Science.gov

Sample records for pallidum subsp pallidum

  1. Treponema pallidum subsp. pertenue displays pathogenic properties different from those of T. pallidum subsp. pallidum.

    PubMed

    Wicher, K; Wicher, V; Abbruscato, F; Baughn, R E

    2000-06-01

    The present study described the susceptibility of C4D guinea pigs to cutaneous infection with Treponema pallidum subsp. pertenue Haiti B strain. The general manifestations of the disease in adults and neonates differ, to a certain degree, from those induced by T. pallidum subsp. pallidum Nichols strain. Noticeable differences between the infections were reflected in the character of the skin lesions, their onset and persistence, and the kinetics of the humoral response. The incidence and dissemination of cutaneous yaws lesions in very young guinea pigs were remarkably different from the low frequency observed in a similar age group of syphilis infection, 100 versus 17%, respectively. Moreover, as opposed to T. pallidum subsp. pallidum, T. pallidum subsp. pertenue does not cross the placenta. Offspring born to yaws-infected mothers did not produce immunoglobulin M antibodies and their organs, examined by PCR and rabbit infectivity test (RIT), were all negative. Examination of a large number of tissues and organs in adult, neonate, and maternal yaws by PCR and RIT clearly demonstrated that, unlike syphilis, there was a low incidence and short persistence of the yaws pathogen in internal organs. These findings stress the dermotropic rather than the organotropic character of yaws and provide further evidence of distinctive biological and pathological differences between yaws and venereal syphilis. PMID:10816466

  2. Molecular Subtyping of Treponema pallidum subsp. pallidum in Lisbon, Portugal▿

    PubMed Central

    Castro, R.; Prieto, E.; Águas, M. J.; Manata, M. J.; Botas, J.; Martins Pereira, F.

    2009-01-01

    The objectives of this study were to evaluate the reproducibility of a molecular method for the subtyping of Treponema pallidum subsp. pallidum and to discriminate strains of this microorganism from strains from patients with syphilis. We studied 212 specimens from a total of 82 patients with different stages of syphilis (14 primary, 7 secondary and 61 latent syphilis). The specimens were distributed as follows: genital ulcers (n = 9), skin and mucosal lesions (n = 7), blood (n = 82), plasma (n = 82), and ear lobe scrapings (n = 32). The samples were assayed by a PCR technique to amplify a segment of the polymerase gene I (polA). Positive samples were typed on the basis of the analysis of two variable genes, tpr and arp. Sixty-two of the 90 samples positive for polA yielded typeable Treponema pallidum DNA. All skin lesions in which T. pallidum was identified (six of six [100%]) were found to contain enough DNA for typing of the organism. It was also possible to type DNA from 7/9 (77.7%) genital ulcer samples, 13/22 (59.1%) blood samples, 20/32 (62.5%) plasma samples, and 16/21 (76.2%) ear lobe scrapings. The same subtype was identified in all samples from the same patient. Five molecular subtypes (subtypes 10a, 14a, 14c, 14f, and 14g) were identified, with the most frequently found subtype being subtype 14a and the least frequently found subtype being subtype 10a. In conclusion, the subtyping technique used in this study seems to have good reproducibility. To our knowledge, subtype 10a was identified for the first time. Further studies are needed to explain the presence of this subtype in Portugal, namely, its relationship to the Treponema pallidum strains circulating in the African countries where Portuguese is spoken. PMID:19494073

  3. Complete Genome Sequence of the Treponema pallidum subsp. pallidum Sea81-4 Strain

    PubMed Central

    Iverson-Cabral, Stefanie L.; King, Jordon C. K.; Molini, Barbara J.; Lukehart, Sheila A.; Centurion-Lara, Arturo

    2014-01-01

    Using the rabbit model of syphilis, the Sea81-4 strain of Treponema pallidum subsp. pallidum has been found to be more likely than other strains to invade the central nervous system (CNS). To identify possible explanations for this important phenotype at the genomic level, we sequenced the Sea81-4 strain genome. PMID:24744342

  4. Complete Genome Sequence of the Treponema pallidum subsp. pallidum Sea81-4 Strain.

    PubMed

    Giacani, Lorenzo; Iverson-Cabral, Stefanie L; King, Jordon C K; Molini, Barbara J; Lukehart, Sheila A; Centurion-Lara, Arturo

    2014-01-01

    Using the rabbit model of syphilis, the Sea81-4 strain of Treponema pallidum subsp. pallidum has been found to be more likely than other strains to invade the central nervous system (CNS). To identify possible explanations for this important phenotype at the genomic level, we sequenced the Sea81-4 strain genome. PMID:24744342

  5. Physical map of the genome of Treponema pallidum subsp. pallidum (Nichols).

    PubMed Central

    Walker, E M; Howell, J K; You, Y; Hoffmaster, A R; Heath, J D; Weinstock, G M; Norris, S J

    1995-01-01

    A physical map of the chromosome of Treponema pallidum subsp. pallidum (Nichols), the causative agent of syphilis, was constructed from restriction fragments produced by NotI, SfiI, and SrfI. These rare-cutting restriction endonucleases cleaved the T. pallidum genome into 16, 8, and 15 fragments, respectively. Summation of the physical lengths of the fragments indicates that the chromosome of T. pallidum subsp. pallidum is approximately 1,030 to 1,080 kbp in size. The physical map was constructed by hybridizing a variety of probes to Southern blots of single and double digests of T. pallidum genomic DNA separated by contour-clamped homogeneous electric field electrophoresis. Probes included cosmid clones constructed from T. pallidum subsp. pallidum genomic DNA, restriction fragments excised from gels, and selected genes. Physical mapping confirmed that the chromosome of T. pallidum subsp. pallidum is circular, as the SfiI and SrfI maps formed complete circles. A total of 13 genes, including those encoding five membrane lipoproteins (tpn47, tpn41, tpn29-35, tpn17, and tpn15), a putative outer membrane porin (tpn50), the flagellar sheath and hook proteins (flaA and flgE), the cytoplasmic filament protein (cfpA), 16S rRNA (rrnA), a major sigma factor (rpoD), and a homolog of cysteinyl-tRNA synthetase (cysS), have been localized in the physical map as a first step toward studying the genetic organization of this noncultivable pathogen. PMID:7896703

  6. Function and Protective Capacity of Treponema pallidum subsp. pallidum Glycerophosphodiester Phosphodiesterase

    PubMed Central

    Cameron, Caroline E.; Castro, Christa; Lukehart, Sheila A.; Van Voorhis, Wesley C.

    1998-01-01

    Infectious syphilis, caused by the spirochete bacterium Treponema pallidum subsp. pallidum, remains a public health concern worldwide. The immune-response evasion mechanisms employed by T. pallidum are poorly understood, and prior attempts to identify immunoprotective antigens for subsequent vaccine design have been unsuccessful. Previous investigations conducted in our laboratory identified the T. pallidum glycerophosphodiester phosphodiesterase as a potential immunoprotective antigen by using a differential immunologic expression library screen. In studies reported here, heterologous expression of the T. pallidum glycerophosphodiester phosphodiesterase in Escherichia coli yielded a full-length, enzymatically active protein. Characterization of the recombinant molecule showed it to be bifunctional, in that it exhibited specific binding to human immunoglobulin A (IgA), IgD, and IgG in addition to possessing enzymatic activity. IgG fractionation studies revealed specific binding of the recombinant enzyme to the Fc fragment of human IgG, a characteristic that may play a role in enabling the syphilis spirochete to evade the host immune response. In further investigations, immunization with the recombinant enzyme significantly protected rabbits from subsequent T. pallidum challenge, altering lesion development at the sites of challenge. In all cases, animals immunized with the recombinant molecule developed atypical pale, flat, slightly indurated, and nonulcerative reactions at the challenge sites that resolved before lesions appeared in the control animals. Although protection in the immunized rabbits was incomplete, as demonstrated by the presence of T. pallidum in the rabbit infectivity test, glycerophosphodiester phosphodiesterase nevertheless represents a significantly immunoprotective T. pallidum antigen and thus may be useful for inclusion in an antigen cocktail vaccine for syphilis. PMID:9826352

  7. Function and protective capacity of Treponema pallidum subsp. pallidum glycerophosphodiester phosphodiesterase.

    PubMed

    Cameron, C E; Castro, C; Lukehart, S A; Van Voorhis, W C

    1998-12-01

    Infectious syphilis, caused by the spirochete bacterium Treponema pallidum subsp. pallidum, remains a public health concern worldwide. The immune-response evasion mechanisms employed by T. pallidum are poorly understood, and prior attempts to identify immunoprotective antigens for subsequent vaccine design have been unsuccessful. Previous investigations conducted in our laboratory identified the T. pallidum glycerophosphodiester phosphodiesterase as a potential immunoprotective antigen by using a differential immunologic expression library screen. In studies reported here, heterologous expression of the T. pallidum glycerophosphodiester phosphodiesterase in Escherichia coli yielded a full-length, enzymatically active protein. Characterization of the recombinant molecule showed it to be bifunctional, in that it exhibited specific binding to human immunoglobulin A (IgA), IgD, and IgG in addition to possessing enzymatic activity. IgG fractionation studies revealed specific binding of the recombinant enzyme to the Fc fragment of human IgG, a characteristic that may play a role in enabling the syphilis spirochete to evade the host immune response. In further investigations, immunization with the recombinant enzyme significantly protected rabbits from subsequent T. pallidum challenge, altering lesion development at the sites of challenge. In all cases, animals immunized with the recombinant molecule developed atypical pale, flat, slightly indurated, and nonulcerative reactions at the challenge sites that resolved before lesions appeared in the control animals. Although protection in the immunized rabbits was incomplete, as demonstrated by the presence of T. pallidum in the rabbit infectivity test, glycerophosphodiester phosphodiesterase nevertheless represents a significantly immunoprotective T. pallidum antigen and thus may be useful for inclusion in an antigen cocktail vaccine for syphilis. PMID:9826352

  8. Activation of the classical and alternative pathways of complement by Treponema pallidum subsp. pallidum and Treponema vincentii.

    PubMed

    Fitzgerald, T J

    1987-09-01

    Both in vivo and in vitro studies have indicated that complement plays an important role in the syphilitic immune responses. Few quantitative data are available concerning activation of the classical pathway by Treponema pallidum subsp. pallidum, and no information is available on treponemal activation of the alternative pathway. Activation of both pathways was compared by using T. pallidum subsp. pallidum and the nonpathogen T. vincentii. With rabbit and human sources of complement, both organisms rapidly activated the classical pathway, as shown by hemolysis of sensitized sheep erythrocytes and by the generation of soluble C4a. With human sources of complement, both organisms also activated the alternative pathway, as shown by hemolysis of rabbit erythrocytes and by the generation of soluble C3a in the presence of magnesium ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). During incubation, organisms remained actively mobile and did not lyse, indicating that activation was a function of complement reactivity with the intact outer treponemal surface. In addition, freshly harvested T. pallidum subsp. pallidum immediately activated both pathways of complement; preincubation of organisms did not enhance complement reactivity. T. vincentii was a more potent activator of this pathway. T. pallidum subsp. pallidum contained almost four times as much surface sialic acid as T. vincentii did. When sialic acid was enzymatically removed from T. pallidum subsp. pallidum, enhanced activation of the alternative pathway was detected. It is proposed that T. pallidum subsp. pallidum retards complement-mediated damage by the alternative pathway through surface-associated sialic acid. This may be an important virulence determinant that enables these organisms to readily disseminate through the bloodstream to infect other tissues. PMID:3305362

  9. Antimicrobial activity of rabbit leukocyte defensins against Treponema pallidum subsp. pallidum.

    PubMed

    Borenstein, L A; Selsted, M E; Lehrer, R I; Miller, J N

    1991-04-01

    Defensins, which are peptides with broad antimicrobial activity, are major constituents of rabbit neutrophils and certain macrophages. We tested six rabbit defensins, NP-1, NP-2, NP-3a, NP-3b, NP-4, and NP-5, for activity against Treponema pallidum subsp. pallidum. Mixtures of T. pallidum and defensin in 10% normal rabbit serum (NRS) or heat-inactivated NRS (HI-NRS) were incubated anaerobically for various time periods ranging between 0 and 16 h and then examined by dark-field microscopy for treponemal motility or inoculated intradermally into rabbits to assess treponemal virulence. Immobilization of T. pallidum by NP-1 (400 micrograms/ml) occurred after 4 and 8 h of coincubation in mixtures containing NRS and HI-NRS, respectively. Similarly, neutralization of T. pallidum by NP-1 occurred more rapidly and was complete when incubations were performed in NRS as compared with that in HI-NRS. Endpoint titration confirmed the augmentation of NP-1 antitreponemal activity by heat-labile serum factors; NP-1 showed neutralizing activity at 4 micrograms/ml (about 1 microM) in NRS and at 40 micrograms/ml in HI-NRS. When NP-1 was tested in serum that was deficient in C6, the T. pallidum neutralizing activity of NP-1 was reduced to levels slightly greater than that observed in HI-NRS. NP-1 that had been reduced and alkylated was inactive against T. pallidum. When NP-2, NP-3a, NP-3b, NP-4, and NP-5 were tested at 400 micrograms/ml, all exerted potent treponemicidal activity, manifested by abrogation or delayed development of cutaneous lesions relative to that of controls. These data suggest that defensins may equip certain macrophages and neutrophils to participate in host defense against T. pallidum, that the direct activity of defensins against T. pallidum is enhanced by heat-labile serum factors (presumably complement), and that conformational factors influence the biological activity of the defensin molecule. PMID:2004816

  10. [Macrolide resistance in Treponema pallidum subsp. pallidum in the Czech Republic and in other countries].

    PubMed

    Grillová, L; Mikalová, L; Zákoucká, H; Židlická, J; Šmajs, D

    2015-03-01

    Treponema pallidum subsp. pallidum (TPA) is the causative agent of the sexually transmitted disease syphilis. In the Czech Republic, several hundred cases of syphilis are reported annually; e.g. in 2012, 696 syphilis cases were documented. In the last decades, an increasing prevalence of macrolide resistant TPA strains harboring A2058G or A2059G mutations in the 23S rRNA gene has been reported. Macrolides were used (and rarely are still being used) in the Czech Republic for the treatment of syphilis in patients allergic to penicillin. While 37% of TPA strains were resistant to macrolides between 2004 and 2010, this rate increased to 67% between 2011-2013. High prevalence of A2058G or A2059G mutations and increasing rates of macrolide resistant TPA strains have also been documented in other developed countries. Therefore, macrolides should not be used in the treatment of syphilis. PMID:25872989

  11. Characterization of the cytoplasmic filament protein gene (cfpA) of Treponema pallidum subsp. pallidum.

    PubMed Central

    You, Y; Elmore, S; Colton, L L; Mackenzie, C; Stoops, J K; Weinstock, G M; Norris, S J

    1996-01-01

    Treponema pallidum and other members of the genera Treponema, Spirochaeta, and Leptonema contain multiple cytoplasmic filaments that run the length of the organism just underneath the cytoplasmic membrane. These cytoplasmic filaments have a ribbon-like profile and consist of a major cytoplasmic filament protein subunit (CfpA, formerly called TpN83) with a relative molecular weight of approximately 80,000. Degenerate DNA primers based on N-terminal and CNBr cleavage fragment amino acid sequences of T. pallidum subsp. pallidum (Nichols) CfpA were utilized to amplify a fragment of the encoding gene (cfpA). A 6.8-kb EcoRI fragment containing all but the 5' end of cfpA was identified by hybridization with the resulting PCR product and cloned into Lambda ZAP II. The 5' region was obtained by inverse PCR, and the complete gene sequence was determined. The cfpA sequence contained a 2,034-nucleotide coding region, a putative promoter with consensus sequences (5'-TTTACA-3' for -35 and 5'-TACAAT-3' for -10) similar to the sigma70 recognition sequence of Escherichia coli and other organisms, and a putative ribosome-binding site (5'-AGGAG-3'). The deduced amino acid sequence of CfpA indicated a protein of 678 residues with a calculated molecular mass of 78.5 kDa and an estimated pI of 6.15. No significant homology to known proteins or structural motifs was found among known prokaryotic or eukaryotic sequences. Expression of a LacZ-CfpA fusion protein in E. coli was detrimental to survival and growth of the host strain and resulted in the formation of short, irregular filaments suggestive of partial self-assembly of CfpA. The cytoplasmic filaments of T. pallidum and other spirochetes appear to represent a unique form of prokaryotic intracytoplasmic inclusions. PMID:8655496

  12. Complete Genome Sequence and Annotation of the Treponema pallidum subsp. pallidum Chicago Strain ▿

    PubMed Central

    Giacani, Lorenzo; Jeffrey, Brendan M.; Molini, Barbara J.; Le, HoaVan T.; Lukehart, Sheila A.; Centurion-Lara, Arturo; Rockey, Daniel D.

    2010-01-01

    In syphilis research, the Nichols strain of Treponema pallidum, isolated in 1912, has been the most widely studied. Recently, important differences among T. pallidum strains emerged; therefore, we sequenced and annotated the Chicago strain genome to facilitate and encourage the use of this strain in studying the pathogenesis of syphilis. PMID:20348263

  13. TP0262 is a modulator of promoter activity of tpr Subfamily II genes of Treponema pallidum subsp. pallidum

    PubMed Central

    Giacani, Lorenzo; Godornes, Charmie; Puray-Chavez, Maritza; Guerra-Giraldez, Cristina; Tompa, Martin; Lukehart, Sheila A.; Centurion-Lara, Arturo

    2009-01-01

    Transcriptional regulation in Treponema pallidum subsp. pallidum is poorly understood, primarily because this organism cannot be cultivated in vitro or genetically manipulated. We have recently shown a phase variation mechanism controlling transcription initiation of Subfamily II tpr (T. pallidum repeat) genes (tprE, tprG, and tprJ), a group of virulence factor candidates. Furthermore, the same study suggested that additional mechanisms might influence the level of transcription of these tprs. The T. pallidum genome sequence has revealed a few open reading frames (ORFs) with similarity to known bacterial transcription factors (TFs), including four catabolite activator protein (CAP) homologs. In this work, sequences matching the E. coli cAMP receptor protein (CRP) binding motif were identified in silico upstream of tprE, tprG, and tprJ. Using elecrophoretic mobility shift assay (EMSA) and DNaseI footprinting assay, recombinant TP0262, a T. pallidum CRP homolog, was shown to bind specifically to amplicons obtained from the tpr promoters containing putative CRP binding motifs. Using a heterologous reporter system, binding of TP0262 to these promoters was shown to either increase (tprE and tprJ) or decrease (tprG) tpr promoter activity. This is the first characterization of a T. pallidum transcriptional modulator which influences tpr promoter activity. PMID:19432808

  14. In vitro culture system to determine MICs and MBCs of antimicrobial agents against Treponema pallidum subsp. pallidum (Nichols strain).

    PubMed Central

    Norris, S J; Edmondson, D G

    1988-01-01

    A new procedure for determining the susceptibility of Treponema pallidum subsp. pallidum to antimicrobial agents was developed, utilizing a tissue culture system which promotes the in vitro multiplication of this organism. In the absence of antibiotics, T. pallidum (Nichols virulent strain) multiplied an average of 10-fold when incubated for 7 days in the presence of Sf1Ep cottontail rabbit epithelial cell cultures. Varied concentrations of penicillin G, tetracycline, erythromycin, and spectinomycin were added to triplicate cultures to determine their effects on treponemal multiplication, motility, and virulence. The MIC of each antibiotic was defined as the lowest concentration which prevented treponemal multiplication, whereas the MBC was defined as the lowest concentration which abrogated the ability of the cultured treponemes to multiply and cause lesions in rabbits. The in vitro culture technique provided highly reproducible MICs and (in parentheses) MBCs of each of the antibiotics tested: aqueous penicillin G, 0.0005 (0.0025) microgram/ml; tetracycline, 0.2 (0.5) microgram/ml; erythromycin, 0.005 (0.005) microgram/ml; and spectinomycin, 0.5 (0.5) microgram/ml. The significance of these results in light of the in vivo activities and the previous in vitro evaluations of these antibiotics is discussed. The T. pallidum in vitro cultivation system shows promise as a method for studying the interaction between T. pallidum and antimicrobial agents and for screening new antibiotics for syphilis therapy. PMID:2964810

  15. Sequence analysis and recombinant expression of a 28-kilodalton Treponema pallidum subsp. pallidum rare outer membrane protein (Tromp2).

    PubMed Central

    Champion, C I; Blanco, D R; Exner, M M; Erdjument-Bromage, H; Hancock, R E; Tempst, P; Miller, J N; Lovett, M A

    1997-01-01

    In this study, we report the cloning, sequencing, and expression of the gene encoding a 28-kDa Treponema pallidum subsp. pallidum rare outer membrane protein (TROMP), designated Tromp2. The tromp2 gene encodes a precursor protein of 242 amino acids including a putative signal peptide of 24 amino acids ending in a type I signal peptidase cleavage site of Leu-Ala-Ala. The mature protein of 218 amino acids has a calculated molecular weight of 24,759 and a calculated pI of 7.3. The predicted secondary structure of Tromp2 shows nine transmembrane segments of amphipathic beta-sheets typical of outer membrane proteins. Recombinant Tromp2 (rTromp2) was expressed with its native signal peptide, using a tightly regulated T7 RNA polymerase expression vector. Under high-level expression conditions, rTromp2 fractionated exclusively with the Escherichia coli outer membrane. Antiserum raised against rTromp2 was generated and used to identify native Tromp2 in cellular fractionations. Following Triton X-114 extraction and phase separation of T. pallidum, the 28-kDa Tromp2 protein was detected prominently in the detergent phase. Alkali and high-salt treatment of purified outer membrane from T. pallidum, conditions which remove peripherally associated membrane proteins, demonstrated that Tromp2 is an integral membrane protein. Whole-mount immunoelectron microscopy of E. coli cells expressing rTromp2 showed specific surface antibody binding. These findings demonstrate that Tromp2 is a membrane-spanning outer membrane protein, the second such protein to be identified for T. pallidum. PMID:9023206

  16. Genetic and physicochemical characterization of the recombinant DNA-derived 47-kilodalton surface immunogen of Treponema pallidum subsp. pallidum.

    PubMed

    Chamberlain, N R; Radolf, J D; Hsu, P L; Sell, S; Norgard, M V

    1988-01-01

    Previous work has established the importance of the 47-kilodalton (kDa) surface immunogen of Treponema pallidum subsp. pallidum (T. pallidum) in the immunopathogenesis of syphilis; the 47-kDa immunogen gene was cloned and expressed in Escherichia coli (M. V. Norgard, N. R. Chamberlain, M. A. Swancutt, and M. S. Goldberg, Infect. Immun. 54:500-506, 1986). To facilitate additional structural-functional analysis of this protein for immunopathogenesis studies, the recombinant DNA-derived molecule was examined with respect to its genetic expression and physicochemical properties. Subcloning of partial PstI digests of the original 47-kDa antigen-encoding DNA segment localized the 47-kDa antigen gene to a 1.3-kilobase (kb) T. pallidum DNA fragment. A 20- to 100-fold enhanced expression of the 47-kDa antigen was obtained when a 2.85-kb DNA insert containing the entire 1.3-kb structural gene was subcloned into a T7 RNA polymerase-dependent expression vector system. Under these conditions, several derivatives of the recombinant 47-kDa protein possessing different molecular masses were observed that were identical to those previously detected on Western blots of native T. pallidum antigens with monoclonal antibodies. Sarkosyl extraction of E. coli recombinant cell envelopes localized the 47-kDa protein to both the inner and outer membranes of E. coli. The absolute requirement of detergents (N-lauroylsarcosine, 3-[(3-chloramidopropyl)dimethylammonio]-1-propane sulfonate, N-octyl-beta-D-glucopyranoside, or Nonidet P-40) for solubilization of the antigen from E. coli cell envelopes and the observation that the recombinant protein partitioned into the detergent phase on Triton X-114 solubilization were consistent with the fact that it is a hydrophobic, integral membrane protein. Western blots of the 47-kDa antigen purified by immunoaffinity chromatography supported results of previous reports that the 47-kDa protein is specific to pathogenic treponemes. PMID:3275588

  17. Treponema pallidum subsp. pallidum TP0136 protein is heterogeneous among isolates and binds cellular and plasma fibronectin via its NH2-terminal end.

    PubMed

    Ke, Wujian; Molini, Barbara J; Lukehart, Sheila A; Giacani, Lorenzo

    2015-03-01

    Adherence-mediated colonization plays an important role in pathogenesis of microbial infections, particularly those caused by extracellular pathogens responsible for systemic diseases, such as Treponema pallidum subsp. pallidum (T. pallidum), the agent of syphilis. Among T. pallidum adhesins, TP0136 is known to bind fibronectin (Fn), an important constituent of the host extracellular matrix. To deepen our understanding of the TP0136-Fn interaction dynamics, we used two naturally-occurring sequence variants of the TP0136 protein to investigate which region of the protein is responsible for Fn binding, and whether TP0136 would adhere to human cellular Fn in addition to plasma Fn and super Fn as previously reported. Fn binding assays were performed with recombinant proteins representing the two full-length TP0136 variants and their discrete regions. As a complementary approach, we tested inhibition of T. pallidum binding to Fn by recombinant full-length TP0136 proteins and fragments, as well as by anti-TP0136 immune sera. Our results show that TP0136 adheres more efficiently to cellular Fn than to plasma Fn, that the TP0136 NH2-terminal conserved region of the protein is primarily responsible for binding to plasma Fn but that binding sites for cellular Fn are also present in the protein's central and COOH-terminal regions. Additionally, message quantification studies show that tp0136 is highly transcribed during experimental infection, and that its message level increases in parallel to the host immune pressure on the pathogen, which suggests a possible role for this protein in T. pallidum persistence. In a time where syphilis incidence is high, our data will help in the quest to identify suitable targets for development of a much needed vaccine against this important disease. PMID:25793702

  18. Treponema pallidum subsp. pallidum TP0136 Protein Is Heterogeneous among Isolates and Binds Cellular and Plasma Fibronectin via its NH2-Terminal End

    PubMed Central

    Ke, Wujian; Molini, Barbara J.; Lukehart, Sheila A.; Giacani, Lorenzo

    2015-01-01

    Adherence-mediated colonization plays an important role in pathogenesis of microbial infections, particularly those caused by extracellular pathogens responsible for systemic diseases, such as Treponema pallidum subsp. pallidum (T. pallidum), the agent of syphilis. Among T. pallidum adhesins, TP0136 is known to bind fibronectin (Fn), an important constituent of the host extracellular matrix. To deepen our understanding of the TP0136-Fn interaction dynamics, we used two naturally-occurring sequence variants of the TP0136 protein to investigate which region of the protein is responsible for Fn binding, and whether TP0136 would adhere to human cellular Fn in addition to plasma Fn and super Fn as previously reported. Fn binding assays were performed with recombinant proteins representing the two full-length TP0136 variants and their discrete regions. As a complementary approach, we tested inhibition of T. pallidum binding to Fn by recombinant full-length TP0136 proteins and fragments, as well as by anti-TP0136 immune sera. Our results show that TP0136 adheres more efficiently to cellular Fn than to plasma Fn, that the TP0136 NH2-terminal conserved region of the protein is primarily responsible for binding to plasma Fn but that binding sites for cellular Fn are also present in the protein’s central and COOH-terminal regions. Additionally, message quantification studies show that tp0136 is highly transcribed during experimental infection, and that its message level increases in parallel to the host immune pressure on the pathogen, which suggests a possible role for this protein in T. pallidum persistence. In a time where syphilis incidence is high, our data will help in the quest to identify suitable targets for development of a much needed vaccine against this important disease. PMID:25793702

  19. Footprint of Positive Selection in Treponema pallidum subsp. pallidum Genome Sequences Suggests Adaptive Microevolution of the Syphilis Pathogen

    PubMed Central

    Centurion-Lara, Arturo; Jeffrey, Brendan M.; Le, Hoavan T.; Molini, Barbara J.; Lukehart, Sheila A.; Sokurenko, Evgeni V.; Rockey, Daniel D.

    2012-01-01

    In the rabbit model of syphilis, infection phenotypes associated with the Nichols and Chicago strains of Treponema pallidum (T. pallidum), though similar, are not identical. Between these strains, significant differences are found in expression of, and antibody responses to some candidate virulence factors, suggesting the existence of functional genetic differences between isolates. The Chicago strain genome was therefore sequenced and compared to the Nichols genome, available since 1998. Initial comparative analysis suggested the presence of 44 single nucleotide polymorphisms (SNPs), 103 small (≤3 nucleotides) indels, and 1 large (1204 bp) insertion in the Chicago genome with respect to the Nichols genome. To confirm the above findings, Sanger sequencing was performed on most loci carrying differences using DNA from Chicago and the Nichols strain used in the original T. pallidum genome project. A majority of the previously identified differences were found to be due to errors in the published Nichols genome, while the accuracy of the Chicago genome was confirmed. However, 20 SNPs were confirmed between the two genomes, and 16 (80.0%) were found in coding regions, with all being of non-synonymous nature, strongly indicating action of positive selection. Sequencing of 16 genomic loci harboring SNPs in 12 additional T. pallidum strains, (SS14, Bal 3, Bal 7, Bal 9, Sea 81-3, Sea 81-8, Sea 86-1, Sea 87-1, Mexico A, UW231B, UW236B, and UW249C), was used to identify “Chicago-“ or “Nichols -specific” differences. All but one of the 16 SNPs were “Nichols-specific”, with Chicago having identical sequences at these positions to almost all of the additional strains examined. These mutations could reflect differential adaptation of the Nichols strain to the rabbit host or pathoadaptive mutations acquired during human infection. Our findings indicate that SNPs among T. pallidum strains emerge under positive selection and, therefore, are likely to be functional in

  20. Footprint of positive selection in Treponema pallidum subsp. pallidum genome sequences suggests adaptive microevolution of the syphilis pathogen.

    PubMed

    Giacani, Lorenzo; Chattopadhyay, Sujay; Centurion-Lara, Arturo; Jeffrey, Brendan M; Le, Hoavan T; Molini, Barbara J; Lukehart, Sheila A; Sokurenko, Evgeni V; Rockey, Daniel D

    2012-01-01

    In the rabbit model of syphilis, infection phenotypes associated with the Nichols and Chicago strains of Treponema pallidum (T. pallidum), though similar, are not identical. Between these strains, significant differences are found in expression of, and antibody responses to some candidate virulence factors, suggesting the existence of functional genetic differences between isolates. The Chicago strain genome was therefore sequenced and compared to the Nichols genome, available since 1998. Initial comparative analysis suggested the presence of 44 single nucleotide polymorphisms (SNPs), 103 small (≤3 nucleotides) indels, and 1 large (1204 bp) insertion in the Chicago genome with respect to the Nichols genome. To confirm the above findings, Sanger sequencing was performed on most loci carrying differences using DNA from Chicago and the Nichols strain used in the original T. pallidum genome project. A majority of the previously identified differences were found to be due to errors in the published Nichols genome, while the accuracy of the Chicago genome was confirmed. However, 20 SNPs were confirmed between the two genomes, and 16 (80.0%) were found in coding regions, with all being of non-synonymous nature, strongly indicating action of positive selection. Sequencing of 16 genomic loci harboring SNPs in 12 additional T. pallidum strains, (SS14, Bal 3, Bal 7, Bal 9, Sea 81-3, Sea 81-8, Sea 86-1, Sea 87-1, Mexico A, UW231B, UW236B, and UW249C), was used to identify "Chicago-" or "Nichols -specific" differences. All but one of the 16 SNPs were "Nichols-specific", with Chicago having identical sequences at these positions to almost all of the additional strains examined. These mutations could reflect differential adaptation of the Nichols strain to the rabbit host or pathoadaptive mutations acquired during human infection. Our findings indicate that SNPs among T. pallidum strains emerge under positive selection and, therefore, are likely to be functional in nature. PMID

  1. Identification of the Treponema pallidum subsp. pallidum TP0092 (RpoE) Regulon and Its Implications for Pathogen Persistence in the Host and Syphilis Pathogenesis

    PubMed Central

    Denisenko, Oleg; Tompa, Martin; Centurion-Lara, Arturo

    2013-01-01

    Bacteria often respond to harmful environmental stimuli with the induction of extracytoplasmic function (ECF) sigma (σ) factors that in turn direct RNA polymerase to transcribe specific groups of response genes (or regulons) to minimize cellular damage and favor adaptation to the changed extracellular milieu. In Treponema pallidum subsp. pallidum, the agent of syphilis, the TP0092 gene is predicted to code for the pathogen's only annotated ECF σ factor, homologous to RpoE, known in Escherichia coli to control a key transduction pathway for maintenance of envelope homeostasis in response to external stress and cell growth. Here we have shown that TP0092 is highly transcribed during experimental syphilis. Furthermore, TP0092 transcription levels significantly increase as infection progresses toward immune clearance of the pathogen, suggesting a role for TP0092 in helping T. pallidum respond to harmful stimuli in the host environment. To investigate this hypothesis, we determined the TP0092 regulon at two different time points during infection using chromatin immunoprecipitation followed by high-throughput sequencing. A total of 22 chromosomal regions, all containing putative TP0092-binding sites and corresponding to as many T. pallidum genes, were identified. Noteworthy among them are the genes encoding desulfoferrodoxin and thioredoxin, involved in detoxification of reactive oxygen species (ROS). Because T. pallidum does not possess other enzymes for ROS detoxification, such as superoxide dismutase, catalase, or glutathione peroxidase, our results suggest that the TP0092 regulon is important in protecting the syphilis spirochete from damage caused by ROS produced at the site of infection during the inflammatory response. PMID:23243302

  2. Genome Analysis of Treponema pallidum subsp. pallidum and subsp. pertenue Strains: Most of the Genetic Differences Are Localized in Six Regions

    PubMed Central

    Mikalová, Lenka; Strouhal, Michal; Čejková, Darina; Zobaníková, Marie; Pospíšilová, Petra; Norris, Steven J.; Sodergren, Erica; Weinstock, George M.; Šmajs, David

    2010-01-01

    The genomes of eight treponemes including T. p. pallidum strains (Nichols, SS14, DAL-1 and Mexico A), T. p. pertenue strains (Samoa D, CDC-2 and Gauthier), and the Fribourg-Blanc isolate, were amplified in 133 overlapping amplicons, and the restriction patterns of these fragments were compared. The approximate sizes of the genomes investigated based on this whole genome fingerprinting (WGF) analysis ranged from 1139.3–1140.4 kb, with the estimated genome sequence identity of 99.57–99.98% in the homologous genome regions. Restriction target site analysis, detecting the presence of 1773 individual restriction sites found in the reference Nichols genome, revealed a high genome structure similarity of all strains. The unclassified simian Fribourg-Blanc isolate was more closely related to T. p. pertenue than to T. p. pallidum strains. Most of the genetic differences between T. p. pallidum and T. p. pertenue strains were accumulated in six genomic regions. These genome differences likely contribute to the observed differences in pathogenicity between T. p. pallidum and T. p. pertenue strains. These regions of sequence divergence could be used for the molecular detection and discrimination of syphilis and yaws strains. PMID:21209953

  3. A new attempt to distinguish serologically the subspecies of Treponema pallidum causing syphilis and yaws.

    PubMed Central

    Noordhoek, G T; Cockayne, A; Schouls, L M; Meloen, R H; Stolz, E; van Embden, J D

    1990-01-01

    In an effort to serologically differentiate syphilis from yaws, 69 monoclonal antibody species raised against Treponema pallidum subsp. pallidum were tested by immunoblotting for their reactivity with Treponema pallidum subsp. pertenue. All monoclonal antibodies reacted with antigens with the same molecular weight of both subspecies. Furthermore, no differences in reactivity between sera from yaws patients and from syphilis patients were found by Western blot (immunoblot) analysis of cell lysates of T. pallidum subsp. pallidum and T. pallidum subsp. pertenue. We tried to exploit the only known molecular difference between the subspecies. The subunits of the 190-kilodalton multimeric proteins TpF1 and TyF1 of T. pallidum subsp. pallidum and T. pallidum subsp. pertenue, respectively, have previously been shown to differ in one amino acid residue at position 40. In this study, no difference was found in immunoreactivity of TpF1 or TyF1 with either syphilis sera or yaws sera. Synthetic peptides based on the sequence of TpF1 and of TyF1 were used in an enzyme-linked immunosorbent assay with syphilis sera and yaws sera. Again, no difference in reactivity between the T. pallidum subsp. pallidum- and T. pallidum subsp. pertenue-derived peptides was observed. Images PMID:2199521

  4. Specific immunofluorescence staining of Treponema pallidum in smears and tissues.

    PubMed

    Ito, F; Hunter, E F; George, R W; Swisher, B L; Larsen, S A

    1991-03-01

    To date, tissue sections prepared from Formalin-fixed tissues have not been successfully stained with Treponema pallidum subspecies-specific antibody in a direct fluorescent-antibody assay. While current methods stain T. pallidum, they do not distinguish T. pallidum from other spirochetes such as Borrelia burgdorferi (E. F. Hunter, P. W. Greer, B. L. Swisher, A. R. Simons, C. E. Farshy, J. A. Crawford, and K. R. Sulzer, Arch. Pathol. Lab. Med. 108:878-880, 1984). Because trypsin pretreatment of tissue sections has enhanced other immunofluorescent-antibody (IFA) applications, we compared the use of the trypsin digestion method with the current 1% ammonium hydroxide (NH4OH) method as a means to obtain specific staining of T. pallidum in tissues by both direct and indirect IFA techniques. Pretreated T. pallidum-infected tissues sections from rabbits, hamsters, and humans were quantitatively examined with the direct fluorescent-antibody-T. pallidum test conjugate absorbed with Treponema phagedenis, the Reiter treponeme. For indirect staining, a serum specimen from a patients with syphilis absorbed by affinity chromatography with T. phagedenis was used as the primary reagent, and a fluorescein isothiocyanate-labeled rabbit anti-human globulin was used as the secondary reagent. Serum specificity was established first by examining antigen smears of T. pallidum subsp. pallidum, T. pallidum subsp. pertenue, B. burgdorferi, T. phagedenis, and Treponema denticola MRB and then by examining tissues infected with these pathogens plus those infected with four Leptospira serovars. When we stained tissue using the direct IFA method that is currently a standard method for the examination of chancre smears, we found it to be unsuitable for use with tissue. Trypsin digestion did not offer an improvement over the NH4OH pretreatment method in the specific identification of T. pallidum by direct IFA. However, specific identification of T. pallidum in tissue sections was obtained by the

  5. Morphology of Treponema pallidum.

    PubMed

    Ovcinnikov, N M; Delektorskij, V V

    1966-01-01

    In recent years many investigations have been carried out on the morphology of Treponema pallidum by means of the electron microscope, and the use of ultra-thin sections has shown up a number of structural details. However, there is still need for much more evidence before the internal structure of treponemes can be elucidated fully and the functions of the structures interpreted. To provide such evidence, the authors have examined under the electron microscope negative-stained treponemes and ultra-thin sections, using both cultivated strains and treponemes obtained direct from syphilids in people suffering from fresh secondary syphilis. It has been shown that treponemes have a complex structure. T. pallidum has a two-layered outer wall, a cytoplasmic membrane proper, cytoplasm and a bunch of fibrils following a different path in different places on the treponeme. The sites of insertion of the fibrils (the basal granules) were investigated; structures similar to mesosomes and nucleoids were found. Cysts and granular forms are described. PMID:5332527

  6. Whole Genome Sequence of the Treponema pallidum subsp. endemicum Strain Bosnia A: The Genome Is Related to Yaws Treponemes but Contains Few Loci Similar to Syphilis Treponemes

    PubMed Central

    Zobaníková, Marie; Čejková, Darina; Fulton, Lucinda L.; Chen, Lei; Giacani, Lorenzo; Centurion-Lara, Arturo; Bruisten, Sylvia M.; Sodergren, Erica; Weinstock, George M.; Šmajs, David

    2014-01-01

    Background T. pallidum subsp. endemicum (TEN) is the causative agent of bejel (also known as endemic syphilis). Clinical symptoms of syphilis and bejel are overlapping and the epidemiological context is important for correct diagnosis of both diseases. In contrast to syphilis, caused by T. pallidum subsp. pallidum (TPA), TEN infections are usually spread by direct contact or contaminated utensils rather than by sexual contact. Bejel is most often seen in western Africa and in the Middle East. The strain Bosnia A was isolated in 1950 in Bosnia, southern Europe. Methodology/Principal Findings The complete genome of the Bosnia A strain was amplified and sequenced using the pooled segment genome sequencing (PSGS) method and a combination of three next-generation sequencing techniques (SOLiD, Roche 454, and Illumina). Using this approach, a total combined average genome coverage of 513× was achieved. The size of the Bosnia A genome was found to be 1,137,653 bp, i.e. 1.6–2.8 kbp shorter than any previously published genomes of uncultivable pathogenic treponemes. Conserved gene synteny was found in the Bosnia A genome compared to other sequenced syphilis and yaws treponemes. The TEN Bosnia A genome was distinct but very similar to the genome of yaws-causing T. pallidum subsp. pertenue (TPE) strains. Interestingly, the TEN Bosnia A genome was found to contain several sequences, which so far, have been uniquely identified only in syphilis treponemes. Conclusions/Significance The genome of TEN Bosnia A contains several sequences thought to be unique to TPA strains; these sequences very likely represent remnants of recombination events during the evolution of TEN treponemes. This finding emphasizes a possible role of repeated horizontal gene transfer between treponemal subspecies in shaping the Bosnia A genome. PMID:25375929

  7. Molecular specificities of monoclonal antibodies directed against virulent Treponema pallidum.

    PubMed Central

    Marchitto, K S; Selland-Grossling, C K; Norgard, M V

    1986-01-01

    Radioimmunoprecipitation (RIP) and Western blot analyses with specific anti-Treponema pallidum subsp. pallidum monoclonal antibodies were used to identify antigens with apparent masses of 102, 84, 54, 53, 52, 47, 32, 29, and 24 kilodaltons (kDa). Cross-reactivity of these antibodies with T. pallidum subsp. pertenue antigens and lack of cross-reactivity with T. phagedenis biotype Reiter, T. vincentii, T. refringens, T. scoliodontum, and T. denticola were also demonstrated by RIP and Western blot analyses. Reactivities in the T. pallidum immobilization test, along with the RIP of lactoperoxidase-catalyzed iodination products, suggested that the identified antigens were surface associated. The abundance and surface association of the 47- and 84-kDa antigens were supported by reactivity in the microhemagglutination test for T. pallidum and by strong reactivity of monoclonal antibodies upon indirect immunofluorescence assays with rabbit-cultivated T. pallidum subsp. pallidum, respectively, but not with T. phagedenis biotype Reiter. Anti-47-kDa and anti-84-kDa monoclonal antibodies were also reactive in indirect immunofluorescence assays using treponemes found in dark-field-positive smears of human genital ulcers. Images PMID:3510168

  8. Cloning and expression of the major 47-kilodalton surface immunogen of Treponema pallidum in Escherichia coli.

    PubMed Central

    Norgard, M V; Chamberlain, N R; Swancutt, M A; Goldberg, M S

    1986-01-01

    Monoclonal antibodies directed against the 47-kilodalton (kDa) major outer membrane surface immunogen of virulent Treponema pallidum subsp. pallidum were used to select Escherichia coli recombinant clones expressing the 47-kDa immunogen. The phenotype of the clones was dependent on the presence of recombinant plasmid in the host cell. Southern hybridization revealed that the cloned T. pallidum subsp. pallidum DNA sequence was an accurate representation of the T. pallidum subsp. pallidum genomic DNA arrangement. Purified immunoglobulin G from rabbits experimentally infected with T. pallidum subsp. pallidum and human secondary syphilitic sera specifically reacted with the clones, while normal human serum or immunoglobulin G from normal rabbit serum did not. Results of Southern hybridization indicated that a homologous 47-kDa immunogen gene was absent in at least four species of nonpathogenic treponemes tested, as well as from total rabbit genomic DNA. Rabbit anti-T. phagedenis biotype Reiter (treponemal nonpathogen) antiserum and a monoclonal antibody directed against a common treponemal determinant were unreactive with the clones. Western blotting and radioimmunoprecipitation experiments with specific monoclonal antibodies revealed that the recombinant (E. coli) and native (T. pallidum subsp. pallidum) forms of the antigen had identical electrophoretic mobilities. The availability of recombinant 47-kDa immunogen provides a new opportunity for biochemical analysis of the protein, structure-function studies, examination of its role in microbial pathogenesis, and assessment of its diagnostic and vaccinogenic potentials. Images PMID:3021631

  9. [Treponema pallidum subspecies pallidum -- the causative agent of neurosyphilis].

