihu

    2014-02-01

    The commercially available 2,2'-dipyridylamine was used as a supporting ligand in the palladium-catalyzed Sonogashira cross-coupling reaction. The reactions between aryl iodides and terminal alkynes with different steric hindrance can be efficiently performed in the absence of copper in neat water at room temperature. The superior catalytic performance of the catalytic system was attributed to water solubility of the palladium 2,2'-dipyridylamine complex. Palladium nanoparticles with small size and narrow size distribution were formed after the cross-coupling reaction. PMID:24281778

  5. Regioselective palladium-catalyzed ring-opening reactions of C1-substituted oxabicyclo[2,2,1]hepta-2,5-diene-2,3-dicarboxylates

    PubMed Central

    Edmunds, Michael; Raheem, Mohammed Abdul; Boutin, Rebecca; Tait, Katrina

    2016-01-01

    Summary Palladium-catalyzed ring-opening reactions of C1 substituted 7-oxanorbornadiene derivatives with aryl iodides were investigated. The optimal conditions for this reaction were found to be PdCl2(PPh3)2, ZnCl2, Et3N and Zn in THF. Both steric and electronic factors played a role in the outcome of the reaction as increasing the steric bulk on the bridgehead carbon decreased the yield. These reactions were found to be highly regioselective, giving only one of the two possible regioisomers in all cases. A diverse collection of novel, highly substituted biphenyl derivatives were obtained. PMID:26977182

  6. Palladium-Catalyzed Cascade Reaction of 2-Amino-N'-arylbenzohydrazides with Triethyl Orthobenzoates To Construct Indazolo[3,2-b]quinazolinones.

    PubMed

    Yang, Weiguang; Qiao, Rui; Chen, Jiuxi; Huang, Xiaobo; Liu, Miaochang; Gao, Wenxia; Ding, Jinchang; Wu, Huayue

    2015-01-01

    A palladium-catalyzed sequential cyclization/C-H activation cascade reaction of 2-amino-N'-arylbenzohydrazides with triethyl orthobenzoates has been developed, providing indazolo[3,2-b]quinazolinones in good to high yields. Two key intermediates of the reaction, 2-phenyl-3-(phenylamino)quinazolinone and C-H insertion palladacycle, were isolated, and their structures were unambiguously confirmed by X-ray crystallography. This method represents an unprecedented example of a halogen-free protocol to access indazolo[3,2-b]quinazolinones. Moreover, this chemistry also provides a useful tool for the discovery of fluorescent materials. PMID:25437529

  7. Toluene derivatives as simple coupling precursors for cascade palladium-catalyzed oxidative C-H bond acylation of acetanilides.

    PubMed

    Wu, Yinuo; Choy, Pui Ying; Mao, Fei; Kwong, Fuk Yee

    2013-01-25

    A palladium-catalyzed cascade cross-coupling of acetanilide and toluene for the synthesis of ortho-acylacetanilide is described. Toluene derivatives can act as effective acyl precursors (upon sp(3)-C-H bond oxidation by a Pd/TBHP system) in the oxidative coupling between two C-H bonds. This dehydrogenative Pd-catalyzed ortho-acylation proceeds under mild reaction conditions. PMID:23230572

  8. Asymmetric Palladium-Catalyzed Alkene Carboamination Reactions for the Synthesis of Cyclic Sulfamides.

    PubMed

    Garlets, Zachary J; Parenti, Kaia R; Wolfe, John P

    2016-04-18

    The synthesis of cyclic sulfamides by enantioselective Pd-catalyzed alkene carboamination reactions between N-allylsulfamides and aryl or alkenyl bromides is described. High levels of asymmetric induction (up to 95:5 e.r.) are achieved using a catalyst composed of [Pd2 (dba)3 ] and (S)-Siphos-PE. Deuterium-labelling studies indicate the reactions proceed through syn-aminopalladation of the alkene and suggest that the control of syn- versus anti-aminopalladation pathways is important for asymmetric induction. PMID:26968748

  9. Preparation of Allyl and Vinyl Silanes via the Palladium-Catalyzed Silylation of Terminal Olefins: A Silyl-Heck Reaction**

    PubMed Central

    McAtee, Jesse R.; Martin, Sara E. S.; Ahneman, Derek T.; Johnson, Keywan A.

    2012-01-01

    A high-yielding protocol for the palladium-catalyzed silylation of terminal alkenes using silyl halides is reported. This method allows facile conversion of styrenes to E-β-silyl styrenes using either TMSI or TMSCl/LiI. Terminal allyl silanes with good E:Z ratios are also readily accessed from α-olefins by this method. When combined with existing technology, this transformation provides a powerful strategy to selectively functionalize the vinyl or allylic position of terminal alkenes. PMID:22383447

  10. Highly efficient four-component synthesis of 4(3H)-quinazolinones: palladium-catalyzed carbonylative coupling reactions.

    PubMed

    He, Lin; Li, Haoquan; Neumann, Helfried; Beller, Matthias; Wu, Xiao-Feng

    2014-01-27

    Given the importance of quinazolinones and carbonylative transformations, a palladium-catalyzed four-component carbonylative coupling system for the synthesis of diverse 4(3H)-quinazolinone in a concise and convergent fashion has been developed. Starting from 2-bromoanilines (1 mmol), trimethyl orthoformate (2 mmol), and amines (1.1 mmol), under 10 bar of CO, the desired products were isolated in good yields in the presence of Pd(OAc)2 (2 mol %), BuPAd2 (6 mol %) in 1,4-dioxane (2 mL) at 100 °C, using N,N-diisopropylethylamine (2 mmol) as the base. Notably, the process tolerates the presence of various reactive functional groups and is very selective for quinazolinones, and was used in the synthesis of the precursor to the bioactive dihydrorutaempine. PMID:24338922

  11. Palladium-Catalyzed Reaction of Haloarenes with Diarylethynes: Synthesis, Structural Analysis, and Properties of Methylene-Bridged Arenes.

    PubMed

    Lee, Che-Wei; Liu, En-Chih; Wu, Yao-Ting

    2015-11-01

    Fluorenes and methylene-bridged polyarenes were easily and efficiently synthesized from haloarenes (or aryl triflates) and diarylethynes by a one-pot, two-step procedure. This protocol involves the palladium-catalyzed cycloisomerization and a subsequent base-mediated retro-aldol condensation. A major advantage is that the starting materials need not have ortho functional groups to complete the annulation. The backbone of the designed products was enlarged using dihaloarenes, highly π-conjugated haloarenes, or diarylalkynes. The mechanism of the formation of benzo[a]fluorene was investigated. The bowl-shaped structure of methylene-bridged indenocorannulene was verified by X-ray crystallography. The photophysical and electrochemical properties of the products thus prepared were investigated. PMID:26451853

  12. Synthesis of steroid-ferrocene conjugates of steroidal 17-carboxamides via a palladium-catalyzed aminocarbonylation--copper-catalyzed azide-alkyne cycloaddition reaction sequence.

    PubMed

    Szánti-Pintér, Eszter; Balogh, János; Csók, Zsolt; Kollár, László; Gömöry, Agnes; Skoda-Földes, Rita

    2011-11-01

    Steroids with the 17-iodo-16-ene functionality were converted to ferrocene labeled steroidal 17-carboxamides via a two step reaction sequence. The first step involved the palladium-catalyzed aminocarbonylation of the alkenyl iodides with prop-2-yn-1-amine as the nucleophile in the presence of the Pd(OAc)(2)/PPh(3) catalyst system. In the second step, the product N-(prop-2-ynyl)-carboxamides underwent a facile azide-alkyne cycloaddition with ferrocenyl azides in the presence of CuSO(4)/sodium ascorbate to produce the steroid-ferrocene conjugates. The new compounds were obtained in good yield and were characterized by (1)H and (13)C NMR, IR, MS and elemental analysis. PMID:21787798

  13. Rapid Access to 2,2'-Bithiazole-Based Copolymers via Sequential Palladium-Catalyzed C-H/C-X and C-H/C-H Coupling Reactions.

    PubMed

    Guo, Qiang; Jiang, Ruyong; Wu, Di; You, Jingsong

    2016-05-01

    A rapid access to 2,2'-bithiazole-based copolymers has been developed on the basis of the sequential palladium-catalyzed CH/CX and CH/CH coupling reactions. To assemble a "copolymer" through homopolymerization, a type of symmetric A-B-A-type building block is designed as the monomer and prepared via the regioselective C5H arylation of thiazole. A PdCl2 /CuCl-cocatalyzed oxidative CH/CH homopolymerization has been established to afford the 2,2'-bithiazole-based copolymers with high Mn (up to 69400). The current protocol features atom- and step-economy and exhibits a potential in the highly efficient construction of conjugated copolymers. PMID:27000723

  14. Biaryl Phosphine Ligands in Palladium-Catalyzed Amination

    PubMed Central

    Surry, David S.

    2012-01-01

    Palladium-catalyzed amination of aryl halides has undergone rapid development in the last 12 years. This has been largely driven by implementation of new classes of ligands. Biaryl phosphines have proven to provide especially active catalysts in this context. This review discusses the applications that these catalysts have found in C-N cross-coupling in heterocycle synthesis, pharmaceuticals, materials science and natural product synthesis. PMID:18663711

  15. Suzuki-Miyaura cross-coupling reaction on copper-trans-A(2)B corroles with excellent functional group tolerance.

    PubMed

    König, Michael; Reith, Lorenz Michael; Monkowius, Uwe; Knör, Günther; Bretterbauer, Klaus; Schoefberger, Wolfgang

    2011-06-10

    The palladium-catalyzed Suzuki-Miyaura cross-coupling reaction has been investigated on meso-substituted trans-A(2)B-corrole using tailored Pd-catalyst systems.We present the first examples of Suzuki-Miyaura cross-coupling reactions on meso-substituted trans-A(2)B-corrole derivatives with neutral, sterically hindered, inactivated and heteroaromatic boronic acids and esters, alkenylboronic acids, as well as quickly deboronating aryl boronic acids and benzo-condensated five membered heterocyclic boronic acids. In addition, we established a high-yield procedure for the Suzuki-Miyaura cross-coupling reaction of corroles with neutral boronic acids.Due to the lability of the free-base corrole macrocycles, functionalization of the corrole periphery was performed with the corresponding Cu-metallated species. meso-Substituted trans-A(2)B-corrole can hence be regarded as highly versatile platform towards more sophisticated corrole systems.X-ray structure analysis of a functionalized meso-substituted trans-A(2)B copper corrole exhibited the typical features of such a Cu-complex: short N-Cu distances and a saddled corrole configuration.Moreover, we observed a sensitivity of the formal oxidation state of the coordinated copper ions towards Suzuki-Miyaura cross-coupling reaction conditions, where the central copper(III) ion approaches the characteristic features of a copper(II) species. This redox behaviour was examined by UV/vis absorption spectra, nuclear magnetic resonance (NMR) experiments and time-dependent density functional theoretical calculations. PMID:21760646

  16. Gold-catalyzed homogeneous oxidative cross-coupling reactions.

    PubMed

    Zhang, Guozhu; Peng, Yu; Cui, Li; Zhang, Liming

    2009-01-01

    Oxidizing gold? A gold(I)/gold(III) catalytic cycle is essential for the first oxidative cross-coupling reaction in gold catalysis. By using Selectfluor for gold(I) oxidation, this chemistry reveals the synthetic potential of incorporating gold(I)/gold(III) catalytic cycles into contemporary gold chemistry and promises a new area of gold research by merging powerful gold catalysis and oxidative metal-catalyzed cross-coupling reactions. PMID:19322869

  17. Well-defined N-heterocyclic carbenes-palladium(II) precatalysts for cross-coupling reactions.

    PubMed

    Marion, Nicolas; Nolan, Steven P

    2008-11-18

    Metal-catalyzed cross-coupling reactions, notably those permitting C-C bond formation, have witnessed a meteoritic development and are now routinely employed as a powerful synthetic tool both in academia and in industry. In this context, palladium is arguably the most studied transition metal, and tertiary phosphines occupy a preponderant place as ancillary ligands. Seriously challenging this situation, the use of N-heterocyclic carbenes (NHCs) as alternative ligands in palladium-catalyzed cross-coupling reactions is rapidly gaining in popularity. These two-electron donor ligands combine strong sigma-donating properties with a shielding steric pattern that allows for both stabilization of the metal center and enhancement of its catalytic activity. As a result, the number of well-defined NHC-containing palladium(II) complexes is growing, and their use in coupling reactions is witnessing increasing interest. In this Account, we highlight the advantages of this family of palladium complexes and review their synthesis and applications in cross-coupling chemistry. They generally exhibit high stability, allowing for indefinite storage and easy handling. The use of well-defined complexes permits a strict control of the Pd/ligand ratio (optimally 1/1), avoiding the use of excess costly ligand that usually requires end-game removal. Furthermore, it partly removes the "black box" character often associated with cross-coupling chemistry and catalyst formation. In the present Account, four main classes of NHC-containing palladium(II) complexes will be presented: palladium dimers with bridging halogens, palladacycles, palladium acetates and acetylacetonates, and finally pi-allyl complexes. These additional ligands are best described as a protecting shell that will be discarded going from the palladium(II) precatalyst to the palladium(0) true catalyst. The synthesis of all these precatalysts generally requires simple and short synthetic procedures. Their catalytic activity in

  18. Heterocycle Formation via Palladium-Catalyzed C–H Functionalization

    PubMed Central

    Mei, Tian-Sheng; Kou, Lei; Ma, Sandy; Engle, Keary M.; Yu, Jin-Quan

    2016-01-01

    Heterocyclic compounds are ubiquitous in natural products, pharmaceuticals, and agrochemicals. Therefore, the design of novel protocols to construct heterocycles more efficiently is a major area of focus in the organic chemistry. In the past several years, cyclization reactions based upon palladium-catalyzed C–H activation have received substantial attention due to their capacity for expediting heterocycle synthesis. This review discusses strategies for heterocycle synthesis via palladium-catalyzed C–H bond activation and highlights recent examples from the literature. PMID:27397938

  19. One-step synthesis of quinazolino[3,2-a]quinazolinones via palladium-catalyzed domino addition/carboxamidation reactions.

    PubMed

    Zeng, Fanlong; Alper, Howard

    2010-08-20

    A highly efficient palladium-catalyzed domino process has been developed for the synthesis of quinazolino[3,2-a]quinazolinones by forming five new bonds in a single step. Despite the high density and variety of functional groups on the substrates, the tetracyclic quinazolinones were obtained in good to excellent yields. PMID:20666363

  20. Palladium-Catalyzed Synthesis of 9-Fluorenylidenes through Aryne Annulation

    PubMed Central

    Worlikar, Shilpa A.; Larock, Richard C.

    2009-01-01

    The palladium-catalyzed annulation of arynes by substituted ortho-halostyrenes produces substituted 9- fluorenylidenes in good yields. This methodology provides this important carbocyclic ring system in a single step, which involves the generation of two new carbon-carbon bonds, occurs under relatively mild reaction conditions and tolerates a variety of functional groups, including cyano, ester, aldehyde and ketone groups. PMID:19413328

  1. Palladium-Catalyzed α-Arylation of Aryl Acetic Acid Derivatives via Dienolate Intermediates with Aryl Chlorides and Bromides

    PubMed Central

    2016-01-01

    To date, examples of α-arylation of carboxylic acids remain scarce. Using a deprotonative cross-coupling process (DCCP), a method for palladium-catalyzed γ-arylation of aryl acetic acids with aryl halides has been developed. This protocol is applicable to a wide range of aryl bromides and chlorides. A procedure for the palladium-catalyzed α-arylation of styryl acetic acids is also described. PMID:25582024

  2. Formal Direct Cross-Coupling of Phenols with Amines.

    PubMed

    Chen, Zhengwang; Zeng, Huiying; Girard, Simon A; Wang, Feng; Chen, Ning; Li, Chao-Jun

    2015-11-23

    The transition-metal-catalyzed amination of aryl halides has been the most powerful method for the formation of aryl amines over the past decades. Phenols are regarded as ideal alternatives to aryl halides as coupling partners in cross-couplings. An efficient palladium-catalyzed formal cross-coupling of phenols with various amines and anilines has now been developed. A variety of substituted phenols were compatible with the standard reaction conditions. Secondary and tertiary aryl amines could thus be synthesized in moderate to excellent yields. PMID:26531683

  3. Aryl formate as bifunctional reagent: applications in palladium-catalyzed carbonylative coupling reactions using in situ generated CO.

    PubMed

    Li, Haoquan; Neumann, Helfried; Beller, Matthias; Wu, Xiao-Feng

    2014-03-17

    After decades of development, carbonylation reactions have become one of the most powerful tools in modern organic synthesis. However, the requirement of CO gas limits the applications of such reactions. Reported herein is a versatile and practical protocol for carbonylative reactions which rely on the cooperation of phenyl formate and nonaflate, and the generation of CO in situ. This protocol has a high functionalgroup tolerance and could be applied in carbonylations with C, N, and, O nucleophiles. The corresponding amides, alkynones, furanones, and aryl benzoates were synthesized in good yields. PMID:24677435

  4. Chemoselective and Sequential Palladium-Catalyzed Couplings for the Generation of Stilbene Libraries via Immobilized Substrates.

    PubMed

    Traficante, Carla I; Fagundez, Catherine; Serra, Gloria L; Mata, Ernesto G; Delpiccolo, Carina M L

    2016-05-01

    A versatile palladium-catalyzed tandem synthetic sequence to afford E-stilbenes libraries has been developed. Excellent regio- and stereocontrol have been achieved by means of the sequence of Hiyama and Heck cross-couplings. Undesirable homocoupling byproducts were avoided employing immobilized substrates. PMID:27073985

  5. Palladium-Catalyzed Aminocarbonylation of Allylic Alcohols.

    PubMed

    Li, Haoquan; Neumann, Helfried; Beller, Matthias

    2016-07-11

    A benign and efficient palladium-catalyzed aminocarbonylation reaction of allylic alcohols is presented. The generality of this novel process is demonstrated by the synthesis of β,γ-unsaturated amides including aliphatic, cinnamyl, and terpene derivatives. The choice of ligand is crucial for optimal carbonylation processes: Whereas in most cases the combination of PdCl2 with Xantphos (L6) gave best results, sterically hindered substrates performed better in the presence of simple triphenylphosphine (L10), and primary anilines gave the best results using cataCXium® PCy (L8). The reactivity of the respective catalyst system is significantly enhanced by addition of small amounts of water. Mechanistic studies and control experiments revealed a tandem allylic alcohol amination/C-N bond carbonylation reaction sequence. PMID:27283958

  6. Synthesis of 2-Cyclopentenone Derivatives via Palladium-Catalyzed Intramolecular Carbonyl α-Alkenylation.

    PubMed

    Chen, Panpan; Meng, Yinggao; Wang, Han; Han, Feipeng; Wang, Yulong; Song, Chuanjun; Chang, Junbiao

    2016-08-01

    2-Cyclopentenone derivatives have been efficiently synthesized from 5-bromo-5-hexen-2-ones via palladium-catalyzed intramolecular carbonyl α-alkenylation followed by double-bond migration under mild reaction conditions. PMID:27463262

  7. Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Alkyl Bromides: Et3N as the Terminal Reductant.

    PubMed

    Duan, Zhengli; Li, Wu; Lei, Aiwen

    2016-08-19

    Reductive cross-coupling has emerged as a direct method for the construction of carbon-carbon bonds. Most cobalt-, nickel-, and palladium-catalyzed reductive cross-coupling reactions to date are limited to stoichiometric Mn(0) or Zn(0) as the reductant. One nickel-catalyzed cross-coupling paradigm using Et3N as the terminal reductant is reported. By using this photoredox catalysis and nickel catalysis approach, a direct Csp(2)-Csp(3) reductive cross-coupling of aryl bromides with alkyl bromides is achieved under mild conditions without stoichiometric metal reductants. PMID:27472556

  8. Palladium-catalyzed C–N and C–O bond formation of N-substituted 4-bromo-7-azaindoles with amides, amines, amino acid esters and phenols

    PubMed Central

    Surasani, Rajendra; Rao, A V Dhanunjaya; Chandrasekhar, K B

    2012-01-01

    Summary Simple and efficient procedures for palladium-catalyzed cross-coupling reactions of N-substituted 4-bromo-7-azaindole (1H-pyrrole[2,3-b]pyridine), with amides, amines, amino acid esters and phenols through C–N and C–O bond formation have been developed. The C–N cross-coupling reaction of amides, amines and amino acid esters takes place rapidly by using the combination of Xantphos, Cs2CO3, dioxane and palladium catalyst precursors Pd(OAc)2/Pd2(dba)3. The combination of Pd(OAc)2, Xantphos, K2CO3 and dioxane was found to be crucial for the C–O cross-coupling reaction. This is the first report on coupling of amides, amino acid esters and phenols with N-protected 4-bromo-7-azaindole derivatives. PMID:23209536

  9. Ortho-Functionalized Aryltetrazines by Direct Palladium-Catalyzed C-H Halogenation: Application to Fast Electrophilic Fluorination Reactions.

    PubMed

    Testa, Christelle; Gigot, Élodie; Genc, Semra; Decréau, Richard; Roger, Julien; Hierso, Jean-Cyrille

    2016-04-25

    A general catalyzed direct C-H functionalization of s-tetrazines is reported. Under mild reaction conditions, N-directed ortho-C-H activation of tetrazines allows the introduction of various functional groups, thus forming carbon-heteroatom bonds: C-X (X=I, Br, Cl) and C-O. Based on this methodology, we developed electrophilic mono- and poly-ortho-fluorination of tetrazines. Microwave irradiation was optimized to afford fluorinated s-aryltetrazines, with satisfactory selectivity, within only ten minutes. This work provides an efficient and practical entry for further accessing highly substituted tetrazine derivatives (iodo, bromo, chloro, fluoro, and acetate precursors). It gives access to ortho-functionalized aryltetrazines which are difficult to obtain by classical Pinner-like syntheses. PMID:27010438

  10. Palladium-catalyzed one-pot synthesis of quinazolinones via tert-butyl isocyanide insertion.

    PubMed

    Jiang, Xiao; Tang, Ting; Wang, Jin-Mei; Chen, Zhong; Zhu, Yong-Ming; Ji, Shun-Jun

    2014-06-01

    A novel palladium-catalyzed three-component reaction for the synthesis of quinazolin-4(3H)-ones from readily available 2-aminobenzamides and aryl halides via a palladium-catalyzed isocyanide insertion/cyclization sequence has been developed. This methodology efficiently constructs quinazolin-4(3H)-ones in moderate to excellent yields with the advantages of operational simplicity. PMID:24810598

  11. Palladium-Catalyzed One-Pot Reaction of Hydrazones, Dihaloarenes, and Organoboron Reagents: Synthesis and Cytotoxic Activity of 1,1-Diarylethylene Derivatives.

    PubMed

    Roche, Maxime; Salim, Salim Mmadi; Bignon, Jérôme; Levaique, Hélène; Brion, Jean-Daniel; Alami, Mouad; Hamze, Abdallah

    2015-07-01

    A new three-component assembly reaction between N-tosylhydrazones, dihalogenated arenes, and boronic acids or boronate esters was developed, producing highly substituted 1,1-diarylethylenes in good yields. The two C-C bonds formed through this coupling have been catalyzed by a single Pd-catalyst in a one-pot fashion. It is noted that the one-pot pinacol boronate cross-coupling reaction generally provides products in high yields, offers an expansive substrate scope, and can address a broad range of aryl, styrene, vinyl, and heterocyclic olefinic targets. The scope of this one-pot coupling has been also extended to the synthesis of the 1,1-diarylethylene skeleton of the natural product ratanhine. The new compounds were evaluated for their cytotoxic activity, and this allowed the identification of compound 4ab that exhibits excellent antiproliferative activity in the nanomolar concentration range against HCT116 cancer cell lines. PMID:26036279

  12. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C.; Hu, Jianli; Hart, Todd R.; Neuenschwander, Gary G.

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  13. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2011-06-07

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  14. A new color of the synthetic chameleon methoxyallene: synthesis of trifluoromethyl-substituted pyridinol derivatives: an unusual reaction mechanism, a remarkable crystal packing, and first palladium-catalyzed coupling reactions.

    PubMed

    Flögel, Oliver; Dash, Jyotirmayee; Brüdgam, Irene; Hartl, Hans; Reissig, Hans-Ulrich

    2004-09-01

    Addition of lithiated methoxyallene to pivalonitrile afforded after aqueous workup the expected iminoallene 1 in excellent yield. Treatment of this intermediate with silver nitrate accomplished the desired cyclization to the electron-rich pyrrole derivative 2 in moderate yield. Surprisingly, trifluoroacetic acid converted iminoallene 1 to a mixture of enamide 3 and trifluoromethyl-substituted pyridinol 4 (together with its tautomer 5). A plausible mechanism proposed for this intriguing transformation involves addition of trifluoroacetate to the central allene carbon atom of an allenyl iminium intermediate as crucial step. Enamide 3 is converted to pyridinol 4 by an intramolecular aldol-type process. A practical direct synthesis of trifluoromethyl-substituted pyridinols 4, 10, 11, and 12 starting from typical nitriles and methoxyallene was established. Pyridinol 10 shows an interesting crystal packing with three molecules in the elementary cell and a remarkable helical supramolecular arrangement. Trifluoromethyl-substituted pyridinol 4 was converted to the corresponding pyridyl nonaflate 13, which is an excellent precursor for palladium-catalyzed reactions leading to pyridine derivatives 14-16 in good to excellent yields. The new synthesis of trifluoromethyl-substituted pyridines disclosed here demonstrates a novel reactivity pattern of lithiated methoxyallene which is incorporated into the products as the unusual tripolar synthon B. PMID:15352110

  15. Palladium-Catalyzed Intramolecular Carbene Insertion into C(sp(3) )-H Bonds.

    PubMed

    Solé, Daniel; Mariani, Francesco; Bennasar, M-Lluïsa; Fernández, Israel

    2016-05-23

    A palladium-catalyzed carbene insertion into C(sp(3) )-H bonds leading to pyrrolidines was developed. The coupling reaction can be catalyzed by both Pd(0) and Pd(II) , is regioselective, and shows a broad functional group tolerance. This reaction is the first example of palladium-catalyzed C(sp(3) )-C(sp(3) ) bond assembly starting from diazocarbonyl compounds. DFT calculations revealed that this direct C(sp(3) )-H bond functionalization reaction involves an unprecedented concerted metalation-deprotonation step. PMID:27079473

  16. An Electron-Poor C64 Nanographene by Palladium-Catalyzed Cascade C-C Bond Formation: One-Pot Synthesis and Single-Crystal Structure Analysis.

    PubMed

    Seifert, Sabine; Shoyama, Kazutaka; Schmidt, David; Würthner, Frank

    2016-05-23

    Herein, we report the one-pot synthesis of an electron-poor nanographene containing dicarboximide groups at the corners. We efficiently combined palladium-catalyzed Suzuki-Miyaura cross-coupling and dehydrohalogenation to synthesize an extended two-dimensional π-scaffold of defined size in a single chemical operation starting from N-(2,6-diisopropylphenyl)-4,5-dibromo-1,8-naphthalimide and a tetrasubstituted pyrene boronic acid ester as readily accessible starting materials. The reaction of these precursors under the conditions commonly used for Suzuki-Miyaura cross-coupling afforded a C64 nanographene through the formation of ten C-C bonds in a one-pot process. Single-crystal X-ray analysis unequivocally confirmed the structure of this unique extended aromatic molecule with a planar geometry. The optical and electrochemical properties of this largest ever synthesized planar electron-poor nanographene skeleton were also analyzed. PMID:27058998

  17. Palladium-catalyzed synthesis of benzimidazoles and quinazolinones from common precursors.

    PubMed

    Sadig, Jessie E R; Foster, Radleigh; Wakenhut, Florian; Willis, Michael C

    2012-11-01

    N-(o-Halophenyl)imidoyl chlorides and the corresponding imidates are easily prepared and can be utilized as complementary precursors for the synthesis of important heterocycles. The synthesis of N-substituted benzimidazoles was possible from the palladium-catalyzed reaction of both classes of substrate with a variety of N-nucleophiles. The use of the imidate precursor for the synthesis of N-substituted quinazolinones by incorporation of a palladium-catalyzed aminocarbonylation reaction has also been demonstrated. Both processes tolerate a wide range of functional groups. PMID:23030827

  18. Palladium-Catalyzed Highly Chemoselective Intramolecular C-H Aminocarbonylation of Phenethylamines to Six-Membered Benzolactams.

    PubMed

    Taneda, Hiroshi; Inamoto, Kiyofumi; Kondo, Yoshinori

    2016-06-01

    A palladium-catalyzed highly selective intramolecular C-H aminocarbonylation of Br-functionalized phenethylamines in the presence of CO was achieved while leaving the C-Br bond unreacted to afford six-membered benzolactams with good to high yields. The remaining C-Br group in the cyclized product was successfully used as a reactive center for further functionalization through various palladium-catalyzed coupling reactions. PMID:27214155

  19. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    SciTech Connect

    Qinhua Huang

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I{sub 2}, ICl, PhSeCl, PhSCl and p-O{sub 2}NC{sub 6}H{sub 4}SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement with the idea that

  20. The Palladium-Catalyzed Trifluoromethylation of Vinyl Sulfonates

    PubMed Central

    Cho, Eun Jin; Buchwald, Stephen L.

    2011-01-01

    A method for the palladium-catalyzed trifluoromethylation of cyclohexenyl sulfonates has been developed. Various cyclohexenyl triflates and nonaflates underwent trifluoromethylation under mild reaction conditions using a catalyst system composed of Pd(dba)2 or [(allyl)PdCl]2 and the monodentate biaryl phosphine ligand tBuXPhos. The trifluoromethyl anion (CF3−) or its equivalent for the process was generated in situ from TMSCF3 in combination with KF or TESCF3 in combintion with RbF. PMID:22111687

  1. Synthesis of Dihydrobenzofurans via Palladium-Catalyzed Heteroannulations

    SciTech Connect

    Roman Vladimirovich Rozhkov

    2004-12-19

    Palladium-catalyzed heteroannulation of 1,3-dienes with 3-iodo-2-alkenols, and 2-iodo-2-alkenols, as well as their amino analogs, affords the corresponding cyclic ethers and amines respectively. The presence of a {beta}-hydrogen in the vinylic halide results in {beta}-hydride elimination giving the corresponding alkyne. The presence of a bulky group in the {alpha}-position of the vinylic halide results in failure or reduced amounts of annulation products. A chloride source, pyridine base and electron-rich phosphine are essential for this reaction.

  2. A Convenient Palladium-Catalyzed Reductive Carbonylation of Aryl Iodides with Dual Role of Formic Acid.

    PubMed

    Qi, Xinxin; Li, Chong-Liang; Wu, Xiao-Feng

    2016-04-18

    Palladium-catalyzed reductive carbonylation of aryl halides represents a straightforward pathway for the synthesis of aromatic aldehydes. The known reductive carbonylation procedures either require CO gas or complexed compounds as CO sources. In this communication, we developed a palladium-catalyzed reductive carbonylation of aryl iodides with formic acid as the formyl source. As a convenient, practical, and environmental friendly methodology, no additional silane or H2 was required. A variety of aromatic aldehydes were isolated in moderate to excellent yields under mild reaction conditions. Notably, this is the first procedure on using formic acid as the formyl source. PMID:26934464

  3. Synthesis of Nitriles via Palladium-Catalyzed Water Shuffling from Amides to Acetonitrile

    PubMed Central

    Zhang, Wandi; Haskins, Christopher W.; Yang, Yang; Dai, Mingji

    2014-01-01

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield. PMID:25316145

  4. Palladium-Catalyzed Construction of Amidines from Arylboronic Acids under Oxidative Conditions.

    PubMed

    Zhu, Fengxiang; Li, Yahui; Wang, Zechao; Orru, Romano V A; Maes, Bert U W; Wu, Xiao-Feng

    2016-06-01

    A valuable palladium-catalyzed three-component coupling reaction for the synthesis of amidines has been developed. Using arylboronic acids, isocyanides, and anilines as the reactants under oxidative conditions, various amidines were isolated in good yields with good functional group tolerances. PMID:27061735

  5. Scope of the Suzuki-Miyaura Cross-Coupling Reactions of Potassium Heteroaryltrifluoroborates

    PubMed Central

    Molander, Gary A.; Canturk, Belgin; Kennedy, Lauren

    2009-01-01

    A wide variety of bench-stable potassium heteroaryltrifluoroborates were prepared and general reaction conditions were developed for their cross-coupling to aryl and heteroaryl halides. The cross-coupled products were obtained in good to excellent yields. This method represents an efficient and facile installation of heterocyclic building blocks onto preexisting organic substructures. PMID:19105735

  6. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation.

    PubMed

    Meng, Guangrong; Szostak, Michal

    2016-06-15

    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined (). PMID:26864384

  7. Advances in metal-catalyzed cross-coupling reactions of halogenated quinazolinones and their quinazoline derivatives.

    PubMed

    Mphahlele, Malose Jack; Maluleka, Marole Maria

    2014-01-01

    Halogenated quinazolinones and quinazolines are versatile synthetic intermediates for the metal-catalyzed carbon-carbon bond formation reactions such as the Kumada, Stille, Negishi, Sonogashira, Suzuki-Miyaura and Heck cross-coupling reactions or carbon-heteroatom bond formation via the Buchwald-Hartwig cross-coupling to yield novel polysubstituted derivatives. This review presents an overview of the application of these methods on halogenated quinazolin-4-ones and their quinazolines to generate novel polysubstituted derivatives. PMID:25356566

  8. Palladium-catalyzed Reppe carbonylation.

    PubMed

    Kiss, G

    2001-11-01

    PdX2L2/L/HA (A = weakly coordinating anion, L = phosphine) complexes are active catalysts in the hydroesterification of alkenes, alkynes, and conjugated dienes. Shell, the only major corporate player in the field, recently developed two very active catalyst systems tailored to the hydroesterification of either alkenes or alkynes. The hydroesterification of propyne with their Pd(OAc)2/PN/HA (PN = (2-pyridyl)diphenylphosphine, HA = strong acid with weakly coordinating anion, like methanesulfonic acid) catalyst has been declared commercially ready. However, despite the significant progress in the activity of Pd-hydroesterification catalysts, further improvements are warranted. Thus, for example, activity maintenance still seems to be an issue. Homogeneous Pd catalysts are prone to a number of deactivation reactions. Activity and stability promoters are often corrosive and add to the complexity of the system, making it less attractive. Nonetheless, the versatility of the process and its tolerance toward the functional groups of substrates should appeal especially to the makers of specialty products. Although hydroesterification yields esters from alkenes, alkynes, and dienes in fewer steps than hydroformylation does, the latter has some advantages at the current state of the art. (1) Hydroformylation catalysts, particularly some recently published phosphine-modified Rh systems, can achieve very high regioselectivity for the linear product that hydroesterification catalysts cannot match yet. By analogy with hydroformylation, bulkier ligands ought to be tested in hydroesterification to increase normal-ester selectivity. (2) Hydroformylation is proven, commercial. Hydroesterification can only replace it if it can provide significant economic incentives. Similar or just marginally better performance could not justify the cost of development of a new technology. (3) Hydroesterification requires pure CO while hydroformylation uses syngas, a mixture of CO and H2. The latter

  9. Mechanistic Insights into the Palladium-Catalyzed Aziridination of Aliphatic Amines by C-H Activation.

    PubMed

    Smalley, Adam P; Gaunt, Matthew J

    2015-08-26

    Detailed kinetic studies and computational investigations have been performed to elucidate the mechanism of a palladium-catalyzed C-H activation aziridination. A theoretical rate law has been derived that matches with experimental observations and has led to an improvement in the reaction conditions. Acetic acid was found to be beneficial in controlling the formation of an off-cycle intermediate, allowing a decrease in catalyst loading and improved yields. Density functional theory (DFT) studies were performed to examine the selectivities observed in the reaction. Evidence for electronic-controlled regioselectivity for the cyclopalladation step was obtained by a distortion-interaction analysis, whereas the aziridination product was justified through dissociation of acetic acid from the palladium(IV) intermediate preceding the product-forming reductive elimination step. The understanding of this reaction mechanism under the synthesis conditions should provide valuable assistance in the comprehension and design of palladium-catalyzed reactions on similar systems. PMID:26247373

  10. Pd/C catalyzed Suzuki-Miyaura cross coupling reaction: Is it heterogeneous or homogeneous?

    NASA Astrophysics Data System (ADS)

    Hoang, Tony Phuc

    The Suzuki-Miyaura cross-coupling reaction is a popular industrial method of creating covalent bonds between two carbons. This reaction can be catalyzed by a myriad of palladium catalyst including heterogeneous and homogeneous. The objective of this research is to study whether the Suzuki cross coupling reaction catalyzed by solid supported palladium catalysts is truly heterogeneous in nature (i.e. does the reaction occurs on the surface of the catalyst or does palladium leach from the solid support and catalyze the reaction in a homogenous manner).

  11. Aqueous microwaves assisted cross-coupling reactions applied to unprotected nucleosides.

    NASA Astrophysics Data System (ADS)

    Len, Christophe; Hervé, Gwénaelle

    2015-02-01

    Nucleoside analogues have attracted much attention due to their potential biological activities. Amongst all synthetic nucleosides, C5-modified pyrimidines and C7- or C8-modified purines have mostly been prepared using palladium cross-coupling reactions and then studied as antitumoral and antiviral agents. Our objective is to focus this review on the Suzuki-Miyaura and on the Heck cross-couplings of nucleosides using microwave irradiations which are an alternative technology compatible with green chemistry and sustainable development.

  12. The Development of Versatile Methods for Palladium-Catalyzed Coupling Reactions of Aryl Electrophiles Through the Use of P(t-Bu)3 and PCy3 as Ligands

    PubMed Central

    FU, GREGORY C.

    2009-01-01

    CONSPECTUS Metal-catalyzed coupling reactions of aryl electrophiles with organometallics and with olefins serve as unusually effective tools for forming new carbon-carbon bonds. By 1998, researchers had developed catalysts that achieved reactions of aryl iodides, bromides, and triflates. Nevertheless, many noteworthy challenges remained, among them: couplings of aryl iodides, bromides, and triflates under mild conditions (at room temperature, for example); couplings of hindered reaction partners; and, couplings of inexpensive aryl chlorides. This Account highlights some of the progress that has been made over the past decade, largely through the appropriate choice of ligand, in achieving these synthetic objectives. In particular, we have established that palladium in combination with a bulky trialkylphosphine accomplishes a broad spectrum of coupling processes, including Suzuki, Stille, Negishi, and Heck reactions. These methods have been applied in a wide array of settings, such as natural-product synthesis, materials science, and bioorganic chemistry. PMID:18947239

  13. Palladium-Catalyzed One-Pot Approach to 3-(Diarylmethylene)oxindoles from Propiolamidoaryl Triflate.

    PubMed

    Lee, Dahye; Park, Sunhwa; Yu, Yoseb; Shin, Kye Jung; Seo, Jae Hong

    2015-01-01

    3-(Diarylmethylene)oxindoles have been synthesized from propiolamidoaryl triflate utilizing a palladium-catalyzed one-pot reaction consisting of three successive reactions: Sonogashira, Heck, and Suzuki-Miyaura. This method allows for the production of a complex skeleton of 3-(diarylmethylene)oxindole from propiolamidoaryl triflate using a commercially available aryl iodide and arylboronic acid in a simple and efficient way with moderate yield and stereoselectivity. PMID:26247925

  14. Palladium-catalyzed cross-dehydrogenative functionalization of C(sp(2))-H Bonds.

    PubMed

    Wu, Yinuo; Wang, Jun; Mao, Fei; Kwong, Fuk Yee

    2014-01-01

    The catalytic cross-dehydrogenative coupling (CDC) reaction has received intense attention in recent years. The attractive feature of this coupling process is the formation of a C-C bond from two C-H moieties under oxidative conditions. In this Focus Review, recent advances in the palladium-catalyzed CDC reactions of C(sp(2) )-H bond are summarized, with a focus on the period from 2011 to early 2013. PMID:24123795

  15. Palladium-catalyzed carbonylative synthesis of benzoxazinones from N-(o-bromoaryl)amides using paraformaldehyde as the carbonyl source.

    PubMed

    Li, Wanfang; Wu, Xiao-Feng

    2014-11-01

    Carbonylation reactions have been widely used in organic synthesis. However, the manipulation of toxic and pressurized carbon monoxide limited their applications in organic laboratories. The search for alternative carbonyl sources as an important method for carbonylative organic synthesis is spreading. Herein, a series of substituted benzoxazinones were synthesized from N-(o-bromoaryl)amides by palladium-catalyzed carbonylation with paraformaldehyde as the carbonyl source, which is inexpensive, stable, and easy to use. Notably, this is the first example of using paraformaldehyde as the CO source in palladium-catalyzed carbonylative synthesis of heterocycles. PMID:25280209

  16. Modular synthesis of triarylmethanes through palladium-catalyzed sequential arylation of methyl phenyl sulfone.

    PubMed

    Nambo, Masakazu; Crudden, Cathleen M

    2014-01-13

    Triarylmethanes, which are valuable structures in materials, sensing and pharmaceuticals, have been synthesized starting from methyl phenyl sulfone as an inexpensive and readily available template. The three aryl groups were installed through two sequential palladium-catalyzed C-H arylation reactions, followed by an arylative desulfonation. This method provides a new synthetic approach to multisubstituted triarylmethanes using readily available haloarenes and aryl boronic acids, and is also valuable for the preparation of unexplored triarylmethane-based materials and pharmaceuticals. PMID:24307286

  17. A Stereoselective Synthesis of Digitoxin and Digitoxigen Monoand Bisdigitoxoside from Digitoxigenin via a Palladium Catalyzed Glycosylation

    PubMed Central

    Zhou, Maoquan; O’Doherty, George A.

    2008-01-01

    A convergent and stereocontrolled route to trisaccharide natural product digitoxin has been developed. The route is amenable to the preparation of both the digitoxigen mono-and bisdigitoxoside. This route featured the iterative application of the palladium catalyzed glycosylation reaction, reductive 1,3-transposition, diastereoselective dihydroxylation and regioselective protection. The natural product digitoxin was fashioned in 15 steps starting from digitoxigenin 2 and pyranone 8a or 18 steps from achiral acylfuran. PMID:16956221

  18. Copper-catalyzed arylation of biguanide derivatives via C-N cross-coupling reactions.

    PubMed

    Zhang, Chen; Huang, Bo; Bao, Ai-Qing; Li, Xiao; Guo, Shunna; Zhang, Jin-Quan; Xu, Jun-Zhi; Zhang, Rihao; Cui, Dong-Mei

    2015-12-21

    An efficient copper-catalyzed cross-coupling reaction of biguanide hydrochloride derivatives with both aryl iodides and bromides under mild conditions has been developed. The reaction occurred in good yields and tolerated aryl halides containing functionalities such as nitriles, sulfonamides, ethers, and halogens. Alkyl and cyclic substituted biguanidines were also well tolerated. PMID:26444146

  19. Palladium-catalyzed dual C–H or N–H functionalization of unfunctionalized indole derivatives with alkenes and arenes

    PubMed Central

    Beccalli, Egle M; Fasana, Andrea; Gazzola, Silvia

    2012-01-01

    Summary This review highlights the development of palladium-catalyzed C–H and N–H functionalization reactions involving indole derivatives. These procedures require unactivated starting materials and are respectful of the basic principle of sustainable chemistry tied to atom economy. PMID:23209507

  20. MICROWAVE-ACCELERATED SUZUKI CROSS-COUPLING REACTION IN POLYETHYLENE GLYCOL (PEG)

    EPA Science Inventory

    Polyethylene glycol (PEG) is found to be an inexpensive and nontoxic reaction medium for the microwave-assisted Suzuki cross-coupling of arylboronic acids with aryl halides. This environmentally friendly microwave protocol offers the ease of operation and enables the recyclabilit...

  1. Modular, Catalytic Enantioselective Construction of Quaternary Carbon Stereocenters by Sequential Cross-Coupling Reactions.

    PubMed

    Potter, Bowman; Edelstein, Emma K; Morken, James P

    2016-07-01

    The catalytic Suzuki-Miyaura cross-coupling with chiral γ,γ-disubstituted allylboronates in the presence of RuPhos ligand occurs with high regioselectivity and enantiospecificity, furnishing nonracemic compounds with quaternary centers. Mechanistic experiments suggest that the reaction occurs by transmetalation with allyl migration, followed by rapid reductive elimination. PMID:27310927

  2. Iron-Catalyzed Stereoselective Cross-Coupling Reactions of Stereodefined Enol Carbamates with Grignard Reagents.

    PubMed

    Rivera, Ana Cristina Parra; Still, Raymond; Frantz, Doug E

    2016-06-01

    A practical and highly stereoselective iron-catalyzed cross-coupling reaction of stereodefined enol carbamates and Grignard reagents to yield tri- and tetrasubstituted acrylates is reported. A facile method for the stereoselective generation of these enol carbamates has also been developed. PMID:27088754

  3. Synthesis of Indeno[1',2':4,5]imidazo[1,2-a]pyridin-11-ones and Chromeno[4',3':4,5]imidazo[1,2-a]pyridin-6-ones through Palladium-Catalyzed Cascade Reactions of 2-(2-Bromophenyl)imidazo[1,2-a]pyridines.

    PubMed

    Zhang, Ju; Zhang, Xinying; Fan, Xuesen

    2016-04-15

    A novel and efficient synthesis of 11H-indeno[1',2':4,5]imidazo[1,2-a]pyridin-11-one, a hybrid structure of indenone with imidazo[1,2-a]pyridine, from the reaction of 2-(2-bromophenyl)imidazo[1,2-a]pyridine with carbon monoxide through palladium-catalyzed CO insertion and C-H bond activation, has been developed. Intriguingly, under similar conditions but in the presence of Cu(OAc)2, the reaction selectively afforded 6H-chromeno[4',3':4,5]imidazo[1,2-a]pyridin-6-one, a hybrid structure of chromenone with imidazo[1,2-a]pyridine, via a more sophisticated cascade process including acetoxylation, deacetylation, CO insertion, and C-H bond activation. PMID:26980482

  4. A Macroscopic Reaction: Direct Covalent Bond Formation between Materials Using a Suzuki-Miyaura Cross-Coupling Reaction

    NASA Astrophysics Data System (ADS)

    Sekine, Tomoko; Kakuta, Takahiro; Nakamura, Takashi; Kobayashi, Yuichiro; Takashima, Yoshinori; Harada, Akira

    2014-09-01

    Cross-coupling reactions are important to form C-C covalent bonds using metal catalysts. Although many different cross-coupling reactions have been developed and applied to synthesize complex molecules or polymers (macromolecules), if cross-coupling reactions are realized in the macroscopic real world, the scope of materials should be dramatically broadened. Here, Suzuki-Miyaura coupling reactions are realized between macroscopic objects. When acrylamide gel modified with an iodophenyl group (I-gel) reacts with a gel possessing a phenylboronic group (PB-gel) using a palladium catalyst, the gels bond to form a single object. This concept can also be adapted for bonding between soft and hard materials. I-gel or PB-gel selectively bonds to the glass substrates whose surfaces are modified with an electrophile or nucleophile, respectively.

  5. A Macroscopic Reaction: Direct Covalent Bond Formation between Materials Using a Suzuki-Miyaura Cross-Coupling Reaction

    PubMed Central

    Sekine, Tomoko; Kakuta, Takahiro; Nakamura, Takashi; Kobayashi, Yuichiro; Takashima, Yoshinori; Harada, Akira

    2014-01-01

    Cross-coupling reactions are important to form C–C covalent bonds using metal catalysts. Although many different cross-coupling reactions have been developed and applied to synthesize complex molecules or polymers (macromolecules), if cross-coupling reactions are realized in the macroscopic real world, the scope of materials should be dramatically broadened. Here, Suzuki-Miyaura coupling reactions are realized between macroscopic objects. When acrylamide gel modified with an iodophenyl group (I-gel) reacts with a gel possessing a phenylboronic group (PB-gel) using a palladium catalyst, the gels bond to form a single object. This concept can also be adapted for bonding between soft and hard materials. I-gel or PB-gel selectively bonds to the glass substrates whose surfaces are modified with an electrophile or nucleophile, respectively. PMID:25231557

  6. Cross-Coupling Reactions of Aromatic and Heteroaromatic Silanolates with Aromatic and Heteroaromatic Halides

    PubMed Central

    Denmark, Scott E.; Smith, Russell C.; Chang, Wen-Tau T.; Muhuhi, Joseck M.

    2009-01-01

    The alkali-metal salts (potassium and sodium) of a large number of aryl- and heteroarylsilanols undergo efficient cross coupling with a wide range of aromatic bromides and chlorides under mild conditions to form polysubstituted biaryls. The critical feature for the success of these coupling reactions and their considerable scope is the use of bis(tri-tert-butylphosphine)palladium. Under the optimized conditions, electron-rich, electron-poor, and sterically hindered arylsilanolates afford cross-coupling products in good yields. Many functional groups are compatible with the coupling conditions such as esters, ketones, acetals, ethers, silyl ethers, and dimethylamino groups. Two particularly challenging substrates, (2-benzofuranyl)dimethylsilanolate and (2,6-dichlorophenyl)dimethylsilanolate prepared as their sodium salts showed excellent activity in the coupling reactions, in the former case also with aromatic chlorides. General methods for the efficient synthesis of a wide range of aromatic silanols are also described. PMID:19199785

  7. Stereospecific nickel-catalyzed cross-coupling reactions of benzylic ethers and esters.

    PubMed

    Tollefson, Emily J; Hanna, Luke E; Jarvo, Elizabeth R

    2015-08-18

    This Account presents the development of a suite of stereospecific alkyl-alkyl cross-coupling reactions employing nickel catalysts. Our reactions complement related nickel-catalyzed stereoconvergent cross-coupling reactions from a stereochemical and mechanistic perspective. Most reactions of alkyl electrophiles with low-valent nickel complexes proceed through alkyl radicals and thus are stereoablative; the correct enantioselective catalyst can favor the formation of one enantiomer. Our reactions, in contrast, are stereospecific. Enantioenriched ethers and esters are cleanly converted to cross-coupled products with high stereochemical fidelity. While mechanistic details are still to be refined, our results are consistent with a polar, two-electron oxidative addition that avoids the formation of radical intermediates. This reactivity is unusual for a first-row transition metal. The cross-coupling reactions engage a range of benzylic ethers and esters, including methyl ethers, tetrahydropyrans, tetrahydrofurans, esters, and lactones. Coordination of the arene substituent to the nickel catalyst accelerates the reactions. Arenes with low aromatic stabilization energies, such as naphthalene, benzothiophene, and furan, serve as the best ligands and provide the highest reactivity. Traceless directing groups that accelerate reactions of sluggish substrates are described, providing partial compensation for arene coordination. Kumada, Negishi, and Suzuki reactions provide incorporation of a broad range of transmetalating agents. In Kumada coupling reactions, a full complement of Grigard reagents, including methyl, n-alkyl, and aryl Grignard reagents, are employed. In reactions employing methylmagnesium iodide, ligation of the nickel catalyst by rac-BINAP or DPEphos provides the highest yield and stereospecificity. For all other Grignard reagents, Ni(dppe)Cl2 has emerged as the best catalyst. Negishi cross-coupling reactions employing dimethylzinc are reported as a strategy to

  8. Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Benzylic Ethers and Esters

    PubMed Central

    2015-01-01

    Conspectus This Account presents the development of a suite of stereospecific alkyl–alkyl cross-coupling reactions employing nickel catalysts. Our reactions complement related nickel-catalyzed stereoconvergent cross-coupling reactions from a stereochemical and mechanistic perspective. Most reactions of alkyl electrophiles with low-valent nickel complexes proceed through alkyl radicals and thus are stereoablative; the correct enantioselective catalyst can favor the formation of one enantiomer. Our reactions, in contrast, are stereospecific. Enantioenriched ethers and esters are cleanly converted to cross-coupled products with high stereochemical fidelity. While mechanistic details are still to be refined, our results are consistent with a polar, two-electron oxidative addition that avoids the formation of radical intermediates. This reactivity is unusual for a first-row transition metal. The cross-coupling reactions engage a range of benzylic ethers and esters, including methyl ethers, tetrahydropyrans, tetrahydrofurans, esters, and lactones. Coordination of the arene substituent to the nickel catalyst accelerates the reactions. Arenes with low aromatic stabilization energies, such as naphthalene, benzothiophene, and furan, serve as the best ligands and provide the highest reactivity. Traceless directing groups that accelerate reactions of sluggish substrates are described, providing partial compensation for arene coordination. Kumada, Negishi, and Suzuki reactions provide incorporation of a broad range of transmetalating agents. In Kumada coupling reactions, a full complement of Grigard reagents, including methyl, n-alkyl, and aryl Grignard reagents, are employed. In reactions employing methylmagnesium iodide, ligation of the nickel catalyst by rac-BINAP or DPEphos provides the highest yield and stereospecificity. For all other Grignard reagents, Ni(dppe)Cl2 has emerged as the best catalyst. Negishi cross-coupling reactions employing dimethylzinc are reported as

  9. STILLE CROSS-COUPLING REACTIONS OF ARYL MESYLATES AND TOSYLATES USING A BIARYLPHOSPHINE BASED CATALYST SYSTEM‡

    PubMed Central

    Naber, John R.; Fors, Brett P.; Wu, Xiaoxing; Gunn, Jonathon

    2013-01-01

    A catalyst system for the Stille cross-coupling reactions of aryl mesylates and tosylates is reported. Using the combination of Pd(OAc)2, XPhos, and CsF in t-BuOH an array of aryl and heteroaryl sulfonates were successfully employed in these reactions. Morever, heteroarylstannanes, such as furyl, thiophenyl, and N-methylpyrrole, which are often prone to decomposition, were efficiently coupled under these conditions. Ortho-substitution on the stannane coupling partner was well tolerated; however, the presence of ortho substituents on the aryl sulfonates greatly reduced the proficiency of these reactions. PMID:23596345

  10. Synthesis of [60]Fullerene-Fused Spiroindanes by Palladium-Catalyzed Oxidative Annulation of [60]Fullerene with 2-Aryl Cyclic 1,3-Dicarbonyl Compounds.