    PubMed

    Salavec, Miloslav; Boštíková, Vanda; Vaňásková, Zuzana; Smetana, Jan; Sleha, Radek; Coufalová, Monika; Plíšek, Stanislav; Špliňo, Miroslav; Štěpánová, Vlasta; Boštík, Pavel

    2013-09-01

    Neurosyphilis is defined as infection of central nervous system by Treponema pallidum subspecies pallidum. Neurosyphilis can develop at any stage after initial infec-tion and is reflected in laboratory results. The pathogenesis of neurosyphilis is similar to that of classical form of syphilis. Individuals with persistent abnormalities in the cerebrospinal fluid are at risk of the development of clinical manifestations. Proper understanding of particular forms of neurosyphilis for differential diagnosis is important to determine potential risk of the development of progressive disease in neurology. PMID:24116696

  10. Ventral Pallidum Roles in Reward and Motivation

    PubMed Central

    Smith, Kyle S.; Tindell, Amy J.; Aldridge, J. Wayne; Berridge, Kent C.

    2008-01-01

    In recent years the ventral pallidum has become a focus of great research interest as a mechanism of reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once associated primarily with motor functions rather than regarded as a reward structure in its own right. However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward in the brain. We review data indicating that 1) an intact ventral pallidum is necessary for normal reward and motivation, 2) stimulated activation of ventral pallidum is sufficient to cause reward and motivation enhancements, and 3) activation patterns in ventral pallidum neurons specifically encode reward and motivation signals via phasic bursts of excitation to incentive and hedonic stimuli. We conclude that the ventral pallidum may serve as an important ‘limbic final common pathway’ for mesocorticolimbic processing of many rewards. PMID:18955088

  11. Surface Mucopolysaccharides of Treponema pallidum

    PubMed Central

    Fitzgerald, T. J.; Johnson, R. C.

    1979-01-01

    The viscous mucoid fluid that accumulates within syphilitic lesions may be due to breakdown of host tissue during infection, or may be synthesized by Treponema pallidum. Experiments were performed to investigate the acidic mucopolysaccharides that occur at the surface of T. pallidum (Nichols strain). These mucopolysaccharides were demonstrated by reaction with acidified bovine serum albumin and by agglutination with wheat germ agglutinin and soybean agglutinin. The polycations ruthenium red and toluidine blue influenced treponemal survival. Concentrations of both compounds at 200 μg/ml inhibited survival, whereas concentrations at 0.1μg/ml enhanced survival. The mucopolysaccharide concentration within the mucoid fluid that accumulates during intratesticular infection was determined by reaction with acidified bovine serum albumin; it ranged from 10,000 μg/ml to less than 8 μg/ml. The addition of this mucoid fluid to treponemal suspensions resulted in differing effects on T. pallidum survival. Some preparations were inhibitory, and others were stimulatory. Commercial preparations of hyaluronic acid and chondroitin sulfate at 400, 200, 100, and 50 μg/ml were detrimental to treponemal survival. The organisms exhibited pronounced clumping in the presence of the higher concentrations of hyaluronic acid. These clumps of treponemes were comprised of mucopolysaccharides as shown by acidified bovine serum albumin and toluidine blue reactions and by hyaluronidase degradation. Results are discussed in terms of the derivation and potential role of acidic mucopolysaccharides at the surface of T. pallidum. Images PMID:156696

  12. A mgl-like operon in Treponema pallidum, the syphilis spirochete.

    PubMed

    Porcella, S F; Popova, T G; Hagman, K E; Penn, C W; Radolf, J D; Norgard, M V

    1996-10-24

    A 38-kDa lipoprotein of Treponema pallidum subsp. pallidum (T. pallidum), the syphilis spirochete, previously was identified as a putative homolog of E. coli MglB [Becker et al. (1994) Infect. Immun. 62, 1381-1391]. In the present study, genome walking in regions adjacent to the T. pallidum 38-kDa lipoprotein gene has identified three contiguous genes (tp-mglB [formerly tpp38], tp-mglA, and tp-mglC) which appear to comprise a mgl-like operon in T. pallidum. A prominent transcript corresponding to tp-mglB, the first gene of the operon which encodes the carbohydrate receptor, is synthesized by T. pallidum along with lesser abundant transcript(s) corresponding to the entire T. pallidum mgl operon. An active promoter 135 bp upstream of tp-mglB is believed to direct mRNA synthesis for the operon. This is the first membrane protein-encoding operon of T. pallidum for which a putative function (glucose import) has been assigned. Furthermore, by analogy with E. coli MglB which interacts with the sensory transducer Trg to induce a chemotactic response, it is possible that T. pallidum also contains a homolog of E. coli Trg or other methyl-accepting chemotaxis proteins. The existence of a mgl operon in T. pallidum thus may have important implications with respect to T. pallidum survival, tissue dissemination, and sensory transduction during virulence expression. PMID:8921855

  13. Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins.

    PubMed Central

    Belisle, J T; Brandt, M E; Radolf, J D; Norgard, M V

    1994-01-01

    A fundamental ultrastructural feature shared by the spirochetal pathogens Treponema pallidum subsp. pallidum (T. pallidum) and Borrelia burgdorferi, the etiological agents of venereal syphilis and Lyme disease, respectively, is that their most abundant membrane proteins contain covalently attached fatty acids. In this study, we identified the fatty acids covalently bound to lipoproteins of B. burgdorferi and T. pallidum and examined potential acyl donors to these molecules. Palmitate was the predominant fatty acid of both B. burgdorferi and T. pallidum lipoproteins. T. pallidum lipoproteins also contained substantial amounts of stearate, a fatty acid not typically prevalent in prokaryotic lipoproteins. In both spirochetes, the fatty acids of cellular lipids differed from those of their respective lipoproteins. To characterize phospholipids in these organisms, spirochetes were metabolically labeled with [3H]palmitate or [3H]oleate; B. burgdorferi contained only phosphatidylglycerol and phosphatidylcholine, while T. pallidum contained phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and cardiolipin. Although palmitate predominated in the lipoproteins, there were no apparent differences in the incorporation of these two fatty acids into phospholipids (putative acyl donors). Phospholipase A1 and A2 digestion of phosphatidylcholine from B. burgdorferi and T. pallidum labeled with either [3H]palmitate or [3H]oleate also revealed that neither fatty acid was incorporated preferentially into the 1 and 2 positions (potential acyl donor sites) of the glycerol backbone. The combined findings suggest that fatty acid utilization during lipoprotein synthesis is determined largely by the fatty acid specificities of the lipoprotein acyl transferases. These findings also provide the basis for ongoing efforts to elucidate the relationship between lipoprotein acylation and the physiological functions and inflammatory

  14. Opsonization of Treponema pallidum is mediated by immunoglobulin G antibodies induced only by pathogenic treponemes.

    PubMed Central

    Shaffer, J M; Baker-Zander, S A; Lukehart, S A

    1993-01-01

    Rabbit antisera to Leptospira interrogans, Borrelia hermsii, and Treponema phagedenis biotype Reiter, reactive to shared spirochetal antigens, failed to enhance phagocytosis of Treponema pallidum by macrophages, while immunoglobulin G to Treponema pallidum subsp. pertenue and Treponema paraluiscuniculi promoted phagocytosis. Opsonic antibodies are directed to pathogen-restricted, not shared spirochetal, antigens. PMID:8423106

  15. Fluorescence in situ hybridization for the identification of Treponema pallidum in tissue sections.

    PubMed

    Petrich, Annett; Rojas, Pablo; Schulze, Julia; Loddenkemper, Christoph; Giacani, Lorenzo; Schneider, Thomas; Hertel, Moritz; Kikhney, Judith; Moter, Annette

    2015-10-01

    Syphilis is often called the great imitator because of its frequent atypical clinical manifestations that make the disease difficult to recognize. Because Treponema pallidum subsp. pallidum, the infectious agent of syphilis, is yet uncultivated in vitro, diagnosis is usually made using serology; however, in cases where serology is inconclusive or in patients with immunosuppression where these tests may be difficult to interpret, the availability of a molecular tool for direct diagnosis may be of pivotal importance. Here we present a fluorescence in situ hybridization (FISH) assay that simultaneously identifies and analyzes spatial distribution of T. pallidum in histological tissue sections. For this assay the species-specific FISH probe TPALL targeting the 16S rRNA of T. pallidum was designed in silico and evaluated using T. pallidum infected rabbit testicular tissue and a panel of non-syphilis spirochetes as positive and negative controls, respectively, before application to samples from four syphilis-patients. In a HIV positive patient, FISH showed the presence of T. pallidum in inguinal lymph node tissue. In a patient not suspected to suffer from syphilis but underwent surgery for phimosis, numerous T. pallidum cells were found in preputial tissue. In two cases with oral involvement, FISH was able to differentiate T. pallidum from oral treponemes and showed infection of the oral mucosa and tonsils, respectively. The TPALL FISH probe is now readily available for in situ identification of T. pallidum in selected clinical samples as well as T. pallidum research applications and animal models. PMID:26365167

  16. Characterization and Serologic Analysis of the Treponema pallidum Proteome▿ †

    PubMed Central

    McGill, Melanie A.; Edmondson, Diane G.; Carroll, James A.; Cook, Richard G.; Orkiszewski, Ralph S.; Norris, Steven J.

    2010-01-01

    Treponema pallidum subsp. pallidum is the causative agent of syphilis, a sexually transmitted disease characterized by widespread tissue dissemination and chronic infection. In this study, we analyzed the proteome of T. pallidum by the isoelectric focusing (IEF) and nonequilibrating pH gel electrophoresis (NEPHGE) forms of two-dimensional gel electrophoresis (2DGE), coupled with matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis. We determined the identity of 148 T. pallidum protein spots, representing 88 T. pallidum polypeptides; 63 of these polypeptides had not been identified previously at the protein level. To examine which of these proteins are important in the antibody response to syphilis, we performed immunoblot analysis using infected rabbit sera or human sera from patients at different stages of syphilis infection. Twenty-nine previously described antigens (predominantly lipoproteins) were detected, as were a number of previously unidentified antigens. The reactivity patterns obtained with sera from infected rabbits and humans were similar; these patterns included a subset of antigens reactive with all serum samples tested, including CfpA, MglB-2, TmpA, TmpB, flagellins, and the 47-kDa, 17-kDa, and 15-kDa lipoproteins. A unique group of antigens specifically reactive with infected human serum was also identified and included the previously described antigen TpF1 and the hypothetical proteins TP0584, TP0608, and TP0965. This combined proteomic and serologic analysis further delineates the antigens potentially useful as vaccine candidates or diagnostic markers and may provide insight into the host-pathogen interactions that occur during T. pallidum infection. PMID:20385758

  17. Identification of functional candidates amongst hypothetical proteins of Treponema pallidum ssp. pallidum.

    PubMed

    Naqvi, Ahmad Abu Turab; Shahbaaz, Mohd; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2015-01-01

    Syphilis is a globally occurring venereal disease, and its infection is propagated through sexual contact. The causative agent of syphilis, Treponema pallidum ssp. pallidum, a Gram-negative sphirochaete, is an obligate human parasite. Genome of T. pallidum ssp. pallidum SS14 strain (RefSeq NC_010741.1) encodes 1,027 proteins, of which 444 proteins are known as hypothetical proteins (HPs), i.e., proteins of unknown functions. Here, we performed functional annotation of HPs of T. pallidum ssp. pallidum using various database, domain architecture predictors, protein function annotators and clustering tools. We have analyzed the sequences of 444 HPs of T. pallidum ssp. pallidum and subsequently predicted the function of 207 HPs with a high level of confidence. However, functions of 237 HPs are predicted with less accuracy. We found various enzymes, transporters, binding proteins in the annotated group of HPs that may be possible molecular targets, facilitating for the survival of pathogen. Our comprehensive analysis helps to understand the mechanism of pathogenesis to provide many novel potential therapeutic interventions. PMID:25894582

  18. Identification of Functional Candidates amongst Hypothetical Proteins of Treponema pallidum ssp. pallidum

    PubMed Central

    Naqvi, Ahmad Abu Turab; Shahbaaz, Mohd; Ahmad, Faizan; Hassan, Md. Imtaiyaz

    2015-01-01

    Syphilis is a globally occurring venereal disease, and its infection is propagated through sexual contact. The causative agent of syphilis, Treponema pallidum ssp. pallidum, a Gram-negative sphirochaete, is an obligate human parasite. Genome of T. pallidum ssp. pallidum SS14 strain (RefSeq NC_010741.1) encodes 1,027 proteins, of which 444 proteins are known as hypothetical proteins (HPs), i.e., proteins of unknown functions. Here, we performed functional annotation of HPs of T. pallidum ssp. pallidum using various database, domain architecture predictors, protein function annotators and clustering tools. We have analyzed the sequences of 444 HPs of T. pallidum ssp. pallidum and subsequently predicted the function of 207 HPs with a high level of confidence. However, functions of 237 HPs are predicted with less accuracy. We found various enzymes, transporters, binding proteins in the annotated group of HPs that may be possible molecular targets, facilitating for the survival of pathogen. Our comprehensive analysis helps to understand the mechanism of pathogenesis to provide many novel potential therapeutic interventions. PMID:25894582

  19. Sensitive detection of Treponema pallidum by using the polymerase chain reaction.

    PubMed Central

    Burstain, J M; Grimprel, E; Lukehart, S A; Norgard, M V; Radolf, J D

    1991-01-01

    We have developed a sensitive assay for Treponema pallidum subsp. pallidum (T. pallidum), the agent of veneral syphilis, based upon the polymerase chain reaction (PCR). A 658-bp portion of the gene encoding the 47-kDa membrane immunogen was amplified, and the PCR products were probed by DNA-DNA hybridization with a 496-bp fragment internal to the amplitifed DNA. The assay detected approximately 0.01 pg of purified T. pallidum DNA, and positive results were obtained routinely from suspensions of treponemes calculated to contain 10 or more organism and from some suspensions calculated to contain a single organism. Specific PCR products were obtained for the closely related agent of yaws, Treponema pallidum subsp. pertenue, but not with human DNA or DNAs from other spirochetes (including Borrelia burgdoferi), skin microorganisms, sexually transmitted disease pathogens, and central nervous system pathogens. T. pallidum DNA was detected in serum, cerebrospinal fluids, and amniotic fluids from syphilis patients but not in in nonsyphilitic controls. T. pallidum DNA was also amplified from paraffin-embedded tissue. The diagnosis of syphillis by using PCR may become a significant addition to the diagnostic armamentarium and a valuable technique for the investigation of syphilis pathogenesis. Images PMID:1993770

  20. Expression of Treponema pallidum Antigens in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Walfield, Alan M.; Hanff, Philip A.; Lovett, Michael A.

    1982-04-01

    Treponema pallidum DNA was cloned in a bacteriophage. Clones were screened for expression of Treponema pallidum antigens by an in situ radio-immunoassay on nitrocellulose, with the use of subsequent reactions with syphilitic serum and radioiodinated Staphylococcus aureus protein A. One clone, which gave a strong signal, codes for at least seven antigens that react specifically with human antibodies to Treponema pallidum.

  1. Conservation of the 15-kilodalton lipoprotein among Treponema pallidum subspecies and strains and other pathogenic treponemes: genetic and antigenic analyses.

    PubMed Central

    Centurion-Lara, A; Arroll, T; Castillo, R; Shaffer, J M; Castro, C; Van Voorhis, W C; Lukehart, S A

    1997-01-01

    The 15-kDa lipoprotein of Treponema pallidum is a major immunogen during natural syphilis infection in humans and experimental infection in other hosts. The humoral and cellular immune responses to this molecule appear late in infection as resistance to reinfection is developing. One therefore might hypothesize that this antigen is important for protective immunity. This possibility is explored by using both genetic and antigenic approaches. Limited or no cross-protection has been demonstrated between the T. pallidum subspecies and strains or between Treponema species. We therefore hypothesized that if the 15-kDa antigen was of major importance in protective immunity, it might be a likely site of antigenic diversity. To explore this possibility, the sequences of the open reading frames of the 15-kDa gene have been determined for Treponema pallidum subsp. pallidum (Nichols and Bal-3 strains), T. pallidum subsp. pertenue (Gauthier strain), T. pallidum subsp. endemicum (Bosnia strain), Treponema paraluiscuniculi (Cuniculi A, H, and K strains), and a little-characterized simian isolate of Treponema sp. (Fribourg-Blanc strain). No significant differences in DNA sequences of the genes for the coding region of the 15-kDa antigen were found among the different species and subspecies studied. In addition, all organisms showed expression of the 15-kDa antigen as determined by monoclonal antibody staining. The role of the 15-kDa antigen in protection against homologous infection with T. pallidum subsp. pallidum Nichols was examined in rabbits immunized with a purified recombinant 15-kDa fusion protein. No alteration in chancre development was observed in immunized, compared to unimmunized, rabbits, and the antisera induced by the immunization failed to enhance phagocytosis of T. pallidum subsp. pallidum by macrophages in vitro. These results do not support a major role for this antigen in protection against syphilis infection. PMID:9119485

  2. Polypeptides of Treponema pallidum: progress toward understanding their structural, functional, and immunologic roles. Treponema Pallidum Polypeptide Research Group.

    PubMed Central

    Norris, S J

    1993-01-01

    Treponema pallidum subsp. pallidum, the spirochete that causes syphilis, is unusual in a number of respects, including its small genome size, inability to grow under standard in vitro culture conditions, microaerophilism, apparent paucity of outer membrane proteins, structurally complex periplasmic flagella, and ability to evade the host immune responses and cause disease over a period of years to decades. Many of these attributes are related ultimately to its protein content. Our knowledge of the activities, structure, and immunogenicity of its proteins has been expanded by the application of recombinant DNA, hybridoma, and structural fractionation techniques. The purpose of this monograph is to summarize and correlate this new information by using two-dimensional gel electrophoresis, monoclonal antibody reactivity, sequence data, and other properties as the bases of polypeptide identification. The protein profiles of the T. pallidum subspecies causing syphilis, yaws, and endemic syphilis are virtually indistinguishable but differ considerably from those of other treponemal species. Among the most abundant polypeptides are a group of lipoproteins of unknown function that appear to be important in the immune response during syphilitic infection. The periplasmic flagella of T. pallidum and other spirochetes are unique with regard to their protein content and ultrastructure, as well as their periplasmic location. They are composed of three core proteins (homologous to the other members of the eubacterial flagellin family) and a single, unrelated sheath protein; the functional significance of this arrangement is not understood at present. Although the bacterium contains the chaperonins GroEL and DnaK, these proteins are not under the control of the heat shock regulon as they are in most organisms. Studies of the immunogenicity of T. pallidum proteins indicate that many may be useful for immunodiagnosis and immunoprotection. Future goals in T. pallidum polypeptide

  3. Evaluation of a PCR Test for Detection of Treponema pallidum in Swabs and Blood

    PubMed Central

    Grange, P. A.; Gressier, L.; Dion, P. L.; Farhi, D.; Benhaddou, N.; Gerhardt, P.; Morini, J. P.; Deleuze, J.; Pantoja, C.; Bianchi, A.; Lassau, F.; Avril, M. F.; Janier, M.

    2012-01-01

    Syphilis diagnosis is based on clinical observation, serological analysis, and dark-field microscopy (DFM) detection of Treponema pallidum subsp. pallidum, the etiological agent of syphilis, in skin ulcers. We performed a nested PCR (nPCR) assay specifically amplifying the tpp47 gene of T. pallidum from swab and blood specimens. We studied a cohort of 294 patients with suspected syphilis and 35 healthy volunteers. Eighty-seven of the 294 patients had primary syphilis, 103 had secondary syphilis, 40 had latent syphilis, and 64 were found not to have syphilis. The T. pallidum nPCR results for swab specimens were highly concordant with syphilis diagnosis, with a sensitivity of 82% and a specificity of 95%. Reasonable agreement was observed between the results obtained with the nPCR and DFM methods (kappa = 0.53). No agreement was found between the nPCR detection of T. pallidum in blood and the diagnosis of syphilis, with sensitivities of 29, 18, 14.7, and 24% and specificities of 96, 92, 93, and 97% for peripheral blood mononuclear cell (PBMC), plasma, serum, and whole-blood fractions, respectively. HIV status did not affect the frequency of T. pallidum detection in any of the specimens tested. Swab specimens from mucosal or skin lesions seemed to be more useful than blood for the efficient detection of the T. pallidum genome and, thus, for the diagnosis of syphilis. PMID:22219306

  4. Molecular Differentiation of Treponema pallidum Subspecies in Skin Ulceration Clinically Suspected as Yaws in Vanuatu Using Real-Time Multiplex PCR and Serological Methods

    PubMed Central

    Chi, Kai-Hua; Danavall, Damien; Taleo, Fasihah; Pillay, Allan; Ye, Tun; Nachamkin, Eli; Kool, Jacob L.; Fegan, David; Asiedu, Kingsley; Vestergaard, Lasse S.; Ballard, Ronald C.; Chen, Cheng-Yen

    2015-01-01

    We developed a TaqMan-based real-time quadriplex polymerase chain reaction (PCR) to simultaneously detect Treponema pallidum subspecies pallidum, T. pallidum subsp. pertenue, and T. pallidum subsp. endemicum, the causative agents of venereal syphilis, yaws, and bejel, respectively. The PCR assay was applied to samples from skin ulcerations of clinically presumptive yaws cases among children on Tanna Island, Vanuatu. Another real-time triplex PCR was used to screen for the point mutations in the 23S rRNA genes that have previously been associated with azithromycin resistance in T. pallidum subsp. pallidum strains. Seropositivity by the classical syphilis serological tests was 35.5% among children with skin ulcerations clinically suspected with yaws, whereas the presence of T. pallidum subsp. pertenue DNA was only found in lesions from 15.5% of children. No evidence of T. pallidum subsp. pertenue infection, by either PCR or serology was found in ∼59% of cases indicating alternative causes of yaws-like lesions in this endemic area. PMID:25404075

  5. Molecular differentiation of Treponema pallidum subspecies in skin ulceration clinically suspected as yaws in Vanuatu using real-time multiplex PCR and serological methods.

    PubMed

    Chi, Kai-Hua; Danavall, Damien; Taleo, Fasihah; Pillay, Allan; Ye, Tun; Nachamkin, Eli; Kool, Jacob L; Fegan, David; Asiedu, Kingsley; Vestergaard, Lasse S; Ballard, Ronald C; Chen, Cheng-Yen

    2015-01-01

    We developed a TaqMan-based real-time quadriplex polymerase chain reaction (PCR) to simultaneously detect Treponema pallidum subspecies pallidum, T. pallidum subsp. pertenue, and T. pallidum subsp. endemicum, the causative agents of venereal syphilis, yaws, and bejel, respectively. The PCR assay was applied to samples from skin ulcerations of clinically presumptive yaws cases among children on Tanna Island, Vanuatu. Another real-time triplex PCR was used to screen for the point mutations in the 23S rRNA genes that have previously been associated with azithromycin resistance in T. pallidum subsp. pallidum strains. Seropositivity by the classical syphilis serological tests was 35.5% among children with skin ulcerations clinically suspected with yaws, whereas the presence of T. pallidum subsp. pertenue DNA was only found in lesions from 15.5% of children. No evidence of T. pallidum subsp. pertenue infection, by either PCR or serology was found in ∼59% of cases indicating alternative causes of yaws-like lesions in this endemic area. PMID:25404075

  6. Biology of Treponema pallidum: correlation of functional activities with genome sequence data.

    PubMed

    Norris, S J; Cox, D L; Weinstock, G M

    2001-01-01

    Aspects of the biology of T. pallidum subsp. pallidum, the agent of syphilis, are examined in the context of a century of experimental studies and the recently determined genome sequence. T. pallidum and a group of closely related pathogenic spirochetes have evolved to become highly invasive, persistent pathogens with little toxigenic activity and an inability to survive outside the mammalian host. Analysis of the genome sequence confirms morphologic studies indicating the lack of lipopolysaccharide and lipid biosynthesis mechanisms, as well as a paucity of outer membrane protein candidates. The metabolic capabilities and adaptability of T. pallidum are minimal, and this relative deficiency is reflected by the absence of many pathways, including the tricarboxylic acid cycle, components of oxidative phosphorylation, and most biosynthetic pathways. Although multiplication of T. pallidum has been obtained in a tissue culture system, continuous in vitro culture has not been achieved. The balance of oxygen utilization and toxicity is key to the survival and growth of T. pallidum, and the genome sequence reveals a similarity to lactic acid bacteria that may be useful in understanding this relationship. The identification of relatively few genes potentially involved in pathogenesis reflects our lack of understanding of invasive pathogens relative to toxigenic organisms. The genome sequence will provide useful raw data for additional functional studies on the structure, metabolism, and pathogenesis of this enigmatic organism. PMID:11200228

  7. Treponema pallidum Infection in the Wild Baboons of East Africa: Distribution and Genetic Characterization of the Strains Responsible

    PubMed Central

    Harper, Kristin N.; Fyumagwa, Robert D.; Hoare, Richard; Wambura, Philemon N.; Coppenhaver, Dorian H.; Sapolsky, Robert M.; Alberts, Susan C.; Tung, Jenny; Rogers, Jeffrey; Kilewo, Morris; Batamuzi, Emmanuel K.; Leendertz, Fabian H.; Armelagos, George J.; Knauf, Sascha

    2012-01-01

    It has been known for decades that wild baboons are naturally infected with Treponema pallidum, the bacterium that causes the diseases syphilis (subsp. pallidum), yaws (subsp. pertenue), and bejel (subsp. endemicum) in humans. Recently, a form of T. pallidum infection associated with severe genital lesions has been described in wild baboons at Lake Manyara National Park in Tanzania. In this study, we investigated ten additional sites in Tanzania and Kenya using a combination of macroscopic observation and serology, in order to determine whether the infection was present in each area. In addition, we obtained genetic sequence data from six polymorphic regions using T. pallidum strains collected from baboons at two different Tanzanian sites. We report that lesions consistent with T. pallidum infection were present at four of the five Tanzanian sites examined, and serology was used to confirm treponemal infection at three of these. By contrast, no signs of treponemal infection were observed at the six Kenyan sites, and serology indicated T. pallidum was present at only one of them. A survey of sexually mature baboons at Lake Manyara National Park in 2006 carried out as part of this study indicated that roughly ten percent displayed T. pallidum-associated lesions severe enough to cause major structural damage to the genitalia. Finally, we found that T. pallidum strains from Lake Manyara National Park and Serengeti National Park were genetically distinct, and a phylogeny suggested that baboon strains may have diverged prior to the clade containing human strains. We conclude that T. pallidum infection associated with genital lesions appears to be common in the wild baboons of the regions studied in Tanzania. Further study is needed to elucidate the infection's transmission mode, its associated morbidity and mortality, and the relationship between baboon and human strains. PMID:23284649

  8. Treponema pallidum infection in the wild baboons of East Africa: distribution and genetic characterization of the strains responsible.

    PubMed

    Harper, Kristin N; Fyumagwa, Robert D; Hoare, Richard; Wambura, Philemon N; Coppenhaver, Dorian H; Sapolsky, Robert M; Alberts, Susan C; Tung, Jenny; Rogers, Jeffrey; Kilewo, Morris; Batamuzi, Emmanuel K; Leendertz, Fabian H; Armelagos, George J; Knauf, Sascha

    2012-01-01

    It has been known for decades that wild baboons are naturally infected with Treponema pallidum, the bacterium that causes the diseases syphilis (subsp. pallidum), yaws (subsp. pertenue), and bejel (subsp. endemicum) in humans. Recently, a form of T. pallidum infection associated with severe genital lesions has been described in wild baboons at Lake Manyara National Park in Tanzania. In this study, we investigated ten additional sites in Tanzania and Kenya using a combination of macroscopic observation and serology, in order to determine whether the infection was present in each area. In addition, we obtained genetic sequence data from six polymorphic regions using T. pallidum strains collected from baboons at two different Tanzanian sites. We report that lesions consistent with T. pallidum infection were present at four of the five Tanzanian sites examined, and serology was used to confirm treponemal infection at three of these. By contrast, no signs of treponemal infection were observed at the six Kenyan sites, and serology indicated T. pallidum was present at only one of them. A survey of sexually mature baboons at Lake Manyara National Park in 2006 carried out as part of this study indicated that roughly ten percent displayed T. pallidum-associated lesions severe enough to cause major structural damage to the genitalia. Finally, we found that T. pallidum strains from Lake Manyara National Park and Serengeti National Park were genetically distinct, and a phylogeny suggested that baboon strains may have diverged prior to the clade containing human strains. We conclude that T. pallidum infection associated with genital lesions appears to be common in the wild baboons of the regions studied in Tanzania. Further study is needed to elucidate the infection's transmission mode, its associated morbidity and mortality, and the relationship between baboon and human strains. PMID:23284649

  9. Respiration and Oxidative Phosphorylation in Treponema pallidum

    PubMed Central

    Lysko, Paul G.; Cox, C. D.

    1978-01-01

    Exogenous and endogenously generated reduced pyridine nucleotides caused marked stimulation of O2 uptake when added to treponemal cell-free extracts, which indicated that terminal electron transport was coupled to the consumption of O2. Oxidation of reduced nicotinamide adenine dinucleotide (NADH) was shown to correlate stoichiometrically with O2 reduction, suggesting that NADH was being oxidized through a mainstream respiratory chain dehydrogenase. Oxygen evolution in treponemal extracts was observed after the completion of O2 uptake which was stimulated by exogenous NADH and endogenously generated reduced NAD phosphate. Oxygen evolution was inhibited by both cyanide and pyruvate, which was consistent with O2 release from H2O2 by catalase. The addition of exogenous H2O2 to treponemal extracts caused rapid O2 evolution characteristic of a catalase reaction. A spectrophotometric assay was used to measure ATP formation in T. pallidum cell-free extracts that were stimulated with NADH. P/O ratios from 0.5 to 1.1 were calculated from the amounts of ATP formed versus NADH oxidized. Phosphorylating activity was dependent on Pi concentration and was sensitive to cyanide, N, N′-dicyclohexylcarbodiimide, and carbonyl cyanide m-chlorophenyl hydrazone. Adenine nucleotide pools of T. pallidum were measured by the firefly luciferin-luciferase assay. Shifts in adenine nucleotide levels upon the addition of NADH to cell-free extracts were impossible to evaluate due to the presence of NAD+ nucleosidase. However, when whole cells, previously incubated under an atmosphere of 95% N2-5% CO2, were sparged with air, ATP and ADP levels increased, while AMP levels decreased. The shift was attributed to both oxidative phosphorylation and to the presence of an adenylate kinase activity. T. pallidum was also found to possess an Mg2+ - and Ca2+ -stimulated ATPase activity which was sensitive to N, N′ -dicyclohexylcarbodiimide. These data indicated a capability for oxidative phosphorylation

  10. Murine monoclonal antibodies specific for virulent Treponema pallidum (Nichols).

    PubMed Central

    Robertson, S M; Kettman, J R; Miller, J N; Norgard, M V

    1982-01-01

    Murine anti-Treponema pallidum (Nichols) lymphocyte hybridoma cell lines secreting monoclonal antibodies against a variety of treponemal antigens have been generated. Hybridomas isolated were of three major types: those that were directed specifically against T. pallidum antigens, those that were directed against treponemal group antigens (as evidenced by their cross-reactivity with T. phagedenis biotype Reiter antigens), and those that cross-reacted with both treponemal as well as rabbit host testicular tissue antigens. The majority (31 of 39 clones) of these anti-T. pallidum hybridomas, which produced monoclonal antibodies of mouse isotypes immunoglobulin G1 (IgG1), IgG2a, IgG2b, IgG3 or IgM, were directed specifically against T. pallidum and not other treponemal or rabbit antigens tested by radioimmunoassay. Four of these T. pallidum-specific hybridomas secreted monoclonal antibodies with greater binding affinity for "aged" rather than freshly isolated intact T. pallidum cells, suggesting a possible specificity for "unmasked" surface antigens of T. pallidum. Six anti-T. pallidum hybridomas produced complement-fixing monoclonal antibodies (IgG2a, IgG2b, or IgM) that were capable of immobilizing virulent treponemes in the T. pallidum immobilization (TPI) test; these may represent biologically active monoclonal antibodies against treponemal surface antigens. Three other hybridomas secreted monoclonal antibodies which bound to both T. pallidum and T. phagedenis biotype Reiter antigens, thus demonstrating a possible specificity for treponemal group antigens. Five hybridoma cell lines were also isolated which produced IgM monoclonal antibodies that cross-reacted with all treponemal and rabbit host testicular tissue antigens employed in the radioimmunoassays. This report describes the construction and characteristics of these hybridoma cell lines. The potential applications of the anti-T. pallidum monoclonal antibodies are discussed. PMID:7047388

  11. Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays

    PubMed Central

    Matějková, Petra; Strouhal, Michal; Šmajs, David; Norris, Steven J; Palzkill, Timothy; Petrosino, Joseph F; Sodergren, Erica; Norton, Jason E; Singh, Jaz; Richmond, Todd A; Molla, Michael N; Albert, Thomas J; Weinstock, George M

    2008-01-01

    Background Syphilis spirochete Treponema pallidum ssp. pallidum remains the enigmatic pathogen, since no virulence factors have been identified and the pathogenesis of the disease is poorly understood. Increasing rates of new syphilis cases per year have been observed recently. Results The genome of the SS14 strain was sequenced to high accuracy by an oligonucleotide array strategy requiring hybridization to only three arrays (Comparative Genome Sequencing, CGS). Gaps in the resulting sequence were filled with targeted dideoxy-terminators (DDT) sequencing and the sequence was confirmed by whole genome fingerprinting (WGF). When compared to the Nichols strain, 327 single nucleotide substitutions (224 transitions, 103 transversions), 14 deletions, and 18 insertions were found. On the proteome level, the highest frequency of amino acid-altering substitution polymorphisms was in novel genes, while the lowest was in housekeeping genes, as expected by their evolutionary conservation. Evidence was also found for hypervariable regions and multiple regions showing intrastrain heterogeneity in the T. pallidum chromosome. Conclusion The observed genetic changes do not have influence on the ability of Treponema pallidum to cause syphilitic infection, since both SS14 and Nichols are virulent in rabbit. However, this is the first assessment of the degree of variation between the two syphilis pathogens and paves the way for phylogenetic studies of this fascinating organism. PMID:18482458

  12. Treponema pallidum pallidum Genotypes and Macrolide Resistance Status in Syphilitic Lesions among Patients at 2 Sexually Transmitted Infection Clinics in Lima, Peru.

    PubMed

    Flores, Juan Antonio; Vargas, Silver Keith; Leon, Segundo Ramos; Perez, Danny Giancarlo; Ramos, Lourdes Beatriz; Chow, Jeremy; Konda, Kelika Anne; Calvo, Gino Mauricio; Salvatierra, Hector J; Klaussner, Jeffrey D; Caceres, Carlos Fernando

    2016-07-01

    We report the circulating genotypes and the frequency of macrolide-resistance patterns among Treponema pallidum pallidum DNA isolated from syphilitic lesions from patients who attended 2 sexual health clinics in Lima, Peru. We implemented and used a molecular typing scheme to describe local T. pallidum pallidum strains. Among 14 specimens, subtype 14d/f was the most prevalent strain in 7 fully typed T. pallidum DNA specimens obtained from men who have sex with men and transgender women presenting with chancre-like lesions. No macrolide-resistance mutations were found in T. pallidum DNA from 10 lesions. PMID:27322050

  13. Treponema pallidum Invades Intercellular Junctions of Endothelial Cell Monolayers

    NASA Astrophysics Data System (ADS)

    Thomas, D. Denee; Navab, Mahamad; Haake, David A.; Fogelman, Alan M.; Miller, James N.; Lovett, Michael A.

    1988-05-01

    The pathogenesis of syphilis reflects invasive properties of Treponema pallidum, but the actual mode of tissue invasion is unknown. We have found two in vitro parallels of treponemal invasiveness. We tested whether motile T. pallidum could invade host cells by determining the fate of radiolabeled motile organisms added to a HeLa cell monolayer; 26% of treponemes associated with the monolayer in a trypsin-resistant niche, presumably between the monolayer and the surface to which it adhered, but did not attain intracellularity. Attachment of T. pallidum to cultured human and rabbit aortic and human umbilical vein endothelial cells was 2-fold greater than to HeLa cells. We added T. pallidum to aortic endothelial cells grown on membrane filters under conditions in which tight intercellular junctions had formed. T. pallidum was able to pass through the endothelial cell monolayers without altering tight junctions, as measured by electrical resistance. In contrast, heat-killed T. pallidum and the nonpathogen Treponema phagedenis biotype Reiter failed to penetrate the monolayer. Transmission electron micrographs of sections of the monolayer showed T. pallidum in intercellular junctions. Our in vitro observations suggest that these highly motile spirochetes may leave the circulation by invading the junctions between endothelial cells.

  14. Complete genome sequence of Treponema pallidum strain DAL-1

    PubMed Central

    Zobaníková, Marie; Mikolka, Pavol; Čejková, Darina; Pospíšilová, Petra; Chen, Lei; Strouhal, Michal; Qin, Xiang; Weinstock, George M.; Šmajs, David

    2012-01-01

    Treponema pallidum strain DAL-1 is a human uncultivable pathogen causing the sexually transmitted disease syphilis. Strain DAL-1 was isolated from the amniotic fluid of a pregnant woman in the secondary stage of syphilis. Here we describe the 1,139,971 bp long genome of T. pallidum strain DAL-1 which was sequenced using two independent sequencing methods (454 pyrosequencing and Illumina). In rabbits, strain DAL-1 replicated better than the T. pallidum strain Nichols. The comparison of the complete DAL-1 genome sequence with the Nichols sequence revealed a list of genetic differences that are potentially responsible for the increased rabbit virulence of the DAL-1 strain. PMID:23449808

  15. Molecular Typing of Treponema pallidum Clinical Strains from Lisbon, Portugal▿

    PubMed Central

    Florindo, C.; Reigado, V.; Gomes, J. P.; Azevedo, J.; Santo, I.; Borrego, M. J.

    2008-01-01

    A molecular system was used to subtype Portuguese Treponema pallidum clinical strains isolated from both skin lesions and blood. The study with this system constitutes the first typing study in a European country. Three T. pallidum subtypes were found: subtypes 14a (50%), 14d (45.2%), and 14f (4.8%). Further studies are needed to better characterize the isolates involved in syphilis outbreaks. PMID:18753355

  16. Cellular metabolic network analysis: discovering important reactions in Treponema pallidum.

    PubMed

    Chen, Xueying; Zhao, Min; Qu, Hong

    2015-01-01

    T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum's metabolism. Here, we apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pallidum, critical reactions are identified. As a comparison, we also apply the analytical approaches to the metabolic network of H. pylori to find coregulated drug targets and unique drug targets for different microorganisms. Based on the clustering results, all reactions are further classified into various roles. Therefore, the general picture of their metabolic network is obtained and two types of reactions, both of which are involved in nucleic acid metabolism, are found to be essential for T. pallidum. It is also discovered that both hubs of reactions and the isolated reactions in purine and pyrimidine metabolisms play important roles in T. pallidum. These reactions could be potential drug targets for treating syphilis. PMID:26495292

  17. Detection of Treponema pallidum by a sensitive reverse transcriptase PCR.

    PubMed Central

    Centurion-Lara, A; Castro, C; Shaffer, J M; Van Voorhis, W C; Marra, C M; Lukehart, S A

    1997-01-01

    Syphilis is diagnosed by serologic testing or by identification of the causative agent, Treponema pallidum. The bacterium has historically been detected in clinical specimens by dark-field microscopy, immunostaining with polyclonal or monoclonal antibodies, or the rabbit inoculation test (RIT). RIT is considered to be very sensitive and specific, although it is available only in research settings and is not clinically useful due to the length of time required to obtain a result. In recent years, several PCR methods have been developed for the detection of T. pallidum, but none of these has shown a clear advantage in sensitivity over RIT. We have developed a specific and highly sensitive reverse transcriptase PCR (RT-PCR) that targets a 366 bp region of the 16S rRNA of T. pallidum. This RT-PCR can detect a single organism by Southern analysis when whole organisms are diluted and 10(-2) to 10(-3) T. pallidum organisms when RNA equivalents are used to make cDNA. The test was demonstrated to detect 10(-2) T. pallidum RNA equivalents in cerebrospinal fluid. Twenty different strains of T. pallidum, isolated from cerebrospinal fluids, aqueous humor, blood, and chancres, were shown to be detectable by this test. This efficient and sensitive technique could be more useful than existing methods for detecting very low numbers of organisms in clinical samples. PMID:9163442

  18. Virulent Treponema pallidum activates human vascular endothelial cells.

    PubMed

    Riley, B S; Oppenheimer-Marks, N; Hansen, E J; Radolf, J D; Norgard, M V

    1992-03-01

    Perivascular lymphocytic infiltration, fibrin deposition, and endothelial cell abnormalities consistent with cellular activation are prominent histopathologic features of syphilis, a sexually transmitted disease caused by the spirochetal bacterium Treponema pallidum. Because activated endothelial cells play important roles in lymphocyte homing and hemostasis, the ability of virulent T. pallidum to activate cultured human umbilical vein endothelial cells (HUVEC) was investigated. T. pallidum induced the expression of intercellular adhesion molecule-1 (ICAM-1) and procoagulant activity on the surface of HUVEC. Electron microscopy of T. pallidum-stimulated HUVEC revealed extensive networks of fibrin strands not observed in cultures without treponemes. ICAM-1 expression in HUVEC also was promoted by a 47-kDa integral membrane lipoprotein purified from T. pallidum, implicating a role for spirochete membrane lipoproteins in endothelial cell activation. The combined findings are consistent with the pathology of syphilis and provide the first evidence that a pathogenic spirochetal bacterium such as T. pallidum or its constituent integral membrane lipoprotein(s) can activate directly host vascular endothelium. PMID:1347056

  19. Cellular Metabolic Network Analysis: Discovering Important Reactions in Treponema pallidum

    PubMed Central

    Chen, Xueying; Zhao, Min; Qu, Hong

    2015-01-01

    T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum's metabolism. Here, we apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pallidum, critical reactions are identified. As a comparison, we also apply the analytical approaches to the metabolic network of H. pylori to find coregulated drug targets and unique drug targets for different microorganisms. Based on the clustering results, all reactions are further classified into various roles. Therefore, the general picture of their metabolic network is obtained and two types of reactions, both of which are involved in nucleic acid metabolism, are found to be essential for T. pallidum. It is also discovered that both hubs of reactions and the isolated reactions in purine and pyrimidine metabolisms play important roles in T. pallidum. These reactions could be potential drug targets for treating syphilis. PMID:26495292

  20. A Novel Treponema pallidum Antigen, TP0136, Is an Outer Membrane Protein That Binds Human Fibronectin▿

    PubMed Central

    Brinkman, Mary Beth; McGill, Melanie A.; Pettersson, Jonas; Rogers, Arthur; Matějková, Petra; Šmajs, David; Weinstock, George M.; Norris, Steven J.; Palzkill, Timothy

    2008-01-01

    The antigenicity, structural location, and function of the predicted lipoprotein TP0136 of Treponema pallidum subsp. pallidum were investigated based on previous screening studies indicating that anti-TP0136 antibodies are present in the sera of syphilis patients and experimentally infected rabbits. Recombinant TP0136 (rTP0136) protein was purified and shown to be strongly antigenic during human and experimental rabbit infection. The TP0136 protein was exposed on the surface of the bacterial outer membrane and bound to the host extracellular matrix glycoproteins fibronectin and laminin. In addition, the TP0136 open reading frame was shown to be highly polymorphic among T. pallidum subspecies and strains at the nucleotide and amino acid levels. Finally, the ability of rTP0136 protein to act as a protective antigen to subsequent challenge with infectious T. pallidum in the rabbit model of infection was assessed. Immunization with rTP0136 delayed ulceration but did not prevent infection or the formation of lesions. These results demonstrate that TP0136 is expressed on the outer membrane of the treponeme during infection and may be involved in attachment to host extracellular matrix components. PMID:18332212

  1. The genome of Treponema pallidum: new light on the agent of syphilis.

    PubMed

    Weinstock, G M; Hardham, J M; McLeod, M P; Sodergren, E J; Norris, S J

    1998-10-01

    Treponema pallidum subsp, pallidum, the causative agent of the sexually transmitted disease syphilis, is a fastidious, microaerophilic obligate parasite of humans. This bacterium is one of the few prominent infectious agents that has not been cultured continuously in vitro and consequently relatively little is known about its virulence mechanisms at the molecular level. T. pallidum therefore represented an attractive candidate for genomic sequencing. The complete genome sequence of T. pallidum has now been completed and comprises 1,138,006 base pairs containing 1041 predicted protein coding sequences. An important goal of this project is to identify possible virulence factors. Analysis of the genome indicates a number of potential virulence factors including a family of 12 proteins related to the Msp protein of Treponema denticola, a number of putative hemolysins, as well as several other classes of proteins of interest. The results of this analysis are reviewed in this article and indicate the value of whole genome sequences for rapidly advancing knowledge of infectious agents. PMID:9862125

  2. Treponema pallidum, the Stealth Pathogen, Doth Change, But How?

    PubMed Central

    Radolf, Justin D.; Desrosiers, Daniel C.

    2010-01-01

    Summary Treponema pallidum rapidly disseminates from a genital site of inoculation to diverse organs where it establishes persistent infection. T. pallidum has long been regarded as a stealth pathogen because of its poorly antigenic and non-inflammatory surface. There is now increasing evidence that antigenic variation also contributes to the ability of the spirochete to evade host defences. Among the small number of proteins encoded by the T. pallidum genome with sequence similarity to well characterized transcription factors is TP0262, an orthologue for cAMP regulatory protein (CRP) of E. coli. Giacani and co-workers identified sequences matching the CRP consensus-binding motif upstream of the promoters of tprE, tprG, and tprJ, three members of the T. pallidum repeat (tpr) gene family (Subfamily II). Using EMSA, DNaseI footprinting, and an E. coli-based reporter system, they demonstrated that TP0262 specifically recognizes the putative binding sequences and that DNA binding is cAMP-dependent. Their report, a major methodological advance for syphilis research, suggests that T. pallidum has appropriated a paradigmatic global regulator of metabolic processes in heterotrophic bacteria to further its capacity for immune evasion in its obligate human host. PMID:19432802

  3. Treponema pallidum, the stealth pathogen, changes, but how?

    PubMed

    Radolf, Justin D; Desrosiers, Daniel C

    2009-06-01

    Treponema pallidum rapidly disseminates from a genital site of inoculation to diverse organs where it establishes persistent infection. T. pallidum has long been regarded as a stealth pathogen because of its poorly antigenic and non-inflammatory surface. There is now increasing evidence that antigenic variation also contributes to the ability of the spirochaete to evade host defences. Among the small number of proteins encoded by the T. pallidum genome with sequence similarity to well-characterized transcription factors is TP0262, an orthologue for cAMP regulatory protein (CRP) of Escherichia coli. Giacani and co-workers identified sequences matching the CRP consensus-binding motif upstream of the promoters of tprE, tprG and tprJ, three members of the T. pallidum repeat (tpr) gene family (subfamily II). Using electrophoretic mobility shift assay, DNaseI footprinting and an E. coli-based reporter system, they demonstrated that TP0262 specifically recognizes the putative binding sequences and that DNA binding is cAMP-dependent. Their report, a major methodological advance for syphilis research, suggests that T. pallidum has appropriated a paradigmatic global regulator of metabolic processes in heterotrophic bacteria to further its capacity for immune evasion in its obligate human host. PMID:19432802

  4. Evaluation of the Recombinant Protein TpF1 of Treponema pallidum for Serodiagnosis of Syphilis

    PubMed Central

    Jiang, Chuanhao; Zhao, Feijun; Xiao, Jinhong; Zeng, Tiebing; Yu, Jian; Ma, Xiaohua; Wu, Haiying

    2013-01-01

    Syphilis is a chronic infection caused by Treponema pallidum subsp. pallidum, and diagnosis with sensitive and specific methods is a challenging process that is important for its prevention and treatment. In the present study, we established a recombinant protein TpF1-based indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) and a Western blot assay for human and rabbit sera. The 20-kDa recombinant protein TpF1 was detected by Western blotting performed with sera from rabbits immunized with recombinant TpF1 and infected with the T. pallidum Nichols strain and T. pallidum clinical isolates but was not detected by Western blotting with sera from uninfected rabbits. The sensitivity of the recombinant protein was determined by screening sera from individuals with primary, secondary, latent, and congenital syphilis (n = 82). The specificity of the recombinant protein was determined by screening sera from uninfected controls (n = 30) and individuals with potentially cross-reactive infections, including Lyme disease (n = 30) and leptospirosis (n = 5). The sensitivities of TpF1-based ELISAs were 93.3%, 100%, 100%, and 100% for primary, secondary, latent, and congenital syphilis, respectively, and the specificities were all 100% for sera from uninfected controls and individuals with potentially cross-reactive infections. In Western blot assays, the sensitivities and specificities of TpF1 for human sera were all 100%. The reactivities of TpF1 with syphilitic sera were proportional to the titers of the T. pallidum particle agglutination (TPPA) assay. These data indicate that the recombinant protein TpF1 is a highly immunogenic protein in human and rabbit infections and a promising marker for the screening of syphilis. PMID:23945159

  5. Evaluation of the recombinant protein TpF1 of Treponema pallidum for serodiagnosis of syphilis.

    PubMed

    Jiang, Chuanhao; Zhao, Feijun; Xiao, Jinhong; Zeng, Tiebing; Yu, Jian; Ma, Xiaohua; Wu, Haiying; Wu, Yimou

    2013-10-01

    Syphilis is a chronic infection caused by Treponema pallidum subsp. pallidum, and diagnosis with sensitive and specific methods is a challenging process that is important for its prevention and treatment. In the present study, we established a recombinant protein TpF1-based indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) and a Western blot assay for human and rabbit sera. The 20-kDa recombinant protein TpF1 was detected by Western blotting performed with sera from rabbits immunized with recombinant TpF1 and infected with the T. pallidum Nichols strain and T. pallidum clinical isolates but was not detected by Western blotting with sera from uninfected rabbits. The sensitivity of the recombinant protein was determined by screening sera from individuals with primary, secondary, latent, and congenital syphilis (n = 82). The specificity of the recombinant protein was determined by screening sera from uninfected controls (n = 30) and individuals with potentially cross-reactive infections, including Lyme disease (n = 30) and leptospirosis (n = 5). The sensitivities of TpF1-based ELISAs were 93.3%, 100%, 100%, and 100% for primary, secondary, latent, and congenital syphilis, respectively, and the specificities were all 100% for sera from uninfected controls and individuals with potentially cross-reactive infections. In Western blot assays, the sensitivities and specificities of TpF1 for human sera were all 100%. The reactivities of TpF1 with syphilitic sera were proportional to the titers of the T. pallidum particle agglutination (TPPA) assay. These data indicate that the recombinant protein TpF1 is a highly immunogenic protein in human and rabbit infections and a promising marker for the screening of syphilis. PMID:23945159

  6. TP0262 is a modulator of promoter activity of tpr Subfamily II genes of Treponema pallidum ssp. pallidum.

    PubMed

    Giacani, Lorenzo; Godornes, Charmie; Puray-Chavez, Maritza; Guerra-Giraldez, Cristina; Tompa, Martin; Lukehart, Sheila A; Centurion-Lara, Arturo

    2009-06-01

    Transcriptional regulation in Treponema pallidum ssp. pallidum is poorly understood, primarily because this organism cannot be cultivated in vitro or genetically manipulated. We have recently shown a phase variation mechanism controlling transcription initiation of Subfamily II tpr (T. pallidumrepeat) genes (tprE, tprG and tprJ), a group of virulence factor candidates. Furthermore, the same study suggested that additional mechanisms might influence the level of transcription of these tprs. The T. pallidum genome sequence has revealed a few open reading frames with similarity to known bacterial transcription factors, including four catabolite activator protein homologues. In this work, sequences matching the Escherichia coli cAMP receptor protein (CRP) binding motif were identified in silico upstream of tprE, tprG and tprJ. Using elecrophoretic mobility shift assay and DNaseI footprinting assay, recombinant TP0262, a T. pallidum CRP homologue, was shown to bind specifically to amplicons obtained from the tpr promoters containing putative CRP binding motifs. Using a heterologous reporter system, binding of TP0262 to these promoters was shown to either increase (tprE and tprJ) or decrease (tprG) tpr promoter activity. This is the first characterization of a T. pallidum transcriptional modulator that influences tpr promoter activity. PMID:19432808

  7. Tp17 membrane protein of Treponema pallidum activates endothelial cells in vitro.

    PubMed

    Zhang, Rui-Li; Wang, Qian-Qiu; Zhang, Jing-Ping; Yang, Li-Jia

    2015-04-01

    Tp17, a membrane immunogen of Treponema pallidum subsp. pallidum, was initially recognized as an inflammatory mediator of syphilis. Because the histopathology of syphilis is characterized by endothelial cell abnormalities, we investigated the effects of recombinant Tp17 (rTp17) on endothelial cell activation in vitro. Using real-time reverse transcription-PCR and whole-cell ELISA, we found that rTp17 activated endothelial cells, as demonstrated by the up-regulated expression and increased gene transcription of intercellular adhesion molecule 1 (ICAM-1), E-selectin, and monocyte chemoattractant protein-1 (MCP-1). rTp17 also enhanced the migration and subsequent adhesion of monocytes to endothelial cells as well as increased transendothelial migration of monocytes. These data suggest that the ability of Tp17 to activate endothelial cells may play an important role in the immunopathogenesis of syphilis. PMID:25744604

  8. Virulent Treponema pallidum promotes adhesion of leukocytes to human vascular endothelial cells.

    PubMed Central

    Riley, B S; Oppenheimer-Marks, N; Radolf, J D; Norgard, M V

    1994-01-01

    Perivasculitis and endothelial cell abnormalities are characteristic histopathologic features of syphilis, a sexually transmitted disease caused by Treponema pallidum. To extend earlier studies demonstrating that T. pallidum activates endothelial cells, we now show that virulent T. pallidum, but not heat-killed T. pallidum or nonpathogenic Treponema phagedenis, promotes increased adherence of lymphocytes and monocytes to human umbilical vein endothelial cells. Lymphocytes and monocytes are the two cell types prominent in the histopathology of syphilis. Recognition that T. pallidum can stimulate endothelial cells to bind leukocytes provides important insights into the early mechanisms of syphilis immunopathogenesis. Images PMID:7927729

  9. Complete genome sequence of Treponema pallidum, the syphilis spirochete.

    PubMed

    Fraser, C M; Norris, S J; Weinstock, G M; White, O; Sutton, G G; Dodson, R; Gwinn, M; Hickey, E K; Clayton, R; Ketchum, K A; Sodergren, E; Hardham, J M; McLeod, M P; Salzberg, S; Peterson, J; Khalak, H; Richardson, D; Howell, J K; Chidambaram, M; Utterback, T; McDonald, L; Artiach, P; Bowman, C; Cotton, M D; Fujii, C; Garland, S; Hatch, B; Horst, K; Roberts, K; Sandusky, M; Weidman, J; Smith, H O; Venter, J C

    1998-07-17

    The complete genome sequence of Treponema pallidum was determined and shown to be 1,138,006 base pairs containing 1041 predicted coding sequences (open reading frames). Systems for DNA replication, transcription, translation, and repair are intact, but catabolic and biosynthetic activities are minimized. The number of identifiable transporters is small, and no phosphoenolpyruvate:phosphotransferase carbohydrate transporters were found. Potential virulence factors include a family of 12 potential membrane proteins and several putative hemolysins. Comparison of the T. pallidum genome sequence with that of another pathogenic spirochete, Borrelia burgdorferi, the agent of Lyme disease, identified unique and common genes and substantiates the considerable diversity observed among pathogenic spirochetes. PMID:9665876

  10. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws

    PubMed Central

    Šmajs, David; Norris, Steven J.; Weinstock, George M.

    2013-01-01

    Pathogenic uncultivable treponemes, similar to syphilis-causing Treponema pallidum subspecies pallidum, include T. pallidum ssp. pertenue, T. pallidum ssp. endemicum and Treponema carateum, which cause yaws, bejel and pinta, respectively. Genetic analyses of these pathogens revealed striking similarity among these bacteria and also a high degree of similarity to the rabbit pathogen, T. paraluiscuniculi, a treponeme not infectious to humans. Genome comparisons between pallidum and non-pallidum treponemes revealed genes with potential involvement in human infectivity, whereas comparisons between pallidum and pertenue treponemes identified genes possibly involved in the high invasivity of syphilis treponemes. Genetic variability within syphilis strains is considered as the basis of syphilis molecular epidemiology with potential to detect more virulent strains, whereas genetic variability within a single strain is related to its ability to elude the immune system of the host. Genome analyses also shed light on treponemal evolution and on chromosomal targets for molecular diagnostics of treponemal infections. PMID:22198325

  11. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws.

    PubMed

    Smajs, David; Norris, Steven J; Weinstock, George M

    2012-03-01

    Pathogenic uncultivable treponemes, similar to syphilis-causing Treponema pallidum subspecies pallidum, include T. pallidum ssp. pertenue, T. pallidum ssp. endemicum and Treponema carateum, which cause yaws, bejel and pinta, respectively. Genetic analyses of these pathogens revealed striking similarity among these bacteria and also a high degree of similarity to the rabbit pathogen, Treponema paraluiscuniculi, a treponeme not infectious to humans. Genome comparisons between pallidum and non-pallidum treponemes revealed genes with potential involvement in human infectivity, whereas comparisons between pallidum and pertenue treponemes identified genes possibly involved in the high invasivity of syphilis treponemes. Genetic variability within syphilis strains is considered as the basis of syphilis molecular epidemiology with potential to detect more virulent strains, whereas genetic variability within a single strain is related to its ability to elude the immune system of the host. Genome analyses also shed light on treponemal evolution and on chromosomal targets for molecular diagnostics of treponemal infections. PMID:22198325

  12. Plasmonic ELISA for the ultrasensitive detection of Treponema pallidum.

    PubMed

    Nie, Xin-Min; Huang, Rong; Dong, Cai-Xia; Tang, Li-Juan; Gui, Rong; Jiang, Jian-Hui

    2014-08-15

    In this report, we have developed a plasmonic ELISA strategy for the detection of syphilis. Plasmonic ELISA is an enzyme-linked immunoassay combined with enzyme-mediated surface plasmon resonance (SPR) of gold nanoparticles (AuNPs). Immune response of the Treponema pallidum (T. pallidum) antibodies triggers the acetylcholinesterase-catalyzed hydrolysis of acetylthiocholine to produce abundant thiocholine. The positive charged thiol, in turn, alters the surface charge distribution the AuNPs and leads to the agglomeration of the AuNPs. The induced strong localized SPR effect of the agglomerate AuNPs can, thus, allow the quantitative assay of T. pallidum antibodies due to the remarkable color and absorption spectral response changes of the reaction system. The plasmonic ELISA exhibited a quasilinear response to the logarithmic T. pallidum antibody concentrations in the range of 1pg/mL-10ng/mL with a detection limit of 0.98pg/mL. Such a low detection limit was 1000-fold improvements in sensitivity over a conventional ELISA. The results of plasmonic ELISA in syphilis assays of serum specimens from 60 patients agreed with those obtained using a conventional ELISA method. The plasmonic ELISA has characteristics (analyte specific, cost-effective, ease of automatic, low limit of detection) that provide potential for diagnosis and therapeutic monitoring of syphilis. PMID:24662060

  13. Activation and Proteolytic Activity of the Treponema pallidum Metalloprotease, Pallilysin

    PubMed Central

    Houston, Simon; Hof, Rebecca; Honeyman, Lisa; Hassler, Julia; Cameron, Caroline E.

    2012-01-01

    Treponema pallidum is a highly invasive pathogen that undergoes rapid dissemination to establish widespread infection. Previous investigations identified the T. pallidum adhesin, pallilysin, as an HEXXH-containing metalloprotease that undergoes autocatalytic cleavage and degrades laminin and fibrinogen. In the current study we characterized pallilysin's active site, activation requirements, cellular location, and fibrin clot degradation capacity through both in vitro assays and heterologous treponemal expression and degradation studies. Site-directed mutagenesis showed the pallilysin HEXXH motif comprises at least part of the active site, as introduction of three independent mutations (AEXXH [H198A], HAXXH [E199A], and HEXXA [H202A]) abolished pallilysin-mediated fibrinogenolysis but did not adversely affect host component binding. Attainment of full pallilysin proteolytic activity was dependent upon autocatalytic cleavage of an N-terminal pro-domain, a process which could not occur in the HEXXH mutants. Pallilysin was shown to possess a thrombin cleavage site within its N-terminal pro-domain, and in vitro studies confirmed cleavage of pallilysin with thrombin generates a truncated pallilysin fragment that has enhanced proteolytic activity, suggesting pallilysin can also exploit the host coagulation process to facilitate protease activation. Opsonophagocytosis assays performed with viable T. pallidum demonstrated pallilysin is a target of opsonic antibodies, consistent with a host component-interacting, surface-exposed cellular location. Wild-type pallilysin, but not the HEXXA mutant, degraded fibrin clots, and similarly heterologous expression of pallilysin in the non-invasive spirochete Treponema phagedenis facilitated fibrin clot degradation. Collectively these results identify pallilysin as a surface-exposed metalloprotease within T. pallidum that possesses an HEXXH active site motif and requires autocatalytic or host-mediated cleavage of a pro-domain to attain

  14. In vitro cultivation of Treponema pallidum: a review

    PubMed Central

    Fitzgerald, Thomas

    1981-01-01

    In vitro cultivation of Treponema pallidum would facilitate many different aspects of syphilis research. This review summarizes developments in this field that have been published since 1975. Findings are discussed in terms of treponemes and the oxygen question, treponemal metabolism involving proteins, nucleic acids, and fatty acids, and treponemal interaction with tissue culture cells. Suggested future approaches and potential problem areas pertinent to successful cultivation are discussed. PMID:6172213

  15. Pallidum and lateral ventricle volume enlargement in autism spectrum disorder.

    PubMed

    Turner, Andia H; Greenspan, Kiefer S; van Erp, Theo G M

    2016-06-30

    Studies on structural brain abnormalities in individuals with autism spectrum disorders (ASD) have been of limited size and many findings have not been replicated. In the largest ASD brain morphology study to date, we compared subcortical, total brain (TBV), and intracranial (ICV) volumes between 472 subjects with DSM-IV ASD diagnoses and 538 healthy volunteers (age range: 6-64 years), obtained from high-resolution structural brain scans provided by the Autism Brain Imaging Data Exchange (ABIDE). Compared to healthy volunteers, we found significantly larger pallidum (Cohen's d=0.15) and lateral ventricle volumes (Cohen's d=0.18) in ASD. These enlargements were independent of total brain volume and IQ, passed FDR correction for multiple comparisons, and were observed in overall, male-only, and medication-free subjects. In addition, intracranial, hippocampal, and caudate volumes were enlarged in ASD at a nominal statistical threshold of p<0.05. This study provides the first robust evidence for pallidum enlargement in ASD independent from TBV and encourages further study of the functional role of the pallidum in individuals with autism spectrum disorder. PMID:27179315

  16. The ventral pallidum and orbitofrontal cortex support food pleasantness inferences.

    PubMed

    Simmons, W Kyle; Rapuano, Kristina M; Ingeholm, John E; Avery, Jason; Kallman, Seth; Hall, Kevin D; Martin, Alex

    2014-03-01

    Food advertisements often promote choices that are driven by inferences about the hedonic pleasures of eating a particular food. Given the individual and public health consequences of obesity, it is critical to address unanswered questions about the specific neural systems underlying these hedonic inferences. For example, although regions such as the orbitofrontal cortex (OFC) are frequently observed to respond more to pleasant food images than less hedonically pleasing stimuli, one important hedonic brain region in particular has largely remained conspicuously absent among human studies of hedonic response to food images. Based on rodent research demonstrating that activity in the ventral pallidum underlies the hedonic pleasures experienced upon eating food rewards, one might expect that activity in this important 'hedonic hotspot' might also track inferred food pleasantness. To date, however, no human studies have assessed this question. We thus asked human subjects to undergo fMRI and make item-by-item ratings of how pleasant it would be to eat particular visually perceived foods. Activity in the ventral pallidum was strongly modulated with pleasantness inferences. Additionally, activity within a region of the orbitofrontal cortex that tracks the pleasantness of tastes was also modulated with inferred pleasantness. Importantly, the reliability of these findings is demonstrated by their replication when we repeated the experiment at a new site with new subjects. These two experiments demonstrate that the ventral pallidum, in addition to the OFC, plays a central role in the moment-to-moment hedonic inferences that influence food-related decision-making. PMID:23397317

  17. The host-interacting proteins Tp0750 and Pallilysin; conservation among treponemes and restriction of proteolytic capacity to Treponema pallidum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spirochete Treponema pallidum is the causative agent of syphilis, a chronic, sexually transmitted bacterial infection characterized by multiple symptomatic and asymptomatic stages. Treponema pallidum is significantly more invasive than other treponemal species, being able to cross both the blood...

  18. Macrolide Resistance in the Syphilis Spirochete, Treponema pallidum ssp. pallidum: Can We Also Expect Macrolide-Resistant Yaws Strains?

    PubMed

    Šmajs, David; Paštěková, Lenka; Grillová, Linda

    2015-10-01

    Treponema pallidum ssp. pallidum (TPA) causes over 10 million new cases of syphilis worldwide whereas T. pallidum ssp. pertenue (TPE), the causative agent of yaws, affects about 2.5 million people. Although penicillin remains the drug of choice in the treatment of syphilis, in penicillin-allergic patients, macrolides have been used in this indication since the 1950s. Failures of macrolides in syphilis treatment have been well documented in the literature and since 2000, there has been a dramatic increase in a number of clinical samples with macrolide-resistant TPA. Scarce data regarding the genetics of macrolide-resistant mutations in TPA suggest that although macrolide-resistance mutations have emerged independently several times, the increase in the proportion of TPA strains resistant to macrolides is mainly due to the spread of resistant strains, especially in developed countries. The emergence of macrolide resistance in TPA appears to require a two-step process including either A2058G or A2059G mutation in one copy of the 23S rRNA gene and a subsequent gene conversion unification of both rRNA genes. Given the enormous genetic similarity that was recently revealed between TPA and TPE strains, there is a low but reasonable risk of emergence and spread of macrolide-resistant yaws strains following azithromycin treatment. PMID:26217043

  19. The ventral pallidum and orbitofrontal cortex support food pleasantness inferences

    PubMed Central

    Simmons, W. Kyle; Rapuano, Kristina M.; Ingeholm, John E.; Avery, Jason; Kallman, Seth; Hall, Kevin D.; Martin, Alex

    2013-01-01

    Food advertisements often promote choices that are driven by inferences about the hedonic pleasures of eating a particular food. Given the individual and public health consequences of obesity, it is critical to address unanswered questions about the specific neural systems underlying these hedonic inferences. For example, although regions such as the orbitofrontal cortex (OFC) are frequently observed to respond more to pleasant food images than less hedonically pleasing stimuli, one important hedonic brain region in particular has largely remained conspicuously absent among human studies of hedonic response to food images. Based on rodent research demonstrating that activity in the ventral pallidum underlies the hedonic pleasures experienced upon eating food rewards, one might expect that activity in this important ‘hedonic hotspot’ might also track inferred food pleasantness. To date, however, no human studies have assessed this question. We thus asked human subjects to undergo fMRI and make item-by-item ratings of how pleasant it would be to eat particular visually perceived foods. Activity in the ventral pallidum was strongly modulated with pleasantness inferences. Additionally, activity within a region of the orbitofrontal cortex that tracks the pleasantness of tastes was also modulated with inferred pleasantness. Importantly, the reliability of these findings is demonstrated by their replication when we repeated the experiment at a new site with new subjects. These two experiments demonstrate that the ventral pallidum, in addition to the OFC, plays a central role in the moment-to-moment hedonic inferences that influence food-related decision-making. PMID:23397317

  20. Transcription of TP0126, Treponema pallidum putative OmpW homolog, is regulated by the length of a homopolymeric guanosine repeat.

    PubMed

    Giacani, Lorenzo; Brandt, Stephanie L; Ke, Wujian; Reid, Tara B; Molini, Barbara J; Iverson-Cabral, Stefanie; Ciccarese, Giulia; Drago, Francesco; Lukehart, Sheila A; Centurion-Lara, Arturo

    2015-06-01

    An effective mechanism for introduction of phenotypic diversity within a bacterial population exploits changes in the length of repetitive DNA elements located within gene promoters. This phenomenon, known as phase variation, causes rapid activation or silencing of gene expression and fosters bacterial adaptation to new or changing environments. Phase variation often occurs in surface-exposed proteins, and in Treponema pallidum subsp. pallidum, the syphilis agent, it was reported to affect transcription of three putative outer membrane protein (OMP)-encoding genes. When the T. pallidum subsp. pallidum Nichols strain genome was initially annotated, the TP0126 open reading frame was predicted to include a poly(G) tract and did not appear to have a predicted signal sequence that might suggest the possibility of its being an OMP. Here we show that the initial annotation was incorrect, that this poly(G) is instead located within the TP0126 promoter, and that it varies in length in vivo during experimental syphilis. Additionally, we show that TP0126 transcription is affected by changes in the poly(G) length consistent with regulation by phase variation. In silico analysis of the TP0126 open reading frame based on the experimentally identified transcriptional start site shortens this hypothetical protein by 69 amino acids, reveals a predicted cleavable signal peptide, and suggests structural homology with the OmpW family of porins. Circular dichroism of recombinant TP0126 supports structural homology to OmpW. Together with the evidence that TP0126 is fully conserved among T. pallidum subspecies and strains, these data suggest an important role for TP0126 in T. pallidum biology and syphilis pathogenesis. PMID:25802057

  1. Transcription of TP0126, Treponema pallidum Putative OmpW Homolog, Is Regulated by the Length of a Homopolymeric Guanosine Repeat

    PubMed Central

    Brandt, Stephanie L.; Ke, Wujian; Reid, Tara B.; Molini, Barbara J.; Iverson-Cabral, Stefanie; Ciccarese, Giulia; Drago, Francesco; Lukehart, Sheila A.; Centurion-Lara, Arturo

    2015-01-01

    An effective mechanism for introduction of phenotypic diversity within a bacterial population exploits changes in the length of repetitive DNA elements located within gene promoters. This phenomenon, known as phase variation, causes rapid activation or silencing of gene expression and fosters bacterial adaptation to new or changing environments. Phase variation often occurs in surface-exposed proteins, and in Treponema pallidum subsp. pallidum, the syphilis agent, it was reported to affect transcription of three putative outer membrane protein (OMP)-encoding genes. When the T. pallidum subsp. pallidum Nichols strain genome was initially annotated, the TP0126 open reading frame was predicted to include a poly(G) tract and did not appear to have a predicted signal sequence that might suggest the possibility of its being an OMP. Here we show that the initial annotation was incorrect, that this poly(G) is instead located within the TP0126 promoter, and that it varies in length in vivo during experimental syphilis. Additionally, we show that TP0126 transcription is affected by changes in the poly(G) length consistent with regulation by phase variation. In silico analysis of the TP0126 open reading frame based on the experimentally identified transcriptional start site shortens this hypothetical protein by 69 amino acids, reveals a predicted cleavable signal peptide, and suggests structural homology with the OmpW family of porins. Circular dichroism of recombinant TP0126 supports structural homology to OmpW. Together with the evidence that TP0126 is fully conserved among T. pallidum subspecies and strains, these data suggest an important role for TP0126 in T. pallidum biology and syphilis pathogenesis. PMID:25802057

  2. Detection of Treponema pallidum in early syphilis by DNA amplification.

    PubMed Central

    Wicher, K; Noordhoek, G T; Abbruscato, F; Wicher, V

    1992-01-01

    By using experimentally infected rabbits as a model for early syphilis, the applicability of in vitro DNA amplification was explored for detection of Treponema pallidum. It was determined that whole blood in heparin or EDTA (but not serum), lesion exudate, and punch biopsy as well as swabs of lesions are useful specimens for examination by the polymerase chain reaction. Swabs do not require special diluents, and the specimens, whether kept at room temperature or frozen, are well suited for use in the polymerase chain reaction. Images PMID:1537923

  3. Whole Genome Sequence of Treponema pallidum ssp. pallidum, Strain Mexico A, Suggests Recombination between Yaws and Syphilis Strains

    PubMed Central

    Pětrošová, Helena; Zobaníková, Marie; Čejková, Darina; Mikalová, Lenka; Pospíšilová, Petra; Strouhal, Michal; Chen, Lei; Qin, Xiang; Muzny, Donna M.; Weinstock, George M.; Šmajs, David

    2012-01-01

    Background Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, and Treponema pallidum ssp. pertenue (TPE), the causative agent of yaws, are closely related spirochetes causing diseases with distinct clinical manifestations. The TPA Mexico A strain was isolated in 1953 from male, with primary syphilis, living in Mexico. Attempts to cultivate TPA Mexico A strain under in vitro conditions have revealed lower growth potential compared to other tested TPA strains. Methodology/Principal Findings The complete genome sequence of the TPA Mexico A strain was determined using the Illumina sequencing technique. The genome sequence assembly was verified using the whole genome fingerprinting technique and the final sequence was annotated. The genome size of the Mexico A strain was determined to be 1,140,038 bp with 1,035 predicted ORFs. The Mexico A genome sequence was compared to the whole genome sequences of three TPA (Nichols, SS14 and Chicago) and three TPE (CDC-2, Samoa D and Gauthier) strains. No large rearrangements in the Mexico A genome were found and the identified nucleotide changes occurred most frequently in genes encoding putative virulence factors. Nevertheless, the genome of the Mexico A strain, revealed two genes (TPAMA_0326 (tp92) and TPAMA_0488 (mcp2-1)) which combine TPA- and TPE- specific nucleotide sequences. Both genes were found to be under positive selection within TPA strains and also between TPA and TPE strains. Conclusions/Significance The observed mosaic character of the TPAMA_0326 and TPAMA_0488 loci is likely a result of inter-strain recombination between TPA and TPE strains during simultaneous infection of a single host suggesting horizontal gene transfer between treponemal subspecies. PMID:23029591

  4. Osteitis in the dens of axis caused by Treponema pallidum

    PubMed Central

    2013-01-01

    Background Syphilis has been referred to as “the great imitator” due to its ability to imitate other diseases. Untreated syphilis becomes a systemic infection that can involve almost every organ systems. Treponema pallidum has a high affinity for bone tissue, but osteitis has mainly been described in late stages of the disease. Vertebral involvement is rare, and this is to our knowledge the first case describing syphilitic spondylitis in early acquired syphilis. Case presentation We here describe destructive osteitis in the vertebral column as the initial manifestation of early acquired syphilis in a 24-year-old caucasian homosexual male with HIV infection. The diagnosis was reached by universal bacterial PCR and DNA sequencing of the DNA product. It was confirmed by PCR specific for Treponema pallidum, immunohistochemistry and detection of increasing antibody titer. Conclusions As syphilis has re-emerged in Western countries and remains a worldwide common disease it is important to have in mind as a causative agent of skeletal symptoms, especially among HIV-infected individuals or men who have sex with men (MSM). PMID:23885957

  5. Membrane topology of Borrelia burgdorferi and Treponema pallidum lipoproteins.

    PubMed Central

    Jones, J D; Bourell, K W; Norgard, M V; Radolf, J D

    1995-01-01

    A critical issue regarding the molecular architectures of Treponema pallidum and Borrelia burgdorferi, the agents of venereal syphilis and Lyme disease, respectively, concerns the membrane topologies of their major lipoprotein immunogens. A related question is whether these lipid-modified membrane proteins form intramembranous particles during freeze fracture electron microscopy. To address these issues, native borrelial and treponemal lipoproteins were reconstituted into liposomes of diverse composition. The importance of the covalently associated lipids for membrane association of lipoproteins was revealed by the observation that nonlipidated recombinant forms of both B. burgdorferi OspA and the T. pallidum 47-kDa immunogen (Tpp47) showed very weak or no binding to model bilayer vesicles. In contrast to control liposomes reconstituted with bacteriorhodopsin or bovine rhodopsin, two well-characterized transmembrane proteins, none of the lipoprotein-liposomes contained particles when examined by freeze fracture electron microscopy. To extend these findings to prokaryotic lipoproteins with relatively amphiphilic polypeptides, similar experiments were conducted with a recombinant nonlipidated form of Escherichia coli TraT, a lipoprotein which has putative transmembrane domains. The nonlipidated TraT oligomers bound vesicles derived from E. coli lipids but, surprisingly, did not form particles in the freeze-fractured liposomes. These findings support (i) a proposed topology of spirochetal lipoproteins in which the polypeptide is extrinsic to the membrane surface and (ii) the contention that particles visualized in freeze-fractured spirochetal membranes represent poorly characterized transmembrane proteins. PMID:7790053

  6. [The preservation of strains of pathogenic Treponema pallidum in BALB/c mice].