    PubMed

    Zhou, Dian-Bing; Wang, Guan-Wu

    2016-06-01

    A convenient and facile palladium-catalyzed reaction of [60]fullerene (C60) with 2-aryl cyclic 1,3-dicarbonyl compounds via the enolate-directed sp(2) C-H activation and sp(3) C-H functionalization has been exploited to synthesize the novel and rare C60-fused spiroindanes for the first time. This reaction is easy to perform with broad substrate scope and provides diversified products in 20-50% yields. A plausible reaction mechanism involving the palladium-catalyzed enolate-directed C-H activation and subsequent cyclization has been proposed, and the electrochemistry of the C60-fused spiroindanes has also been investigated. PMID:27192615

  11. Palladium-Catalyzed syn-Stereocontrolled Ring-Opening of Oxabicyclic Alkenes with Sodium Arylsulfinates.

    PubMed

    Li, Yue; Yang, Wen; Cheng, Guo; Yang, Dingqiao

    2016-06-01

    Palladium-catalyzed syn-stereocontrolled ring-opening reactions of oxabenzonorbornadienes with a wide range of sodium arylsulfinates were investigated, affording the desired products in good to excellent yields under an air atmosphere. This protocol provides a low-cost new viable and convenient method toward the synthesis of cis-2-aryl-1,2-dihydronaphthalen-1-ol with good functional group tolerance. In addition, the cis configuration of 3da was established by X-ray diffraction analysis, and a plausible mechanism for the ring-opening reaction was proposed. PMID:27150019

  12. Efficient Stille cross-coupling reaction using aryl chlorides or bromides in water.

    PubMed

    Wolf, Christian; Lerebours, Rachel

    2003-09-19

    An efficient Stille cross-coupling reaction using a variety of aryl halides in neat water has been developed. Employing palladium-phosphinous acid catalyst [(t-Bu)(2)P(OH)](2)PdCl(2) allows formation of biaryls from aryl chlorides and bromides in good to high yields. Functional groups such as ketones and nitriles are tolerated, and organic cosolvents are not required. The air stability and solubility in water of the palladium complexes used in this study facilitate operation of the coupling reaction and product isolation. The feasibility of catalyst recycling has also been demonstrated. PMID:12968920

  13. Modeling suberization with peroxidase-catalyzed polymerization of hydroxycinnamic acids: cross-coupling and dimerization reactions.

    PubMed

    Arrieta-Baez, Daniel; Stark, Ruth E

    2006-04-01

    An anionic potato peroxidase (EC 1.11.1.7, APP) thought to be involved in suberization after wounding was isolated from slices of Solanum tuberosum in order to elucidate the first steps of dehydrogenative polymerization between pairs of different hydroxycinnamic acids (FA, CafA, CA and SA) present in wound-healing plant tissues. Use of a commercial horseradish peroxidase (HRP)-H2O2 catalytic system gave the identical major products in these coupling reactions, providing sufficient quantities for purification and structural elucidation. Using an equimolar mixture of pairs of hydroxycinnamic acid suberin precursors, only caffeic acid is coupled to ferulic acid and sinapic acid in separate cross-coupling reactions. For the other systems, HRP and APP reacted as follows: (1) preferentially with ferulic acid in a reaction mixture that contained p-coumaric and ferulic acids; (2) with sinapic acid in a mixture of p-coumaric and sinapic acids; (3) with sinapic acid in a mixture of ferulic and sinapic acids; (4) with caffeic acid in a reaction mixture of p-coumaric and caffeic acids. The resulting products, isolated and identified by NMR and MS analysis, had predominantly beta-beta-gamma-lactone and beta-5 benzofuran molecular frameworks. Five cross-coupling products are described for the first time, whereas the beta-O-4 dehydrodimers identified from the caffeic acid and sinapic acid cross-coupling reaction are known materials that are highly abundant in plants. These reactivity trends lead to testable hypotheses regarding the molecular architecture of intractable suberin protective plant materials, complementing prior analysis of monomeric constituents by GC-MS and polymer functional group identification from solid-state NMR, respectively. PMID:16524605

  14. Palladium-Catalyzed Dearomative Allylic Alkylation of Indoles with Alkynes To Synthesize Indolenines with C3-Quarternary Centers.

    PubMed

    Gao, Shang; Wu, Zijun; Fang, Xinxin; Lin, Aijun; Yao, Hequan

    2016-08-01

    A palladium-catalyzed dearomative allylic alkylation of indoles with alkynes to construct indolenines with C3-quarternary centers was reported. The in situ formed arylallene intermediate omitted the need to install leaving groups on the allylic compounds and employ extra oxidants to oxidize the allylic C-H bonds. The reaction exhibited good functional group tolerance and high atom economy. Moreover, the reaction was further expanded to synthesize pyrroloindolines and furanoindolines. PMID:27442021

  15. Palladium-catalyzed decarboxylative annulation of 2-arylbenzoic acids with [60]fullerene via C-H bond activation.

    PubMed

    Zhou, Dian-Bing; Wang, Guan-Wu

    2015-03-01

    A convenient and highly efficient palladium-catalyzed decarboxylative annulation of 2-arylbenzoic acids with [60]fullerene has been exploited to synthesize the novel and scarce [60]fullerene-fused dihydrophenanthrenes. The use of Lewis acid ZnCl2 is crucial for the success of the present formal [4 + 2] annulation reaction. Plausible reaction pathways leading to the observed products have been proposed, and the electrochemistry of the fullerene products has also been investigated. PMID:25700187

  16. Palladium-Catalyzed Oxidative Carbocyclization-Borylation of Enallenes to Cyclobutenes.

    PubMed

    Qiu, Youai; Yang, Bin; Zhu, Can; Bäckvall, Jan-E

    2016-05-23

    A highly efficient palladium-catalyzed oxidative borylation of enallenes was developed for the selective formation of cyclobutene derivatives and fully-substituted alkenylboron compounds. Cyclobutenes are formed as the exclusive products in MeOH in the presence of H2 O and Et3 N, whereas the use of AcOH leads to alkenylboron compounds. Both reactions showed a broad substrate scope and good tolerance for various functional groups, including carboxylic acid ester, free hydroxy, imide, and alkyl groups. Furthermore, transformations of the borylated products were conducted to show their potential applications. PMID:27088425

  17. Palladium-Catalyzed Alkoxycarbonylation of Unactivated Secondary Alkyl Bromides at Low Pressure.

    PubMed

    Sargent, Brendon T; Alexanian, Erik J

    2016-06-22

    Catalytic carbonylations of organohalides are important C-C bond formations in chemical synthesis. Carbonylations of unactivated alkyl halides remain a challenge and currently require the use of alkyl iodides under harsh conditions and high pressures of CO. Herein we report a palladium-catalyzed alkoxycarbonylation of secondary alkyl bromides that proceeds at low pressure (2 atm CO) under mild conditions. Preliminary mechanistic studies are consistent with a hybrid organometallic-radical process. These reactions efficiently deliver esters from unactivated alkyl bromides across a diverse range of substrates and represent the first catalytic carbonylations of alkyl bromides with carbon monoxide. PMID:27267421

  18. Palladium-Catalyzed Deaminative Phenanthridinone Synthesis from Aniline via C-H Bond Activation.

    PubMed

    Yedage, Subhash L; Bhanage, Bhalchandra M

    2016-05-20

    This work reports palladium-catalyzed phenanthridinone synthesis using the coupling of aniline and amide by formation of C-C and C-N bonds in a one-pot fashion via dual C-H bond activation. It involves simultaneous cleavage of four bonds and the formation of two new bonds. The present protocol is ligand-free, takes place under mild reaction conditions, and is environmentally benign as nitrogen gas and water are the only side products. This transformation demonstrates a broad range of aniline and amide substrates with different functional groups and has been scaled up to gram level. PMID:27088815

  19. Palladium-Catalyzed Regioselective Diarylation of o-Carboranes By Direct Cage B-H Activation.

    PubMed

    Quan, Yangjian; Xie, Zuowei

    2016-01-22

    Palladium-catalyzed intermolecular coupling of o-carborane with aromatics by direct cage B-H bond activation has been achieved, leading to the synthesis of a series of cage B(4,5)-diarylated-o-carboranes in high yields with excellent regioselectivity. Traceless directing group -COOH plays a crucial role for site- and di-selectivity of such intermolecular coupling reaction. A Pd(II)-Pd(IV)-Pd(II) catalytic cycle is proposed to be responsible for the stepwise arylation. PMID:26463595

  20. Palladium-Catalyzed Annulation of Internal Alkynes: Direct Access to π-Conjugated Ullazines.

    PubMed

    Wan, Danyang; Li, Xiaoyu; Jiang, Ruyong; Feng, Boya; Lan, Jingbo; Wang, Ruilin; You, Jingsong

    2016-06-17

    A palladium-catalyzed cyclization reaction of 1-(2,6-dibromophenyl)-1H-pyrroles with alkynes has been developed to construct various π-conjugated indolizino[6,5,4,3-ija]quinolones (ullazines) with a reactive functional group tolerance. As illustrative examples, three new ullazine-based sensitizers are synthesized, and the performance of these dyes is examined in DSSC devices, which demonstrates the potential of direct C-H functionalization in the construction of organic optoelectronic materials. PMID:27227659

  1. Palladium-Catalyzed Aerobic Acetoxylation of Benzene using NOx-Based Redox Mediators‡

    PubMed Central

    Zultanski, Susan L.; Stahl, Shannon S.

    2015-01-01

    Palladium-catalyzed methods for C–H oxygenation with O2 as the stoichiometric oxidant are limited. Here, we describe the use of nitrite and nitrate sources as NOx-based redox mediators in the acetoxylation of benzene. The conditions completely avoid formation of biphenyl as a side product, and strongly favor formation of phenyl acetate over nitrobenzene (PhOAc:PhNO2 ratios up to 40:1). Under the optimized reaction conditions, with 0.1 mol% Pd(OAc)2, 136 turnovers of Pd are achieved with only 1 atm of O2 pressure. PMID:25843978

  2. Palladium-Catalyzed Trifluoromethylation of (Hetero)Arenes with CF3 Br.

    PubMed

    Natte, Kishore; Jagadeesh, Rajenahally V; He, Lin; Rabeah, Jabor; Chen, Jianbin; Taeschler, Christoph; Ellinger, Stefan; Zaragoza, Florencio; Neumann, Helfried; Brückner, Angelika; Beller, Matthias

    2016-02-18

    The CF3 group is an omnipresent motif found in many pharmaceuticals, agrochemicals, catalysts, materials, and industrial chemicals. Despite well-established trifluoromethylation methodologies, the straightforward and selective introduction of such groups into (hetero)arenes using available and less expensive sources is still a major challenge. In this regard, the selective synthesis of various trifluoromethyl-substituted (hetero)arenes by palladium-catalyzed C-H functionalization is herein reported. This novel methodology proceeds under comparably mild reaction conditions with good regio- and chemoselectivity. As examples, trifluoromethylations of biologically important molecules, such as melatonin, theophylline, caffeine, and pentoxifylline, are showcased. PMID:26804330

  3. Preparation of 2,3-Disubstituted Indoles by Sequential Larock Heteroannulation and Silicon-Based Cross-Coupling Reactions

    PubMed Central

    Baird, John D.

    2009-01-01

    A simple and convergent synthesis of 2,3-disubstituted indoles has been developed using a sequential Larock indole synthesis and silicon-based, cross-coupling reaction. Substituted 2-iodoanilines reacted with an alkynyldimethylsilyl tert-butyl ether to afford indole-2-silanols under the Larock heteroannulation conditions after hydrolysis. The corresponding sodium 2-indolylsilanolate salts successfully engaged in cross-coupling with aryl bromides and chlorides to afford multi-substituted indoles. The development of an alkynyldimethylsilyl tert-butyl ether as a masked silanol equivalent enabled a smooth heteroannulation process and the identification of a suitable catalyst/ligand combination provided for a facile cross-coupling reaction. PMID:19784400

  4. Configurationally Stable, Enantioenriched Organometallic Nucleophiles in Stereospecific Pd-Catalyzed Cross-Coupling Reactions: An Alternative Approach to Asymmetric Synthesis

    PubMed Central

    Wang, Chao-Yuan; Derosaa, Joseph

    2015-01-01

    Several research groups have recently developed methods to employ configurationally stable, enantioenriched organometallic nucleophiles in stereospecific Pd-catalyzed cross-coupling reactions. By establishing the absolute configuration of a chiral alkyltin or alkylboron nucleophile prior to its use in cross-coupling reactions, new stereogenic centers may be rapidly and reliably generated with preservation of the known initial stereochemistry. While this area of research is still in its infancy, such stereospecific cross-coupling reactions may emerge as simple, general methods to access diverse, optically active products from common enantioenriched organometallic building blocks. This minireview highlights recent progress towards the development of general, stereospecific Pd-catalyzed cross-coupling reactions using configurationally stable organometallic nucleophiles. PMID:26388985

  5. NIR bacteriochlorin chromophores accessed by Heck and Sonogashira cross-coupling reactions on a tetrabromobacteriochlorin derivative.

    PubMed

    de Assis, Francisco F; Ferreira, Marco A B; Brocksom, Timothy J; de Oliveira, Kleber T

    2016-01-28

    The synthesis of a new tetrabromobacteriochlorin BCBr4 is reported having the 3,4-dibromo-1H-pyrrole-2-carbaldehyde (10) as the major precursor. The BCBr4 was successfully employed in Pd cross-coupling reactions with methyl acrylate, phenyl acetylene and 4-ethynylanisole. In all three cases, the desired tetra-coupled products were obtained in good to excellent yields, and present a significant red shift in the UV-Vis bands above 800 nm. DFT and TD-DFT theoretical analyses of the NIR bacteriochlorin chromophores were performed in order to evaluate the effect of β substitution on their electronic structures. PMID:26676846

  6. C8-Selective Acylation of Quinoline N-Oxides with α-Oxocarboxylic Acids via Palladium-Catalyzed Regioselective C-H Bond Activation.

    PubMed

    Chen, Xiaopei; Cui, Xiuling; Wu, Yangjie

    2016-08-01

    A facile and efficient protocol for palladium-catalyzed C8-selective acylation of quinoline N-oxides with α-oxocarboxylic acids has been developed. In this approach, N-oxide was utilized as a stepping stone for the remote C-H functionalization. The reactions proceeded efficiently under mild reaction conditions with excellent regioselectivity and broad functional group tolerance. PMID:27441527

  7. A stereoselective synthesis of digitoxin and digitoxigen mono- and bisdigitoxoside from digitoxigenin via a palladium-catalyzed glycosylation.

    PubMed

    Zhou, Maoquan; O'Doherty, George A

    2006-09-14

    A convergent and stereocontrolled route to trisaccharide natural product digitoxin has been developed. The route is amenable to the preparation of both the digitoxigen mono- and bisdigitoxoside. This route featured the iterative application of the palladium-catalyzed glycosylation reaction, reductive 1,3-transposition, diastereoselective dihydroxylation, and regioselective protection. The natural product digitoxin was fashioned in 15 steps starting from digitoxigenin 2 and pyranone 8a or 18 steps from achiral acylfuran. PMID:16956221

  8. Regioselectivity switch achieved in the palladium catalyzed α-arylation of enones by employing the modified Kuwajima-Urabe conditions.

    PubMed

    Kale, Ajit Prabhakar; Pawar, Govind Goroba; Kapur, Manmohan

    2012-04-01

    A new regioselective approach to the synthesis of α-aryl enones is reported. This represents an important application of the Kuwajima-Urabe protocol toward the synthesis of this simple albeit complex functional array. Several α-aryl enones were synthesized by the palladium catalyzed arylation of triethylsilylenol ethers of enones with high regioselectivity and broad scope, utilizing sterically encumbered electron-rich phosphine ligands to drive the reaction. PMID:22432858

  9. Palladium-Catalyzed Benzylic Arylation of Pyridylmethyl Silyl Ethers: One-Pot Synthesis of Aryl(pyridyl)methanols.

    PubMed

    Rivero, Alexandra R; Kim, Byeong-Seon; Walsh, Patrick J

    2016-04-01

    An efficient palladium-catalyzed direct arylation of pyridylmethyl silyl ethers with aryl bromides is described. A Pd(OAc)2/NIXANTPHOS-based catalyst provides aryl(pyridyl)methyl alcohol derivatives in good to excellent yields (33 examples, 57-100% yield). This protocol is compatible with different silyl ether protecting groups, affording either the protected or the free alcohols in an effective one-pot process. The scalability of the reaction is demonstrated. PMID:27004592

  10. Palladium-Catalyzed α-Arylation of Benzylic Phosphonates

    PubMed Central

    2015-01-01

    A new synthetic route to access diarylmethyl phosphonates is presented. The transformation enables the introduction of aromatic groups on benzylic phosphonates via a deprotonative cross-coupling process (DCCP). The Pd(OAc)2/CataCXium A-based catalyst afforded a reaction between benzyl diisopropyl phosphonate derivatives and aryl bromides in good to excellent isolated yields (64–92%). PMID:24520897

  11. Stereoselective synthesis of tricyclic compounds by intramolecular palladium-catalyzed addition of aryl iodides to carbonyl groups.

    PubMed

    Saadi, Jakub; Bentz, Christoph; Redies, Kai; Lentz, Dieter; Zimmer, Reinhold; Reissig, Hans-Ulrich

    2016-01-01

    Starting from γ-ketoesters with an o-iodobenzyl group we studied a palladium-catalyzed cyclization process that stereoselectively led to bi- and tricyclic compounds in moderate to excellent yields. Four X-ray crystal structure analyses unequivocally defined the structure of crucial cyclization products. The relative configuration of the precursor compounds is essentially transferred to that of the products and the formed hydroxy group in the newly generated cyclohexane ring is consistently in trans-arrangement with respect to the methoxycarbonyl group. A transition-state model is proposed to explain the observed stereochemical outcome. This palladium-catalyzed Barbier-type reaction requires a reduction of palladium(II) back to palladium(0) which is apparently achieved by the present triethylamine. PMID:27559374

  12. Stereoselective synthesis of tricyclic compounds by intramolecular palladium-catalyzed addition of aryl iodides to carbonyl groups

    PubMed Central

    Saadi, Jakub; Bentz, Christoph; Redies, Kai; Lentz, Dieter; Zimmer, Reinhold

    2016-01-01

    Summary Starting from γ-ketoesters with an o-iodobenzyl group we studied a palladium-catalyzed cyclization process that stereoselectively led to bi- and tricyclic compounds in moderate to excellent yields. Four X-ray crystal structure analyses unequivocally defined the structure of crucial cyclization products. The relative configuration of the precursor compounds is essentially transferred to that of the products and the formed hydroxy group in the newly generated cyclohexane ring is consistently in trans-arrangement with respect to the methoxycarbonyl group. A transition-state model is proposed to explain the observed stereochemical outcome. This palladium-catalyzed Barbier-type reaction requires a reduction of palladium(II) back to palladium(0) which is apparently achieved by the present triethylamine. PMID:27559374

  13. Cross-Coupling of Aromatic Bromides with Allylic Silanolate Salts

    PubMed Central

    Denmark, Scott E; Werner, Nathan S.

    2009-01-01

    The sodium salts of allyldimethylsilanol and 2-butenyldimethylsilanol undergo palladium-catalyzed cross-coupling with a wide variety of aryl bromides to afford allylated and crotylated arenes. The coupling of both silanolates required extensive optimization to deliver the expected products in high yields. The reaction of the allyldimethylsilanolate takes place at 85 °C in DME with allylpalladium chloride dimer (2.5 mol %) to afford 7–95% yields of the allylation products. Both electron-rich and sterically-hindered bromides reacted smoothly, whereas electron-poor bromides cross-coupled in poor yield because of a secondary isomerization to the 1-propenyl isomer (and subsequent polymerization). The 2-butenyldimethylsilanolate (E/Z, 80:20) required additional optimization to maximize the formation of the branched (γ-substitution product). A remarkable influence of added alkenes (dibenzylideneacetone and norbornadiene) led to good selectivities for electron-rich and electron-poor bromides in 4–83% yields. However, bromides containing coordinating groups (particularly in the ortho position) gave lower, and in one case even reversed, selectivity. Configurationally homogeneous E-silanolates gave slightly higher γ-selectivity than the pure Z-silanolates. A unified mechanistic picture involving initial γ-transmetalation followed by direct reductive elimination or σ–π isomerization can rationalize all of the observed trends. PMID:18998687

  14. Compatible mechanism to characterize three independent but cross-coupled reactions of chlorite ion

    NASA Astrophysics Data System (ADS)

    Nagypál, István; Horváth, Attila K.

    2015-06-01

    Individually proposed kinetic models of the key subsystems of the chlorite-thiosulfate reaction, such as the hypochlorous acid-chlorite, tetrathionate-chlorite, and tetrathionate-chlorine dioxide reactions, have been unified to be able to describe all the main characteristics of these systems simultaneously. A complex 38-step kinetic model is composed in which the subsystems are coupled by the necessary short-lived intermediates and such species that is products or reactants in one system but transients in the other. Such a cross-coupling between the individual systems as well as the sound agreement between the measured and calculated absorbance-time profiles in 367 experimental curves strongly validates the proposed kinetic model.

  15. Compatible mechanism to characterize three independent but cross-coupled reactions of chlorite ion.

    PubMed

    Nagypál, István; Horváth, Attila K

    2015-06-01

    Individually proposed kinetic models of the key subsystems of the chlorite-thiosulfate reaction, such as the hypochlorous acid-chlorite, tetrathionate-chlorite, and tetrathionate-chlorine dioxide reactions, have been unified to be able to describe all the main characteristics of these systems simultaneously. A complex 38-step kinetic model is composed in which the subsystems are coupled by the necessary short-lived intermediates and such species that is products or reactants in one system but transients in the other. Such a cross-coupling between the individual systems as well as the sound agreement between the measured and calculated absorbance-time profiles in 367 experimental curves strongly validates the proposed kinetic model. PMID:26117129

  16. Reactions of nitroxides 15. Cinnamates bearing a nitroxyl moiety synthesized using a Mizoroki–Heck cross-coupling reaction

    PubMed Central

    Huras, Bogumiła

    2015-01-01

    Summary Cinnamic acid derivatives bearing a nitroxyl moiety (2,2,6,6-tetramethyl-1-oxyl-4-piperidyl 3-E-aryl acrylates) were synthesized in 30–100% yield using a Mizoroki–Heck cross-coupling reaction between 4-acryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl and iodobenzene derivatives in the presence of palladium(II) acetate coordinated with a tri(o-tolyl)phosphine ligand immobilized in a polyurea matrix. PMID:26199672

  17. Reactions of nitroxides 15. Cinnamates bearing a nitroxyl moiety synthesized using a Mizoroki-Heck cross-coupling reaction.

    PubMed

    Zakrzewski, Jerzy; Huras, Bogumiła

    2015-01-01

    Cinnamic acid derivatives bearing a nitroxyl moiety (2,2,6,6-tetramethyl-1-oxyl-4-piperidyl 3-E-aryl acrylates) were synthesized in 30-100% yield using a Mizoroki-Heck cross-coupling reaction between 4-acryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl and iodobenzene derivatives in the presence of palladium(II) acetate coordinated with a tri(o-tolyl)phosphine ligand immobilized in a polyurea matrix. PMID:26199672

  18. Palladium-catalyzed cascade cyclization of allylamine-tethered alkylidenecyclopropanes: facile access to iodine/difluoromethylene- and perfluoroalkyl-containing 1-benzazepine scaffolds.

    PubMed

    Yu, Liu-Zhu; Zhu, Zi-Zhong; Hu, Xu-Bo; Tang, Xiang-Ying; Shi, Min

    2016-05-01

    The unprecedented palladium-catalyzed cascade cyclization of allylamine-tethered alkylidenecyclopropanes with an ethyl difluoroiodoacetate or perfluoroalkylated reagent is developed, providing facile access to a variety of synthetically and medicinally valuable iodine/difluoromethylene- and perfluoroalkyl-containing 1-benzazepine frameworks. These reactions exhibited good yields and functional group tolerance via a radical mechanism. PMID:27109032

  19. Suzuki–Miyaura Cross-Coupling of Brominated 2,1-Borazaronaphthalenes with Potassium Alkenyltrifluoroborates

    PubMed Central

    2015-01-01

    Conditions have been developed for the palladium-catalyzed cross-coupling of 3-bromo-2,1-borazaronaphthalenes with potassium alkenyltrifluoroborates. Twenty-seven alkenyl-substituted azaborines have been synthesized through this method, providing access to a family of 2,1-borazaronaphthalenes with alkenyl substitution at the C3 position. PMID:25356980

  20. Tandem reactions initiated by copper-catalyzed cross-coupling: a new strategy towards heterocycle synthesis.

    PubMed

    Liu, Yunyun; Wan, Jie-Ping

    2011-10-21

    Copper-catalyzed cross-coupling reactions which lead to the formation of C-N, C-O, C-S and C-C bonds have been recognized as one of the most useful strategies in synthetic organic chemistry. During past decades, important breakthroughs in the study of Cu-catalyzed coupling processes demonstrated that Cu-catalyzed reactions are broadly applicable to a variety of research fields related to organic synthesis. Representatively, employing these coupling transformations as key steps, a large number of tandem reactions have been developed for the construction of various heterocyclic compounds. These tactics share the advantages of high atom economics of tandem reactions as well as the broad tolerance of Cu-catalyst systems. Therefore, Cu-catalyzed C-X (X = N, O, S, C) coupling transformation-initiated tandem reactions were quickly recognized as a strategy with great potential for synthesizing heterocyclic compounds and gained worldwide attention. In this review, recent research progress in heterocycle syntheses using tandem reactions initiated by copper-catalyzed coupling transformations, including C-N, C-O, C-S as well as C-C coupling processes are summarized. PMID:21879127

  1. A novel 4-aminoantipyrine-Pd(II) complex catalyzes Suzuki–Miyaura cross-coupling reactions of aryl halides

    PubMed Central

    Mendoza-Rayo, Darío; Rincón-Medina, José A; Chacón-García, Luis

    2014-01-01

    Summary A simple and efficient catalytic system based on a Pd complex of 4-aminoantipyrine, 4-AAP–Pd(II), was found to be highly active for Suzuki–Miyaura cross-coupling of aryl iodides and bromides with phenylboronic acids under mild reaction conditions. Good to excellent product yields from the cross-coupling reaction can be achieved when the reaction is carried out in ethanol, in the open air, using low loading of 4-AAP–Pd(II) as a precatalyst, and in the presence of aqueous K2CO3 as the base. A variety of functional groups are tolerated. PMID:25550748

  2. An efficient copper-catalyzed cross-coupling reaction of alkyl-triflates with alkyl-Grignard reagents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A highly efficient method for the formation of C-C covalent bonds by cross-coupling reaction between alkyl-triflates and alkyl-Grignard reagents catalyzed by copper catalyst, Li2CuCl4, is described. The reaction works with most primary triflates in diethyl ether at low temperature within 0.5-3 h an...

  3. Catalyst activation, deactivation, and degradation in palladium-mediated Negishi cross-coupling reactions.

    PubMed

    Böck, Katharina; Feil, Julia E; Karaghiosoff, Konstantin; Koszinowski, Konrad

    2015-03-27

    Pd-mediated Negishi cross-coupling reactions were studied by a combination of kinetic measurements, electrospray-ionization (ESI) mass spectrometry, (31)P NMR and UV/Vis spectroscopy. The kinetic measurements point to a rate-determining oxidative addition. Surprisingly, this step seems to involve not only the Pd catalyst and the aryl halide substrate, but also the organozinc reagent. In this context, the ESI-mass spectrometric observation of heterobimetallic Pd-Zn complexes [L2 PdZnR](+) (L=S-PHOS, R=Bu, Ph, Bn) is particularly revealing. The inferred presence of these and related neutral complexes with a direct Pd-Zn interaction in solution explains how the organozinc reagent can modulate the reactivity of the Pd catalyst. Previous theoretical calculations by González-Pérez et al. (Organometallics- 2012, 31, 2053) suggest that the complexation by the organozinc reagent lowers the activity of the Pd catalyst. Presumably, a similar effect also causes the rate decrease observed upon addition of ZnBr2 . In contrast, added LiBr apparently counteracts the formation of Pd-Zn complexes and restores the high activity of the Pd catalyst. At longer reaction times, deactivation processes due to degradation of the S-PHOS ligand and aggregation of the Pd catalyst come into play, thus further contributing to the appreciable complexity of the title reaction. PMID:25709062

  4. Palladium-catalyzed cross-coupling of sterically demanding boronic acids with α-bromocarbonyl compounds.

    PubMed

    Zimmermann, Bettina; Dzik, Wojciech I; Himmler, Thomas; Goossen, Lukas J

    2011-10-01

    A catalyst system generated in situ from Pd(dba)(2) and tri(o-tolyl)phosphine mediates the coupling of arylboronic acids with alkyl α-bromoacetates under formation of arylacetic acid esters at unprecedented low loadings. The new protocol, which involves potassium fluoride as the base and catalytic amounts of benzyltriethylammonium bromide as a phase transfer catalyst, is uniquely effective for the synthesis of sterically demanding arylacetic acid derivatives. PMID:21863787

  5. Palladium-Catalyzed Trimethylenemethane Cycloaddition of Olefins Activated by the σ-Electron-Withdrawing Trifluoromethyl Group.

    PubMed

    Trost, Barry M; Debien, Laurent

    2015-09-16

    α-Trifluoromethyl-styrenes, trifluoromethyl-enynes, and dienes undergo palladium-catalyzed trimethylenemethane cycloadditions under mild reaction conditions. The trifluoromethyl group serves as a unique σ-electron-withdrawing group for the activation of the olefin toward the cycloaddition. This method allows for the formation of exomethylene cyclopentanes bearing a quaternary center substituted by the trifluoromethyl group, compounds of interest for the pharmaceutical, agrochemical, and materials industries. In the diene series, the cycloaddition operates in a [3 + 4] and/or [3 + 2] manner to give rise to seven- and/or five-membered rings. This transformation greatly improves the scope of the TMM cycloaddition technology and provides invaluable insights into the reaction mechanism. PMID:26291872

  6. The syn/anti-Dichotomy in the Palladium-Catalyzed Addition of Nucleophiles to Alkenes

    PubMed Central

    Kočovský, Pavel; Bäckvall, Jan-E

    2015-01-01

    In this review the stereochemistry of palladium-catalyzed addition of nucleophiles to alkenes is discussed, and examples of these reactions in organic synthesis are given. Most of the reactions discussed involve oxygen and nitrogen nucleophiles; the Wacker oxidation of ethylene has been reviewed in detail. An anti-hydroxypalladation in the Wacker oxidation has strong support from both experimental and computational studies. From the reviewed material it is clear that anti-addition of oxygen and nitrogen nucleophiles is strongly favored in intermolecular addition to olefin–palladium complexes even if the nucleophile is coordinated to the metal. On the other hand, syn-addition is common in the case of intramolecular oxy- and amidopalladation as a result of the initial coordination of the internal nucleophile to the metal. PMID:25378278

  7. Unparalleled Ease of Access to a Library of Biheteroaryl Fluorophores via Oxidative Cross-Coupling Reactions: Discovery of Photostable NIR Probe for Mitochondria.

    PubMed

    Cheng, Yangyang; Li, Gaocan; Liu, Yang; Shi, Yang; Gao, Ge; Wu, Di; Lan, Jingbo; You, Jingsong

    2016-04-13

    The development of straightforward accesses to organic functional materials through C-H activation is a revolutionary trend in organic synthesis. In this article, we propose a concise strategy to construct a large library of donor-acceptor-type biheteroaryl fluorophores via the palladium-catalyzed oxidative C-H/C-H cross-coupling of electron-deficient 2H-indazoles with electron-rich heteroarenes. The directly coupled biheteroaryl fluorophores, named Indazo-Fluors, exhibit continuously tunable full-color emissions with quantum yields up to 93% and large Stokes shifts up to 8705 cm(-1) in CH2Cl2. By further fine-tuning of the substituent on the core skeleton, Indazo-Fluor 3l (FW = 274; λem = 725 nm) is obtained as the lowest molecular weight near-infrared (NIR) fluorophore with emission wavelength over 720 nm in the solid state. The NIR dye 5h specifically lights up mitochondria in living cells with bright red luminescence. Typically, commercially available mitochondria trackers suffer from poor photostability. Indazo-Fluor 5h exhibits superior photostability and very low cytotoxicity, which would be a prominent reagent for in vivo mitochondria imaging. PMID:26854564

  8. New efficient ligand for sub-mol % copper-catalyzed C-N cross-coupling reactions running under air.

    PubMed

    Larsson, Per-Fredrik; Astvik, Peter; Norrby, Per-Ola

    2012-01-01

    A new efficient ligand, N,N''-dimethyldiethylene triamine (DMDETA), has been synthesized and evaluated for sub-mol % copper-catalyzed C-N cross-coupling reactions. The efficiency of the ligand was determined by kinetic methods. DMDETA proved to display efficiency similar to DMEDA and, in addition, the resulting catalyst was tolerant to air. PMID:23209530

  9. New efficient ligand for sub-mol % copper-catalyzed C–N cross-coupling reactions running under air

    PubMed Central

    Larsson, Per-Fredrik; Astvik, Peter

    2012-01-01

    Summary A new efficient ligand, N,N’’-dimethyldiethylene triamine (DMDETA), has been synthesized and evaluated for sub-mol % copper-catalyzed C–N cross-coupling reactions. The efficiency of the ligand was determined by kinetic methods. DMDETA proved to display efficiency similar to DMEDA and, in addition, the resulting catalyst was tolerant to air. PMID:23209530

  10. Organo-Iodine(III)-Catalyzed Oxidative Phenol-Arene and Phenol-Phenol Cross-Coupling Reaction.

    PubMed

    Morimoto, Koji; Sakamoto, Kazuma; Ohshika, Takao; Dohi, Toshifumi; Kita, Yasuyuki

    2016-03-01

    The direct oxidative coupling reaction has been an attractive tool for environmentally benign chemistry. Reported herein is that the hypervalent iodine catalyzed oxidative metal-free cross-coupling reaction of phenols can be achieved using Oxone as a terminal oxidant in 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP). This method features a high efficiency and regioselectivity, as well as functional-group tolerance under very mild reaction conditions without using metal catalysts. PMID:26879796

  11. CuBr catalyzed C-N cross coupling reaction of purines and diaryliodonium salts to 9-arylpurines.

    PubMed

    Niu, Hong-Ying; Xia, Chao; Qu, Gui-Rong; Zhang, Qian; Jiang, Yi; Mao, Run-Ze; Li, De-Yang; Guo, Hai-Ming

    2011-07-21

    CuBr was found to be an efficient catalyst for the C-N cross coupling reaction of purine and diaryliodonium salts. 9-Arylpurines were synthesized in excellent yields with short reaction times (2.5 h). The method represents an alternative to the synthesis of 9-arylpurines via Cu(II) catalyzed C-N coupling reaction with arylboronic acids as arylating agents. PMID:21660365

  12. The Application of Copper/Iron Cocatalysis in Cross-Coupling Reactions.

    PubMed

    Mao, Jincheng; Yan, Hong; Rong, Guangwei; He, Yue; Zhang, Guoqi

    2016-06-01

    For conventional cross-couplings in organic chemistry, precious metal (such as Pd or Rh) complexes have been the preferable choices as catalysts. However, their high cost, toxicity, and potential contamination of products limit their massive applications on some occasions, particularly in the pharmaceutical industry, where close monitoring of the metal contamination of products is required. Therefore, the use of metals that are less expensive and less toxic than Pd or Rh can be greatly advantageous and earth abundant metal (such Fe or Cu) catalysts have shown promise for replacing the precious metals. Interestingly, a certain copper catalyst combined with an iron catalyst displays higher catalytic efficiency than itself in various coupling reactions. Notably, ligand-free conditions make such protocols more useful and practical in many cases. In this account, we summarize the recent progress made in this increasingly attractive topic by describing successful examples, including our own work in the literature, regarding effective copper/iron cocatalysis. In addition, a few examples involving a magnetic and readily recyclable CuFe2 O4 nanoparticle cocatalyst are also included. PMID:27027733

  13. Ordered Mesoporous Polymers for Biomass Conversions and Cross-Coupling Reactions.

    PubMed

    Liu, Fujian; Wu, Qin; Liu, Chen; Qi, Chenze; Huang, Kuan; Zheng, Anmin; Dai, Sheng

    2016-09-01

    Amino group-functionalized, ordered mesoporous polymers (OMP-NH2 ) were prepared using a solvent-free synthesis by grinding mixtures of solid raw precursors (aminophenol, terephthaldehyde), using block copolymer templates, and curing at 140-180 °C. OMP-NH2 was functionalized with acidic sites and incorporated with palladium, giving multifunctional solid catalysts with large Brunauer-Emmett-Teller (BET) surface areas, abundant and ordered mesopores, good thermal stabilities, controllable concentrations, and good dispersion of active centers. The resultant solid catalysts showed excellent catalytic activities and good reusability in biomass conversions and cross-coupling reactions-much superior to those of various reported solid catalysts such as Amberlyst 15, SBA-15-SO3 H, and Pd/C and comparable to those of homogeneous catalysts such as heteropoly acid, HCl, and palladium acetate. A facile green approach was developed for the synthesis of ordered mesoporous polymeric solid catalysts with excellent activities for conversion of low-cost feedstocks into useful chemicals and clean biofuels. PMID:27529676

  14. Palladium-Catalyzed Allylic C-H Bond Functionalization of Olefins

    NASA Astrophysics Data System (ADS)

    Liu, Guosheng; Wu, Yichen

    Transition metal-mediated carbon-hydrogen bond cleavage and functionalization is a mechanistically interesting and synthetically attractive process. One of the important cases is the removal of a allylic hydrogen from an olefin by a PdII salt to yield a π-allylpalladium complex, followed by nucleophilic attack to efficient produce allylic derivatives. In contrast to the well-known allylic acetoxylation of cyclohexene, the reaction of open-chain olefins is fairly poor until recent several years. Some palladium catalytic systems have been reported to achieve allylic C-H functionalization, including acetoxylation, amination and alkylation of terminal alkenes. In the most of cases, ligand is crucial to the success of the transformation. This review surveys the recent development of palladium-catalyzed allylic C-H functionalziation of alkenes. These results promise a significant increase in the scope of olefin transformation.

  15. Palladium-catalyzed picolinamide-directed iodination of remote ortho-C-H bonds of arenes: Synthesis of tetrahydroquinolines.

    PubMed

    Nack, William A; Wang, Xinmou; Wang, Bo; He, Gang; Chen, Gong

    2016-01-01

    A new palladium-catalyzed picolinamide (PA)-directed ortho-iodination reaction of ε-C(sp(2))-H bonds of γ-arylpropylamine substrates is reported. This reaction proceeds selectively with a variety of γ-arylpropylamines bearing strongly electron-donating or withdrawing substituents, complementing our previously reported PA-directed electrophilic aromatic substitution approach to this transformation. As demonstrated herein, a three step sequence of Pd-catalyzed γ-C(sp(3))-H arylation, Pd-catalyzed ε-C(sp(2))-H iodination, and Cu-catalyzed C-N cyclization enables a streamlined synthesis of tetrahydroquinolines bearing diverse substitution patterns. PMID:27559375

  16. Weakly nucleophilic potassium aryltrifluoroborates in palladium-catalyzed Suzuki-Miyaura reactions: relative reactivity of K[4-RC6F4BF3] and the role of silver-assistance in acceleration of transmetallation.

    PubMed

    Bardin, Vadim V; Shabalin, Anton Yu; Adonin, Nicolay Yu

    2015-01-01

    Small differences in the reactivity of weakly nucleophilic potassium aryltrifluoroborates are revealed in the silver-assisted Pd-catalyzed cross-coupling of K[4-RC6F4BF3] (R = H, Bu, MeO, EtO, PrO, iPrO, BuO, t-BuO, CH2=CHCH2O, PhCH2O, PhCH2CH2O, PhO, F, pyrazol-1-yl, pyrrol-1-yl, and indol-1-yl) with ArX (4-BrC6H4CH3, 4-IC6H4F and 3-IC6H4F). An assumed role of silver(I) compounds Ag m Y (Y = O, NO3, SO4, BF4, F) consists in polarization of the Pd-X bond in neutral complex ArPdL n X with the generation of the related transition state or formation of [ArPdL n ][XAg m Y] with a highly electrophilic cation and subsequent transmetallation with the weakly nucleophilic borate. Efficiency of Ag m Y as a polarizing agent decreases in order Ag2O > AgNO3 ≈ Ag2SO4 > Ag[BF4] > AgF. No clear correlation between the reactivity of K[4-RC6F4BF3] and substituent electron parameters, σI and σR°, of the aryl group 4-RC6F4 was found. PMID:26124862

  17. Weakly nucleophilic potassium aryltrifluoroborates in palladium-catalyzed Suzuki–Miyaura reactions: relative reactivity of K[4-RC6F4BF3] and the role of silver-assistance in acceleration of transmetallation

    PubMed Central

    Bardin, Vadim V; Shabalin, Anton Yu

    2015-01-01

    Summary Small differences in the reactivity of weakly nucleophilic potassium aryltrifluoroborates are revealed in the silver-assisted Pd-catalyzed cross-coupling of K[4-RC6F4BF3] (R = H, Bu, MeO, EtO, PrO, iPrO, BuO, t-BuO, CH2=CHCH2O, PhCH2O, PhCH2CH2O, PhO, F, pyrazol-1-yl, pyrrol-1-yl, and indol-1-yl) with ArX (4-BrC6H4CH3, 4-IC6H4F and 3-IC6H4F). An assumed role of silver(I) compounds AgmY (Y = O, NO3, SO4, BF4, F) consists in polarization of the Pd–X bond in neutral complex ArPdLnX with the generation of the related transition state or formation of [ArPdLn][XAgmY] with a highly electrophilic cation and subsequent transmetallation with the weakly nucleophilic borate. Efficiency of AgmY as a polarizing agent decreases in order Ag2O > AgNO3 ≈ Ag2SO4 > Ag[BF4] > AgF. No clear correlation between the reactivity of K[4-RC6F4BF3] and substituent electron parameters, σI and σR°, of the aryl group 4-RC6F4 was found. PMID:26124862

  18. Nitrimines as reagents for metal-free formal C(sp(2) )-C(sp(2) ) cross-coupling reactions.

    PubMed

    Angeles-Dunham, Veronica V; Nickerson, David M; Ray, Devin M; Mattson, Anita E

    2014-12-22

    Nitrimines are employed as powerful reagents for metal-free formal C(sp(2) )-C(sp(2) ) cross-coupling reactions. The new chemical process is tolerant of a wide array of nitrimine and heterocyclic coupling partners giving rise to the corresponding di- or trisubstituted alkenes, typically in high yield and with high stereoselectivity. This method is ideal for the metal-free construction of heterocycle-containing drug targets, such as phenprocoumon. PMID:25365926

  19. Palladium-catalyzed direct α-arylation of methyl sulfones with aryl bromides.

    PubMed

    Zheng, Bing; Jia, Tiezheng; Walsh, Patrick J

    2013-04-01

    A direct and efficient approach for palladium-catalyzed arylation of aryl and alkyl methyl sulfones with aryl bromides has been developed. The catalytic system affords arylated sulfones in good to excellent yields (73-90%). PMID:23517309

  20. Synthesis of Aryl Sulfonamides via Palladium-Catalyzed Chlorosulfonylation of Arylboronic Acids

    PubMed Central

    DeBergh, J. Robb; Niljianskul, Nootaree; Buchwald, Stephen L.

    2013-01-01

    A palladium-catalyzed method for the preparation of sulfonamides is described. The process exhibits significant functional group tolerance and allows for the preparation of a number of arylsulfonyl chlorides and sulfonamides under mild conditions. PMID:23837740

  1. Palladium-catalyzed bisarylation of 3-alkylbenzofurans to 3-arylalkyl-2-arylbenzofurans on water: tandem C(sp(3))-H and C(sp(2))-H activation reactions of 3-alkylbenzofurans.

    PubMed

    Cho, Beom Shin; Chung, Young Keun

    2015-10-01

    A protocol involving facile sequential C(sp(3))-H and C(sp(2))-H activation reactions of 3-alkylbenzofurans catalyzed by Pd(OAc)2 in the presence of pivalic acid, silver salt, and tricyclohexylphosphine 'on water' was developed. Aryl iodides were used as substrates in a tandem bisarylation reaction to generate 3-arylalkyl-2-arylbenzofurans in moderate to high yields at room temperature. The reaction revealed in this study is a rare example of consecutive C(sp(3))-H and C(sp(2))-H bond activation under mild reaction conditions. PMID:26287028

  2. Revisiting the Radical Initiation Mechanism of the Diamine-Promoted Transition-Metal-Free Cross-Coupling Reaction.

    PubMed

    Zhang, Li; Yang, Huan; Jiao, Lei

    2016-06-01

    Radical chain reactions leading to C-C bond formation are widely used in organic synthesis, and initiation of the radical chain process usually requires thermolabile radical initiators. Recent studies on transition-metal-free cross-coupling reactions between aryl halides and arenes have demonstrated an unprecedented initiation system for radical chain reactions, where the combination of simple organic additives and a base was used in place of conventional radical initiators. Among them, the combination of N,N'-dimethylethylenediamine (DMEDA) and t-BuOK is one of the most efficient and representative reaction systems, and the radical initiation mechanism of this system has attracted considerable research interest. In this study, through the combination of kinetic studies, deuterium labeling experiments, and DFT calculations, the radical initiation mechanism of the diamine-promoted cross-coupling reaction was carefully reinvestigated. In light of the present study, a mechanistic network of radical initiation in the DMEDA/t-BuOK system was revealed, which differs dramatically from the previously realized single radical initiation pathway. In this mechanism, the diamine acts as a hydrogen atom donor and plays a dual role as both "radical amplifier" and "radical regulator" to initiate the radical chain process as well as to control the concentration of reactive radical species. This represents a rare example of a structurally simple molecule playing such a subtle role in the radical chain reaction system. The present study sheds some light on the novel radical initiation mode in transition-metal-free cross-coupling reactions following a base-promoted homolytic aromatic substitution (BHAS) mechanism, and may also help to understand the mechanism of relevant reactions. PMID:27228484

  3. Base-controlled selectivity in the synthesis of linear and angular fused quinazolinones by a palladium-catalyzed carbonylation/nucleophilic aromatic substitution sequence.

    PubMed

    Chen, Jianbin; Natte, Kishore; Spannenberg, Anke; Neumann, Helfried; Langer, Peter; Beller, Matthias; Wu, Xiao-Feng

    2014-07-14

    A new approach for the facile synthesis of fused quinazolinone scaffolds through a palladium-catalyzed carbonylative coupling followed by an intramolecular nucleophilic aromatic substitution is described. The base serves as the key modulator: Whereas DBU gives rise to the linear isomers, Et3N promotes the preferential formation of angular products. Interestingly, a light-induced 4+4 reaction of the product was also observed. PMID:24891190

  4. Synthesis of 9,10-Phenanthrenes via Palladium-Catalyzed Aryne Annulation by o-Halostyrenes and Formal Synthesis of (±)-Tylophorine.

    PubMed

    Yao, Tuanli; Zhang, Haiming; Zhao, Yanna

    2016-06-01

    A novel palladium-catalyzed annulation reaction of in situ generated arynes and o-halostyrenes has been developed. This methodology affords moderate to excellent yields of substituted phenanthrenes and is tolerant of a variety of functional groups such as nitrile, ester, amide, and ketone. This annulation chemistry has been successfully applied to the formal total synthesis of a biologically active alkaloid (±)-tylophorine. PMID:27188401

  5. Palladium-catalyzed synthesis of 4-oxaspiro[2.4]heptanes via central attack of oxygen nucleophiles to π-allylpalladium intermediates.

    PubMed

    Shintani, Ryo; Ito, Tomoaki; Hayashi, Tamio

    2012-05-01

    A palladium-catalyzed decarboxylative cyclopropanation of γ-methylidene-δ-valerolactones with aromatic aldehydes has been developed to give 4-oxaspiro[2.4]heptanes with high selectivity. The site of nucleophilic attack to a π-allylpalladium intermediate has been controlled with a sterically demanding phosphine ligand. The course of the reaction is highly dependent on ligands and solvents, and selective formation of methylenetetrahydropyrans has also been realized. PMID:22530604

  6. A general Suzuki cross-coupling reaction of heteroaromatics catalyzed by nanopalladium on amino-functionalized siliceous mesocellular foam.

    PubMed

    Bratt, Emma; Verho, Oscar; Johansson, Magnus J; Bäckvall, Jan-Erling

    2014-05-01

    Suzuki-Miyaura cross-coupling reactions of heteroaromatics catalyzed by palladium supported in the cavities of amino-functionalized siliceous mesocellular foam are presented. The nanopalladium catalyst effectively couples not only heteroaryl halides with boronic acids but also heteroaryl halides with boronate esters, potassium trifluoroborates, MIDA boronates, and triolborates, producing a wide range of heterobiaryls in good to excellent yields. Furthermore, the heterogeneous palladium nanocatalyst can easily be removed from the reaction mixture by filtration and recycled several times with minimal loss in activity. This catalyst provides an alternative, environmentally friendly, low-leaching process for the preparation of heterobiaryls. PMID:24673451

  7. Efficient Access to 2,3-Diarylimidazo[1,2-a]pyridines via a One-Pot, Ligand-Free, Palladium-Catalyzed Three-Component Reaction under Microwave Irradiation

    PubMed Central

    2015-01-01

    An expeditious one-pot, ligand-free, Pd(OAc)2-catalyzed, three-component reaction for the synthesis of 2,3-diarylimidazo[1,2-a]pyridines was developed under microwave irradiation. With the high availability of commercial reagents and great efficiency in expanding molecule diversity, this methodology is superior to the existing procedures for the synthesis of 2,3-diarylimidazo[1,2-a]pyridines analogues. PMID:24854606

  8. The effect of external magnetic fields on the catalytic activity of Pd nanoparticles in Suzuki cross-coupling reactions.

    PubMed

    Gao, Lei; Wang, Changlai; Li, Ren; Li, Ran; Chen, Qianwang

    2016-04-14

    Pd nanoparticles supported on Co3[Co(CN)6]2 nanoparticles (marked as Pd@Co3[Co(CN)6]2 nanoparticles) were prepared as catalysts for the Suzuki cross-coupling reaction under external magnetic fields (MFs). It is shown that a weak external MF can increase the rate of the Suzuki cross-coupling reaction at room temperature, and with the increase of the strength of external MFs the reaction rate also increased. At 30 °C, the yield was increased by nearly 50% under a 0.5 T external MF after 24 hours compared to that without a MF applied. Theoretical calculations revealed that the adsorption energy changed from -1.07 to -1.12 eV in the presence of MFs, which increased by 5% compared with the absence of MFs, leading to a lower total energy of the adsorption system, which is beneficial to the reaction. From the analysis of the partial density states, it could be seen that the 2p orbital of the carbon atom in bromobenzene and the 4d orbital of the Pd atom overlap more closely in the presence of MFs, which is beneficial for the electron transfer from the Pd substrate to the bromobenzene molecule. This study is helpful in understanding the interaction between MFs and catalysts and regulating the process of catalytic reactions via MFs. PMID:27043428

  9. Direct Synthesis of Palladium Catalyst on Supporting WS2 Nanotubes and its Reactivity in Cross-Coupling Reactions.

    PubMed

    Višić, Bojana; Cohen, Hagai; Popovitz-Biro, Ronit; Tenne, Reshef; Sokolov, Viacheslav I; Abramova, Natalya V; Buyanovskaya, Anastasiya G; Dzvonkovskii, Sergei L; Lependina, Olga L

    2015-10-01

    Palladium nanoparticles were deposited on multiwall WS2 nanotubes. The composite nanoparticles were characterized by a variety of techniques. The Pd nanoparticles were deposited uniformly on the surface of WS2 nanotubes. An epitaxial relationship between the (111) plane of Pd and the (013) plane of WS2 was mostly observed. The composite nanoparticles were found to perform efficiently as catalysts for cross-coupling (Heck and Suzuki) reactions. The role of the nanotubes' support in the catalytic process is briefly discussed. PMID:26097214

  10. Metal- and reagent-free highly selective anodic cross-coupling reaction of phenols.

    PubMed

    Elsler, Bernd; Schollmeyer, Dieter; Dyballa, Katrin Marie; Franke, Robert; Waldvogel, Siegfried R

    2014-05-12

    The direct oxidative cross-coupling of phenols is a very challenging transformation, as homo-coupling is usually strongly preferred. Electrochemical methods circumvent the use of oxidizing reagents or metal catalysts and are therefore highly attractive. Employing electrolytes with a high capacity for hydrogen bonding, such as methanol with formic acid or 1,1,1,3,3,3-hexafluoro-2-propanol, a direct electrolysis in an undivided cell provides mixed 2,2'-biphenols with high selectivity. This mild method tolerates a variety of moieties, for example, tert-butyl groups, which are not compatible with other strong electrophilic media but vital for later catalytic applications of the formed products. PMID:24644088

  11. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.