    PubMed

    Bednova, V N; Ivlieva, M S; Milonova, T I; Stoianova, O A; Kamenetskaia, S B

    1990-01-01

    A clinical and serologic follow-up of 307 BALB/c mice and 12 rabbits injected with the blood and brain and spinal tissue of mice infected with 5 strains of T. pallidum has demonstrated the possibility of a prolonged (up to 465 days) preservation of pathogenic T. pallidum strains in these mice, as well as the regularity of a syphilitic infection development in rabbits. This permits recommending T. pallidum pathogenic strains to be maintained in mice at laboratories of institutions for skin and sexually transmitted diseases where experimental and diagnostic studies with the use of specific serologic tests for syphilis are carried out. PMID:2183519

  7. Recombinant Treponema pallidum protein Tp0965 activates endothelial cells and increases the permeability of endothelial cell monolayer.

    PubMed

    Zhang, Rui-Li; Zhang, Jing-Ping; Wang, Qian-Qiu

    2014-01-01

    The recombinant Treponema pallidum protein Tp0965 (rTp0965), one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs) with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells) to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis. PMID:25514584

  8. Recombinant Treponema pallidum Protein Tp0965 Activates Endothelial Cells and Increases the Permeability of Endothelial Cell Monolayer

    PubMed Central

    Zhang, Rui-Li; Zhang, Jing-Ping; Wang, Qian-Qiu

    2014-01-01

    The recombinant Treponema pallidum protein Tp0965 (rTp0965), one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs) with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells) to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis. PMID:25514584

  9. Identification of Treponema pallidum subspecies pallidum genes encoding signal peptides and membrane-spanning sequences using a novel alkaline phosphatase expression vector.

    PubMed

    Blanco, D R; Giladi, M; Champion, C I; Haake, D A; Chikami, G K; Miller, J N; Lovett, M A

    1991-10-01

    Treponema pallidum subspecies pallidum is a pathogenic spirochaete for which there are no systems of genetic exchange. In order to provide a system for the identification of T. pallidum surface proteins and potential virulence factors, we have developed a novel expression vector which confers the utility of TnphoA transposition. The relevant features of this plasmid vector, termed pMG, include an inducible tac promoter, a polylinker with multiple cloning sites in three reading frames, and an alkaline phosphatase (AP) gene lacking the signal sequence-encoding region. Library construction with Sau3A-digested T. pallidum genomic DNA resulted in the creation of functional T. pallidum-AP fusion proteins. Analysis of fusion proteins and their corresponding DNA and deduced amino acid sequences demonstrated that they could be grouped into three categories: (i) those with signal peptides containing leader peptidase I cleavage sites, (ii) those with signal peptides containing leader peptidase II cleavage sites, and (iii) those with non-cleavable hydrophobic membrane-spanning sequences. Triton X-114 detergent phase partitioning of individual T. pallidum-AP fusions revealed several clones whose AP activity partitioned preferentially into the hydrophobic detergent phase. Several of these fusion proteins were subsequently shown to be acylated by Escherichia coli following [3H]-palmitate labelling, indicating their lipoproteinaceous nature. DNA and amino acid sequence analysis of one acylated fusion protein, Tp75, confirmed the presence of a hydrophobic N-terminal signal sequence containing a consensus leader peptidase II recognition site. The DNA sequence of Tp75 also indicates that this is a previously unreported T. pallidum lipoprotein. T. pallidum-AP fusion proteins which partitioned into the hydrophobic detergent phase but did not incorporate palmitate were also identified. DNA and amino acid analysis of one such clone, Tp70, showed no cleavable signal but had a significant

  10. Pulse radiolysis studies on superoxide reductase from Treponema pallidum.

    PubMed

    Nivière, V; Lombard, M; Fontecave, M; Houée-Levin, C

    2001-05-25

    Superoxide reductases (SORs) are small metalloenzymes, which catalyze reduction of O2*- to H2O2. The reaction of the enzyme from Treponema pallidum with superoxide was studied by pulse radiolysis methods. The first step is an extremely fast bi-molecular reaction of the ferrous center with O2, with a rate constant of 6 x 10 (8) M(-1) s(-1). A first intermediate is formed which is converted to a second one with a slower rate constant of 4800 s(-1). This latter value is 10 times higher than the corresponding one previously reported in the case of SOR from Desulfoarculus baarsii. The reconstituted spectra for the two intermediates are consistent with formation of transient iron-peroxide species. PMID:11377434

  11. Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins

    PubMed Central

    Tomson, Farol L.; Conley, Patrick G.; Norgard, Michael V.; Hagman, Kayla E.

    2007-01-01

    Syphilis, a sexually transmitted infection caused by the spirochetal bacterium Treponema pallidum, remains a global public health problem. T. pallidum is believed to be an extracellular pathogen and, as such, the identification of T. pallidum outer membrane proteins that could serve as targets for opsonic or bactericidal antibodies has remained a high research priority for vaccine development. However, the identification of T. pallidum outer membrane proteins has remained highly elusive. Recent studies and bioinformatics have implicated four treponemal proteins as potential outer membrane proteins (TP0155, TP0326, TP0483 and TP0956). Indirect immunofluorescence assays performed on treponemes encapsulated within agarose gel microdroplets failed to provide evidence that any of these four molecules were surface-exposed in T. pallidum. Second, recombinant fusion proteins corresponding to all four candidate outer membrane proteins were used separately, or in combination, to vaccinate New Zealand White rabbits. Despite achieving high titers (>1:50,000) of serum antibodies, none of the rabbits displayed chancre immunity after intradermal challenge with viable T. pallidum. PMID:17890130

  12. The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum.

    PubMed Central

    Cox, D L; Chang, P; McDowall, A W; Radolf, J D

    1992-01-01

    Virulent Treponema pallidum reacts poorly with the specific antibodies present in human and rabbit syphilitic sera, a phenomenon often attributed to an outer coat of host serum proteins. Here we present additional evidence that the limited antigenicity of virulent organisms actually is due to a paucity of proteins in the outer membrane. Initially, we used electron microscopy to demonstrate that the outer membrane is highly susceptible to damage from physical manipulation (i.e., centrifugation and resuspension) and nonionic detergents. Organisms with disrupted outer membranes were markedly more antigenic than intact treponemes as determined by immunoelectron microscopy (IEM) with rabbit syphilitic and antiendoflagellar antisera. Data obtained with a new radioimmunoassay, designated the T. pallidum surface-specific radioimmunoassay, corroborated these IEM findings by demonstrating that the major T. pallidum immunogens are not surface exposed; the assay also was unable to detect serum proteins, including fibronectin, on the surfaces of intact organisms. Furthermore, IEM of T. pallidum on ultrathin cryosections with monospecific anti-47-kDa-immunogen antiserum confirmed the intracellular location of the 47-kDa immunogen. On the basis of these and previous findings, we proposed a new model for T. pallidum ultrastructure in which the outer membrane contains a small number of transmembrane proteins and the major membrane immunogens are anchored by lipids to the periplasmic leaflet of the cytoplasmic membrane. This unique ultrastructure explains the remarkable ability of virulent organisms to evade the humoral immune response of the T. pallidum-infected host. Images PMID:1541522

  13. Factors affecting the attachment of Treponema pallidum to mammalian cells in vitro.

    PubMed

    Wong, G H; Steiner, B; Faine, S; Graves, S

    1983-02-01

    Attachment of Treponema pallidum (Nichols) to mammalian cells is probably the first step in the pathogenesis of syphilis. It may also be important for the multiplication of T pallidum in vitro. When factors affecting the attachment of T pallidum to mammalian cells in vitro were studied significantly greater numbers of treponemes were found to attach to baby rabbit genital organ (BRGO) cells than to five other mammalian cell lines. When attached to BRGO cells T pallidum survived longer in vitro than unattached treponemes. Eagle's minimal essential medium was superior to three other culture media in increasing attachment and maintaining the survival of treponemes. Dithiothreitol (0.25-1.0 mmol/l) had no effect on the attachment of T pallidum to BRGO cells. Anaerobic conditions were superior to microaerophilic conditions, and the latter were superior to aerobic conditions for the attachment and survival of T pallidum to BRGO cells. Within the range of concentrations tested the number of treponemes attached to the BRGO cells was directly dependent on the concentrations of viable treponemes in the inoculum. Greater numbers of treponemes attached to actively metabolising BRGO cells than to quiescent or slowly growing cells. PMID:6337680

  14. Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum.

    PubMed

    Radolf, J D; Norgard, M V; Schulz, W W

    1989-03-01

    Freeze fracture and deep etching were used to investigate the ultrastructural basis for the observation that anti-treponemal antibodies bind poorly to the surface of virulent Treponema pallidum. Fractures of T. pallidum outer membranes contained scarce, uniformly sized intramembranous particles (IMPs). IMPs on the convex faces often appeared to form linear arrays that wound in spirals about the organism. In contrast to the outer membrane, IMPs of the cytoplasmic membrane were randomly distributed, numerous, and heterogeneous in size. In Escherichia coli and T. pallidum cofractures, IMPs of the E. coli outer membranes were densely packed within the concave fracture faces, while the T. pallidum fractures were identical to the experiments lacking the E. coli internal controls. Outer membranes of two representative nonpathogenic treponemes, Treponema phagedenis biotype Reiter and Treponema denticola, contained numerous IMPs, which segregated preferentially with the concave halves. Examination of apposed replicas and deep-etched specimens indicated that at least some of the IMPs extend through the T. pallidum outer membrane and are exposed on the surface of the organism. The outer membrane of intact T. pallidum appears to contain a paucity of integral membrane proteins that can serve as targets for specific antibodies. These findings appear to represent an unusual parasitic strategy for evasion of host humoral defenses. PMID:2648388

  15. Multiple primary syphilis on the lip, nipple-areola and penis: An immunohistochemical examination of Treponema pallidum localization using an anti-T. pallidum antibody.

    PubMed

    Fukuda, Hidetsugu; Takahashi, Misaki; Kato, Keiichi; Oharaseki, Toshiaki; Mukai, Hideki

    2015-05-01

    Primary syphilis caused by Treponema pallidum usually develops after sexual contact as an initial solitary sclerosis or hard chancre in the genital region. We describe a case of primary syphilis at three sites in genital and extragenital regions of a man who had sex with men. A 29-year-old man visited our hospital for skin lesions on his lower lip, nipple-areola and penis. A positive syphilis serological test for rapid plasma reagin had a titer of 1:16; the patient also tested positive for specific antibodies against T. pallidum, with a cut-off index of 39.0. Histopathological examination of a nipple-areola biopsy specimen revealed a thickened epidermis and dense infiltration of inflammatory cells extending from the upper dermal layers to the deep dermis. The inflammatory cells were composed of abundant lymphocytes, plasma cells, histiocytes and neutrophils. Immunohistochemical staining for T. pallidum using an anti-T. pallidum antibody showed numerous spirochetes in the lower portion of the epidermis, scattered inside inflammatory cell infiltrate and perivascular sites throughout the dermis. Based on these findings, the patient was diagnosed with primary syphilis. Treatment with oral amoxicillin hydrate was started. Five days after starting treatment, a diffuse maculopapular rash (syphilitic roseola) occurred on his trunk and extremities. Perivascular cuffing due to T. pallidum was present throughout the dermis in the biopsy specimen of a localized lesion of primary syphilis. Moreover, syphilitic roseola, which indicates generalized dissemination of T. pallidum, developed during the course of treatment for primary syphilis. Therefore, we considered perivascular cuffing to be indicative of the dissemination phase. PMID:25708895

  16. Comparison of molecular and microscopic techniques for detection of Treponema pallidum in genital ulcers.

    PubMed Central

    Jethwa, H S; Schmitz, J L; Dallabetta, G; Behets, F; Hoffman, I; Hamilton, H; Lule, G; Cohen, M; Folds, J D

    1995-01-01

    We compared the ability of direct immunofluorescent staining (DFA) and the PCR to detect Treponema pallidum in specimens from patients with genital ulcer disease. Touch preparations from 156 patients with genital lesions were fixed in acetone and stained with a fluorescein-labeled monoclonal antibody specific for the 37-kDa antigen of T. pallidum. After microscopic examination, the smear was removed from the slide with a swab. DNA was extracted with phenol-chloroform and precipitated with isopropanol. Ten microliters of the extracted DNA was amplified by PCR using primers for the gene encoding the 47-kDa protein of T. pallidum and hybridized to an internal probe. Twenty-two of 156 specimens were positive for T. pallidum by DFA and PCR, while 127 were negative by both methods, yielding a concordance of 95.5% (kappa = 0.84). Four specimens were positive by PCR and negative by DFA, while three specimens were negative by PCR and positive by DFA. The DFA-negative, PCR-positive specimens may have resulted from the presence of large numbers of leukocytes on the slides, obscuring visualization of treponemes. The DFA-positive, PCR-negative results were not due to inhibition of the PCR since purified T. pallidum DNA was amplified when added to aliquots of these specimens. Negative results in these specimens were most likely due to inefficient recovery of their DNA. These data suggest that DFA and PCR are equivalent methods for detection of T. pallidum on touch preparations of genital lesions. Further refinements of the PCR assay are necessary for it to significantly improve the detection of T. pallidum in genital lesions. PMID:7535311

  17. Neelaredoxin, an iron-binding protein from the syphilis spirochete, Treponema pallidum, is a superoxide reductase.

    PubMed

    Jovanović, T; Ascenso, C; Hazlett, K R; Sikkink, R; Krebs, C; Litwiller, R; Benson, L M; Moura, I; Moura, J J; Radolf, J D; Huynh, B H; Naylor, S; Rusnak, F

    2000-09-15

    Treponema pallidum, the causative agent of venereal syphilis, is a microaerophilic obligate pathogen of humans. As it disseminates hematogenously and invades a wide range of tissues, T. pallidum presumably must tolerate substantial oxidative stress. Analysis of the T. pallidum genome indicates that the syphilis spirochete lacks most of the iron-binding proteins present in many other bacterial pathogens, including the oxidative defense enzymes superoxide dismutase, catalase, and peroxidase, but does possess an orthologue (TP0823) for neelaredoxin, an enzyme of hyperthermophilic and sulfate-reducing anaerobes shown to possess superoxide reductase activity. To analyze the potential role of neelaredoxin in treponemal oxidative defense, we examined the biochemical, spectroscopic, and antioxidant properties of recombinant T. pallidum neelaredoxin. Neelaredoxin was shown to be expressed in T. pallidum by reverse transcriptase-polymerase chain reaction and Western blot analysis. Recombinant neelaredoxin is a 26-kDa alpha(2) homodimer containing, on average, 0.7 iron atoms/subunit. Mössbauer and EPR analysis of the purified protein indicates that the iron atom exists as a mononuclear center in a mixture of high spin ferrous and ferric oxidation states. The fully oxidized form, obtained by the addition of K(3)(Fe(CN)(6)), exhibits an optical spectrum with absorbances at 280, 320, and 656 nm; the last feature is responsible for the protein's blue color, which disappears upon ascorbate reduction. The fully oxidized protein has a A(280)/A(656) ratio of 10.3. Enzymatic studies revealed that T. pallidum neelaredoxin is able to catalyze a redox equilibrium between superoxide and hydrogen peroxide, a result consistent with it being a superoxide reductase. This finding, the first description of a T. pallidum iron-binding protein, indicates that the syphilis spirochete copes with oxidative stress via a primitive mechanism, which, thus far, has not been described in pathogenic

  18. Failure of PCR to Detect Treponema pallidum ssp. pertenue DNA in Blood in Latent Yaws.

    PubMed

    Marks, Michael; Katz, Samantha; Chi, Kai-Hua; Vahi, Ventis; Sun, Yongcheng; Mabey, David C; Solomon, Anthony W; Chen, Cheng Y; Pillay, Allan

    2015-01-01

    Yaws, caused by Treponema pallidum ssp. pertenue, is a neglected tropical disease closely related to venereal syphilis and is targeted for eradication by 2020. Latent yaws represents a diagnostic challenge, and current tools cannot adequately distinguish between individuals with true latent infection and individuals who are serofast following successful treatment. PCR on blood has previously been shown to detect T. pallidum DNA in patients with syphilis, suggesting that this approach may be of value in yaws. We performed real-time PCR for Treponema pallidum ssp. pertenue on blood samples from 140 children with positive T. pallidum Particle Agglutination (TPPA) and Rapid Plasma Reagin (RPR) tests and 7 controls (negative serology), all collected as part of a prospective study of yaws in the Solomon Islands. All samples were also tested by a nested PCR for T. pallidum. 12 patients had clinical evidence of active yaws whilst 128 were considered to have latent yaws. 43 children had high titre rapid plasma reagins (RPRs) of ≥1:32. PCR testing with both assays gave negative results in all cases. It is possible that the failure to detect T. pallidum ssp. pertenue in blood reflects lower loads of organism in latent yaws compared to those in latent infection with T. pallidum ssp. pertenue, and/or a lower propensity for haematogenous dissemination in yaws than in syphilis. As the goal of the yaws control programme is eradication, a tool that can differentiate true latent infection from individuals who are serofast would be of value; however, PCR of blood is not that tool. PMID:26125585

  19. Failure of PCR to Detect Treponema pallidum ssp. pertenue DNA in Blood in Latent Yaws

    PubMed Central

    Chi, Kai-Hua; Vahi, Ventis; Sun, Yongcheng; Mabey, David C.; Solomon, Anthony W.; Chen, Cheng Y.; Pillay, Allan

    2015-01-01

    Yaws, caused by Treponema pallidum ssp. pertenue, is a neglected tropical disease closely related to venereal syphilis and is targeted for eradication by 2020. Latent yaws represents a diagnostic challenge, and current tools cannot adequately distinguish between individuals with true latent infection and individuals who are serofast following successful treatment. PCR on blood has previously been shown to detect T. pallidum DNA in patients with syphilis, suggesting that this approach may be of value in yaws. We performed real-time PCR for Treponema pallidum ssp. pertenue on blood samples from 140 children with positive T. pallidum Particle Agglutination (TPPA) and Rapid Plasma Reagin (RPR) tests and 7 controls (negative serology), all collected as part of a prospective study of yaws in the Solomon Islands. All samples were also tested by a nested PCR for T. pallidum. 12 patients had clinical evidence of active yaws whilst 128 were considered to have latent yaws. 43 children had high titre rapid plasma reagins (RPRs) of ≥1:32. PCR testing with both assays gave negative results in all cases. It is possible that the failure to detect T. pallidum ssp. pertenue in blood reflects lower loads of organism in latent yaws compared to those in latent infection with T. pallidum ssp. pertenue, and/or a lower propensity for haematogenous dissemination in yaws than in syphilis. As the goal of the yaws control programme is eradication, a tool that can differentiate true latent infection from individuals who are serofast would be of value; however, PCR of blood is not that tool. PMID:26125585

  20. Clinical Value of Treponema pallidum Real-Time PCR for Diagnosis of Syphilis▿

    PubMed Central

    Heymans, R.; van der Helm, J. J.; de Vries, H. J. C.; Fennema, H. S. A.; Coutinho, R. A.; Bruisten, S. M.

    2010-01-01

    The diagnosis of syphilis can be complicated when it is based on diverse clinical manifestations, dark-field microscopy, and serology. In the present study, therefore, we examined the additional clinical value of a Treponema pallidum real-time TaqMan PCR for the detection of primary and secondary syphilis. The additional value of the T. pallidum real-time PCR for the diagnosis of primary syphilis was evaluated by the use of three different algorithms: (i) a head-to-head comparison of the dark-field microscopy result and the T. pallidum real-time PCR result, (ii) comparison of the clinical diagnosis made in a sexually transmitted infection clinic (STI) (including by dark-field microscopy) and the T. pallidum real-time PCR result, and (iii) comparison of the clinical diagnosis made in a general practitioner's office (without dark-field microscopy) and the T. pallidum real-time PCR result. A fourth algorithm was used to determine the performance of the T. pallidum real-time PCR regarding the detection of secondary syphilis. From December 2006 to April 2008, 716 patients with suspected cases of primary syphilis and 133 patients with suspected cases of secondary syphilis were included in the study. A kappa value of 0.601 was found for the agreement between dark-field microscopy and the T. pallidum real-time PCR. Good agreement was found between the T. pallidum real-time PCR and both the diagnosis of the general practitioner (kappa = 0.745) and the diagnosis of the STI clinic (kappa = 0.769). The sensitivity with respect to the STI clinic diagnosis was 72.8%, the specificity was 95.5%, the positive predictive value was 89.2%, and the negative predictive value was 95.0%. The T. pallidum real-time PCR is a fast, efficient, and reliable test for the diagnosis of primary syphilis in an STI outpatient clinic and a general practitioner setting, but it has no added diagnostic value for the diagnosis of secondary syphilis. PMID:20007388

  1. Enhanced Molecular Typing of Treponema pallidum: Geographical Distribution of Strain Types and Association with Neurosyphilis

    PubMed Central

    Marra, Christina M.; Sahi, Sharon K.; Tantalo, Lauren C.; Godornes, Charmie; Reid, Tara; Behets, Frieda; Rompalo, Anne; Klausner, Jeffrey D.; Yin, Yue-Ping; Mulcahy, Fiona; Golden, Matthew R.; Centurion-Lara, Arturo; Lukehart, Sheila A.

    2011-01-01

    Background Strain typing is a tool for determining diversity and epidemiology of infections. Methods T. pallidum DNA was isolated from 158 syphilis patients from the US, China, Ireland, and Madagascar and from 15 T. pallidum isolates. Six typing targets were assessed: 1) number of 60 bp repeats in acidic repeat protein gene; 2) restriction fragment length polymorphism (RFLP) analysis of T. pallidum repeat (tpr) subfamily II genes; 3) RFLP analysis of tprC gene; 4) determination of tprD allele in tprD gene locus; 5) presence of 51 bp insertion between tp0126/tp0127; 6) sequence analysis of 84 bp region of tp0548. The combination of #1 and #2 comprises the CDC T. pallidum subtyping method. Results Adding sequence analysis of tp0548 to the CDC method yielded the most discriminating typing system. Twenty-four strain types were identified and designated as CDC subtype/tp0548 sequence. Type 14d/f was seen in 5 of 6 locations. In Seattle, strain types changed from 1999– 2008 (p<0.001). Twenty-two (50%) of 44 patients infected with type 14d/f had neurosyphilis compared to 9 (23%) of 39 infected with the other types combined (p=0.01). Conclusion We describe an enhanced T. pallidum strain typing system that shows biological and clinical relevance. PMID:20868271

  2. Redox potential and survival of virulent Treponema pallidum under microaerophilic conditions.

    PubMed

    Steiner, B; McLean, I; Graves, S

    1981-10-01

    A strongly reduced culture medium, capable of maintaining the virulence of Treponema pallidum (Nichols) for several days, was exposed to an atmosphere of 3% oxygen in nitrogen for 2-3 days before inoculation with T pallidum. By using various volumes of medium in uniform tubes a range of redox potentials (Ecal) from -94 mV to -325 mV was produced depending on the surface area-to-volume ratios of the medium. The anaerobic medium had an Ecal value of -387 mV. The medium was inoculated with T pallidum and incubated in an atmosphere of 3% oxygen. The survival of treponemes at different redox potentials was monitored by observing the retention of motility and by measuring the latent period of infection after inoculation of the cultures into the shaved backs of rabbits. Under these conditions T pallidum survived longest at low (electronegative) redox potential. An inverse linear relationship was observed between the redox potential of the culture medium and the survival of T pallidum, as measured by the time required for a 90% reduction of virulent organisms. No optimum redox potential was detected, the most electronegative medium (-325 mV, Ecal) giving the best survival. PMID:7028206

  3. Prolonged survival of virulent Treponema pallidum (Nichols strain) in cell-free and tissue culture systems.

    PubMed

    Fieldsteel, A H; Becker, F A; Stout, J G

    1977-10-01

    Survival of Treponema pallidum was found to be prolonged in the presence of tissue culture. Of the 12 cultures studied, cottontail rabbit epithelium (Sf1Ep) supported T. pallidum for the longest time. In horizontal Leighton tubes with reduced medium and an atmosphere of 5% CO2 in N2, the 50% survival time (ST50) was 5 to 6 days for treponemes associated with monolayers of Sf1Ep cells. Comparable cell-free tubes had ST50 values of less than 4 days. In vertical Leighton tubes containing 6 ml of prereduced medium incubated aerobically, gradients of O2 tension and redox potential were established. Attachment and survival of T. pallidum were greatest at a depth of about 10 to 20 mm. Motility was between 70 and 95% in this area throughout the first 14 days of incubation. Occasionally, greater than 50% motility was observed for as long as 21 days. The redox potential and O2 tension in the optimal area of gradient cultures were reproduced by adjusting the medium depth in a shell vial culture system containing cells on a horizontal cover slip. Treponemes associated with the cell monolayer in both gradient and shell vial cultures were still virulent after 21 days in vitro. The dilution of testis extract and the concentration of T. pallidum were found to be important factors in survival of T. pallidum. PMID:332639

  4. Conservation of the Host-Interacting Proteins Tp0750 and Pallilysin among Treponemes and Restriction of Proteolytic Capacity to Treponema pallidum.

    PubMed

    Houston, Simon; Taylor, John S; Denchev, Yavor; Hof, Rebecca; Zuerner, Richard L; Cameron, Caroline E

    2015-11-01

    The spirochete Treponema pallidum subsp. pallidum is the causative agent of syphilis, a chronic, sexually transmitted infection characterized by multiple symptomatic and asymptomatic stages. Although several other species in the genus are able to cause or contribute to disease, T. pallidum differs in that it is able to rapidly disseminate via the bloodstream to tissue sites distant from the site of initial infection. It is also the only Treponema species able to cross both the blood-brain and placental barriers. Previously, the T. pallidum proteins, Tp0750 and Tp0751 (also called pallilysin), were shown to degrade host proteins central to blood coagulation and basement membrane integrity, suggesting a role for these proteins in T. pallidum dissemination and tissue invasion. In the present study, we characterized Tp0750 and Tp0751 sequence variation in a diversity of pathogenic and nonpathogenic treponemes. We also determined the proteolytic potential of the orthologs from the less invasive species Treponema denticola and Treponema phagedenis. These analyses showed high levels of sequence similarity among Tp0750 orthologs from pathogenic species. For pallilysin, lower levels of sequence conservation were observed between this protein and orthologs from other treponemes, except for the ortholog from the highly invasive rabbit venereal syphilis-causing Treponema paraluiscuniculi. In vitro host component binding and degradation assays demonstrated that pallilysin and Tp0750 orthologs from the less invasive treponemes tested were not capable of binding or degrading host proteins. The results show that pallilysin and Tp0750 host protein binding and degradative capability is positively correlated with treponemal invasiveness. PMID:26283341

  5. Conservation of the Host-Interacting Proteins Tp0750 and Pallilysin among Treponemes and Restriction of Proteolytic Capacity to Treponema pallidum

    PubMed Central

    Houston, Simon; Taylor, John S.; Denchev, Yavor; Hof, Rebecca; Zuerner, Richard L.

    2015-01-01

    The spirochete Treponema pallidum subsp. pallidum is the causative agent of syphilis, a chronic, sexually transmitted infection characterized by multiple symptomatic and asymptomatic stages. Although several other species in the genus are able to cause or contribute to disease, T. pallidum differs in that it is able to rapidly disseminate via the bloodstream to tissue sites distant from the site of initial infection. It is also the only Treponema species able to cross both the blood-brain and placental barriers. Previously, the T. pallidum proteins, Tp0750 and Tp0751 (also called pallilysin), were shown to degrade host proteins central to blood coagulation and basement membrane integrity, suggesting a role for these proteins in T. pallidum dissemination and tissue invasion. In the present study, we characterized Tp0750 and Tp0751 sequence variation in a diversity of pathogenic and nonpathogenic treponemes. We also determined the proteolytic potential of the orthologs from the less invasive species Treponema denticola and Treponema phagedenis. These analyses showed high levels of sequence similarity among Tp0750 orthologs from pathogenic species. For pallilysin, lower levels of sequence conservation were observed between this protein and orthologs from other treponemes, except for the ortholog from the highly invasive rabbit venereal syphilis-causing Treponema paraluiscuniculi. In vitro host component binding and degradation assays demonstrated that pallilysin and Tp0750 orthologs from the less invasive treponemes tested were not capable of binding or degrading host proteins. The results show that pallilysin and Tp0750 host protein binding and degradative capability is positively correlated with treponemal invasiveness. PMID:26283341

  6. Detection of Treponema pallidum in the vitreous by PCR

    PubMed Central

    Müller, M; Ewert, I; Hansmann, F; Tiemann, C; Hagedorn, H J; Solbach, W; Roider, J; Nölle, B; Laqua, H; Hoerauf, H

    2007-01-01

    Background Ocular involvement of syphilis still poses a clinical challenge due to the chameleonic behaviour of the disease. As the serodiagnosis has significant limitations, the direct detection of Treponema pallidum (TP) in the vitreous represents a desirable diagnostic tool. Methods Real‐time polymerase chain reaction (PCR) for the detection of TP was applied in diagnostic vitrectomies of two patients with acute chorioretinitis. Qualitative verification of TP by real‐time PCR and melting point analysis according to a modified protocol was ruled out. Patients underwent complete ophthalmological examination with fundus photographs, fluorescein angiography, serological examination, antibiotic treatment and follow‐up. Results In two cases of acute chorioretinitis of unknown origin, real‐time PCR of vitreous specimens of both patients provided evidence of TP and was 100% specific. Initial diagnosis of presumed viral retinitis was ruled out by PCR of vitreous specimen. Patients were treated with systemic antibiotics and showed prompt improvement in visual function and resolution of fundus lesions. Conclusions With real‐time PCR, detection of TP in the vitreous was possible and delivered a sensitive, quick and inexpensive answer to a disease rather difficult to assess. In cases of acute chorioretinitis, the use of PCR‐based assays of vitreous specimens in the diagnostic evaluation of patients is advisable. Although syphilitic chorioretinitis is a rare disease, PCR should include search for TP, as diagnostic dilemmas prolong definitive treatment in a sight‐threatening disease. PMID:17108014

  7. Three Genes Which Affect Founding of Aggregations in Polysphondylium Pallidum

    PubMed Central

    Francis, D.; Shaffer, A.; Smoyer, K.

    1991-01-01

    PN6024 is an extraordinary mutant strain of the cellular slime mold Polysphondylium pallidum, characterized by having defects in many unlinked genes. New strains with altered development appeared spontaneously as aberrant clones of PN6024. Genetic crosses using the macrocyst sexual cycle were used to show that PN6030 (a clone like PN6024 in phenotype) carries mutations at two loci, emm and hge, whereas PN6031 (a clone of altered morphology) carries in addition a mutation at a third locus, mgt. hge and possibly mgt are linked to the mating type locus mat. The relatively high frequency of recombination between mat and hge is strong evidence that meiosis precedes macrocyst germination. The mutant genes themselves are of interest. A major effect of the emm-1 mutation is to remove the requirement for light to trigger aggregation. hge-1 greatly reduces the frequency of aggregation, whereas mgt-1 greatly increases it under standard conditions. None of these mutations interrupts later development leading to stalks and spore cells. It is hypothesized that all three genes act on steps immediately preceding the differentiation of the founder cells which initiate aggregation. PMID:1874416

  8. Perinatal Treponema pallidum: evidence based guidelines to reduce mother to child transmission.

    PubMed

    Freyne, B; Stafford, A; Knowles, S; O'Hora, A; Molloy, E

    2014-01-01

    Universal antenatal screening for T. pallidum is standard in Irish maternity units. The prevalence of adult syphilis has increased in Ireland. We audited the neonatal management of infants exposed to T. pallidum in utero. A cross sectional retrospective analysis of all pregnancies with confirmed positive serology for T. pallidum from January 2005 to December 2010 was conducted at the National Maternity Hospital, Holles St. Data were analysed using SPSS 14.0. Ethical approval was obtained. There were 55,058 live births during the study period. Fifty-eight women had positive serology and 41 met inclusion criteria. Infant evaluation and follow up was decided by allocation to an evidence based algorithm. Twenty-one infants (51%) were accurately allocated and assessed, 5 (12%) had a partial assessment and the algorithm was incorrectly applied in 15 (36%) of cases. Failure to adhere to evidence based neonatal guidelines is common and undermines efficacy of the screening program. PMID:24592640

  9. Yaws: 110 years after Castellani's discovery of Treponema pallidum subspecies pertenue.

    PubMed

    Stamm, Lola V

    2015-07-01

    Yaws is a neglected infectious disease that affects mostly children and adolescents living in poor, rural communities in humid, tropical areas of Africa, southeast Asia, and the Pacific Islands. The etiological agent of yaws, Treponema pallidum subspecies pertenue (T. pertenue), was discovered by Aldo Castellani in 1905 shortly after Schaudinn and Hoffmann discovered the etiological agent of syphilis, T. pallidum subspecies pallidum. The discovery of T. pertenue enabled the development of animal models and the identification of an effective antibiotic treatment (i.e., penicillin) for yaws. A World Health Organization (WHO) mass treatment campaign from 1952 to 1964 reduced the global burden of yaws by 95%, but failed to eradicate this disease. Today, 110 years after Castellani's discovery of T. pertenue, yaws is again targeted for eradication. Recent advances in the treatment and diagnosis of yaws improve the likelihood of success this time. However, several challenges must be overcome to make the goal of yaws eradication attainable. PMID:25870417

  10. Length of guanosine homopolymeric repeats modulates promoter activity of subfamily II tpr genes of Treponema pallidum ssp. pallidum.

    PubMed

    Giacani, Lorenzo; Lukehart, Sheila; Centurion-Lara, Arturo

    2007-11-01

    In Treponema pallidum, homopolymeric guanosine repeats of varying length are present upstream of both Subfamily I (tprC, D, F and I) and II (tprE, G and J) tpr genes, a group of potential virulence factors, immediately upstream of the +1 nucleotide. To investigate the influence of these poly-G sequences on promoter activity, tprE, G, J, F and I promoter regions containing homopolymeric tracts with different numbers of Gs, the ribosomal binding site and start codon were cloned in frame with the green fluorescent protein reporter gene (GFP), and promoter activity was measured both as fluorescence emission from Escherichia coli cultures transformed with the different plasmid constructs and using quantitative RT-PCR. For tprJ, G and E-derived clones, fluorescence was significantly higher with constructs containing eight Gs or fewer, while plasmids containing the same promoters with none or more Gs gave modest or no signal above the background. In contrast, tprF/I-derived clones induced similar levels of fluorescence regardless of the number of Gs within the promoter. GFP mRNA quantification showed that all of the promoters induced measurable transcription of the GFP gene; however, only for Subfamily II promoters was message synthesis inversely correlated to the number of Gs in the construct. PMID:17683506

  11. Molecular Typing of Treponema pallidum: A Systematic Review and Meta-Analysis

    PubMed Central

    Peng, Rui-Rui; Wang, Alberta L.; Li, Jing; Tucker, Joseph D.; Yin, Yue-Ping; Chen, Xiang-Sheng

    2011-01-01

    Background Syphilis is resurgent in many regions of the world. Molecular typing is a robust tool for investigating strain diversity and epidemiology. This study aimed to review original research on molecular typing of Treponema pallidum (T. pallidum) with three objectives: (1) to determine specimen types most suitable for molecular typing; (2) to determine T. pallidum subtype distribution across geographic areas; and (3) to summarize available information on subtypes associated with neurosyphilis and macrolide resistance. Methodology/Principal Findings Two researchers independently searched five databases from 1998 through 2010, assessed for eligibility and study quality, and extracted data. Search terms included “Treponema pallidum,” or “syphilis,” combined with the subject headings “molecular,” “subtyping,” “typing,” “genotype,” and “epidemiology.” Sixteen eligible studies were included. Publication bias was not statistically significant by the Begg rank correlation test. Medians, inter-quartile ranges, and 95% confidence intervals were determined for DNA extraction and full typing efficiency. A random-effects model was used to perform subgroup analyses to reduce obvious between-study heterogeneity. Primary and secondary lesions and ear lobe blood specimens had an average higher yield of T. pallidum DNA (83.0% vs. 28.2%, χ2 = 247.6, p<0.001) and an average higher efficiency of full molecular typing (80.9% vs. 43.1%, χ2 = 102.3, p<0.001) compared to plasma, whole blood, and cerebrospinal fluid. A pooled analysis of subtype distribution based on country location showed that 14d was the most common subtype, and subtype distribution varied across geographic areas. Subtype data associated with macrolide resistance and neurosyphilis were limited. Conclusions/Significance Primary lesion was a better specimen for obtaining T. pallidum DNA than blood. There was wide geographic variation in T. pallidum subtypes. More research is needed

  12. Effect of freezing conditions in liquid nitrogen on biological properties of Treponema pallidum.

    PubMed

    Potomski, J; Metzger, M; Smogór, W; Ruczkowska, J

    1979-01-01

    The influence of various conditions of freezing in liquid nitrogen on the motility, virulence, antigens, and immunogenicity of Treponema pallidum was studied. The suspending medium, rate of freezing, kind and concentration of cryprotector, and duration of preincubation with cryoprotector were found to be critical. On the basis of the results obtained the optimal conditions of freezing of T. pallidum in liquid nitrogen were established. These are: the Nelson-Diesendruck medium with the addition of 10% DMSO; freezing rate 1 degree per min, and thawing rate between 12.6 degrees and 120 degrees per min. PMID:375869

  13. Development of of macrophage migration inhibition in rabbits infected with virulent Treponema pallidum.

    PubMed

    Pavia, C S; Folds, J D; Baseman, J B

    1977-09-01

    Peritoneal exudate cells from rabbits infected with Treponema pallidum Nichols were used as indicators of macrophage migration inhibitory factor activity. Between 3 and 15 weeks after infection, the migration of peritoneal exudate cells was inhibited in the presence of 3 to 25 microgram of T. phagedenis biovar Reiter protein per ml. Before this period, the migration patterns of peritoneal exudate cells from infected animals were uninhibited and similar to those from noninfected control rabbits. These observations were correlated with the development of active cell-mediated immunity during experimental T. pallidum infection. PMID:332632

  14. Treponema pallidum Major Sheath Protein Homologue Tpr K Is a Target of Opsonic Antibody and the Protective Immune Response

    PubMed Central

    Centurion-Lara, Arturo; Castro, Christa; Barrett, Lynn; Cameron, Caroline; Mostowfi, Maryam; Van Voorhis, Wesley C.; Lukehart, Sheila A.

    1999-01-01

    We have identified a family of genes that code for targets for opsonic antibody and protective immunity in T. pallidum subspecies pallidum using two different approaches, subtraction hybridization and differential immunologic screening of a T. pallidum genomic library. Both approaches led to the identification of a polymorphic multicopy gene family with predicted amino acid homology to the major sheath protein of Treponema denticola. One of the members of this gene family, tpr K, codes for a protein that is predicted to have a cleavable signal peptide and be located in the outer membrane of the bacterium. Reverse transcription polymerase chain reaction analysis of T. pallidum reveals that Tpr K is preferentially transcribed in the Nichols strain of T. pallidum. Antibodies directed to purified recombinant variable domain of Tpr K can opsonize T. pallidum, Nichols strain, for phagocytosis, supporting the hypothesis that this portion of the protein is exposed at the surface of the treponeme. Immunization of rabbits with the purified recombinant variable domain of Tpr K provides significant protection against infection with the Nichols strain of T. pallidum. This gene family is hypothesized to be central to pathogenesis and immunity during syphilis infection. PMID:9989979

  15. Treponema pallidum putative novel drug target identification and validation: rethinking syphilis therapeutics with plant-derived terpenoids.

    PubMed

    Dwivedi, Upendra N; Tiwari, Sameeksha; Singh, Priyanka; Singh, Swati; Awasthi, Manika; Pandey, Veda P

    2015-02-01

    Syphilis, a slow progressive and the third most common sexually transmitted disease found worldwide, is caused by a spirochete gram negative bacteria Treponema pallidum. Emergence of antibiotic resistant T. pallidum has led to a search for novel drugs and their targets. Subtractive genomics analyses of pathogen T. pallidum and host Homo sapiens resulted in identification of 126 proteins essential for survival and viability of the pathogen. Metabolic pathway analyses of these essential proteins led to discovery of nineteen proteins distributed among six metabolic pathways unique to T. pallidum. One hundred plant-derived terpenoids, as potential therapeutic molecules against T. pallidum, were screened for their drug likeness and ADMET (absorption, distribution, metabolism, and toxicity) properties. Subsequently the resulting nine terpenoids were docked with five unique T. pallidum targets through molecular modeling approaches. Out of five targets analyzed, D-alanine:D-alanine ligase was found to be the most promising target, while terpenoid salvicine was the most potent inhibitor. A comparison of the inhibitory potential of the best docked readily available natural compound, namely pomiferin (flavonoid) with that of the best docked terpenoid salvicine, revealed that salvicine was a more potent inhibitor than that of pomiferin. To the best of our knowledge, this is the first report of a terpenoid as a potential therapeutic molecule against T. pallidum with D-alanine:D-alanine ligase as a novel target. Further studies are warranted to evaluate and explore the potential clinical ramifications of these findings in relation to syphilis that has public health importance worldwide. PMID:25683888

  16. Two Mutations associated with Macrolide Resistance in Treponema pallidum: Increasing Prevalence and Correlation with Molecular Strain Type in Seattle, Washington

    PubMed Central

    Grimes, Matthew; Sahi, Sharon K.; Godornes, B. Charmie; Tantalo, Lauren C.; Roberts, Neal; Bostick, David; Marra, Christina M.; Lukehart, Sheila A.

    2013-01-01

    Background Although azithromycin promised to be a safe and effective single dose oral treatment for early syphilis, azithromycin treatment failure has been documented and is associated with mutations in the 23S rDNA of corresponding Treponema pallidum strains. The prevalence of strains harboring these mutations varies throughout the US and the world. We examined T. pallidum strains circulating in Seattle, Washington, from 2001–2010 to determine the prevalence of two mutations associated with macrolide resistance, and to determine whether these mutations were associated with certain T. pallidum strain types. Methods Subjects were enrolled in a separate ongoing study of cerebrospinal fluid (CSF) abnormalities in patients with syphilis. T. pallidum DNA purified from blood and T. pallidum strains isolated from blood or CSF were analyzed for two 23S rDNA mutations and for the molecular targets used in an enhanced molecular stain typing system. Results Nine molecular strain types of T. pallidum were identified in Seattle from 2001–2010. Both macrolide resistance mutations were identified in Seattle strains, and the prevalence of resistant T. pallidum exceeded 80% in 2005 and increased through 2010. Resistance mutations were associated with discrete molecular strain types of T. pallidum. Conclusions Macrolide resistant T. pallidum strains are highly prevalent in Seattle, and each mutation is associated with discrete strain types. Macrolides should not be considered for treatment of syphilis in regions where prevalence of the mutations is high. Combining the resistance mutations with molecular strain typing permits a finer analysis of the epidemiology of syphilis in a community. PMID:23191949

  17. Serological characterization and gene localization of an Escherichia coli-expressed 37-kilodalton Treponema pallidum antigen.

    PubMed Central

    Rodgers, G C; Laird, W J; Coates, S R; Mack, D H; Huston, M; Sninsky, J J

    1986-01-01

    A recombinant plasmid containing a 5.6-kilobase-pair DNA fragment of the Treponema pallidum genome was characterized by endonuclease mapping, and the encoded proteins were expressed in Escherichia coli and analyzed by use of in vitro transcription and translation. One of the proteins, identified as having a molecular weight of 37,000 (37K protein), was selected for further study. Initially, the seroreactivity of the partially purified 37K antigen was demonstrated by immunoblotting. After its purification to near homogeneity, the cloned T. pallidum protein was assessed for diagnostic significance by radioimmunoassay. Although first identified as seroreactive by screening with secondary syphilitic sera (T. E. Fehniger, A. M. Walfield, T. M. Cunningham, J. D. Radolf, J. N. Miller, and M. A. Lovett, Abstr. Annu. Meet. Am. Soc. Microbiol. 1985, B156, p. 44), the antigen was shown to be serologically reactive with antibodies in serum from all stages of syphilis but was not recognized by serum from controls by both immunoblotting and radioimmune assay. Further, a monospecific polyclonal rabbit antiserum generated to the 37K antigen recognized a polypeptide of the same molecular weight from T. pallidum but did not efficiently recognize proteins from five nonpathogenic treponemes tested. Therefore, because of reactivity with and specificity for T. pallidum antibodies, the 37K antigen may be of serodiagnostic value in the detection of syphilis. Images PMID:3522427

  18. Laboratory Evaluation of Three Rapid Diagnostic Tests for Dual Detection of HIV and Treponema pallidum Antibodies

    PubMed Central

    Woo, Jennifer S.; Chung, Jun Ho; Sokovic, Anita; Bristow, Claire C.; Klausner, Jeffrey D.

    2014-01-01

    The performance of three research-use-only, dual HIV and syphilis rapid diagnostic tests (RDTs) was evaluated for 150 patient serum samples and compared to reference HIV and Treponema pallidum antibody detection methods. The RDTs performed comparably, with sensitivities of 93 to 99% and specificities of 97 to 100%. The kappa statistic between the RDTs was 0.95. PMID:25297332

  19. Laboratory evaluation of three rapid diagnostic tests for dual detection of HIV and Treponema pallidum antibodies.

    PubMed

    Humphries, Romney M; Woo, Jennifer S; Chung, Jun Ho; Sokovic, Anita; Bristow, Claire C; Klausner, Jeffrey D

    2014-12-01

    The performance of three research-use-only, dual HIV and syphilis rapid diagnostic tests (RDTs) was evaluated for 150 patient serum samples and compared to reference HIV and Treponema pallidum antibody detection methods. The RDTs performed comparably, with sensitivities of 93 to 99% and specificities of 97 to 100%. The kappa statistic between the RDTs was 0.95. PMID:25297332

  20. 21 CFR 866.3820 - Treponema pallidum non-treponemal test reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Treponema pallidum non-treponemal test reagents. 866.3820 Section 866.3820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  1. 21 CFR 866.3820 - Treponema pallidum non-treponemal test reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Treponema pallidum non-treponemal test reagents. 866.3820 Section 866.3820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  2. 21 CFR 866.3820 - Treponema pallidum non-treponemal test reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Treponema pallidum non-treponemal test reagents. 866.3820 Section 866.3820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  3. 21 CFR 866.3820 - Treponema pallidum non-treponemal test reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Treponema pallidum non-treponemal test reagents. 866.3820 Section 866.3820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  4. 21 CFR 866.3820 - Treponema pallidum non-treponemal test reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Treponema pallidum non-treponemal test reagents. 866.3820 Section 866.3820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  5. Use of Treponema pallidum PCR in Testing of Ulcers for Diagnosis of Primary Syphilis1

    PubMed Central

    Sednaoui, Patrice; Lautenschlager, Stephan; Ferry, Tristan; Toutous-Trellu, Laurence; Cavassini, Matthias; Yassir, Fatima; Martinez de Tejada, Begoña; Emonet, Stéphane; Combescure, Christophe; Schrenzel, Jacques; Perneger, Thomas

    2015-01-01

    Treponema pallidum PCR (Tp-PCR) has been noted as a valid method for diagnosing syphilis. We compared Tp-PCR to a combination of darkfield microscopy (DFM), the reference method, and serologic testing in a cohort of 273 patients from France and Switzerland and found the diagnostic accuracy of Tp-PCR was higher than that for DFM. PMID:25531672

  6. Use of Treponema pallidum PCR in testing of ulcers for diagnosis of primary syphilis.

    PubMed

    Gayet-Ageron, Angèle; Sednaoui, Patrice; Lautenschlager, Stephan; Ferry, Tristan; Toutous-Trellu, Laurence; Cavassini, Matthias; Yassir, Fatima; Martinez de Tejada, Begoña; Emonet, Stéphane; Combescure, Christophe; Schrenzel, Jacques; Perneger, Thomas

    2015-01-01

    Treponema pallidum PCR (Tp-PCR) has been noted as a valid method for diagnosing syphilis. We compared Tp-PCR to a combination of darkfield microscopy (DFM), the reference method, and serologic testing in a cohort of 273 patients from France and Switzerland and found the diagnostic accuracy of Tp-PCR was higher than that for DFM. PMID:25531672

  7. Role of outer membrane architecture in immune evasion by Treponema pallidum and Borrelia burgdorferi.

    PubMed

    Radolf, J D

    1994-09-01

    Combined ultrastructural and molecular studies have revealed that the syphilis and Lyme-disease spirochetes, Treponema pallidum and Borrelia burgdorferi, have distinctive molecular architectures. Both organisms persist in their hosts and have strategies for immune evasion that include the use of rare, poorly immunogenic surface-exposed proteins as potential virulence determinants. PMID:7812663

  8. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio)

    PubMed Central

    Knauf, Sascha; Barnett, Ulrike; Maciej, Peter; Klapproth, Matthias; Ndao, Ibrahima; Frischmann, Sieghard; Fischer, Julia; Zinner, Dietmar; Liu, Hsi

    2015-01-01

    The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum), yaws (ssp. pertenue), and endemic syphilis (ssp. endemicum) in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papio papio) at Parc National Niokolo Koba in south eastern Senegal for the presence of anti-T. pallidum antibodies. Since T. pallidum infection in this species was identified 50 years ago, and there has been no attempt to treat non-human primates for infection, it was hypothesized that a large number of West African baboons are still infected with simian strains of the yaws-bacterium. All animals were without clinical signs of treponematoses, but 18 of 20 (90%) baboons tested positive for antibodies against T. pallidum based on treponemal tests. Yet, Guinea baboons seem to develop no clinical symptoms, though it must be assumed that infection is chronic or comparable to the latent stage in human yaws infection. The non-active character is supported by the low anti-T. pallidum serum titers in Guinea baboons (median = 1:2,560) versus serum titers that are found in genital-ulcerated olive baboons with active infection in Tanzania (range of medians among the groups of initial, moderate, and severe infected animals = 1:15,360 to 1:2.097e+7). Our findings provide evidence for simian infection with T. pallidum in wild Senegalese baboons. Potentially, Guinea baboons in West Africa serve as a natural reservoir for human infection, as the West African simian strain has been shown to cause sustainable yaws infection when inoculated into humans. The present study pinpoints an area where further research is needed to support the currently on-going second WHO led yaws eradication campaign with

  9. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio).

    PubMed

    Knauf, Sascha; Barnett, Ulrike; Maciej, Peter; Klapproth, Matthias; Ndao, Ibrahima; Frischmann, Sieghard; Fischer, Julia; Zinner, Dietmar; Liu, Hsi

    2015-01-01

    The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum), yaws (ssp. pertenue), and endemic syphilis (ssp. endemicum) in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papio papio) at Parc National Niokolo Koba in south eastern Senegal for the presence of anti-T. pallidum antibodies. Since T. pallidum infection in this species was identified 50 years ago, and there has been no attempt to treat non-human primates for infection, it was hypothesized that a large number of West African baboons are still infected with simian strains of the yaws-bacterium. All animals were without clinical signs of treponematoses, but 18 of 20 (90%) baboons tested positive for antibodies against T. pallidum based on treponemal tests. Yet, Guinea baboons seem to develop no clinical symptoms, though it must be assumed that infection is chronic or comparable to the latent stage in human yaws infection. The non-active character is supported by the low anti-T. pallidum serum titers in Guinea baboons (median = 1:2,560) versus serum titers that are found in genital-ulcerated olive baboons with active infection in Tanzania (range of medians among the groups of initial, moderate, and severe infected animals = 1:15,360 to 1:2.097e+7). Our findings provide evidence for simian infection with T. pallidum in wild Senegalese baboons. Potentially, Guinea baboons in West Africa serve as a natural reservoir for human infection, as the West African simian strain has been shown to cause sustainable yaws infection when inoculated into humans. The present study pinpoints an area where further research is needed to support the currently on-going second WHO led yaws eradication campaign with

  10. Survival of Treponema pallidum in banked blood for prevention of Syphilis transmission

    PubMed Central

    Adegoke, Adeolu O.; Akanni, Olufemi E.

    2011-01-01

    Background: Every year, millions of people are exposed to avoidable, life-threatening risks through the trans-fusion of unsafe blood. Aim: To determine the survival time of Treponema pallidum in banked donor blood. Material and Methods: Two groups of male Wistar rats (group A and B) were inoculated intratesticularly with 0.5ml of artificially infected donor blood (final density of Nichols treponemes: 5×105 /ml) stored at 4°C for various periods of time. In group A, a pair each of the rats was injected every 12 hours, starting at 0 hr, up to a maximal storage time of 96 hr. In group B, the rats were injected after 72, 120, 192 and 336 hours of storage of the treponemes-blood mixture. Group C which is a control group was injected with blood only, while group D rats were injected with heat-killed treponemes suspended in blood every 12 hours. The detection of Treponema pallidum IgG/IgM was based on the principle of double antigen sandwich immunoassay, in which purified recombinant antigens are employed sufficiently to identify antibodies to Syphilis. The outcomes of interest included the proportion of Syphilis positive rats and the maximal survival hours of T. pallidum in banked blood. Results: 14 rats (77.8%) out of the 18 rats that were involved in group A developed orchitis and positive serology up to 72 hours of storage time, p<0.05. 2 rats (25%) in group B developed orchitis after 72hrs of storage time. All the 18 rats (100%) in the control group C and D showed neither clinical nor serological changes. Conclusion: It was concluded that the survival time of T. pallidum in banked donor blood lies between 72-120hrs in this study. Regardless of blood banking temperature, T. pallidum and other transfusion transmissible infections should be screened for prior to allogeneic transfusion. PMID:22540107

  11. Bifunctional Role of the Treponema pallidum Extracellular Matrix Binding Adhesin Tp0751 ▿

    PubMed Central

    Houston, Simon; Hof, Rebecca; Francescutti, Teresa; Hawkes, Aaron; Boulanger, Martin J.; Cameron, Caroline E.

    2011-01-01

    Treponema pallidum, the causative agent of syphilis, is a highly invasive pathogenic spirochete capable of attaching to host cells, invading the tissue barrier, and undergoing rapid widespread dissemination via the circulatory system. The T. pallidum adhesin Tp0751 was previously shown to bind laminin, the most abundant component of the basement membrane, suggesting a role for this adhesin in host tissue colonization and bacterial dissemination. We hypothesized that similar to that of other invasive pathogens, the interaction of T. pallidum with host coagulation proteins, such as fibrinogen, may also be crucial for dissemination via the circulatory system. To test this prediction, we used enzyme-linked immunosorbent assay (ELISA) methodology to demonstrate specific binding of soluble recombinant Tp0751 to human fibrinogen. Click-chemistry-based palmitoylation profiling of heterologously expressed Tp0751 confirmed the presence of a lipid attachment site within this adhesin. Analysis of the Tp0751 primary sequence revealed the presence of a C-terminal putative HEXXH metalloprotease motif, and in vitro degradation assays confirmed that recombinant Tp0751 purified from both insect and Escherichia coli expression systems degrades human fibrinogen and laminin. The proteolytic activity of Tp0751 was abolished by the presence of the metalloprotease inhibitor 1,10-phenanthroline. Further, inductively coupled plasma-mass spectrometry showed that Tp0751 binds zinc and calcium. Collectively, these results indicate that Tp0751 is a zinc-dependent, membrane-associated protease that exhibits metalloprotease-like characteristics. However, site-directed mutagenesis of the HEXXH motif to HQXXH did not abolish the proteolytic activity of Tp0751, indicating that further mutagenesis studies are required to elucidate the critical active site residues associated with this protein. This study represents the first published description of a T. pallidum protease capable of degrading host

  12. Validation of Serological Tests for the Detection of Antibodies Against Treponema pallidum in Nonhuman Primates

    PubMed Central

    Knauf, Sascha; Dahlmann, Franziska; Batamuzi, Emmanuel K.; Frischmann, Sieghard; Liu, Hsi

    2015-01-01

    There is evidence to suggest that the yaws bacterium (Treponema pallidum ssp. pertenue) may exist in non-human primate populations residing in regions where yaws is endemic in humans. Especially in light of the fact that the World Health Organizaiton (WHO) recently launched its second yaws eradication campaign, there is a considerable need for reliable tools to identify treponemal infection in our closest relatives, African monkeys and great apes. It was hypothesized that commercially available serological tests detect simian anti-T. pallidum antibody in serum samples of baboons, with comparable sensitivity and specificity to their results on human sera. Test performances of five different treponemal tests (TTs) and two non-treponemal tests (NTTs) were evaluated using serum samples of 57 naturally T. pallidum-infected olive baboons (Papio anubis) from Lake Manyara National Park in Tanzania. The T. pallidum particle agglutination assay (TP-PA) was used as a gold standard for comparison. In addition, the overall infection status of the animals was used to further validate test performances. For most accurate results, only samples that originated from baboons of known infection status, as verified in a previous study by clinical inspection, PCR and immunohistochemistry, were included. All tests, TTs and NTTs, used in this study were able to reliably detect antibodies against T. pallidum in serum samples of infected baboons. The sensitivity of TTs ranged from 97.7-100%, while specificity was between 88.0-100.0%. The two NTTs detected anti-lipoidal antibodies in serum samples of infected baboons with a sensitivity of 83.3% whereas specificity was 100%. For screening purposes, the TT Espline TP provided the highest sensitivity and specificity and at the same time provided the most suitable format for use in the field. The enzyme immune assay Mastblot TP (IgG), however, could be considered as a confirmatory test. PMID:25803295

  13. Validation of serological tests for the detection of antibodies against Treponema pallidum in nonhuman primates.

    PubMed

    Knauf, Sascha; Dahlmann, Franziska; Batamuzi, Emmanuel K; Frischmann, Sieghard; Liu, Hsi

    2015-03-01

    There is evidence to suggest that the yaws bacterium (Treponema pallidum ssp. pertenue) may exist in non-human primate populations residing in regions where yaws is endemic in humans. Especially in light of the fact that the World Health Organizaiton (WHO) recently launched its second yaws eradication campaign, there is a considerable need for reliable tools to identify treponemal infection in our closest relatives, African monkeys and great apes. It was hypothesized that commercially available serological tests detect simian anti-T. pallidum antibody in serum samples of baboons, with comparable sensitivity and specificity to their results on human sera. Test performances of five different treponemal tests (TTs) and two non-treponemal tests (NTTs) were evaluated using serum samples of 57 naturally T. pallidum-infected olive baboons (Papio anubis) from Lake Manyara National Park in Tanzania. The T. pallidum particle agglutination assay (TP-PA) was used as a gold standard for comparison. In addition, the overall infection status of the animals was used to further validate test performances. For most accurate results, only samples that originated from baboons of known infection status, as verified in a previous study by clinical inspection, PCR and immunohistochemistry, were included. All tests, TTs and NTTs, used in this study were able to reliably detect antibodies against T. pallidum in serum samples of infected baboons. The sensitivity of TTs ranged from 97.7-100%, while specificity was between 88.0-100.0%. The two NTTs detected anti-lipoidal antibodies in serum samples of infected baboons with a sensitivity of 83.3% whereas specificity was 100%. For screening purposes, the TT Espline TP provided the highest sensitivity and specificity and at the same time provided the most suitable format for use in the field. The enzyme immune assay Mastblot TP (IgG), however, could be considered as a confirmatory test. PMID:25803295

  14. Recombinant Treponema pallidum rare outer membrane protein 1 (Tromp1) expressed in Escherichia coli has porin activity and surface antigenic exposure.

    PubMed Central

    Blanco, D R; Champion, C I; Exner, M M; Shang, E S; Skare, J T; Hancock, R E; Miller, J N; Lovett, M A

    1996-01-01

    We recently reported the cloning and sequencing of the gene encoding a 31-kDa Treponema pallidum subsp. pallidum rare outer membrane porin protein, designated Tromp1 (D. R. Blanco, C. I. Champion, M. M. Exner, H. Erdjument-Bromage, R. E. W. Hancock, P. Tempst, J. N. Miller, and M. A. Lovett, J. Bacteriol. 177:3556-3562, 1995). Here, we report the stable expression of recombinant Tromp1 (rTromp1) in Escherichia coli. rTromp1 expressed without its signal peptide and containing a 22-residue N-terminal fusion resulted in high-level accumulation of a nonexported soluble protein that was purified to homogeneity by fast protein liquid chromatography (FPLC). Specific antiserum generated to the FPLC-purified rTromp1 fusion identified on immunoblots of T. pallidum the native 31-kDa Tromp1 protein and two higher-molecular-mass oligomeric forms of Tromp1 at 55 and 80 kDa. rTromp1 was also expressed with its native signal peptide by using an inducible T7 promoter. Under these conditions, rTromp1 fractionated predominantly with the E. coli soluble and outer membrane fractions, but not with the inner membrane fraction. rTromp1 isolated from the E. coli outer membrane and reconstituted into planar lipid bilayers showed porin activity based on average single-channel conductances of 0.4 and 0.8 nS in 1 M KCl. Whole-mount immunoelectron microscopy using infection-derived immune serum against T. pallidum indicated that rTromp1 was surface exposed when expressed in E. coli. These findings demonstrate that rTromp1 can be targeted to the E. coli outer membrane, where it has both porin activity and surface antigenic exposure. PMID:8955283

  15. Treponema pallidum in Gel Microdroplets: A Method for Topological Analysis of BamA (TP0326) and Localization of Rare Outer Membrane Proteins.

    PubMed

    Luthra, Amit; Anand, Arvind; Radolf, Justin D

    2015-01-01

    The noncultivable spirochete Treponema pallidum subspecies pallidum (T. pallidum) is the etiological agent of venereal syphilis. In contrast to the outer membranes (OMs) of gram-negative bacteria, the OM of T. pallidum lacks lipopolysaccharide, contains a paucity of integral membrane proteins, and is extremely labile. The lability of the T. pallidum OM greatly hinders efforts to localize the bacterium's rare outer membrane proteins (OMPs). To circumvent this problem, we developed the gel microdroplet method in which treponemes are encapsulated in porous agarose beads and then probed with specific antibodies in the absence or presence of low concentrations of the non-ionic detergent Triton X-100. To demonstrate the general utility of this method for surface localization of any T. pallidum antigen, herein we describe a protocol for immunolabeling of encapsulated treponemes using antibodies directed against the β-barrel and POTRA domains of TP0326, the spirochete's BamA ortholog. PMID:26427677

  16. First Report of the 23S rRNA Gene A2058G Point Mutation Associated With Macrolide Resistance in Treponema pallidum From Syphilis Patients in Cuba.

    PubMed

    Noda, Angel A; Matos, Nelvis; Blanco, Orestes; Rodríguez, Islay; Stamm, Lola Virginia

    2016-05-01

    This study aimed to assess the presence of macrolide-resistant Treponema pallidum subtypes in Havana, Cuba. Samples from 41 syphilis patients were tested for T. pallidum 23S rRNA gene mutations. Twenty-five patients (61%) harbored T. pallidum with the A2058G mutation, which was present in all 8 subtypes that were identified. The A2059G mutation was not detected. PMID:27100771

  17. Differences in susceptibility to infection with Treponema pallidum (Nichols) between five strains of guinea pig.

    PubMed

    Wicher, K; Wicher, V; Gruhn, R F

    1985-02-01

    Groups of 10 young male guinea pigs of inbred strains 2 and 13 and outbred strains Hartley A, Hartley B, and one deficient in the fourth component of complement (C4D) were infected intradermally with 80 X 10(6) Treponema pallidum (Nichols). The course of infection and production of antitreponemal antibody were examined. Strain C4D guinea pigs were the most susceptible to infection (100%); inbred strains 2 and 13 and outbred strain Hartley B showed 80-90% symptomatic infection; and the Hartley A strain was the least susceptible to infection (10%). Strain 13 animals responded with the highest antitreponemal antibody activity, and the Hartley A strain with the lowest. The results suggest that genetic factors or complement, or both, may influence the degree of susceptibility to infection with T pallidum in guinea pigs. PMID:3910539

  18. [Neurochemical mechanisms of dorsal pallidum in antiadverse effects of anxiolytics of different models of anxiety].

    PubMed

    Talaenko, A N; Krivobok, G K; Pankrat'ev, D V; Goncharenko, N V

    2005-07-01

    Microinjections of glutamine acid, serotonine and campiron into globus pallidus reveal antiadverse properties of ratsin in the test with avoiding "threatening situation" but not with "illuminated site" under the conditions of rats' free choice between light and dark sites. Dopamine, apomorphine, GABA, chlordiazepoxide, phenibut and indoter injected locally into this formation of basal ganglia do not affect the mechanisms of the involuntary movement, but counteract the conditions of anxiety in both models of behaviour. These results show different functional role of monoamino- and aminoacidergic systems of dorsal pallidum in operative regulation of behaviour with changing of aversive stimulus modality. Preliminary intraperitoneal injection of functional antagonists of investigated synoptotropic followed by microinjection of monoamines and amino acids into globus pallidus reveal selective involvement of neuromediator systems of dorsal pallidum into antiadverse anxiosedative and anxioselective actions. PMID:16206621

  19. Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete.

    PubMed

    Izard, Jacques; Renken, Christian; Hsieh, Chyong-Ere; Desrosiers, Daniel C; Dunham-Ems, Star; La Vake, Carson; Gebhardt, Linda L; Limberger, Ronald J; Cox, David L; Marko, Michael; Radolf, Justin D

    2009-12-01

    Cryo-electron tomography (CET) was used to examine the native cellular organization of Treponema pallidum, the syphilis spirochete. T. pallidum cells appeared to form flat waves, did not contain an outer coat and, except for bulges over the basal bodies and widening in the vicinity of flagellar filaments, displayed a uniform periplasmic space. Although the outer membrane (OM) generally was smooth in contour, OM extrusions and blebs frequently were observed, highlighting the structure's fluidity and lack of attachment to underlying periplasmic constituents. Cytoplasmic filaments converged from their attachment points opposite the basal bodies to form arrays that ran roughly parallel to the flagellar filaments along the inner surface of the cytoplasmic membrane (CM). Motile treponemes stably attached to rabbit epithelial cells predominantly via their tips. CET revealed that T. pallidum cell ends have a complex morphology and assume at least four distinct morphotypes. Images of dividing treponemes and organisms shedding cell envelope-derived blebs provided evidence for the spirochete's complex membrane biology. In the regions without flagellar filaments, peptidoglycan (PG) was visualized as a thin layer that divided the periplasmic space into zones of higher and lower electron densities adjacent to the CM and OM, respectively. Flagellar filaments were observed overlying the PG layer, while image modeling placed the PG-basal body contact site in the vicinity of the stator-P-collar junction. Bioinformatics and homology modeling indicated that the MotB proteins of T. pallidum, Treponema denticola, and Borrelia burgdorferi have membrane topologies and PG binding sites highly similar to those of their well-characterized Escherichia coli and Helicobacter pylori orthologs. Collectively, our results help to clarify fundamental differences in cell envelope ultrastructure between spirochetes and gram-negative bacteria. They also confirm that PG stabilizes the flagellar motor

  20. Cryo-Electron Tomography Elucidates the Molecular Architecture of Treponema pallidum, the Syphilis Spirochete▿ †

    PubMed Central

    Izard, Jacques; Renken, Christian; Hsieh, Chyong-Ere; Desrosiers, Daniel C.; Dunham-Ems, Star; La Vake, Carson; Gebhardt, Linda L.; Limberger, Ronald J.; Cox, David L.; Marko, Michael; Radolf, Justin D.

    2009-01-01

    Cryo-electron tomography (CET) was used to examine the native cellular organization of Treponema pallidum, the syphilis spirochete. T. pallidum cells appeared to form flat waves, did not contain an outer coat and, except for bulges over the basal bodies and widening in the vicinity of flagellar filaments, displayed a uniform periplasmic space. Although the outer membrane (OM) generally was smooth in contour, OM extrusions and blebs frequently were observed, highlighting the structure's fluidity and lack of attachment to underlying periplasmic constituents. Cytoplasmic filaments converged from their attachment points opposite the basal bodies to form arrays that ran roughly parallel to the flagellar filaments along the inner surface of the cytoplasmic membrane (CM). Motile treponemes stably attached to rabbit epithelial cells predominantly via their tips. CET revealed that T. pallidum cell ends have a complex morphology and assume at least four distinct morphotypes. Images of dividing treponemes and organisms shedding cell envelope-derived blebs provided evidence for the spirochete's complex membrane biology. In the regions without flagellar filaments, peptidoglycan (PG) was visualized as a thin layer that divided the periplasmic space into zones of higher and lower electron densities adjacent to the CM and OM, respectively. Flagellar filaments were observed overlying the PG layer, while image modeling placed the PG-basal body contact site in the vicinity of the stator-P-collar junction. Bioinformatics and homology modeling indicated that the MotB proteins of T. pallidum, Treponema denticola, and Borrelia burgdorferi have membrane topologies and PG binding sites highly similar to those of their well-characterized Escherichia coli and Helicobacter pylori orthologs. Collectively, our results help to clarify fundamental differences in cell envelope ultrastructure between spirochetes and gram-negative bacteria. They also confirm that PG stabilizes the flagellar motor

  1. Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I

    PubMed Central

    Anand, Arvind; LeDoyt, Morgan; Karanian, Carson; Luthra, Amit; Koszelak-Rosenblum, Mary; Malkowski, Michael G.; Puthenveetil, Robbins; Vinogradova, Olga; Radolf, Justin D.

    2015-01-01

    We previously identified Treponema pallidum repeat proteins TprC/D, TprF, and TprI as candidate outer membrane proteins (OMPs) and subsequently demonstrated that TprC is not only a rare OMP but also forms trimers and has porin activity. We also reported that TprC contains N- and C-terminal domains (TprCN and TprCC) orthologous to regions in the major outer sheath protein (MOSPN and MOSPC) of Treponema denticola and that TprCC is solely responsible for β-barrel formation, trimerization, and porin function by the full-length protein. Herein, we show that TprI also possesses bipartite architecture, trimeric structure, and porin function and that the MOSPC-like domains of native TprC and TprI are surface-exposed in T. pallidum, whereas their MOSPN-like domains are tethered within the periplasm. TprF, which does not contain a MOSPC-like domain, lacks amphiphilicity and porin activity, adopts an extended inflexible structure, and, in T. pallidum, is tightly bound to the protoplasmic cylinder. By thermal denaturation, the MOSPN and MOSPC-like domains of TprC and TprI are highly thermostable, endowing the full-length proteins with impressive conformational stability. When expressed in Escherichia coli with PelB signal sequences, TprC and TprI localize to the outer membrane, adopting bipartite topologies, whereas TprF is periplasmic. We propose that the MOSPN-like domains enhance the structural integrity of the cell envelope by anchoring the β-barrels within the periplasm. In addition to being bona fide T. pallidum rare outer membrane proteins, TprC/D and TprI represent a new class of dual function, bipartite bacterial OMP. PMID:25805501

  2. Recombinant antigen-based enzyme immunoassay for screening of Treponema pallidum antibodies in blood bank routine.

    PubMed Central

    Zrein, M; Maure, I; Boursier, F; Soufflet, L

    1995-01-01

    This work reports a comparison of an enzyme immunoassay (EIA) using two major Treponema pallidum recombinant antigens with a T. pallidum hemagglutination (TPHA) assay and a nontreponemal Venereal Disease Reference Laboratory (VDRL) test. A total of 1,822 normal donor serum samples was tested for cardiolipin and T. pallidum antibodies, respectively, by the VDRL assay and EIA. Among these samples, 440 were further tested by TPHA technology. Four samples were found positive by EIA, while all were reported to be negative by both TPHA and VDRL routine assays. Subsequent testing of EIA-positive samples confirmed 100% (four of four samples) and 25% (one of four samples) positive results, respectively, by immunofluorescence assay and a Western blot (immunoblot) syphilis kit. The sensitivity of the recombinant EIA was estimated at virtually 100% with a reference panel of 50 syphilitic samples. According to this study, the newly developed EIA kit shows 100% sensitivity combined to a specificity greater than 99.8% for detecting treponemal immunoglobulin G antibodies in blood bank syphilis screening. PMID:7751351

  3. Molecular Subtyping of Treponema pallidum during a Local Syphilis Epidemic in Men Who Have Sex with Men in Melbourne, Australia

    PubMed Central

    Ryan, Norbert; Fyfe, Janet; Leslie, David E.

    2012-01-01

    Treponema pallidum is the causative agent of syphilis, a sexually transmitted infection of significant public health importance. Since 2000 there has been a marked increase in the number of cases of syphilis infections notified in Victoria, Australia, with the majority of cases occurring in men who have sex with men (MSM) and the highest incidence being in HIV-infected MSM. The molecular subtyping method described by Pillay et al. (A. Pillay et al., Sex. Transm. Dis. 25:408–414, 1998) has been used in this study to determine the diversity of T. pallidum subtypes circulating locally and to look for any relationship between T. pallidum subtypes and HIV status over a 6-year period (2004 to 2009). Treponema pallidum DNA was detected in 303 patient specimens (n = 3,652), and full subtyping profiles were obtained from 90 of these (from 88 patients). A total of 11 T. pallidum subtypes were identified: types 14e (28, 31.1%), 14d (15, 16.7%), 14k (13, 14.4%), 14p (12, 13.3%), 14i (7, 7.8%) 14b (6, 6.7%), 14l (5, 5.6%), and 12i, 13b, 13i, and 13e (1 each, 1.1%). This study showed a similar level of variation among circulating T. pallidum strains compared with that in other studies using the same methodology. A different mix of strains and different predominating strains have been found at each geographical study location, with type 14e emerging as the predominant local strain in Victoria. There was no detectable trend between T. pallidum subtypes and the specimen collection site or stage of syphilis (where known), nor was there any relationship between particular strains and HIV status. PMID:22422857

  4. Treponema pallidum Putative Novel Drug Target Identification and Validation: Rethinking Syphilis Therapeutics with Plant-Derived Terpenoids

    PubMed Central

    Tiwari, Sameeksha; Singh, Priyanka; Singh, Swati; Awasthi, Manika; Pandey, Veda P.

    2015-01-01

    Abstract Syphilis, a slow progressive and the third most common sexually transmitted disease found worldwide, is caused by a spirochete gram negative bacteria Treponema pallidum. Emergence of antibiotic resistant T. pallidum has led to a search for novel drugs and their targets. Subtractive genomics analyses of pathogen T. pallidum and host Homo sapiens resulted in identification of 126 proteins essential for survival and viability of the pathogen. Metabolic pathway analyses of these essential proteins led to discovery of nineteen proteins distributed among six metabolic pathways unique to T. pallidum. One hundred plant-derived terpenoids, as potential therapeutic molecules against T. pallidum, were screened for their drug likeness and ADMET (absorption, distribution, metabolism, and toxicity) properties. Subsequently the resulting nine terpenoids were docked with five unique T. pallidum targets through molecular modeling approaches. Out of five targets analyzed, D-alanine:D-alanine ligase was found to be the most promising target, while terpenoid salvicine was the most potent inhibitor. A comparison of the inhibitory potential of the best docked readily available natural compound, namely pomiferin (flavonoid) with that of the best docked terpenoid salvicine, revealed that salvicine was a more potent inhibitor than that of pomiferin. To the best of our knowledge, this is the first report of a terpenoid as a potential therapeutic molecule against T. pallidum with D-alanine:D-alanine ligase as a novel target. Further studies are warranted to evaluate and explore the potential clinical ramifications of these findings in relation to syphilis that has public health importance worldwide. PMID:25683888

  5. Characterization of the low-molecular-mass proteins of virulent Treponema pallidum.

    PubMed Central

    Stamm, L V; Parrish, E A

    1994-01-01

    We previously demonstrated that Treponema pallidum cells incubated in vitro in the presence of heat-inactivated normal rabbit serum (HINRS) synthesize, in very small quantities, several pathogen-specific, low-molecular-mass proteins that appear to be localized extracellularly. In this study, we have taken advantage of our ability to metabolically radiolabel T. pallidum cells to high specific activity to further characterize these antigens. We found that the low-molecular-mass proteins are not related to the 15- and 17-kDa detergent-phase proteins (J. D. Radolf, N. R. Chamberlain, A. Clausell, and M. V. Norgard, Infect. Immun. 56:490-498, 1988). The low-molecular-mass proteins did not incorporate 3H-labeled fatty acids and were not precipitated by rabbit immunoglobulin G (IgG) antibodies directed against glutathione S-transferase fusions to the nonlipidated 15- and 17-kDa proteins. We prepared polyclonal antisera to the low-molecular-mass proteins by immunizing two rabbits with the concentrated supernatant of T. pallidum cells. IgG antibodies present in the sera of both rabbits precipitated a 21.5-kDa protein from solubilized extracts of T. pallidum supernatant and cells. IgG antibodies in the serum of the second rabbit precipitated an additional 15.5-kDa low-molecular-mass protein only from solubilized extracts of supernatant. While investigating the effect of eliminating HINRS from the extraction medium, we observed that the low-molecular-mass proteins remained associated with treponemal cells that were incubated in the absence of HINRS. These proteins could be eluted from the cells by the addition of HINRS or rabbit serum albumin, suggesting that they are located on or near the treponemal cell surface. The 15.5- and 21.5-kDa low-molecular-mass proteins were not washed off treponemal cells with buffer containing 1 M KCl. Experiments employing selective solubilization of the T. pallidum outer membrane with 0.1% Triton X-114 and proteinase K accessibility indicated

  6. Treponema pallidum Lipoprotein TP0435 Expressed in Borrelia burgdorferi Produces Multiple Surface/Periplasmic Isoforms and mediates Adherence

    PubMed Central

    Chan, Kamfai; Nasereddin, Thayer; Alter, Laura; Centurion-Lara, Arturo; Giacani, Lorenzo; Parveen, Nikhat

    2016-01-01

    The ability of Treponema pallidum, the syphilis spirochete to colonize various tissues requires the presence of surface-exposed adhesins that have been difficult to identify due to the inability to culture and genetically manipulate T. pallidum. Using a Borrelia burgdorferi-based heterologous system and gain-in-function approach, we show for the first time that a highly immunogenic lipoprotein TP0435 can be differentially processed into multiple isoforms with one variant stochastically displayed on the spirochete surface. TP0435 was previously believed to be exclusively located in T. pallidum periplasm. Furthermore, non-adherent B. burgdorferi strain expressing TP0435 acquires the ability to bind to a variety of host cells including placental cells and exhibits slow opsonophagocytosis in vitro similar to poor ex vivo phagocytosis of T. pallidum by host macrophages reported previously. This phenomenon of production of both surface and periplasmic immunogenic lipoprotein isoforms has possible implications in immune evasion of the obligate pathogen T. pallidum during infection. PMID:27161310

  7. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection.

    PubMed

    Centurion-Lara, Arturo; LaFond, Rebecca E; Hevner, Karin; Godornes, Charmie; Molini, Barbara J; Van Voorhis, Wesley C; Lukehart, Sheila A

    2004-06-01

    The tprK gene sequence of Treponema pallidum subspecies pallidum (T. pallidum) is heterogeneous within and among isolates. Heterogeneity in the tprK open reading frame is localized in seven discrete variable (V) regions, and variability results from apparent base changes, insertions or deletions. The TprK V regions are the focus of anti-TprK antibodies arising during infection. To test our hypothesis that V region sequences change during infection and passage, we developed a clonal isolate from the Chicago strain of T. pallidum and confirmed V region diversification during passage of this isolate. We describe the sequence anatomy of the seven V regions of tprK and the identification of putative donor sites for new V region sequences, and we propose a model for generation of new V regions by segmental gene conversion. These findings suggest that antigenic variation of TprK occurs in T. pallidum and may be important in immune evasion and persistence. PMID:15186410

  8. Treponema pallidum Lipoprotein TP0435 Expressed in Borrelia burgdorferi Produces Multiple Surface/Periplasmic Isoforms and mediates Adherence.