    PubMed

    Bedford, Robin B

    2015-05-19

    The catalytic cross-coupling reactions of organic halides or related substrates with organometallic nucleophiles form the cornerstone of many carbon-carbon bond-forming processes. While palladium-based catalysts typically mediate such reactions, there are increasing concerns about the long-term sustainability of palladium in synthesis. This is due to the high cost of palladium, coupled with its low natural abundance, environmentally deleterious extraction (∼6 g of metal are produced per ton of ore), toxicity, and competition for its use from the automotive and consumer electronics sectors. Therefore, there is a growing interest in replacing palladium-based catalysts with those incorporating more earth-abundant elements. With its low cost, high natural abundance, and low toxicity, iron makes a particularly appealing alternative, and accordingly, the development of iron-catalyzed cross-coupling is undergoing explosive growth. However, our understanding of the mechanisms that underpin the iron-based catalytic cycles is still very much in its infancy. Mechanistic insight into catalytic reactions is not only academically important but also allows us to maximize the efficiency of processes or even to develop entirely new transformations. Key to the development of robust mechanistic models for cross-coupling is knowing the lowest oxidation state in the cycle. Once this is established, we can explore subsequent redox processes and build the catalytic manifold. Until we know with confidence what the lowest oxidation state is, any cycles proposed are largely just guesswork. To date, Fe(-II), Fe(-I), Fe(0), Fe(I), and Fe(II) have been proposed as contenders for the lowest-oxidation-state species in the cycle in iron-catalyzed cross-coupling; the aim of this Account is to pull together the various pieces of evidence in support, or otherwise, of each of these suggestions in turn. There currently exists no direct evidence that oxidation states below Fe(0) are active in the

  12. Nitrile-functionalized pyrrolidinium ionic liquids as solvents for cross-coupling reactions involving in situ generated nanoparticle catalyst reservoirs.

    PubMed

    Cui, Yugang; Biondi, Ilaria; Chaubey, Manish; Yang, Xue; Fei, Zhaofu; Scopelliti, Rosario; Hartinger, Christian G; Li, Yongdan; Chiappe, Cinzia; Dyson, Paul J

    2010-02-28

    A series of nitrile-functionalized pyrrolidinium-based ionic liquids have been prepared and characterized by spectroscopic methods and X-ray crystallography. The application of these new ionic liquids as reaction media for Suzuki and Stille C-C cross-coupling reactions has been investigated and compared with related imidazolium and pyridinium systems (including those with and without nitrile functionalities). The nature of the ionic liquid strongly influences the catalyzed reaction and it would appear that, in addition to the nitrile group, the strength of anion-cation pairing in the ionic liquid and the viscosity of the ionic liquid play critical roles. Nanoparticles are also detected following catalysis and their role, and the influence of the ionic liquid on them, is assessed. The ability to use the nitrile-functionalized pyrrolidinium-based ionic liquids diluted in other (non-functionalized) ionic liquids is also described. PMID:20145850

  13. Development of a General, Sequential, Ring Closing Metathesis/Intramolecular Cross-Coupling Reaction for the Synthesis of Polyunsaturated Macrolactones

    PubMed Central

    Denmark, Scott E.; Muhuhi, Joseck M.

    2010-01-01

    A general strategy for the construction of macrocyclic lactones containing conjugated Z,Z-1,3-diene subunits has been is described. The centerpiece of the strategy is a sequential ring-closing metathesis that forms an unsaturated siloxane ring followed by an intramolecular cross-coupling reaction with a pendant alkenyl iodide. A highly modular assembly of the various precursors allowed the preparation of unsaturated macrolactones containing 11-, 12-, 13- and 14-membered rings. Although the ring closing metathesis process proceeded uneventfully, the intramolecular cross-coupling required extensive optimization of palladium source, solvent, fluoride source and particularly fluoride hydration level. Under the optimal conditions (including syringe pump high dilution), the macrolactones were produced in 53-78% yield as single stereoisomers. A benzo fused 12-membered ring macrolactone containing an E,Z-1,3-diene unit was also prepared by the same general strategy. The E-2-styryl iodide was prepared by a novel Heck reaction of an aryl nonaflate with vinyltrimethylsilane followed by iododesilylation with ICl. PMID:20666473

  14. The effect of external magnetic fields on the catalytic activity of Pd nanoparticles in Suzuki cross-coupling reactions

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Wang, Changlai; Li, Ren; Li, Ran; Chen, Qianwang

    2016-04-01

    Pd nanoparticles supported on Co3[Co(CN)6]2 nanoparticles (marked as Pd@Co3[Co(CN)6]2 nanoparticles) were prepared as catalysts for the Suzuki cross-coupling reaction under external magnetic fields (MFs). It is shown that a weak external MF can increase the rate of the Suzuki cross-coupling reaction at room temperature, and with the increase of the strength of external MFs the reaction rate also increased. At 30 °C, the yield was increased by nearly 50% under a 0.5 T external MF after 24 hours compared to that without a MF applied. Theoretical calculations revealed that the adsorption energy changed from -1.07 to -1.12 eV in the presence of MFs, which increased by 5% compared with the absence of MFs, leading to a lower total energy of the adsorption system, which is beneficial to the reaction. From the analysis of the partial density states, it could be seen that the 2p orbital of the carbon atom in bromobenzene and the 4d orbital of the Pd atom overlap more closely in the presence of MFs, which is beneficial for the electron transfer from the Pd substrate to the bromobenzene molecule. This study is helpful in understanding the interaction between MFs and catalysts and regulating the process of catalytic reactions via MFs.Pd nanoparticles supported on Co3[Co(CN)6]2 nanoparticles (marked as Pd@Co3[Co(CN)6]2 nanoparticles) were prepared as catalysts for the Suzuki cross-coupling reaction under external magnetic fields (MFs). It is shown that a weak external MF can increase the rate of the Suzuki cross-coupling reaction at room temperature, and with the increase of the strength of external MFs the reaction rate also increased. At 30 °C, the yield was increased by nearly 50% under a 0.5 T external MF after 24 hours compared to that without a MF applied. Theoretical calculations revealed that the adsorption energy changed from -1.07 to -1.12 eV in the presence of MFs, which increased by 5% compared with the absence of MFs, leading to a lower total energy of the

  15. Synthesis of meta-Terphenyl-2,2''-diols by Anodic C-C Cross-Coupling Reactions.

    PubMed

    Lips, Sebastian; Wiebe, Anton; Elsler, Bernd; Schollmeyer, Dieter; Dyballa, Katrin M; Franke, Robert; Waldvogel, Siegfried R

    2016-08-26

    The anodic C-C cross-coupling reaction is a versatile synthetic approach to symmetric and non-symmetric biphenols and arylated phenols. We herein present a metal-free electrosynthetic method that provides access to symmetric and non-symmetric meta-terphenyl-2,2''-diols in good yields and high selectivity. Symmetric derivatives can be obtained by direct electrolysis in an undivided cell. The synthesis of non-symmetric meta-terphenyl-2,2''-diols required two electrochemical steps. The reactions are easy to conduct and scalable. The method also features a broad substrate scope, and a large variety of functional groups are tolerated. The target molecules may serve as [OCO](3-) pincer ligands. PMID:27490451

  16. Surface functionalization of dinuclear clathrochelates via Pd-catalyzed cross-coupling reactions: facile synthesis of polypyridyl metalloligands.

    PubMed

    Marmier, Mathieu; Cecot, Giacomo; Curchod, Basile F E; Pattison, Philip; Solari, Euro; Scopelliti, Rosario; Severin, Kay

    2016-05-28

    Dinuclear clathrochelate complexes are easily accessible by reaction of zinc(ii) triflate or cobalt(ii) nitrate with arylboronic acids and phenoldioximes. The utilization of brominated arylboronic acids and/or brominated phenoldioximes allows preparing clathrochelates with two, three, five or seven bromine atoms on the outside. These clathrochelates can undergo Pd-catalyzed cross-coupling reactions with 3- and 4-pyridylboronic acid to give new metalloligands featuring up to seven pyridyl groups. The pyridyl-capped clathrochelates display characteristics which make them interesting building blocks for structural supramolecular chemistry: they are rigid, large (up to 2.7 nm), luminescent (for M = Zn), and anionic. The pentatopic pyridyl ligands display an unusual trigonal bipyramidal geometry. PMID:27109258

  17. Synthesis of alkenyl sulfides through the iron-catalyzed cross-coupling reaction of vinyl halides with thiols.

    PubMed

    Lin, Yun-Yung; Wang, Yu-Jen; Lin, Che-Hung; Cheng, Jun-Hao; Lee, Chin-Fa

    2012-07-20

    We report here the iron-catalyzed cross-coupling reaction of alkyl vinyl halides with thiols. While many works are devoted to the coupling of thiols with alkyl vinyl iodides, interestingly, the known S-vinylation of vinyl bromides and chlorides is limited to 1-(2-bromovinyl)benzene and 1-(2-chlorovinyl)benzene. Investigation on the coupling reaction of challenging alkyl vinyl bromides and chlorides with thiols is rare. Since the coupling of 1-(2-bromovinyl)benzene and 1-(2-chlorovinyl)benzene with thiols can be performed in the absence of any catalyst, here we focus on the coupling of thiols with alkyl vinyl halides. This system is generally reactive for alkyl vinyl iodides and bromides to provide the products in good yields. 1-(Chloromethylidene)-4-tert-butyl-cyclohexane was also coupled with thiols, giving the targets in moderate yields. PMID:22708836

  18. Palladium-catalyzed picolinamide-directed iodination of remote ortho-C−H bonds of arenes: Synthesis of tetrahydroquinolines

    PubMed Central

    Nack, William A; Wang, Xinmou; Wang, Bo

    2016-01-01

    Summary A new palladium-catalyzed picolinamide (PA)-directed ortho-iodination reaction of ε-C(sp2)−H bonds of γ-arylpropylamine substrates is reported. This reaction proceeds selectively with a variety of γ-arylpropylamines bearing strongly electron-donating or withdrawing substituents, complementing our previously reported PA-directed electrophilic aromatic substitution approach to this transformation. As demonstrated herein, a three step sequence of Pd-catalyzed γ-C(sp3)−H arylation, Pd-catalyzed ε-C(sp2)−H iodination, and Cu-catalyzed C−N cyclization enables a streamlined synthesis of tetrahydroquinolines bearing diverse substitution patterns. PMID:27559375

  19. Synthesis of diverse β-quaternary ketones via palladium-catalyzed asymmetric conjugate addition of arylboronic acids to cyclic enones

    PubMed Central

    Holder, Jeffrey C.; Goodman, Emmett D.; Kikushima, Kotaro; Gatti, Michele; Marziale, Alexander N.; Stoltz, Brian M.

    2014-01-01

    The development and optimization of a palladium-catalyzed asymmetric conjugate addition of arylboronic acids to cyclic enone conjugate acceptors is described. These reactions employ air-stable and readily-available reagents in an operationally simple and robust transformation that yields β-quaternary ketones in high yields and enantioselectivities. Notably, the reaction itself is highly tolerant of atmospheric oxygen and moisture and therefore does not require the use of dry or deoxygenated solvents, specially purified reagents, or an inert atmosphere. The ring size and β-substituent of the enone are highly variable, and a wide variety of β-quaternary ketones can be synthesized. More recently, the use of NH4PF6 has further expanded the substrate scope to include heteroatom-containing arylboronic acids and β-acyl enone substrates. PMID:26461082

  20. Enantioselective Synthesis of α-Quaternary Mannich Adducts by Palladium-Catalyzed Allylic Alkylation: Total Synthesis of (+)-Sibirinine

    PubMed Central

    2016-01-01

    A catalytic enantioselective method for the synthesis of α-quaternary Mannich-type products is reported. The two-step sequence of (1) Mannich reaction followed by (2) decarboxylative enantioselective allylic alkylation serves as a novel strategy to in effect access asymmetric Mannich-type products of “thermodynamic” enolates of substrates possessing additional enolizable positions and acidic protons. Palladium-catalyzed decarboxylative allylic alkylation enables the enantioselective synthesis of five-, six-, and seven-membered ketone, lactam, and other heterocyclic systems. The mild reaction conditions are notable given the acidic free N–H groups and high functional group tolerance in each of the substrates. The utility of this method is highlighted in the first total synthesis of (+)-sibirinine. PMID:25578104

  1. Divergent reactivity in palladium-catalyzed annulation with diarylamines and α,β-unsaturated acids: direct access to substituted 2-quinolinones and indoles.

    PubMed

    Kancherla, Rajesh; Naveen, Togati; Maiti, Debabrata

    2015-06-01

    A palladium-catalyzed CH activation strategy has been successfully employed for exclusive synthesis of a variety of 3-substituted indoles. A [3+3] annulation for synthesizing substituted 2-quinolinones was recently developed by reaction of α,β-unsaturated carboxylic acids with diarylamines under acidic conditions. In the present work, an analogous [3+2] annulation is achieved from the same set of starting materials under basic conditions to generate 1,3-disubstituted indoles exclusively. Mechanistic studies revealed an ortho-palladation-π-coordination-β-migratory insertion-β-hydride elimination reaction sequence to be operative under the reaction conditions. PMID:25941155

  2. QuadraPure-Supported Palladium Nanocatalysts for Microwave-Promoted Suzuki Cross-Coupling Reaction under Aerobic Condition

    PubMed Central

    Loh, Poh Lee; Juan, Joon Ching; Yarmo, Mohd Ambar; Yusop, Rahimi M.

    2014-01-01

    Cross-linked resin-captured palladium (XL-QPPd) was readily prepared by simple physical adsorption onto the high loading QuadraPure macroporous resin and a subsequent reduction process. To enhance the mechanical stability, entrapped palladium nanocatalysts were cross-linked with succinyl chloride. Both transmission electron microscopy images and X-ray diffraction analysis revealed that the palladium nanoparticles were well dispersed with diameters ranging in 4–10 nm. The catalyst performed good catalytic activity in microwave-promoted Suzuki cross-coupling reactions in water under aerobic condition with mild condition by using various aryl halides and phenylboronic acid. In addition, the catalyst showed an excellent recyclability without significant loss of catalytic activity. PMID:25054185

  3. Functionalization of Hydrogenated Graphene: Transition-Metal-Catalyzed Cross-Coupling Reactions of Allylic C-H Bonds.

    PubMed

    Chua, Chun Kiang; Sofer, Zdeněk; Pumera, Martin

    2016-08-26

    The chemical functionalization of hydrogenated graphene can modify its physical properties and lead to better processability. Herein, we describe the chemical functionalization of hydrogenated graphene through a dehydrogenative cross-coupling reaction between an allylic C-H bond and the α-C-H bond of tetrahydrothiophen-3-one using Cu(OTf)2 as the catalyst and DDQ as the oxidant. The chemical functionalization was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy and visualized by scanning electron microscopy. The functionalized hydrogenated graphene material demonstrated improved dispersion stability in water, bringing new quality to the elusive hydrogenated graphene (graphane) materials. Hydrogenated graphene provides broad possibilities for chemical modifications owing to its reactivity. PMID:27496619

  4. Cationic Pd(II)-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

    PubMed Central

    Nishikata, Takashi; Abela, Alexander R; Huang, Shenlin

    2016-01-01

    Summary Cationic palladium(II) complexes have been found to be highly reactive towards aromatic C–H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN)4](BF4)2 or a nitrile-free cationic palladium(II) complex generated in situ from the reaction of Pd(OAc)2 and HBF4, effectively catalyzes C–H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C–H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1) C–H activation to generate a cationic palladacycle; (2) reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3) regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II) complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied. PMID:27340491

  5. Reversed-Polarity Synthesis of Diaryl Ketones through Palladium-Catalyzed Direct Arylation of 2-Aryl-1,3-dithianes

    PubMed Central

    Yucel, Baris; Walsh, Patrick J.

    2015-01-01

    An umpolung approach to the synthesis of diaryl ketones has been developed based on in situ generation of acyl anion equivalents and their catalytic arylation. This method entails the base promoted palladium catalyzed direct C–H arylation of 2 The resulting 2,2-diaryl-1,3-dithianes with aryl bromides. Use of MN(SiMe3)2 (M=Li, Na) base results in reversible deprotonation of the weakly acidic dithiane. In the presence of a Pd(NiXantphos)-based catalyst and aryl bromide, cross-coupling of the metallated 2-aryl-1,3-dithiane takes place under mild conditions (2 h at rt) with yields as high as 96%. The resulting 2,2-diaryl-1,3-dithianes were converted into diaryl ketones by either molecular iodine, N-bromo succinimide (NBS) or Selectfluor in the presence of water. The dithiane arylation/hydrolysis can be performed in a one-pot procedure to yield a good to excellent yields. This method is suitable for rapid and large-scale synthesis of diaryl ketones. A one-pot preparation of anti-cholesterol drug fenofibrate (TriCor®) has been achieved on 10.0 mmol scale in 86% yield. PMID:26185491

  6. Auxiliary-assisted palladium-catalyzed arylation and alkylation of sp2 and sp3 carbon-hydrogen bonds.

    PubMed

    Shabashov, Dmitry; Daugulis, Olafs

    2010-03-24

    We have developed a method for auxiliary-directed, palladium-catalyzed beta-arylation and alkylation of sp(3) and sp(2) C-H bonds in carboxylic acid derivatives. The method employs a carboxylic acid 2-methylthioaniline- or 8-aminoquinoline amide substrate, aryl or alkyl iodide coupling partner, palladium acetate catalyst, and an inorganic base. By employing 2-methylthioaniline auxiliary, selective monoarylation of primary sp(3) C-H bonds can be achieved. If arylation of secondary sp(3) C-H bonds is desired, 8-aminoquinoline auxiliary may be used. For alkylation of sp(3) and sp(2) C-H bonds, 8-aminoquinoline auxiliary affords the best results. Some functional group tolerance is observed and amino- and hydroxy-acid derivatives can be functionalized. Preliminary mechanistic studies have been performed. A palladacycle intermediate has been isolated, characterized by X-ray crystallography, and its reactions have been studied. PMID:20175511

  7. Coupling and Decoupling Approach Enables Palladium-Catalyzed Aerobic Bimolecular Carbocyclizations of Enediynes to 2,6-Diacylnaphthalenes.

    PubMed

    Ling, Fei; Wan, Yanjun; Wang, Dongxu; Ma, Cheng

    2016-04-01

    A formal palladium-catalyzed aerobic bimolecular carbocyclization reaction of (Z)-hexa-1,5-diyn-3-ene scaffolds has been successfully developed for the construction of 2,6-diacylnaphthalenes, wherein copper salts play a critical role in accomplishing the oxygenative homo- and hetero-dimerization processes of readily accessible enediyne-carboxylic acids and esters, respectively. The enediyne dimerization protocol provides a flexible and regiospecific approach to a variety of functionalized naphthalenes with up to six differentiated substituents in good yields by using a directing-group-assisted coupling and decoupling strategy. Mechanistic studies indicated that the two oxygen atoms being selectively incorporated into the crossover-annulation products of enediynecarboxylic acid and ester directly originate from atmospheric molecular oxygen and H2O, respectively. PMID:26954582

  8. Facile Assembly of Benzo[b]naphtho[2,3-d]azocin-6(5 H)-ones by a Palladium-Catalyzed Double Carbometalation.

    PubMed

    Gong, Xinxing; Chen, Mo; Yao, Liangqing; Wu, Jie

    2016-05-20

    The palladium-catalyzed reaction of 2-alkynylanilines with 2-(2-bromobenzylidene)cyclobutanone as an efficient route to 7,8-dihydrobenzo[b]naphtho[2,3-d]azocin-6(5 H)-ones was developed. The fused eight-membered ring was constructed conveniently. During the reaction process, double carbometalation was involved, which resulted in excellent selectivity with the formation of three new bonds. This transformation is highly efficient and leads to fused polycycles in good to excellent yields with good functional group tolerance. PMID:26991867

  9. Approaches to prepare perfluoroalkyl and pentafluorophenyl copper couples for cross-coupling reactions with organohalogen compounds.

    PubMed

    Kremlev, Mikhail M; Mushta, Aleksej I; Tyrra, Wieland; Yagupolskii, Yurii L; Naumann, Dieter; Schäfer, Mathias

    2015-12-01

    The reactions of iodoperfluoroalkanes CnF2n+1I (n = 2, 3, 4) and n-BuLi at low temperatures give NMR spectroscopic evidence for LiCnF2n+1 which were converted into LiCu(CnF2n+1)2 derivatives upon treatment with 0.5 mol copper(i) bromide, CuBr. An alternative route to obtain perfluoroorgano copper couples, Cu(Rf)2Ag (Rf = n-C3F7, n-C4F9, C6F5) was achieved from the reactions of the corresponding perfluoroorgano silver(i) reagents, AgRf, and elemental copper through redox transmetallations. The composition of the resulting reactive intermediates was investigated by means of (19)F NMR spectroscopy and ESI mass spectrometry. Perfluoro-n-propyl and perfluoro-n-butyl copper-silver reagents prepared by the oxidative transmetallation route exhibited good properties in C-C bond formation reactions with acid chlorides even under moderate conditions. Substitution of bromine directly bound to aromatics for perfluoroalkyl groups was achieved at elevated temperatures, while success in halide substitution reactions using lithium copper couples remained poor. PMID:26488228

  10. A Palladium-Catalyzed Vinylcyclopropane (3 + 2) Cycloaddition Approach to the Melodinus Alkaloids

    PubMed Central

    Goldberg, Alexander F. G.; Stoltz, Brian M.

    2011-01-01

    A palladium-catalyzed (3 + 2) cycloaddition of a vinylcyclopropane and a β-nitrostyrene are employed to rapidly assemble the cyclopentane core of the Melodinus alkaloids. The ABCD ring system of the natural product family is prepared in six steps from commercially available materials. PMID:21786746

  11. One-Pot Synthesis of Arylketones from Aromatic Acids via Palladium-Catalyzed Suzuki Coupling.

    PubMed

    Wu, Hongxiang; Xu, Baiping; Li, Yue; Hong, Fengying; Zhu, Dezhao; Jian, Junsheng; Pu, Xiaoer; Zeng, Zhuo

    2016-04-01

    A palladium-catalyzed one-pot procedure for the synthesis of aryl ketones has been developed. Triazine esters when coupled with aryl boronic acids provided aryl ketones in moderate to excellent yields (up to 95%) in the presence of 1 mol % Pd(PPh3)2Cl2 for 30 min. PMID:26949103

  12. Enantioselective Palladium-Catalyzed Oxidative β,β-Fluoroarylation of α,β-Unsaturated Carbonyl Derivatives.

    PubMed

    Miró, Javier; Del Pozo, Carlos; Toste, F Dean; Fustero, Santos

    2016-07-25

    The site-selective palladium-catalyzed three-component coupling of deactivated alkenes, arylboronic acids, and N-fluorobenzenesulfonimide is disclosed herein. The developed methodology establishes a general, modular, and step-economical approach to the stereoselective β-fluorination of α,β-unsaturated systems. PMID:27272390

  13. Palladium-Catalyzed Selective α-Alkenylation of Pyridylmethyl Ethers with Vinyl Bromides.

    PubMed

    Yang, Xiaodong; Kim, Byeong-Seon; Li, Minyan; Walsh, Patrick J

    2016-05-20

    An efficient palladium-catalyzed α-alkenylation of pyridylmethyl ethers with vinyl bromides is presented. A Pd/NIXANTPHOS-based catalyst system enables a mild and chemoselective coupling between a variety of pyridylmethyl ethers and vinyl bromides in good to excellent yields. Under the mild conditions, β,γ-unsaturated products are obtained without isomerization or Heck byproducts observed. PMID:27160421

  14. Palladium-catalyzed intramolecular C-H arylation of arenes using tosylates and mesylates as electrophiles.

    PubMed

    Nervig, Christine S; Waller, Peter J; Kalyani, Dipannita

    2012-09-21

    This paper describes a method for the palladium catalyzed intramolecular C-H arylation using tosylates and mesylates as electrophiles. The transformation is efficient for the synthesis of various heterocyclic motifs including furans, carbazoles, indoles, and lactams. Additionally, a protocol for the one-pot sequential tosylation/arylation of phenol derivatives is presented. PMID:22974229

  15. Palladium-Catalyzed Ortho-Arylation of Carbamate-Protected Estrogens.

    PubMed

    Bedford, Robin B; Brenner, Peter B; Durrant, Steven J; Gallagher, Timothy; Méndez-Gálvez, Carolina; Montgomery, Michelle

    2016-05-01

    The palladium-catalyzed ortho-arylation of diethyl carbamate-protected estrone and estriol with aryl iodides gives the 2-arylated analogues. Subsequent removal of the carbamate directing group furnishes 2-arylated estrone, estradiol, or estriol depending on the method used. PMID:27057762

  16. Synthesis of 9-Fluorenylidenes and 9,10-Phenanthrenes through Palladium-Catalyzed Aryne Annulation by ortho-Halostyrenes and ortho-Halo Allylic Benzenes

    PubMed Central

    Worlikar, Shilpa A.; Larock, Richard C.

    2009-01-01

    A number of functionally substituted 9-fluorenylidenes and 9,10-phenanthrenes have been synthesized from substituted ortho-halostyrenes and ortho-halo allylic benzenes respectively in good yields by the palladium-catalyzed annulation of arynes. The methodology tolerates a variety of functional groups, including cyano, ester, aldehyde and ketone groups, occurs under relatively mild reaction conditions, and involves the generation of two new carbon-carbon bonds, thus providing these important carbocyclic ring systems in a single synthetic step. PMID:19902957

  17. Palladium-catalyzed β-C(sp(3))-H arylation of phthaloyl alanine with hindered aryl iodides: synthesis of complex β-aryl α-amino acids.

    PubMed

    Zhang, Xuekai; He, Gang; Chen, Gong

    2016-06-28

    An efficient protocol for palladium-catalyzed β-C(sp(3))-H arylation of aliphatic carboxamides equipped with a 2-(2-pyridyl) ethylamine (PE) auxiliary was developed. The PE auxiliary is uniquely effective at facilitating the arylation of primary C(sp(3))-H bonds with sterically hindered aryl iodides. A variety of aryl iodides bearing alkoxyl, carbonyl, nitro and halogen groups on the ortho position can react with the PE-coupled phthaloyl alanine substrate in moderate to excellent yield. These reactions offer a useful solution for preparing complex β-aryl α-amino acid products from readily accessible starting materials. PMID:26781005

  18. Palladium-Catalyzed C8-Selective C–H Arylation of Quinoline N-Oxides: Insights into the Electronic, Steric, and Solvation Effects on the Site Selectivity by Mechanistic and DFT Computational Studies

    PubMed Central

    2015-01-01

    We report herein a palladium-catalyzed C–H arylation of quinoline N-oxides that proceeds with high selectivity in favor of the C8 isomer. This site selectivity is unusual for palladium, since all of the hitherto described methods of palladium-catalyzed C–H functionalization of quinoline N-oxides are highly C2 selective. The reaction exhibits a broad synthetic scope with respect to quinoline N-oxides and iodoarenes and can be significantly accelerated to subhour reaction times under microwave irradiation. The C8-arylation method can be carried out on a gram scale and has excellent functional group tolerance. Mechanistic and density functional theory (DFT) computational studies provide evidence for the cyclopalladation pathway and describe key parameters influencing the site selectivity. PMID:25580364

  19. Development of Highly Potent GAT1 Inhibitors: Synthesis of Nipecotic Acid Derivatives by Suzuki-Miyaura Cross-Coupling Reactions.

    PubMed

    Petrera, Marilena; Wein, Thomas; Allmendinger, Lars; Sindelar, Miriam; Pabel, Jörg; Höfner, Georg; Wanner, Klaus T

    2016-03-01

    A new series of potent and selective mGAT1 inhibitors has been identified, featuring a nipecotic acid residue and an N-butenyl linker with a 2-biphenyl residue at the ω-position. Docking, combined with MD calculations, revealed a binding mode for the new compounds similar to that of tiagabine, the only mGAT1 inhibitor currently approved as antiepileptic drug. For the synthesis, a Suzuki-Miyaura cross-coupling reaction was used as a key step by which variously substituted biaryl subunits were assembled. Biological evaluation revealed several compounds that possess binding affinities and inhibitory potencies toward mGAT1, together with subtype selectivities against mGAT2-mGAT4 that were similar to or even higher than those for tiagabine. A derivative carrying the 2',4'-dichloro-2-biphenyl moiety attached to N-but-3-enylnipecotic acid at the terminal position of the linker chain was found to be the most potent binder, with the racemic form of the compound displaying a binding affinity of 8.05±0.13 (pKi ), while the R enantiomer exhibited an affinity value of 8.33±0.06 (pKi ). PMID:26683881

  20. Syntheses of hydroxamic acid-containing bicyclic β-lactams via palladium-catalyzed oxidative amidation of alkenes.

    PubMed

    Jobbins, Maria O; Miller, Marvin J

    2014-02-21

    Palladium-catalyzed oxidative amidation has been used to synthesize hydroxamic acid-containing bicyclic β-lactam cores. Oxidative cleavage of the pendant alkene provides access to the carboxylic acid in one step. PMID:24483144

  1. KIO3-Catalyzed Aerobic Cross-Coupling Reactions of Enaminones and Thiophenols: Synthesis of Polyfunctionalized Alkenes by Metal-Free C-H Sulfenylation.

    PubMed

    Wan, Jie-Ping; Zhong, Shanshan; Xie, Lili; Cao, Xiaoji; Liu, Yunyun; Wei, Li

    2016-02-01

    The synthesis of polyfunctionalized aminothioalkenes has been realized via the direct C-H sulfenylation of enaminones and analogous enamines. These cross-coupling reactions have been achieved by simple KIO3 catalysis under aerobic conditions without employing any transition metal catalyst or additional oxidant. The employment of bio-based green solvent ethyl lactate as the reaction medium constitutes another sustainable feature of the present work. PMID:26811952

  2. Transition-metal-free, ambient-pressure carbonylative cross-coupling reactions of aryl halides with potassium aryltrifluoroborates.

    PubMed

    Jin, Fengli; Han, Wei

    2015-06-01

    We disclose an unprecedented transition-metal-free carbonylative cross coupling of aryl halides with potassium aryl trifluoroborates even at atmospheric pressure of carbon monoxide. This protocol is efficient, operationally simple, and shows wide scope with regard to both aryl halides and potassium aryl trifluoroborates containing a series of active functional groups. PMID:25939449

  3. Synthesis of Biheterocycles Based on Quinolinone, Chromone, and Coumarin Scaffolds by Palladium-Catalyzed Decarboxylative Couplings.

    PubMed

    Vardhan Reddy, K Harsha; Brion, Jean-Daniel; Messaoudi, Samir; Alami, Mouad

    2016-01-15

    An efficient Pd-catalyzed decarboxylative coupling of heterocyclic carboxylic acids with heterocyclic halides to achieve the synthesis of biheterocycles of biological interest has been reported. In all cases, the cross-coupling reactions take place rapidly in DMSO in good yields and efficiently proceed in the presence of a PdBr2/DPEphos catalytic system, furnishing the novel biheterocycles based on quinolin-4-one, quinolin-2-one, chromone, and coumarin scaffolds. PMID:26691351

  4. Palladium-catalyzed directing group-assisted C8-triflation of naphthalenes.

    PubMed

    Yang, Zhi-Wei; Zhang, Qi; Jiang, Yuan-Ye; Li, Lei; Xiao, Bin; Fu, Yao

    2016-05-10

    The transition-metal-catalyzed direct triflation of naphthyl amides and naphthyl ketones has been accomplished for the first time. Benzophenone (BP) was found to be a suitable ligand for the cross-coupling reactions. Density functional theory (DFT) calculations revealed that excessive amounts of HOTf inhibit the reductive elimination of the C-F bond to realize the unusual reductive elimination of the C-OTf bond. PMID:27117543

  5. Palladium-Catalyzed Regioselective Difluoroalkylation and Carbonylation of Alkynes.

    PubMed

    Wang, Qiang; He, Yu-Tao; Zhao, Jia-Hui; Qiu, Yi-Feng; Zheng, Lan; Hu, Jing-Yuan; Yang, Yu-Chen; Liu, Xue-Yuan; Liang, Yong-Min

    2016-06-01

    A novel, four-component synthetic strategy to synthesize a series of β-difluoroalkyl unsaturated esters/amides with high regioslectivity is described. This Pd-catalyzed difluoroalkylation and carbonylation reaction can be carried out with simple starting materials. Through this protocol, two new C-C bonds (including one C-CF2 bond) and one C-O(N) bond are constructed simultaneously in a single step. The synthetic utility of this reaction system has been certified by the applicability to a wide scope of alkynes and nucleophiles. Preliminary mechanistic studies suggest that the difluoroalkyl radical pathway is involved in this reaction. PMID:27191858

  6. Magnetic Mesoporous Palladium Catalyzed Selective Hydrogenation of Sunflower Oil.

    PubMed

    Liu, Wei; Tian, Fei; Yu, Jingjing; Bi, Yanlan

    2016-05-01

    In this paper, a novel magnetic mesoporous Pd catalyst is used to catalyse selective hydrogenation of sunflower oil at a mild temperature of 50°C. Effects of reaction temperature, stirring speed, time, catalyst loading and hydrogen pressure on the reaction activity, trans fatty acid (TFA) and stearic acid formation were studied. Under the condition of 3.2 mg Pd/100 g oil, 50°C, 1300 rpm stirring speed and 19.0 atm of H2, the lowest amount of TFA generated during the reaction (IV = 80) was 14.9 ± 0.4% while 11.4 ± 0.4% of stearic acid was produced. And this magnetic Pd-catalyst can be reused easily for at least six times without significant catalyst deactivation, the amount of TFA almost remained unchanged. Moreover, this Pd-catalyst shows a good magnetic separation, which provides a potential method for the facile oil modification. PMID:27086993

  7. Palladium-catalyzed N-acylation of monosubstituted ureas using near-stoichiometric carbon monoxide.

    PubMed

    Bjerglund, Klaus; Lindhardt, Anders T; Skrydstrup, Troels

    2012-04-20

    The palladium-catalyzed carbonylation of urea derivatives with aryl iodides and bromides afforded N-benzoyl ureas (20 examples) in yields attaining quantitative via the application of near-stoichiometric amounts of carbon monoxide generated from the decarbonylation of the CO precursor, 9-methylfluorene-9-carbonyl chloride. The synthetic protocol displayed good functional group tolerance. The methodology is also highly suitable for (13)C isotope labeling, which was demonstrated through the synthesis of three benzoyl ureas, including the insecticide triflumuron, whereby (13)CO was incorporated into the core structure. PMID:22458554

  8. Palladium-Catalyzed Diastereo- and Enantioselective Formal [3+2]-Cycloadditions of Substituted Vinylcyclopropanes

    PubMed Central

    Trost, Barry M.; Morris, Patrick J.; Sprague, Simon J.

    2012-01-01

    We describe a palladium-catalyzed diastereo- and enantioselective formal [3+2]-cycloaddition between substituted vinyl-cyclopropanes and electron deficient olefins in the form of azlactone- and Meldrum’s acid alkylidenes to give highly-substituted cyclo-pentane products. By modulation of the electronic properties of the vinylcyclopropane and the electron-deficient olefin, high levels of stereoselectivity were obtained. The remote stereoinduction afforded by the catalyst, distal from the chiral pocket generated by the ligand, is proposed to be the result of a new mechanism invoking the Curtin-Hammett principle. PMID:23030714

  9. Enantioselective synthesis of dialkylated N-heterocycles by palladium-catalyzed allylic alkylation.

    PubMed

    Numajiri, Yoshitaka; Jiménez-Osés, Gonzalo; Wang, Bo; Houk, K N; Stoltz, Brian M

    2015-03-01

    The enantioselective synthesis of α-disubstituted N-heterocyclic carbonyl compounds has been accomplished using palladium-catalyzed allylic alkylation. These catalytic conditions enable access to various heterocycles, such as morpholinone, thiomorpholinone, oxazolidin-4-one, 1,2-oxazepan-3-one, 1,3-oxazinan-4-one, and structurally related lactams, all bearing fully substituted α-positions. Broad functional group tolerance was explored at the α-position in the morpholinone series. We demonstrate the utility of this method by performing various transformations on our useful products to readily access a number of enantioenriched compounds. PMID:25714704

  10. Palladium-catalyzed arylation of simple arenes with iodonium salts.

    PubMed

    Storr, Thomas E; Greaney, Michael F

    2013-03-15

    The development of an arylation protocol for simple arenes with diaryliodonium salts using the Herrmann-Beller palladacycle catalyst is reported. The reaction takes simple aromatic feedstocks and creates valuable biaryls for use in all sectors of the chemical industry. PMID:23461706

  11. Palladium-Catalyzed Carboxylation of Activated Vinylcyclopropanes with CO2.

    PubMed

    Mita, Tsuyoshi; Tanaka, Hiroyuki; Higuchi, Yuki; Sato, Yoshihiro

    2016-06-01

    By using a palladium catalyst with ZnEt2, activated vinylcyclopropanes were successfully converted into the corresponding β,γ-unsaturated carboxylic acids in high yields under a CO2 atmosphere (1 atm). The intermediate in this reaction is thought to be a nucleophilic η(1)-allylethylpalladium species, which would be produced from π-allylpalladium and ZnEt2 (umpolung reactivity). PMID:27184762

  12. A highly active recyclable gold-graphene nanocomposite material for oxidative esterification and Suzuki cross-coupling reactions in green pathway.

    PubMed

    Mondal, Paramita; Salam, Noor; Mondal, Avijit; Ghosh, Kajari; Tuhina, K; Islam, Sk Manirul

    2015-12-01

    A graphene based composite with gold nanoparticles has been synthesized via a simple chemical route and the structure and compositions of nanocomposite has been characterized. The catalyst was found to be remarkably stable and active for the oxidative esterification of alcohols under present reaction conditions using molecular oxygen as green oxidant and Suzuki cross-coupling reactions between aryl halides and phenylboronic acids using environmentally friendly water as solvent. The versatility of both the protocols was demonstrated by taking a number of substrates. This protocol offers several advantages like high yields, clean reactions, recyclability of the catalyst, reaction in water and use of green oxidant. This study suggests graphene, as an economical substitute for carbon nanotubes, could act as a prominent support in heterogeneous catalysis. PMID:26275502

  13. Double C-H functionalization in sequential order: direct synthesis of polycyclic compounds by a palladium-catalyzed C-H alkenylation-arylation cascade.

    PubMed

    Ohno, Hiroaki; Iuchi, Mutsumi; Kojima, Naoto; Yoshimitsu, Takehiko; Fujii, Nobutaka; Tanaka, Tetsuaki

    2012-04-23

    Palladium-catalyzed cascade C-H alkenylation and arylation provides convenient access to polycyclic aromatic compounds. Treatment of 3-bromoaniline derivatives bearing a bromocinnamyl group on the nitrogen atom with a catalytic amount of [Pd(OAc)(2)] and PCy(3)·HBF(4) in the presence of Cs(2)CO(3) in dioxane affords naphthalene-fused indole derivatives in good yields. This double cyclization reaction is also applicable to heterocyclic substrates, giving fused indoles containing a heteroaromatic ring such as dibenzofuran, dibenzothiophene, carbazole, indole, or benzofuran through heterocyclic C-H arylation. When using a 2,6-unsubstituted aniline derivative, the first C-H arylation preferentially proceeds at the more hindered position of the aniline ring. PMID:22422703

  14. A theoretical DFT-based and experimental study of the transmetalation step in Au/Pd-mediated cross-coupling reactions.

    PubMed

    Hansmann, Max M; Pernpointner, Markus; Döpp, René; Hashmi, A Stephen K

    2013-11-01

    In this work a combined theoretical and experimental investigation of the cross-coupling reaction involving two metallic reaction centers, namely gold and palladium, is described. One metal center (Au) hereby is rather inert towards change in its oxidation state, whereas Pd undergoes oxidative insertion and reductive elimination steps. Detailed mechanistic and energetic studies of each individual step, with the focus on the key transmetalation step are presented and compared for different substrates and ligands on the catalytic Pd center. Different aryl halides (Cl, Br, I) and aryl triflates were investigated. Hereby the nature of the counteranion X turned out to be crucial. In the case of X=Cl and L=PMe3 the oxidative addition is rate-determining, whereas in the case of X=I the transmetalation step becomes rate-determining in the Au/Pd-cross-coupling mechanism. A variety of Au-Pd transmetalation reaction scenarios are discussed in detail, favoring a transition state with short intermetallic Au-Pd contacts. Furthermore, without a halide counteranion the transmetalation from gold(I) to palladium(II) is highly endothermic, which confirms our experimental findings that the coupling does not occur with aryl triflates and similar weakly coordinating counteranions--a conclusion that is essential in designing new Au-Pd catalytic cycles. In combination with experimental work, this corrects a previous report in the literature claiming a successful coupling potentially catalytic in both metals with weakly coordinating counteranions. PMID:24115258

  15. Palladium-Catalyzed Nitration of Meyer-Schuster Intermediates with tBuONO as Nitrogen Source at Ambient Temperature.

    PubMed

    Lin, Yuanguang; Kong, Weiguang; Song, Qiuling

    2016-08-01

    A novel domino palladium-catalyzed nitration of Meyer-Schuster intermediates which were generated in situ from propargylic alcohols was developed, by the use of t-BuONO, leading to α-nitro enones in good to excellent yields at room temperature with a broad functional group tolerance. PMID:27434133

  16. Palladium-Catalyzed Synthesis of Phenanthridine/Benzoxazine-Fused Quinazolinones by Intramolecular C-H Bond Activation.

    PubMed

    Gupta, Puneet K; Yadav, Nisha; Jaiswal, Subodh; Asad, Mohd; Kant, Ruchir; Hajela, Kanchan

    2015-09-14

    A highly efficient synthesis of phenanthridine/benzoxazine-fused quinazolinones by ligand-free palladium-catalyzed intramolecular C-H bond activation under mild conditions has been developed. The C-C coupling provides the corresponding N-fused polycyclic heterocycles in good to excellent yields and with wide functional group tolerance. PMID:26230355

  17. Palladium-catalyzed Saegusa-Ito oxidation: synthesis of α,β-unsaturated carbonyl compounds from trimethylsilyl enol ethers.

    PubMed

    Lu, Yingdong; Nguyen, Pierre Long; Lévaray, Nicolas; Lebel, Hélène

    2013-01-18

    Palladium-catalyzed Saegusa-Ito oxidation of trimethylsilyl enol ethers is possible using Oxone as a stoichiometric oxidant and sodium hydrogen phosphate as a buffer. Cyclic and acyclic enones as well as α,β-unsaturated aldehydes are obtained in good to excellent yields. PMID:23256839

  18. Palladium-catalyzed regioselective intramolecular coupling of o-carborane with aromatics via direct cage B-H activation.

    PubMed

    Quan, Yangjian; Xie, Zuowei

    2015-03-18

    Palladium-catalyzed intramolecular coupling of o-carborane with aromatics via direct cage B-H bond activation has been achieved, leading to the synthesis of a series of o-carborane-functionalized aromatics in high yields with excellent regioselectivity. In addition, the site selectivity can also be tuned by the substituents on cage carbon atom. PMID:25747772

  19. Facile preparation of Pd nanoparticles supported on single-layer graphene oxide and application for the Suzuki-Miyaura cross-coupling reaction

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shun-Ichi; Kinoshita, Hiroshi; Hashimoto, Hideki; Nishina, Yuta

    2014-05-01

    Pd nanoparticles supported on single layer graphene oxide (Pd-slGO) were prepared by gentle heating of palladium(ii) acetate (Pd(OAc)2) and GO in ethanol that served as a mild reductant of the Pd precursor. Pd-slGO showed a high catalytic performance (TON and TOF = 237 000) in the Suzuki-Miyaura cross-coupling reaction.Pd nanoparticles supported on single layer graphene oxide (Pd-slGO) were prepared by gentle heating of palladium(ii) acetate (Pd(OAc)2) and GO in ethanol that served as a mild reductant of the Pd precursor. Pd-slGO showed a high catalytic performance (TON and TOF = 237 000) in the Suzuki-Miyaura cross-coupling reaction. Electronic supplementary information (ESI) available: Synthesis details, peak separation of XPS spectra of GO and Pd-slGO composites, TEM and XPS analyses of the spent composite catalysts. See DOI: 10.1039/c4nr00715h

  20. A novel mechanism of bisphenol A removal during electro-enzymatic oxidative process: chain reactions from self-polymerization to cross-coupling oxidation.

    PubMed

    Li, Haitao; Zhao, He; Liu, Chenming; Li, Yuping; Cao, Hongbin; Zhang, Yi

    2013-08-01

    The catalyzed removal of bisphenol A (BPA) by a horseradish peroxidase (HRP) cathode in the presence of humic acid (HA) was investigated. At an optimal condition, the removal of BPA achieved 100% within 2min reaction. In the electro-enzymatic process, products were analyzed by high performance liquid chromatography with diode array detector (HPLC-DAD) and high performance size exclusion chromatography (HPSEC). HPLC-DAD results showed that BPA was oxidized into self-polymers and then self-polymers as important intermediate products decreased and disappeared. HPSEC results showed the order of molecular weight (MW): HA+BPA cross-coupling products>HA self-coupling products>initial HA. According to above results, a novel mechanism of BPA transformation in the presence of HA was proposed in electro-enzymatic process. In summary, under oxidation of in situ hydrogen peroxide on HRP electrode, the BPA first are polymerized into self-polymers, and then, the polymers may be incorporated into HA matrix and finally larger MW of BPAn-HA might be formed. The presence of HA can provide chain reactions from BPA self-polymerization to cross-coupling oxidation. Therefore, in the presence of HA, the electro-enzymatic oxidation is an effective way to improve BPA removal. PMID:23732003

  1. Polymerization of tellurophene derivatives via microwave-assisted palladium-catalyzed ipso-arylative polymerization**

    PubMed Central

    Park, Young S.; Wu, Qin; Nam, Chang-Yong; Grubbs, Robert B.

    2014-01-01

    We report the synthesis of a tellurophene-containing low bandgap polymer, PDPPTe2T, via microwave-assisted palladium-catalyzed ipso-arylative polymerization of 2,5-bis[(α-hydroxy-α,α-diphenyl)methyl]tellurophene with a diketopyrrolopyrrole (DPP) monomer. Compared with the corresponding thiophene analog, PDPPTe2T absorbs light of longer wavelengths and has a smaller bandgap. Bulk heterojunction solar cells prepared from PDPPTe2T and PC71BM show PCE values of up to 4.4%. External quantum efficiency measurements show that PDPPTe2T produces photocurrent at wavelengths up to 1 μm. DFT calculations suggest that the atomic substitution from sulfur to tellurium increases electronic coupling to decrease the length of the carbon-carbon bonds between the tellurophene and thiophene rings, which results in the red-shift in absorption upon substitution of tellurium for sulfur. PMID:25145499

  2. New biaryl-chalcone derivatives of pregnenolone via Suzuki-Miyaura cross-coupling reaction. Synthesis, CYP17 hydroxylase inhibition activity, QSAR, and molecular docking study.

    PubMed

    Al-Masoudi, Najim A; Kadhim, Rawaa A; Abdul-Rida, Nabeel A; Saeed, Bahjat A; Engel, Matthias

    2015-09-01

    A new class of steroids is being synthesized for its ability to prevent intratumoral androgen production by inhibiting the activity of CYP17 hydroxylase enzyme. The scheme involved the synthesis of chalcone derivative of pregnenolone 5 which was further modified to the corresponding biaryl-chalcone pregnenolone analogs 16-25 using Suzuki-Miyaura cross-coupling reaction. The synthesized compounds were tested for activity using human CYP17α hydroxylase expressed in Escherichia coli. Compounds 21 was the most active inhibitor in this series, with IC50 values of 0.61μM and selectivity profile of 88.7% inhibition of hydroxylase enzyme. Molecular docking study of 21 was performed and showed the hydrogen bonds and hydrophobic interaction with the amino acid residues of the active site of CYP17. PMID:26051784

  3. A ruthenium-grafted triazine functionalized mesoporous polymer: a highly efficient and multifunctional catalyst for transfer hydrogenation and the Suzuki-Miyaura cross-coupling reactions.

    PubMed

    Salam, Noor; Kundu, Sudipta K; Roy, Anupam Singha; Mondal, Paramita; Ghosh, Kajari; Bhaumik, Asim; Islam, S M

    2014-05-21

    A new ruthenium-grafted mesoporous organic polymer Ru-MPTAT-1 has been synthesized via simple and facile in situ radical polymerization of 2,4,6-triallyloxy-1,3,5-triazine (TAT) in aqueous medium in the presence of an anionic surfactant (sodium dodecyl sulfate) as a template, followed by grafting of Ru(II) onto its surface. Ru-MPTAT-1 has been characterized by elemental analysis, powder XRD, HRTEM, FT-IR, UV-vis DRS, TG-DTA, FESEM and XPS characterization tools. The Ru-MPTAT-1 material showed very good catalytic activity in the Suzuki-Miyaura cross-coupling reaction for aryl halides and transfer hydrogenation reaction for a series of carbonyl compounds. The catalyst is easily recoverable from the reaction mixture and can be reused several times without appreciable loss of catalytic activity in the above reactions. Highly dispersed and strongly bound Ru(II) sites at the mesoporous polymer surface could be responsible for the observed high activity of the Ru-MPTAT-1 catalyst in these reactions. PMID:24667768

  4. Pd(II)-promoted direct cross-coupling reaction of arenes via highly regioselective aromatic C-H activation: a theoretical study.

    PubMed

    Ishikawa, Atsushi; Nakao, Yoshihide; Sato, Hirofumi; Sakaki, Shigeyoshi

    2010-04-01

    The direct cross-coupling reaction of arenes promoted by Pd(OAc)(2) is synthetically very useful because the preparation of a haloarene as a substrate is not necessary. This reaction interestingly only occurs in the presence of benzoquinone (BQ). DFT, MP2 to MP4(SDQ), and CCSD(T) computations elucidated the whole mechanism of this cross-coupling reaction and the key roles of BQ. The first step is the heterolytic C-H activation of benzo[h]quinoline (HBzq) by Pd(OAc)(2) to afford Pd(Bzq)(OAc). The Pd center is more electron-rich in Pd(Bzq)(OAc) than in Pd(OAc)(2). Hence, BQ easily coordinates to Pd(Bzq)(OAc) with a low activation barrier to afford a distorted square planar complex Pd(Bzq)(OAc)(BQ) which is as stable as Pd(Bzq)(OAc). Then, the second C-H activation of benzene occurs with a moderate activation barrier and small endothermicity. The final step is the reductive elimination which occurs with little barrier. The rate-determining step of the overall reaction is the second C-H activation whose activation barrier is considerably higher than that of the first C-H activation. BQ plays a key role in accelerating this reaction; (i) the phenyl group must change its position a lot to reach the transition state in the reductive elimination from the square planar intermediate Pd(Ph)(Bzq)(OAc) but only moderately in the reaction from the trigonal bipyramidal intermediate Pd(Ph)(Bzq)(OAc)(BQ). This is because BQ suppresses the phenyl group to take a position at a distance from the Bzq. (ii) BQ stabilizes the transition state and the product complex by the back-donation interaction. In the absence of BQ, the reductive elimination step has a much higher activation barrier. Though it was expected that the BQ coordination accelerates the second C-H activation of benzene by decreasing the electron density of Pd in Pd(Bzq)(OAc), the activation barrier of this second C-H activation is little influenced by BQ. PMID:20449458

  5. Computational study of the Sonogashira cross-coupling reaction in the gas phase and in dichloromethane solution.

    PubMed

    Sikk, Lauri; Tammiku-Taul, Jaana; Burk, Peeter; Kotschy, András

    2012-07-01

    The Sonogashira cross-couplig reaction, consisting of oxidative addition, cis-trans isomerization, transmetalation, and reductive elimination, was computationally modeled using the DFT B3LYP/cc-pVDZ method for reaction between bromobenzene and phenylacetylene. Palladium diphosphane was used as a catalyst, copper(I) bromide as a co-catalyst and trimethylamine as a base. The reaction mechanism was studied both in the gas phase and in dichloromethane solution using PCM method. The complete catalytic cycle is thermodynamically strongly shifted toward products (diphenylacetylene and regenerated palladium catalyst) and is exothermic being in accordance with experimental data. The rate-determining step is the oxidative addition, since the highest point on the Gibbs energy graph of the complete reaction is the transition state of this step. This conclusion is also supported by recent experimental data. The computed energy profile suggests that the transmetalation step is initiated by the dissociation of neutral ligand, while the activation Gibbs energy of this step is 0.1 kcal mol(-1) in the gas phase. PMID:22160651

  6. Short Synthesis of Sulfur Analogues of Polyaromatic Hydrocarbons through Three Palladium-Catalyzed C-H Bond Arylations.