    PubMed

    Chan, Kamfai; Nasereddin, Thayer; Alter, Laura; Centurion-Lara, Arturo; Giacani, Lorenzo; Parveen, Nikhat

    2016-01-01

    The ability of Treponema pallidum, the syphilis spirochete to colonize various tissues requires the presence of surface-exposed adhesins that have been difficult to identify due to the inability to culture and genetically manipulate T. pallidum. Using a Borrelia burgdorferi-based heterologous system and gain-in-function approach, we show for the first time that a highly immunogenic lipoprotein TP0435 can be differentially processed into multiple isoforms with one variant stochastically displayed on the spirochete surface. TP0435 was previously believed to be exclusively located in T. pallidum periplasm. Furthermore, non-adherent B. burgdorferi strain expressing TP0435 acquires the ability to bind to a variety of host cells including placental cells and exhibits slow opsonophagocytosis in vitro similar to poor ex vivo phagocytosis of T. pallidum by host macrophages reported previously. This phenomenon of production of both surface and periplasmic immunogenic lipoprotein isoforms has possible implications in immune evasion of the obligate pathogen T. pallidum during infection. PMID:27161310

  9. Purification, crystallization and preliminary X-ray analysis of TP0435 (Tp17) from the syphilis spirochete Treponema pallidum

    PubMed Central

    Brautigam, Chad A.; Deka, Ranjit K.; Norgard, Michael V.

    2013-01-01

    Syphilis, caused by the bacterial spirochete Treponema pallidum, remains a prominent sexually transmitted infection worldwide. Despite sequencing of the genome of this obligate human pathogen 15 years ago, the functions of a large number of the gene products of T. pallidum are still unknown, particularly with respect to those of the organism’s periplasmic lipoproteins. To better understand their functions, a structural biology approach has been pursued. To this end, the soluble portion of the T. pallidum TP0435 lipoprotein (also known as Tp17) was cloned, hyper-expressed in Escherichia coli and purified to apparent homogeneity. The protein crystals obtained from this preparation diffracted to 2.4 Å resolution and had the symmetry of space group R3. In the hexagonal setting, the unit-cell parameters were a = b = 85.7, c = 85.4 Å. PMID:23545658

  10. Resequencing of Treponema pallidum ssp. pallidum Strains Nichols and SS14: Correction of Sequencing Errors Resulted in Increased Separation of Syphilis Treponeme Subclusters

    PubMed Central

    Strouhal, Michal; Čejková, Darina; Zobaníková, Marie; Mikalová, Lenka; Sodergren, Erica; Weinstock, George M.; Šmajs, David

    2013-01-01

    Background Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, is a highly clonal bacterium showing minimal genetic variability in the genome sequence of individual strains. Nevertheless, genetically characterized syphilis strains can be clearly divided into two groups, Nichols-like strains and SS14-like strains. TPA Nichols and SS14 strains were completely sequenced in 1998 and 2008, respectively. Since publication of their complete genome sequences, a number of sequencing errors in each genome have been reported. Therefore, we have resequenced TPA Nichols and SS14 strains using next-generation sequencing techniques. Methodology/Principal Findings The genomes of TPA strains Nichols and SS14 were resequenced using the 454 and Illumina sequencing methods that have a combined average coverage higher than 90x. In the TPA strain Nichols genome, 134 errors were identified (25 substitutions and 109 indels), and 102 of them affected protein sequences. In the TPA SS14 genome, a total of 191 errors were identified (85 substitutions and 106 indels) and 136 of them affected protein sequences. A set of new intrastrain heterogenic regions in the TPA SS14 genome were identified including the tprD gene, where both tprD and tprD2 alleles were found. The resequenced genomes of both TPA Nichols and SS14 strains clustered more closely with related strains (i.e. strains belonging to same syphilis treponeme subcluster). At the same time, groups of Nichols-like and SS14-like strains were found to be more distantly related. Conclusion/Significance We identified errors in 11.5% of all annotated genes and, after correction, we found a significant impact on the predicted proteomes of both Nichols and SS14 strains. Corrections of these errors resulted in protein elongations, truncations, fusions and indels in more than 11% of all annotated proteins. Moreover, it became more evident that syphilis is caused by treponemes belonging to two separate genetic subclusters. PMID

  11. Evidence that TP_0144 of Treponema pallidum Is a Thiamine-Binding Protein

    PubMed Central

    Bian, Jiang; Tu, Youbin; Wang, Song-Mei; Wang, Xuan-Yi

    2015-01-01

    Thiamine pyrophosphate (TPP), the biologically active form of thiamine (also known as vitamin B1), is an essential cofactor for several important enzymes involved in carbohydrate metabolism, and therefore, it is required for all living organisms. We recently found that a thiamine-binding protein (TDE_0143) is essential for the survival of Treponema denticola, an important bacterial pathogen that is associated with human periodontitis. In this report, we provide experimental evidence showing that TP_0144, a homolog of TDE_0143 from the syphilis spirochete Treponema pallidum, is a thiamine-binding protein that has biochemical features and functions that are similar to those of TDE_0143. First, structural modeling analysis reveal that both TDE_0143 and TP_0144 contain a conserved TPP-binding site and share similar structures to the thiamine-binding protein of Escherichia coli. Second, biochemical analysis shows that these two proteins bind to TPP with similar dissociation constant (Kd) values (TDE_0143, Kd of 36.50 nM; TP_0144, Kd of 32.62 nM). Finally, heterologous expression of TP_0144 in a ΔTDE_0143 strain, a previously constructed TDE_0143 mutant of T. denticola, fully restores its growth and TPP uptake when exogenous thiamine is limited. Collectively, these results indicate that TP_0144 is a thiamine-binding protein that is indispensable for T. pallidum to acquire exogenous thiamine, a key nutrient for bacterial survival. In addition, the studies shown in this report further underscore the feasibility of using T. denticola as a platform to study the biology and pathogenicity of T. pallidum and probably other uncultivable treponemal species as well. PMID:25605310

  12. Evidence that TP_0144 of Treponema pallidum is a thiamine-binding protein.

    PubMed

    Bian, Jiang; Tu, Youbin; Wang, Song-Mei; Wang, Xuan-Yi; Li, Chunhao

    2015-04-01

    Thiamine pyrophosphate (TPP), the biologically active form of thiamine (also known as vitamin B1), is an essential cofactor for several important enzymes involved in carbohydrate metabolism, and therefore, it is required for all living organisms. We recently found that a thiamine-binding protein (TDE_0143) is essential for the survival of Treponema denticola, an important bacterial pathogen that is associated with human periodontitis. In this report, we provide experimental evidence showing that TP_0144, a homolog of TDE_0143 from the syphilis spirochete Treponema pallidum, is a thiamine-binding protein that has biochemical features and functions that are similar to those of TDE_0143. First, structural modeling analysis reveal that both TDE_0143 and TP_0144 contain a conserved TPP-binding site and share similar structures to the thiamine-binding protein of Escherichia coli. Second, biochemical analysis shows that these two proteins bind to TPP with similar dissociation constant (Kd) values (TDE_0143, Kd of 36.50 nM; TP_0144, Kd of 32.62 nM). Finally, heterologous expression of TP_0144 in a ΔTDE_0143 strain, a previously constructed TDE_0143 mutant of T. denticola, fully restores its growth and TPP uptake when exogenous thiamine is limited. Collectively, these results indicate that TP_0144 is a thiamine-binding protein that is indispensable for T. pallidum to acquire exogenous thiamine, a key nutrient for bacterial survival. In addition, the studies shown in this report further underscore the feasibility of using T. denticola as a platform to study the biology and pathogenicity of T. pallidum and probably other uncultivable treponemal species as well. PMID:25605310

  13. A longitudinal evaluation of Treponema pallidum PCR testing in early syphilis

    PubMed Central

    2012-01-01

    Background Syphilis is a growing public health problem among men who have sex with men (MSM) globally. Rapid and accurate detection of syphilis is vital to ensure patients and their contacts receive timely treatment and reduce ongoing transmission. Methods We evaluated a PCR assay for the diagnosis of Treponema pallidum using swabs of suspected early syphilis lesions in longitudinally assessed MSM. Results We tested 260 MSM for T pallidum by PCR on 288 occasions: 77 (26.7%) had early syphilis that was serologically confirmed at baseline or within six weeks, and 211 (73.3%) remained seronegative for syphilis. Of 55 men with primary syphilis, 49 were PCR positive, giving a sensitivity of 89.1% (95% CI: 77.8%-95.9%) and a specificity of 99.1% (95% CI: 96.5%-99.9%). Of 22 men with secondary syphilis, 11 were PCR positive, giving a sensitivity of 50% (95% CI: 28.2%-71.8%) and a specificity of 100% (95% CI: 66.4%-71.8%). Of the 77 syphilis cases, 43 (56%) were HIV positive and the sensitivity and specificity of the PCR test did not vary by HIV status. The PCR test was able to detect up to five (10%) primary infections that were initially seronegative, including one HIV positive man with delayed seroconversion to syphilis (72 to 140 days) and one HIV positive man who did not seroconvert to syphilis over 14 months follow-up. Both men had been treated for syphilis within a week of the PCR test. Conclusions T pallidum PCR is a potentially powerful tool for the early diagnosis of primary syphilis, particularly where a serological response has yet to develop. PMID:23241398

  14. [Biological activity of lipids and photosynthetic pigments of Sargassum pallidum C. Agardh].

    PubMed

    Gerasimenko, N I; Martyias, E A; Logvinov, S V; Busarova, N G

    2014-01-01

    The biological activity of lipids and photosynthetic pigments of the kelp Sargassum pallidum (Turner) C. Agardh has been studied. Free fatty acids and their esters demonstrated considerable antimicrobial activity against bacteria (Staphylococcus aureus[ital] and Escherichia coli), yeast-like fungi (Candida albicans), and opportunistic pathogenic (Aspergilius niger) and phytopathogenic (Fusarium oxysporum, and Septoria glycines) fungi. Glyceroglycolipids and neutral lipids demonstrated moderate activity. Fucoxanthin and chlorophylls weakly suppressed the growth of microorganisms. None of the studied substances demonstrated activity against Ehrlich's carcinoma. It was shown that the season of weed harvesting affected both antimicrobial and hemolytic activities of different lipids due to changes in their fatty acid composition. PMID:25272757

  15. Identification and preliminary characterization of Treponema pallidum protein antigens expressed in Escherichia coli.

    PubMed

    Stamm, L V; Kerner, T C; Bankaitis, V A; Bassford, P J

    1983-08-01

    We have previously described the construction in Escherichia coli K-12 of a hybrid plasmid colony bank of Treponema pallidum (Nichols strain) genomic DNA. By screening a portion of this bank with an in situ immunoassay, we identified six E. coli clones that express T. pallidum antigens. In this study, the recombinant plasmids from each of these clones have been analyzed in E. coli maxicells and have been found to encode a number of proteins that are not of vector pBR322 origin and are, therefore, of treponemal origin. In each case, several of these proteins can be specifically precipitated from solubilized maxicell extracts by high-titer experimental rabbit syphilitic serum. Certain of these proteins are also precipitated by high-titer latent human syphilitic sera (HSS). The T. pallidum DNA inserts in these plasmids range in size from 6.2 to 14 kilobase pairs, and from the restriction patterns of the inserts and the protein profiles generated by each plasmid in maxicells, it is apparent that we have recovered a total of four unique clones from our colony bank. Recombinant plasmids pLVS3 and pLVS5 were of particular interest. Plasmid pLVS3 encodes three major protein antigens with molecular weights of 39,000, 35,000, and 25,000. These three proteins, which were not recognized by pooled normal human sera, were efficiently precipitated by most secondary HSS, latent HSS, and late HSS tested. These proteins were also precipitated, although somewhat inefficiently, by most primary HSS tested. Plasmid pLVS5 encodes a major protein antigen with a molecular weight of 32,000 and several minor protein antigens that, although efficiently precipitated by experimental rabbit syphilitic serum, were generally not recognized by the various HSS tested. Evidence is presented indicating that the protein antigens encoded by plasmids pLVS3 and pLVS5 are specific for pathogenic treponemal species. We have also demonstrated that immunoglobulin G antibodies directed against these protein

  16. Evaluation of Macrolide Resistance and Enhanced Molecular Typing of Treponema pallidum in Patients with Syphilis in Taiwan: a Prospective Multicenter Study

    PubMed Central

    Wu, Hsiu; Chang, Sui-Yuan; Lee, Nan-Yao; Huang, Wen-Chi; Wu, Bing-Ru; Yang, Chia-Jui; Liang, Shiou-Haur; Lee, Chen-Hsiang; Ko, Wen-Chien; Lin, Hsi-Hsun; Chen, Yen-Hsu; Liu, Wen-Chun; Su, Yi-Ching; Hsieh, Chia-Yin; Wu, Pei-Ying

    2012-01-01

    Studies of macrolide resistance mutations and molecular typing using the newly proposed enhanced typing system for Treponema pallidum isolates obtained from HIV-infected patients in the Asia-Pacific region are scarce. Between September 2009 and December 2011, we conducted a survey to detect T. pallidum using a PCR assay using clinical specimens from patients with syphilis at six major designated hospitals for HIV care in Taiwan. The T. pallidum strains were genotyped by following the enhanced molecular typing methodology, which analyzed the number of 60-bp repeats in the acidic repeat protein (arp) gene, T. pallidum repeat (tpr) polymorphism, and the sequence of base pairs 131 to 215 in the tp0548 open reading frame of T. pallidum. Detection of A2058G and A2059G point mutations in the T. pallidum 23S rRNA was performed with the use of restriction fragment length polymorphism (RFLP). During the 2-year study period, 211 clinical specimens were obtained from 136 patients with syphilis. T. pallidum DNA was isolated from 105 (49.8%) of the specimens, with swab specimens obtained from chancres having the highest yield rate (63.2%), followed by plasma (49.4%), serum (35.7%), and cerebrospinal fluid or vitreous fluid (18.2%) specimens. Among the 40 fully typed specimens, 11 subtypes of T. pallidum were identified. Subtype 14f/f (18 isolates) was the most common isolates, followed by 14f/c (3), 14b/c (3), and 14k/f (3). Among the isolates examined for macrolide resistance, none had the A2058G or A2059G mutation. In conclusion, we found that type 14 f/f was the most common T. pallidum strain in this multicenter study on syphilis in Taiwan and that none of the isolates exhibited 23S rRNA mutations causing resistance to macrolides. PMID:22518868

  17. Structural, Bioinformatic, and In Vivo Analyses of Two Treponema pallidum Lipoproteins Reveal a Unique TRAP Transporter

    SciTech Connect

    Deka, Ranjit K.; Brautigam, Chad A.; Goldberg, Martin; Schuck, Peter; Tomchick, Diana R.; Norgard, Michael V.

    2012-05-25

    Treponema pallidum, the bacterial agent of syphilis, is predicted to encode one tripartite ATP-independent periplasmic transporter (TRAP-T). TRAP-Ts typically employ a periplasmic substrate-binding protein (SBP) to deliver the cognate ligand to the transmembrane symporter. Herein, we demonstrate that the genes encoding the putative TRAP-T components from T. pallidum, tp0957 (the SBP), and tp0958 (the symporter), are in an operon with an uncharacterized third gene, tp0956. We determined the crystal structure of recombinant Tp0956; the protein is trimeric and perforated by a pore. Part of Tp0956 forms an assembly similar to those of 'tetratricopeptide repeat' (TPR) motifs. The crystal structure of recombinant Tp0957 was also determined; like the SBPs of other TRAP-Ts, there are two lobes separated by a cleft. In these other SBPs, the cleft binds a negatively charged ligand. However, the cleft of Tp0957 has a strikingly hydrophobic chemical composition, indicating that its ligand may be substantially different and likely hydrophobic. Analytical ultracentrifugation of the recombinant versions of Tp0956 and Tp0957 established that these proteins associate avidly. This unprecedented interaction was confirmed for the native molecules using in vivo cross-linking experiments. Finally, bioinformatic analyses suggested that this transporter exemplifies a new subfamily of TPATs (TPR-protein-associated TRAP-Ts) that require the action of a TPR-containing accessory protein for the periplasmic transport of a potentially hydrophobic ligand(s).

  18. Evaluation of the HISCL Anti-Treponema pallidum Assay as a Screening Test for Syphilis.

    PubMed

    An, Jingna; Chen, Qixia; Liu, Qianqian; Rao, Chenli; Li, Dongdong; Wang, Tingting; Tao, Chuanmin; Wang, Lanlan

    2015-07-01

    The resurgence of syphilis in recent years has become a serious threat to public health worldwide, and the serological detection of specific antibodies against Treponema pallidum remains the most reliable method for laboratory diagnosis of syphilis. This study examined the performance of the recently launched HISCL anti-Treponema pallidum (anti-TP) assay as a screening test for syphilis in a high-volume laboratory. The HISCL anti-TP assay was tested in 300 preselected syphilis-positive samples, 704 fresh syphilis-negative samples, 48 preselected potentially interfering samples, and 30 "borderline" samples and was compared head to head with the commercially available Lumipulse G TP-N. In this study, the HISCL anti-TP assay was in perfect agreement with the applied testing algorithms with an overall agreement of 100%, comparable to that of Lumipulse G TP-N (99.63%). The sensitivity and specificity of the HISCL anti-TP assay were 100% (95% confidence interval [CI], 98.42% to 100%) and 100% (95% CI, 99.37% to 100%), respectively. Considering the excellent ease of use and automation, high throughput, and its favorable sensitivity and specificity, the HISCL anti-TP assay may represent a new choice for syphilis screening in high-volume laboratories. PMID:25972403

  19. Structural, bioinformatic, and in vivo analyses of two Treponema pallidum lipoproteins reveal a unique TRAP transporter

    PubMed Central

    Deka, Ranjit K.; Brautigam, Chad A.; Goldberg, Martin; Schuck, Peter; Tomchick, Diana R.; Norgard, Michael V.

    2012-01-01

    Treponema pallidum, the bacterial agent of syphilis, is predicted to encode one tripartite ATP- independent periplasmic transporter (TRAP-T). TRAP-Ts typically employ a periplasmic substrate-binding protein (SBP) to deliver the cognate ligand to the transmembrane symporter. Herein, we demonstrate that the genes encoding the putative TRAP-T components from T. pallidum, tp0957 (the SBP) and tp0958 (the symporter) are in an operon with an uncharacterized third gene, tp0956. We determined the crystal structure of recombinant Tp0956; the protein is trimeric and perforated by a pore. Part of Tp0956 forms an assembly similar to those of “tetratricopeptide repeat” (TPR) motifs. The crystal structure of recombinant Tp0957 was also determined; like the SBPs of other TRAP-Ts, there are two lobes separated by a cleft. In these other SBPs, the cleft binds a negatively charged ligand. However, the cleft of Tp0957 has a strikingly hydrophobic chemical composition, indicating that its ligand may be substantially different and likely hydrophobic. Analytical ultracentrifugation of the recombinant versions of Tp0956 and Tp0957 established that these proteins associate avidly. This unprecedented interaction was confirmed for the native molecules using in vivo cross-linking experiments. Finally, bioinformatic analyses suggested that this transporter exemplifies a new subfamily of TPR-protein associated TRAP transporters (TPATs) that require the action of a TPR-containing accessory protein for the periplasmic transport of a potentially hydrophobic ligand(s). PMID:22306465

  20. The tprK Gene Is Heterogeneous among Treponema pallidum Strains and Has Multiple Alleles

    PubMed Central

    Centurion-Lara, Arturo; Godornes, Charmie; Castro, Christa; Van Voorhis, Wesley C.; Lukehart, Sheila A.

    2000-01-01

    We have previously shown that the TprK antigen of T. pallidum, Nichols strain, is predominantly expressed in treponemes obtained 10 days after infection and that the hydrophilic domain of TprK is a target of opsonic antibodies and confers significant protection against homologous challenge. The T. pallidum genome sequence reported the presence of a single copy of the tprK gene in the Nichols strain. In the present study we demonstrate size heterogeneity in the central portions of the TprK hydrophilic domains of 14 treponemal isolates. Sequence analysis of the central domains and the complete open reading frames (ORFs) of the tprK genes confirms this heterogeneity. Further, multiple tprK sequences were found in the Nichols-defined tprK locus in three isolates (Sea 81-4, Bal 7, and Bal 73-1). In contrast, only a single tprK sequence could be identified in this locus in the Nichols strain. Alignment of the DNA and deduced amino acid sequences of the whole tprK ORFs shows the presence of seven discrete variable domains flanked by highly conserved regions. We hypothesize that these heterogeneous regions may be involved in antigenic heterogeneity and, in particular, evasion of the immune response. The presence of different tprK alleles in the tprK locus strongly suggests the existence of genetically different subpopulations within treponemal isolates. PMID:10639452

  1. Effects of fatty acids on motility retention by Treponema pallidum in vitro.

    PubMed Central

    Matthews, H M; Jenkin, H M; Crilly, K; Sandok, P L

    1978-01-01

    Treponema pallidum (Nichols virulent strain) was incubated under 75% N2 + 20% H2 + 5% CO2 in prereduced serum-free modified Eagle-Richter medium supplemented with different concentrations of various long-chain fatty acids complexed with fatty acid-free bovine serum albumin. Motility retention was greater in medium with oleic acid containing 15 rather than 2 mg of albumin per ml. Palmitic, stearic, oleic, or linoleic acid alone caused rapid loss of motility at concentrations as low as 5 microgram/ml. Elaidic acid (92 microgram/ml) alone had no effect on motility. Various combinations of saturated plus unsaturated fatty acids did not inhibit motility retention or were less inhibitory than either of the individual fatty acid components. The combination of palmitic plus oleic acids was least toxic. Rapid loss of motility occurred with pairs of unsaturated or saturated fatty acids, or with Tween 40, 60, or 80, alone or combined. Autoxidation of oleic acid resulted in decreased toxicity for T. pallidum but increased toxicity for baby hamster kidney cells. PMID:346485

  2. The tprK gene is heterogeneous among Treponema pallidum strains and has multiple alleles.

    PubMed

    Centurion-Lara, A; Godornes, C; Castro, C; Van Voorhis, W C; Lukehart, S A

    2000-02-01

    We have previously shown that the TprK antigen of T. pallidum, Nichols strain, is predominantly expressed in treponemes obtained 10 days after infection and that the hydrophilic domain of TprK is a target of opsonic antibodies and confers significant protection against homologous challenge. The T. pallidum genome sequence reported the presence of a single copy of the tprK gene in the Nichols strain. In the present study we demonstrate size heterogeneity in the central portions of the TprK hydrophilic domains of 14 treponemal isolates. Sequence analysis of the central domains and the complete open reading frames (ORFs) of the tprK genes confirms this heterogeneity. Further, multiple tprK sequences were found in the Nichols-defined tprK locus in three isolates (Sea 81-4, Bal 7, and Bal 73-1). In contrast, only a single tprK sequence could be identified in this locus in the Nichols strain. Alignment of the DNA and deduced amino acid sequences of the whole tprK ORFs shows the presence of seven discrete variable domains flanked by highly conserved regions. We hypothesize that these heterogeneous regions may be involved in antigenic heterogeneity and, in particular, evasion of the immune response. The presence of different tprK alleles in the tprK locus strongly suggests the existence of genetically different subpopulations within treponemal isolates. PMID:10639452

  3. Comparison of the locomotor activating effects of bicuculline infusions into the preoptic area and ventral pallidum

    PubMed Central

    Zahm, Daniel S.; Schwartz, Zachary M.; Lavezzi, Heather N.; Yetnikoff, Leora; Parsley, Kenneth P.

    2013-01-01

    Ambulatory locomotion in the rodent is robustly activated by unilateral infusions into the basal forebrain of type A gamma-aminobutyric acid (GABAA) receptor antagonists, such as bicuculline and picrotoxin. The present study was carried out to better localize the neuroanatomical substrate(s) underlying this effect. To accomplish this, differences in total locomotion accumulated during a 20 minute test period following bicuculline versus saline infusions in male Sprague-Dawley rats were calculated, rank ordered and mapped on a diagram of basal forebrain transposed from immunoprocessed sections. The most robust locomotor activation was elicited by bicuculline infusions clustered in rostral parts of the preoptic area. Unilateral infusions of bicuculline into the ventral pallidum produced an unanticipatedly diminutive activation of locomotion, which led us to evaluate bilateral ventral pallidal infusions, and these also produced only a small activation of locomotion, and, interestingly, a non-significant trend toward suppression of rearing. Subjects with bicuculline infused bilaterally into the ventral pallidum also exhibited persistent bouts of abnormal movements. Bicuculline infused unilaterally into other forebrain structures, including the bed nucleus of stria terminalis, caudate-putamen, globus pallidus, sublenticular extended amygdala and sublenticular substantia innominata, did not produce significant locomotor activation. Our data identify the rostral preoptic area as the main substrate for the locomotor activating effects of basal forebrain bicuculline infusions. In contrast, slight activation of locomotion and no effect on rearing accompanied unilateral and bilateral ventral pallidal infusions. Implications of these findings for forebrain processing of reward are discussed. PMID:23423460

  4. Rapid Treponema pallidum Clearance from Blood and Ulcer Samples following Single Dose Benzathine Penicillin Treatment of Early Syphilis

    PubMed Central

    Tipple, Craig; Jones, Rachael; McClure, Myra; Taylor, Graham

    2015-01-01

    Currently, the efficacy of syphilis treatment is measured with anti-lipid antibody tests. These can take months to indicate cure and, as a result, syphilis treatment trials require long periods of follow-up. The causative organism, Treponema pallidum (T. pallidum), is detectable in the infectious lesions of early syphilis using DNA amplification. Bacteraemia can likewise be identified, typically in more active disease. We hypothesise that bacterial clearance from blood and ulcers will predict early the standard serology-measured treatment response and have developed a qPCR assay that could monitor this clearance directly in patients with infectious syphilis. Patients with early syphilis were given an intramuscular dose of benzathine penicillin. To investigate the appropriate sampling timeframe samples of blood and ulcer exudate were collected intensively for T. pallidum DNA (tpp047 gene) and RNA (16S rRNA) quantification. Sampling ended when two consecutive PCRs were negative. Four males were recruited. The mean peak level of T. pallidum DNA was 1626 copies/ml whole blood and the mean clearance half-life was 5.7 hours (std. dev. 0.53). The mean peak of 16S rRNA was 8879 copies/ml whole blood with a clearance half-life of 3.9 hours (std. dev. 0.84). From an ulcer, pre-treatment, 67,400 T. pallidum DNA copies and 7.08x107 16S rRNA copies were detected per absorbance strip and the clearance half-lives were 3.2 and 4.1 hours, respectively. Overall, T. pallidum nucleic acids were not detected in any sample collected more than 56 hours (range 20–56) after treatment. All patients achieved serologic cure. In patients with active early syphilis, measuring T. pallidum levels in blood and ulcer exudate may be a useful measure of treatment success in therapeutic trials. These laboratory findings need confirmation on a larger scale and in patients receiving different therapies. PMID:25700164

  5. Rapid Treponema pallidum clearance from blood and ulcer samples following single dose benzathine penicillin treatment of early syphilis.

    PubMed

    Tipple, Craig; Jones, Rachael; McClure, Myra; Taylor, Graham

    2015-02-01

    Currently, the efficacy of syphilis treatment is measured with anti-lipid antibody tests. These can take months to indicate cure and, as a result, syphilis treatment trials require long periods of follow-up. The causative organism, Treponema pallidum (T. pallidum), is detectable in the infectious lesions of early syphilis using DNA amplification. Bacteraemia can likewise be identified, typically in more active disease. We hypothesise that bacterial clearance from blood and ulcers will predict early the standard serology-measured treatment response and have developed a qPCR assay that could monitor this clearance directly in patients with infectious syphilis. Patients with early syphilis were given an intramuscular dose of benzathine penicillin. To investigate the appropriate sampling timeframe samples of blood and ulcer exudate were collected intensively for T. pallidum DNA (tpp047 gene) and RNA (16S rRNA) quantification. Sampling ended when two consecutive PCRs were negative. Four males were recruited. The mean peak level of T. pallidum DNA was 1626 copies/ml whole blood and the mean clearance half-life was 5.7 hours (std. dev. 0.53). The mean peak of 16S rRNA was 8879 copies/ml whole blood with a clearance half-life of 3.9 hours (std. dev. 0.84). From an ulcer, pre-treatment, 67,400 T. pallidum DNA copies and 7.08 x 107 16S rRNA copies were detected per absorbance strip and the clearance half-lives were 3.2 and 4.1 hours, respectively. Overall, T. pallidum nucleic acids were not detected in any sample collected more than 56 hours (range 20-56) after treatment. All patients achieved serologic cure. In patients with active early syphilis, measuring T. pallidum levels in blood and ulcer exudate may be a useful measure of treatment success in therapeutic trials. These laboratory findings need confirmation on a larger scale and in patients receiving different therapies. PMID:25700164

  6. Western Immunoblotting with Five Treponema pallidum Recombinant Antigens for Serologic Diagnosis of Syphilis

    PubMed Central

    Sambri, Vittorio; Marangoni, Antonella; Eyer, Christina; Reichhuber, Christine; Soutschek, Erwin; Negosanti, Massimo; D'Antuono, Antonietta; Cevenini, Roberto

    2001-01-01

    Five immunodominant Treponema pallidum recombinant polypeptides (rTpN47, rTmpA, rTpN37, rTpN17, and rTpN15) were blotted onto strips, and 450 sera (200 from blood donors, 200 from syphilis patients, and 50 potentially cross-reactive) were tested to evaluate the diagnostic performance of recombinant Western blotting (recWB) in comparison with in-house whole-cell lysate antigen-based immunoblotting (wclWB) and T. pallidum hemagglutination (MHA-TP) for the laboratory diagnosis of syphilis. None of the serum specimens from blood donors or from potential cross-reactors gave a positive result when evaluated by recWB, wclWB, or MHA-TP. The evaluation of the immunoglobulin G immune response by recWB in sera from patients with different stages of syphilis showed that rTmpA was the most frequently identified antigen (95%), whereas only 41% of the specimens were reactive to rTpN37. The remaining recombinant polypeptides were recognized as follows: rTpN47, 92.5%; rTpN17, 89.5%; and rTpN15, 67.5%. The agreement between recWB and MHA-TP was 95.0% (100% with sera from patients with latent and late disease), and the concordance between wclWB and MHA-TP was 92.0%. The overall concordance between recWB and wclWB was 97.5% (100% with sera from patients with secondary and late syphilis and 94.6 and 98.6% with sera from patients with primary and latent syphilis, respectively). The overall sensitivity of recWB was 98.8% and the specificity was 97.1% with MHA-TP as the reference method. These values for sensitivity and specificity were slightly superior to those calculated for wclWB (sensitivity, 97.1%, and specificity, 96.1%). With wclWB as the standard test, the sensitivity and specificity of recWB were 98.9 and 99.3%, respectively. These findings suggest that the five recombinant polypeptides used in this study could be used as substitutes for the whole-cell lysate T. pallidum antigens and that this newly developed recWB test is a good, easy-to-use confirmatory method for the

  7. Molecular Typing of Treponema pallidum in Denmark: A Nationwide Study of Syphilis.

    PubMed

    Salado-Rasmussen, Kirsten; Cowan, Susan; Gerstoft, Jan; Larsen, Helle Kiellberg; Hoffmann, Steen; Knudsen, Troels Bygum; Katzenstein, Terese Lea; Jensen, Jørgen Skov

    2016-03-01

    The aim of this nationwide study is to determine the strain type diversity among patients diagnosed with syphilis by PCR during a 4-year period in Denmark. Epidemiological data, including HIV status, for all patients were obtained from the Danish national syphilis registration system. Molecular strain typing was based on characterization of 3 variable treponemal genes, arp, tpr and tp0548. A total of 278 specimens from 269 patients were included. Among the fully typeable specimens (n = 197), 22 strain types were identified, with 1 type, 14d/g, accounting for 54%. The majority (93%) of the patients reported acquiring syphilis in Denmark. Among patients with concurrent HIV, 9 full strain types were identified and no difference in strain type was found by HIV status (p = 0.197). In conclusion, the majority of patients were infected in Denmark and the HIV-infected syphilis patients were diagnosed with a wide spectrum of different strain types of Treponema pallidum. PMID:26122912

  8. Electrophysiological dysfunction and cellular disruption of sensory neurones during incubation with Treponema pallidum.

    PubMed

    Oakes, S G; Repesh, L A; Pozos, R S; Fitzgerald, T J

    1982-08-01

    Treponema pallidum (Nichols strain) was incubated with cultured nerve cells derived from dorsal root ganglia of rat embryos. The electrophysiological response of these neuronal cells was then investigated. Cells exposed to 2 X 10(8) treponemes/ml responded abnormally after 13 hours and failed to respond after 18 hours. In contrast, control preparations exposed to heat-inactivated treponemes or to culture medium responded normally after 72 hours. Extended incubation with viable treponemes resulted in various degrees of nerve cell disruption as shown by scanning electron microscopy. With some cells holes in the cytoplasmic membrane were detected; with others a coagulated matrix of apparent nuclear material and remnants of cytoskeletal elements indicated more severe destruction. These findings may explain the painless nature of many of the clinical manifestations of syphilis as well as the severe damage to central nervous system tissue in tertiary and congenital syphilis. PMID:7049316

  9. Clinical utility of a competitive ELISA to detect antibodies against Treponema pallidum.

    PubMed

    Gutiérrez, J; Vergara, M J; Soto, M J; Piédrola, G; Maroto, M d

    2000-01-01

    Screening for Treponema pallidum infection is carried out on a large human population. To reduce costs, fewer tests which still offer adequate sensitivity and specificity could be performed. We studied the reliability of a novel indirect ELISA method to test for this infection. Several panels of sera were used that corresponded to 40 primary infections (group 1), 13 recurrences (group 2), 348 latent infections (group 3), 5 samples with anticardiolipin antibodies (group 4), 15 samples from patients with Lyme borreliosis (group 5), and 400 samples from blood donors and healthy pregnant women (group 6). The ELISA showed a global sensitivity and specificity of 100 and 99.5%, respectively. Our evaluation shows that Enzygnost Syphilis is a sensitive, specific, and simple test to screen for this infection. PMID:10683619

  10. Ventral Pallidum Neurons Encode Incentive Value and Promote Cue-Elicited Instrumental Actions.

    PubMed

    Richard, Jocelyn M; Ambroggi, Frederic; Janak, Patricia H; Fields, Howard L

    2016-06-15

    The ventral pallidum (VP) is posited to contribute to reward seeking by conveying upstream signals from the nucleus accumbens (NAc). Yet, very little is known about how VP neuron responses contribute to behavioral responses to incentive cues. Here, we recorded activity of VP neurons in a cue-driven reward-seeking task previously shown to require neural activity in the NAc. We find that VP neurons encode both learned cue value and subsequent reward seeking and that activity in VP neurons is required for robust cue-elicited reward seeking. Surprisingly, the onset of VP neuron responses occurs at a shorter latency than cue-elicited responses in NAc neurons. This suggests that this VP encoding is not a passive response to signals generated in the NAc and that VP neurons integrate sensory and motivation-related information received directly from other mesocorticolimbic inputs. PMID:27238868

  11. Asymptomatic transmission of Treponema pallidum (syphilis) through deceased donor liver transplantation.

    PubMed

    Tariciotti, L; Das, I; Dori, L; Perera, M T P R; Bramhall, S R

    2012-06-01

    A 55-year-old woman underwent liver transplantation (LT) with a graft from a deceased donor. Mandatory pre-donation investigations showed positive syphilis serology that was available only after the transplant, with high Treponema pallidum particle agglutination assay titer compatible with donor syphilis infection. Despite the institution of appropriate post-exposure prophylaxis, the recipient demonstrated latent seroconversion; however, liver graft function improved without evidence of syphilitic hepatitis or other manifestations of the disease. Through this first reported case of asymptomatic transmission of syphilis following LT, we highlight the investigations and treatment strategies for donor-derived syphilis in liver transplant recipients. This report supplements the existing limited evidence on safe use of infected grafts from syphilitic donors through appropriate post-exposure prophylaxis. PMID:22624823

  12. Molecular Typing of Treponema pallidum: a 5-Year Surveillance in Shanghai, China

    PubMed Central

    Dai, Ting; Li, Kang; Lu, Haikong; Gu, Xin

    2012-01-01

    Previously, a small study showed that 14f was the predominant subtype of Treponema pallidum in Shanghai, China. The result was quite different from the genotype distribution in other areas of China. This study aimed to identify the strain types of Treponema pallidum in samples collected over a 5-year period in Shanghai. From 2007 to 2011, genital swabs were collected from patients with syphilis from the Shanghai Skin Disease Hospital. Positive specimens were typed by the enhanced typing method by adding a tp0548 gene to the existing arp and tpr genotype system. In total, 304 of the 372 enrolled patients yielded fully typeable DNA. Ten arp types (4, 6, 8, 9, 11, 12, 13, 14, 15, and 19), 3 tpr types (a, d, and o), and 5 tp0548 types (a, c, f, g, and i) were identified. In total, 12 subtypes were identified with a combination of the arp and tpr genes. Subtype 14d was found in 270 samples (88.8%). When the combination included the tp0548 gene, the 12 CDC subtypes identified were divided into 14 strain types. The predominant type was 14d/f (88.8%), followed by 15d/f (3.6%), 13d/f (1.3%), and 19d/c (1.3%). Two of the 44 14d/f-infected patients and both of the 19d/c-infected patients who underwent a lumbar puncture were diagnosed with neurosyphilis. This study showed that the predominant type in Shanghai was 14d/f. While this is in keeping with data from other areas in China, it is different from an earlier report showing that 14f is the most common genotype in Shanghai. Further studies are needed to better understand the association between strain types and neurosyphilis. PMID:22972832

  13. High prevalence of azithromycin resistance to Treponema pallidum in geographically different areas in China.

    PubMed

    Chen, X-S; Yin, Y-P; Wei, W-H; Wang, H-C; Peng, R-R; Zheng, H-P; Zhang, J-P; Zhu, B-Y; Liu, Q-Z; Huang, S-J

    2013-10-01

    Treatment with effective antibiotics is one important strategy for syphilis control in China. This study aimed to evaluate the prevalence of azithromycin resistance to T. pallidum in China. A cross-sectional study was conducted among 391 patients with early syphilis recruited from STD clinics in eight cities during October 2008 and October 2011. The swabs were obtained from the moist lesions of the participating patients. A touchdown/nested PCR of the 23S ribosomal RNA (rRNA) gene was performed on DNA samples extracted from these specimens. The presence or absence of the A2058G point mutation, conferring resistance to azithromycin, was determined by restriction enzyme digestion analysis of the PCR amplicon by MboII. Two hundred and eleven patients with primary or secondary syphilis were found to have T. pallidum DNA in their moist lesions by PCR assays. The A2058G mutation was present in 91.9% (194/211, 95% CI, 87.2-95.1%) of these patients, with no significant differences noted between patients from the eastern part (93.8%), southern part (88.6%) and northern part (95.2%) of China (χ(2) = 2.303, p 0.316). Compared with patients who had not taken macrolides in previous years before study entry, the patients who had taken the antibiotics had a significantly higher prevalence of azithromycin resistance (97.0% vs. 62.5%), with an odds ratio of 19.65 (95% CI, 5.77-66.93). It can be concluded that prevalence of azithromycin resistance is substantial in China and consequently that the macrolides should not be used as a treatment option for early or incubating syphilis in China. PMID:23231450

  14. Immunoglobulin G subclasses of fluorescent anti-Treponema pallidum antibodies: evidence for sequential development of specific anti-T. pallidum immunoglobulin G responses in patients with early syphilis.

    PubMed Central

    van der Sluis, J J; van Reede, E C; Boer, M

    1986-01-01

    The development of immunoglobulin G (IgG) subclass-specific anti-Treponema pallidum antibodies during the course of syphilis in humans was studied with sera from 50 untreated male patients. The patients were divided into five diagnosis groups. In the fluorescent treponemal antibody test, which delineates the presence of cross-reacting antibodies, as well as specific antitreponema antibodies, IgG1, IgG2, and IgG3 subclass antibodies were already present during the seronegative primary stage. Specific antibodies, which were detected by the fluorescent treponemal antibody absorption test, were first present during the serotype-variable primary stage. These antibodies were almost exclusively of the IgG1 and IgG3 subclasses. In later stages, antibodies of other subclasses were detectable. Titration of IgG1 antitreponema antibodies in three electrophoretically different IgG fractions revealed an asymmetric distribution in these fractions during primary syphilis. The antibodies were largely confined to the most basic fraction during primary syphilis. A sudden change in the distribution was noted between the end of the primary stage and the secondary stage; an even distribution of IgG1 antitreponema antibodies existed in the late latent stage. These findings confirm and extend previous results from our laboratory. The development of antibodies detected by both tests is discussed in terms of a sequential stimulation of the immune system due to the presence of an extracellular layer covering the treponemas or, alternatively, in terms of a suppression of the immune response during early syphilis. PMID:3531229

  15. [Neurochemical features of the ventral pallidum in realization of the antiaversive effects of anxiolytics in different models of anxiety].