    PubMed

    Hagui, Wided; Besbes, Néji; Srasra, Ezzeddine; Roisnel, Thierry; Soulé, Jean-François; Doucet, Henri

    2016-09-01

    An expeditious synthesis of a wide range of phenanthro[9,10-b]thiophene derivatives, which are a class of polyaromatic hydrocarbon (PAH) containing a sulfur atom, is reported. The synthetic scheme involves only two operations from commercially available thiophenes, 2-bromobenzenesulfonyl chlorides and aryl bromides. In the first step, palladium-catalyzed desulfitative arylation using 2-bromobenzenesulfonyl chlorides allows the synthesis of thiophene derivatives, which are substituted at the C4 position by an aryl group containing an ortho-bromo substituent. Then, a palladium-catalyzed one-pot cascade intermolecular C5-arylation of thiophene using aryl bromides followed by intramolecular arylation led to the corresponding phenanthro[9,10-b]thiophenes in a single operation. In addition, PAHs containing two or three sulfur atoms, as well as both sulfur and nitrogen atoms, were also designed by this strategy. PMID:27550151

  7. Modular Construction of Fluoroarenes from a New Difluorinated Building Block by Cross-Coupling/Electrocyclisation/Dehydrofluorination Reactions.

    PubMed

    Percy, Jonathan M; Emerson, Helena; Fyfe, James W B; Kennedy, Alan R; Maciuk, Sergej; Orr, David; Rathouská, Lucie; Redmond, Joanna M; Wilson, Peter G

    2016-08-16

    Palladium-catalysed coupling reactions based on a novel and easy-to-synthesise difluorinated organotrifluoroborate were used to assemble precursors to 6π-electrocyclisations of three different types. Electrocyclisations took place at temperatures between 90 and 240 °C, depending on the central component of the π-system; nonaromatic trienes were most reactive, but even systems that required the temporary dearomatisation of two arenyl subunits underwent electrocyclisation, albeit at elevated temperatures. Photochemical conditions were effective for these more demanding reactions. The package of methods delivered a structurally diverse set of fluorinated arenes, spanning a 20 kcal mol(-1) range of reactivity, by a flexible route. PMID:27415819

  8. "One-Pot" Approach to 8-Acylated 2-Quinolinones via Palladium-Catalyzed Regioselective Acylation of Quinoline N-Oxides.

    PubMed

    Chen, Xiaopei; Cui, Xiuling; Wu, Yangjie

    2016-05-20

    A "one-pot" facile and efficient protocol for 8-acylated 2-quinolinones has been developed through palladium-catalyzed acylation of quinoline N-oxides, which proceeds with high selectivity at the C8-position. The desired products were isolated in up to 95% yield and good functional group tolerance. A palladacycle was isolated from the catalytic process and proposed as a key intermediate. PMID:27153298

  9. Exercising Regiocontrol in Palladium-Catalyzed Asymmetric Prenylations and Geranylation: Unifying Strategy Towards Flustramines A and B

    PubMed Central

    Malhotra, Sushant; Chan, Walter H.

    2011-01-01

    Palladium-catalyzed asymmetric prenylation of oxindoles to selectively afford either the prenyl or the reverse prenyl product has been demonstrated. Control of regioselectivity in this transformation is governed by choice of ligand, solvent, and halide additive. The resulting prenylated and reverse prenylated products have been transformed into ent-flustramides and ent-flustramines A and B. Additionally, control in regio- and diastereoselectivity has been obtained using π-geranylpalladium complexes. PMID:21520958

  10. Palladium-Catalyzed Intramolecular C–H Difluoroalkyation: The Synthesis of Substituted 3,3-Difluoro-2-oxindoles**

    PubMed Central

    Shi, Shi-Liang

    2015-01-01

    The synthesis of 3,3-difluoro-2-oxindoles through a robust and efficient palladium-catalyzed C–H difluoroalkylation is described. This process generates a broad range of difluorooxindoles from readily prepared starting materials. The use of BrettPhos as the ligand was crucial for high efficiency. Preliminary mechanistic studies suggest that oxidative addition is the rate-determining step for this process. PMID:25476241

  11. Expanding insight into asymmetric palladium-catalyzed allylic alkylation of N-heterocyclic molecules and cyclic ketones.

    PubMed

    Bennett, Nathan B; Duquette, Douglas C; Kim, Jimin; Liu, Wen-Bo; Marziale, Alexander N; Behenna, Douglas C; Virgil, Scott C; Stoltz, Brian M

    2013-04-01

    Eeny, meeny, miny ... enaminones! Lactams and imides have been shown to consistently provide enantioselectivities substantially higher than other substrate classes previously investigated in the palladium-catalyzed asymmetric decarboxylative allylic alkylation. Several new substrates have been designed to probe the contributions of electronic, steric, and stereoelectronic factors that distinguish the lactam/imide series as superior alkylation substrates (see scheme). These studies culminated in marked improvements on carbocyclic allylic alkylation substrates. PMID:23447555

  12. Efficient Double Suzuki Cross-Coupling Reactions of 2,5-Dibromo-3-hexylthiophene: Anti-Tumor, Haemolytic, Anti-Thrombolytic and Biofilm Inhibition Studies.

    PubMed

    Ikram, Hafiz Mansoor; Rasool, Nasir; Zubair, Muhammad; Khan, Khalid Mohammed; Abbas Chotana, Ghayoor; Akhtar, Muhammad Nadeem; Abu, Nadiah; Alitheen, Noorjahan Banu; Elgorban, Abdallah Mohamed; Rana, Usman Ali

    2016-01-01

    The present study describes several novel 2,5-biaryl-3-hexylthiophene derivatives (3a-i) synthesized via a Pd(0)-catalyzed Suzuki cross-coupling reaction in moderate to good yields. The novel compounds were also analyzed for their anti-thrombolytic, haemolytic, and biofilm inhibition activities. In addition, the anti-tumor activity was also evaluated in vitro for newly-synthesized compounds, where 3-hexyl-2,5-bis(4-(methylthio)phenyl)thiophene exhibited the best anti-tumor activity against 4T1 cells with IC50 value of 16 μM. Moreover, 2,5-bis(4-methylphenyl)-3-hexylthiophene showed the highest activity against MCF-7 cells with an IC50 value of 26.2 μM. On the other hand, the compound 2,5-bis(4-chloropheny)-3-hexylthiophene exhibited excellent biofilm inhibition activity. Furthermore, the compound 2,5-bis(3-chloro-4-fluorophenyl)-3-hexylthiophene also exhibited better anti-thrombolytic and hemolytic activity results as compared to the other newly-synthesized compounds. PMID:27472312

  13. Palladium-catalyzed Br/D exchange of arenes: Selective deuterium incorporation with versatile functional group tolerance and high efficiency

    DOE PAGESBeta

    Zhang, Honghai -Hai; Bonnesen, Peter V.; Hong, Kunlun

    2015-01-01

    There is a facile method for introducing one or more deuterium atoms onto an aromatic nucleus via Br/D exchange with high functional group tolerance and high incorporation efficiency is disclosed. Deuterium-labeled aryl chlorides and aryl borates which could be used as substrates in cross-coupling reactions to construct more complicated deuterium-labeled compounds can also be synthesized by this method.

  14. Pyrrolidine synthesis via palladium-catalyzed trimethylenemethane cycloaddition and related studies

    SciTech Connect

    Marrs, C.M.

    1992-01-01

    The palladium catalyzed trimethylenemethane cycloaddition has been extended to the synthesis of pyrrolidines and azepines. In contrast to previous attempts with N-alkyl and N-aryl imine, successful cycloadditions were recorded with several aromatic and aliphatic electron-deficient imines. Sulfonimines were found to be excellent acceptors, yielding pyrrolidine cycloadducts in excellent yields. Aromatic sulfonimines were observed to undergo cycloaddition very rapidly at or below room temperature. Some aliphatic nitrimine and N-phenyl, C-carbalkoxy imines were also found to be useful acceptors. Azepines were obtained from the cycloaddition of cisoid lockeed [alpha],[beta] unsaturated sulfonimines. In order to support the cycloaddition studies, a novel synthetic method was developed for the synthesis of sulfonimines. bis(Toluene-sulfonylimido)tellurium, Te(=N-Ts)[sub 2], generated from tellurium metal and anhydrous chloramine-t, was found to convert both aromatic and aliphatic aldehydes into the corresponding sulfonimines. Chiral ligands were examined in this cyclization and an enantiomeric excess of 35% was achieved with Hayashi's bidentate ferrocenyl ligand (BPFA). In support of this effort, the total synthesis of [+-] nicotine was accomplished in seven steps starting from pyridine 3-carboxaldehyde using these methodologies in order to verify the enantiomeric excess. Finally, the trimethylenemethane cycloaddition was examined with tropone irontricarbonyl complex. A novel [5+3] cycloaddition was observed to proceed in good yield, which upon decomplexation from the iron tricarbonyl moiety yielded the tricyclo[3.2.0] system. The scope and generality were briefly examined. Extended Huekel calculations were performed in order to help rationalize the unexpected regiochemistry.

  15. Palladium-Catalyzed Oxidative Sulfenylation of Indoles and Related Electron-Rich Heteroarenes with Aryl Boronic Acids and Elemental Sulfur.

    PubMed

    Li, Jianxiao; Li, Chunsheng; Yang, Shaorong; An, Yanni; Wu, Wanqing; Jiang, Huanfeng

    2016-09-01

    An efficient and convenient palladium-catalyzed C-H bond oxidative sulfenylation of indoles and related electron-rich heteroarenes with aryl boronic acids and elemental sulfur has been described. This procedure provides a useful and direct approach for the assembly of a wide range of structurally diverse 3-sulfenylheteroarenes with moderate to excellent yields from simple and readily available starting materials. Moreover, this synthetic protocol is suitable for N-protected and unprotected indoles. Notably, the construction of two C-S bonds in one step was also achieved in this transformation. PMID:27500941

  16. Diverse methyl sulfone-containing benzo[b]thiophene library via iodocyclization and palladium-catalyzed coupling.

    PubMed

    Cho, Chul-Hee; Neuenswander, Benjamin; Larock, Richard C

    2010-03-01

    Parallel solution-phase methods for the synthesis of a 72-membered benzo[b]thiophene library are reported. Medicinally interesting, drug-like, methyl sulfone-substituted benzo[b]thiophenes have been prepared by the palladium-catalyzed substitution of 3-iodobenzo[b]thiophenes by Suzuki-Miyaura, Sonogashira, Heck, carboalkoxylation, and aminocarbonylation chemistry. The key intermediates for library generation, methyl sulfone-containing 3-iodobenzo[b]thiophenes, are readily prepared by iodocyclization and oxidation methodologies from readily available alkynes. PMID:20055500

  17. Palladium-Catalyzed Defluorinative Coupling of 1-Aryl-2,2-Difluoroalkenes and Boronic Acids: Stereoselective Synthesis of Monofluorostilbenes.

    PubMed

    Thornbury, Richard T; Toste, F Dean

    2016-09-12

    The palladium-catalyzed defluorinative coupling of 1-aryl-2,2-difluoroalkenes with boronic acids is described. Broad functional-group tolerance arises from a redox-neutral process by a palladium(II) active species which is proposed to undergo a β-fluoride elimination to afford the products. The monofluorostilbene products were formed with excellent diastereoselectivity (≥50:1) in all cases, and it is critical, as traditional chromatographic techniques often fail to separate monofluoroalkene isomers. As a demonstration of this method's unique combination of reactivity and functional-group tolerance, a Gleevec® analogue, using a monofluorostilbene as an amide isostere, was synthesized. PMID:27511868

  18. Direct Access to α,α-Difluoroacylated Arenes by Palladium-Catalyzed Carbonylation of (Hetero)Aryl Boronic Acid Derivatives.

    PubMed

    Andersen, Thomas L; Frederiksen, Mette W; Domino, Katrine; Skrydstrup, Troels

    2016-08-22

    A palladium-catalyzed carbonylative coupling of (hetero)aryl boronates or boronic acid salts with carbon monoxide and α-bromo-α,α-difluoroamides and bromo-α,α-difluoroesters is described herein. The method is useful for the synthesis of a diverse selection of (hetero)aryl α,α-difluoro-β-ketoamides and α,α-difluoro-β-ketoesters, which are useful building blocks for the generation of functionalized difluoroacylated and difluoroalkyl arenes. The method could be further extended to a one-pot protocol for the formation of difluoroacetophenones. PMID:27346239

  19. Palladium-catalyzed C(sp(3))-H Arylation of N-Boc benzylalkylamines via a deprotonative cross-coupling process.

    PubMed

    Hussain, Nusrah; Kim, Byeong-Seon; Walsh, Patrick J

    2015-07-27

    Diarylmethylamines are key intermediates and products in the pharmaceutical industry. Herein we disclose a novel method toward the synthesis of these important compounds via CH functionalization. Presented is a reversible deprotonation of N-Boc benzylalkylamines at the benzylic CH with in situ arylation by a NiXantPhos-based palladium catalyst (50-93 % yield, 29 examples). The method is also successful with N-Boc-tetrahydroisoquinolines. The advantages of this method are it avoids strong bases, low temperatures, and the need to transmetallate to main group metals for the coupling. PMID:26129922

  20. Nickel-catalyzed cross-coupling reactions of o-carboranyl with aryl iodides: facile synthesis of 1-aryl-o-carboranes and 1,2-diaryl-o-carboranes.

    PubMed

    Tang, Cen; Xie, Zuowei

    2015-06-22

    A nickel-catalyzed arylation at the carbon center of o-carborane cages has been developed, thus leading to the preparation of a series of 1-aryl-o-carboranes and 1,2-diaryl-o-carboranes in high yields upon isolation. This method represents the first example of transition metal catalyzed C,C'-diarylation by cross-coupling reactions of o-carboranyl with aryl iodides. PMID:25959849

  1. Chiral N-1-adamantyl-N-trans-cinnamylaniline type ligands: synthesis and application to palladium-catalyzed asymmetric allylic alkylation of indoles.

    PubMed

    Mino, Takashi; Nishikawa, Kenji; Asano, Moeko; Shima, Yamato; Ebisawa, Toshibumi; Yoshida, Yasushi; Sakamoto, Masami

    2016-08-21

    Such chiral phosphine-internal olefin hybrid type ligands as N-1-adamantyl-N-cinnamylaniline derivatives 1 with C(aryl)-N(amine) bond axial chirality were synthesized and utilized for the palladium-catalyzed asymmetric allylic alkylation of indoles to afford the desired products in high enantioselectivities (up to 98% ee). PMID:27425209

  2. Direct conversion of allyl arenes to aryl ethylketones via a TBHP-mediated palladium-catalyzed tandem isomerization-Wacker oxidation of terminal alkenes.

    PubMed

    Zhao, JinWu; Liu, Li; Xiang, ShiJian; Liu, Qiang; Chen, HuoJi

    2015-05-28

    A TBHP-mediated palladium-catalyzed tandem isomerization-Wacker oxidation of terminal alkenes was developed. This methodology provides a new efficient and simple route for conversion of a range of allyl arenes directly into aryl ethylketones in good yields with high chemoselectivity. PMID:25884269

  3. Total synthesis of protosappanin A and its derivatives via palladium catalyzed ortho C-H activation/C-C cyclization under microwave irradiation.

    PubMed

    Liu, Jiaqi; Zhou, Xuan; Wang, Chenglong; Fu, Wanyong; Chu, Wenyi; Sun, Zhizhong

    2016-04-14

    A total synthesis method for protosappanin A, which is a complex natural product with many biological activities, was developed with 6 linear steps. Dibenzo[b,d]oxepinones as the key intermediates of the synthetic route were prepared by a palladium-catalyzed ortho C-H activation/C-C cyclization under microwave irradiation. 25 derivatives of protosappanin A were obtained. PMID:26997503

  4. A Convenient Palladium-Catalyzed Carbonylative Synthesis of Benzofuran-2(3 H)-ones with Formic Acid as the CO Source.

    PubMed

    Qi, Xinxin; Li, Hao-Peng; Wu, Xiao-Feng

    2016-09-01

    A general and convenient palladium-catalyzed carbonylation procedure for the synthesis of benzofuran-2(3 H)-ones from phenols and aldehydes has been developed. With formic acid as the CO source, a variety of benzofuran-2(3 H)-ones were obtained in moderate to good yields. PMID:27539230

  5. Dehydrogenative Cross-Coupling Reaction between N-Aryl α-Amino Acid Esters and Phenols or Phenol Derivative for Synthesis of α-Aryl α-Amino Acid Esters.

    PubMed

    Salman, Muhammad; Zhu, Zhi-Qiang; Huang, Zhi-Zhen

    2016-04-01

    A novel dehydrogenative cross-coupling (DCC) reaction between N-arylglycine esters and phenols or 1,3,5-trimethoxybenzene was developed by copper catalysis using di-tert-butyl peroxide (DTBP) as an oxidant. Under optimized conditions, a range of N-arylglycine esters 1 underwent the DCC reaction smoothly with various phenols 2 or 1,3,5-trimethoxybenzene 4 to give desired α-aryl α -amino acid esters 3 or 5, respectively, with high ortho regioselectivities in a moderate to excellent yield. A possible mechanism involving aromatic electrophilic substitution is proposed. PMID:26984111

  6. Syntheses and Transformations of α-Amino Acids via Palladium-Catalyzed Auxiliary-Directed sp(3) C-H Functionalization.

    PubMed

    He, Gang; Wang, Bo; Nack, William A; Chen, Gong

    2016-04-19

    α-Amino acids (αAA) are one of the most useful chiral building blocks for synthesis. There are numerous general strategies that have commonly been used for αAA synthesis, many of which employ de novo synthesis focused on enantioselective bond construction around the Cα center and others that consider conversion of existing αAA precursors carrying suitable functional groups on side chains (e.g., serine and aspartic acid). Despite significant advances in synthetic methodology, the efficient synthesis of enantiopure αAAs carrying complex side chains, as seen in numerous peptide natural products, remains challenging. Complementary to these "conventional" strategies, a strategy based on the selective functionalization of side chain C-H bonds, particularly sp(3) hybridized C-H bonds, of various readily available αAA precursors may provide a more straightforward and broadly applicable means for the synthesis and transformation of αAAs. However, many hurdles related to the low reactivity of C(sp(3))-H bonds and the difficulty of controlling selectivity must be overcome to realize the potential of C-H functionalization chemistry in this synthetic application. Over the past few years, we have carried out a systematic investigation of palladium-catalyzed bidentate auxiliary-directed C-H functionalization reactions for αAA substrates. Our strategies utilize two different types of amide-linked auxiliary groups, attached at the N or C terminus of αAA substrates, to exert complementary regio- and stereocontrol on C-H functionalization reactions through palladacycle intermediates. A variety of αAA precursors can undergo multiple modes of C(sp(3))-H functionalization, including arylation, alkenylation, alkynylation, alkylation, alkoxylation, and intramolecular aminations, at the β, γ, and even δ positions to form new αAA products with diverse structures. In addition to transforming αAAs at previously unreachable positions, these palladium-catalyzed C

  7. Palladium-catalyzed arylation of 2H-chromene: a new entry to pyrano[2,3-c]carbazoles.

    PubMed

    Ranjith Reddy, K; Siva Reddy, A; Dhaked, Devendra K; Rasheed, S K; Pathania, Anup Singh; Shankar, Ravi; Malik, Fayaz; Das, Parthasarathi

    2015-09-21

    Pyrano[2,3-c]carbazoles which are biologically valuable and synthetically challenging frameworks are synthesized in high yields over five steps from commercially available resorcinol. Palladium-catalyzed arylation remains a key step in this novel strategy. The versatility of this protocol has been demonstrated by the synthesis of naturally occurring alkaloid clauraila C and 7-methoxyglycomaurin. The anti-proliferative activity of these designed compounds (5a, 5f, and 5l) has been evaluated in a cancer cell line (MOLT-4). The molecular docking study revealed that this pyrano[2,3-c]carbazole class of molecules selectively occupies the colchicine binding site of the tubulin-polymer. PMID:26235231

  8. Palladium-Catalyzed Carbonylative Cyclization of Arenes by C-H Bond Activation with DMF as the Carbonyl Source.

    PubMed

    Chen, Jianbin; Feng, Jian-Bo; Natte, Kishore; Wu, Xiao-Feng

    2015-11-01

    A novel palladium-catalyzed CO-gas- and autoclave-free protocol for the synthesis of 11H-pyrido[2,1-b]quinazolin-11-ones has been developed. Quinazolinones, which are omnipresent motif in many pharmaceuticals and agrochemicals, were prepared in good yields by C-H bond activation and annulation using DMF as the CO surrogate. A (13) CO-labelled DMF control experiment demonstrated that CO gas was released from the carbonyl of DMF with acid as the promotor. The kinetic isotope effect (KIE) value indicated that the C-H activation step may not be involved in the rate-determining step. This methodology is operationally simple and showed a broad substrate scope with good to excellent yields. PMID:26406903

  9. Synthesis and characterization of Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 nanocomposite as a polymer-inorganic hybrid catalyst for the Suzuki-Miyaura cross-coupling reaction

    SciTech Connect

    Kalbasi, Roozbeh Javad; Mosaddegh, Neda

    2011-11-15

    Composite poly(N-vinyl-2-pyrrolidone)/KIT-5 (PVP/KIT-5) was prepared by in situ polymerization method and used as a support for palladium nanoparticles obtained through the reduction of Pd(OAc){sub 2} by hydrazine hydrate. The physical and chemical properties of the catalyst were investigated by XRD, FT-IR, UV-vis, TG, BET, SEM, and TEM techniques. The catalytic performance of this novel heterogeneous catalyst was determined for the Suzuki-Miyaura cross-coupling reaction between aryl halides and phenylboronic acid in the presence of water at room temperature. The stability of the nanocomposite catalyst was excellent and could be reused 8 times without much loss of activity in the Suzuki-Miyaura cross-coupling reaction. - Graphical Abstract: Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 was prepared as an organic-inorganic hybrid catalyst for the Suzuki-Miyaura reaction. The stability of the catalyst was excellent and could be reused 8 times in the Suzuki-Miyaura reaction. Highlights: > Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 was prepared as a novel nanocomposite. > Nanocomposite was prepared based on a cage-type mesoporous system. > Catalyst showed excellent activity for Suzuki-Miyaura reaction in water. > Stability of the catalyst was excellent and could be reused 8 times.

  10. Generating Active "L-Pd(0)" via Neutral or Cationic π-Allylpalladium Complexes Featuring Biaryl/Bipyrazolylphosphines: Synthetic, Mechanistic, and Structure-Activity Studies in Challenging Cross-Coupling Reactions.

    PubMed

    DeAngelis, A J; Gildner, Peter G; Chow, Ruishan; Colacot, Thomas J

    2015-07-01

    Two new classes of highly active yet air- and moisture-stable π-R-allylpalladium complexes containing bulky biaryl- and bipyrazolylphosphines with extremely broad ligand scope have been developed. Neutral π-allylpalladium complexes incorporated a range of biaryl/bipyrazolylphosphine ligands, while extremely bulky ligands were accommodated by a cationic scaffold. These complexes are easily activated under mild conditions and are efficient for a wide array of challenging C-C and C-X (X = heteroatom) cross-coupling reactions. Their high activity is correlated to their facile activation to a 12-electron-based "L-Pd(0)" catalyst under commonly employed conditions for cross-coupling reactions, noninhibitory byproduct release upon activation, and suppression of the off-cycle pathway to form dinuclear (μ-allyl)(μ-Cl)Pd2(L)2 species, supported by structural (single crystal X-ray) and kinetic studies. A broad scope of C-C and C-X coupling reactions with low catalyst loadings and short reaction times highlight the versatility and practicality of these catalysts in organic synthesis. PMID:26035637

  11. Photoredox Catalysis in Nickel-Catalyzed Cross-Coupling.

    PubMed

    Cavalcanti, Livia N; Molander, Gary A

    2016-08-01

    The traditional transition metal-catalyzed cross-coupling reaction, although well suited for C(sp2)-C(sp2) cross-coupling, has proven less amenable toward coupling of C(sp3)-hybridized centers, particularly using functional group tolerant reagents and reaction conditions. The development of photoredox/Ni dual catalytic methods for cross-coupling has opened new vistas for the construction of carbon-carbon bonds at C(sp3)-hybridized centers. In this chapter, a general outline of the features of such processes is detailed. PMID:27573391

  12. Functionalized β-cyclodextrin as supramolecular ligand and their Pd(OAc)2 complex: highly efficient and reusable catalyst for Mizoroki-Heck cross-coupling reactions in aqueous medium.

    PubMed

    Dindulkar, Someshwar D; Jeong, Daham; Kim, Hwanhee; Jung, Seunho

    2016-07-22

    A novel class of water soluble palladium complexes with recognition abilities based on functionalized β-cyclodextrin has been synthesized. The complex demonstrated high catalytic activity and a supramolecular platform for phosphine-free Mizoroki-Heck cross-coupling reactions in water. The efficient arylation of alkenes was carried out using different iodo- and bromo-arenes with good to excellent yields (up to 96%). The advantages, like recyclability of catalysts, operational simplicity and accessibility in aqueous medium, make this protocol eco-friendly. PMID:27208891

  13. Direct catalytic cross-coupling of organolithium compounds

    NASA Astrophysics Data System (ADS)

    Giannerini, Massimo; Fañanás-Mastral, Martín; Feringa, Ben L.

    2013-08-01

    Catalytic carbon-carbon bond formation based on cross-coupling reactions plays a central role in the production of natural products, pharmaceuticals, agrochemicals and organic materials. Coupling reactions of a variety of organometallic reagents and organic halides have changed the face of modern synthetic chemistry. However, the high reactivity and poor selectivity of common organolithium reagents have largely prohibited their use as a viable partner in direct catalytic cross-coupling. Here we report that in the presence of a Pd-phosphine catalyst, a wide range of alkyl-, aryl- and heteroaryl-lithium reagents undergo selective cross-coupling with aryl- and alkenyl-bromides. The process proceeds quickly under mild conditions (room temperature) and avoids the notorious lithium halogen exchange and homocoupling. The preparation of key alkyl-, aryl- and heterobiaryl intermediates reported here highlights the potential of these cross-coupling reactions for medicinal chemistry and material science.

  14. Linear heterocyclic aromatic fluorescence compounds having various donor-acceptor spacers prepared by the combination of carbon-carbon bond and carbon-nitrogen bond cross-coupling reactions.

    PubMed

    Hu, Bin; Fu, Shu-Jun; Xu, Feng; Tao, Tao; Zhu, Hao-Yu; Cao, Kou-Sen; Huang, Wei; You, Xiao-Zeng

    2011-06-01

    A family of novel linear 1,10-phenanthroline-based (A-D-A-D-A) and oligothiophene-based (A-D-D-D-(D)-A) heterocyclic aromatic fluorescence compounds having N-containing imidazole and pyridine tails with effective π-conjugated systems, prepared by the combination of carbon-carbon (C-C) bond and carbon-nitrogen (C-N) bond cross-coupling reactions, is described. They have molecular lengths of more than 2.30 nm in the cases of 4, 6, 9, and 26, various D-A spacers, and certain N-coordination sites (phen, imidazole, and pyridine). X-ray single-crystal structures of 13 compounds reveal a variety of trans and cis configurations with different dihedral angles between adjacent aromatic heterocycles. Synthetic, computational, and spectral studies have been made to reveal the differences between cross-coupling approaches on the C-C bond and C-N bond formation as well as band gaps and energy levels and optical and electrochemical properties for related compounds. The influences of introducing a β-methyl group to the thiophene ring on reaction activity, solubility, and conformation of related compounds have also been discussed. PMID:21513323

  15. One-pot synthesis of 2-amino-4(3H)-quinazolinones via ring-opening of isatoic anhydride and palladium-catalyzed oxidative isocyanide-insertion.

    PubMed

    Ji, Fei; Lv, Mei-Fang; Yi, Wen-Bin; Cai, Chun

    2014-08-14

    An efficient and practical two-step process has been developed for the synthesis of 2-amino-4(3H)-quinazolinones via ring-opening of isatoic anhydride and palladium-catalyzed oxidative isocyanide-insertion in one pot. This regioselective procedure could construct a wide range of 2-amino-4(3H)-quinazolinones in moderate to excellent yields. Furthermore, the methodology also had distinct advantages of easily accessible starting materials and operational simplicity. PMID:24968809

  16. A convenient route to symmetrically and unsymmetrically substituted 3,5-diaryl-2,4,6-trimethylpyridines via Suzuki–Miyaura cross-coupling reaction

    PubMed Central

    Szawkało, Joanna; Czarnocki, Zbigniew

    2016-01-01

    Summary A series of differently substituted 3,5-diaryl-2,4,6-trimethylpyridines were prepared and characterized using the Suzuki–Miyaura coupling reaction with accordingly selected bromo-derivatives and arylboronic acids. The reaction conditions were carefully optimized allowing high yield of isolated products and also the construction of unsymmetrically substituted diarylpyridines, difficult to access by other methods. PMID:27340474

  17. Synthesis of 2,3-Disubstituted Benzo[b]furans by the Palladium-Catalyzed Coupling of o-Iodoanisoles and Terminal Alkynes, Followed by Electrophilic Cyclization

    PubMed Central

    Yue, Dawei; Yao, Tuanli; Larock, Richard C.

    2008-01-01

    2,3-Disubstituted benzo[b]furans are readily prepared under very mild reaction conditions by the palladium/copper-catalyzed cross-coupling of various o-iodoanisoles and terminal alkynes, followed by electrophilic cyclization using I2, PhSeCl or p-O2NC6H4SCl. Aryl- and vinylic-substituted alkynes undergo electrophilic cyclization in excellent yields. Biologically important furopyridines can be prepared by this approach in high yields. PMID:16323837

  18. Manganese(III) Acetate-Promoted Cross-Coupling Reaction of Benzothiazole/Thiazole Derivatives with Organophosphorus Compounds under Ball-Milling Conditions.

    PubMed

    Li, Liang; Wang, Jun-Jie; Wang, Guan-Wu

    2016-07-01

    The first solvent-free manganese(III) acetate-promoted reaction of benzothiazole/thiazole derivatives with organophosphorus compounds including phosphine oxides, phosphinate ester, and phosphonate diester has been efficiently developed under ball-milling conditions, providing a highly efficient and green protocol to structurally diverse C2-phosphonylated benzothiazole/thiazole derivatives with remarkable functional group tolerance and excellent yields. PMID:27248000

  19. Palladium-Catalyzed Coupling of Functionalized Primary and Secondary Amines with Aryl and Heteroaryl Halides: Two Ligands Suffice in Most Cases†

    PubMed Central

    Maiti, Debabrata; Fors, Brett P.; Henderson, Jaclyn L.; Nakamura, Yoshinori; Buchwald, Stephen L.

    2012-01-01

    We report our studies on the use of two catalyst systems, based on the ligands BrettPhos (1) and RuPhos (2), which provide the widest scope for Pd-catalyzed C–N cross-coupling reactions to date. Often low catalyst loadings and short reaction times can be used with functionalized aryl and heteroaryl coupling partners. The reactions are highly robust and can be set up and performed without the use of a glovebox. These catalysts should find wide application in the synthesis of complex molecules including pharmaceuticals, natural products and functional materials. PMID:22384311

  20. Palladium-Catalyzed Telomerization of Butadiene with Polyols: From Mono to Polysaccharides

    NASA Astrophysics Data System (ADS)

    Bouquillon, Sandrine; Muzart, Jacques; Pinel, Catherine; Rataboul, Franck

    The telomerization of butadiene with alcohols is an elegant way to synthesize ethers with minimal environmental impact since this reaction is 100% atom efficient. Besides telomerization of butadiene with methanol and water that is industrially developed, the modification of polyols is still under development. Recently, a series of new substrates has been involved in this reaction, including diols, pure or crude glycerol, protected or unprotected monosaccharides, as well as polysaccharides. This opens up the formation of new products having specific physicochemical properties. We will describe recent advances in this field, focusing on the reaction of renewable products and more specifically on saccharides. The efficient catalytic systems as well as the optimized reaction conditions will be described and some physicochemical properties of the products will be reported.

  1. Palladium-catalyzed synthesis of aromatic carboxylic acids with silacarboxylic acids.

    PubMed

    Friis, Stig D; Andersen, Thomas L; Skrydstrup, Troels

    2013-03-15

    Aryl iodides and bromides were easily converted to their corresponding aromatic carboxylic acids via a Pd-catalyzed carbonylation reaction using silacarboxylic acids as an in situ source of carbon monoxide. The reaction conditions were compatible with a wide range of functional groups, and with the aryl iodides, the carbonylation was complete within minutes. The method was adapted to the double and selective isotope labeling of tamibarotene. PMID:23441830

  2. Efficient palladium-catalyzed aminocarbonylation of aryl iodides using palladium nanoparticles dispersed on siliceous mesocellular foam.

    PubMed

    Tinnis, Fredrik; Verho, Oscar; Gustafson, Karl P J; Tai, Cheuk-Wai; Bäckvall, Jan-E; Adolfsson, Hans

    2014-05-12

    A highly dispersed nanopalladium catalyst supported on mesocellular foam (MCF), was successfully used in the heterogeneous catalysis of aminocarbonylation reactions. During the preliminary evaluation of this catalyst it was discovered that the supported palladium nanoparticles exhibited a "release and catch" effect, meaning that a minor amount of the heterogeneous palladium became soluble and catalyzed the reaction, after which it re-deposited onto the support. PMID:24687938

  3. Palladium-catalyzed one pot 2-arylquinazoline formation via hydrogen-transfer strategy.

    PubMed

    Wang, Huamin; Chen, Hui; Chen, Ya; Deng, Guo-Jun

    2014-10-21

    The palladium catalytic system was first applied to 2-arylquinazoline synthesis via hydrogen transfer methodology. Various (E)-2-nitrobenzaldehyde O-methyl oximes reacted easily with alcohols or benzyl amines to provide N-heterocyclic compounds in good to high yields. Similarly, the heterocyclic products could be prepared by the reaction of 1-(2-nitrophenyl)ethanone, urea and benzyl alcohols. In these reactions, the nitro group was reduced in situ by hydrogen generated from the alcohol dehydrogenation step. PMID:25156121

  4. From bis(silylene) and bis(germylene) pincer-type nickel(II) complexes to isolable intermediates of the nickel-catalyzed Sonogashira cross-coupling reaction.

    PubMed

    Gallego, Daniel; Brück, Andreas; Irran, Elisabeth; Meier, Florian; Kaupp, Martin; Driess, Matthias; Hartwig, John F

    2013-10-16

    The first [ECE]Ni(II) pincer complexes with E = Si(II) and E = Ge(II) metallylene donor arms were synthesized via C-X (X = H, Br) oxidative addition, starting from the corresponding [EC(X)E] ligands. These novel complexes were fully characterized (NMR, MS, and XRD) and used as catalyst for Ni-catalyzed Sonogashira reactions. These catalysts allowed detailed information on the elementary steps of this catalytic reaction (transmetalation → oxidative addition → reductive elimination), resulting in the isolation and characterization of an unexpected intermediate in the transmetalation step. This complex, {[ECE]Ni acetylide → CuBr} contains both nickel and copper, with the copper bound to the alkyne π-system. Consistent with these unusual structural features, DFT calculations of the {[ECE]Ni acetylide → CuBr} intermediates revealed an unusual E-Cu-Ni three-center-two-electron bonding scheme. The results reveal a general reaction mechanism for the Ni-based Sonogashira coupling and broaden the application of metallylenes as strong σ-donor ligands for catalytic transformations. PMID:24053603

  5. One-pot palladium-catalyzed borrowing hydrogen synthesis of thioethers.

    PubMed

    Corma, Avelino; Navas, Javier; Ródenas, Tania; Sabater, María J

    2013-12-16

    Palladium on magnesium oxide is able to allow a one-pot reaction to synthesize thioethers from thiols and aldehydes formed in situ from the respective alcohol by means of a borrowing hydrogen method. The reaction is initiated by dehydrogenation of the alcohol to give a palladium hydride intermediate and an aldehyde. The latter reacts with a thiol involving most probably the intermediacy of a thionium ion RCH=S(+)R, which can be reduced in situ by the metal hydride to afford thioethers. PMID:24259460

  6. Palladium-Catalyzed Dynamic Kinetic Asymmetric Transformations of Vinyl Aziridines with Nitrogen Heterocycles: Rapid Access to Biologically Active Pyrroles and Indoles

    PubMed Central

    Trost, Barry M.; Osipov, Maksim; Dong, Guangbin

    2010-01-01

    We report that nitrogen heterocycles can serve as competent nucleophiles in the palladium-catalyzed dynamic kinetic asymmetric alkylation of vinyl aziridines. The resulting alkylated products were obtained with high regio-, chemo-, and enantioselectivity. Both substituted 1H-pyrroles and 1H-indoles were successfully employed to give exclusively the branched N-alkylated products. The synthetic utility of this process was demonstrated by applying this method to the preparation of several medicinal chemistry lead compounds and bromopyrrole alkaloids including longamide B, longamide B methyl ester, hanishin, agesamides A and B, and cyclooroidin. PMID:20949972

  7. Synthesis of Benzofuro- and Indolo[3,2-b]indoles via Palladium-Catalyzed Double N-Arylation and Their Physical Properties.

    PubMed

    Truong, Minh Anh; Nakano, Koji

    2015-11-20

    Two kinds of ladder-type π-conjugated compounds, benzofuro[3,2-b]indoles (BFIs) and indolo[3,2-b]indoles (IIs), were successfully synthesized using palladium-catalyzed double N-arylation of anilines with the corresponding dihalobiaryls. Photophysical properties were evaluated by UV-vis and photoluminescence spectroscopies and theoretical calculations. BFI derivatives showed higher quantum yields (33-39%) than the II derivative (29%). The absorption bands of the II derivative were more red-shifted compared to BFI derivatives. PMID:26506120

  8. Palladium-Catalyzed Decarbonylative Dehydration for the Synthesis of α-Vinyl Carbonyl Compounds and Total Synthesis of (-)-Aspewentins A, B, and C.

    PubMed

    Liu, Yiyang; Virgil, Scott C; Grubbs, Robert H; Stoltz, Brian M

    2015-09-28

    The direct α-vinylation of carbonyl compounds to form a quaternary stereocenter is a challenging transformation. It was discovered that δ-oxocarboxylic acids can serve as masked vinyl compounds and be unveiled by palladium-catalyzed decarbonylative dehydration. The carboxylic acids are readily available through enantioselective acrylate addition or asymmetric allylic alkylation. A variety of α-vinyl quaternary carbonyl compounds are obtained in good yields, and an application in the first enantioselective total synthesis of (-)-aspewentins A, B, and C is demonstrated. PMID:26230413

  9. Sulfonyl Azides as Precursors in Ligand-Free Palladium-Catalyzed Synthesis of Sulfonyl Carbamates and Sulfonyl Ureas and Synthesis of Sulfonamides.

    PubMed

    Chow, Shiao Y; Stevens, Marc Y; Odell, Luke R

    2016-04-01

    An efficient synthesis of sulfonyl carbamates and sulfonyl ureas from sulfonyl azides employing a palladium-catalyzed carbonylation protocol has been developed. Using a two-chamber system, sulfonyl azides, PdCl2, and CO gas, released ex situ from Mo(CO)6, were assembled to generate sulfonyl isocyanates in situ, and alcohols and aryl amines were exploited as nucleophiles to afford a broad range of sulfonyl carbamates and sulfonyl ureas. A protocol for the direct formation of substituted sulfonamides from sulfonyl azides and amines via nucleophilic substitution was also developed. PMID:26967791

  10. Synthesis of N-acylcarbazoles through palladium-catalyzed aryne annulation of 2-haloacetanilides.

    PubMed

    Lu, Chun; Markina, Nataliya A; Larock, Richard C

    2012-12-21

    N-Acylcarbazoles have been synthesized in moderate to good yields by the annulation of in situ generated arynes with 2-haloacetanilides in the presence of a palladium catalyst and CsF. Both C-C and C-N bonds are formed simultaneously, and a variety of functional groups are tolerated in this reaction. PMID:23214463

  11. Coverage Effects on the Palladium-Catalyzed Synthesis of Vinyl Acetate: Comparison between Theory and Experiment

    SciTech Connect

    Calaza, Florencia; Stacchiola, Dario; Neurock, Matthew; Tysoe, Wilfred T.

    2010-02-24

    The high adsorbate coverages that form on the surfaces of many heterogeneous catalysts under steady-state conditions can significantly lower the activation energies for reactions that involve the coupling of two adsorbed intermediates while increasing those which result in adsorbate bond-breaking reactions. The influence of the surface coverage on the kinetics of metal-catalyzed reactions is often ignored in theoretical and even in some ultrahigh vacuum experimental studies. Herein, first principle density functional theoretical calculations are combined with experimental surface titration studies carried out over well-defined Pd(111) surfaces to explicitly examine the influence of coverage on the acetoxylation of ethylene to form vinyl acetate over Pd. The activation energies calculated for elementary steps in the Samanos and Moiseev pathways for vinyl acetate synthesis carried out on acetate-saturated palladium surfaces reveal that the reaction proceeds via the Samanos mechanism which is consistent with experimental results carried out on acetate-saturated Pd(111) surfaces. The rate-limiting step involves a β-hydride elimination from the adsorbed acetoxyethyl intermediate, which proceeds with an apparent calculated activation barrier of 53 kJ/mol which is in very good agreement with the experimental barrier of 55 ± 4 kJ/mol determined from kinetic measurements.

  12. Palladium-catalyzed synthesis of dibenzophosphole oxides via intramolecular dehydrogenative cyclization.

    PubMed

    Kuninobu, Yoichiro; Yoshida, Takuya; Takai, Kazuhiko

    2011-09-16

    Dibenzophosphole oxides were obtained from secondary hydrophosphine oxides with a biphenyl group by dehydrogenation via phosphine-hydrogen and carbon-hydrogen bond cleavage in the presence of a catalytic amount of palladium(II) acetate, Pd(OAc)(2). By using this reaction, a ladder-type dibenzophosphole oxide could also be synthesized by double intramolecular dehydrogenative cyclization. PMID:21819045

  13. Palladium-Catalyzed Aerobic Oxidative Dehydrogenation of Cyclohexenes to Substituted Arene Derivatives

    PubMed Central

    Iosub, Andrei V.; Stahl, Shannon S.

    2015-01-01

    A palladium(II) catalyst system has been identified for aerobic dehydrogenation of substituted cyclohexenes to the corresponding arene derivatives. Use of sodium anthraquinone-2-sulfonate (AMS) as a co-catalyst enhances the product yields. A wide range of functional groups are tolerated in the reactions, and the scope and limitations of the method are described. The catalytic dehydrogenation of cyclohexenes is showcased in an efficient route to a phthalimide-based TRPA1 activity modulator. PMID:25734414

  14. Palladium-Catalyzed ipso-Borylation of Aryl Sulfides with Diborons.

    PubMed

    Bhanuchandra, M; Baralle, Alexandre; Otsuka, Shinya; Nogi, Keisuke; Yorimitsu, Hideki; Osuka, Atsuhiro

    2016-06-17

    A catalytic Miyaura-type ipso-borylation of aryl sulfides with diboron reagents has been achieved, providing arylboronate esters of synthetic use. The key conditions to transform inherently reluctant C-S bonds into C-B bonds include a palladium-NHC (N-heterocyclic carbene) precatalyst, bis(pinacolato)diboron, and lithium hexamethyldisilazide. This protocol is applicable to a reasonable range of aryl alkyl sulfides. Twofold borylation was observed in the reaction of diphenyl sulfide. PMID:27267542

  15. Palladium-Catalyzed Heteroarylation and Concomitant ortho-Alkylation of Aryl Iodides.

    PubMed

    Lei, Chuanhu; Jin, Xiaojia; Zhou, Jianrong Steve

    2015-11-01

    Three-component couplings were achieved from common aryl halides, alkyl halides, and heteroarenes under palladium and norbornene co-catalysis. The reaction forges hindered aryl-heteroaryl bonds and introduces ortho-alkyl groups to aryl rings. Various heterocycles such as oxazoles, thiazoles and thiophenes underwent efficient coupling. The heteroarenes were deprotonated in situ by bases without the assistance of palladium catalysts. PMID:26358935

  16. Palladium-Catalyzed, Ring-Forming Aromatic C–H Alkylations with Unactivated Alkyl Halides

    PubMed Central

    Venning, Alexander R. O.; Bohan, Patrick T.; Alexanian, Erik J.

    2015-01-01

    A catalytic C–H alkylation using unactivated alkyl halides and a variety of arenes and heteroarenes is described. This ring-forming process is successful with a variety of unactivated primary and secondary alkyl halides, including those with β-hydrogens. In contrast to standard polar or radical cyclizations of aromatic systems, electronic activation of the substrate is not required. The mild, catalytic reaction conditions are highly functional group tolerant and facilitate access to a diverse range of synthetically and medicinally important carbocyclic and heterocyclic systems. PMID:25746442

  17. Palladium-catalyzed 2,5-diheteroarylation of 2,5-dibromothiophene derivatives

    PubMed Central

    Belkessam, Fatma; Mohand, Aidene; Soulé, Jean-François

    2014-01-01

    Summary Conditions allowing the one pot 2,5-diheteroarylation of 2,5-dibromothiophene derivatives in the presence of palladium catalysts are reported. Using KOAc as the base, DMA as the solvent and only 0.5–2 mol % palladium catalysts, the target 2,5-diheteroarylated thiophenes were obtained in moderate to good yields and with a wide variety of heteroarenes such as thiazoles, thiophenes, furans, pyrroles, pyrazoles or isoxazoles. Moreover, sequential heteroarylation reactions allow the access to 2,5-diheteroarylated thiophenes bearing two different heteroaryl units. PMID:25550758

  18. Palladium-catalyzed 2,5-diheteroarylation of 2,5-dibromothiophene derivatives.

    PubMed

    Belkessam, Fatma; Mohand, Aidene; Soulé, Jean-François; Elias, Abdelhamid; Doucet, Henri

    2014-01-01

    Conditions allowing the one pot 2,5-diheteroarylation of 2,5-dibromothiophene derivatives in the presence of palladium catalysts are reported. Using KOAc as the base, DMA as the solvent and only 0.5-2 mol % palladium catalysts, the target 2,5-diheteroarylated thiophenes were obtained in moderate to good yields and with a wide variety of heteroarenes such as thiazoles, thiophenes, furans, pyrroles, pyrazoles or isoxazoles. Moreover, sequential heteroarylation reactions allow the access to 2,5-diheteroarylated thiophenes bearing two different heteroaryl units. PMID:25550758

  19. Palladium-Catalyzed Carbamate-Directed Regioselective Halogenation: A Route to Halogenated Anilines.

    PubMed

    Moghaddam, Firouz Matloubi; Tavakoli, Ghazal; Saeednia, Borna; Langer, Peter; Jafari, Behzad

    2016-05-01

    This study describes an efficient method for ortho-selective halogenation of N-arylcarbamates under mild conditions for the first time. Although being weakly coordinating, N-arylcarbamates act very well as a removable directing group for activation of C-H bonds. The developed procedure results in extremely valuable halogenated N-arylcarbmates that can further be hydrolyzed to halogenated anilines. The obtained reaction conditions showed broad scope and wide functional group tolerance. All the products were formed in good yields with extremely high selectivity. PMID:27072283

  20. Controlling Site Selectivity in Palladium-Catalyzed C–H Bond Functionalization

    PubMed Central

    Neufeldt, Sharon R.; Sanford, Melanie S.

    2012-01-01

    Conspectus Effective methodology to functionalize C–H bonds requires overcoming the key challenge of differentiating among the multitude of C–H bonds that are present in complex organic molecules. This Account focuses on our work over the past decade toward the development of site-selective Pd-catalyzed C–H functionalization reactions using the following approaches: substrate-based control over selectivity through the use of directing groups (approach 1), substrate control through the use of electronically activated substrates (approach 2), or catalyst-based control (approach 3). In our extensive exploration of the first approach, a number of selectivity trends have emerged for both sp2 and sp3 C–H functionalization reactions that hold true for a variety of transformations involving diverse directing groups. Functionalizations tend to occur at the less-hindered sp2 C–H bond ortho to a directing group, at primary sp3 C–H bonds that are β to a directing group, and, when multiple directing groups are present, at C–H sites proximal to the most basic directing group. Using approach 2, which exploits electronic biases within a substrate, our group has achieved C-2-selective arylation of indoles and pyrroles using diaryliodonium oxidants. The selectivity of these transformations is altered when the C-2 site of the heterocycle is blocked, leading to C–C bond formation at the C-3 position. While approach 3 (catalyst-based control) is still in its early stages of exploration, we have obtained exciting results demonstrating that site selectivity can be tuned by modifying the structure of the supporting ligands on the Pd catalyst. For example, by modulating the structure of N~N bidentate ligands, we have achieved exquisite levels of selectivity for arylation at the α site of naphthalene. Similarly, we have demonstrated that both the rate and site selectivity of arene acetoxylation depend on the ratio of pyridine (ligand) to Pd. Lastly, by switching the ligand

  1. Palladium-catalyzed oxidative diffusion for tritium extraction from breeder-blanket fluids at low concentrations

    NASA Astrophysics Data System (ADS)

    Hsu, Cheazone; Buxbaum, Robert E.

    1986-11-01

    Oxidative diffusion can extract hydrogen from metal solutions at extremely low partial pressures. The hydrogen diffuses through a metal membrane and is oxidized to water. The oxidation reaction produces the very low downstream pressures that drive the flux. This method is attractive because the flux can be proportional to the square-root of upstream pressure. For fusion reactors with liquid lithium or lithium-lead alloy breeder blankets, permeation windows provide a simple, cheap tritium extraction method. Interdiffusion rates, separation flux, window size, helium contents, tritium holdup costs, and overall costs are calculated for membranes of palladium-coated zirconium, niobium, vanadium, nickel and stainless-steel. For extracting tritium from liquid lithium using the cheapest windows, Zr-Pd, the material and labor cost is 8.0 M at 1 wppm, and is inversely proportional to tritium concentration in the lithium. The tritium holdup cost for the windows is 4.8 M, and for the blanket it is proportional to the blanket volume and concentration. An overall economic optimization suggests that 1 to 1.5 wppm in lithium is optimal. For extracting tritium from 17Li83Pb at 0.26 wppb, the cheapest window is V-Pd; the cost is 2.6 M$, and the tritium holdup is negligible.

  2. Efficient synthesis of ureas by direct palladium-catalyzed oxidative carbonylation of amines.

    PubMed

    Gabriele, Bartolo; Salerno, Giuseppe; Mancuso, Raffaella; Costa, Mirco

    2004-07-01

    A general synthesis of symmetrically disubstituted ureas and trisubstituted ureas by direct Pd-catalyzed oxidative carbonylation of primary amines or of a mixture of a primary and a secondary amine, respectively, with unprecedented catalytic efficiencies for this kind of process, is reported. Reactions are carried out at 90-100 degrees C in DME as the solvent in the presence of PdI(2) in conjunction with an excess of KI as the catalytic system and under 20 atm of a 4:1 mixture of CO and air. In some cases, working in the presence of an excess of CO(2) (40 atm) in addition to CO and air (60 atm total) had a beneficial effect on substrate reactivity and product yield. Cyclic five-membered and six-membered ureas were easily formed from primary diamines. The methodology has been successfully applied to the synthesis of pharmacologically active ureas, such as those deriving from alpha-amino esters or urea NPY5RA-972, a potent antagonist of the neuropeptide Y5 receptor. PMID:15230597

  3. A Palladium-Catalyzed Carbonylation Approach to Eight-Membered Lactam Derivatives with Antitumor Activity.

    PubMed

    Mancuso, Raffaella; Raut, Dnyaneshwar S; Marino, Nadia; De Luca, Giorgio; Giordano, Cinzia; Catalano, Stefania; Barone, Ines; Andò, Sebastiano; Gabriele, Bartolo

    2016-02-24

    The reactivity of 2-(2-alkynylphenoxy)anilines under PdI2 /KI-catalyzed oxidative carbonylation conditions has been studied. Although a different reaction pathway could have been operating, N-palladation followed by CO insertion was the favored pathway with all substrates tested, including those containing an internal or terminal triple bond. This led to the formation of a carbamoylpalladium species, the fate of which, as predicted by theoretical calculations, strongly depended on the nature of the substituent on the triple bond. In particular, 8-endo-dig cyclization preferentially occurred when the triple bond was terminal, leading to the formation of carbonylated ζ-lactam derivatives, the structures of which have been confirmed by XRD analysis. These novel medium-sized heterocyclic compounds showed antitumor activity against both estrogen receptor-positive (MCF-7) and triple negative (MDA-MB-231) breast cancer cell lines. In particular, ζ-lactam 3 j' may represent a novel and promising antitumor agent because biological tests clearly demonstrate that this compound significantly reduces cell viability and motility in both MCF-7 and MDA-MB-231 breast cancer cell lines, without affecting normal breast epithelial cell viability. PMID:26821986

  4. Synthesis of p-aminophenyl aryl H-phosphinic acids and esters via cross-coupling reactions: elaboration to phosphinic acid pseudopeptide analogues of pteroyl glutamic acid and related antifolates.

    PubMed

    Yang, Yonghong; Coward, James K

    2007-07-20

    The synthesis of suitably protected p-aminophenyl H-phosphinic acids and esters from the corresponding para-substituted aryl halides has been accomplished via the Pd-catalyzed cross-coupling reaction of anilinium hypophosphite, either in the absence or presence of a tetraalkyl orthosilicate, to provide the free H-phosphinic acid or the corresponding ester, respectively. Subsequent conjugate addition of either a PIII species or phosphorus anion, generated in situ from either the free H-phosphinic acid or ester, to a 2-methylene glutaric acid ester provided the aryl phosphinic acid analogue of p-aminobenzoyl glutamic acid. Alkylation of these suitably protected p-aminophenyl phosphinic acid esters with a 6-(bromomethyl)pteridine or the corresponding (bromomethyl)pyridopyrmidine, followed by hydrolytic removal of protecting groups, provided the target aryl phosphinic acid analogues of folic acid and related antifolates. Alternatively, for the synthesis of the folate or 5-deazafolate analogues on a slightly larger scale, reductive amination with either N2-acetyl or N2-pivaloyl-6-formylpterin or the corresponding formylpyridopyrmidine and the same suitably protected p-aminophenyl phosphinic acid esters, followed by removal of protecting groups, is preferred. In the course of this research, it was observed that the nucleophilicity of both the aniline nitrogen and various PIII species derived from p-aminophenyl phosphinic acid derivatives is significantly reduced compared to that of the unsubstituted counterpart. PMID:17602593

  5. Metal-Catalyzed Cyclization Reactions of 2,3,4-Trien-1-ols: A Joint Experimental-Computational Study.

    PubMed

    Alcaide, Benito; Almendros, Pedro; Cembellín, Sara; Fernández, Israel; Martínez Del Campo, Teresa

    2016-08-01

    Controlled preparation of tri- and tetrasubstituted furans, as well as carbazoles has been achieved through chemo- and regioselective metal-catalyzed cyclization reactions of cumulenic alcohols. The gold- and palladium-catalyzed cycloisomerization reactions of cumulenols, including indole-tethered 2,3,4-trien-1-ols, to trisubstituted furans was effective, due to a 5-endo-dig oxycyclization by attack of the hydroxy group onto the central cumulene double bond. In contrast, palladium-catalyzed heterocyclization/coupling reactions with 3-bromoprop-1-enes furnished tetrasubstituted furans. Also studied was the palladium-catalyzed cyclization/coupling sequence involving protected indole-tethered 2,3,4-trien-1-ols and 3-bromoprop-1-enes that exclusively generated trisubstituted carbazole derivatives. These results could be explained through a selective 6-endo-dig cumulenic hydroarylation, followed by aromatization. DFT calculations were carried out to understand this difference in reactivity. PMID:27383332

  6. Microwave-assisted Intramolecular Dehydrogenative Diels-Alder Reactions for the Synthesis of Functionalized Naphthalenes/Solvatochromic Dyes

    PubMed Central

    Kocsis, Laura S.; Benedetti, Erica; Brummond, Kay M.

    2013-01-01

    Functionalized naphthalenes have applications in a variety of research fields ranging from the synthesis of natural or biologically active molecules to the preparation of new organic dyes. Although numerous strategies have been reported to access naphthalene scaffolds, many procedures still present limitations in terms of incorporating functionality, which in turn narrows the range of available substrates. The development of versatile methods for direct access to substituted naphthalenes is therefore highly desirable. The Diels-Alder (DA) cycloaddition reaction is a powerful and attractive method for the formation of saturated and unsaturated ring systems from readily available starting materials. A new microwave-assisted intramolecular dehydrogenative DA reaction of styrenyl derivatives described herein generates a variety of functionalized cyclopenta[b]naphthalenes that could not be prepared using existing synthetic methods. When compared to conventional heating, microwave irradiation accelerates reaction rates, enhances yields, and limits the formation of undesired byproducts. The utility of this protocol is further demonstrated by the conversion of a DA cycloadduct into a novel solvatochromic fluorescent dye via a Buchwald-Hartwig palladium-catalyzed cross-coupling reaction. Fluorescence spectroscopy, as an informative and sensitive analytical technique, plays a key role in research fields including environmental science, medicine, pharmacology, and cellular biology. Access to a variety of new organic fluorophores provided by the microwave-assisted dehydrogenative DA reaction allows for further advancement in these fields. PMID:23609566

  7. Cross-coupling: The final frontier

    NASA Astrophysics Data System (ADS)

    Glasspoole, Ben W.; Crudden, Cathleen M.

    2011-12-01

    Cross-coupling between a racemic secondary alkyl halide and an alkyl borane to produce an enantioenriched alkyl-alkyl product is one of the final substrate combinations to succumb to the synthetically powerful Suzuki-Miyaura methodology.

  8. Palladium-Catalyzed 1,3-Difunctionalization Using Terminal Alkenes with Alkenyl Nonaflates and Aryl Boronic Acids.

    PubMed

    McCammant, Matthew S; Shigeta, Takashi; Sigman, Matthew S

    2016-04-15

    A Pd-catalyzed 1,3-difunctionalization of terminal alkenes using 1,1-disubstituted alkenyl nonaflates and arylboronic acid coupling partners is reported. This transformation affords allylic arene products that are difficult to selectively access using traditional Heck cross-coupling methodologies. The evaluation of seldom employed 1,1-disubstituted alkenyl nonaflate coupling partners led to the elucidation of subtle mechanistic features of π-allyl stabilized Pd-intermediates. Good stereo- and regioselectivity for the formation of 1,3-addition products can be accessed through a minimization of steric interactions that emanate from alkenyl nonaflate substitution. PMID:27019228

  9. Decarbonylative organoboron cross-coupling of esters by nickel catalysis.

    PubMed

    Muto, Kei; Yamaguchi, Junichiro; Musaev, Djamaladdin G; Itami, Kenichiro

    2015-01-01

    The Suzuki-Miyaura cross-coupling is a metal-catalysed reaction in which boron-based nucleophiles and halide-based electrophiles are reacted to form a single molecule. This is one of the most reliable tools in synthetic chemistry, and is extensively used in the synthesis of pharmaceuticals, agrochemicals and organic materials. Herein, we report a significant advance in the choice of electrophilic coupling partner in this reaction. With a user-friendly and inexpensive nickel catalyst, a range of phenyl esters of aromatic, heteroaromatic and aliphatic carboxylic acids react with boronic acids in a decarbonylative manner. Overall, phenyl ester moieties function as leaving groups. Theoretical calculations uncovered key mechanistic features of this unusual decarbonylative coupling. Since extraordinary numbers of ester-containing molecules are available both commercially and synthetically, this new 'ester' cross-coupling should find significant use in synthetic chemistry as an alternative to the standard halide-based Suzuki-Miyaura coupling. PMID:26118733

  10. Decarbonylative organoboron cross-coupling of esters by nickel catalysis

    PubMed Central

    Muto, Kei; Yamaguchi, Junichiro; Musaev, Djamaladdin G.; Itami, Kenichiro

    2015-01-01

    The Suzuki–Miyaura cross-coupling is a metal-catalysed reaction in which boron-based nucleophiles and halide-based electrophiles are reacted to form a single molecule. This is one of the most reliable tools in synthetic chemistry, and is extensively used in the synthesis of pharmaceuticals, agrochemicals and organic materials. Herein, we report a significant advance in the choice of electrophilic coupling partner in this reaction. With a user-friendly and inexpensive nickel catalyst, a range of phenyl esters of aromatic, heteroaromatic and aliphatic carboxylic acids react with boronic acids in a decarbonylative manner. Overall, phenyl ester moieties function as leaving groups. Theoretical calculations uncovered key mechanistic features of this unusual decarbonylative coupling. Since extraordinary numbers of ester-containing molecules are available both commercially and synthetically, this new ‘ester' cross-coupling should find significant use in synthetic chemistry as an alternative to the standard halide-based Suzuki–Miyaura coupling. PMID:26118733

  11. 5-Methylisoxazole-3-carboxamide-Directed Palladium-Catalyzed γ-C(sp(3))-H Acetoxylation and Application to the Synthesis of γ-Mercapto Amino Acids for Native Chemical Ligation.

    PubMed

    Pasunooti, Kalyan Kumar; Yang, Renliang; Banerjee, Biplab; Yap, Terence; Liu, Chuan-Fa

    2016-06-01

    Palladium-catalyzed acetoxylation of the primary γ-C(sp(3))-H bonds in the amino acids Val, Thr, and Ile was achieved using a newly discovered 5-methylisoxazole-3-carboxamide directing group. The γ-acetoxylated α-amino acid derivatives could be easily converted to γ-mercapto amino acids, which are useful for native chemical ligation (NCL). The first application of NCL at isoleucine in the semisynthesis of a Xenopus histone H3 protein was also demonstrated. PMID:27218276

  12. Palladium-catalyzed double C-H activation: one-pot synthesis of benzo[c]pyrazolo[1,2-a]cinnolin-1-ones from 5-pyrazolones and aryl iodides.

    PubMed

    Fan, Zhoulong; Wu, Kui; Xing, Li; Yao, Qizheng; Zhang, Ao

    2014-02-18

    A palladium-catalyzed dual C-H activation to construct C-C/C-N bonds for one-pot synthesis of benzo[c]pyrazolo[1,2-a]cinnolin-1-ones is successfully developed. This approach involves using a pyrazolone moiety as an internal directing group for C-H activation, and provides a flexible strategy to access this polycyclic skeleton. PMID:24394189

  13. Direct Cross-Couplings of Propargylic Diols.

    PubMed

    Green, Nicholas J; Willis, Anthony C; Sherburn, Michael S

    2016-08-01

    [Pd(PPh3 )4 ] catalyzes a Suzuki-Miyaura-like twofold cross-coupling sequence between underivatized propargylic diols and either aryl or alkenyl boronic acids to furnish highly substituted 1,3-dienes. Thus, 2,3-diaryl-1,3-butadienes and their dialkenic congeners ([4]dendralenes) are delivered in a (pseudo)halogen-free, single-step synthesis which supersedes existing methods. Allenols are also readily formed. Treatment of these single- and twofold cross-coupled products with acid leads to remarkably short syntheses of highly-substituted benzofulvenes and aryl indenes, respectively. PMID:27375221

  14. Catalysis in the Service of Green Chemistry: Nobel Prize-Winning Palladium-Catalysed Cross-Couplings, Run in Water at Room Temperature: Heck, Suzuki-Miyaura and Negishi reactions carried out in the absence of organic solvents, enabled by micellar catalysis.

    PubMed

    Lipshutz, Bruce H; Taft, Benjamin R; Abela, Alexander R; Ghorai, Subir; Krasovskiy, Arkady; Duplais, Christophe

    2012-04-01

    Palladium-catalysed cross-couplings, in particular Heck, Suzuki-Miyaura and Negishi reactions developed over three decades ago, are routinely carried out in organic solvents. However, alternative media are currently of considerable interest given an increasing emphasis on making organic processes 'greener'; for example, by minimising organic waste in the form of organic solvents. Water is the obvious leading candidate in this regard. Hence, this review focuses on the application of micellar catalysis, in which a 'designer' surfactant enables these award-winning coupling reactions to be run in water at room temperature. PMID:23555153

  15. Cross-coupling of propargylated arabinogalactan with 2-bromothiophene.

    PubMed

    Parshina, Lidiya N; Grishchenko, Lyudmila A; Larina, Lyudmila I; Novikova, Lyubov N; Trofimov, Boris A

    2016-10-01

    Novel pharmacologically prospective derivatives of arabinogalactan (a polysaccharide from larch wood) containing acetylenic and thiophene moieties have been obtained in up to 90% yield by cross-coupling of propargylic ethers of arabinogalactan with 2-bromothiophene. The reaction proceeds in the presence of the catalytic system Pd(Ph3P)4/CuBr/LiBr and piperidine in DMSO at 80-85°С. An advantageous feature of the synthesis is that it requires 5-25 times lesser catalytic loading than in common Sonogashira protocols thus making the reaction particularly beneficial to synthesize pharmaceutically-oriented polysaccharides. PMID:27312616

  16. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.

    PubMed

    Wu, Tao; Mu, Xin; Liu, Guosheng

    2011-12-23

    Not one but two: The title reaction proceeds through the dual C-H bond cleavage of both aniline and acetonitrile. The reaction affords a variety of cyano-bearing indolinones in excellent yield. Mechanistic studies demonstrate that this reaction involves a fast arylation of the olefin and a rate-determining C-H activation of the acetonitrile. PMID:22076660

  17. Synthesis of Indole-2-carboxylate Derivatives via Palladium-Catalyzed Aerobic Amination of Aryl C-H Bonds.

    PubMed

    Clagg, Kyle; Hou, Haiyun; Weinstein, Adam B; Russell, David; Stahl, Shannon S; Koenig, Stefan G

    2016-08-01

    A direct oxidative C-H amination affording 1-acetyl indolecarboxylates starting from 2-acetamido-3-arylacrylates has been achieved. Indole-2-carboxylates can be targeted with a straightforward deacetylation of the initial reaction products. The C-H amination reaction is carried out using a catalytic Pd(II) source with oxygen as the terminal oxidant. The scope and application of this chemistry is demonstrated with good to high yields for numerous electron-rich and electron-poor substrates. Further reaction of selected products via Suzuki arylation and deacetylation provides access to highly functionalized indole structures. PMID:27404018

  18. Iterative protecting group-free cross-coupling leading to chiral multiply arylated structures.

    PubMed

    Crudden, Cathleen M; Ziebenhaus, Christopher; Rygus, Jason P G; Ghozati, Kazem; Unsworth, Phillip J; Nambo, Masakazu; Voth, Samantha; Hutchinson, Marieke; Laberge, Veronique S; Maekawa, Yuuki; Imao, Daisuke

    2016-01-01

    The Suzuki-Miyaura cross-coupling is one of the most often utilized reactions in the synthesis of pharmaceutical compounds and conjugated materials. In its most common form, the reaction joins two sp(2)-functionalized carbon atoms to make a biaryl or diene/polyene unit. These substructures are widely found in natural products and small molecules and thus the Suzuki-Miyaura cross-coupling has been proposed as the key reaction for the automated assembly of such molecules, using protecting group chemistry to affect iterative coupling. We present herein, a significant advance in this approach, in which multiply functionalized cross-coupling partners can be employed in iterative coupling without the use of protecting groups. To accomplish this, the orthogonal reactivity of different boron substituents towards the boron-to-palladium transmetalation reaction is exploited. The approach is illustrated in the preparation of chiral enantioenriched compounds, which are known to be privileged structures in active pharmaceutical compounds. PMID:27040494

  19. Iterative protecting group-free cross-coupling leading to chiral multiply arylated structures

    PubMed Central

    Crudden, Cathleen M.; Ziebenhaus, Christopher; Rygus, Jason P. G.; Ghozati, Kazem; Unsworth, Phillip J.; Nambo, Masakazu; Voth, Samantha; Hutchinson, Marieke; Laberge, Veronique S.; Maekawa, Yuuki; Imao, Daisuke

    2016-01-01

    The Suzuki–Miyaura cross-coupling is one of the most often utilized reactions in the synthesis of pharmaceutical compounds and conjugated materials. In its most common form, the reaction joins two sp2-functionalized carbon atoms to make a biaryl or diene/polyene unit. These substructures are widely found in natural products and small molecules and thus the Suzuki–Miyaura cross-coupling has been proposed as the key reaction for the automated assembly of such molecules, using protecting group chemistry to affect iterative coupling. We present herein, a significant advance in this approach, in which multiply functionalized cross-coupling partners can be employed in iterative coupling without the use of protecting groups. To accomplish this, the orthogonal reactivity of different boron substituents towards the boron-to-palladium transmetalation reaction is exploited. The approach is illustrated in the preparation of chiral enantioenriched compounds, which are known to be privileged structures in active pharmaceutical compounds. PMID:27040494

  20. Zinc-Catalyzed Dehydrogenative Cross-Coupling of Terminal Alkynes with Aldehydes: Access to Ynones.

    PubMed

    Tang, Shan; Zeng, Li; Liu, Yichang; Lei, Aiwen

    2015-12-21

    Because of the lack of redox ability, zinc has seldom been used as a catalyst in dehydrogenative cross-coupling reactions. Herein, a novel zinc-catalyzed dehydrogenative C(sp(2) )H/C(sp)H cross-coupling of terminal alkynes with aldehydes was developed, and provides a simple way to access ynones from readily available materials under mild reaction conditions. Good reaction selectivity can be achieved with a 1:1 ratio of terminal alkyne and aldehyde. Various terminal alkynes and aldehydes are suitable in this transformation. PMID:26564779

  1. Enantioselective Construction of Pyrrolidines by Palladium-Catalyzed Asymmetric [3+2] Cycloaddition of Trimethylenemethane with Imines

    PubMed Central

    Trost, Barry M.; Silverman, Steven M.

    2012-01-01

    A protocol for the enantioselective [3+2] cycloaddition of trimethylenemethane (TMM) with imines has been developed. Central to this effort were the novel phosphoramidite ligands developed in our laboratories. The conditions developed to effect an asymmetric TMM reaction using 2-trimethylsilylmethyl allyl acetate were shown to be tolerant of a wide variety of imine acceptors to provide the corresponding pyrrolidine cycloadducts with excellent yields and selectivities. Use of a bis-2-naphthyl phosphoramidite allowed the successful cycloaddition of the parent TMM with N-Boc imines, and has further permitted the reaction of substituted donors with N-tosyl aldimines and ketimines in high regio-, diastereo-, and enantioselectivity. Use of a diphenylazetidine ligand allows the complimentary synthesis of the exocyclic nitrile product shown, and we demonstrate control of the regioselectivity of the product based on manipulation of the reaction parameters. PMID:22309214

  2. Chiral Ferrocenyl P,N-Ligands for Palladium-Catalyzed Asymmetric Formal [3 + 2] Cycloaddition of Propargylic Esters with β-Ketoesters: Access to Functionalized Chiral 2,3-Dihydrofurans.

    PubMed

    Zhou, Yong; Zhu, Fu-Lin; Liu, Zhen-Ting; Zhou, Xiao-Mao; Hu, Xiang-Ping

    2016-06-01

    A highly enantioselective palladium-catalyzed [3 + 2] cycloaddition of propargylic esters with β-ketoesters has been realized by employing a newly developed chiral ferrocene/benzimidazole-based P,N-ligand. This protocol features a good tolerance of functional groups in both propargylic esters and β-ketoesters, thereby delivering a variety of highly functionalized chiral 2,3-dihydrofurans bearing an exocyclic double bond at the 3-position in good yields and with high enantioselectivities (up to 98% ee). PMID:27194080

  3. Kinetic resolution of axially chiral 2,2'-dihydroxy-1,1'-biaryls by palladium-catalyzed alcoholysis.

    PubMed

    Aoyama, Hiroshi; Tokunaga, Makoto; Kiyosu, Junya; Iwasawa, Tetsuo; Obora, Yasushi; Tsuji, Yasushi

    2005-08-01

    Palladium-diamine complexes catalyzed kinetic resolution of axially chiral 2,2'-dihydroxy-1,1'-biaryls by alcoholysis of vinyl ethers. The reaction proceeded with high selectivity for various kinds of biaryls. This process is applicable to not only binaphthols but also biphenols, which have been considered to be difficult for the enantioselective synthesis by known catalytic methods. PMID:16045319

  4. Mechanistic Aspects of the Palladium-Catalyzed Isomerization of Allenic Sulfones to 1-Arylsulfonyl 1,3-Dienes.

    PubMed

    Hampton, Carissa S; Harmata, Michael

    2016-06-01

    When an allenic sulfone is treated under palladium catalysis in the presence of a weak acid, isomerization to a 1-arylsulfonyl 1,3-diene occurs. Investigations of the mechanistic aspects of this isomerization were performed, leading to the mechanism proposed herein. Some further studies of reaction parameters are reported. PMID:27127922

  5. Iron-catalysed cross-coupling of organolithium compounds with organic halides

    PubMed Central

    Jia, Zhenhua; Liu, Qiang; Peng, Xiao-Shui; Wong, Henry N. C.

    2016-01-01

    In past decades, catalytic cross-coupling reactions between organic halides and organometallic reagents to construct carbon–carbon bond have achieved a tremendous progress. However, organolithium reagents have rarely been used in cross-coupling reactions, due mainly to their high reactivity. Another limitation of this transformation using organolithium reagents is how to control reactivity with excellent selectivity. Although palladium catalysis has been applied in this field recently, the development of an approach to replace catalytic systems of noble metals with nonprecious metals is currently in high demand. Herein, we report an efficient synthetic protocol involving iron-catalysed cross-coupling reactions employing organolithium compounds as key coupling partners to unite aryl, alkyl and benzyl fragments and also disclose an efficient iron-catalysed release-capture ethylene coupling with isopropyllithium. PMID:26847602

  6. Introducing Undergraduates to Research Using a Suzuki-Miyaura Cross-Coupling Organic Chemistry Miniproject

    ERIC Educational Resources Information Center

    Oliveira, Deyvid G. M.; Rosa, Clarissa H.; Vargas, Bruna P.; Rosa, Diego S.; Silveira, Ma´rcia V.; de Moura, Neusa F.; Rosa, Gilber R.

    2015-01-01

    A five-week miniproject is described for an upper-division experimental organic chemistry course. The activities include synthesis of a phenylboronic acid via a Grignard reaction and its use in a Suzuki-Miyaura cross-coupling reaction. Technical skills and concepts normally presented in practical organic chemistry courses are covered, including…

  7. Cross-Coupling of Acrylamides and Maleimides under Rhodium Catalysis: Controlled Olefin Migration.

    PubMed

    Sharma, Satyasheel; Han, Sang Hoon; Oh, Yongguk; Mishra, Neeraj Kumar; Lee, Suk Hun; Oh, Joa Sub; Kim, In Su

    2016-06-01

    The rhodium(III)-catalyzed direct cross-coupling reaction of electron-deficient acrylamides with maleimides is described. This protocol displays broad functional group tolerance and high efficiency, which offers a new opportunity to access highly substituted succinimides. Dependent on the substituent positions of acrylamides and reaction conditions, olefin migrated products were obtained with high regio- and stereoselectivity. PMID:27182717

  8. Palladium-Catalyzed Zinc-Amide-Mediated C-H Arylation of Fluoroarenes and Heteroarenes with Aryl Sulfides.

    PubMed

    Otsuka, Shinya; Yorimitsu, Hideki; Osuka, Atsuhiro

    2015-10-12

    C-H arylation of polyfluoroarenes and heteroarenes with aryl sulfides proceeds smoothly with the aid of a palladium-N-heterocyclic carbene catalyst. A bulky zinc amide, TMPZnCl⋅LiCl, plays a key role as an effective base to generate the corresponding arylzinc species in situ. This arylation protocol is practically much easier to perform than our previous method, which necessitates preparation of the arylzinc reagents in advance from the corresponding aryl halides. Aryl sulfides that are prepared through sulfur-specific reactions, such as SN Ar sulfanylation and extended Pummerer reactions, undergo this direct arylation, offering interesting transformations that are otherwise difficult to achieve with conventional halogen-based organic synthesis. PMID:26235212

  9. Palladium-Catalyzed Site-Selective C-H Functionalization of Weakly Coordinating Sulfonamides: Synthesis of Biaryl Sulfonamides.

    PubMed

    Vanjari, Rajeshwer; Guntreddi, Tirumaleswararao; Singh, Krishna Nand

    2016-03-01

    A novel and site selective C-H functionalization of unsubstituted sulfonamides has been developed for the synthesis of ortho aryl sulfonamides. The reaction involves highly regioselective ortho mono arylation of weakly coordinating SO2 NH2 directing group by means of aryl iodides. Palladium acetate in the presence of silver(I) oxide is found to be the most effective catalytic system. PMID:26763530

  10. Synthesis of imides via palladium-catalyzed decarboxylative amidation of α-oxocarboxylic acids with secondary amides.

    PubMed

    Xu, Ning; Liu, Jie; Li, Dengke; Wang, Lei

    2016-05-18

    An efficient synthesis of imides has been developed through a Pd-catalyzed decarboxylative amidation of α-oxocarboxylic acids with secondary amides. The reactions of N-substituted N-heteroarene-2-carboxamides with 2-oxo-2-arylacetic acids proceeded smoothly to generate the corresponding products in good yields in the presence of Pd(OAc)2 and K2S2O8. PMID:27143171

  11. Palladium-Catalyzed Carbonylation of β-Arylethylamide Directed by Oxalyl Amide in the Presence of Carbon Monoxide.

    PubMed

    Zhang, Li; Wang, Chao; Han, Jian; Huang, Zhi-Bin; Zhao, Yingsheng

    2016-06-17

    Pd-catalyzed regioselective coupling of β-C(sp(2))-H bonds in aromatic amines protected by oxalyl amide with carbon monoxide is reported. The reaction could tolerate various functional groups and could afford good to excellent yields of the corresponding 3,4-dihydroisoquinolinone derivatives. Remarkably, it could also tolerate β-arylethylamino acid and thiopheneethylamine derivatives, thus showing their potential for producing several important units for bioactive compound synthesis. PMID:27213988

  12. Palladium-Catalyzed Synthesis of Alkynes via a Tandem Decarboxylation/Elimination of (E)-Enol Triflates.

    PubMed

    Munteanu, Charissa; Frantz, Doug E

    2016-08-19

    A mild catalytic synthesis of alkynes via a tandem Pd-catalyzed decarboxylation/elimination of enol triflates is described. Key attributes of the method include readily available starting materials, broad functional group tolerance, and the ability to access terminal, internal, and halogenated alkynes. The preliminary scope of the reaction is demonstrated on 25 different examples with yields ranging from 63% to 96%. PMID:27456435

  13. Palladium-Catalyzed Asymmetric Benzylic Alkylation of Active Methylene Compounds with α-Naphthylbenzyl Carbonates and Pivalates.

    PubMed

    Tabuchi, Sho; Hirano, Koji; Miura, Masahiro

    2016-06-01

    A Pd/(R)-H8 -BINAP-catalyzed asymmetric benzylic alkylation of active methylene compounds has been developed. The reaction proceeds without the use of an external base, and the starting racemic diarylmethyl carbonates are converted into the optically active coupling products which contain the benzylic chiral stereocenter by a dynamic kinetic asymmetric transformation (DYKAT). Additionally, with suitable carbonates bases, the same palladium catalysis allows the corresponding pivalates to be adopted in the same DYKAT process. PMID:27120184

  14. Auxiliary-assisted palladium-catalyzed halogenation of unactivated C(sp(3))-H bonds at room temperature.

    PubMed

    Yang, Xinglin; Sun, Yonghui; Sun, Tian-Yu; Rao, Yu

    2016-05-11

    The direct transformation of unactivated C(sp(3))-H bonds into C-halogen bonds was achieved by palladium catalysis at room temperature with good functional group tolerance. Some drugs and natural products were readily modified by this method. Merged with substitution reaction, newly formed C-X bonds can be transformed into diverse C-O, C-S, C-C and C-N bonds. A preliminary mechanism study demonstrates that solvent is crucial for C-H activation and the C-H activation step is involved in the rate-limiting step. An isolated Pd(ii) intermediate can be transformed into a halogenated product with the retention of conformation which suggests that concerted reductive elimination from Pd(iv) to form a C-X bond was favored. PMID:27095147

  15. Completely N1-Selective Palladium-Catalyzed Arylation of Unsymmetric Imidazoles: Application to the Synthesis of Nilotinib

    PubMed Central

    Ueda, Satoshi; Su, Mingjuan; Buchwald, Stephen L.

    2011-01-01

    The completely N1-selective Pd-catalyzed arylation of unsymmetric imidazoles with aryl halides and triflates is described. This study showed that imidazoles have a strong inhibitory effect on the in situ formation of catalytically-active Pd(0)-ligand complex. The efficacy of the N-arylation reaction was improved drastically by the use of pre-activated solution of Pd2(dba)3 and L1. From these findings it is clear that while imidazoles can prevent binding of L1 to the Pd, once the ligand is bound to the metal, these heterocycles do not displace it. The utility of the present catalytic system was demonstrated by the regioselective synthesis of clinically important tyrosine kinase inhibitor nilotinib. PMID:22126442

  16. Access to Silylated Pyrazole Derivatives by Palladium-Catalyzed C-H Activation of a TMS group.

    PubMed

    Mistico, Laetitia; Querolle, Olivier; Meerpoel, Lieven; Angibaud, Patrick; Durandetti, Muriel; Maddaluno, Jacques

    2016-07-01

    A simple and efficient approach to new silylated heterocycles of potential interest in medicinal chemistry is presented. A set of bromophenyl trimethylsilyl pyrazole intermediates can be transformed by direct organometallic routes into two families of regioisomeric iodoaryl substrates; using either arylzinc or aryllithium chemistry, the TMS group remains on the pyrazole ring or translocates to the aryl moiety. These two families can then be efficiently transformed into benzo silino pyrazoles thanks to a single-step cyclization relying on the Pd-catalyzed activation of a non-activated C(sp(3) )-H bond alpha to a silicon atom. The experimental conditions used, which are fully compatible with the pyrazole ring, suggest that this reaction evolves through a concerted metalation-deprotonation (CMD) mechanism. PMID:27271020

  17. Palladium-Catalyzed Long-Range Deconjugative Isomerization of Highly Substituted α,β-Unsaturated Carbonyl Compounds.

    PubMed

    Lin, Luqing; Romano, Ciro; Mazet, Clément

    2016-08-17

    The long-range deconjugative isomerization of a broad range of α,β-unsaturated amides, esters, and ketones by an in situ generated palladium hydride catalyst is described. This redox-economical process is triggered by a hydrometalation event and is thermodynamically driven by the refunctionalization of a primary or a secondary alcohol into an aldehyde or a ketone. Di-, tri-, and tetrasubstituted carbon-carbon double bonds react with similar efficiency; the system is tolerant toward a variety of functional groups, and olefin migration can be sustained over 30 carbon atoms. The refunctionalized products are usually isolated in good to excellent yield. Mechanistic investigations are in support of a chain-walking process consisting of repeated migratory insertions and β-H eliminations. The bidirectionality of the isomerization reaction was established by isotopic labeling experiments using a substrate with a double bond isolated from both terminal functions. The palladium hydride was also found to be directly involved in the product-forming tautomerization step. The ambiphilic character of the in situ generated [Pd-H] was demonstrated using isomeric trisubstituted α,β-unsaturated esters. Finally, the high levels of enantioselectivity obtained in the isomerization of a small set of α-substituted α,β-unsaturated ketones augur well for the successful development of an enantioselective version of this unconventional isomerization. PMID:27434728

  18. Environmentally-Safe Conditions for a Palladium-Catalyzed Direct C3-Arylation with High Turn Over Frequency of Imidazo[1,2-b]pyridazines Using Aryl Bromides and Chlorides.

    PubMed

    Chikhi, Sabah; Djebbar, Safia; Soulé, Jean-François; Doucet, Henri

    2016-09-01

    Pd(OAc)2 was found to catalyze very efficiently the direct arylation of imidazo[1,2-b]pyridazine at C3-position under a very low catalyst loading and phosphine-free conditions. The reaction can be performed in very high TOFs and TONs employing as little as 0.1-0.05 mol % catalyst using a wide range of aryl bromides. In addition, some electron-deficient aryl chlorides were also found to be suitable substrates. Moreover, 31 examples of the cross couplings were reported using green, safe, and renewable solvents, such as pentan-1-ol, diethylcarbonate or cyclopentyl methyl ether, without loss of efficiency. PMID:27380613

  19. Nickel-Catalyzed Asymmetric Kumada Cross-Coupling of Symmetric Cyclic Sulfates.

    PubMed

    Eno, Meredith S; Lu, Alexander; Morken, James P

    2016-06-29

    Nickel-catalyzed enantioselective cross-couplings between symmetric cyclic sulfates and aromatic Grignard reagents are described. These reactions are effective with a broad range of substituted cyclic sulfates and deliver products with asymmetric tertiary carbon centers. Mechanistic experiments point to a stereoinvertive SN2-like oxidative addition of a nickel complex to the electrophilic substrate. PMID:27276235

  20. Copper nanoparticle-catalyzed cross-coupling of alkyl halides with Grignard reagents.

    PubMed

    Kim, Ju Hyun; Chung, Young Keun

    2013-12-01

    A cross-coupling reaction between alkyl bromides and chlorides and various Grignard reagents was carried out in the presence of commercially available copper or copper oxide nanoparticles as a catalyst and an alkyne additive. The catalytic system shows high activity, a broad scope, and good functional group tolerance. PMID:24146018

  1. Nickel-Catalyzed Decarboxylative Cross-Coupling of Perfluorobenzoates with Aryl Halides and Sulfonates

    PubMed Central

    2016-01-01

    A Ni-catalyzed method for the coupling of perfluorobenzoates with aryl halides and pseudohalides is described. Aryl iodides, bromides, chlorides, triflates, and tosylates participate in these transformations to afford the products in good yields. Penta-, tetra-, and trifluorinated biaryl compounds are obtained using these newly developed Ni-catalyzed decarboxylative cross-coupling reactions. PMID:25700128

  2. Oxidative Cross-Coupling of Two Different Phenols: An Efficient Route to Unsymmetrical Biphenols.

    PubMed

    More, Nagnath Yadav; Jeganmohan, Masilamani

    2015-06-19

    An efficient synthesis of unsymmetrical biphenols via the oxidative cross-coupling of two different phenols in the presence of K2S2O8 and Bu4N(+)·HSO3(-) (10 mol %) in CF3COOH at ambient conditions is described. 1:1 Cross-coupling of substituted phenols with naphthols and 1:2 cross-coupling of naphthols with phenol are also disclosed. By using Bu4N(+)·HSO3(-), the homocoupling of phenols or naphthols was controlled. In these reactions, the ortho C-H bond of two different phenols and the ortho and para C-H bond of phenols were coupled together. PMID:26023816

  3. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis

    PubMed Central

    Tellis, John C.; Primer, David N.; Molander, Gary A.

    2015-01-01

    The routine application of Csp3-hybridized nucleophiles in cross-coupling reactions remains an unsolved challenge in organic chemistry. The sluggish transmetalation rates observed for the preferred organoboron reagents in such transformations are a consequence of the two-electron mechanism underlying the standard catalytic approach. We describe a mechanistically distinct single-electron transfer-based strategy for the activation of organoboron reagents toward transmetalation that exhibits complementary reactivity patterns. Application of an iridium photoredox catalyst in tandem with a nickel catalyst effects the cross-coupling of potassium alkoxyalkyl- and benzyltrifluoroborates with an array of aryl bromides under exceptionally mild conditions (visible light, ambient temperature, no strong base). The transformation has been extended to the asymmetric and stereoconvergent cross-coupling of a secondary benzyltrifluoroborate. PMID:24903560

  4. Palladium Catalyzed Reduction of Nitrobenzene.

    ERIC Educational Resources Information Center

    Mangravite, John A.

    1983-01-01

    Compares two palladium (Pd/C) reducing systems to iron/tin-hydrochloric acid (Fe/HCl and Sn/HCl) reductions and suggests an efficient, clean, and inexpensive procedures for the conversion of nitrobenzene to aniline. Includes laboratory procedures used and discussion of typical results obtained. (JN)

  5. Reductive Cross-Coupling of Conjugated Arylalkenes and Aryl Bromides with Hydrosilanes by Cooperative Palladium/Copper Catalysis.

    PubMed

    Semba, Kazuhiko; Ariyama, Kenta; Zheng, Hong; Kameyama, Ryohei; Sakaki, Shigeyoshi; Nakao, Yoshiaki

    2016-05-17

    A method for the reductive cross-coupling of conjugated arylalkenes and aryl bromides with hydrosilanes by cooperative palladium/copper catalysis was developed, thus resulting in the highly regioselective formation of various 1,1-diarylalkanes, including a biologically active molecule. Under the applied reaction conditions, high levels of functional-group tolerance were observed, and the reductive cross-coupling of internal alkynes with aryl bromides afforded trisubstituted alkenes. PMID:27080165

  6. Cross Coupling Between Attenuators In A Docking Mechanism

    NASA Technical Reports Server (NTRS)

    Holmberg, Arthur; Schmidt, Matthew S.; Ghofranian, Siamak

    1996-01-01

    Cross coupling between motion attenuators on opposite sides of docking mechanism proposed as means of increasing capture envelope. Prototype system for application of cross-coupling concept is one used for docking of Apollo and Soyuz spacecraft; however, given widespread use of docking mechanisms, concept may prove useful in many terrestrial applications as well.

  7. Cross coupling of dialkylmagnesium derivatives with allylic compounds catalyzed by copper salts

    SciTech Connect

    Ibragimov, A.G.; Dzhemilev, U.M.; Saraev, R.A.

    1985-07-20

    The reaction of allylic compounds with Grignard reagents catalyzed by salts of copper, nickel, iron and cobalt, titanium and palladium is a simple and efficient method for the preparation of unsaturated hydrocarbons. However, information concerning the use of dialkylmagnesium derivatives, which are more reactive than Grignard reagents, is extremely limited in these reactions. To continue a study of the cross-coupling of allylic compounds with dialkylmagnesium derivatives in an effort to expand the scope of this reaction and to elucidate the effect of the R/sub 2/Mg reagent structure on its reactivity, the authors investigated the reaction of dialkylmagnesium and diarlmagnesium reagents with allylic ethers and esters, thioethers, and amines, by the action of transition metal salts. This work demonstrates the feasibility of the preparation of unsaturated hydrocarbons of given structure by the cross-coupling of dialkylmagnesium derivatives with functional allylic compounds by the action of catalytic amounts of copper complexes.

  8. Cross-Coupling Biarylation of Nitroaryl Chlorides Through High Speed Ball Milling

    PubMed Central

    Lam, Solita; Puplampu-Dove, Yvonne; Morris, Adrienne; Epps, Ayunna; Mandouma, Ghislain

    2016-01-01

    Solvent-free reaction using a high-speed ball milling technique has been applied to the classical Ullmann coupling reaction. Cross-coupling biarylation of several nitroaryl chlorides was achieved in good yields when performed in custom-made copper vials through continuous shaking without additional copper or solvent. Cross-coupling products were obtained almost pure and NMR-ready. These reactions were cleaner than solution phase coupling which require longer reaction time in high boiling solvents, and added catalysts as well as lengthy extraction and purification steps. Gram quantities of cross biaryl compounds have been synthesized with larger copper vials, a proof that this method can be used to reduce industrial waste and for sustainability. PMID:27294205

  9. Nickel-Catalyzed Cross Couplings of Benzylic Pivalates with Arylboroxines: Stereospecific Formation of Diarylalkanes and Triarylmethanes

    PubMed Central

    Zhou, Qi; Srinivas, Harathi D.; Dasgupta, Srimoyee; Watson, Mary P.

    2014-01-01

    We have developed a stereospecific, nickel-catalyzed cross coupling of benzylic pivalates with aryl boroxines. The success of this reaction relies on the use of Ni(cod)2 as catalyst and NaOMe as a uniquely effective base. This reaction has broad scope with respect to the aryl boroxine and benzylic pivalate, enabling the synthesis of a variety of diarylalkanes and triarylmethanes in good to excellent yields and ee's. PMID:23425080

  10. The Suzuki reaction in aqueous media promoted by P, N ligands.

    PubMed

    Weeden, Jason A; Huang, Rongcai; Galloway, Kathryn D; Gingrich, Phillip W; Frost, Brian J

    2011-01-01

    The synthesis and structure of palladium complexes of trisubstituted PTA derivatives, PTA(R3), are described. Water-soluble phosphine ligands 1,3,5-triaza-7-phosphaadmantane (PTA), tris(aminomethyl)phosphine trihydrobromide, tri(aminomethyl) phosphine, 3,7-dimethyl-1,5,7-triaza-3-phosphabicyclo[3,3,1]nonane (RO-PTA), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA), lithium 1,3,5-triaza-7-phosphaadamantane-6-carboxylate (PTA-CO₂Li), 2,4,6-triphenyl-1,3,5-triaza-7-phosphatricyclo [3.3.1.1]decane, and 2,4,6-triphenyl-1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane were used as ligands for palladium catalyzed Suzuki reactions in aqueous media. RO-PTA in combination with palladium acetate or palladium chloride was the most active catalyst for Suzuki cross coupling of aryl bromides and phenylboronic acid at 80 °C in 1:1 water:acetonitrile. The activity of Pd(II) complexes of RO-PTA is comparable to PPh₂(m-C₆H₄SO₃Na) (TPPMS) and P(m-C₆H₄SO₃Na)₃ (TPPTS) and less active than tri(4,6-dimethyl-3-sulfonatophenyl)phosphine trisodium salt (TXPTS). Activated, deactivated, and sterically hindered aryl bromides were examined, with yields ranging from 50% to 90% in 6 h with 5% palladium precatalyst loading. X-ray crystal structures of (RO-PTA)PdCl₂, (PTA(R3))₂PdCl₂ (R = Ph, p-tert-butylC₆H₅), and PTA(R3) (R = p-tert-butylC₆H₅) are reported. PMID:21788930

  11. Facile Access to Sterically Hindered Aryl Ketones via Carbonylative Cross-Coupling: Application to the Total Synthesis of Luteolin

    PubMed Central

    O’Keefe, B. Michael; Simmons, Nicholas

    2011-01-01

    A general and mild protocol for achieving the carbonylative cross-coupling of sterically-hindered, ortho-disubstituted aryl ketones is reported. The commercially available PEPPSI-IPr catalyst is shown to efficiently promote the carbonylative cross-coupling of hindered ortho-disubstituted aryl iodides to give diaryl ketones; traditional phosphine catalysts are less effective. Carbonylative Suzuki-Miyaura cross-couplings provide a diverse array of biaryl ketones in good to excellent yields. The same catalyst is also shown to catalyze a carbonylative Negishi cross-coupling reaction, utilizing a variety of alkynyl zinc reagents to give the corresponding alkynyl aryl ketones. Application of this new methodology to the synthesis of the natural product luteolin is reported. PMID:21712966

  12. Nickel-Catalyzed Cross-Coupling of Photoredox-Generated Radicals: Uncovering a General Manifold for Stereoconvergence in Nickel-Catalyzed Cross-Couplings

    PubMed Central

    2016-01-01

    The cross-coupling of sp3-hybridized organoboron reagents via photoredox/nickel dual catalysis represents a new paradigm of reactivity for engaging alkylmetallic reagents in transition-metal-catalyzed processes. Reported here is an investigation into the mechanistic details of this important transformation using density functional theory. Calculations bring to light a new reaction pathway involving an alkylnickel(I) complex generated by addition of an alkyl radical to Ni(0) that is likely to operate simultaneously with the previously proposed mechanism. Analysis of the enantioselective variant of the transformation reveals an unexpected manifold for stereoinduction involving dynamic kinetic resolution (DKR) of a Ni(III) intermediate wherein the stereodetermining step is reductive elimination. Furthermore, calculations suggest that the DKR-based stereoinduction manifold may be responsible for stereoselectivity observed in numerous other stereoconvergent Ni-catalyzed cross-couplings and reductive couplings. PMID:25836634

  13. Decarboxylative dearomatization and mono-α-arylation of ketones.

    PubMed

    Mendis, Shehani N; Tunge, Jon A

    2016-06-01

    We report the first example of a palladium-catalyzed decarboxylative dearomatization reaction that occurs via Pd-π-benzyl intermediates. In fact, the Pd-catalyzed decarboxylative cross-coupling reaction of benzyl enol carbonates can lead to either the dearomatized alicyclic ketones or α-monoarylated ketone products depending on the catalyst and ligand employed. PMID:27229656

  14. Heterogeneous Rhodium-Catalyzed Aerobic Oxidative Dehydrogenative Cross-Coupling: Nonsymmetrical Biaryl Amines.

    PubMed

    Matsumoto, Kenji; Yoshida, Masahiro; Shindo, Mitsuru

    2016-04-18

    The first heterogeneously catalyzed oxidative dehydrogenative cross-coupling of aryl amines is reported herein. 2-Naphthylamine analogues were reacted with various electron-rich arenes using a heterogeneous Rh/C catalyst under mild aerobic conditions, thus affording nonsymmetrical biaryl amines in excellent yields with high selectivities. This reaction provides a mild, operationally simple, and efficient approach for the synthesis of biaryls which are important to pharmaceutical and materials chemistry. PMID:26996772

  15. Merging Photoredox and Nickel Catalysis: Decarboxylative Cross-Coupling of Carboxylic Acids with Vinyl Halides

    PubMed Central

    2015-01-01

    Decarboxylative cross-coupling of alkyl carboxylic acids with vinyl halides has been accomplished through the synergistic merger of photoredox and nickel catalysis. This new methodology has been successfully applied to a variety of α-oxy and α-amino acids, as well as simple hydrocarbon-substituted acids. Diverse vinyl iodides and bromides give rise to vinylation products in high efficiency under mild, operationally simple reaction conditions. PMID:25521443

  16. Photoredox Catalysis Unlocks Single-Electron Elementary Steps in Transition Metal Catalyzed Cross-Coupling

    PubMed Central

    2016-01-01

    Since initial reports, cross-coupling technologies employing photoredox catalysts to access novel reactivity have developed with increasing pace. In this Outlook, prominent examples from the recent literature are organized on the basis of the elementary transformation enabled by photoredox catalysis and are discussed in the context of relevant historical precedent in stoichiometric organometallic chemistry. This treatment allows mechanistic similarities inherent to odd-electron transition metal reactivity to be generalized to a set of lessons for future reaction development. PMID:27280163

  17. Nickel-Catalyzed Asymmetric Reductive Cross-Coupling Between Vinyl and Benzyl Electrophiles

    PubMed Central

    2015-01-01

    A Ni-catalyzed asymmetric reductive cross-coupling between vinyl bromides and benzyl chlorides has been developed. This method provides direct access to enantioenriched products bearing aryl-substituted tertiary allylic stereogenic centers from simple, stable starting materials. A broad substrate scope is achieved under mild reaction conditions that preclude the pregeneration of organometallic reagents and the regioselectivity issues commonly associated with asymmetric allylic arylation. PMID:25245492

  18. Ligand-Controlled Divergent Cross-Coupling Involving Organosilicon Compounds for Thioether and Thioester Synthesis.

    PubMed

    Qiao, Zongjun; Jiang, Xuefeng

    2016-04-01

    A divergent cross-coupling for both thioether and thioester construction from organosilicon compounds has been developed. Predominant selectivity for Hiyama-type coupling and C1 insertion reaction was achieved under the guidance of ligands. Thioether was obtained under ligand-free conditions in which disulfide generated from homocoupling could be prevented. Meanwhile, application of bidentate phosphine ligands under carbon monoxide atmosphere (CO balloon) afforded the thioester with little decomposition, which was revealed through interval NMR tracking. PMID:26974172

  19. Aqueous Oxidative Heck Reaction as a Protein-Labeling Strategy

    PubMed Central

    Ourailidou, Maria Eleni; van der Meer, Jan-Ytzen; Baas, Bert-Jan; Jeronimus-Stratingh, Margot; Gottumukkala, Aditya L; Poelarends, Gerrit J; Minnaard, Adriaan J; Dekker, Frank J

    2014-01-01

    An increasing number of chemical reactions are being employed for bio-orthogonal ligation of detection labels to protein-bound functional groups. Several of these strategies, however, are limited in their application to pure proteins and are ineffective in complex biological samples such as cell lysates. Here we present the palladium-catalyzed oxidative Heck reaction as a new and robust bio-orthogonal strategy for linking functionalized arylboronic acids to protein-bound alkenes in high yields and with excellent chemoselectivity even in the presence of complex protein mixtures from living cells. Advantageously, this reaction proceeds under aerobic conditions, whereas most other metal-catalyzed reactions require inert atmosphere. PMID:24376051

  20. Nickel-Catalyzed Alkylative Cross-Coupling of Anisoles with Grignard Reagents via C-O Bond Activation.

    PubMed

    Tobisu, Mamoru; Takahira, Tsuyoshi; Morioka, Toshifumi; Chatani, Naoto

    2016-06-01

    We report nickel-catalyzed cross-coupling of methoxyarenes with alkylmagnesium halides, in which a methoxy group is eliminated. A wide range of alkyl groups, including those bearing β-hydrogens, can be introduced directly at the ipso position of anisole derivatives. We demonstrate that the robustness of a methoxy group allows this alkylation protocol to be used to synthesize elaborate molecules by combining it with traditional cross-coupling reactions or oxidative transformation. The success of this method is dependent on the use of alkylmagnesium iodides, but not chlorides or bromides, which highlights the importance of the halide used in developing catalytic reactions using Grignard reagents. PMID:27193503

  1. A waterwheel-shaped meso-meso-linked porphyrin pentamer.

    PubMed

    Wu, Chieh-Ao; Chiu, Chien-Lan; Mai, Chi-Lun; Lin, You-Shiang; Yeh, Chen-Yu

    2009-01-01

    Wheels on water? A waterwheel-shaped porphyrin pentamer has been synthesized by palladium-catalyzed cross-coupling reactions. The key intermediate is a boronate porphyrin, in which four boronic ester groups are directly attached to the meso-positions. PMID:19308985

  2. Nickel-Catalyzed Cross-Coupling of Redox-Active Esters with Boronic Acids.

    PubMed

    Wang, Jie; Qin, Tian; Chen, Tie-Gen; Wimmer, Laurin; Edwards, Jacob T; Cornella, Josep; Vokits, Benjamin; Shaw, Scott A; Baran, Phil S

    2016-08-01

    A transformation analogous in simplicity and functional group tolerance to the venerable Suzuki cross-coupling between alkyl-carboxylic acids and boronic acids is described. This Ni-catalyzed reaction relies upon the activation of alkyl carboxylic acids as their redox-active ester derivatives, specifically N-hydroxy-tetrachlorophthalimide (TCNHPI), and proceeds in a practical and scalable fashion. The inexpensive nature of the reaction components (NiCl2 ⋅6 H2 O-$9.5 mol(-1) , Et3 N) coupled to the virtually unlimited commercial catalog of available starting materials bodes well for its rapid adoption. PMID:27380912

  3. Trifluoromethylation-initiated remote cross-coupling of carbonyl compounds to form carbon-heteroatom/carbon bonds.

    PubMed

    Huang, Lin; Zheng, Sheng-Cai; Tan, Bin; Liu, Xin-Yuan

    2015-04-27

    By involving the reversal of conventional reactivity expectations without external oxidants, we describe a novel and convenient protocol of remote cross-coupling of carbonyl compounds with a series of common and simple nucleophiles. This cross-coupling is triggered by radical trifluoromethylation of alkenes, thereby achieving highly selective remote difunctionalization of alkenes and α-position of the carbonyl group for facile access to trifluoromethyl α-halo- and α-cyanocarbonyl compounds. The reaction exhibits a broad substrate scope with excellent functionality tolerance and many different types of nucleophiles; further synthetic applicability of the obtained compounds proved to be suitable, thus showing great potential for synthetic utility. PMID:25766396

  4. Selective Nickel- and Manganese-Catalyzed Decarboxylative Cross Coupling of Some α,β-Unsaturated Carboxylic Acids with Cyclic Ethers

    PubMed Central

    Zhang, Jia-Xiang; Wang, Yan-Jing; Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Xing, Ya-Lan; Li, Yi-He; Wen, Jia-Long

    2014-01-01

    A nickel- and manganese-catalyzed decarboxylative cross coupling of α, β-unsaturated carboxylic acids with cyclic ethers such as tetrahydrofuran and 1, 4-dioxane was developed. Oxyalkylation was achieved when nickel acetate was used as catalyst, while manganese acetate promoted the reaction of alkenylation. PMID:25502282

  5. Cross-coupling effects in chemically non-equilibrium viscous compressible flows

    NASA Astrophysics Data System (ADS)

    Kustova, E. V.; Giordano, D.

    2011-01-01

    A closed self-consistent description of a one-temperature non-equilibrium reacting flow is presented on the basis of the kinetic theory methods. A general case including internal degrees of freedom, dissociation-recombination and exchange reactions, and arbitrary values of affinities of chemical reactions is considered. Chemical-reaction rates and mean normal stress in viscous compressible flows are studied and a symmetric cross coupling between these terms is found. It is shown that the rate of each chemical reaction and the mean normal stress depend on velocity divergence and affinities of all chemical reactions; the law of mass action is violated in viscous flows. The results obtained in the frame of linear irreversible thermodynamics can be deduced from the proposed model for the particular case of small affinities. The reciprocal Onsager-Casimir relations are verified, the symmetry of kinetic coefficients is demonstrated, and the entropy production in a viscous flow is studied.

  6. High-Throughput Screening of the Asymmetric Decarboxylative Alkylation Reaction of Enolate-Stabilized Enol Carbonates.