    PubMed

    Talalaenko, A N; Pankrat'ev, D V; Bulgakova, N P

    2006-01-01

    Preliminary intraperitoneal injections of some combinations of adreno- and dopaminomimetics, monoamines, and mediator amino acids (as well as of their agonists and antagonists) followed by microinjections of the same combinations into the ventral pallidum reveal differences in the functional significance of the neurochemical profile of this paleostriatum formation in realization of the anxiety states of different genesis, as manifested in the "illuminated site avoidance" and the "threatening situation" tests in rats. The pharmacological analysis based on the local injection of anxiosedative and anxioselective agents into the ventral paleostriatum showed that the antiaversive action of campirone is revealed under the conditions of dominating fear motivation, while that analogous action of chlordiazepoxide, phenibut and indoter is revealed under negative stressful zoosocial impacts and is realized by serotonin- and GABA-ergic (rather than by cathecholamine- and glutaminergic) aversive systems of the ventral pallidum. PMID:16579051

  16. Neurochemical mechanisms of the dorsal pallidum in the antiaversive effects of anxiolytics in various models of anxiety.

    PubMed

    Talalaenko, A N; Krivobok, G K; Pankrat'ev, D V; Goncharenko, N V

    2006-09-01

    In conditions in which rats had a free choice between dark and light chambers, microinjections of glutamic acid, serotonin, and campiron into the globus pallidus showed that these agents have antiaversive properties in a threatening situation test but not in an illuminated area test. Dopamine, apomorphine, GABA, chlordiazepoxide, phenibut, and indoter injected locally into this formation of the basal ganglia had no effect on the mechanisms of voluntary movement but counteracted anxiety states in both behavioral models. These results provide evidence that the monoaminergic and aminoacidergic systems of the dorsal pallidum have different functional roles in the operative regulation of behavior for aversive stimuli of different modalities. Prior intraperitoneal administration of functional antagonists of these synaptotropic substances and subsequent microinjection of transmitter monoamines and amino acids and their agonists into the globus pallidus demonstrated the selective involvement of the neurotransmitter systems of the dorsal pallidum in the antiaversive effects of anxiosedative and anxioselective substances. PMID:16841156

  17. Evaluation of FlaB1, FlaB2, FlaB3, and Tp0463 of Treponema pallidum for serodiagnosis of syphilis.

    PubMed

    Jiang, Chuanhao; Xiao, Jinhong; Xie, Yafeng; Xiao, Yongjian; Wang, Chuan; Kuang, Xingxing; Xu, Man; Li, Ranhui; Zeng, Tiebing; Liu, Shuanquan; Yu, Jian; Zhao, Feijun; Wu, Yimou

    2016-02-01

    Syphilis is a multistage disease caused by the invasive spirochete Treponema pallidum subsp. pallidum, and accurate diagnosis is important for the prevention and treatment of syphilis. Here, to identify appropriate diagnostic antigens for serodiagnosis of syphilis, 6 recombinant proteins were expressed in Escherichia coli and purified, including flagellins (FlaB1 [Tp0868], FlaB2 [Tp0792], and FlaB3 [Tp0870]), Tp0463, Tp0751, and Tp1038. The sensitivities were determined by screening sera from individuals with primary (n=82), secondary (n=115), latent (n=105), and congenital (n=65) syphilis. The specificities were determined by screening sera from uninfected controls (n=30) and potentially cross-reactive infections including Lyme disease (n=30), leptospirosis (n=5), and hepatitis B (n=30). Our data showed that FlaB1, FlaB2, FlaB3, Tp0463, and Tp1038 exhibited higher overall sensitivities and specificities for detecting IgG antibody, with 95.4% and 98.9%, 92.6% and 95.8%, 95.1% and 95.8%, 92.6% and 97.9%, and 95.9% and 98.9%, respectively. In contrast, Tp0751 demonstrated only an overall sensitivity of 39.2%. For comparison, the sensitivity and specificity of Architect Syphilis TP were determined to be 98.1% and 93.7%, respectively. In addition, FlaB1, FlaB2, FlaB3, and Tp0463 demonstrated excellent performance for detecting IgM antibody in primary and congenital syphilis, with sensitivities of 76.8% and 83.1%, 72.0% and 87.7%, 74.4% and 89.2%, and 64.6% and 75.3%, respectively. These results indicate that FlaB1, FlaB2, FlaB3, and Tp0463 could be as novel diagnostic candidates for serodiagnosis of syphilis. PMID:26607421

  18. Identification and transcriptional analysis of a Treponema pallidum operon encoding a putative ABC transport system, an iron-activated repressor protein homolog, and a glycolytic pathway enzyme homolog.

    PubMed

    Hardham, J M; Stamm, L V; Porcella, S F; Frye, J G; Barnes, N Y; Howell, J K; Mueller, S L; Radolf, J D; Weinstock, G M; Norris, S J

    1997-09-15

    We have characterized a 5.2-kilobase (kb) putative transport related operon (tro) locus of Treponema pallidum subsp. pallidum (Nichols strain) (Tp) encoding six proteins: TroA, TroB, TroC, TroD, TroR and Phosphoglycerate mutase (Pgm). Four of these gene products (TroA-TroD) are homologous to members of the ATP-Binding Cassette (ABC) superfamily of bacterial transport proteins. TroA (previously identified as Tromp1) has significant sequence similarity to a family of Gram-negative periplasmic substrate-binding proteins and to a family of streptococcal proteins that may have dual roles as substrate binding proteins and adhesins. TroB is homologous to the ATP-binding protein component, whereas TroC and TroD are related to the hydrophobic membrane protein components of ABC transport systems. TroR is similar to Gram-positive iron-activated repressor proteins (DesR, DtxR, IdeR, and SirR). The last open reading frame (ORF) of the tro operon encodes a protein that is highly homologous to the glycolytic pathway enzyme, Pgm. Primer extension results demonstrated that the tro operon is transcribed from a sigma 70-type promoter element. Northern analysis and reverse transcriptase-polymerase chain reactions provided evidence for the presence of a primary 1-kb troA transcript and a secondary, less abundant, troA-pgm transcript. The tro operon is flanked by a Holliday structure DNA helicase homolog (upstream) and two ORFs representing a purine nucleoside phosphorylase homolog and tpp15, a previously characterized gene encoding a membrane lipoprotein (downstream). The presence of a complex operon containing a putative ABC transport system and a DtxR homolog indicates a possible linkage between transport and gene regulation in Tp. PMID:9332349

  19. Development of a Multiplex Real-Time PCR Assay for the Detection of Treponema pallidum, HCV, HIV-1, and HBV.

    PubMed

    Zhou, Li; Gong, Rui; Lu, Xuan; Zhang, Yi; Tang, Jingfeng

    2015-01-01

    Treponema pallidum, hepatitis C virus (HCV), human immunodeficiency virus (HIV)-1, and hepatitis B virus (HBV) are major causes of sexually transmitted diseases passed through blood contact. The development of a sensitive and efficient method for detection is critical for early diagnosis and for large-scale screening of blood specimens in China. This study aims to establish an assay to detect these pathogens in clinical serum specimens. We established a TaqMan-locked nucleic acid (LNA) real-time polymerase chain reaction (PCR) assay for rapid, sensitive, specific, quantitative, and simultaneous detection and identification. The copy numbers of standards of these 4 pathogens were quantified. Standard curves were generated by determining the mean cycle threshold values versus 10-fold serial dilutions of standards over a range of 10(6) to 10(1) copies/μL, with the lowest detection limit of the assay being 10(1) copies/μL. The assay was applied to 328 clinical specimens and compared with enzyme-linked immunosorbent assay (ELISA) and commercial nucleic acid testing (NAT) methods. The assay identified 39 T. pallidum-, 96 HCV-, 13 HIV-1-, 123 HBV-, 5 HBV/HCV-, 1 T. pallidum/HBV-, 1 HIV-1/HCV-, and 1 HIV-1/T. pallidum-positive specimens. The high sensitivity of the assay confers strong potential for its use as a highly reliable, cost-effective, and useful molecular diagnostic tool for large-scale screening of clinical specimens. This assay will assist in the study of the pathogenesis and epidemiology of sexually transmitted blood diseases. PMID:25866106

  20. Insertion of fluorescent fatty acid probes into the outer membranes of the pathogenic spirochaetes Treponema pallidum and Borrelia burgdorferi.

    PubMed

    Cox, D L; Radolf, J D

    2001-05-01

    The authors examined the ability of octadecanoyl (C(18)), hexadecanoyl (C(16)) and dodecanoyl (C(12)) fatty acid (FA) conjugates of 5-aminofluorescein (OAF, HAF and DAF, respectively) to insert into the outer membranes (OMs) of Treponema pallidum, Borrelia burgdorferi and Escherichia coli. Biophysical studies have demonstrated that these compounds stably insert into phospholipid bilayers with the acyl chain within the hydrophobic interior of the apical leaflet and the hydrophilic fluorescein moiety near the phospholipid head groups. Consistent with the known poor intrinsic permeability of the E. coli OM to hydrophobic compounds and surfactants, E. coli was not labelled with any of the FA probes. OAF inserted more readily into OMs of B. burgdorferi than into those of T. pallidum, although both organisms were completely labelled at concentrations at or below 2 microg ml(-1). Intact spirochaetes were labelled with OAF but not with antibodies against known periplasmic antigens, thereby confirming that the probe interacted exclusively with the spirochaetal OMs. Separate experiments in which organisms were cooled to 4 degrees C (i.e. below the OM phase-transition temperatures) indicated that labelling with OAF was due to insertion of the probe into the OMs. B. burgdorferi, but not T. pallidum, was labelled by relatively high concentrations of HAF and DAF. Taken as a whole, these findings support the prediction that the lack of lipopolysaccharide renders T. pallidum and B. burgdorferi OMs markedly more permeable to lipophilic compounds than their Gram-negative bacterial counterparts. The data also raise the intriguing possibility that these two pathogenic spirochaetes obtain long-chain FAs, nutrients they are unable to synthesize, by direct permeation of their OMs. PMID:11320119

  1. Excessive disgust caused by brain lesions or temporary inactivations: Mapping hotspots of nucleus accumbens and ventral pallidum

    PubMed Central

    Ho, Chao-Yi; Berridge, Kent C.

    2014-01-01

    Disgust is a prototypical type of negative affect. In animal models of excessive disgust, only a few brain sites are known in which localized dysfunction (lesions or neural inactivations) can induce intense ‘disgust reactions’ (e.g., gapes) to a normally pleasant sensation such as sweetness. Here we aimed to map forebrain candidates more precisely to identify where either local neuronal damage (excitotoxin lesions) or local pharmacological inactivation (muscimol-baclofen microinjections) caused rats to emit excessive sensory disgust reactions to sucrose. Our study compared subregions of nucleus accumbens shell, ventral pallidum, lateral hypothalamus and adjacent extended amygdala. Results indicated the posterior half of ventral pallidum to be the only forebrain site where intense sensory disgust gapes to sucrose were induced by both lesions and temporary inactivations (this site was previously identified as a hedonic hotspot for enhancements of sweetness ‘liking’). By comparison, for the nucleus accumbens, temporary GABA inactivations in the caudal half of the medial shell also generated sensory disgust but lesions never did at any site. Further, even inactivations failed to induce disgust in the rostral half of accumbens shell (which also contains a hedonic hotspot). In other structures, neither lesions nor inactivations induced disgust as long as the posterior ventral pallidum remained spared. We conclude that the posterior ventral pallidum is an especially crucial hotspot for producing excessive sensory disgust by local pharmacological/lesion dysfunction. By comparison, the nucleus accumbens appears to segregate sites for pharmacological disgust induction and hedonic enhancement into separate posterior versus rostral halves of medial shell. PMID:25229197

  2. Treponema pallidum (syphilis) antigen TpF1 induces angiogenesis through the activation of the IL-8 pathway

    PubMed Central

    Pozzobon, Tommaso; Facchinello, Nicola; Bossi, Fleur; Capitani, Nagaja; Benagiano, Marisa; Di Benedetto, Giulietta; Zennaro, Cristina; West, Nicole; Codolo, Gaia; Bernardini, Marialina; Baldari, Cosima Tatiana; D’Elios, Mario Milco; Pellegrini, Luca; Argenton, Francesco; de Bernard, Marina

    2016-01-01

    Over 10 million people every year become infected by Treponema pallidum and develop syphilis, a disease with broad symptomatology that, due to the difficulty to eradicate the pathogen from the highly vascularized secondary sites of infection, is still treated with injections of penicillin. Unlike most other bacterial pathogens, T. pallidum infection produces indeed a strong angiogenic response whose mechanism of activation, however, remains unknown. Here, we report that one of the major antigen of T. pallidum, the TpF1 protein, has growth factor-like activity on primary cultures of human endothelial cells and activates specific T cells able to promote tissue factor production. The growth factor-like activity is mediated by the secretion of IL-8 but not of VEGF, two known angiogenic factors. The pathogen’s factor signals IL-8 secretion through the activation of the CREB/NF-κB signalling pathway. These findings are recapitulated in an animal model, zebrafish, where we observed that TpF1 injection stimulates angiogenesis and IL-8, but not VEGF, secretion. This study suggests that the angiogenic response observed during secondary syphilis is triggered by TpF1 and that pharmacological therapies directed to inhibit IL-8 response in patients should be explored to treat this disease. PMID:26728351

  3. Binding of glycosaminoglycans to the surface of Treponema pallidum and subsequent effects on complement interactions between antigen and antibody.

    PubMed Central

    Fitzgerald, T J; Miller, J N; Repesh, L A; Rice, M; Urquhart, A

    1985-01-01

    Acidified bovine serum albumin (acid BSA) reacts with glycosaminoglycans to form a precipitate. This reaction was adapted to Treponema pallidum to show glycosaminoglycans associated with the surface of the micro-organism. As testicular infection progressed from days 4 to 18, treponemes showed increasing amounts of these surface components. High speed centrifuging effectively removed the glycosaminoglycans, thus indicating that they were loosely bound. The subsequent addition of commercial preparations of hyaluronic acid or chondroitin sulphate resulted in their immediate adherence to the surface of the pathogens T pallidum and T pertenue, but not to the non-pathogens T vincenti, T denticola, or T phagedenis. The amount adhering to the treponemal surface varied depending on the concentration added. Intradermal inoculation showed that the virulence of T pallidum was not altered by the glycosaminoglycans associated with its surface. The coating of treponemes with hyaluronic acid or chondroitin sulphate did not interfere with neutralising antibodies or antibodies found by radioimmunoassay using whole organisms. In contrast, hyaluronic acid or chondroitin sulphate on the treponemal surface did interfere with immobilising antibodies. Results are discussed in terms of the potential role of the treponemal glycosaminoglycans in the infectious process. Images PMID:3936770

  4. Antigenic variation in Treponema pallidum: TprK sequence diversity accumulates in response to immune pressure during experimental syphilis1

    PubMed Central

    Giacani, Lorenzo; Molini, Barbara J.; Kim, Eric Y.; Godornes, B. Charmie; Leader, B. Troy; Tantalo, Lauren C.; Centurion-Lara, Arturo; Lukehart, Sheila A.

    2010-01-01

    Pathogens that cause chronic infections often employ antigenic variation to evade the immune response and persist in the host. In Treponema pallidum (T. pallidum), the causative agent of syphilis, the TprK antigen undergoes variation of seven variable regions (V1-V7) by nonreciprocal recombination of silent donor cassettes with the tprK expression site. These V regions are the targets of the host humoral immune response during experimental infection. The present study addresses the causal role of the acquired immune response in the selection of TprK variants in two ways: 1) by investigating TprK variants arising in immunocompetent vs immunosuppressed hosts, and 2) by investigating the effect of prior specific immunization on selection of TprK variants during infection. V region diversity, particularly in V6, accumulates more rapidly in immunocompetent rabbits than in pharmacologically immunosuppressed rabbits (treated with weekly injections of methylprednisolone acetate). In a complementary experiment, rabbits pre-immunized with V6 region synthetic peptides had more rapid accumulation of V6 variant treponemes than control rabbits. These studies demonstrate that the host immune response selects against specific TprK epitopes expressed on T. pallidum, resulting in immune selection of new TprK variants during infection, confirming a role for antigenic variation in syphilis. PMID:20190145

  5. Biophysical and Bioinformatic Analyses Implicate the Treponema pallidum Tp34 Lipoprotein (Tp0971) in Transition Metal Homeostasis

    PubMed Central

    Brautigam, Chad A.; Deka, Ranjit K.; Ouyang, Zhiming; Machius, Mischa; Knutsen, Gregory; Tomchick, Diana R.

    2012-01-01

    Metal ion homeostasis is a critical function of many integral and peripheral membrane proteins. The genome of the etiologic agent of syphilis, Treponema pallidum, is compact and devoid of many metabolic enzyme genes. Nevertheless, it harbors genes coding for homologs of several enzymes that typically require either iron or zinc. The product of the tp0971 gene of T. pallidum, designated Tp34, is a periplasmic lipoprotein that is thought to be tethered to the inner membrane of this organism. Previous work on a water-soluble (nonacylated) recombinant version of Tp34 established that this protein binds to Zn2+, which, like other transition metal ions, stabilizes the dimeric form of the protein. In this study, we employed analytical ultracentrifugation to establish that four transition metal ions (Ni2+, Co2+, Cu2+, and Zn2+) readily induce the dimerization of Tp34; Cu2+ (50% effective concentration [EC50] = 1.7 μM) and Zn2+ (EC50 = 6.2 μM) were the most efficacious of these ions. Mutations of the crystallographically identified metal-binding residues hindered the ability of Tp34 to dimerize. X-ray crystallography performed on crystals of Tp34 that had been incubated with metal ions indicated that the binding site could accommodate the metals examined. The findings presented herein, coupled with bioinformatic analyses of related proteins, point to Tp34's likely role in metal ion homeostasis in T. pallidum. PMID:23042995

  6. Simultaneous PCR detection of Haemophilus ducreyi, Treponema pallidum, and herpes simplex virus types 1 and 2 from genital ulcers.

    PubMed Central

    Orle, K A; Gates, C A; Martin, D H; Body, B A; Weiss, J B

    1996-01-01

    A multiplex PCR (M-PCR) assay with colorimetric detection was devised for the simultaneous amplification of DNA targets from Haemophilus ducreyi, Treponema pallidum, and herpes simplex virus (HSV) types 1 and 2. By using target-specific oligonucleotides in a microwell format, 298 genital ulcer swab specimens collected in New Orleans during three intervals from 1992 through 1994 were evaluated. The results of the M-PCR assay were compared with the results of dark-field microscopy and H. ducreyi culture on two different culture media. HSV culture results were available for 99 specimens collected during the third interval. Confirmatory PCR assays targeting different gene sequences for each of the three organisms were used to validate the M-PCR results. Specimens were resolved as positive for the determination of sensitivity if the reference diagnostic test was positive or if the results of both the M-PCR and the confirmatory PCR were positive. The resolved sensitivities of M-PCR for HSV, H. ducreyi, and T. pallidum were 100, 98.4, and 91%, respectively. The resolved sensitivities of HSV culture, H. ducreyi culture, and dark-field microscopy were 71.8, 74.2, and 81%, respectively. These results indicate that the M-PCR assay is more sensitive than standard diagnostic tests for the detection of HSV, H. ducreyi, and T. pallidum from genital ulcers. PMID:8748271

  7. Topography and chemoarchitecture of the striatum and pallidum in a monotreme, the short-beaked echidna (Tachyglossus aculeatus).

    PubMed

    Ashwell, K W S

    2008-09-01

    The topography and chemoarchitecture of the striatum and pallidum in a monotreme, the short-beaked echidna (Tachyglossus aculeatus) have been studied using Nissl staining in conjunction with myelin staining, enzyme reactivity to acetylcholinesterase and NADPH diaphorase, and immunoreactivity to parvalbumin, calbindin, calretinin, tyrosine hydroxylase, neuropeptide Y, and neurofilament protein (SMI-32 antibody). All those components of the striatum and pallidum found in eutherian mammals could also be identified in the echidna's brain, with broad chemoarchitectural similarities to those regions in eutherian brains also apparent. There was a clear chemoarchitectural gradient visible with parvalbumin immunoreactivity of neurons and fibers, suggesting a subdivision of the echidna caudatoputamen into weakly reactive rostrodorsomedial and strongly reactive caudoventrolateral components. This may, in turn, relate to subdivision into associative versus sensorimotor CPu and reflect homology to the caudate and putamen of primates. Moreover, the chemoarchitecture of the echidna striatum suggested the presence of striosome-matrix architecture. The morphology of identified neuronal groups (i.e., parvalbumin, calbindin, and neuropeptide Y immunoreactive) in the echidna striatum and pallidum showed many similarities to those seen in eutherians, although the pattern of distribution of calbindin immunoreactive neurons was more uniform in the caudatoputamen of the echidna than in therians. These observations indicate that the same broad features of striatal and pallidal organization apply across all mammals and suggest that these common features may have arisen before the divergence of the monotreme and therian lineages. PMID:18821282

  8. Treponema pallidum (syphilis) antigen TpF1 induces angiogenesis through the activation of the IL-8 pathway.

    PubMed

    Pozzobon, Tommaso; Facchinello, Nicola; Bossi, Fleur; Capitani, Nagaja; Benagiano, Marisa; Di Benedetto, Giulietta; Zennaro, Cristina; West, Nicole; Codolo, Gaia; Bernardini, Marialina; Baldari, Cosima Tatiana; D'Elios, Mario Milco; Pellegrini, Luca; Argenton, Francesco; de Bernard, Marina

    2016-01-01

    Over 10 million people every year become infected by Treponema pallidum and develop syphilis, a disease with broad symptomatology that, due to the difficulty to eradicate the pathogen from the highly vascularized secondary sites of infection, is still treated with injections of penicillin. Unlike most other bacterial pathogens, T. pallidum infection produces indeed a strong angiogenic response whose mechanism of activation, however, remains unknown. Here, we report that one of the major antigen of T. pallidum, the TpF1 protein, has growth factor-like activity on primary cultures of human endothelial cells and activates specific T cells able to promote tissue factor production. The growth factor-like activity is mediated by the secretion of IL-8 but not of VEGF, two known angiogenic factors. The pathogen's factor signals IL-8 secretion through the activation of the CREB/NF-κB signalling pathway. These findings are recapitulated in an animal model, zebrafish, where we observed that TpF1 injection stimulates angiogenesis and IL-8, but not VEGF, secretion. This study suggests that the angiogenic response observed during secondary syphilis is triggered by TpF1 and that pharmacological therapies directed to inhibit IL-8 response in patients should be explored to treat this disease. PMID:26728351

  9. The time-dependent clearance of virulent Treponema pallidum in susceptible and resistant strains of guinea pigs is significantly different.

    PubMed

    Wicher, V; Wicher, K; Abbruscato, F; Auger, I; Rudofsky, U

    1999-04-01

    The kinetics of clearance of Treponema pallidum spp. pallidum Nichols from skin and testes of susceptible C4-deficient (C4D) and -resistant Albany (Alb) strains of guinea pigs (gps) was evaluated using the polymerase chain reaction (PCR) and the rabbit infectivity test (RIT). For each strain there were two groups of animals, one infected with virulent T. pallidum (TP) and one control injected with heat-killed treponemes (HKTP). The kinetic studies and their statistical analysis showed that in the C4D strain the microbial clearance in both tissues was significantly slower (p < 0.005) and still incomplete at 3 months after infection. In the Alb strain the clearance was faster and apparently completed within a month. A greater permissiveness in bacterial growth in C4D compared to Alb appears to be one critical factor determining the different rate of local elimination after primary infection. In both strains there was some correlation between the severity and duration of cutaneous lesions and the local persistence of viable organisms. This correlation was not observed in testes. These studies suggest a genetic basis for the strain-specific susceptibility and resistance phenotypes in the pathogenesis of syphilis. PMID:10219257

  10. TpF1 from Treponema pallidum activates inflammasome and promotes the development of regulatory T cells.

    PubMed

    Babolin, Chiara; Amedei, Amedeo; Ozolins, Dzintars; Zilevica, Aija; D'Elios, Mario Milco; de Bernard, Marina

    2011-08-01

    Human syphilis is a multistage disease, with diverse and wide-ranging manifestations caused by Treponema pallidum. Despite the fact that a cell-mediated immune response takes part in the course of syphilis, T. pallidum often manages to evade host immunity and, in untreated individuals, may trigger chronic infection. With this study, we demonstrate for the first time, to our knowledge, that Treponema pallidum induces a regulatory T (Treg) response in patients with secondary syphilis and we found that the miniferritin TpF1, produced by the bacterium, is able to expand this response and promote the production of TGF-β. Accordingly, TpF1 stimulates monocytes to release IL-10 and TGF-β, the key cytokines in driving Treg cell differentiation. Interestingly, we also found that TpF1 stimulates monocytes to synthesize and release several proinflammatory cytokines, such as TNF-α, IL-6, and IL-1β, the latter following the activation of the multiprotein complex inflammasome. Collectively, these data strongly support a central role for TpF1 both in the inflammation process, which occurs in particular during the early stage of syphilis, and in the long-term persistence of the spirochete within the host by promoting Treg response and TGF-β production. PMID:21709157

  11. Neisseria gonorrhoea, Chlamydia trachomatis, and Treponema pallidum infection in antenatal and gynecological patients at Korle-Bu Teaching Hospital, Ghana.

    PubMed

    Apea-Kubi, Kwasi Akyem; Yamaguchi, Shinya; Sakyi, Bright; Kishimoto, Toshio; Ofori-Adjei, David; Hagiwara, Toshikatsu

    2004-12-01

    Five hundred and seventeen women attending the gynecology and obstetrics clinics of the Korle-Bu Teaching Hospital were examined for sexually transmitted infections (STIs). Vaginal swabs were examined for Trichomonas vaginalis, Candida albicans, and Gardnerella vaginalis infection. Endocervical swabs were examined for Neisseria gonorrhoea and Chlamydia trachomatis using a recently developed RNA detection kit. Strain typing was performed to identify serovars of C. trachomatis. Sera were analyzed for Treponema pallidum with a passive-particle agglutination assay kit. The prevalence of infection with N. gonorrhoea was 0.6%, C. trachomatis 3.0%, and T. pallidum 5.6%. Eight samples were PCR-positive for C. trachomatis. Five of these were serovar G, and the rest were serovar E. All cases of mixed infections occurred in pregnant women. In conclusion, a high transmissible risk of T. pallidum infection was observed among our study population and in particular among our pregnant women. The absence of association between the presenting symptoms, clinical findings, and specific pathogens has implications for the syndromic approach to STI case management. The low prevalence of C. trachomatis and N. gonorrhoea may be due to self medication and requires further research in primary health institutions in rural areas to compare rates. PMID:15623949

  12. Similarity between the 38-kilodalton lipoprotein of Treponema pallidum and the glucose/galactose-binding (MglB) protein of Escherichia coli.

    PubMed Central

    Becker, P S; Akins, D R; Radolf, J D; Norgard, M V

    1994-01-01

    The recent discovery that abundant and immunogenic lipoproteins constitute the integral membrane proteins of Treponema pallidum has prompted efforts to investigate their importance in the physiology and ultrastructure of the organism and in immune responses during infection. Earlier studies identified a 38-kDa lipoprotein of T. pallidum believed to be specific to the pathogen. In the present study, monoclonal antibodies generated against the 38-kDa lipoprotein of T. pallidum reacted with cognate 37-kDa molecules in the nonpathogens Treponema phagedenis, Treponema denticola, and Treponema refringens. Cloning and expression of the 38-kDa-lipoprotein gene of T. pallidum in Escherichia coli revealed that the recombinant product displayed a slightly larger (39-kDa) apparent molecular mass but remained reactive with anti-38-kDa-protein monoclonal antibodies. The recombinant product was processed and acylated in E. coli. DNA and amino acid sequence analyses indicated an open reading frame encoding 403 amino acids, with the first 25 amino acids corresponding to a leader peptide terminated by a signal peptidase II processing site of Val-Val-Gly-Cys. The predicted mature protein is 378 amino acids in length with a deduced molecular weight of 40,422 (excluding acylation). Southern blotting failed to demonstrate in nonpathogenic treponemes genomic sequences homologous with the 38-kDa-lipoprotein gene of T. pallidum. Computer analysis revealed that the 38-kDa lipoprotein of T. pallidum had 34.2% identity and 58.9% similarity with the glucose/galactose-binding protein (MglB) of E. coli and Salmonella typhimurium. Furthermore, of the 19 amino acids of MglB involved in carbohydrate binding, the 38-kDa lipoprotein had identity with 11. These studies have allowed the first putative functional assignment (carbohydrate binding) to a T. pallidum integral membrane protein. Recognition of this potential physiological role for the 38-kDa lipoprotein underscores the possibility that the

  13. Evidence for a methyl-accepting chemotaxis protein gene (mcp1) that encodes a putative sensory transducer in virulent Treponema pallidum.

    PubMed Central

    Hagman, K E; Porcella, S F; Popova, T G; Norgard, M V

    1997-01-01

    The clinical and histopathological manifestations of syphilis and the invasive behavior of Treponema pallidum in tissue culture systems reflect the propensity for treponemes to migrate through skin, hematogenously disseminate, and invade targeted tissues. Treponemal motility is believed to be essential to this process and thereby an important facet of syphilis pathogenesis. By analogy with other bacterial pathogens, it is plausible that treponemal motility and tissue invasion are modulated by sensory transduction events associated with chemotactic responses. Recent studies have demonstrated the existence in T. pallidum of accessory molecules typically associated with sensory transduction events involving methyl-accepting chemotaxis proteins (MCPs). Intrinsic radiolabeling of T. pallidum in vitro with L-[methyl-3H] methionine revealed one methylated treponemal polypeptide with an apparent molecular mass of 64 kDa. A degenerate oligonucleotide probe corresponding to a highly conserved C-terminal domain within Bacillus subtilis and Escherichia coli MCPs was used in Southern blotting of T. pallidum DNA to identify and subsequently clone a putative T. pallidum MCP gene (mcp1). Computer analyses predicted a near-consensus promoter upstream of mcp1, and primer extension analysis employing T. pallidum RNA revealed a transcriptional initiation site. T. pallidum mcp1 encoded a 579-amino-acid (64.6-kDa) polypeptide which was highly homologous to at least 69 other known or putative sensory transducer proteins, with the highest degrees of homology existing between the C terminus of mcp1 and the C-terminal (signaling) domains of the other bacterial MCPs. Other salient features of Mcp1 included (i) six potential membrane-spanning domains at the N terminus, (ii) two predicted alpha-helical coiled coil regions containing at least three putative methylation sites, and (iii) homologies with two ligand-binding domains (LI-1 and LI-2) of the E. coli MCPs Trg and Tar. This study is the

  14. A Homology Model Reveals Novel Structural Features and an Immunodominant Surface Loop/Opsonic Target in the Treponema pallidum BamA Ortholog TP_0326

    PubMed Central

    Luthra, Amit; Anand, Arvind; Hawley, Kelly L.; LeDoyt, Morgan; La Vake, Carson J.; Caimano, Melissa J.; Cruz, Adriana R.; Salazar, Juan C.

    2015-01-01

    ABSTRACT We recently demonstrated that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses characteristic BamA bipartite topology. Herein, we used immunofluorescence analysis (IFA) to show that only the β-barrel domain of TP_0326 contains surface-exposed epitopes in intact T. pallidum. Using the solved structure of Neisseria gonorrhoeae BamA, we generated a homology model of full-length TP_0326. Although the model predicts a typical BamA fold, the β-barrel harbors features not described in other BamAs. Structural modeling predicted that a dome comprised of three large extracellular loops, loop 4 (L4), L6, and L7, covers the barrel's extracellular opening. L4, the dome's major surface-accessible loop, contains mainly charged residues, while L7 is largely neutral and contains a polyserine tract in a two-tiered conformation. L6 projects into the β-barrel but lacks the VRGF/Y motif that anchors L6 within other BamAs. IFA and opsonophagocytosis assay revealed that L4 is surface exposed and an opsonic target. Consistent with B cell epitope predictions, immunoblotting and enzyme-linked immunosorbent assay (ELISA) confirmed that L4 is an immunodominant loop in T. pallidum-infected rabbits and humans with secondary syphilis. Antibody capture experiments using Escherichia coli expressing OM-localized TP_0326 as a T. pallidum surrogate further established the surface accessibility of L4. Lastly, we found that a naturally occurring substitution (Leu593 → Gln593) in the L4 sequences of T. pallidum strains affects antibody binding in sera from syphilitic patients. Ours is the first study to employ a “structure-to-pathogenesis” approach to map the surface topology of a T. pallidum OMP within the context of syphilitic infection. IMPORTANCE Previously, we reported that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses the bipartite topology characteristic of a BamA ortholog

  15. Ventral pallidum firing codes hedonic reward: when a bad taste turns good.

    PubMed

    Tindell, Amy J; Smith, Kyle S; Peciña, Susana; Berridge, Kent C; Aldridge, J Wayne

    2006-11-01

    The ventral pallidum (VP) is a key structure in brain mesocorticolimbic reward circuits that mediate "liking" reactions to sensory pleasures. Do firing patterns in VP actually code sensory pleasure? Strong evidence for hedonic coding requires showing that neural signals track positive increases in sensory pleasure or even reversals from bad to good. A useful test is the salt alliesthesia of physiological sodium depletion that makes even aversively intense NaCl taste become palatable and "liked." We compared VP neural firing activity in rats during aversive "disliking" reactions elicited by a noxiously intense NaCl taste (triple-seawater 1.5 M concentration) in normal homeostatic state versus in a physiological salt appetite state that made the same NaCl taste palatable and elicit positive "liking" reactions. We also compared firing elicited by palatable sucrose taste, which always elicited "liking" reactions in both states. A dramatic doubling in the amplitude of VP neural firing peaks to NaCl was caused by salt appetite that matched the affective switch from aversive ("disliking") to positive hedonic ("liking") reactions. By contrast, VP neural activity to "liked" sucrose taste was always high and never altered. In summary, VP firing activity selectively tracks the hedonic values of tastes, even across hedonic reversals caused by physiological changes. Our data provide the strongest evidence yet for neural hedonic coding of natural sensory pleasures and suggest, by extension, how abnormalities in VP firing patterns might contribute to clinical hedonic dysfunctions. PMID:16885520

  16. The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors.

    PubMed

    Root, David H; Melendez, Roberto I; Zaborszky, Laszlo; Napier, T Celeste

    2015-07-01

    The ventral pallidum (VP) plays a critical role in the processing and execution of motivated behaviors. Yet this brain region is often overlooked in published discussions of the neurobiology of mental health (e.g., addiction, depression). This contributes to a gap in understanding the neurobiological mechanisms of psychiatric disorders. This review is presented to help bridge the gap by providing a resource for current knowledge of VP anatomy, projection patterns and subregional circuits, and how this organization relates to the function of VP neurons and ultimately behavior. For example, ventromedial (VPvm) and dorsolateral (VPdl) VP subregions receive projections from nucleus accumbens shell and core, respectively. Inhibitory GABAergic neurons of the VPvm project to mediodorsal thalamus, lateral hypothalamus, and ventral tegmental area, and this VP subregion helps discriminate the appropriate conditions to acquire natural rewards or drugs of abuse, consume preferred foods, and perform working memory tasks. GABAergic neurons of the VPdl project to subthalamic nucleus and substantia nigra pars reticulata, and this VP subregion is modulated by, and is necessary for, drug-seeking behavior. Additional circuits arise from nonGABAergic neuronal phenotypes that are likely to excite rather than inhibit their targets. These subregional and neuronal phenotypic circuits place the VP in a unique position to process motivationally relevant stimuli and coherent adaptive behaviors. PMID:25857550

  17. The Binary Protein Interactome of Treponema pallidum – The Syphilis Spirochete

    PubMed Central

    Goll, Johannes; Häuser, Roman; McKevitt, Matthew T.; Palzkill, Timothy; Uetz, Peter

    2008-01-01

    Protein interaction networks shed light on the global organization of proteomes but can also place individual proteins into a functional context. If we know the function of bacterial proteins we will be able to understand how these species have adapted to diverse environments including many extreme habitats. Here we present the protein interaction network for the syphilis spirochete Treponema pallidum which encodes 1,039 proteins, 726 (or 70%) of which interact via 3,649 interactions as revealed by systematic yeast two-hybrid screens. A high-confidence subset of 991 interactions links 576 proteins. To derive further biological insights from our data, we constructed an integrated network of proteins involved in DNA metabolism. Combining our data with additional evidences, we provide improved annotations for at least 18 proteins (including TP0004, TP0050, and TP0183 which are suggested to be involved in DNA metabolism). We estimate that this “minimal” bacterium contains on the order of 3,000 protein interactions. Profiles of functional interconnections indicate that bacterial proteins interact more promiscuously than eukaryotic proteins, reflecting the non-compartmentalized structure of the bacterial cell. Using our high-confidence interactions, we also predict 417,329 homologous interactions (“interologs”) for 372 completely sequenced genomes and provide evidence that at least one third of them can be experimentally confirmed. PMID:18509523

  18. The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors

    PubMed Central

    Root, David H.; Melendez, Roberto I.; Zaborszky, Laszlo; Napier, T. Celeste

    2015-01-01

    The ventral pallidum (VP) plays a critical role in the processing and execution of motivated behaviors. Yet this brain region is often overlooked in published discussions of the neurobiology of mental health (e.g., addiction, depression). This contributes to a gap in understanding the neurobiological mechanisms of psychiatric disorders. This review is presented to help bridge the gap by providing a resource for current knowledge of VP anatomy, projection patterns and subregional circuits, and how this organization relates to the function of VP neurons and ultimately behavior. For example, ventromedial (VPvm) and dorsolateral (VPdl) VP subregions receive projections from nucleus accumbens shell and core, respectively. Inhibitory GABAergic neurons of the VPvm project to mediodorsal thalamus, lateral hypothalamus, and ventral tegmental area, and this VP subregion helps discriminate the appropriate conditions to acquire natural rewards or drugs of abuse, consume preferred foods, and perform working memory tasks. GABAergic neurons of the VPdl project to subthalamic nucleus and substantia nigra pars reticulata, and this VP subregion is modulated by, and is necessary for, drug-seeking behavior. Additional circuits arise from nonGABAergic neuronal phenotypes that are likely to excite rather than inhibit their targets. These subregional and neuronal phenotypic circuits place the VP in a unique position to process motivationally-relevant stimuli and coherent adaptive behaviors. PMID:25857550

  19. An increasing incidence of VDRL serononreactors in an eldery, T. pallidum infected population.

    PubMed

    Muić, V; Ljubicić, M; Vodopija, I

    1999-01-01

    Changes in the proportion of VDRL nonreactors among the people who had come into contact with Treponema pallidum in the course of their lifetime were assessed within the frame of the Diagnostic Proficiency Program covering serologic laboratories for the detection of syphilis in Croatia. Based on the analysis of the CNIPH serologic laboratory records the paper shows a clear increase in the above share over the past 22 years. Data on 491 infected persons (those reactive to the reference TPHA test), mean age 52.87 years, were analyzed. During 22 years of observation (1976-1998), this proportion rose from 21.92% (1976-1979) through 51.79% (1980-1989) to 64.86% (1990-1998). At the same time, this tendency reveals a considerable decrease in the number of infected persons exhibiting VDRL reaction (i.e. with potentially active late syphilis), which could be ascribed to the ever more effective detection of the infected and to their ever earlier and more efficient treatment. PMID:10437273

  20. Promoter analysis of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum.

    PubMed

    Takaoka, N; Fukuzawa, M; Saito, T; Sakaitani, T; Ochiai, H

    1999-10-28

    We cloned a genomic fragment of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum by inverse PCR. Primer extension analysis identified a major transcription start site 65 bp upstream of the translation start codon. The promoter region of the gp64 gene contains sequences homologous to a TATA box at position -47 to -37 and to an initiator (Inr, PyPyCAPyPyPyPy) at position -3 to +5 from the transcription start site. Successively truncated segments of the promoter were tested for their ability to drive expression of the beta-galactosidase reporter gene in transformed cells; also the difference in activity between growth conditions was compared. The results indicated that there are two positive vegetative regulatory elements extending between -187 and -62 bp from the transcription start site of the gp64 promoter; also their activity was two to three times higher in the cells grown with bacteria in shaken suspension than in the cells grown in an axenic medium. PMID:10542319

  1. Comparison of performance of two Treponema pallidum automated chemiluminescent immunoassays in blood donors.

    PubMed

    Sommese, Linda; Sabia, Chiara; Esposito, Antonella; Iannone, Carmela; Montesano, Maria Lourdes; Napoli, Claudio

    2016-01-01

    The recrudescence of syphilis is leading to the development of new serological tests. The goal of this study was to compare the performance of the more recent Elecsys Syphilis assay, the Electro Chemiluminescence Immunoassay (ECLIA), with the former Architect Syphilis TP assay, the Chemiluminescent Microparticle Immunoassay (CMIA), for the detection of antibodies against Treponema pallidum in blood donors. Serum samples of 5543 voluntary blood donors were screened in parallel with two tests. All repeatedly reactive (RR) samples by one or both assays were further analysed for confirmation by immmunoblot INNO-LIA and TPHA. Of 32 RR samples by CMIA, 21 were confirmed positive; of 21 RR samples by ECLIA, 20 were confirmed positive. The sensitivities of CMIA and ECLIA were 100% and 95.24% (95% CI = 85.71-100), respectively, not significant (p > 0.05). The specificity and predictive positive value (PPV) of CMIA were 99.86% (95% CI = 99.74-99.94) and 72.41%, respectively, while the specificity and PPV of ECLIA were both 100%, being statistically significant (p = 0.01 for both). The overall agreement was 99.80% and the Cohen's kappa coefficients was 0.79. In conclusion, the recent Elecsys Syphilis assay could represent another reliable assay for blood donor screening. PMID:27030921

  2. Prevalence of Treponema pallidum DNA among blood donors with two different serologic tests profiles for syphilis in São Paulo, Brazil.