    PubMed

    McDougal, Nolan T; Virgil, Scott C; Stoltz, Brian M

    2010-01-01

    The use of high-throughput screening allowed for the optimization of reaction conditions for the palladium-catalyzed asymmetric decarboxylative alkylation reaction of enolate-stabilized enol carbonates. Changing to a non-polar reaction solvent and to an electron-deficient PHOX derivative as ligand from our standard reaction conditions improved the enantioselectivity for the alkylation of a ketal-protected,1,3-diketone-derived enol carbonate from 28% ee to 84% ee. Similar improvements in enantioselectivity were seen for a β-keto-ester derived- and an α-phenyl cyclohexanone-derived enol carbonate. PMID:21072327

  7. Stereospecific Synthesis of Tri- and Tetrasubstituted α-Fluoroacrylates by Mizoroki-Heck Reaction.

    PubMed

    Rousée, Kevin; Bouillon, Jean-Philippe; Couve-Bonnaire, Samuel; Pannecoucke, Xavier

    2016-02-01

    Ligand-free, efficient, palladium-catalyzed Mizoroki-Heck reaction between methyl α-fluoroacrylate and arene or hetarene iodides is reported for the first time. The reaction is stereospecific and provides fair to quantitative yields of fluoroalkenes. The Mizoroki-Heck reaction starting from more hindered and usually reluctant trisubstituted acrylate, to access tetrasubstituted fluoroalkenes, is also reported. Finally, the use of a three-step synthesis sequence, including Mizoroki-Heck reaction, allows the synthesis of fluorinated analogues of therapeutic agents with high yield. PMID:26809942

  8. Metallaphotoredox-catalysed sp(3)-sp(3) cross-coupling of carboxylic acids with alkyl halides.

    PubMed

    Johnston, Craig P; Smith, Russell T; Allmendinger, Simon; MacMillan, David W C

    2016-08-18

    In the past 50 years, cross-coupling reactions mediated by transition metals have changed the way in which complex organic molecules are synthesized. The predictable and chemoselective nature of these transformations has led to their widespread adoption across many areas of chemical research. However, the construction of a bond between two sp(3)-hybridized carbon atoms, a fundamental unit of organic chemistry, remains an important yet elusive objective for engineering cross-coupling reactions. In comparison to related procedures with sp(2)-hybridized species, the development of methods for sp(3)-sp(3) bond formation via transition metal catalysis has been hampered historically by deleterious side-reactions, such as β-hydride elimination with palladium catalysis or the reluctance of alkyl halides to undergo oxidative addition. To address this issue, nickel-catalysed cross-coupling processes can be used to form sp(3)-sp(3) bonds that utilize organometallic nucleophiles and alkyl electrophiles. In particular, the coupling of alkyl halides with pre-generated organozinc, Grignard and organoborane species has been used to furnish diverse molecular structures. However, the manipulations required to produce these activated structures is inefficient, leading to poor step- and atom-economies. Moreover, the operational difficulties associated with making and using these reactive coupling partners, and preserving them through a synthetic sequence, has hindered their widespread adoption. A generically useful sp(3)-sp(3) coupling technology that uses bench-stable, native organic functional groups, without the need for pre-functionalization or substrate derivatization, would therefore be valuable. Here we demonstrate that the synergistic merger of photoredox and nickel catalysis enables the direct formation of sp(3)-sp(3) bonds using only simple carboxylic acids and alkyl halides as the nucleophilic and electrophilic coupling partners, respectively. This metallaphotoredox

  9. Cobalt-catalyzed intermolecular C(sp(2))-O cross-coupling.

    PubMed

    Kundu, Debasish; Tripathy, Manisha; Maity, Pintu; Ranu, Brindaban C

    2015-06-01

    Cobalt(II)-catalyzed C(sp(2) )O cross-coupling between aryl/heteroaryl alcohols and vinyl/aryl halides in the presence of Cu(I) has been achieved under ligand-free conditions. In this reaction, copper plays a significant role in transmetalation rather than being directly involved in the CO coupling. This unique Co/Cu-dual catalyst system provides an easy access to a library of aryl-vinyl, heteroaryl-styryl, aryl-aryl, and heteroaryl-heteroaryl ethers in the absence of any ligand or additive. PMID:25926040

  10. Direct Synthesis of Polyaryls by Consecutive Oxidative Cross-Coupling of Phenols with Arenes.

    PubMed

    Dyadyuk, Alina; Sudheendran, Kavitha; Vainer, Yulia; Vershinin, Vlada; Shames, Alexander I; Pappo, Doron

    2016-09-01

    A bioinspired iron-catalyzed consecutive oxidative cross-coupling reaction between a single phenolic unit and nucleophilic arenes was developed. This sustainable transformation offers a selective synthetic strategy for the preparation of complex polyaryl compounds directly from readily available phenols. With the aid of electron paramagnetic resonance spectroscopy, it was demonstrated that the groups ortho to the phenolic functionality (whether hydrogen, methyl, or methoxy) direct the regioselectivity (ortho, para, or meta via dienone-phenol rearrangement) and chemoselectivity (C-C coupling or C-O coupling) in this multistep process. PMID:27529128

  11. The role of flavon cross couplings in leptonic flavour mixing

    NASA Astrophysics Data System (ADS)

    Pascoli, Silvia; Zhou, Ye-Ling

    2016-06-01

    In models with discrete flavour symmetries, flavons are critical to realise specific flavour structures. Leptonic flavour mixing originates from the misalignment of flavon vacuum expectation values which respect different residual symmetries in the charged lepton and neutrino sectors. Flavon cross couplings are usually forbidden, in order to protect these symmetries. Contrary to this approach, we show that cross couplings can play a key role and give raise to necessary corrections to flavour-mixing patterns, including a non-zero value for the reactor angle and CP violation. For definiteness, we present two models based on A 4. In the first model, all flavons are assumed to be real or pseudo-real, with 7 real degrees of freedom in the flavon sector in total. A sizable reactor angle associated with nearly maximal CP violation is achieved, and, as both originate from the same cross coupling, a sum rule results with a precise prediction for the value of the Dirac CP-violating phase. In the second model, the flavons are taken to be complex scalars, which can be connected with supersymmetric models and multi-Higgs models. The complexity properties of flavons provide new sources for generating the reactor angle. Models in this new approach introduce very few degrees of freedom beyond the Standard Model and can be more economical than those in the framework of extra dimension or supersymmetry.

  12. Cobalt-Catalyzed Oxidative C-H/C-H Cross-Coupling between Two Heteroarenes.

    PubMed

    Tan, Guangying; He, Shuang; Huang, Xiaolei; Liao, Xingrong; Cheng, Yangyang; You, Jingsong

    2016-08-22

    The first example of cobalt-catalyzed oxidative C-H/C-H cross-coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2 ⋅4 H2 O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2 CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C-H bond activation pathway that the well-described oxidative C-H/C-H cross-coupling reactions between two heteroarenes typically undergo. PMID:27460406

  13. Tetrahydroxydiboron-Mediated Palladium-Catalyzed Transfer Hydrogenation and Deuteriation of Alkenes and Alkynes Using Water as the Stoichiometric H or D Atom Donor.

    PubMed

    Cummings, Steven P; Le, Thanh-Ngoc; Fernandez, Gilberto E; Quiambao, Lorenzo G; Stokes, Benjamin J

    2016-05-18

    There are few examples of catalytic transfer hydrogenations of simple alkenes and alkynes that use water as a stoichiometric H or D atom donor. We have found that diboron reagents efficiently mediate the transfer of H or D atoms from water directly onto unsaturated C-C bonds using a palladium catalyst. This reaction is conducted on a broad variety of alkenes and alkynes at ambient temperature, and boric acid is the sole byproduct. Mechanistic experiments suggest that this reaction is made possible by a hydrogen atom transfer from water that generates a Pd-hydride intermediate. Importantly, complete deuterium incorporation from stoichiometric D2O has also been achieved. PMID:27135185

  14. A thiocyanato-bridged copper(I) cubane complex and its application in palladium-catalyzed Sonogashira coupling of aryl halides.

    PubMed

    Trivedi, Manoj; Singh, Gurmeet; Kumar, Abhinav; Rath, Nigam P

    2013-09-28

    Reaction of copper(I) thiocyanate with 1,1'-bis(di-tert-butylphosphino) ferrocene (dtbpf) in a 2:1 molar ratio in DCM-MeOH (50:50 V/V) afforded a tetranuclear copper(I) complex [Cu4(μ3-SCN)4(κ(1)-P,P-dtbpf)2] (1) with a cubane-like structure. Complex 1 was shown to be an efficient catalyst in comparison to CuI in the Sonogashira reaction. The coupling products were obtained in high yields by using Pd loadings of 0.2 mol% as well as complex-1 of 0.1 mol%. PMID:23903662

  15. The Palladium Catalyzed Asymmetric Addition of Oxindoles and Allenes: an Atom-Economical Versatile Method for the Construction of Chiral Indole Alkaloids

    PubMed Central

    Trost, Barry M.; Xie, Jia; Sieber, Joshua D.

    2011-01-01

    The Pd-catalyzed asymmetric allylic alkylation (AAA) is one of the most useful and versatile methods for asymmetric synthesis known in organometallic chemistry. Development of this reaction over the past 30 years has typically relied on the use of an allylic electrophile bearing an appropriate leaving group to access the reactive Pd(π-allyl) intermediate that goes on to the desired coupling product after attack by the nucleophile present in the reaction. Our group has been interested in developing alternative approaches to access the reactive Pd(π-allyl) intermediate that does not require the use of an activated electrophile, which ultimately generates a stoichiometric byproduct in the reaction that is derived from the leftover leaving group. Along these lines, we have demonstrated that allenes can be used to generate the reactive Pd(π-allyl) intermediate in the presence of an acid cocatalyst, and this system is compatible with nucleophiles to allow for formation of formal AAA products by Pd-catalyzed additions to allenes. This article describes our work regarding the use of oxindoles as carbon-based nucleophiles in a Pd-catalyzed asymmetric addition of oxindoles to allenes (Pd-catalyzed hydrocarbonation of allenes). By using the chiral standard Trost ligand (L1) and 3-aryloxindoles as nucleophiles, this hydrocarbonation reaction provides products with two vicinal stereocenters, with one being quaternary, in excellent chemo-, regio-, diastereo-, and enantioselectivities in high chemical yields. PMID:22070545

  16. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N-C Cross-Coupling.

    PubMed

    Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal

    2016-09-01

    Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step. PMID:27480938

  17. Kinetic resolution of 2-substituted 2,3-dihydro-4-pyridones by palladium-catalyzed asymmetric allylic alkylation: catalytic asymmetric total synthesis of indolizidine (-)-209I.

    PubMed

    Lei, Bai-Lin; Zhang, Qing-Song; Yu, Wei-Hua; Ding, Qiu-Ping; Ding, Chang-Hua; Hou, Xue-Long

    2014-04-01

    The kinetic resolution of 2-substituted-2,3-dihydro-4-pyridones was realized via a Pd-catalyzed allylic substitution reaction using a commercially available (S)-P-Phos as a ligand, affording optically active dihydropyridones and C-allylated dihydropyridones in high yields and good enantioselectivities with the S-factor up to 43. With this protocol, a catalytic asymmetric total synthesis of indolizidine (-)-209I was realized for the first time. PMID:24661080

  18. Geminal cross-coupling for AIE-active topological tetraarylethene fluorophores (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhu, Ming-Qiang; Chen, Tao; Chen, Ze-Qiang

    2016-03-01

    The cross-coupling reactions have been used in C-C bond formation which can be used extensively in optoelectronic materials for organic light emitting diode (OLED), organic photovoltaics and chemical biosensing. Here, we report twofold geminal C-C bond formation at 1,1-dibromoolefins via cross-coupling reactions of aromatic boronic esters over Pd catalysts for multiple topological configurations of π-conjugated molecules. We employ a series of recipes from a precursor toolbox to produce π-conjugated macrocycles, conjugated dendrimers, 1-dimensional linear conjugated polymers, 2-dimensional conjugated microporous polymers (CMPs) and crosslinking conjugated polymer nanoparticles (CCPNs). The π-conjugated macrocycles, dendrimers and 1-D polymers show characteristic aggregation-induced emission properties. 2-D conjugated microporous polymers possess unique porosity of 2-3 nm. This universal strategy toward definite topological configurations of π-conjugated molecules enables efficient coupling of aryl bromides with various coupling partners under mild conditions affording multiple topological conjugated systems with abundant optical and optoelectronic interest.

  19. Single-Electron Transmetalation: An Enabling Technology for Secondary Alkylboron Cross-Coupling

    PubMed Central

    Primer, David N.; Karakaya, Idris; Tellis, John C.; Molander, Gary A.

    2015-01-01

    Single-electron-mediated alkyl transfer affords a novel mechanism for transmetalation, enabling cross-coupling under mild conditions. Here, general conditions are reported for cross-coupling of secondary alkyltrifluoroborates with an array of aryl bromides mediated by an Ir photoredox catalyst and a Ni cross-coupling catalyst. PMID:25650892

  20. Silver-Free Palladium-Catalyzed sp(3) and sp(2) C-H Alkynylation Promoted by a 1,2,3-Triazole Amine Directing Group.

    PubMed

    Ye, Xiaohan; Xu, Chang; Wojtas, Lukasz; Akhmedov, Novruz G; Chen, Hao; Shi, Xiaodong

    2016-06-17

    Triazole amine was identified as an effective directing group in promoting C-H alkynylation under silver-free conditions. No other external oxidant was required, and the alkynylation products were received in good to excellent yields. X-ray crystallographic analysis confirmed a direct C-H activation intermediate. Other typical directing groups, including pyridine amine (PIP) and 8-aminoquinoline (QA), gave almost no reaction under identical conditions, which highlighted the unique reactivity of the triazole directing group in direct C-H functionalization. PMID:27267908

  1. Benzannulation via the Reaction of Ynamides and Vinylketenes. Application to the Synthesis of Highly Substituted Indoles

    PubMed Central

    Lam, Tin Yiu; Wang, Yu-Pu

    2013-01-01

    A two-stage “tandem strategy” for the synthesis of indoles with a high level of substitution on the six-membered ring is described. Benzannulation based on the reaction of cyclobutenones with ynamides proceeds via a cascade of four pericyclic reactions to produce multiply substituted aniline derivatives in which the position ortho to the nitrogen can bear a wide range of functionalized substituents. In the second stage of the tandem strategy, highly substituted indoles are generated via acid-, base-, and palladium-catalyzed cyclization and annulation processes. PMID:23952525

  2. Highly Reactive, General and Long-Lived Catalysts for Palladium-Catalyzed Amination of Heteroaryl and Aryl Chlorides, Bromides and Iodides: Scope and Structure-Activity Relationships

    PubMed Central

    Shen, Qilong; Ogata, Tokutaro; Hartwig, John F.

    2010-01-01

    We describe a systematic study of the scope and relationship between ligand structure and activity for a highly efficient and selective class of catalysts for the amination of heteroaryl and aryl chlorides, bromides and iodides containing sterically hindered chelating alkylphosphines. In the presence of this catalyst, aryl and heteroaryl chlorides, bromides and iodides react with many primary amines in high yields with part-per-million quantities of palladium precursor and ligand. Many reactions of primary amines with both heteroaryl and aryl chlorides, bromides and iodides occur to completion with 0.0005-0.05 mol % catalysts. A comparison of the reactivity of this catalyst for coupling of primary amines at these loadings is made with catalysts generated from hindered monophosphines and carbenes, and these data illustrate the benefits of chelation. Thus, these complexes constitute a fourth-generation catalyst for the amination of aryl halides, whose activity complements catalysts based on monophosphines and carbenes. PMID:18444639

  3. Iron-Catalyzed Cross-Coupling of Unactivated, Secondary Alkyl Thio Ethers and Sulfones with Aryl Grignard Reagents

    PubMed Central

    Denmark, Scott E.; Cresswell, Alexander J.

    2013-01-01

    The first systematic investigation of unactivated aliphatic sulfur compounds as electrophiles in transition metal-catalyzed cross-coupling are described. Initial studies focused on discerning the structural and electronic features of the organosulfur substrate which enable the challenging oxidative addition to the C(sp3)–S bond. Through extensive optimization efforts, an Fe(acac)3-catalyzed cross-coupling of unactivated alkyl aryl thio ethers with aryl Grignard reagents was realized, in which a nitrogen “directing group” on the S-aryl moiety of the thio ether served a critical role in facilitating the oxidative addition step. In addition, alkyl phenyl sulfones were found to be effective electrophiles in the Fe(acac)3-catalyzed cross-coupling with aryl Grignard reagents. For the latter class of electrophile, a thorough assessment of the various reaction parameters revealed a dramatic enhancement in reaction efficiency with an excess of TMEDA (8.0 equiv). The optimized reaction protocol was used to evaluate the scope of the method with respect to both the organomagnesium nucleophile and sulfone electrophile. PMID:24256193

  4. Asymmetric synthesis from terminal alkenes by diboration/cross-coupling cascades

    PubMed Central

    Mlynarski, Scott N.; Schuster, Christopher H.; Morken, James P.

    2013-01-01

    Amongst prospective starting materials for organic synthesis, terminal (monosubstituted) alkenes are ideal. In the form of α-olefins, they are manufactured on enormous scale and they are the core product features from many organic chemical reactions. While their latent reactivity can easily enable hydrocarbon chain extension, alkenes also have the attractive feature of being stable in the presence of many acids, bases, oxidants and reductants. In spite of these impressive attributes, relatively few catalytic enantioselective transformations have been developed that transform aliphatic α-olefins in >90% ee and, with the exception of site-controlled isotactic polymerization of α-olefins,1 none of these processes result in chain-extending C-C bond formation to the terminal carbon.2, 3, 4, 5, 6 Herein, we describe a strategy that directly addresses this gap in synthetic methodology and present a single-flask catalytic enantioselective conversion of terminal alkenes into a range of chiral products. These reactions are enabled by an unusual neighboring group participation effect that accelerates Pd-catalyzed cross-coupling of 1,2-bis(boronates) relative to nonfunctionalized alkyl boronate analogs. In tandem with enantioselective diboration, this reactivity feature connects abundant alkene starting materials to a diverse array of chiral products. Importantly with respect to synthesis utility, the tandem diboration/cross-coupling reaction (DCC reaction) generally provides products in high yield and high selectivity (>95:5 enantiomer ratio), employs low loadings (1–2 mol %) of commercially available catalysts and reagents, it offers an expansive substrate scope, and can address a broad range of alcohol and amine synthesis targets, many of which cannot be easily addressed with current technology. PMID:24352229

  5. Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates

    NASA Astrophysics Data System (ADS)

    Ackerman, Laura K. G.; Lovell, Matthew M.; Weix, Daniel J.

    2015-08-01

    The advent of transition-metal catalysed strategies for forming new carbon-carbon bonds has revolutionized the field of organic chemistry, enabling the efficient synthesis of ligands, materials, and biologically active molecules. In cases where a single metal fails to promote a selective or efficient transformation, the synergistic cooperation of two distinct catalysts--multimetallic catalysis--can be used instead. Many important reactions rely on multimetallic catalysis, such as the Wacker oxidation of olefins and the Sonogashira coupling of alkynes with aryl halides, but this approach has largely been limited to the use of metals with distinct reactivities, with only one metal catalyst undergoing oxidative addition. Here, we demonstrate that cooperativity between two group 10 metal catalysts--(bipyridine)nickel and (1,3-bis(diphenylphosphino)propane)palladium--enables a general cross-Ullmann reaction (the cross-coupling of two different aryl electrophiles). Our method couples aryl bromides with aryl triflates directly, eliminating the use of arylmetal reagents and avoiding the challenge of differentiating between multiple carbon-hydrogen bonds that is required for direct arylation methods. Selectivity can be achieved without an excess of either substrate and originates from the orthogonal reactivity of the two catalysts and the relative stability of the two arylmetal intermediates. While (1,3-bis(diphenylphosphino)propane)palladium reacts preferentially with aryl triflates to afford a persistent intermediate, (bipyridine)nickel reacts preferentially with aryl bromides to form a transient, reactive intermediate. Although each catalyst forms less than 5 per cent cross-coupled product in isolation, together they are able to achieve a yield of up to 94 per cent. Our results reveal a new method for the synthesis of biaryls, heteroaryls, and dienes, as well as a general mechanism for the selective transfer of ligands between two metal catalysts. We anticipate that this

  6. Ready Access to Proquinazid Haptens via Cross-Coupling Chemistry for Antibody Generation and Immunoassay Development

    PubMed Central

    Esteve-Turrillas, Francesc A.; Mercader, Josep V.; Parra, Javier; Agulló, Consuelo; Abad-Somovilla, Antonio; Abad-Fuentes, Antonio

    2015-01-01

    Bioconjugate preparation is a fundamental step for antibody generation and immunoassay development to small chemical compounds. For analytical targets holding in their structure an aryl halogen atom, cross-coupling reactions may be a simple and efficient way to obtain functionalized derivatives; thus offering great potential to elicit robust and selective immune responses after being coupled to immunogenic carrier proteins. However, substitution of the halogen atom by an aliphatic chain might eventually compromise the affinity and specificity of the resulting antibodies. In order to address this issue, proquinazid, a new-generation fungicide with outstanding performance, was chosen as model analyte. Two functionalized derivatives differing in spacer arm rigidity were synthesized by Sonogashira cross-coupling chemistry. These haptens were covalently coupled to bovine serum albumin and the resulting immunoconjugates were employed for rabbit vaccination. Antibodies were tested for proquinazid recognition by direct and indirect competitive immunoassay, and IC50 values in the low nanomolar range were found, thus demonstrating the suitability of this straightforward synthetic strategy for the generation of immunoreagents to compounds bearing an aryl halide. Following antibody characterization, competitive immunoassays were developed and employed to determine proquinazid residues in grape musts, and their analytical performance was satisfactorily validated by comparison with GC–MS. Besides having described the development of the first immunochemical method for proquinazid analysis, an efficient functionalization approach for analytes comprising aryl halides is reported. PMID:26214507

  7. Scalable production of Cu@C composites for cross-coupling catalysis

    SciTech Connect

    Bu, Lijuan; Ming, Hai

    2015-10-15

    Highlights: • Cu@C core–shell composite was prepared by reduction of [Cu(NH{sub 3}){sub 4}]{sup 2+} with glucose. • The carbon shell in Cu@C can be tuned to the different degree of carbonization. • The Cu@C composites were utilized to catalyze the C−N cross coupling reaction. • The catalytic ability of Cu@C depends on the degree of shell-carbonization. - Abstract: A novel Cu@C core–shell microstructure was prepared by reduction of [Cu(NH{sub 3}){sub 4}]{sup 2+} with glucose using a mild hydrothermal process. The carbon shell of such Cu@C composite can be tuned to different carbonization degrees just through varying the calcination conditions. The structural properties of as-prepared Cu@C were investigated in detail by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron micrographs (TEM) and Raman spectra. In addition, these Cu@C composites were firstly used to catalyze the C−N cross coupling of amines with iodobenzene. Among them, the catalytic ability of Cu@C composites increased as their surface carbon’s carburization degree improved.

  8. Source of Selectivity in Oxidative Cross-Coupling of Aryls by Solvent Effect of 1,1,1,3,3,3-Hexafluoropropan-2-ol.

    PubMed

    Elsler, Bernd; Wiebe, Anton; Schollmeyer, Dieter; Dyballa, Katrin M; Franke, Robert; Waldvogel, Siegfried R

    2015-08-24

    Solvents such as 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) with a high capacity for donating hydrogen bonds generate solvates that enter into selective cross-coupling reactions of aryls upon oxidation. When electric current is employed for oxidation, reagent effects can be excluded and a decoupling of nucleophilicity from oxidation potential can be achieved. The addition of water or methanol to the electrolyte allows a shift of oxidation potentials in a specific range, creating suitable systems for selective anodic cross-coupling reactions. The shift in the redox potentials depends on the substitution pattern of the substrate employed. The concept has been expanded from arene-phenol to phenol-phenol as well as phenol-aniline cross-coupling. This driving force for selectivity in oxidative coupling might also explain previous findings using HFIP and hypervalent iodine reagents. PMID:26189655

  9. Cross-Coupled Control for All-Terrain Rovers

    PubMed Central

    Reina, Giulio

    2013-01-01

    Mobile robots are increasingly being used in challenging outdoor environments for applications that include construction, mining, agriculture, military and planetary exploration. In order to accomplish the planned task, it is critical that the motion control system ensure accuracy and robustness. The achievement of high performance on rough terrain is tightly connected with the minimization of vehicle-terrain dynamics effects such as slipping and skidding. This paper presents a cross-coupled controller for a 4-wheel-drive/4-wheel-steer robot, which optimizes the wheel motors' control algorithm to reduce synchronization errors that would otherwise result in wheel slip with conventional controllers. Experimental results, obtained with an all-terrain rover operating on agricultural terrain, are presented to validate the system. It is shown that the proposed approach is effective in reducing slippage and vehicle posture errors. PMID:23299625

  10. Cross-coupled control for all-terrain rovers.

    PubMed

    Reina, Giulio

    2013-01-01

    Mobile robots are increasingly being used in challenging outdoor environments for applications that include construction, mining, agriculture, military and planetary exploration. In order to accomplish the planned task, it is critical that the motion control system ensure accuracy and robustness. The achievement of high performance on rough terrain is tightly connected with the minimization of vehicle-terrain dynamics effects such as slipping and skidding. This paper presents a cross-coupled controller for a 4-wheel-drive/4-wheel-steer robot, which optimizes the wheel motors' control algorithm to reduce synchronization errors that would otherwise result in wheel slip with conventional controllers. Experimental results, obtained with an all-terrain rover operating on agricultural terrain, are presented to validate the system. It is shown that the proposed approach is effective in reducing slippage and vehicle posture errors. PMID:23299625

  11. Cross-coupled composite-cavity organic microresonators

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Sudzius, M.; Mischok, A.; Fröb, H.; Leo, K.

    2016-07-01

    We report on cross-coupled composite-cavity microresonators consisting of a vertical cavity and a second-order distributed feedback structure which employ the same organic active medium and support surface-normal and in-plane emission at the same time. The optical coupling is due to a first-order light diffraction on a second-order Bragg grating and, in the degenerate case, can be as efficient as the coupling observed in more classical cascade coupled cavities. When the system is non-degenerate, the diffraction efficiency is suppressed because of sub-coherence-length dimensions of the composite-cavity and both resonators tend to operate as independent structures without experiencing substantial losses due to diffraction on the distributed-feedback grating.

  12. Highly selective and sensitive fluorescence chemosensor for the detection of palladium species based on Tsuji-Trost reaction

    NASA Astrophysics Data System (ADS)

    Xu, Zhong-Yong; Li, Jing; Guan, Su; Zhang, Lei; Dong, Chang-Zhi

    2015-09-01

    A new chemosensor 7-nitro-2,1,3-benzoxadiazole-4-allyl-N-(thiophen-2-ylmethyl)carbamate (NBDTC) was synthesized and utilized for palladium detection based on the Tsuji-Trost reaction. NBDTC displayed specific and ratiometric fluorescent responses toward palladium species. The chemosensor showed more than 50-fold enhancement in fluorescence intensity with the presence of PEG400 and palladium because NBDTC can be transformed to NBDT under palladium-catalyzing Tsuji-Trost reaction. NBDTC displayed high selectivity and sensitivity for palladium species with the detection limit of 1.13 × 10-9 M.

  13. Protecting group-free, selective cross-coupling of alkyltrifluoroborates with borylated aryl bromides via photoredox/nickel dual catalysis

    PubMed Central

    Yamashita, Yohei; Tellis, John C.; Molander, Gary A.

    2015-01-01

    Orthogonal reactivity modes offer substantial opportunities for rapid construction of complex small molecules. However, most strategies for imparting orthogonality to cross-coupling reactions rely on differential protection of reactive sites, greatly reducing both atom and step economies. Reported here is a strategy for orthogonal cross-coupling wherein a mechanistically distinct activation mode for transmetalation of sp3-hybridized organoboron reagents enables C-C bond formation in the presence of various protected and unprotected sp2-hybridized organoborons. This manifold has the potential for broad application, because orthogonality is inherent to the activation mode itself. The diversification potential of this platform is shown in the rapid elaboration of a trifunctional lynchpin through various transition metal-catalyzed processes without nonproductive deprotection or functional group manipulation steps. PMID:26371299

  14. Native functionality in triple catalytic cross-coupling: sp³ C-H bonds as latent nucleophiles.

    PubMed

    Shaw, Megan H; Shurtleff, Valerie W; Terrett, Jack A; Cuthbertson, James D; MacMillan, David W C

    2016-06-10

    The use of sp(3) C-H bonds--which are ubiquitous in organic molecules--as latent nucleophile equivalents for transition metal-catalyzed cross-coupling reactions has the potential to substantially streamline synthetic efforts in organic chemistry while bypassing substrate activation steps. Through the combination of photoredox-mediated hydrogen atom transfer (HAT) and nickel catalysis, we have developed a highly selective and general C-H arylation protocol that activates a wide array of C-H bonds as native functional handles for cross-coupling. This mild approach takes advantage of a tunable HAT catalyst that exhibits predictable reactivity patterns based on enthalpic and bond polarity considerations to selectively functionalize α-amino and α-oxy sp(3) C-H bonds in both cyclic and acyclic systems. PMID:27127237

  15. Protecting group-free, selective cross-coupling of alkyltrifluoroborates with borylated aryl bromides via photoredox/nickel dual catalysis.

    PubMed

    Yamashita, Yohei; Tellis, John C; Molander, Gary A

    2015-09-29

    Orthogonal reactivity modes offer substantial opportunities for rapid construction of complex small molecules. However, most strategies for imparting orthogonality to cross-coupling reactions rely on differential protection of reactive sites, greatly reducing both atom and step economies. Reported here is a strategy for orthogonal cross-coupling wherein a mechanistically distinct activation mode for transmetalation of sp(3)-hybridized organoboron reagents enables C-C bond formation in the presence of various protected and unprotected sp(2)-hybridized organoborons. This manifold has the potential for broad application, because orthogonality is inherent to the activation mode itself. The diversification potential of this platform is shown in the rapid elaboration of a trifunctional lynchpin through various transition metal-catalyzed processes without nonproductive deprotection or functional group manipulation steps. PMID:26371299

  16. Synthesis of 4-quinolones via a carbonylative Sonogashira cross-coupling using molybdenum hexacarbonyl as a CO source.

    PubMed

    Åkerbladh, Linda; Nordeman, Patrik; Wejdemar, Matyas; Odell, Luke R; Larhed, Mats

    2015-02-01

    A palladium-catalyzed CO gas-free carbonylative Sonogashira/cyclization sequence for the preparation of functionalized 4-quinolones from 2-iodoanilines and alkynes via two different protocols is described. The first method (A) yields the cyclized products after only 20 min of microwave (MW) heating at 120 °C. The second method (B) is a gas-free one-pot two-step sequence which runs at room temperature, allowing the use of sensitive substituents (e.g., nitro and bromide groups). For both protocols, molybdenum hexacarbonyl was used as a solid source of CO. PMID:25575042

  17. Cross-Couplings Using Aryl Ethers via C-O Bond Activation Enabled by Nickel Catalysts.

    PubMed

    Tobisu, Mamoru; Chatani, Naoto

    2015-06-16

    Arene synthesis has been revolutionized by the invention of catalytic cross-coupling reactions, wherein aryl halides can be coupled with organometallic and organic nucleophiles. Although the replacement of aryl halides with phenol derivatives would lead to more economical and ecological methods, success has been primarily limited to activated phenol derivatives such as triflates. Aryl ethers arguably represent one of the most ideal substrates in terms of availability, cost, safety, and atom efficiency. However, the robust nature of the C(aryl)-O bonds of aryl ethers renders it extremely difficult to use them in catalytic reactions among the phenol derivatives. In 1979, Wenkert reported a seminal work on the nickel-catalyzed cross-coupling of aryl ethers with Grignard reagents. However, it was not until 2004 that the unique ability of a low-valent nickel species to activate otherwise unreactive C(aryl)-O bonds was appreciated with Dankwardt's identification of the Ni(0)/PCy3 system, which significantly expanded the efficiency of the Wenkert reaction. Application of the nickel catalyst to cross-couplings with other nucleophiles was first accomplished in 2008 by our group using organoboron reagents. Later on, several other nucleophiles, including organozinc reagents, amines, hydrosilane, and hydrogen were shown to be coupled with aryl ethers under nickel catalysis. Despite these advances, progress in this field is relatively slow because of the low reactivity of benzene derivatives (e.g., anisole) compared with polyaromatic substrates (e.g., methoxynaphthalene), particularly when less reactive and synthetically useful nucleophiles are used. The "naphthalene problem" has been overcome by the use of N-heterocyclic carbene (NHC) ligands bearing bulky N-alkyl substituents, which enables a wide range of aryl ethers to be coupled with organoboron nucleophiles. Moreover, the use of N-alkyl-substituted NHC ligands allows the use of alkynylmagnesium reagents, thereby realizing

  18. Monofluoroalkenylation of Dimethylamino Compounds through Radical-Radical Cross-Coupling.

    PubMed

    Xie, Jin; Yu, Jintao; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2016-08-01

    An unprecedented and challenging radical-radical cross-coupling of α-aminoalkyl radicals with monofluoroalkenyl radicals derived from gem-difluoroalkenes was achieved. This first example of tandem C(sp(3) )-H and C(sp(2) )-F bond functionalization through visible-light photoredox catalysis offers a facile and flexible access to privileged tetrasubstituted monofluoroalkenes under very mild reaction conditions. The striking features of this redox-neutral method in terms of scope, functional-group tolerance, and regioselectivity are illustrated by the late-stage fluoroalkenylation of complex molecular architectures such as bioactive (+)-diltiazem, rosiglitazone, dihydroartemisinin, oleanic acid, and androsterone derivatives, which represent important new α-amino C-H monofluoroalkenylations. PMID:27351709

  19. Palladium-Catalyzed Environmentally Benign Acylation.

    PubMed

    Suchand, Basuli; Satyanarayana, Gedu

    2016-08-01

    Recent trends in research have gained an orientation toward developing efficient strategies using innocuous reagents. The earlier reported transition-metal-catalyzed carbonylations involved either toxic carbon monoxide (CO) gas as carbonylating agent or functional-group-assisted ortho sp(2) C-H activation (i.e., ortho acylation) or carbonylation by activation of the carbonyl group (i.e., via the formation of enamines). Contradicting these methods, here we describe an environmentally benign process, [Pd]-catalyzed direct carbonylation starting from simple and commercially available iodo arenes and aldehydes, for the synthesis of a wide variety of ketones. Moreover, this method comprises direct coupling of iodoarenes with aldehydes without activation of the carbonyl and also without directing group assistance. Significantly, the strategy was successfully applied to the synthesis n-butylphthalide and pitofenone. PMID:27377566

  20. Development of α-glucosidase inhibitors by room temperature C-C cross couplings of quinazolinones.

    PubMed

    Garlapati, Ramesh; Pottabathini, Narender; Gurram, Venkateshwarlu; Kasani, Kumara Swamy; Gundla, Rambabu; Thulluri, Chiranjeevi; Machiraju, Pavan Kumar; Chaudhary, Avinash B; Addepally, Uma; Dayam, Raveendra; Chunduri, Venkata Rao; Patro, Balaram

    2013-08-01

    Novel quinazolinone based α-glucosidase inhibitors have been developed. For this purpose a virtual screening model has been generated and validated utilizing acarbose as a α-glucosidase inhibitor. Homology modeling, docking, and virtual screening were successfully employed to discover a set of structurally diverse compounds active against α-glucosidase. A search of a 3D database containing 22,500 small molecules using the structure based virtual model yielded ten possible candidates. All ten candidates were N-3-pyridyl-2-cyclopropyl quinazolinone-4-one derivatives, varying at the 6 position. This position was modified by Suzuki-Miyaura cross coupling with aryl, heteroaryl, and alkyl boronic acids. A catalyst screen was performed, and using the best optimal conditions, a series of twenty five compounds was synthesized. Notably, the C-C cross coupling reactions of the 6-bromo-2-cyclopropyl-3-(pyridyl-3-ylmethyl)quinazolin-4(3H)-one precursor have been accomplished at room temperature. A comparison of the relative reactivities of 6-bromo and 6-chloro-2,3-disubstituted quinazolinones with phenyl boronic acid was conducted. An investigation of pre-catalyst loading for the reaction of the 6-bromo-2-cyclopropyl-3-(pyridyl-3-ylmethyl)quinazolin-4(3H)-one substrate was also carried out. Finally, we submitted our compounds to biological assays against α-glucosidase inhibitors. Of these, three hits (compounds 4a, 4t and 4r) were potentially active as α-glucosidase inhibitors and showed activity with IC50 values <20 μM. Based on structural novelty and desirable drug-like properties, 4a was selected for structure-activity relationship study, and thirteen analogs were synthesized. Nine out of thirteen analogs acted as α-glucosidase inhibitors with IC50 values <10 μM. These lead compounds have desirable physicochemical properties and are excellent candidates for further optimization. PMID:23778751

  1. Asymmetric synthesis from terminal alkenes by cascades of diboration and cross-coupling

    NASA Astrophysics Data System (ADS)

    Mlynarski, Scott N.; Schuster, Christopher H.; Morken, James P.

    2014-01-01

    Terminal, monosubstituted alkenes are ideal prospective starting materials for organic synthesis because they are manufactured on very large scales and can be functionalized via a broad range of chemical transformations. Alkenes also have the attractive feature of being stable in the presence of many acids, bases, oxidants and reductants. In spite of these attributes, relatively few catalytic enantioselective transformations have been developed that transform aliphatic α-olefins into chiral products with an enantiomeric excess greater then 90 per cent. With the exception of site-controlled isotactic polymerization of α-olefins, none of these catalytic enantioselective processes results in chain-extending carbon-carbon bond formation to the terminal carbon. Here we describe a strategy that directly addresses this gap in synthetic methodology, and present a single-flask, catalytic enantioselective conversion of terminal alkenes into a number of chiral products. These reactions are facilitated by a neighbouring functional group that accelerates palladium-catalysed cross-coupling of 1,2-bis(boronates) relative to non-functionalized alkyl boronate analogues. In tandem with enantioselective diboration, this reactivity feature transforms alkene starting materials into a diverse array of chiral products. We note that the tandem diboration/cross-coupling reaction generally provides products in high yield and high selectivity (>95:5 enantiomer ratio), uses low loadings (1-2 mol per cent) of commercially available catalysts and reagents, offers an expansive substrate scope, and can address a broad range of alcohol and amine synthesis targets, many of which cannot be easily addressed with current technology.

  2. Iron(II) Active Species in Iron-Bisphosphine Catalyzed Kumada and Suzuki-Miyaura Cross-Couplings of Phenyl Nucleophiles and Secondary Alkyl Halides.

    PubMed

    Daifuku, Stephanie L; Kneebone, Jared L; Snyder, Benjamin E R; Neidig, Michael L

    2015-09-01

    While previous studies have identified FeMes2(SciOPP) as the active catalyst species in iron-SciOPP catalyzed Kumada cross-coupling of mesitylmagnesium bromide and primary alkyl halides, the active catalyst species in cross-couplings with phenyl nucleophiles, where low valent iron species might be prevalent due to accessible reductive elimination pathways, remains undefined. In the present study, in situ Mössbauer and magnetic circular dichroism spectroscopic studies combined with inorganic syntheses and reaction studies are employed to evaluate the in situ formed iron species and identify the active catalytic species in iron-SciOPP catalyzed Suzuki-Miyaura and Kumada cross-couplings of phenyl nucleophiles and secondary alkyl halides. While reductive elimination to form Fe(η(6)-biphenyl)(SciOPP) occurs upon reaction of FeCl2(SciOPP) with phenyl nucleophiles, this iron(0) species is not found to be kinetically competent for catalysis. Importantly, mono- and bis-phenylated iron(II)-SciOPP species that form prior to reductive elimination are identified, where both species are found to be reactive toward electrophile at catalytically relevant rates. The higher selectivity toward the formation of cross-coupled product observed for the monophenylated species combined with the undertransmetalated nature of the in situ iron species in both Kumada and Suzuki-Miyaura reactions indicates that Fe(Ph)X(SciOPP) (X = Br, Cl) is the predominant reactive species in cross-coupling. Overall, these studies demonstrate that low-valent iron is not required for the generation of highly reactive species for effective aryl-alkyl cross-couplings. PMID:26266698

  3. Iron(II) Active Species in Iron–Bisphosphine Catalyzed Kumada and Suzuki–Miyaura Cross-Couplings of Phenyl Nucleophiles and Secondary Alkyl Halides

    PubMed Central

    2015-01-01

    While previous studies have identified FeMes2(SciOPP) as the active catalyst species in iron–SciOPP catalyzed Kumada cross-coupling of mesitylmagnesium bromide and primary alkyl halides, the active catalyst species in cross-couplings with phenyl nucleophiles, where low valent iron species might be prevalent due to accessible reductive elimination pathways, remains undefined. In the present study, in situ Mössbauer and magnetic circular dichroism spectroscopic studies combined with inorganic syntheses and reaction studies are employed to evaluate the in situ formed iron species and identify the active catalytic species in iron–SciOPP catalyzed Suzuki–Miyaura and Kumada cross-couplings of phenyl nucleophiles and secondary alkyl halides. While reductive elimination to form Fe(η6-biphenyl)(SciOPP) occurs upon reaction of FeCl2(SciOPP) with phenyl nucleophiles, this iron(0) species is not found to be kinetically competent for catalysis. Importantly, mono- and bis-phenylated iron(II)–SciOPP species that form prior to reductive elimination are identified, where both species are found to be reactive toward electrophile at catalytically relevant rates. The higher selectivity toward the formation of cross-coupled product observed for the monophenylated species combined with the undertransmetalated nature of the in situ iron species in both Kumada and Suzuki–Miyaura reactions indicates that Fe(Ph)X(SciOPP) (X = Br, Cl) is the predominant reactive species in cross-coupling. Overall, these studies demonstrate that low-valent iron is not required for the generation of highly reactive species for effective aryl-alkyl cross-couplings. PMID:26266698

  4. Photoredox Cross-Coupling: Ir/Ni Dual Catalysis for the Synthesis of Benzylic Ethers.

    PubMed

    Karakaya, Idris; Primer, David N; Molander, Gary A

    2015-07-01

    Single-electron transmetalation has emerged as an enabling paradigm for the cross-coupling of Csp(3) hybridized organotrifluoroborates. Cross-coupling of α-alkoxymethyltrifluoroborates with aryl and heteroaryl bromides has been demonstrated by employing dual catalysis with a combination of an iridium photoredox catalyst and a Ni cross-coupling catalyst. The resulting method enables the alkoxymethylation of diverse (hetero)arenes under mild, room-temperature conditions. PMID:26079182

  5. A Palladium-Catalyzed Method for the Synthesis of 2-(α-Styryl)-2,3-dihydroquinazolin-4-ones and 3-(α-Styryl)-3,4-dihydro-1,2,4-benzothiadiazine-1,1-dioxide: Access to 2-(α-Styryl)quinazolin-4(3H)-ones and 3-(α-Styryl)-1,2,4-benzothiadiazine-1,1-dioxides.

    PubMed

    Kundu, Priyanka; Mondal, Amrita; Chowdhury, Chinmay

    2016-08-01

    An efficient synthesis of 2-(α-styryl)-2,3-dihydroquinazolin-4-ones and 3-(α-styryl)-3,4-dihydro-1,2,4-benzothiadiazine-1,1-dioxides has been achieved in 39-94% yield through palladium-catalyzed cyclocondensation of aryl/vinyl iodides with allenamides 13-15 and 22, respectively. Base treatment of the N-tosylated products provides an easy access to 2-(α-styryl)quinazolin-4(3H)-ones and 3-(α-styryl)-1,2,4-benzothiadiazine-1,1-dioxides, hitherto unknown heterocycles. The method has been tested with phenyl substituted allenamides, applied for bis-heteroannulation, and used in the preparation of analogues of the natural product Luotonin F. PMID:27454621

  6. Collective Synthesis of Phenanthridinone through C-H Activation Involving a Pd-Catalyzed Aryne Multicomponent Reaction.

    PubMed

    Feng, Minghao; Tang, Bingqing; Xu, Hong-Xi; Jiang, Xuefeng

    2016-09-01

    A palladium-catalyzed multicomponent reaction (MCR) involving aryne, CO, and aniline is established for straightforward assembly of a phenanthridinone scaffold through C-H bond activation. Free combination with multiple kinds of readily available anilines and arynes is facilely achieved for phenanthridinone construction without prefunctionalization. Representative natural products were subsequently synthesized through this MCR strategy highly efficiently. Control experiments and interval NMR tracking revealed the mechanism, particularly the key role of CuF2 in determining the aryne-releasing rate from the precursor in this transformation. PMID:27529796

  7. Mechanistic Studies of Gold and Palladium Cooperative Dual-Catalytic Cross-Coupling Systems

    PubMed Central

    Al-Amin, Mohammad; Roth, Katrina E.; Blum, Suzanne A.

    2014-01-01

    Double-label crossover, modified-substrate, and catalyst comparison experiments in the gold and palladium dual-catalytic rearrangement/cross-coupling of allenoates were performed in order to probe the mechanism of this reaction. The results are consistent with a cooperative catalysis mechanism whereby 1) gold activates the substrate prior to oxidative addition by palladium, 2) gold acts as a carbophilic rather than oxophilic Lewis acid, 3) competing olefin isomerization is avoided, 4) gold participates beyond the first turnover and therefore does not serve simply to generate the active palladium catalyst, and 5) single-electron transfer is not involved. These experiments further demonstrate that the cooperativity of both gold and palladium in the reaction is essential because significantly lower to zero conversion is achieved with either metal alone in comparison studies that examined multiple potential gold, palladium, and silver catalysts and precatalysts. Notably, employment of the optimized cocatalysts, PPh3AuOTf and Pd2dba3, separately (i.e., only Au or only Pd) results in zero conversion to product at all monitored time points compared to quantitative conversion to product when both are present in cocatalytic reactions. PMID:24757581

  8. Kinetic and electrochemical studies of the oxidative addition of demanding organic halides to Pd(0): the efficiency of polyphosphane ligands in low palladium loading cross-couplings decrypted.

    PubMed

    Zinovyeva, Veronika A; Mom, Sophal; Fournier, Sophie; Devillers, Charles H; Cattey, Hélène; Doucet, Henri; Hierso, Jean-Cyrille; Lucas, Dominique

    2013-10-21

    Oxidative addition (OA) of organic halides to palladium(0) species is a fundamental reaction step which initiates the C-C bond formation catalytic processes typical of Pd(0)/Pd(II) chemistry. The use of structurally congested polyphosphane ligands in palladium-catalyzed C-C bond formation has generated very high turnover numbers (TONs) in topical reactions such as Heck, Suzuki, Sonogashira couplings, and direct sp(2)C-H functionalization. Herein, the OA of aryl bromides to Pd(0) complexes stabilized by ferrocenylpolyphosphane ligands L1 (tetraphosphane), L2 (triphosphane), and L3 (diphosphane) is considered. The investigation of kinetic constants for the addition of Ph-Br to Pd(0) intermediates (generated by electrochemical reduction of Pd(II) complexes coordinated by L1-L3) is reported. Thus, in the OA of halides to the Pd(0) complex coordinated by L1 the series of rate constants kapp is found (mol(-1) L s(-1)): kapp(Ph-Br) = 0.48 > kapp(ClCH2-Cl) = 0.25 ≫ kapp(p-MeC6H4-Br) = 0.08 ≈ kapp(o-MeC6H4-Br) = 0.07 ≫ kapp(Ph-Cl). Kinetic measurements clarify the influence that the presence of four, three, or two phosphorus atoms in the coordination sphere of Pd has on OA. The presence of supplementary phosphorus atoms in L1 and L2 unambiguously stabilizes Pd(0) species and thus slows down the OA of Ph-Br to Pd(0) of about 2 orders of magnitude compared to the diphosphane L3. The electrosynthesis of the complexes resulting from the OA of organic halides to [Pd(0)/L] is easily performed and show the concurrent OA to Pd(0) of the sp(3)C-Cl bond of dichloromethane solvent. The resulting unstable Pd/alkyl complex is characterized by NMR and single crystal X-ray structure. We additionally observed the perfect stereoselectivity of the OA reactions which is induced by the tetraphosphane ligand L1. Altogether, a clearer picture of the general effects of congested polydentate ligands on the OA of organic halides to Pd(0) is given. PMID:24107007

  9. Synthesis of the Cortistatin Pentacyclic Core by Alkoxide-Directed Metallacycle-Mediated Annulative Cross-Coupling.

    PubMed

    Aquino, Claudio; Greszler, Stephen N; Micalizio, Glenn C

    2016-06-01

    The pentacyclic core skeleton of the cortistatins has been prepared in a stereoselective fashion by strategic use of an alkoxide-directed metallacycle-mediated annulative cross-coupling. This metal-centered tandem reaction delivers a polyunsaturated hydrindane and establishes the C13 stereodefined quaternary center with high levels of stereocontrol. Subsequent regio- and stereoselective global hydroboration results in the realization of the DE-trans ring fusion and a tertiary alcohol at C8. Establishment of the ABC-tricyclic subunit was then accomplished through phenolic oxidation/trans-acetalization, chemoselective reduction, regioselective cleavage, and intramolecular alkylation at C5. PMID:27193994

  10. Nickel-Catalyzed Cross Couplings of Benzylic Ammonium Salts and Boronic Acids: Stereospecific Formation of Diarylethanes via C–N Bond Activation

    PubMed Central

    Maity, Prantik; Shacklady-McAtee, Danielle M.; Yap, Glenn P. A.; Sirianni, Eric R.; Watson, Mary P.

    2014-01-01

    We have developed a nickel-catalyzed cross coupling of benzylic ammonium triflates with aryl boronic acids to afford diarylmethanes and diarylethanes. This reaction proceeds under mild reaction conditions and with exceptional functional group tolerance. Further, it transforms branched benzylic ammonium salts to diarylethanes with excellent chirality transfer, offering a new strategy for the synthesis of highly enantioenriched diarylethanes from readily available chiral benzylic amines. PMID:23268734

  11. DFT studies on the directing group dependent arene-alkene cross-couplings: arene activation vs. alkene activation.

    PubMed

    Zhang, Lei; Fang, De-Cai

    2015-08-01

    Due to its green-chemistry advantages, the dehydrogenative Heck reaction (DHR) has experienced enormous growth over the past few decades. In this work, two competing reaction channels were comparatively studied for the Pd(OAc)2-catalyzed DHRs of arenes with alkenes, referred to herein as the arene activation mechanism and the alkene activation mechanism, respectively, which mainly differ in the involvement of the reactants in the C-H activation step. Our calculations reveal that the commonly accepted arene activation mechanism is plausible for the desired arene-alkene cross-coupling; in contrast, the alternative alkene activation mechanism is kinetically inaccessible for the desired cross-coupling, but it is feasible for the homo-coupling of alkenes. The nature of directing groups on reactants could mainly determine the dominance of the two competing reaction routes, and therefore, influence the experimental yields. A wide range of directing groups experimentally used are examined by the density functional theory (DFT) method in this work, providing theoretical guidance for screening compatible reactants. PMID:26108375

  12. Pd-Catalyzed Intramolecular Heck Reaction, C(sp(2))-H Activation, 1,4-Pd Migration, and Aminopalladation: Chemoselective Synthesis of Dihydroindeno[1,2,3-kl]acridines and 3-Arylindoles.

    PubMed

    Gu, Zheng-Yang; Liu, Cheng-Guo; Wang, Shun-Yi; Ji, Shun-Jun

    2016-05-20

    Palladium-catalyzed intramolecular Heck reaction and aminopalladation of N-(2-(1-phenylvinyl)phenyl)aniline for the efficient synthesis of dihydroindeno[1,2,3-kl]acridines and 3-arylindoles via tuning of the phosphine ligands and solvents under two optimized conditions are reported. The reaction follows a 1,4-Pd migration, aminopalladation, C(sp(2))-H activation, as well as five- and six-membered-ring fusion to form different products. The dihydroindeno[1,2,3-kl]acridine derivatives showed higher triplet energy (ET) levels than common blue phosphorescent dopant and may serve as good host candidates for blue triplet emitters. PMID:27137482

  13. Ni-Catalyzed Amination Reactions: An Overview.

    PubMed

    Marín, Mario; Rama, Raquel J; Nicasio, M Carmen

    2016-08-01

    Nitrogen-containing organic compounds are valuable in many fields of science and industry. The most reliable method for the construction of C(sp(2) )-N bonds is undoubtedly palladium-catalyzed amination. In spite of the great achievements made in this area, the use of expensive Pd-based catalysts constitutes an important limitation for large-scale applications. Since nickel is the least expensive and most abundant among the group 10 metals, the interest in Ni-based catalysts for processes typically catalyzed by palladium has grown considerably over the last few years. Herein, we revise the development of Ni-catalyzed amination reactions, emphasizing the most relevant and recent advances in the field. PMID:27265724

  14. Regioselective Transition-Metal-Free Allyl-Allyl Cross-Couplings.

    PubMed

    Ellwart, Mario; Makarov, Ilya S; Achrainer, Florian; Zipse, Hendrik; Knochel, Paul

    2016-08-22

    Readily prepared allylic zinc halides undergo SN 2-type substitutions with allylic bromides in a 1:1 mixture of THF and DMPU providing 1,5-dienes regioselectively. The allylic zinc species reacts at the most branched end (γ-position) of the allylic system furnishing exclusively γ,α'-allyl-allyl cross-coupling products. Remarkably, the double bond stereochemistry of the allylic halide is maintained during the cross-coupling process. Also several functional groups (ester, nitrile) are tolerated. This cross-coupling of allylic zinc reagents can be extended to propargylic and benzylic halides. DFT calculations show the importance of lithium chloride in this substitution. PMID:27430745

  15. Enantioselective synthesis of chiral isotopomers of 1-alkanols by a ZACA-Cu-catalyzed cross-coupling protocol.

    PubMed

    Xu, Shiqing; Oda, Akimichi; Negishi, Ei-ichi

    2014-12-01

    Chiral compounds arising from the replacement of hydrogen atoms by deuterium are very important in organic chemistry and biochemistry. Some of these chiral compounds have a non-measurable specific rotation, owing to very small differences between the isotopomeric groups, and exhibit cryptochirality. This particular class of compounds is difficult to synthesize and characterize. Herein, we present a catalytic and highly enantioselective conversion of terminal alkenes to various β and more remote chiral isotopomers of 1-alkanols, with ≥99 % enantiomeric excess (ee), by the Zr-catalyzed asymmetric carboalumination of alkenes (ZACA) and Cu-catalyzed cross-coupling reactions. ZACA-in situ iodinolysis of allyl alcohol and ZACA-in situ oxidation of TBS-protected ω-alkene-1-ols protocols were applied to the synthesis of both (R)- and (S)-difunctional intermediates with 80-90 % ee. These intermediates were readily purified to provide enantiomerically pure (≥99 % ee) compounds by lipase-catalyzed acetylation. These functionally rich intermediates serve as very useful synthons for the construction of various chiral isotopomers of 1-alkanols in excellent enantiomeric purity (≥99 % ee) by introducing deuterium-labeled groups by Cu-catalyzed cross-coupling reactions without epimerization. PMID:25351794

  16. Iron-Catalyzed C-C Cross-Couplings Using Organometallics.

    PubMed

    Guérinot, Amandine; Cossy, Janine

    2016-08-01

    Over the last decades, iron-catalyzed cross-couplings have emerged as an important tool for the formation of C-C bonds. A wide variety of alkenyl, aryl, and alkyl (pseudo)halides have been coupled to organometallic reagents, the most currently used being Grignard reagents. Particular attention has been devoted to the development of iron catalysts for the functionalization of alkyl halides that are generally challenging substrates in classical cross-couplings. The high functional group tolerance of iron-catalyzed cross-couplings has encouraged organic chemists to use them in the synthesis of bioactive compounds. Even if some points remain obscure, numerous studies have been carried out to investigate the mechanism of iron-catalyzed cross-coupling and several hypotheses have been proposed. PMID:27573401

  17. Upgrading Lignocellulosic Products to Drop-In Biofuels via Dehydrogenative Cross-Coupling and Hydrodeoxygenation Sequence.

    PubMed

    Sreekumar, Sanil; Balakrishnan, Madhesan; Goulas, Konstantinos; Gunbas, Gorkem; Gokhale, Amit A; Louie, Lin; Grippo, Adam; Scown, Corinne D; Bell, Alexis T; Toste, F Dean

    2015-08-24

    Life-cycle analysis (LCA) allows the scientific community to identify the sources of greenhouse gas (GHG) emissions of novel routes to produce renewable fuels. Herein, we integrate LCA into our investigations of a new route to produce drop-in diesel/jet fuel by combining furfural, obtained from the catalytic dehydration of lignocellulosic pentose sugars, with alcohols that can be derived from a variety of bio- or petroleum-based feedstocks. As a key innovation, we developed recyclable transition-metal-free hydrotalcite catalysts to promote the dehydrogenative cross-coupling reaction of furfural and alcohols to give high molecular weight adducts via a transfer hydrogenation-aldol condensation pathway. Subsequent hydrodeoxygenation of adducts over Pt/NbOPO4 yields alkanes. Implemented in a Brazilian sugarcane biorefinery such a process could result in a 53-79% reduction in life-cycle GHG emissions relative to conventional petroleum fuels and provide a sustainable source of low carbon diesel/jet fuel. PMID:26216783

  18. Transition-Metal-Free Stereospecific Cross-Coupling with Alkenylboronic Acids as Nucleophiles.

    PubMed

    Li, Chengxi; Zhang, Yuanyuan; Sun, Qi; Gu, Tongnian; Peng, Henian; Tang, Wenjun

    2016-08-31

    We herein report a transition-metal-free cross-coupling between secondary alkyl halides/mesylates and aryl/alkenylboronic acid, providing expedited access to a series of nonchiral/chiral coupling products in moderate to good yields. Stereospecific SN2-type coupling is developed for the first time with alkenylboronic acids as pure nucleophiles, offering an attractive alternative to the stereospecific transition-metal-catalyzed C(sp(2))-C(sp(3)) cross-coupling. PMID:27515390

  19. Copper-free Sonogashira cross-coupling for functionalization of alkyne-encoded proteins in aqueous medium and in bacterial cells.

    PubMed

    Li, Nan; Lim, Reyna K V; Edwardraja, Selvakumar; Lin, Qing

    2011-10-01

    Bioorthogonal reactions suitable for functionalization of genetically or metabolically encoded alkynes, for example, copper-catalyzed azide-alkyne cycloaddition reaction ("click chemistry"), have provided chemical tools to study biomolecular dynamics and function in living systems. Despite its prominence in organic synthesis, copper-free Sonogashira cross-coupling reaction suitable for biological applications has not been reported. In this work, we report the discovery of a robust aminopyrimidine-palladium(II) complex for copper-free Sonogashira cross-coupling that enables selective functionalization of a homopropargylglycine (HPG)-encoded ubiquitin protein in aqueous medium. A wide range of aromatic groups including fluorophores and fluorinated aromatic compounds can be readily introduced into the HPG-containing ubiquitin under mild conditions with good to excellent yields. The suitability of this reaction for functionalization of HPG-encoded ubiquitin in Escherichia coli was also demonstrated. The high efficiency of this new catalytic system should greatly enhance the utility of Sonogashira cross-coupling in bioorthogonal chemistry. PMID:21899368

  20. Nickel-Catalyzed Negishi Cross-Coupling of Bromodifluoroacetamides.

    PubMed

    Tarui, Atsushi; Shinohara, Saori; Sato, Kazuyuki; Omote, Masaaki; Ando, Akira

    2016-03-01

    A nickel-catalyzed Negishi coupling of bromodifluoroacetamides with arylzinc reagents has been developed. This reaction allows access to difluoromethylated aromatic compounds containing a variety of aryl groups and amide moieties. Furthermore, highly effective transformation of the functionalized difluoromethyl group (-CF2CONR(1)R(2)) was realized via microwave-assisted reduction under mild conditions. The notable features of this strategy are its generality and its use of a low-cost nickel catalyst and ligand; thus, this reaction provides a facile method for applications in drug discovery and development. PMID:26910536

  1. Single-Electron Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for sp(3)-sp(2) Cross-Coupling.

    PubMed

    Tellis, John C; Kelly, Christopher B; Primer, David N; Jouffroy, Matthieu; Patel, Niki R; Molander, Gary A

    2016-07-19

    The important role of transition metal-catalyzed cross-coupling in expanding the frontiers of accessible chemical territory is unquestionable. Despite empowering chemists with Herculean capabilities in complex molecule construction, contemporary protocols are not without their Achilles' heel: Csp(3)-Csp(2)/sp(3) coupling. The underlying challenge in sp(3) cross-couplings is 2-fold: (i) methods employing conventional, bench-stable precursors are universally reliant on extreme reaction conditions because of the high activation barrier of transmetalation; (ii) circumvention of this barrier invariably relies on use of more reactive precursors, thereby sacrificing functional group tolerance, operational simplicity, and broad applicability. Despite the ubiquity of this problem, the nature of the transmetalation step has remained unchanged from the seminal reports of Negishi, Suzuki, Kumada, and Stille, thus suggesting that the challenges in Csp(3)-Csp(2)/sp(3) coupling result from inherent mechanistic constraints in the traditional cross-coupling paradigm. Rather than submitting to the limitations of this conventional approach, we envisioned that a process rooted in single-electron reactivity could furnish the same key metalated intermediate posited in two-electron transmetalation, while demonstrating entirely complementary reactivity patterns. Inspired by literature reports on the susceptibility of organoboron reagents toward photochemical, single-electron oxidative fragmentation, realization of a conceptually novel open shell transmetalation framework was achieved in the facile coupling of benzylic trifluoroborates with aryl halides via cooperative visible-light activated photoredox and Ni cross-coupling catalysis. Following this seminal study, we disclosed a suite of protocols for the cross-coupling of secondary alkyl, α-alkoxy, α-amino, and α-trifluoromethylbenzyltrifluoroborates. Furthermore, the selective cross-coupling of Csp(3) organoboron moieties in the

  2. Copper-assisted nickel catalyzed ligand-free C(sp2)-O cross-coupling of vinyl halides and phenols.

    PubMed

    Kundu, Debasish; Maity, Pintu; Ranu, Brindaban C

    2014-02-21

    A convenient and efficient protocol has been achieved for the cross-coupling of phenols and vinyl halides by a unique Ni/Cu catalytic system for the first time, where the reaction is catalyzed by Ni and Cu is involved in the transmetalation process. This procedure provides an easy access to a library of aryl-vinyl and aryl-styrenyl ethers. PMID:24502267

  3. Synthesis of Aryldifluoroamides by Copper-Catalyzed Cross-Coupling.

    PubMed

    Arlow, Sophie I; Hartwig, John F

    2016-03-24

    A copper-catalyzed coupling of aryl, heteroaryl, and vinyl iodides with α-silyldifluoroamides is reported. The reaction forms α,α-difluoro-α-aryl amides from electron-rich, electron-poor, and sterically hindered aryl iodides in high yield and tolerates a variety of functional groups. The aryldifluoroamide products can be transformed further to provide access to a diverse array of difluoroalkylarenes, including compounds of potential biological interest. PMID:26929068

  4. A highly active water-soluble cross-coupling catalyst based on dendritic polyglycerol N-heterocyclic carbene palladium complexes.

    PubMed

    Meise, Markus; Haag, Rainer

    2008-01-01

    A new water-soluble polyglycerol derivative functionalized with N-heterocyclic carbene palladium complexes was prepared and applied as catalyst for Suzuki cross-coupling reactions in water. The complex displays a metal loading of around 65 metal centers per dendrimeric molecule, which is estimated to contain 130 chelating groups and thus corresponds approximately to the formation of 2:1 NHC/metal complexes. Monomeric analogues were also synthesized to validate the reactivity of the dendritic catalyst. Both types of catalysts were tested with various aryl bromides and arylboronic acids. Turnover frequencies of up to 2586 h(-1) at 80 degrees C were observed with the dendritic catalyst along with turnover numbers of up to 59 000, which are among the highest turnover numbers reported for polymer-supported catalysts in neat water. The dendritic catalyst could be used (reused) in five consecutive reactions without loss in activity. PMID:18702166

  5. Silylesterification of oxidized multi-wall carbon nanotubes by catalyzed dehydrogenative cross-coupling between carboxylic and hydrosilane functions

    NASA Astrophysics Data System (ADS)

    Seffer, J.-F.; Detriche, S.; Nagy, J. B.; Delhalle, J.; Mekhalif, Z.

    2014-06-01

    Surface modification of oxidized carbon nanotubes (O-CNTs) with silicon based anchoring groups (R-SiR3) is a relatively uncommon approach of the CNTs functionalization. Hydrosilane derivatives constitute an attractive subclass of compounds for silanization reactions on the CNTs surface. In this work, we report on the ZnCl2 catalytically controlled reaction (hydrosilane dehydrogenative cross-coupling, DHCC) of fluorinated hydrosilane probes with the carboxylic functions present on the surface of oxidized multi-wall carbon nanotubes. Carbon nanotubes functionalized with essentially alcohol groups are also used to compare the selectivity of zinc chloride toward carboxylic groups. To assess the efficiency of functionalization, X-ray Photoelectron Spectroscopy is used to determine the qualitative and quantitative composition of the different samples. Solubility tests on the oxidized and silanized MWNTs are also carried out in the framework of the Hansen Solubility Parameters (HSP) theory to apprehend at another scale the effect of DHCC.

  6. Predicting transmission of structure-borne sound power from machines by including terminal cross-coupling

    NASA Astrophysics Data System (ADS)

    Ohlrich, Mogens

    2011-10-01

    Structure-borne sound generated by audible vibration of machines in vehicles, equipment and house-hold appliances is often a major cause of noise. Such vibration of complex machines is mostly determined and quantified by measurements. It has been found that characterization of the vibratory source strength and the prediction of power transmission to a supporting structure or the machine casing itself can be greatly simplified if all mobility cross-terms and spatial cross-coupling of source velocities can be neglected in the analysis. In many cases this gives an acceptable engineering accuracy, especially at mid- and high-frequencies. For structurally compact machines, however, the influence of cross-coupling cannot always be ignored. The present paper addresses this problem and examines the transmission of structure-borne sound power by including spatial cross-coupling between pairs of translational terminals in a global plane. This paired or bi-coupled power transmission represents the simplest case of cross-coupling. The procedure and quality of the predicted transmission using this improved technique is demonstrated experimentally for an electrical motor unit with an integrated radial fan that was mounted resiliently in a vacuum cleaner casing. It is found that cross-coupling plays a significant role, but only at frequencies below 100 Hz for the examined system.

  7. An investigation of polarization cross-coupling in air-core photonic bandgap fibers

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobin; Song, Ningfang; Zhang, Zhihao; Zhang, Zuchen; Jin, Jing; Zhang, Chunxi

    2016-05-01

    Polarization cross-coupling is one of the most important problems in air-core photonic bandgap fibers (PBF). In this research, polarization cross-coupling is investigated for PBFs of different lengths. The analyzing and simulation results show that the orientation of the birefringent axes induced by residual core ellipticity fluctuates with an average period of ~2.5 cm and random angles uniformly distributed over approximately [-7.5°, 7.5°]. The birefringent orientation in PBF varies much more frequently and strongly than that in any conventional fiber because of the difference in drawing process, and this is the most important factor causing the strong polarization cross-coupling in PBFs.

  8. Cross-Coupled Eye Movement Supports Neural Origin of Pattern Strabismus

    PubMed Central

    Ghasia, Fatema F.; Shaikh, Aasef G.; Jacobs, Jonathan; Walker, Mark F.

    2015-01-01

    Purpose. Pattern strabismus describes vertically incomitant horizontal strabismus. Conventional theories emphasized the role of orbital etiologies, such as abnormal fundus torsion and misaligned orbital pulleys as a cause of the pattern strabismus. Experiments in animal models, however, suggested the role of abnormal cross-connections between the neural circuits. We quantitatively assessed eye movements in patients with pattern strabismus with a goal to delineate the role of neural circuits versus orbital etiologies. Methods. We measured saccadic eye movements with high-precision video-oculography in 14 subjects with pattern strabismus, 5 with comitant strabismus, and 15 healthy controls. We assessed change in eye position in the direction orthogonal to that of the desired eye movement (cross-coupled responses). We used fundus photography to quantify the fundus torsion. Results. We found cross-coupling of saccades in all patients with pattern strabismus. The cross-coupled responses were in the same direction in both eyes, but larger in the nonviewing eye. All patients had clinically apparent inferior oblique overaction with abnormal excylotorsion. There was no correlation between the amount of the fundus torsion or the grade of oblique overaction and the severity of cross-coupling. The disconjugacy in the saccade direction and amplitude in pattern strabismics did not have characteristics predicted by clinically apparent inferior oblique overaction. Conclusions. Our results validated primate models of pattern strabismus in human patients. We found no correlation between ocular torsion or oblique overaction and cross-coupling. Therefore, we could not ascribe cross-coupling exclusively to the orbital etiology. Patients with pattern strabismus could have abnormalities in the saccade generators. PMID:26024072

  9. X-ray photoelectron spectroscopy studies of bond structure between polyvinyl alcohol and a titanate cross-coupling agent

    SciTech Connect

    Guelguen, M.A.; Popoola, O.O.; Kriven, W.M.

    1995-06-01

    Chemical interactions between polyvinyl alcohol (PVA) and triethanol amine titanate chelate were studied using x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The titanate chelate cross coupled the PVA solution and produced a viscous gel. The gel had a three- dimensional network structure containing --C{sub PVA}--O--Ti--O--C{sub PVA}--organic complexes. A new C(1{ital s}) signature at 285.7 eV and an O(1{ital s}) signature at 531.25 eV were associated with the formation of these complexes. The water of the PVA solution was physically retained in the gelled structure and was readily available for chemical reactions. The removal of this entrapped water was irreversible and lead to a collapsed film of Ti-cross-linked PVA.

  10. A stepwise dechlorination/cross-coupling strategy to diversify the vancomycin 'in-chloride'.

    PubMed

    Wadzinski, Tyler J; Gea, Katherine D; Miller, Scott J

    2016-02-01

    In an effort to rapidly access vancomycin analogues bearing diverse functionality at the 6c-Cl (the 'in-chloride') position, a two-step dechlorination/cross-coupling protocol was developed. Conditions for efficient cross-coupling of the relatively unreactive 6c-Cl group were found that ensure high conversion with minimal product decomposition. A set of 2c-dechloro-6c-functionalized vancomycin derivatives was prepared, and antibiotic activities of the compounds were evaluated against a panel of vancomycin-resistant and vancomycin-susceptible strains. Results from biological testing further underscore the steric sensitivity of vancomycin's binding pocket. PMID:26725950

  11. Distal Stereocontrol Using Guanidinylated Peptides as Multifunctional Ligands: Desymmetrization of Diarylmethanes via Ullman Cross-Coupling.

    PubMed

    Kim, Byoungmoo; Chinn, Alex J; Fandrick, Daniel R; Senanayake, Chris H; Singer, Robert A; Miller, Scott J

    2016-06-29

    We report the development of a new class of guanidine-containing peptides as multifunctional ligands for transition-metal catalysis and its application in the remote desymmetrization of diarylmethanes via copper-catalyzed Ullman cross-coupling. Through design of these peptides, high levels of enantioinduction and good isolated yields were achieved in the long-range asymmetric cross-coupling (up to 93:7 er and 76% yield) between aryl bromides and malonates. Our mechanistic studies suggest that distal stereocontrol is achieved through a Cs-bridged interaction between the Lewis-basic C-terminal carboxylate of the peptides with the distal arene of the substrate. PMID:27254785

  12. The Multiple Facets of Iodine(III) Compounds in an Unprecedented Catalytic Auto-amination for Chiral Amine Synthesis.

    PubMed

    Buendia, Julien; Grelier, Gwendal; Darses, Benjamin; Jarvis, Amanda G; Taran, Frédéric; Dauban, Philippe

    2016-06-20

    Iodine(III) reagents are used in catalytic one-pot reactions, first as both oxidants and substrates, then as cross-coupling partners, to afford chiral polyfunctionalized amines. The strategy relies on an initial catalytic auto C(sp(3) )-H amination of the iodine(III) oxidant, which delivers an amine-derived iodine(I) product that is subsequently used in palladium-catalyzed cross-couplings to afford a variety of useful building blocks with high yields and excellent stereoselectivities. This study demonstrates the concept of self-amination of the hypervalent iodine reagents, which increases the value of the aryl moiety. PMID:27158802

  13. Catalysis in the Service of Green Chemistry: Nobel Prize-Winning Palladium-Catalysed Cross-Couplings, Run in Water at Room Temperature

    PubMed Central

    Lipshutz, Bruce H.; Taft, Benjamin R.; Abela, Alexander R.; Ghorai, Subir; Krasovskiy, Arkady; Duplais, Christophe

    2012-01-01

    Palladium-catalysed cross-couplings, in particular Heck, Suzuki-Miyaura and Negishi reactions developed over three decades ago, are routinely carried out in organic solvents. However, alternative media are currently of considerable interest given an increasing emphasis on making organic processes ‘greener’; for example, by minimising organic waste in the form of organic solvents. Water is the obvious leading candidate in this regard. Hence, this review focuses on the application of micellar catalysis, in which a ‘designer’ surfactant enables these award-winning coupling reactions to be run in water at room temperature. PMID:23555153

  14. Directing Group in Decarboxylative Cross-Coupling: Copper-Catalyzed Site-Selective C-N Bond Formation from Nonactivated Aliphatic Carboxylic Acids.

    PubMed

    Liu, Zhao-Jing; Lu, Xi; Wang, Guan; Li, Lei; Jiang, Wei-Tao; Wang, Yu-Dong; Xiao, Bin; Fu, Yao

    2016-08-01

    Copper-catalyzed directed decarboxylative amination of nonactivated aliphatic carboxylic acids is described. This intramolecular C-N bond formation reaction provides efficient access to the synthesis of pyrrolidine and piperidine derivatives as well as the modification of complex natural products. Moreover, this reaction presents excellent site-selectivity in the C-N bond formation step through the use of directing group. Our work can be considered as a big step toward controllable radical decarboxylative carbon-heteroatom cross-coupling. PMID:27439145

  15. Cp*Rh(III)-Catalyzed Cross-Coupling of Alkyltrifluoroborate with α-Diazomalonates for C(sp(3))-C(sp(3)) Bond Formation.

    PubMed

    Lu, Yin-Suo; Yu, Wing-Yiu

    2016-03-18

    A Cp*Rh(III)-catalyzed cross-coupling of alkyltrifluoroborate with α-diazomalonates was developed; the C(sp(3))-C(sp(3)) bond coupled products were formed in up to 97% yields. The reaction tolerates some useful functional groups, including ketone, ester, amide, ether, sulfonyl, and thiophene. Electrospray ionization mass spectrometry (ESI-MS) analysis revealed the formation of a distinct molecular species corresponding to σ-alkylrhodium(III) complexes. The successful diazo coupling reaction may be attributed to coordination of the amide group that promotes stability of the alkylrhodium(III) complex through the formation of a five-membered metallacycle. PMID:26926387

  16. MIDA-vinylsilanes: selective cross-couplings and applications to the synthesis of functionalized stilbenes.

    PubMed

    McLaughlin, Mark G; McAdam, Catherine A; Cook, Matthew J

    2015-01-01

    A rapid and stereodefined synthesis of MIDA-boryl vinylsilanes has been achieved through the hydrosilylation of an alkynylboronic ester. The E products which contain a silyl and boryl group can be selectively cross-coupled in a two-step bidirectional sequence to provide a rapid and high-yielding synthesis of complex styrenes. PMID:25513732

  17. Substituent-enabled oxidative dehydrogenative cross-coupling of 1,4-naphthoquinones with alkenes.

    PubMed

    Zhang, Chi; Wang, Meining; Fan, Zhoulong; Sun, Li-Ping; Zhang, Ao

    2014-08-15

    A Rh-catalyzed oxidative dehydrogenative cross-coupling of 1,4-naphthquinones with alkenes was achieved by using a substituent-enabled C(sp(2))-H functionalization (SEF) strategy. The method shows high functional group tolerance, broad substrate scope, and great potential for further functional transformations. PMID:25075553

  18. Selective Radical-Radical Cross-Couplings: Design of a Formal β-Mannich Reaction.

    PubMed

    Jeffrey, Jenna L; Petronijević, Filip R; MacMillan, David W C

    2015-07-01

    A direct β-coupling of cyclic ketones with imines has been accomplished via the synergistic combination of photoredox catalysis and organocatalysis. Transient β-enaminyl radicals derived from ketones via enamine and oxidative photoredox catalysis readily combine with persistent α-amino radicals in a highly selective hetero radical-radical coupling. This novel pathway to γ-aminoketones is predicated upon the use of DABCO as both a base and an electron transfer agent. This protocol also formally allows for the direct synthesis of β-Mannich products via a chemoselective three-component coupling of aryl aldehydes, amines, and ketones. PMID:26075347

  19. Nickel-Catalyzed Allylic Alkylation with Diarylmethane Pronucleophiles: Reaction Development and Mechanistic Insights.

    PubMed

    Sha, Sheng-Chun; Jiang, Hui; Mao, Jianyou; Bellomo, Ana; Jeong, Soo A; Walsh, Patrick J

    2016-01-18

    Palladium-catalyzed allylic substitution reactions are among the most efficient methods to construct C-C bonds between sp(3)-hybridized carbon atoms. In contrast, much less work has been done with nickel catalysts, perhaps because of the different mechanisms of the allylic substitution reactions. Palladium catalysts generally undergo substitution by a "soft"-nucleophile pathway, wherein the nucleophile attacks the allyl group externally. Nickel catalysts are usually paired with "hard" nucleophiles, which attack the metal before C-C bond formation. Introduced herein is a rare nickel-based catalyst which promotes substitution with diarylmethane pronucleophiles by the soft-nucleophile pathway. Preliminary studies on the asymmetric allylic alkylation are promising. PMID:26756444

  20. Palladium-catalyzed Cs2CO3-promoted arylation of unactivated C(sp(3))-H bonds by (diacetoxyiodo)arenes: shifting the reactivity of (diacetoxyiodo)arenes from acetoxylation to arylation.

    PubMed

    Gou, Quan; Zhang, Zhao-Fu; Liu, Zhi-Cheng; Qin, Jun

    2015-03-20

    PdCl2(CH3CN)2-catalyzed arylation of unactivated C(sp(3))-H bonds using (diacetoxyiodo)arenes as arylation reagents is reported. The reactivity of (diacetoxyiodo)arenes as arylation reagents is enabled in the presence of Cs2CO3 under the reaction conditions. This arylation method is highly efficient and occurs without the use of silver salt. The reaction tolerates a broad substrate scope that was not demonstrated by other silver salt-free C(sp(3))-H bond arylation conditions. The synthetic utility of the method is further illustrated in the synthesis of the psychotropic drug phenibut. A detailed mechanism study has been conducted to understand the reaction pathway. PMID:25763683

  1. Conditioned feeding suppression in rats produced by cross-coupled and simple motions

    NASA Technical Reports Server (NTRS)

    Fox, R. A.; Daunton, N. G.

    1982-01-01

    Results are presented of an experiment on the induction of motion sickness in rats by the use of cross-coupled accelerations of magnitudes similar to those used in human experiments. Accelerations were produced in a seesaw apparatus with rotating disks supporting the animal cages mounted on each seesaw arm, and motion sickness was assessed according to the consumption of a sweet food previously offered to the animals immediately before the motion treatment. During a 1-hour test session 72 h after motion treatment and after a 24-h fast, rats having undergone cross-coupled vertical sinusoidal and rotational motion are observed to consume less food than those having experienced either type of motion alone, or no motion. The ordering of the conditioned suppressive feeding effects is consistent with the amounts of vestibular stimulation produced by the respective motions. The results support the existence of motion sickness effects in rats, even though they are unable to vomit.

  2. Novel bidirectional path measurement of polarization cross-coupling distribution in PMF

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Wang, Shu; Song, Jingming; Song, Ningfang; Sun, Zuoming; Pan, Yue

    2013-08-01

    The measurement accuracy of polarization cross-coupling strength based on white-light interferometry obviously decreases in long-distance polarization maintaining fiber (PMF), due to the difference of dispersion between two eigenmodes (birefringence dispersion). In this paper, we demonstrate a bidirectional measurement method with the scheme including a polarization maintaining coupler, a magnetic optical circulator and an Optical Coherence Domain Polarimeter (OCDP). The experiment setup and results are described in detail. The cross-coupling distribution results from each direction measurement were processed to mitigate the influence of dispersion. The compensation is conducted on coupling strength results, instead of raw interference signal in traditional method. The method saves the investigation of birefringence dispersion coefficient and light source parameters compared with compensation in frequency domain. Our experiment with a PMF coil of 200m length demonstrates the effectiveness in improving strength accuracy with absolute deviation less than 0.31dB, and spatial resolution recovered to 8.4cm.

  3. Cross Coupling Compensation Strategy and System Test of Dual-Driving Synchronous Control

    NASA Astrophysics Data System (ADS)

    Lu, Hong; Fan, Wei; Xie, Shitong

    This paper focus on the synchronous control of dual-driving system, a cross coupling compensation strategy is proposed to guarantee the synchronization. Based on the stable single servo system, dual-driving synchronous control system is designed. The performance of the dual-driving system adopted cross-coupled strategy' is theoretically analyzed and simulated. Furthermore, the parameters of the speed loop and position loop is regulated to optimize the system. By using frequency domain analysis method to tune parameters of control system, dual-driving synchronous motion is finally well achieved. The results of the performance analysis and the simulation test indicates that this synchronous control scheme has fast response, small dynamic error and robustness to external disturbance.

  4. One-pot synthesis of 4′-alkyl-4-cyanobiaryls on the basis of the terephthalonitrile dianion and neutral aromatic nitrile cross-coupling

    PubMed Central

    Peshkov, Roman Yu; Chunyan, Wang; Tretyakov, Evgeny V; Shteingarts, Vitalij D

    2016-01-01

    Summary A convenient one-pot approach to alkylcyanobiaryls is described. The method is based on biaryl cross-coupling between the sodium salt of the terephthalonitrile dianion and a neutral aromatic nitrile in liquid ammonia, and successive alkylation of the long-lived anionic intermediate with alkyl bromides. The reaction is compatible with benzonitriles that contain methyl, methoxy and phenyl groups, fluorine atoms, and a 1-cyanonaphthalene residue. The variety of ω-substituted alkyl bromides, including an extra bromine atom, a double bond, cyano and ester groups, as well as a 1,3-dioxane fragment are suitable as alkylation reagents. PMID:27559409

  5. Water-Soluble Pd-Imidate Complexes: Broadly Applicable Catalysts for the Synthesis of Chemically Modified Nucleosides via Pd-Catalyzed Cross-Coupling.

    PubMed

    Gayakhe, Vijay; Ardhapure, Ajaykumar; Kapdi, Anant R; Sanghvi, Yogesh S; Serrano, Jose Luis; García, Luis; Pérez, Jose; García, Joaquím; Sánchez, Gregorio; Fischer, Christian; Schulzke, Carola

    2016-04-01

    A broadly applicable catalyst system consisting of water-soluble Pd-imidate complexes has been enployed for the Suzuki-Miyaura cross-coupling of four different nucleosides in water under mild conditions. The efficient nature of the catalyst system also allowed its application in developing a microwave-assisted protocol with the purpose of expediting the catalytic reaction. Preliminary mechanistic studies, assisted by catalyst poison tests and stoichiometric tests performed using an electrospray ionization spectrometer, revealed the possible presence of a homotopic catalyst system. PMID:26924820

  6. One-pot synthesis of 4'-alkyl-4-cyanobiaryls on the basis of the terephthalonitrile dianion and neutral aromatic nitrile cross-coupling.

    PubMed

    Peshkov, Roman Yu; Panteleeva, Elena V; Chunyan, Wang; Tretyakov, Evgeny V; Shteingarts, Vitalij D

    2016-01-01

    A convenient one-pot approach to alkylcyanobiaryls is described. The method is based on biaryl cross-coupling between the sodium salt of the terephthalonitrile dianion and a neutral aromatic nitrile in liquid ammonia, and successive alkylation of the long-lived anionic intermediate with alkyl bromides. The reaction is compatible with benzonitriles that contain methyl, methoxy and phenyl groups, fluorine atoms, and a 1-cyanonaphthalene residue. The variety of ω-substituted alkyl bromides, including an extra bromine atom, a double bond, cyano and ester groups, as well as a 1,3-dioxane fragment are suitable as alkylation reagents. PMID:27559409

  7. Synthesis of Substituted Pyrazoles via Tandem Cross-Coupling/Electrocyclization of Enol Triflates and Diazoacetates

    PubMed Central

    Babinski, David J.; Aguilar, Hector R.; Still, Raymond; Frantz, Doug E.

    2011-01-01

    The synthesis of 3,4,5-trisubstituted pyrazoles via a tandem catalytic cross-coupling/electrocyclization of enol triflates and diazoacetates is presented. The initial scope of this methodology is demonstrated on a range of differentially substituted acyclic and cyclic enol triflates as well as an elaborated set of diazoacetates to provide the corresponding pyrazoles with a high degree of structural complexity. PMID:21682322

  8. Ni-Catalyzed Dehydrogenative Cross-Coupling: Direct Transformation of Aldehydes to Esters and Amides

    PubMed Central

    Whittaker, Aaron M.; Dong, Vy M.

    2015-01-01

    By exploring a new mode of Ni-catalyzed cross-coupling, we have developed a protocol to transform both aromatic and aliphatic aldehydes into either esters or amides directly. The success of this oxidative coupling depends on the appropriate choice of catalyst and organic oxidant, including the use of either α,α,α-trifluoroacetophenone or excess aldehyde. We present mechanistic data that supports a catalytic cycle involving oxidative addition into the aldehyde C–H bond. PMID:25424967

  9. Nickel-catalyzed dehydrogenative cross-coupling: direct transformation of aldehydes into esters and amides.

    PubMed

    Whittaker, Aaron M; Dong, Vy M

    2015-01-19

    By exploring a new mode of nickel-catalyzed cross-coupling, a method to directly transform both aromatic and aliphatic aldehydes into either esters or amides has been developed. The success of this oxidative coupling depends on the appropriate choice of catalyst and organic oxidant, including the use of either α,α,α-trifluoroacetophenone or excess aldehyde. Mechanistic data that supports a catalytic cycle involving oxidative addition into the aldehyde C-H bond is also presented. PMID:25424967

  10. Ligand-enabled cross-coupling of C(sp3)-H bonds with arylboron reagents via Pd(II)/Pd(0) catalysis

    NASA Astrophysics Data System (ADS)

    Chan, Kelvin S. L.; Wasa, Masayuki; Chu, Ling; Laforteza, Brian N.; Miura, Masanori; Yu, Jin-Quan

    2014-02-01

    There have been numerous developments in C-H activation reactions in the past decade. Attracted by the ability to functionalize molecules directly at ostensibly unreactive C-H bonds, chemists have discovered reaction conditions that enable reactions of C(sp2)-H and C(sp3)-H bonds with a variety of coupling partners. Despite these advances, the development of suitable ligands that enable catalytic C(sp3)-H bond functionalization remains a significant challenge. Herein we report the discovery of a mono-N-protected amino acid ligand that enables Pd(II)-catalysed coupling of γ-C(sp3)-H bonds in triflyl-protected amines with arylboron reagents. Remarkably, no background reaction was observed in the absence of ligand. A variety of amine substrates and arylboron reagents were cross-coupled using this method. Arylation of optically active substrates derived from amino acids also provides a potential route for preparing non-proteinogenic amino acids.

  11. Enantio-Relay Catalysis Constructs Chiral Biaryl Alcohols over Cascade Suzuki Cross-Coupling-Asymmetric Transfer Hydrogenation

    NASA Astrophysics Data System (ADS)

    Zhang, Dacheng; Gao, Xiaoshuang; Cheng, Tanyu; Liu, Guohua

    2014-05-01

    The construction of chiral biaryl alcohols using enantio-relay catalysis is a particularly attractive synthetic method in organic synthesis. However, overcoming the intrinsic incompatibility of distinct organometallic complexes and the reaction conditions used are significant challenges in asymmetric catalysis. To overcome these barriers, we have taken advantage of an enantio-relay catalysis strategy and a combined dual-immobilization approach. We report the use of an imidazolium-based organopalladium-functionalized organic-inorganic hybrid silica and ethylene-coated chiral organoruthenium-functionalized magnetic nanoparticles to catalyze a cascade Suzuki cross-coupling-asymmetric transfer hydrogenation reaction to prepare chiral biaryl alcohols in a two-step, one-pot process. As expected, the site-isolated active species, salient imidazolium phase-transfer character and high ethylene-coated hydrophobicity can synergistically boost the catalytic performance. Furthermore, enantio-relay catalysis has the potential to efficiently prepare a variety of chiral biaryl alcohols. Our synthetic strategy is a general method that shows the potential of developing enantio-relay catalysis towards environmentally benign and sustainable organic synthesis.

  12. Mild and General Access to Diverse 1H-Benzotriazoles via Diboron-Mediated N–OH Deoxygenation and Palladium-Catalyzed C–C and C–N Bond Formation

    PubMed Central

    Gurram, Venkateshwarlu; Akula, Hari K.; Garlapati, Ramesh; Pottabathini, Narender; Lakshman, Mahesh K.

    2015-01-01

    Benzotriazoles are a highly important class of compounds with broad-ranging applications in such diverse areas as medicinal chemistry, as auxiliaries in organic synthesis, in metallurgical applications, in aircraft deicing and brake fluids, and as antifog agents in photography. Although there are numerous approaches to N-substituted benzotriazoles, the essentially one general method to N-unsubstituted benzotriazoles is via diazotization of o-phenylenediamines, which can be limited by the availability of suitable precursors. Other methods to N-unsubstitued benzotriazoles are quite specialized. Although reduction of 1-hydroxy-1H-benzotriazoles is known the reactions are not particularly convenient or broadly applicable. This presents a limitation for easy access to and availability of diverse benzotriazoles. Herein, we demonstrate a new, broadly applicable method to diverse 1H-benzotriazoles via a mild diboron-reagent mediated deoxygenation of 1-hydroxy-1H-benzotriazoles. We have also evaluated sequential deoxygenation and Pd-mediated C–C and C–N bond formation as a one-pot process for further diversification of the benzotriazole moiety. However, results indicated that purification of the deoxygenation product prior to the Pd-mediated reaction is critical to the success of such reactions. The overall chemistry allows for facile access to a variety of new benzotriazoles. Along with the several examples presented, a discussion of the advantages of the approaches is described, as also a possible mechanism for the deoxygenation process. PMID:25729343

  13. Exploring the Application of the Negishi Reaction of HaloBODIPYs: Generality, Regioselectivity, and Synthetic Utility in the Development of BODIPY Laser Dyes.

    PubMed

    Palao, Eduardo; Duran-Sampedro, Gonzalo; de la Moya, Santiago; Madrid, Miriam; García-López, Carmen; Agarrabeitia, Antonia R; Verbelen, Bram; Dehaen, Wim; Boens, Nöel; Ortiz, María J

    2016-05-01

    The generality of the palladium-catalyzed C-C coupling Negishi reaction when applied to haloBODIPYs is demonstrated on the basis of selected starting BODIPYs, including polyhalogenated and/or asymmetrical systems, and organozinc reagents. This reaction is an interesting synthetic tool in BODIPY chemistry, mainly because it allows a valuable regioselective postfunctionalization of BODIPY chromophores with different functional groups. In this way, functional patterns that are difficult to obtain by other procedures (e.g., asymmetrically functionalized BODIPYs involving halogenated positions) can now be made. The regioselectivity is achieved by controlling the reaction conditions and is based on almost-general reactivity preferences, and the nature of the involved halogens and their positions. This ability is exemplified by the preparation of a series of new BODIPY dyes with unprecedented substitution patterns allowing noticeable lasing properties. PMID:27055068

  14. Pd-catalyzed arylation of chlorotrifluoroethylene using arylboronic acids.

    PubMed

    Yamamoto, Tetsuya; Yamakawa, Tetsu

    2012-07-01

    The palladium-catalyzed cross-coupling of chlorotrifluoroethylene and arylboronic acids proceeds in the presence of a base and H(2)O to provide α,β,β-trifluorostyrene derivatives in satisfactory yields. PMID:22691065

  15. On-Surface Cross Coupling Methods for the Construction of Modified Electrode Assemblies with Tailored Morphologies †

    PubMed Central

    Gietter, Amber A. S.; Pupillo, Rachel C.; Yap, Glenn P. A.; Beebe, Thomas P.

    2014-01-01

    Controlling the molecular topology of electrode–catalyst interfaces is a critical factor in engineering devices with specific electron transport kinetics and catalytic efficiencies. As such, the development of rational methods for the modular construction of tailorable electrode surfaces with robust molecular wires (MWs) exhibiting well-defined molecular topologies, conductivities and morphologies is critical to the evolution and implementation of electrochemical arrays for sensing and catalysis. In response to this need, we have established modular on-surface Sonogashira and Glaser cross-coupling processes to synthetically install arrays of ferrocene-capped MWs onto electrochemically functionalized surfaces. These methods are of comparable convenience and efficiency to more commonly employed Huisgen methods. Furthermore, unlike the Huisgen reaction, this new surface functionalization chemistry generates modified electrodes that do not contain unwanted ancillary metal binding sites, while allowing the bridge between the ferrocenyl moiety and electrode surface to be synthetically tailored. Electrochemical and surface analytical characterization of these platforms demonstrate that the linker topology and connectivity influences the ferrocene redox potential and the kinetics of charge transport at the interface. PMID:25520772

  16. Substrate Integrated Waveguide Cross-Coupling Filter with Multilayer Hexagonal Cavity

    PubMed Central

    Wu, B.; Xu, Z. Q.; Liao, J. X.

    2013-01-01

    Hexagonal cavities and their applications to multilayer substrate integrated waveguide (SIW) filters are presented. The hexagonal SIW cavity which can combine flexibility of rectangular one and performance of circular one is convenient for bandpass filter's design. Three types of experimental configuration with the same central frequency of 10 GHz and bandwidth of 6%, including three-order and four-order cross-coupling topologies, are constructed and fabricated based on low temperature cofired ceramic (LTCC) technology. Both theoretical and experimental results are presented. PMID:24459441

  17. Substrate integrated waveguide cross-coupling filter with multilayer hexagonal cavity.

    PubMed

    Wu, B; Xu, Z Q; Liao, J X

    2013-01-01

    Hexagonal cavities and their applications to multilayer substrate integrated waveguide (SIW) filters are presented. The hexagonal SIW cavity which can combine flexibility of rectangular one and performance of circular one is convenient for bandpass filter's design. Three types of experimental configuration with the same central frequency of 10 GHz and bandwidth of 6%, including three-order and four-order cross-coupling topologies, are constructed and fabricated based on low temperature cofired ceramic (LTCC) technology. Both theoretical and experimental results are presented. PMID:24459441

  18. Wind tunnel determination of dynamic cross-coupling derivatives - A new approach

    NASA Technical Reports Server (NTRS)

    Hanff, E. S.; Orlik-Rueckemann, J.

    1980-01-01

    The latest developments in the NAE ongoing dynamic stability research program are briefly summarized. Emphasis is placed on the recently developed wind-tunnel data reduction procedures used to obtain cross and cross-coupling derivatives due to an oscillatory motion. These procedures, which account for the dynamic behaviour of the model-balance subsystem, are described for the balance configurations currently in use. The principles on which they are based, however, are quite general and can therefore be applied to other balance configurations. Two full-model dynamic stability apparatuses are described and typical results, obtained from dynamic calibrations as well as from wind-tunnel experiments, are presented.

  19. Gold-catalyzed oxidative cross-coupling of terminal alkynes: selective synthesis of unsymmetrical 1,3-diynes.

    PubMed

    Peng, Haihui; Xi, Yumeng; Ronaghi, Nima; Dong, Boliang; Akhmedov, Novruz G; Shi, Xiaodong

    2014-09-24

    Gold-catalyzed oxidative cross-coupling of alkynes to unsymmetrical diynes has been achieved for the first time. A N,N-ligand (1,10-Phen) and PhI(OAc)2 were identified as crucial factors to promote this transformation, giving the desired cross-coupled conjugated diynes in excellent heteroselectivity (>10:1), in good to excellent yields, and with large substrate tolerability. PMID:25184690

  20. Implementation of CAPIO for Composite Adaptive Control of Cross-Coupled Unstable Aircraft

    NASA Technical Reports Server (NTRS)

    Yildiz, Yildiray; Kolmanovsky, Ilya V.

    2011-01-01

    This paper presents an implementation of a recently developed control allocation algorithm CAPIO (a Control Allocation technique to recover from Pilot Induced Oscillations) for composite adaptive control of an inertially cross coupled unstable aircraft. When actuators are rate-saturated due to either an aggressive pilot command, high gain of the flight control system or some anomaly in the system, the effective delay in the control loop may increase due to the phase shifting between the desired and the achieved system states. This effective time delay may deteriorate the performance or even destabilize the system in some cases, depending on the severity of rate saturation. CAPIO reduces the effective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. We present simulation results for an unstable aircraft with cross-coupling controlled with a composite adaptive controller in the presence of rate saturation. The simulations demonstrate the potential of CAPIO serving as an effective rate saturation compensator in adverse conditions.

  1. A novel alpha-arylation of ketones, aldehydes, and esters via a photoinduced SN1 reaction through 4-aminophenyl cations.

    PubMed

    Fraboni, Andrea; Fagnoni, Maurizio; Albini, Angelo

    2003-06-13

    4-Aminophenyl cations (expediently generated by photolysis of 4-chloroaniline and its N,N-dimethyl derivative by photolysis in MeCN) added to enamines and gave the corresponding alpha-(4-aminophenyl) ketones in satisfactory yields. The yields of the same ketones were increased when silyl enol ethers were used in the place of enamines. The alpha-arylation of silyl enol ethers of aldehydes occurred with lower yields and only with the N,N-dimethyl derivative. The procedure was successful with ketene silyl acetals giving in a single step a good yield of alpha-(4-aminophenyl)propionic(acetic) esters, known intermediates for the preparation of analgesic compounds. The reaction of the aryl cation with Danishefsky's diene gave the arylated beta-methoxy enone. The method is complementary to the recently developed palladium-catalyzed alpha-arylation and occurs under neutral conditions. PMID:12790595

  2. Rational Design of a Second Generation Catalyst for Preparation of Allylsilanes Using the Silyl-Heck Reaction

    PubMed Central

    2015-01-01

    Using rational ligand design, we have developed of a second-generation ligand, bis(3,5-di-tert-butylphenyl)(tert-butyl)phosphine, for the preparation of allylsilanes using the palladium-catalyzed silyl-Heck reaction. This new ligand provides nearly complete suppression of starting material alkene isomerization that was observed with our first-generation catalyst, providing vastly improved yields of allylsilanes from simple alkene starting materials. The studies quantifying the electronic and steric properties of the new ligand are described. Finally, we report an X-ray crystal structure of a palladium complex resulting from the oxidative addition of Me3SiI using an analogous ligand that provides significant insight into the nature of the catalytic system. PMID:25003502

  3. Structural Analogues of Selfotel.

    PubMed

    Dziuganowska, Zofia A; Ślepokura, Katarzyna; Volle, Jean-Noël; Virieux, David; Pirat, Jean-Luc; Kafarski, Paweł

    2016-06-17

    A small library of phosphonopiperidylcarboxylic acids, analogues of NMDA antagonist selfotel (CGS 19755), was synthesized. First, the series of aromatic esters was obtained via a palladium-catalyzed cross-coupling reaction (Hirao coupling) of dialkyl phosphites with bromopyridinecarboxylates, followed by their hydrolysis. Then, hydrogenation of the resulting phosphonopyridylcarboxylic acids over PtO2 yielded the desired phosphonopiperidylcarboxylic acids. NMR studies indicated that the hydrogenation reaction proceeds predominantly by cis addition. Several compounds were obtained as monocrystal structures. Preliminary biological studies performed on cultures of neurons suggest that the obtained compounds possess promising activity toward NMDA receptors. PMID:27187758

  4. Coordinating activation strategy for C(sp(3))-H/C(sp(3))-H cross-coupling to access β-aromatic α-amino acids.

    PubMed

    Li, Kaizhi; Wu, Qian; Lan, Jingbo; You, Jingsong

    2015-01-01

    The past decade has witnessed significant advances in C-H bond functionalizations with the discovery of new mechanisms. Non-precious transition-metal-catalysed radical oxidative coupling for C(sp(3))-H bond transformations is an appealing strategy for C-C bond formations. The radical oxidative C(sp(3))-H/C(sp(3))-H cross-coupling reactions of α-C(sp(3))-H bonds of amines with free radicals represent a conceptual and practical challenge. We herein develop the coordinating activation strategy to illustrate the nickel-catalysed radical oxidative cross-coupling between C(sp(3))-H bonds and (hetero)arylmethyl free radicals. The protocol can tolerate a rich variety of α-amino acids and (hetero)arylmethanes as well as arylmethylenes and arylmethines, affording a large library of α-tertiary and α-quaternary β-aromatic α-amino acids. This process also features low-cost metal catalyst, readily handled and easily removable coordinating group, synthetic simplicity and gram-scale production, which would enable the potential for economical production at commercial scale in the future. PMID:26415985

  5. Effects of visual reference on adaptation to motion sickness and subjective responses evoked by graded cross-coupled angular accelerations. [vestibular oculogravic effect in human acceleration adaptation

    NASA Technical Reports Server (NTRS)

    Reason, J. T.; Diaz, E.

    1973-01-01

    Three groups of 10 subjects each were exposed to stepwise increments of cross coupled angular accelerations in three visual modes: internal visual reference (IVR), external visual reference (EVR), and vision absent (VA). The subjects in the IVR condition required significantly greater amounts of stimulus exposure to neutralize their illusory subjective reactions. They also suffered a greater loss of well-being and a more marked incidence of motion sickness than did subjects in the EVR and VA conditions. The same 30 subjects were reexposed to the same graded cross coupled stimulation 1 week later. This time, however, all the subjects were tested under only the IVR condition. All three groups showed some positive transfer of adaptation, but only the IVR-IVR combination required significantly fewer head motions to achieve the same level of adaptation on the second occasion. Taken overall, however, the most efficient and least disturbing route to adaptation at the completion of the second test was via the VA-IVR combination.

  6. Palladium-catalyzed dicarbonylative synthesis of tetracycle quinazolinones.

    PubMed

    Shen, Chaoren; Man, Nikki Y T; Stewart, Scott; Wu, Xiao-Feng

    2015-04-21

    An interesting procedure for the synthesis of isoindolo[1,2-b]quinazolin-10(12H)-ones has been developed. Starting from commercially available 2-bromoanilines and 2-bromobenzyl amines, with the assistance of a palladium catalyst, the desired products were isolated in good yields. Notably, this procedure proceeded in a highly selective manner; two molecules of CO were incorporated into the substrates selectively. PMID:25783465

  7. Synthesis of 5-Fluoroalkylated Pyrimidine Nucleosides via Negishi Cross-Coupling

    PubMed Central

    Chacko, Ann-Marie; Qu, Wenchao

    2014-01-01

    5-fluoroalkylated pyrimidine nucleosides (1) have potential as therapeutic agents and molecular imaging agents targeting HSV1-tk suicide gene therapy. Thus, straightforward preparation of 5-fluoroalkylated nucleoside derivatives has been developed. Reported herein are the first examples of Pd-catalyzed Negishi cross-coupling of 3-N-benzoyl-3′,5′-di-O-benzoyl-5-iodo-2′-deoxyuridine (2a) and 3-N-benzoyl-3′,5′-di-O-benzoyl-5-iodo-2′-deoxy-2′-fluoroarabinouridine (2b) with unactivated Csp3 fluoroalkylzinc bromides. This paper demonstrates the first synthesis of six 5-fluoroalkyl-2′-deoxy pyrimidine nucleoside derivatives with three to five methylene-chain lengths (5). Furthermore, this methodology has been extended to create a series of thirteen 5-alkyl substituted nucleosides, including the target nucleosides 5 and 5-silyloxypropyl and 5-cyanobutyl derivatives. PMID:18522415

  8. Stability Properties and Cross Coupling Performance of the Control Allocation Scheme CAPIO

    NASA Technical Reports Server (NTRS)

    Yildiz, Yildiray; Kolmanovsky, Ilya V.

    2010-01-01

    This paper presents a stability analysis and an application of a recently developed Control Allocator for recovery from Pilot Induced Oscillations (CAPIO). When actuators are rate-saturated due to either aggressive pilot commands, high gain ight control systems or some anomaly in the system, the effective delay in the control loop may increase. This effective delay increase manifests itself as a phase shift between the commanded and actual system signals and can instigate Pilot induced Oscillations (PIO). CAPIO reduces the e ective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. We present a stability analysis of CAPIO for a scalar system. In addition, we present simulation results for aircraft with cross-coupling which demonstrates the potential of CAPIO serving as an effective PIO handler in adverse conditions.

  9. Cross coupling between electric and magnetic orders in a multiferroic metal-organic framework.

    PubMed

    Tian, Ying; Stroppa, Alessandro; Chai, Yisheng; Yan, Liqin; Wang, Shouguo; Barone, Paolo; Picozzi, Silvia; Sun, Young

    2014-01-01

    The coexistence of both electric and magnetic orders in some metal-organic frameworks (MOFs) has yielded a new class of multiferroics beyond inorganic materials. However, the coupling between two orders in multiferroic MOFs has not been convincingly verified yet. Here we present clear experimental evidences of cross coupling between electric and magnetic orders in a multiferroic MOF [(CH3)2NH2]Fe(HCOO)3 with a perovskite structure. The dielelectric constant exhibit a hump just at the magnetic ordering temperature TN. Moreover, both the direct (magnetic field control of dielectric properties) and converse (electric field control of magnetization) magnetoelectric effects have been observed in the multiferroic state. This work opens up new insights on the origin of ferroelectricity in MOFs and highlights their promise as magnetoelectric multiferroics. PMID:25317819

  10. Eddy current probe for nondestructive testing using cross-coupled figure-eight coils

    SciTech Connect

    Sasada, I.; Watanabe, N.

    1995-11-01

    It is shown that the pickup head consisting of cross-coupled figure-eight coils originally developed for the magnetostrictive torque sensor is well suited for the eddy current probe detecting small defects in a nonmagnetic conductive material. The probe is easily extended to a one dimensional array form, which substantially reduces number of times of scanning the targeted materials. The response of a single unit of the probe to a trough hole defect in an aluminum plate are presented. A half-way hole at the back of an aluminum plate of 1.2 mm in thickness was successfully detected from the front using this probe. A five-channel array was developed in which the excitation coil is shared by all the channel. A small through hole defect in an aluminum plate was detected clearly by a single scan with the array probe.

  11. Design of embedded real-time cross-coupling compensation controller

    NASA Astrophysics Data System (ADS)

    Yao, Jinyong; Jiang, Tongmin; Li, Chuanri

    2006-11-01

    The cross-coupling compensation controller is a device for multi-shaker vibration testing to avoid deviations from the test specification caused by the inter-actuator forces. The applied theory and the developed closed-loop control algorithm are first introduced. An embedded real-time controller with PCI interface is designed to implement the algorithm. A bussimulating based system architecture design method is proposed for simplifying the logic design. To satisfy the special requirements of the forward channels, a multiple mode data acquisition subsystem is also designed. The system uses the embedded real-time kernel uC/OS-II as the algorithm development platform. The whole vibration control process is divided into several tasks, of which the communicating mechanism is given, according to their importance. The results of simulations and experiments demonstrate the feasibility of the proposed method.

  12. A cycloparaphenylene nanoring with graphenic hexabenzocoronene sidewalls.

    PubMed

    Lu, Dapeng; Wu, Haotian; Dai, Yafei; Shi, Hong; Shao, Xiang; Yang, Shangfeng; Yang, Jinlong; Du, Pingwu

    2016-06-01

    Herein we report the synthesis of a novel hexabenzocoronene-containing cycloparaphenylene carbon nanoring, cyclo[12]-paraphenylene[2]-2,11-hexabenzocoronenylene, by metal-mediated cross-coupling reactions. The nanoring was accomplished by rationally designed palladium-catalyzed coupling of diborylhexabenzocoronene and L-shaped cyclohexane units, followed by nickel-mediated C-Br/C-Br coupling and the aromatization of cyclohexane moieties. The structure was confirmed by NMR and HR-MS. Especially, the cycloparaphenylene structure is firstly observed by STM. The photophysical properties were studied using UV-Vis spectroscopy, photoluminescence (PL) spectroscopy, and theoretical calculations. PMID:27172905

  13. Postfunctionalization of BN-embedded polycyclic aromatic compounds for fine-tuning of their molecular properties.

    PubMed

    Wang, Xiao-Ye; Yang, Dong-Chu; Zhuang, Fang-Dong; Liu, Jia-Jie; Wang, Jie-Yu; Pei, Jian

    2015-06-01

    New BN-embedded, thiophene-fused, polycyclic aromatic compounds with planar geometry were designed and synthesized. The molecules showed excellent stability and chemical robustness. Postfunctionalization on this skeleton was demonstrated with a series of electrophilic bromination, palladium-catalyzed cross-coupling, and Knoevenagel condensation reactions. The π skeleton remained intact during these late-stage transformations. The optical and electronic properties have been well tuned through incorporation of electron-rich and -deficient groups on the backbone. This work shows the great advantage of the postfunctionalization strategy on BN-containing polycyclic aromatic compounds for fast diversification and materials screening. PMID:25955825

  14. Rhodium-Catalyzed C6-Selective C-H Borylation of 2-Pyridones.

    PubMed

    Miura, Wataru; Hirano, Koji; Miura, Masahiro

    2016-08-01

    A pyridine-directed, rhodium-catalyzed C6-selective C-H borylation of 2-pyridones with bis(pinacolato)diboron (pinB-Bpin) has been developed. The reaction proceeds smoothly under relatively mild conditions, and the corresponding C6-borylated 2-pyridones are obtained with perfect site selectivity. Subsequent palladium-catalyzed Suzuki-Miyaura cross-coupling is followed by the removal of the pyridine directing group to form the C6-arylated NH-pyridone in an acceptable overall yield. PMID:27420925

  15. Multimetallic catalysed radical oxidative C(sp(3))-H/C(sp)-H cross-coupling between unactivated alkanes and terminal alkynes.

    PubMed

    Tang, Shan; Wang, Pan; Li, Haoran; Lei, Aiwen

    2016-01-01

    Radical involved transformations are now considered as extremely important processes in modern organic synthetic chemistry. According to the demand by atom-economic and sustainable chemistry, direct C(sp(3))-H functionalization through radical oxidative coupling represents an appealing strategy for C-C bond formations. However, the selectivity control of reactive radical intermediates is still a great challenge in these transformations. Here we show a selective radical oxidative C(sp(3))-H/C(sp)-H cross-coupling of unactivated alkanes with terminal alkynes by using a combined Cu/Ni/Ag catalytic system. It provides a new way to access substituted alkynes from readily available materials. Preliminary mechanistic studies suggest that this reaction proceeds through a radical process and the C(sp(3))-H bond cleavage is the rate-limiting step. This study may have significant implications for controlling selective C-C bond formation of reactive radical intermediates by using multimetallic catalytic systems. PMID:27339161

  16. Efficient cross-coupling of aryl Grignard reagents with alkyl halides by recyclable ionic iron(III) complexes bearing a bis(phenol)-functionalized benzimidazolium cation.

    PubMed

    Xia, Chong-Liang; Xie, Cun-Fei; Wu, Yu-Feng; Sun, Hong-Mei; Shen, Qi; Zhang, Yong

    2013-12-14

    A novel bis(phenol)-functionalized benzimidazolium salt, 1,3-bis(3,5-di-tert-butyl-2-hydroxybenzyl)benzimidazolium chloride (H3LCl, 1), was designed and used to prepare ionic iron(III) complexes of the type [H3L][FeX4] (X = Cl, 2; X = Br, 3). Both 2 and 3 were characterized by elemental analysis, Raman spectroscopy, electrospray ionization mass spectrometry and X-ray crystallography. The catalytic performances of 2 and 3 in cross-coupling reactions using aryl Grignard reagents with primary and secondary alkyl halides bearing β-hydrogens were studied. This analysis shows that complex 2 has good potential for alkyl chloride-mediated coupling. In comparison, complex 3 showed slightly lower catalytic activity. After decanting the product contained in the ethereal layer, complex 2 could be recycled at least eight times without significant loss of catalytic activity. PMID:24145602

  17. Dual gold photoredox C(sp(2))-C(sp(2)) cross couplings - development and mechanistic studies.

    PubMed

    Gauchot, Vincent; Lee, Ai-Lan

    2016-08-01

    A dual visible light photoredox and gold-catalysed C(sp(2))-C(sp(2)) cross coupling is described. The success of this mild, oxidant- and base-free cross coupling is highly dependent on the amount of water added. Mechanistic studies show two distinct pathways depending on the gold catalyst employed: transmetallation of the arylboronic acid with gold(i) occurs prior to oxidation of gold(i) to gold(iii) using cationic gold(i) catalysts, whereas oxidation of gold(i) to gold(iii) precedes transmetallation using neutral gold(i) catalysts. PMID:27461567

  18. Mono- and binuclear cyclometallated palladium(II) complexes containing bridging (N,O-) and terminal (N-) imidate ligands: air stable, thermally robust and recyclable catalysts for cross-coupling processes.

    PubMed

    Fairlamb, Ian J S; Kapdi, Anant R; Lee, Adam F; Sánchez, Gregorio; López, Gregorio; Serrano, José Luis; García, Luis; Pérez, José; Pérez, Eduardo

    2004-12-01

    Novel dinuclear cyclometallated palladium complexes [{Pd(mu-NCO)(C circumflex accent N)}(2)], containing asymmetric imidato -NCO- bridging units have been synthesised [C circumflex accent N = 7,8-benzoquinolyl; -NCO- = succinimidate (1c), phthalimidate (1a-3a) or maleimidate (3c)]. The reaction of these complexes, and the previously reported analogous imidate precursors containing a phenylazophenyl (1a-3a) or 2-pyridylphenyl (1b-3b) backbone, with tertiary phosphines provides novel mononuclear N-bonded imidate derivatives of the general formula [Pd(C circumflex accent N)(imidate)(L)][L = PPh(3), P(4-F-C(6)H(4))(3) or P(4-MeO-C(6)H(4))(3)]. The single crystal structures of [Pd(azb)(phthalimidate)(P(4-MeO-C(6)H(4))(3))](9a) and [Pd(bzq)(phthalimidate)(PPh(3))](7c) have been established. Dinuclear complexes (1a-3a, 1b-3b, 1c-3c) demonstrate outstanding thermal stability in the solid-state, as shown by thermoanalytical techniques. A marked influence of bridging imidate groups on the initial decomposition temperature is observed. The dinuclear and mononuclear derivatives are shown to be active catalysts/precatalysts for the Suzuki-Miyaura cross-coupling reactions of aryl bromides with aryl boronic acids, and the Sonogashira reactions of aryl halides with phenyl acetylene (in the presence and absence of Cu(I) salts). The conversions appear to be dependent, to some extent, on the type of imidate ligand, suggesting a role for these pseudohalides in the catalytic cycle in both cross-coupling processes. Lower catalyst loadings in 'copper-free' Sonogashira cross-couplings favour higher turnover frequencies. We have further determined that these catalysts may be recycled using a poly(ethylene oxide)(PEO)/methanol solvent medium in Suzuki-Miyaura cross-coupling. Once the reaction is complete, product extraction into a hexane/diethyl ether mixture (1 : 1, v/v) gives cross-coupled products in good yields (with purity > 95%). The polar phase can then be re-used several times

  19. The Flögel-three-component reaction with dicarboxylic acids - an approach to bis(β-alkoxy-β-ketoenamides) for the synthesis of complex pyridine and pyrimidine derivatives.

    PubMed

    Bera, Mrinal K; Domínguez, Moisés; Hommes, Paul; Reissig, Hans-Ulrich

    2014-01-01

    An extension of the substrate scope of the Flögel-three-component reaction of lithiated alkoxyallenes, nitriles and carboxylic acids is presented. The use of dicarboxylic acids allowed the preparation of symmetrical bis(β-ketoenamides) from simple starting materials in moderate yields. Cyclocondensations of these enamides to 4-hydroxypyridine derivatives or to functionalized pyrimidines efficiently provided symmetrically and unsymmetrically substituted fairly complex (hetero)aromatic compounds containing up to six conjugated aryl and hetaryl groups. In addition, subsequent functionalizations of the obtained heterocycles by palladium-catalyzed couplings or by oxidations are reported. We also describe the simple synthesis of a structurally interesting macrocyclic bispyrimidine derivative incorporating a 17-membered ring, whose configuration was elucidated by DFT calculations and by subsequent reactions. PMID:24605160

  20. The Flögel-three-component reaction with dicarboxylic acids – an approach to bis(β-alkoxy-β-ketoenamides) for the synthesis of complex pyridine and pyrimidine derivatives

    PubMed Central

    Bera, Mrinal K; Domínguez, Moisés; Hommes, Paul

    2014-01-01

    Summary An extension of the substrate scope of the Flögel-three-component reaction of lithiated alkoxyallenes, nitriles and carboxylic acids is presented. The use of dicarboxylic acids allowed the preparation of symmetrical bis(β-ketoenamides) from simple starting materials in moderate yields. Cyclocondensations of these enamides to 4-hydroxypyridine derivatives or to functionalized pyrimidines efficiently provided symmetrically and unsymmetrically substituted fairly complex (hetero)aromatic compounds containing up to six conjugated aryl and hetaryl groups. In addition, subsequent functionalizations of the obtained heterocycles by palladium-catalyzed couplings or by oxidations are reported. We also describe the simple synthesis of a structurally interesting macrocyclic bispyrimidine derivative incorporating a 17-membered ring, whose configuration was elucidated by DFT calculations and by subsequent reactions. PMID:24605160

  1. Microwave-assisted cross-coupling and hydrogenation chemistry by using heterogeneous transition-metal catalysts: an evaluation of the role of selective catalyst heating.

    PubMed

    Irfan, Muhammed; Fuchs, Michael; Glasnov, Toma N; Kappe, C Oliver

    2009-11-01

    The concept of specific microwave effects in solid/liquid catalytic processes resulting from the selective heating of a microwave-absorbing heterogeneous transition-metal catalyst by using 2.45 GHz microwave irradiation was evaluated. As model transformations Ni/C-, Cu/C-, Pd/C-, and Pd/Al2O3-catalyzed carbon-carbon/carbon-heteroatom cross-couplings and hydrogenation reactions were investigated. To probe the existence of specific microwave effects by means of selective catalyst heating in these transformations, control experiments comparing microwave dielectric heating and conventional thermal heating at the same reaction temperature were performed. Although the supported metal catalysts were experimentally found to be strongly microwave absorbing, for all chemistry examples investigated herein no differences in reaction rate or selectivity between microwave and conventional heating experiments under carefully controlled conditions were observed. This was true also for reactions that use low-absorbing or microwave transparent solvents, and was independent of the microwave absorbtivity of the catalyst support material. In the case of hydrogenation reactions, the stirring speed was found to be a critical factor on the mass transfer between gas and liquid phase, influencing the rate of the hydrogenation in both microwave and conventionally heated experiments. PMID:19774573

  2. Tuning the Reactivity of Radical through a Triplet Diradical Cu(II) Intermediate in Radical Oxidative Cross-Coupling

    PubMed Central

    Zhou, Liangliang; Yi, Hong; Zhu, Lei; Qi, Xiaotian; Jiang, Hanpeng; Liu, Chao; Feng, Yuqi; Lan, Yu; Lei, Aiwen

    2015-01-01

    Highly selective radical/radical cross-coupling is paid more attention in bond formations. However, due to their intrinsic active properties, radical species are apt to achieve homo-coupling instead of cross-coupling, which makes the selective cross-coupling as a great challenge and almost untouched. Herein a notable strategy to accomplish direct radical/radical oxidative cross-coupling has been demonstrated, that is metal tuning a transient radical to a persistent radical intermediate followed by coupling with another transient radical. Here, a transient nitrogen-centered radical is tuned to a persistent radical complex by copper catalyst, followed by coupling with a transient allylic carbon-centered radical. Firstly, nitrogen-centered radical generated from N-methoxybenzamide stabilized by copper catalyst was successfully observed by EPR. Then DFT calculations revealed that a triplet diradical Cu(II) complex formed from the chelation N-methoxybenzamide nitrogen-centered radical to Cu(II) is a persistent radical species. Moreover, conceivable nitrogen-centered radical Cu(II) complex was observed by high-resolution electrospray ionization mass spectrometry (ESI-MS). Ultimately, various allylic amides derivatives were obtained in good yields by adopting this strategy, which might inspire a novel and promising landscape in radical chemistry. PMID:26525888

  3. Tuning the Reactivity of Radical through a Triplet Diradical Cu(II) Intermediate in Radical Oxidative Cross-Coupling

    NASA Astrophysics Data System (ADS)

    Zhou, Liangliang; Yi, Hong; Zhu, Lei; Qi, Xiaotian; Jiang, Hanpeng; Liu, Chao; Feng, Yuqi; Lan, Yu; Lei, Aiwen

    2015-11-01

    Highly selective radical/radical cross-coupling is paid more attention in bond formations. However, due to their intrinsic active properties, radical species are apt to achieve homo-coupling instead of cross-coupling, which makes the selective cross-coupling as a great challenge and almost untouched. Herein a notable strategy to accomplish direct radical/radical oxidative cross-coupling has been demonstrated, that is metal tuning a transient radical to a persistent radical intermediate followed by coupling with another transient radical. Here, a transient nitrogen-centered radical is tuned to a persistent radical complex by copper catalyst, followed by coupling with a transient allylic carbon-centered radical. Firstly, nitrogen-centered radical generated from N-methoxybenzamide stabilized by copper catalyst was successfully observed by EPR. Then DFT calculations revealed that a triplet diradical Cu(II) complex formed from the chelation N-methoxybenzamide nitrogen-centered radical to Cu(II) is a persistent radical species. Moreover, conceivable nitrogen-centered radical Cu(II) complex was observed by high-resolution electrospray ionization mass spectrometry (ESI-MS). Ultimately, various allylic amides derivatives were obtained in good yields by adopting this strategy, which might inspire a novel and promising landscape in radical chemistry.

  4. Tuning the Reactivity of Radical through a Triplet Diradical Cu(II) Intermediate in Radical Oxidative Cross-Coupling.

    PubMed

    Zhou, Liangliang; Yi, Hong; Zhu, Lei; Qi, Xiaotian; Jiang, Hanpeng; Liu, Chao; Feng, Yuqi; Lan, Yu; Lei, Aiwen

    2015-01-01

    Highly selective radical/radical cross-coupling is paid more attention in bond formations. However, due to their intrinsic active properties, radical species are apt to achieve homo-coupling instead of cross-coupling, which makes the selective cross-coupling as a great challenge and almost untouched. Herein a notable strategy to accomplish direct radical/radical oxidative cross-coupling has been demonstrated, that is metal tuning a transient radical to a persistent radical intermediate followed by coupling with another transient radical. Here, a transient nitrogen-centered radical is tuned to a persistent radical complex by copper catalyst, followed by coupling with a transient allylic carbon-centered radical. Firstly, nitrogen-centered radical generated from N-methoxybenzamide stabilized by copper catalyst was successfully observed by EPR. Then DFT calculations revealed that a triplet diradical Cu(II) complex formed from the chelation N-methoxybenzamide nitrogen-centered radical to Cu(II) is a persistent radical species. Moreover, conceivable nitrogen-centered radical Cu(II) complex was observed by high-resolution electrospray ionization mass spectrometry (ESI-MS). Ultimately, various allylic amides derivatives were obtained in good yields by adopting this strategy, which might inspire a novel and promising landscape in radical chemistry. PMID:26525888

  5. Highly enantioselective synthesis of γ-, δ-, and ε-chiral 1-alkanols via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA)-Cu- or Pd-catalyzed cross-coupling.

    PubMed

    Xu, Shiqing; Oda, Akimichi; Kamada, Hirofumi; Negishi, Ei-ichi

    2014-06-10

    Despite recent advances of asymmetric synthesis, the preparation of enantiomerically pure (≥99% ee) compounds remains a challenge in modern organic chemistry. We report here a strategy for a highly enantioselective (≥99% ee) and catalytic synthesis of various γ- and more-remotely chiral alcohols from terminal alkenes via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA reaction)-Cu- or Pd-catalyzed cross-coupling. ZACA-in situ oxidation of tert-butyldimethylsilyl (TBS)-protected ω-alkene-1-ols produced both (R)- and (S)-α,ω-dioxyfunctional intermediates (3) in 80-88% ee, which were readily purified to the ≥99% ee level by lipase-catalyzed acetylation through exploitation of their high selectivity factors. These α,ω-dioxyfunctional intermediates serve as versatile synthons for the construction of various chiral compounds. Their subsequent Cu-catalyzed cross-coupling with various alkyl (primary, secondary, tertiary, cyclic) Grignard reagents and Pd-catalyzed cross-coupling with aryl and alkenyl halides proceeded smoothly with essentially complete retention of stereochemical configuration to produce a wide variety of γ-, δ-, and ε-chiral 1-alkanols of ≥99% ee. The MαNP ester analysis has been applied to the determination of the enantiomeric purities of δ- and ε-chiral primary alkanols, which sheds light on the relatively undeveloped area of determination of enantiomeric purity and/or absolute configuration of remotely chiral primary alcohols. PMID:24912191

  6. "Greening up" the Suzuki Reaction

    ERIC Educational Resources Information Center

    Aktoudianakis, Evangelos; Chan, Elton; Edward, Amanda R.; Jarosz, Isabel; Lee, Vicki; Mui, Leo; Thatipamala, Sonya S.; Dicks, Andrew P.

    2008-01-01

    This article describes the rapid, green synthesis of a biaryl compound (4-phenylphenol) via a Pd(0)-catalyzed Suzuki cross-coupling reaction in water. Mild reaction conditions and operational simplicity makes this experiment especially amenable to both mid- and upper-level undergraduates. The methodology exposes students to purely aqueous…

  7. Design of cross-coupled planar microstrip band-pass filters using a novel adjustment method

    NASA Astrophysics Data System (ADS)

    Alkafaji, Muhammed S. S.

    2015-02-01

    In this paper the design of a cross-coupled planar microwave band-pass filter using open-loop square microstrip resonators, with two symmetrically placed attenuation poles, is presented. The design starts from the following specifications: central frequency 3GHz, 150MHz bandwidth, 1dB ripple in the pass-band corresponding to return loss of 6.8dB.The adjustment method using additional ports placed on each resonator of the filter is used, allowing the interconnection of the filter structure with external lumped elements. Connecting a reactive element (capacitor) from such an additional port to ground allows a fine tuning of the resonator. Connecting a reactive element between two such additional ports allows a fine change in the coupling coefficient between these resonators. After adding four extra ports and connecting the external elements (capacitors), it is possible to use fast circuit simulation software to optimize the filter's response. Then all these capacitors have to be gradually eliminated, by compensating their effects through fine changes back in the layouts. If some specific issues are properly handled, this procedure improves considerably the quality of the final design of the filter. After a thorough optimization of the layout, the filter was fabricated and measured. The results of measurements are in good agreement with the specifications of the filter, showing this way the efficiency of the applied optimization method.

  8. Flux-torque cross-coupling analysis of FOC schemes: Novel perturbation rejection characteristics.

    PubMed

    Amezquita-Brooks, Luis; Liceaga-Castro, Eduardo; Liceaga-Castro, Jesús; Ugalde-Loo, Carlos E

    2015-09-01

    Field oriented control (FOC) is one of the most successful control schemes for electrical machines. In this article new properties of FOC schemes for induction motors (IMs) are revealed by studying the cross-coupling of the flux-torque subsystem. Through the use of frequency-based multivariable tools, it is shown that FOC has intrinsic stator currents disturbance rejection properties due to the existence of a transmission zero in the flux-torque subsystem. These properties can be exploited in order to select appropriate feedback loop configurations. One of the major drawbacks of FOC schemes is their high sensitivity to slip angular velocity perturbations. These perturbations are related to variations of the rotor time constant, which are known to be problematic for IM control. In this regard, the effect that slip angular velocity perturbations have over the newly found perturbation rejection properties is also studied. In particular, although perturbation rejection is maintained, deviations to the equilibrium point are induced; this introduces difficulties for simultaneous flux and torque control. The existence of equilibrium point issues when flux and torque are simultaneously controlled is documented for the first time in this article. PMID:26187346

  9. Effect of viscous cross coupling between two immiscible fluids on elastic wave propagation and attenuation in unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Yeh, Chao-Lung; Lee, Jhe-Wei

    2015-09-01

    A central issue in the theoretical treatment of a multiphase system is the proper mathematical description of momentum transfer across fluid-solid and fluid-fluid interfaces. Although recent studies have advanced our knowledge on modeling the coupling behavior between a porous framework and the fluids permeating it, the effect of viscous resistance caused by two-fluid flow on elastic wave behavior in unsaturated porous media still remains elusive. In the present study, the theoretical model developed for describing immiscible two-phase fluid flows in a deformable porous medium related to harmonic wave perturbation is generalized to account for viscous cross coupling due to relative velocity between two adjacent fluids. The corresponding dispersion relations whose coefficients feature all elasticity, inertial-drag, and viscous-drag parameters are then precisely formulated, in a physical context characterizing three compressional waves and one shear wave. To evaluate quantitatively this as-yet unknown effect, numerical calculations are conducted to solve the dispersion relations for Columbia fine sandy loam bearing an oil-water mixture as a function of water saturation and excitation frequency. Our results show that the phase speed and attenuation coefficient of the P3 wave which has the smallest speed is strongly sensitive to the presence of viscous cross coupling, as expected since this wave is attributed primarily to the out-of-phase motion of the two pore fluids. Viscous cross coupling also exerts an impact on the attenuation coefficient of the shear wave and the P1 wave whose speed is greatest, which exhibits two opposite trends at different ranges of low and high water contents. Relative differences in these wave attributes are principally independent of excitation frequency. A sensitivity analysis is carried out to assess how changes in viscous cross coupling affect these differences, revealing that some of them become more significant as viscous cross

  10. Modular Approaches to Diversified Soft Lewis Basic Complexants through Suzuki-Miyaura Cross-Coupling of Bromoheteroarenes with Organotrifluoroborates.

    PubMed

    Chin, Ai Lin; Carrick, Jesse D

    2016-02-01

    Remediation or transmutation of spent nuclear fuel obtained as a function of energy production and legacy waste remains a significant environmental concern. Substantive efforts over the last three decades have focused on the potential of soft-Lewis basic complexants for the chemoselective separation of trivalent actinides from lanthanides in biphasic solvent systems. Recent efforts in this laboratory have focused on the concept of modularity to rapidly prepare complexants and complexant scaffolds not easily accessible via traditional linear methods in a convergent manner to better understand solubility and complexation structure/activity function in process-relevant solvents. The current work describes an efficient method for the construction of diversified complexants through multi-Suzuki-Miyaura cross-coupling of bromoheteroarenes with organotrifluoroborates affording efficient access to 22 novel materials in 43-99% yield over two, three, or four cross-couplings on the same scaffold. Optimization of the catalyst/ligand system, application, and limitations are reported herein. PMID:26751755

  11. A General, Simple Catalyst for Enantiospecific Cross Couplings of Benzylic Ammonium Triflates and Boronic Acids: No Phosphine Ligand Required

    PubMed Central

    Basch, Corey H.; Song, Ye-Geun; Watson, Mary P.

    2014-01-01

    Highly improved conditions for the enantiospecific cross coupling of benzylic ammonium triflates with boronic acids are reported. This method relies on the use of Ni(cod)2 without ancillary phosphine or N-heterocyclic carbene ligands as catalyst. These conditions enable the coupling of new classes of boronic acids and benzylic ammonium triflates. In particular, both heteroaromatic and vinyl boronic acids are well tolerated as coupling partners. In addition, these conditions enable the use of ammonium triflates with a variety of substituents at the benzylic stereocenter. Further, naphthyl-substitution is not required on the benzylic ammonium triflate; ammonium triflates with simple aromatic substituents also undergo this coupling. Good to high yields and levels of stereochemical fidelity are observed. This new catalyst system greatly expands the utility of enantiospecific cross couplings of these amine-derived substrates for the preparation of highly enantioenriched products. PMID:25364060

  12. Negishi Cross-Coupling Is Compatible with a Reactive B–Cl Bond: Development of a Versatile Late-Stage Functionalization of 1,2-Azaborines and Its Application to the Synthesis of New BN Isosteres of Naphthalene and Indenyl

    PubMed Central

    Brown, Alec N.; Li, Bo; Liu, Shih-Yuan

    2016-01-01

    The compatibility of the Negishi cross-coupling reaction with the versatile B–Cl functionality has been demonstrated in the context of late-stage functionalization of 1,2-azaborines. Alkyl-, aryl-, and alkenylzinc reagents have been utilized for the functionalization of the triply orthogonal precursor 3-bromo-1-(tert-butyldimethylsilyl)-2-chloro-1,2-dihydro-1,2-azaborine (2) to furnish new 2,3-substituted monocyclic 1,2-azaborines. This methodology has enabled the synthesis of previously elusive BN-naphthalene and BN-indenyl structures from a common intermediate. PMID:26148959

  13. Iodine-Promoted Oxidative Cross-Coupling of Unprotected Anilines with Methyl Ketones: A Site-Selective Direct C-H Bond Functionalization to C4-Dicarbonylation of Anilines.

    PubMed

    Wu, Xia; Gao, Qinghe; Geng, Xiao; Zhang, Jingjing; Wu, Yan-Dong; Wu, An-Xin

    2016-05-20

    An unprecedented direct dual C-H bond functionalization of unprotected anilines and methyl ketones has been demonstrated. It is the first example of iodine-promoted highly chemo- and site-selective oxidative C-H/C-H cross-coupling of anilines and methyl ketones to furnish the C4-dicarbonylation of anilines in moderate to good yields. Moreover, coproduct HI acted as a catalyst in the reaction. The salient feature of this approach is unprecedented C-H functionalization rather than N-H functionalization of unprotected anilines. PMID:27181791

  14. Copper-Catalyzed Borylative Cross-Coupling of Allenes and Imines: Selective Three-Component Assembly of Branched Homoallyl Amines.

    PubMed

    Rae, James; Yeung, Kay; McDouall, Joseph J W; Procter, David J

    2016-01-18

    A copper-catalyzed three-component coupling of allenes, bis(pinacolato)diboron, and imines allows regio-, chemo-, and diastereoselective assembly of branched α,β-substituted-γ-boryl homoallylic amines, that is, products bearing versatile amino, alkenyl, and borane functionality. Alternatively, convenient oxidative workup allows access to α-substituted-β-amino ketones. A computational study has been used to probe the stereochemical course of the cross-coupling. PMID:26632675

  15. Suzuki-Miyaura Cross-Coupling of Potassium Alkoxyethyltri-fluoroborates: Access to Aryl/Heteroarylethyloxy Motifs

    PubMed Central

    Fleury-Brégeot, Nicolas; Presset, Marc; Beaumard, Floriane; Colombel, Virginie; Oehlrich, Daniel; Rombouts, Frederik; Molander, Gary A.

    2012-01-01

    The introduction of an alkoxyethyl moiety onto aromatic substructures has remained a long-standing challenge for synthetic organic chemists. The main reasons are the inherent instability of alkoxyethylmetallic species and the lack of general procedures to access them. A new method utilizing a cross-coupling strategy based on the exceptional properties of organotrifluoroborates has been developed, and the method allows an easy and efficient installation of this unit on a broad range of aryl and heteroaryl bromides. PMID:23131122

  16. Planar geometry of 4-substituted-2,2'-bipyridines synthesized by Sonogashira and Suzuki cross-coupling reactions

    SciTech Connect

    Luong Thi, T. T. Nguyen Bich, N.; Nguyen, H.; Van Meervelt, L.

    2015-12-15

    Two 4-substituted 2,2'-bipyridines, namely 4-(ferrocenylethynyl)-2,2'-bipyridine (I) and 4-ferrocenyl-2,2'-bipyridine (II) have been synthesized and fully characterized via single-crystal X-ray diffraction and {sup 1}H and {sup 13}C NMR analyses. The π-conjugated system designed from 2,2'-bipyridine modified with the ferrocenylethynyl and ferrocenyl groups shows the desired planarity. In the crystal packing of I and II, the molecules arrange themselves in head-to-tail and head-to-head motifs, respectively, resulting in consecutive layers of ferrocene and pyridine moieties.

  17. Planar geometry of 4-substituted-2,2'-bipyridines synthesized by Sonogashira and Suzuki cross-coupling reactions

    NASA Astrophysics Data System (ADS)

    Luong Thi, T. T.; Nguyen Bich, N.; Nguyen, H.; Van Meervelt, L.

    2015-12-01

    Two 4-substituted 2,2'-bipyridines, namely 4-(ferrocenylethynyl)-2,2'-bipyridine ( I) and 4-ferrocenyl-2,2'-bipyridine ( II) have been synthesized and fully characterized via single-crystal X-ray diffraction and 1H and 13C NMR analyses. The π-conjugated system designed from 2,2'-bipyridine modified with the ferrocenylethynyl and ferrocenyl groups shows the desired planarity. In the crystal packing of I and II, the molecules arrange themselves in head-to-tail and head-to-head motifs, respectively, resulting in consecutive layers of ferrocene and pyridine moieties.

  18. Amine-Catalyzed Highly Regioselective and Stereoselective C(sp(2) )-C(sp(2) ) Cross-Coupling of Naphthols with trans-α,β-Unsaturated Aldehydes.

    PubMed

    Hu, Yang; Ma, Yueyue; Sun, Rengwei; Yu, Xinhong; Xie, Hexin; Wang, Wei

    2015-09-01

    A metal-free C(sp(2) )-C(sp(2) ) cross-coupling approach to highly congested (E)-α-naphtholylenals from simple naphthols and enals is described. The mild reaction conditions with pyridine hydrobromideperbromide (PHBP) as the bromination reagent in the presence of piperidine or diphenylprolinol trimethylsilyl (TMS) ether as promoters enable the process in good yields and with high chemoselectivity, regioselectivity, and stereoselectivity. The process involves an unprecedented pathway of in situ regioselective 4-bromination of 1-naphthols and the subsequent unusual aromatic nucleophilic substitution of the resulting 4-bromo-1-naphthols with the α-C(sp(2) ) of enals through a Michael-type Friedel-Crafts alkylation-dearomatization followed by a cyclopropanation ring-opening cascade process. The noteworthy features of this strategy are highlighted by the highly efficient creation of a C(sp(2) )-C(sp(2) ) bond from readily available unfunctionalized naphthols and enals catalyzed by non-metal, readily available cyclic secondary amines under mild reaction conditions. PMID:26096893

  19. “Designer”-Surfactant-Enabled Cross-Couplings in Water at Room Temperature

    PubMed Central

    Lipshutz, Bruce H.; Ghorai, Subir

    2012-01-01

    New methodologies are discussed that allow for several commonly used transition-metal-catalyzed coupling reactions to be conducted within aqueous micellar nanoparticles at ambient temperatures. PMID:23807816

  20. Electronic Structure and Bonding in Iron(II) and Iron(I) Complexes Bearing Bisphosphine Ligands of Relevance to Iron-Catalyzed C–C Cross-Coupling

    PubMed Central

    2015-01-01

    Chelating phosphines are effective additives and supporting ligands for a wide array of iron-catalyzed cross-coupling reactions. While recent studies have begun to unravel the nature of the in situ-formed iron species in several of these reactions, including the identification of the active iron species, insight into the origin of the differential effectiveness of bisphosphine ligands in catalysis as a function of their backbone and peripheral steric structures remains elusive. Herein, we report a spectroscopic and computational investigation of well-defined FeCl2(bisphosphine) complexes (bisphosphine = SciOPP, dpbz, tBudppe, or Xantphos) and known iron(I) variants to systematically discern the relative effects of bisphosphine backbone character and steric substitution on the overall electronic structure and bonding within their iron complexes across oxidation states implicated to be relevant in catalysis. Magnetic circular dichroism (MCD) and density functional theory (DFT) studies demonstrate that common o-phenylene and saturated ethyl backbone motifs result in small but non-negligible perturbations to 10Dq(Td) and iron–bisphosphine bonding character at the iron(II) level within isostructural tetrahedra as well as in five-coordinate iron(I) complexes FeCl(dpbz)2 and FeCl(dppe)2. Notably, coordination of Xantphos to FeCl2 results in a ligand field significantly reduced relative to those of its iron(II) partners, where a large bite angle and consequent reduced iron–phosphorus Mayer bond orders (MBOs) could play a role in fostering the unique ability of Xantphos to be an effective additive in Kumada and Suzuki–Miyaura alkyl–alkyl cross-couplings. Furthermore, it has been found that the peripheral steric bulk of the SciOPP ligand does little to perturb the electronic structure of FeCl2(SciOPP) relative to that of the analogous FeCl2(dpbz) complex, potentially suggesting that differences in the steric properties of these ligands might be more important in

  1. Electronic Structure and Bonding in Iron(II) and Iron(I) Complexes Bearing Bisphosphine Ligands of Relevance to Iron-Catalyzed C-C Cross-Coupling.

    PubMed

    Kneebone, Jared L; Fleischauer, Valerie E; Daifuku, Stephanie L; Shaps, Ari A; Bailey, Joseph M; Iannuzzi, Theresa E; Neidig, Michael L

    2016-01-01

    Chelating phosphines are effective additives and supporting ligands for a wide array of iron-catalyzed cross-coupling reactions. While recent studies have begun to unravel the nature of the in situ-formed iron species in several of these reactions, including the identification of the active iron species, insight into the origin of the differential effectiveness of bisphosphine ligands in catalysis as a function of their backbone and peripheral steric structures remains elusive. Herein, we report a spectroscopic and computational investigation of well-defined FeCl2(bisphosphine) complexes (bisphosphine = SciOPP, dpbz, (tBu)dppe, or Xantphos) and known iron(I) variants to systematically discern the relative effects of bisphosphine backbone character and steric substitution on the overall electronic structure and bonding within their iron complexes across oxidation states implicated to be relevant in catalysis. Magnetic circular dichroism (MCD) and density functional theory (DFT) studies demonstrate that common o-phenylene and saturated ethyl backbone motifs result in small but non-negligible perturbations to 10Dq(Td) and iron-bisphosphine bonding character at the iron(II) level within isostructural tetrahedra as well as in five-coordinate iron(I) complexes FeCl(dpbz)2 and FeCl(dppe)2. Notably, coordination of Xantphos to FeCl2 results in a ligand field significantly reduced relative to those of its iron(II) partners, where a large bite angle and consequent reduced iron-phosphorus Mayer bond orders (MBOs) could play a role in fostering the unique ability of Xantphos to be an effective additive in Kumada and Suzuki-Miyaura alkyl-alkyl cross-couplings. Furthermore, it has been found that the peripheral steric bulk of the SciOPP ligand does little to perturb the electronic structure of FeCl2(SciOPP) relative to that of the analogous FeCl2(dpbz) complex, potentially suggesting that differences in the steric properties of these ligands might be more important in

  2. Palladium(0)/NHC-Catalyzed Reductive Heck Reaction of Enones: A Detailed Mechanistic Study.

    PubMed

    Raoufmoghaddam, Saeed; Mannathan, Subramaniyan; Minnaard, Adriaan J; de Vries, Johannes G; Reek, Joost N H

    2015-12-14

    We have studied the mechanism of the palladium-catalyzed reductive Heck reaction of para-substituted enones with 4-iodoanisole by using N,N-diisopropylethylamine (DIPEA) as the reductant. Kinetic studies and in situ spectroscopic analysis have provided a detailed insight into the reaction. Progress kinetic analysis demonstrated that neither catalyst decomposition nor product inhibition occurred during the catalysis. The reaction is first order in the palladium and aryl iodide, and zero order in the activated alkene, N-heterocyclic carbene (NHC) ligand, and DIPEA. The experiments with deuterated solvent ([D7]DMF) and deuterated base ([D15]Et3N) supported the role of the amine as a reductant in the reaction. The palladium complex [Pd(0)(NHC)(1)] has been identified as the resting state. The kinetic experiments by stopped-flow UV/Vis also revealed that the presence of the second substrate, benzylideneacetone 1, slows down the oxidative addition of 4-iodoanisole through its competing coordination to the palladium center. The kinetic and mechanistic studies indicated that the oxidative addition of the aryl iodide is the rate-determining step. Various scenarios for the oxidative addition step have been analyzed by using DFT calculations (bp86/def2-TZVP) that supported the inhibiting effect of substrate 1 by formation of resting state [Pd(0)(NHC)(1)] species at the cost of further increase in the energy barrier of the oxidative addition step. PMID:26561034

  3. Effect of Viscous Cross Coupling between two Immiscible Fluids on Elastic Wave Propagation and Attenuation in Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Lo, WeiCheng; Lee, JheWei; Lee, ChengHaw

    2015-04-01

    A central issue in the theoretical treatment of a multiphase system is the proper mathematical description of momentum transfer across fluid-solid and fluid-fluid interfaces. Although recent studies have advanced our knowledge on modeling the coupling behavior between a porous framework and the fluids permeating it, the effect of viscous resistance caused by two-fluid flow on elastic wave behavior in unsaturated porous media still remains unaddressed. In the present study, we generalize the theory of dynamic poroelasticity to incorporate viscous cross coupling arising from the velocity difference between two adjacent fluids for examining the dynamic behavior of fluid flow in deformable porous media related to harmonic wave perturbation. The corresponding dispersion relations that characterize three compressional waves and one shear wave are precisely formulated, with the coefficients featuring all elasticity, inertial coupling, and viscous coupling parameters, for describing how wave number changes as excitation frequency is stipulated. To evaluate quantitatively this as-yet unknown effect, numerical simulations are implemented to solve the dispersion relations for Columbia fine sandy loam bearing an oil-water mixture with respect to three representative wave excitation frequencies. Our results show that the phase speed and attenuation coefficient of the third compressional wave which has the smallest speed is strongly sensitive to the presence of viscous cross coupling, as expected for this wave being attributed primarily to the out-of-phase motion of the two pore fluids. Viscous cross coupling also exerts an impact on the attenuation coefficient of the shear wave and the first compressional wave whose speed is greatest, which exhibits two opposite trends at different ranges of low and high water contents. A sensitivity analysis is further conducted to provide information on the importance of the coupling parameter, revealing that the effect becomes more

  4. Multimetallic catalysed radical oxidative C(sp3)–H/C(sp)–H cross-coupling between unactivated alkanes and terminal alkynes

    PubMed Central

    Tang, Shan; Wang, Pan; Li, Haoran; Lei, Aiwen

    2016-01-01

    Radical involved transformations are now considered as extremely important processes in modern organic synthetic chemistry. According to the demand by atom-economic and sustainable chemistry, direct C(sp3)–H functionalization through radical oxidative coupling represents an appealing strategy for C–C bond formations. However, the selectivity control of reactive radical intermediates is still a great challenge in these transformations. Here we show a selective radical oxidative C(sp3)–H/C(sp)–H cross-coupling of unactivated alkanes with terminal alkynes by using a combined Cu/Ni/Ag catalytic system. It provides a new way to access substituted alkynes from readily available materials. Preliminary mechanistic studies suggest that this reaction proceeds through a radical process and the C(sp3)–H bond cleavage is the rate-limiting step. This study may have significant implications for controlling selective C–C bond formation of reactive radical intermediates by using multimetallic catalytic systems. PMID:27339161

  5. Synthesis of Heterocyclic Triads by Pd-Catalyzed Cross-Couplings and Evaluation of Their Cell-Specific Toxicity Profile

    PubMed Central

    2015-01-01

    Two complementary approaches for the preparation of linked 5-membered heterocycles were developed. The Pd-catalyzed Suzuki–Miyaura cross-coupling with halogenated furan, thiophene, and selenophene led to higher overall yields, but C,H-bond activation was a more efficient strategy for the coupling at C(2) of oxazoles. Potency and selectivity of the final hydroxymethyl products in renal (A498), lung (NCI-H226), kidney (CAKI-1), and breast (MDA-MB-468, MCF7) carcinoma cell lines were determined. PMID:24641272

  6. Theoretical approach to labyrinth seal forces - cross-coupled stiffness of a straight-through labyrinth seal

    NASA Technical Reports Server (NTRS)

    Kameoka, T.; Abe, T.; Fujikawa, T.

    1984-01-01

    Two kinds of three dimensional flows in a labyrinth seal, a jet flow and a core flow, are considered and theoretical equations are set up concerning the motion of each flow. The pressure distribution within the labyrinth is calculated, when the rotor shaft makes a small displacement from the center line of the casing, keeping parallel with it. The theoretical values of cross coupled stiffness obtained by integrating the pressure under different labyrinth geometries and operating conditions through these formulas are compared with the experimental data.

  7. Cobalt-Catalyzed Cross-Coupling of Grignards with Allylic and Vinylic Bromides: Use of Sarcosine as a Natural Ligand.

    PubMed

    Frlan, Rok; Sova, Matej; Gobec, Stanislav; Stavber, Gaj; Časar, Zdenko

    2015-08-01

    Sarcosine was discovered to be an excellent ligand for cobalt-catalyzed carbon-carbon cross-coupling of Grignard reagents with allylic and vinylic bromides. The Co(II)/sarcosine catalytic system is shown to perform efficiently when phenyl and benzyl Grignards are coupled with alkenyl bromides. Notably, previously unachievable Co-catalyzed coupling of allylic bromides with Grignards to linearly coupled α-products was also realized with Co(II)/sarcosine catalyst. This method was used for efficient preparation of the key intermediate in an alternative synthesis of the antihyperglycemic drug sitagliptin. PMID:26158563

  8. Synthesis of heterocyclic triads by Pd-catalyzed cross-couplings and evaluation of their cell-specific toxicity profile.

    PubMed

    Salamoun, Joseph; Anderson, Shelby; Burnett, James C; Gussio, Rick; Wipf, Peter

    2014-04-01

    Two complementary approaches for the preparation of linked 5-membered heterocycles were developed. The Pd-catalyzed Suzuki-Miyaura cross-coupling with halogenated furan, thiophene, and selenophene led to higher overall yields, but C,H-bond activation was a more efficient strategy for the coupling at C(2) of oxazoles. Potency and selectivity of the final hydroxymethyl products in renal (A498), lung (NCI-H226), kidney (CAKI-1), and breast (MDA-MB-468, MCF7) carcinoma cell lines were determined. PMID:24641272

  9. The influence of gravitoinertial force level on oculomotor and perceptual responses to Coriolis, cross-coupling stimulation

    NASA Technical Reports Server (NTRS)

    Dizio, Paul; Lackner, James R.; Evanoff, John N.

    1987-01-01

    The goal of the present experiment was to determine whether gravitoinertial force magnitude influences oculomotor and perceptual responses to Coriolis cross-coupling stimulation. Blindfolded subjects who were rotating at constant velocity were asked to make standardized head movements during the free-fall and high-force phases of parabolic flight, and the characteristics of their horizontal nystagmus and the magnitude of their experienced self-motion were measured. Both responses were less intense in the free-fall periods than in the high-force periods. These findings suggest that the response to semicircular canal stimulation depends on the background level of gravitoinertial force.

  10. The Stabilized Cation Pool Method: Metal- and Oxidant-Free Benzylic C-H/Aromatic C-H Cross-Coupling.

    PubMed

    Hayashi, Ryutaro; Shimizu, Akihiro; Yoshida, Jun-Ichi

    2016-07-13

    Electrochemical oxidation of toluene derivatives in the presence of a sulfilimine gave benzylaminosulfonium ions as stabilized benzyl cation pools, which reacted with subsequently added aromatic nucleophiles to give the corresponding cross-coupling products. The transformation serves as a powerful metal- and chemical-oxidant-free method for benzylic C-H/aromatic C-H cross-coupling. The method has been successfully applied to synthesis of TP27, an inhibitor of PTPase. PMID:27341676

  11. Enantioselective Carbocycle Formation through Intramolecular Pd-Catalyzed Allyl–Aryl Cross-Coupling

    PubMed Central

    2015-01-01

    Aryl electrophiles containing tethered allylboronate units undergo efficient intramolecular coupling in the presence of a chiral palladium catalyst to give enantioenriched carbocyclic products. The reaction is found to be quite general, affording 5, 6, and 7-membered carbocyclic products as single regioisomers and with moderate enantioselectivities. Examination of differential coupling partners points to rapid allyl-equilibration as a key stereodefining feature. PMID:25105510

  12. Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol

    NASA Astrophysics Data System (ADS)

    Karakalos, Stavros; Zugic, Branko; Stowers, Kara J.; Biener, Monika M.; Biener, Juergen; Friend, Cynthia M.; Madix, Robert J.

    2016-10-01

    Modern methods of esterification, one of the most important reactions in organic synthesis, are reaching their limits, as far as waste and expense are concerned. Novel chemical approaches to ester formation are therefore of importance. Here we report a simple procedure free of caustic reagents or byproducts for the facile direct oxidative methyl esterification of aldehydes over nanoporous Au catalysts. Complementary model studies on single crystal gold surfaces establish the fundamental reactions involved. We find that methanol more readily reacts with adsorbed active oxygen than do the aldehydes, but that once the aldehydes do react, they form strongly-bound acrylates that block reactive sites and decrease the yields of acrylic esters under steady flow conditions at 420 K. Significant improvements in yield can be achieved by operating at higher temperatures, which render the site-blocking acrylates unstable.

  13. Stereospecific Ni-Catalyzed Cross-Coupling of Potassium Alkenyltrifluoroborates with Alkyl Halides

    PubMed Central

    2015-01-01

    A general method for the alkenylation of alkyl electrophiles using nearly stoichiometric amounts of the air- and moisture-stable potassium organotrifluoroborates has been developed. Various functional groups were tolerated on both the nucleophilic and electrophilic partner. Reactions of highly substituted E- and Z-alkenyltrifluoroborates, as well as vinyl- and propenyltrifluoroborates, were successful, and no loss of stereochemistry or regiochemistry was observed. PMID:24666316

  14. Coordinating activation strategy for C(sp3)–H/C(sp3)–H cross-coupling to access β-aromatic α-amino acids

    PubMed Central

    Li, Kaizhi; Wu, Qian; Lan, Jingbo; You, Jingsong

    2015-01-01

    The past decade has witnessed significant advances in C–H bond functionalizations with the discovery of new mechanisms. Non-precious transition-metal-catalysed radical oxidative coupling for C(sp3)–H bond transformations is an appealing strategy for C–C bond formations. The radical oxidative C(sp3)–H/C(sp3)–H cross-coupling reactions of α-C(sp3)–H bonds of amines with free radicals represent a conceptual and practical challenge. We herein develop the coordinating activation strategy to illustrate the nickel-catalysed radical oxidative cross-coupling between C(sp3)–H bonds and (hetero)arylmethyl free radicals. The protocol can tolerate a rich variety of α-amino acids and (hetero)arylmethanes as well as arylmethylenes and arylmethines, affording a large library of α-tertiary and α-quaternary β-aromatic α-amino acids. This process also features low-cost metal catalyst, readily handled and easily removable coordinating group, synthetic simplicity and gram-scale production, which would enable the potential for economical production at commercial scale in the future. PMID:26415985

  15. Practical Ni-Catalyzed Aryl–Alkyl Cross-Coupling of Secondary Redox-Active Esters

    PubMed Central

    2016-01-01

    A new transformation is presented that enables chemists to couple simple alkyl carboxylic acids with aryl zinc reagents under Ni-catalysis. The success of this reaction hinges on the unique use of redox-active esters that allow one to employ such derivatives as alkyl halides surrogates. The chemistry exhibits broad substrate scope and features a high degree of practicality. The simple procedure and extremely inexpensive nature of both the substrates and pre-catalyst (NiCl2·6H2O, ca. $9.5/mol) bode well for the immediate widespread adoption of this method. PMID:26835704

  16. Multimetallic Catalysis Enabled Cross-Coupling of Aryl Bromides with Aryl Triflates

    PubMed Central

    Ackerman, Laura K.G.; Lovell, Matthew M.

    2015-01-01

    Transition metal-catalyzed strategies for the formation of new C-C bonds have revolutionized the field of organic chemistry, enabling the efficient synthesis of ligands, materials, and biologically active molecules.1–3 In cases where a single metal fails to promote a selective or efficient transformation, the synergistic cooperation4 of two distinct catalysts – multimetallic catalysis – can be employed instead. Many important reactions rely on multimetallic catalysis,5 including the Wacker oxidation of olefins6–8 and the Sonogashira coupling of alkynes with aryl halides.9–10 However, the application of this strategy, even in recently developed methods11, has largely been limited to the use of metals with distinct reactivities, with only one metal catalyst undergoing an oxidative addition.12 In this manuscript, we demonstrate that cooperativity between two d10 metal catalysts, (bipyridine)nickel and (1,3-bis(diphenylphosphino)propane)palladium, enables a general cross-Ullman reaction.13–15 Our method couples aryl bromides with aryl triflates directly, eliminating the use of arylmetal reagents and avoiding the challenge of differentiating between multiple C–H bonds that is required for many C–H activation methods.16–17 The selectivity does not require an excess of either substrate and originates from the orthogonal activity of the two catalysts and the relative stability of the two arylmetal intermediates. While (dppp)Pd reacts preferentially with aryl triflates to afford a persistent intermediate, (bpy)Ni reacts preferentially with aryl bromides to form a transient, reactive intermediate. Although each catalyst forms less than 5% cross product in isolation, together they are able to achieve up to 94% yield. Our results reveal a new, general method for the synthesis of biaryls, heteroaryls, and dienes, as well as a new mechanism for selective transmetalation between two catalysts. We anticipate that this reaction will simplify the synthesis of

  17. Enantioselective cross-coupling of meso-epoxides with aryl halides.

    PubMed

    Zhao, Yang; Weix, Daniel J

    2015-03-11

    The first enantioselective cross-electrophile coupling of aryl bromides with meso-epoxides to form trans-β-arylcycloalkanols is presented. The reaction is catalyzed by a combination of (bpy)NiCl2 and a chiral titanocene under reducing conditions. Yields range from 57 to 99% with 78-95% enantiomeric excess. The 30 examples include a variety of functional groups (ether, ester, ketone, nitrile, ketal, trifluoromethyl, sulfonamide, sulfonate ester), both aryl and vinyl halides, and five- to seven-membered rings. The intermediacy of a carbon radical is strongly suggested by the conversion of cyclooctene monoxide to an aryl [3.3.0]bicyclooctanol. PMID:25716775

  18. Practical Ni-Catalyzed Aryl-Alkyl Cross-Coupling of Secondary Redox-Active Esters.

    PubMed

    Cornella, Josep; Edwards, Jacob T; Qin, Tian; Kawamura, Shuhei; Wang, Jie; Pan, Chung-Mao; Gianatassio, Ryan; Schmidt, Michael; Eastgate, Martin D; Baran, Phil S

    2016-02-24

    A new transformation is presented that enables chemists to couple simple alkyl carboxylic acids with aryl zinc reagents under Ni-catalysis. The success of this reaction hinges on the unique use of redox-active esters that allow one to employ such derivatives as alkyl halides surrogates. The chemistry exhibits broad substrate scope and features a high degree of practicality. The simple procedure and extremely inexpensive nature of both the substrates and pre-catalyst (NiCl2·6H2O, ca. $9.5/mol) bode well for the immediate widespread adoption of this method. PMID:26835704

  19. Functionalized olefin cross-coupling to construct carbon–carbon bonds

    PubMed Central

    Lo, Julian C.; Gui, Jinghan; Yabe, Yuki; Pan, Chung-Mao; Baran, Phil S.

    2014-01-01

    Carbon–carbon (C–C) bonds form the backbone of many important molecules, including polymers, dyes, and pharmaceutical agents. The development of new methods to create these essential connections in a rapid and practical fashion has been the focus of numerous organic chemists. This endeavor heavily relies on the ability to form C–C bonds in the presence of sensitive functional groups and congested structural environments. Here we report a fundamentally new chemical transformation that allows for the facile construction of highly substituted and uniquely functionalized C–C bonds. Using a simple iron catalyst, an inexpensive silane, and a benign solvent under an ambient atmosphere, heteroatom-substituted olefins are easily merged with electron-deficient olefins to create molecular architectures that were previously difficult or impossible to access. More than sixty examples are presented with a wide array of substrates, demonstrating the unique chemoselectivity and mildness of this simple reaction. PMID:25519131

  20. Functionalized olefin cross-coupling to construct carbon-carbon bonds

    NASA Astrophysics Data System (ADS)

    Lo, Julian C.; Gui, Jinghan; Yabe, Yuki; Pan, Chung-Mao; Baran, Phil S.

    2014-12-01

    Carbon-carbon (C-C) bonds form the backbone of many important molecules, including polymers, dyes and pharmaceutical agents. The development of new methods to create these essential connections in a rapid and practical fashion has been the focus of numerous organic chemists. This endeavour relies heavily on the ability to form C-C bonds in the presence of sensitive functional groups and congested structural environments. Here we report a chemical transformation that allows the facile construction of highly substituted and uniquely functionalized C-C bonds. Using a simple iron catalyst, an inexpensive silane and a benign solvent under ambient atmosphere, heteroatom-substituted olefins are easily reacted with electron-deficient olefins to create molecular architectures that were previously difficult or impossible to access. More than 60 examples are presented with a wide array of substrates, demonstrating the chemoselectivity and mildness of this simple reaction.