    PubMed

    Ferreira, S C; de Almeida-Neto, C; Nishiya, A S; Di-Lorenzo-Oliveira, C; Ferreira, J E; Alencar, C S; Levi, J E; Salles, N A; Mendrone-Junior, A; Sabino, E C

    2014-05-01

    The presence of Treponema pallidum DNA was assessed by real-time PCR in samples of blood donors with reactive serologic tests for syphilis. Treponema pallidum DNA was detected in two (1·02%) of 197 samples of VDRL>8, EIA+ and FTA-ABS+ donors, and in no sample from 80 VDRL−, EIA+ and FTA-ABS+ donors. Donors VDRL−, EIA+ and FTA-ABS+ lack demonstrable T. pallidum DNA in their blood and are unlike to transmit syphilis. Donors VDRL>8, EIA+ and FTA-ABS+ carry the risk of syphilis infectivity even in concomitance to antibodies detection. Serologic screening for syphilis may still play a role to prevent its transfusion transmission. PMID:24877236

  3. Seroprevalence of Human Immunodeficiency Virus, Hepatitis B Virus, Hepatitis C Virus, and Treponema pallidum Infections among Blood Donors on Bioko Island, Equatorial Guinea

    PubMed Central

    Chen, Jiang-Tao; Eyi, Urbano Monsuy; Matesa, Rocio Apicante; Obono, Maximo Miko Ondo; Ehapo, Carlos Sala; Yang, Li-Ye; Yang, Hui; Yang, Hui-Tian; Lin, Min

    2015-01-01

    Background Regular screening of transfusion-transmissible infections (TTIs), such as human immunodeficiency virus (HIV), hepatitis B and hepatitis C virus (HBV and HCV, respectively), and Treponema pallidum, in blood donors is essential to guaranteeing clinical transfusion safety. This study aimed to determine the seroprevalence of four TTIs among blood donors on Bioko Island, Equatorial Guinea (EG). Methods A retrospective survey of blood donors from January 2011 to April 2013 was conducted to assess the presence of HIV, HBV, HCV and T. pallidum. The medical records were analyzed to verify the seroprevalence of these TTIs among blood donations stratified by gender, age and geographical region. Results Of the total 2937 consecutive blood donors, 1098 (37.39%) had a minimum of one TTI and 185 (6.29%) harbored co-infections. The general seroprevalence of HIV, HBV, HCV and T. pallidum were 7.83%, 10.01%, 3.71% and 21.51%, respectively. The most frequent TTI co-infections were HBV-T. pallidum 60 (2.04%) and HIV-T. pallidum 46 (1.57%). The seroprevalence of HIV, HBV, HCV and T. pallidum were highest among blood donors 38 to 47 years, 18 to 27 years and ≥ 48 years age, respectively (P<0.05). The seroprevalence of TTIs varied according to the population from which the blood was collected on Bioko Island. Conclusions Our results firstly provide a comprehensive overview of TTIs among blood donors on Bioko Island. Strict screening of blood donors and improved hematological examinations using standard operating procedures are recommended. PMID:26448460

  4. The Tp0684 (MglB-2) Lipoprotein of Treponema pallidum: A Glucose-Binding Protein with Divergent Topology.

    PubMed

    Brautigam, Chad A; Deka, Ranjit K; Liu, Wei Z; Norgard, Michael V

    2016-01-01

    Treponema pallidum, the bacterium that causes syphilis, is an obligate human parasite. As such, it must acquire energy, in the form of carbon sources, from the host. There is ample evidence that the principal source of energy for this spirochete is D-glucose acquired from its environment, likely via an ABC transporter. Further, there is genetic evidence of a D-glucose chemotaxis system in T. pallidum. Both of these processes may be dependent on a single lipidated chemoreceptor: Tp0684, also called TpMglB-2 for its sequence homology to MglB of Escherichia coli. To broaden our understanding of this potentially vital protein, we determined a 2.05-Å X-ray crystal structure of a soluble form of the recombinant protein. Like its namesake, TpMglB-2 adopts a bilobed fold that is similar to that of the ligand-binding proteins (LBPs) of other ABC transporters. However, the protein has an unusual, circularly permuted topology. This feature prompted a series of biophysical studies that examined whether the protein's topological distinctiveness affected its putative chemoreceptor functions. Differential scanning fluorimetry and isothermal titration calorimetry were used to confirm that the protein bound D-glucose in a cleft between its two lobes. Additionally, analytical ultracentrifugation was employed to reveal that D-glucose binding is accompanied by a significant conformational change. TpMglB-2 thus appears to be fully functional in vitro, and given the probable central importance of the protein to T. pallidum's physiology, our results have implications for the viability and pathogenicity of this obligate human pathogen. PMID:27536942

  5. STUDIES IN EXPERIMENTAL SYPHILIS : VII. REINOCULATION OF TREATED AND UNTREATED SYPHILITIC RABBITS WITH HETEROLOGOUS STRAINS OF TREPONEMA PALLIDUM.

    PubMed

    Chesney, A M; Halley, C R; Kemp, J E

    1927-07-31

    Syphilitic rabbits, whether untreated or treated after the 90th day of infection, were found to be more refractory to subsequent inoculation with the homologous strain of Treponema pallidum than to inoculation with heterologous strains of the same organism, when clinical criteria alone were employed in judging the outcome of reinoculation. The incidence of second infection with homologous strains was 5.4 per cent, as against 50 per cent with heterologous strains.(2) The resistance which develops in rabbits during the course of a syphilitic infection appears therefore to be strain-specific rather than species-specific. The protection afforded against homologous strains was found to persist for at least as long as 6 months after treatment was discontinued. A given strain may afford a higher degree of protection against some strains than against others, but whether this is to be explained upon the basis of biologic relationship or of differences in virulence, or possibly as the result of both of these factors was not disclosed by the experiments. Rabbits infected with a strain (Nichols) which had been adapted to this species for over a decade could be infected with strains which had been recovered recently from the human body. The previous existence of a syphilitic lesion in the testis which was used as the site for reinoculation did not seem to exert any influence upon the incidence of successful second infections obtained with heterologous strains of Treponema pallidum. Sometimes the course of the second infection produced by inoculation with heterologous strains was less pronounced than that observed in the controls, but in most instances no significant alteration was observed. In syphilitic rabbits treated late in the course of the disease and reinoculated with heterologous strains of Treponema pallidum no lesion may develop at the site of reinoculation but nevertheless the Wassermann reaction may become positive and remain so for weeks thereafter. It is suggested

  6. Macrolide Resistance in Treponema pallidum Correlates With 23S rDNA Mutations in Recently Isolated Clinical Strains

    PubMed Central

    Molini, Barbara J.; Tantalo, Lauren C.; Sahi, Sharon K.; Rodriguez, Veronica I.; Brandt, Stephanie L.; Fernandez, Mark C.; Godornes, Charmie B.; Marra, Christina M.; Lukehart, Sheila A.

    2016-01-01

    Background High rates of 23S rDNA mutations implicated in macrolide resistance have been identified in Treponema pallidum samples from syphilis patients in many countries. Nonetheless, some clinicians have been reluctant to abandon azithromycin as a treatment for syphilis, citing the lack of a causal association between these mutations and clinical evidence of drug resistance. Although azithromycin resistance has been demonstrated in vivo for the historical Street 14 strain, no recent T. pallidum isolates have been tested. We used the well-established rabbit model of syphilis to determine the in vivo efficacy of azithromycin against 23S rDNA mutant strains collected in 2004 to 2005 from patients with syphilis in Seattle, Wash. Methods Groups of 9 rabbits were each infected with a strain containing 23S rDNA mutation A2058G (strains UW074B, UW189B, UW391B) or A2059G (strains UW228B, UW254B, and UW330B), or with 1 wild type strain (Chicago, Bal 3, and Mexico A). After documentation of infection, 3 animals per strain were treated with azithromycin, 3 were treated with benzathine penicillin G, and 3 served as untreated control groups. Treatment efficacy was documented by darkfield microscopic evidence of T. pallidum, serological response, and rabbit infectivity test. Results Azithromycin uniformly failed to cure rabbits infected with strains harboring either 23S rDNA mutation, although benzathine penicillin G was effective. Infections caused by wild type strains were successfully treated by either azithromycin or benzathine penicillin G. Conclusions A macrolide resistant phenotype was demonstrated for all strains harboring a 23S rDNA mutation, demonstrating that either A2058G or A2059G mutation confers in vivo drug resistance. PMID:27513385

  7. Syphilis and HIV co-infection. Epidemiology, treatment and molecular typing of Treponema pallidum.

    PubMed

    Salado-Rasmussen, Kirsten

    2015-12-01

    The studies included in this PhD thesis examined the interactions of syphilis, which is caused by Treponema pallidum, and HIV. Syphilis reemerged worldwide in the late 1990s and hereafter increasing rates of early syphilis were also reported in Denmark. The proportion of patients with concurrent HIV has been substantial, ranging from one third to almost two thirds of patients diagnosed with syphilis some years. Given that syphilis facilitates transmission and acquisition of HIV the two sexually transmitted diseases are of major public health concern. Further, syphilis has a negative impact on HIV infection, resulting in increasing viral loads and decreasing CD4 cell counts during syphilis infection. Likewise, HIV has an impact on the clinical course of syphilis; patients with concurrent HIV are thought to be at increased risk of neurological complications and treatment failure. Almost ten per cent of Danish men with syphilis acquired HIV infection within five years after they were diagnosed with syphilis during an 11-year study period. Interestingly, the risk of HIV declined during the later part of the period. Moreover, HIV-infected men had a substantial increased risk of re-infection with syphilis compared to HIV-uninfected men. As one third of the HIV-infected patients had viral loads >1,000 copies/ml, our conclusion supported the initiation of cART in more HIV-infected MSM to reduce HIV transmission. During a five-year study period, including the majority of HIV-infected patients from the Copenhagen area, we observed that syphilis was diagnosed in the primary, secondary, early and late latent stage. These patients were treated with either doxycycline or penicillin and the rate of treatment failure was similar in the two groups, indicating that doxycycline can be used as a treatment alternative - at least in an HIV-infected population. During a four-year study period, the T. pallidum strain type distribution was investigated among patients diagnosed by PCR

  8. Comparative Genome Analysis of the Pathogenic Spirochetes Borrelia burgdorferi and Treponema pallidum

    PubMed Central

    Subramanian, G.; Koonin, Eugene V.; Aravind, L.

    2000-01-01

    A comparative analysis of the predicted protein sequences encoded in the complete genomes of Borrelia burgdorferi and Treponema pallidum provides a number of insights into evolutionary trends and adaptive strategies of the two spirochetes. A measure of orthologous relationships between gene sets, termed the orthology coefficient (OC), was developed. The overall OC value for the gene sets of the two spirochetes is about 0.43, which means that less than one-half of the genes show readily detectable orthologous relationships. This emphasizes significant divergence between the two spirochetes, apparently driven by different biological niches. Different functional categories of proteins as well as different protein families show a broad distribution of OC values, from near 1 (a perfect, one-to-one correspondence) to near 0. The proteins involved in core biological functions, such as genome replication and expression, typically show high OC values. In contrast, marked variability is seen among proteins that are involved in specific processes, such as nutrient transport, metabolism, gene-specific transcription regulation, signal transduction, and host response. Differences in the gene complements encoded in the two spirochete genomes suggest active adaptive evolution for their distinct niches. Comparative analysis of the spirochete genomes produced evidence of gene exchanges with other bacteria, archaea, and eukaryotic hosts that seem to have occurred at different points in the evolution of the spirochetes. Examples are presented of the use of sequence profile analysis to predict proteins that are likely to play a role in pathogenesis, including secreted proteins that contain specific protein-protein interaction domains, such as von Willebrand A, YWTD, TPR, and PR1, some of which hitherto have been reported only in eukaryotes. We tentatively reconstruct the likely evolutionary process that has led to the divergence of the two spirochete lineages; this reconstruction seems

  9. Differential roles of ventral pallidum subregions during cocaine self-administration behaviors

    PubMed Central

    Root, David H.; Ma, Sisi; Barker, David J.; Megehee, Laura; Striano, Brendan M.; Ralston, Carla M.; Fabbricatore, Anthony T.; West, Mark O.

    2012-01-01

    The ventral pallidum (VP) is necessary for drug-seeking behavior. VP contains ventromedial (VPvm) and dorsolateral (VPdl) subregions which receive projections from the nucleus accumbens shell and core, respectively. To date, no study has investigated the behavioral functions of the VPdl and VPvm subregions. To address this issue, we investigated whether changes in firing rate (FR) differed between VP subregions during four events: approaching toward, responding on, or retreating away from a cocaine-reinforced operandum, and a cocaine-associated cue. Baseline FR and waveform characteristics did not differ between subregions. VPdl neurons exhibited a greater change in FR compared to VPvm neurons during approaches toward, as well as responses on, the cocaine-reinforced operandum. VPdl neurons were more likely to exhibit a similar change in FR (direction and magnitude) during approach and response than VPvm neurons. In contrast, VPvm firing patterns were heterogeneous, changing FRs during approach or response alone, or both. VP neurons did not discriminate cued behaviors from uncued behaviors. No differences were found between subregions during the retreat and no VP neurons exhibited patterned changes in FR in response to the cocaine-associated cue. The stronger, sustained FR changes of VPdl neurons during approach and response may implicate VPdl in the processing of drug-seeking and drug-taking behavior via projections to subthalamic nucleus and substantia nigra pars reticulata. In contrast, heterogeneous firing patterns of VPvm neurons may implicate VPvm in facilitating mesocortical structures with information related to the sequence of behaviors predicting cocaine self-infusions via projections to mediodorsal thalamus and ventral tegmental area. PMID:22806483

  10. Mitochondrial tRNA 5'-editing in Dictyostelium discoideum and Polysphondylium pallidum.

    PubMed

    Abad, Maria G; Long, Yicheng; Kinchen, R Dimitri; Schindel, Elinor T; Gray, Michael W; Jackman, Jane E

    2014-05-30

    Mitochondrial tRNA (mt-tRNA) 5'-editing was first described more than 20 years ago; however, the first candidates for 5'-editing enzymes were only recently identified in a eukaryotic microbe (protist), the slime mold Dictyostelium discoideum. In this organism, eight of 18 mt-tRNAs are predicted to be edited based on the presence of genomically encoded mismatched nucleotides in their aminoacyl-acceptor stem sequences. Here, we demonstrate that mt-tRNA 5'-editing occurs at all predicted sites in D. discoideum as evidenced by changes in the sequences of isolated mt-tRNAs compared with the expected sequences encoded by the mitochondrial genome. We also identify two previously unpredicted editing events in which G-U base pairs are edited in the absence of any other genomically encoded mismatches. A comparison of 5'-editing in D. discoideum with 5'-editing in another slime mold, Polysphondylium pallidum, suggests organism-specific idiosyncrasies in the treatment of U-G/G-U pairs. In vitro activities of putative D. discoideum editing enzymes are consistent with the observed editing reactions and suggest an overall lack of tRNA substrate specificity exhibited by the repair component of the editing enzyme. Although the presence of terminal mismatches in mt-tRNA sequences is highly predictive of the occurrence of mt-tRNA 5'-editing, the variability in treatment of U-G/G-U base pairs observed here indicates that direct experimental evidence of 5'-editing must be obtained to understand the complete spectrum of mt-tRNA editing events in any species. PMID:24737330

  11. Cellular Architecture of Treponema pallidum: Novel Flagellum, Periplasmic Cone, and Cell Envelope as Revealed by Cryo-Electron Tomography

    PubMed Central

    Liu, Jun; Howell, Jerrilyn K.; Bradley, Sherille D.; Zheng, Yesha; Zhou, Z. Hong; Norris, Steven J.

    2010-01-01

    High resolution cryo-electron tomography (cryo-ET) was utilized to visualize Treponema pallidum, the causative agent of syphilis, at the molecular level. Three-dimensional (3-D) reconstructions from 304 infectious organisms revealed unprecedented cellular structures of this unusual member in the spirochetal family. High resolution cryo-ET reconstructions provided the detailed structures of the cell envelope, which is significantly different from that of gram-negative bacteria. The 4 nm lipid bilayer of both outer and cytoplasmic membranes resolved in 3-D reconstructions, providing an important marker for interpreting membrane-associated structures. Abundant lipoproteins cover the outer leaflet of the cytoplasmic membrane, in contrast to the rare outer membrane proteins visible by scanning probe microscopy. High resolution cryo-ET images also provided the first observation of T. pallidum chemoreceptor arrays, as well as structural details of the periplasmically located, cone-shaped structure at both ends of bacterium. Furthermore, 3-D subvolume averages of the periplasmic flagellar motors and filaments from living organisms revealed the novel flagellar architectures that may facilitate their rotation within the confining periplasmic space. Together, our findings provide the most detailed structural understanding of the periplasmic flagella and the surrounding cell envelope, which enable this enigmatic bacterium to efficiently penetrate tissue and escape host immune responses. PMID:20850455

  12. Development of a system for expressing heterologous genes in the oral spirochete Treponema denticola and its use in expression of the Treponema pallidum flaA gene.

    PubMed

    Chi, B; Chauhan, S; Kuramitsu, H

    1999-07-01

    The present communication describes the construction of a new Escherichia coli-Treponema denticola shuttle vector based on the naturally occurring spirochete plasmid pTS1 and the expression of the heterologous T. pallidum flaA gene from the plasmid in T. denticola. This new shuttle vector system should prove useful in characterizing virulence factors from unculturable pathogenic spirochetes. PMID:10377154

  13. Structure of rrn operons in pathogenic non-cultivable treponemes: sequence but not genomic position of intergenic spacers correlates with classification of Treponema pallidum and Treponema paraluiscuniculi strains

    PubMed Central

    Čejková, Darina; Zobaníková, Marie; Pospíšilová, Petra; Strouhal, Michal; Mikalová, Lenka; Weinstock, George M.

    2013-01-01

    This study examined the sequences of the two rRNA (rrn) operons of pathogenic non-cultivable treponemes, comprising 11 strains of T. pallidum ssp. pallidum (TPA), five strains of T. pallidum ssp. pertenue (TPE), two strains of T. pallidum ssp. endemicum (TEN), a simian Fribourg-Blanc strain and a rabbit T. paraluiscuniculi (TPc) strain. PCR was used to determine the type of 16S–23S ribosomal intergenic spacers in the rrn operons from 30 clinical samples belonging to five different genotypes. When compared with the TPA strains, TPc Cuniculi A strain had a 17 bp deletion, and the TPE, TEN and Fribourg-Blanc isolates had a deletion of 33 bp. Other than these deletions, only 17 heterogeneous sites were found within the entire region (excluding the 16S–23S intergenic spacer region encoding tRNA-Ile or tRNA-Ala). The pattern of nucleotide changes in the rrn operons corresponded to the classification of treponemal strains, whilst two different rrn spacer patterns (Ile/Ala and Ala/Ile) appeared to be distributed randomly across species/subspecies classification, time and geographical source of the treponemal strains. It is suggested that the random distribution of tRNA genes is caused by reciprocal translocation between repetitive sequences mediated by a recBCD-like system. PMID:23082031

  14. Monoclonal antibodies directed against major histocompatibility complex antigens bind to the surface of Treponema pallidum isolated from infected rabbits or humans.

    PubMed

    Marchitto, K S; Kindt, T J; Norgard, M V

    1986-09-01

    Evidence is presented for the association of class I major histocompatibility complex (MHC) antigens with the surface of Treponema pallidum during infection. A monoclonal antibody (IgG2a) directed against a murine H-2Kb epitope of public specificity reacted with the cell surface of T. pallidum, as assayed by the binding of protein A-colloidal gold in immunoelectron microscopy. Monoclonal antibodies directed against class I rabbit MHC antigens also reacted in immunofluorescence assays with material on the surface of rabbit-cultivated T. pallidum. In addition, impression smears of human syphilitic genital ulcers that were darkfield-positive for the presence of spirochetes were tested in immunofluorescence assays with monoclonal antibodies directed against human MHC antigens; antibody directed against HLA-ABC (class I) was reactive whereas antibody directed against HLA-DR (class II) was nonreactive. Results of the study suggest that the association of host-derived class I MHC antigens or molecular mimicry may play a role in T. pallidum evasion of host immune defenses. PMID:2428519

  15. Estimation of the genome sizes of the chigger mites Leptotrombidium pallidum and Leptotrombidium scutellare based on quantitative PCR and k-mer analysis

    PubMed Central

    2014-01-01

    Background Leptotrombidium pallidum and Leptotrombidium scutellare are the major vector mites for Orientia tsutsugamushi, the causative agent of scrub typhus. Before these organisms can be subjected to whole-genome sequencing, it is necessary to estimate their genome sizes to obtain basic information for establishing the strategies that should be used for genome sequencing and assembly. Method The genome sizes of L. pallidum and L. scutellare were estimated by a method based on quantitative real-time PCR. In addition, a k-mer analysis of the whole-genome sequences obtained through Illumina sequencing was conducted to verify the mutual compatibility and reliability of the results. Results The genome sizes estimated using qPCR were 191 ± 7 Mb for L. pallidum and 262 ± 13 Mb for L. scutellare. The k-mer analysis-based genome lengths were estimated to be 175 Mb for L. pallidum and 286 Mb for L. scutellare. The estimates from these two independent methods were mutually complementary and within a similar range to those of other Acariform mites. Conclusions The estimation method based on qPCR appears to be a useful alternative when the standard methods, such as flow cytometry, are impractical. The relatively small estimated genome sizes should facilitate whole-genome analysis, which could contribute to our understanding of Arachnida genome evolution and provide key information for scrub typhus prevention and mite vector competence. PMID:24947244

  16. Fibronectin Binding to the Treponema pallidum Adhesin Protein Fragment rTp0483 on Functionalized Self-Assembled Monolayers

    PubMed Central

    Dickerson, Matthew T.; Abney, Morgan B.; Cameron, Caroline E.; Knecht, Marc; Bachas, Leonidas G.; Anderson, Kimberly W.

    2012-01-01

    Past work has shown that Treponema pallidum, the causative agent of syphilis, binds host fibronectin (FN). FN and other host proteins are believed to bind to rare outer membrane proteins (OMPs) of T. pallidum, and it is postulated that this interaction may facilitate cell attachment and mask antigenic targets on the surface. This research seeks to prepare a surface capable of mimicking the FN binding ability of T. pallidum in order to investigate the impact of FN binding with adsorbed Tp0483 on the host response to the surface. By understanding this interaction it may be possible to develop more effective treatments for infection and possibly mimic the stealth properties of the bacteria. Functionalized self-assembled monolayers (SAMs) on0 gold were used to investigate rTp0483 and FN adsorption. Using a quartz crystal microbalance (QCM) rTp0483 adsorption and subsequent FN adsorption onto rTp0483 was determined to be higher on negatively charged carboxylate-terminated self-assembled monolayers (−COO− SAMs) compared to the other surfaces analyzed. Kinetic analysis of rTp0483 adsorption using surface plasmon resonance (SPR) supported this finding. Kinetic analysis of FN adsorption using SPR revealed a multi-step event, where the concentration of immobilized rTp0483 plays a role in FN binding. An examination of relative QCM dissipation energy compared to the shift in frequency showed a correlation between the physical properties of adsorbed rTp0483 and SAM surface chemistry. In addition, AFM images of rTp0483 on selected SAMs illustrated a preference of rTp0483 to bind as aggregates. Adsorption on −COO− SAMs was more uniform across the surface, which may help further explain why FN bound more strongly. rTp0483 antibody studies suggested the involvement of amino acids 274–289 and 316–333 in binding between rTp0483 to FN, while a peptide blocking study only showed inhibition of binding with amino acids 316–333. Finally, surface adsorbed rTp0483 with FN

  17. Correlation of Immunity in Experimental Syphilis with Serum-Mediated Aggregation of Treponema pallidum Rare Outer Membrane Proteins

    PubMed Central

    Lewinski, Michael A.; Miller, James N.; Lovett, Michael A.; Blanco, David R.

    1999-01-01

    We have previously shown by freeze-fracture electron microscopy that serum from infection-immune syphilitic rabbits aggregates the low-density membrane-spanning Treponema pallidum rare outer membrane proteins (TROMPs). The purpose of this study was to determine if a relationship could be demonstrated between acquired immunity in experimental rabbit syphilis, serum complement-dependent treponemicidal antibody, and antibody directed against TROMPs as measured by the aggregation of TROMP particles. Three groups of T. pallidum-infected rabbits were treated curatively with penicillin at 9 days, 30 days, and 6 months postinfection to generate various degrees of immunity to challenge reinfection. Sera from rabbits completely susceptible to localized and disseminated reinfection possessed a low titer of treponemicidal antibody (≤1:1 in killing ≥50% of a treponemal suspension) and showed a correspondingly low level of TROMP aggregation (16.5% of the total number of outer membrane particles counted) similar to normal serum controls (13.4%); the number of particles within these aggregates never exceeded three. Sera from partially immune rabbits, which were susceptible to local reinfection but had no evidence of dissemination, showed an increase in the titer of treponemicidal antibody (1:16) compared to the completely susceptible group (≤1:1). Although no significant increase was observed in the total number of TROMP particles aggregated (18.9%) compared to the number in controls (13.4%), approximately 15% of these aggregates did exhibit a significant increase in the number of particles per aggregate (4 to 5 particles) compared to controls (≤3 particles), indicating a measurable increase in anti-TROMP antibody. Finally, sera from rabbits completely immune to both local and disseminated reinfection possessed both high titers of treponemicidal antibody (1:128) and significant aggregation of TROMP (88.6%); approximately 50% of these aggregates contained four to six

  18. Multicentre surveillance of prevalence of the 23S rRNA A2058G and A2059G point mutations and molecular subtypes of Treponema pallidum in Taiwan, 2009-2013.

    PubMed

    Wu, B-R; Yang, C-J; Tsai, M-S; Lee, K-Y; Lee, N-Y; Huang, W-C; Wu, H; Lee, C-H; Chen, T-C; Ko, W-C; Lin, H-H; Lu, P-L; Chen, Y-H; Liu, W-C; Yang, S-P; Wu, P-Y; Su, Y-C; Hung, C-C; Chang, S-Y

    2014-08-01

    Resistance mutations A2058G and A2059G, within the 23S rRNA gene of Treponema pallidum, have been reported to cause treatment failures in patients receiving azithromycin for syphilis. Genotyping of T. pallidum strains sequentially isolated from patients with recurrent syphilis is rarely performed. From September 2009 to August 2013, we collected 658 clinical specimens from 375 patients who presented with syphilis for genotyping to examine the number of 60-bp repeats in the acidic repeat protein (arp) gene, T. pallidum repeat (tpr) polymorphism, and tp0548 gene, and to detect A2058G and A2059G point mutations by restriction fragment length polymorphism. Treponemal DNA was identified in 45.2% (n = 298) of the specimens that were collected from 216 (57.6%) patients; 268 (40.7%) specimens tested positive for the 23S rRNA gene, and were examined for macrolide resistance. Two isolates (0.7%) harboured the A2058G mutation, and no A2059G mutation was identified. A total of 14 strains of T. pallidum were identified, with 14f/f (57.5%) and 14b/c (10.0%) being the two predominant strains. Forty patients who presented with recurrent episodes of syphilis had T. pallidum DNA identified from the initial and subsequent episodes, with five cases showing strain discrepancies. One patient had two strains identified from different clinical specimens collected in the same episode. Our findings show that 14f/f is the most common T. pallidum strain in Taiwan, where the prevalence of T. pallidum strains that show A2058G or A2059G mutation remains low. Different genotypes of T. pallidum can be identified in patients with recurrent episodes of syphilis. PMID:24438059

  19. A multicenter prospective trial to asses a new real-time polymerase chain reaction for detection of Treponema pallidum, herpes simplex-1/2 and Haemophilus ducreyi in genital, anal and oropharyngeal ulcers.

    PubMed

    Glatz, M; Juricevic, N; Altwegg, M; Bruisten, S; Komericki, P; Lautenschlager, S; Weber, R; Bosshard, P P

    2014-12-01

    Treponema pallidum, herpes simplex virus types 1 or 2 (HSV-1/2) and Haemophilus ducreyi are sexually transmitted pathogens that can cause genital, anal and oropharyngeal ulcers. Laboratory evaluation of these pathogens in ulcers requires different types of specimens and tests, increasing the risk of improper specimen handling and time lapse until analysis. We sought to develop a new real-time PCR (TP-HD-HSV1/2 PCR) to facilitate the detection of T. pallidum, HSV-1/2 and H. ducreyi in ulcers. The TP-HD-HSV1/2 PCR was tested (i) in a retrospective study on 193 specimens of various clinical origin and (ii) in a prospective study on 36 patients with genital, anal or oropharyngeal ulcers (ClinicalTrials.gov # NCT01688258). The results of the TP-HD-HSV1/2 PCR were compared with standard diagnostic methods (T. pallidum: serology, dark field microscopy; HSV-1/2: PCR; H. ducreyi: cultivation). Sensitivity and specificity of the TP-HD-HSV1/2 PCR for T. pallidum were both 100%, for HSV-1 100% and 98%, and for HSV-2 100% and 98%, respectively. T. pallidum and HSV-1/2 were detected in 53% and 22% of patients in the prospective study; H. ducreyi was not detected. In the prospective study, 5/19 (26%) specimens were true positive for T. pallidum in the TP-HD-HSV1/2 PCR but non-reactive in the VDRL. The TP-HD-HSV1/2 PCR is sensitive and specific for the detection of T. pallidum and HSV-1/2 in routine clinical practice and it appears superior to serology in early T. pallidum infections. PMID:24909546

  20. Serodiagnosis of syphilis by enzyme-linked immunosorbent assay with purified recombinant Treponema pallidum antigen 4D.

    PubMed

    Radolf, J D; Lernhardt, E B; Fehniger, T E; Lovett, M A

    1986-06-01

    An enzyme-linked immunosorbent assay (ELISA) for syphilis has been developed that detects IgG antibody to purified recombinant Treponema pallidum surface antigen 4D. The 4D ELISA was capable of detecting 25 ng of 4D antigen-specific antibody. Neither 172 nonsyphilitic sera nor 20 false-positive sera in the Venereal Disease Research Laboratory test reacted in the 4D ELISA. The sensitivity of the 4D ELISA was comparable to that of the adsorbed fluorescent treponemal antibody test in primary, secondary, and latent disease. Most sera from patients with yaws or pinta were also reactive, a result indicating that a 4D antigen-like molecule also exists in the closely related pathogenic treponemes Treponema pertenue and Treponema carateum. PMID:3517186

  1. Calcofluor staining of cellulose during microcyst differentiation in wild-type and mutant strains of Polysphondylium pallidum.

    PubMed Central

    Choi, A H; O'Day, D H

    1984-01-01

    Calcofluor White ST was used to monitor the morphological events in the biogenesis of cellulose in the microcyst wall of the wild-type strain (WS-320) and two developmental mutants (mic-1 and mic-2) of Polysphondylium pallidum. During encystment, the cell surface acquires a Calcofluor-specific material which appears to be cellulose because of its sensitivity to purified cellulase. Cellulose-containing vesicles appear distributed throughout the cytoplasm of encysting cells of the three strains. Later, the cellulose-rich vesicles appear near the cell surface. Subsequently, the cell surface stains with Calcofluor, and the vesicles are no longer detectable. Intracellular vesicles resembling the cellulose-rich vesicles in size, in the timing of appearance, and in cellular location are also seen in thin sections. These vesicles are surrounded by a single unit membrane, and their amorphous matrix, which contains a dense irregular core, further implicates them as the basis for the bilayered microcyst wall. Images PMID:6197403

  2. Evaluation of the Captia enzyme immunoassays for detection of immunoglobulins G and M to Treponema pallidum in syphilis.

    PubMed Central

    Lefevre, J C; Bertrand, M A; Bauriaud, R

    1990-01-01

    Two new enzyme-linked immunosorbent assays (ELISA), one for the measurement of immunoglobulin G (IgG) (Captia Syphilis-G) and one for the measurement of IgM (Captia Syphilis-M), were evaluated for detecting antibodies to Treponema pallidum. Serum samples from 169 patients, 96 with various stages of untreated syphilis, 63 with treated syphilis, and 10 who were noninfected, were investigated. All sera were also examined by traditional treponemal and cardiolipin tests and by the fluorescent treponemal antibody absorption (FTA-ABS) test for 19S(IgM). The overall sensitivity of Captia Syphilis-G was 98.3%. The IgG ELISA was very sensitive (100%) in all stages of untreated syphilis, except in primary syphilis (82%). In all diagnostic groups of syphilis, the reactivity of Captia Syphilis-M was similar to that of the 19S(IgM) FTA-ABS test, except in reinfections, in which the IgM capture ELISA was less sensitive. False-positive IgM capture ELISA results were not found in the 10 neonates born to mothers adequately treated for syphilis. However, of six serum samples containing rheumatoid factor, two were reactive in the Captia Syphilis-M test but not in the 19S(IgM) FTA-ABS test. This indicated that the specificity of the IgM capture ELISA was not absolute. All serum samples from treated patients were reactive in the IgG ELISA, but only 15 samples were reactive in the IgM capture ELISA, which appeared to be as effective as the 19S(IgM) FTA-ABS test in monitoring the effect of treatment. Simultaneous measurement of IgG and IgM antibodies for T. pallidum by the Captia immunoassays appears to be an efficient and simple method for confirming the diagnosis of syphilis as well as for indicating whether active disease is present. PMID:2203809

  3. Broad specificity AhpC-like peroxiredoxin and its thioredoxin reductant in the sparse antioxidant defense system of Treponema pallidum

    PubMed Central

    Parsonage, Derek; Desrosiers, Daniel C.; Hazlett, Karsten R. O.; Sun, Yongcheng; Nelson, Kimberly J.; Cox, David L.; Radolf, Justin D.; Poole, Leslie B.

    2010-01-01

    Little is known about the mechanisms by which Treponema pallidum (Tp), the causative agent of syphilis, copes with oxidative stress as it establishes persistent infection within its obligate human host. The Tp genomic sequence indicates that the bacterium’s antioxidant defenses do not include glutathione and are limited to just a few proteins, with only one, TP0509, offering direct defense against peroxides. Although this Tp peroxiredoxin (Prx) closely resembles AhpC-like Prxs, Tp lacks AhpF, the typical reductant for such enzymes. Functionally, TpAhpC resembles largely eukaryotic, nonAhpC typical 2-Cys Prx proteins in using thioredoxin (Trx, TP0919) as an efficient electron donor and exhibiting broad specificity toward hydroperoxide substrates. Unlike many of the eukaryotic Prxs, however, TpAhpC is relatively resistant to inactivation during turnover with hydroperoxide substrates. As is often observed in typical 2-Cys Prxs, TpAhpC undergoes redox-sensitive oligomer formation. Quantitative immunoblotting revealed that TpTrx and TpAhpC are present at very high levels (over 100 and 300 μM, respectively) in treponemes infecting rabbit testes; their redox potentials, at -242 ± 1 and -192 ± 2 mV, respectively, are consistent with the role of TpTrx as the cellular reductant of TpAhpC. Transcriptional analysis of select antioxidant genes confirmed the presence of high mRNA levels for ahpC and trx which diminish greatly when spirochetes replicate under in vitro growth conditions. Thus, T. pallidum has evolved an extraordinarily robust, broad-spectrum AhpC as its sole mechanism for peroxide defense to combat this significant threat to treponemal growth and survival during infection. PMID:20304799

  4. [Cloning and expression of outer membrane protein gene Gpd from Treponema pallidum and preliminary studies on its immunogenicity in rabbits].

    PubMed

    Zhao, Fei-jun; Wu, Yi-mou; Zhang, Xiao-hong; Liu, Shuang-quan; Yu, Min-jun

    2005-10-01

    To construct the recombinant plasmid of Eukaryotic expression containing Gpd gene from Treponema Pallidum and study its immunogenicity in New Zealand White rabbits. Gpd gene was amplified from the genomic DNA of T. pallidum and cloned into appropriate site of pcDNA3. 1 ( + ) vector. After verified that the Gpd antigen gene could be expressed in HeLa cells by Western blot and immunocytochemistry, recombinant plasmids pcDNA3.1 ( + )-Gpd, control plasmid pcDNA3. 1 ( + ) or PBS buffer were administered in three groups of New Zeal and White rabbits. Booster immunizations were employed at 2-week interval for three times. ELISA was used for the quantitative detection of the specific antibody in the sera of rabbits. The proliferation response of spleen cells was detected by MTT assay. The results of the Western blot and immunocytochemistry showed that Gpd gene constructed in pcDNA3.1 ( + ) vector could express a fusion protein with a calculated molecular mass of 41kD in HeLa cells and react with positive blood serum from syphilis patients. The significant specific antibody IgG titers were observed and the highest titer was 1:1024 in rabbits after three times with pcDNA3.1 ( + )-Gpd. The proliferation response of spleen cells were significantly higher than that of rabbits injected with pcDNA3.1 ( + ) (p < 0.05). All above results establish a solid basis for future studying the biological activities of Gpd and benefit the development of the Syphilis DNA vaccine. PMID:16342773

  5. Organization, transcription, and expression of the 5' region of the fla operon of Treponema phagedenis and Treponema pallidum.

    PubMed Central

    Limberger, R J; Slivienski, L L; El-Afandi, M C; Dantuono, L A

    1996-01-01

    A locus encoding polypeptides associated with flagellar structure and function was identified, sequenced, and characterized in Treponema phagedenis and Treponema pallidum. This locus includes homologs of the FlgD, FlgE, MotA, MOB, FliL, and FliM polypeptides found in Salmonella typhimurium and Bacillus subtilis. These polypeptides are extensively conserved between the two treponemes. Several additional polypeptides or unknown function, including Tapl, located upstream of FlgD, and ORF4, located between FlgE and MotA, were also identified. Transcription analysis using RNA PCR indicated that these genes are likely transcribed as part of a single operon and comprise the 5' region of the treponemal fla operon. Primer extension analysis identified a putative promoter, preceding T. phagedenis tap1 in a region of divergent transcription. Pfla resembles the class II or class III motility-related promoters of S. typhimurium. FlgE and Tap1 were further characterized. Western blotting (immunoblotting) indicated that T. pallidum FlgE exhibited an unusual polypeptide ladder that was similar but not identical to that of T. phagedenis. Triton X-114 phase partitioning of T. phagedenis cells coupled with Western blotting revealed that Tap1 was located in the aqueous phase. Computer analysis indicated that Tap1 had no significant membrane spanning regions, suggesting that it resides primarily in the cytoplasm. The organization and expression of this operon are similar in both treponemes but different from those of previously described motility-related operons. These results indicate that despite extensive amino acid sequence conservation, the expression of spirochete flagellar polypeptides is different from that in other bacteria. PMID:8755894

  6. The Tp0684 (MglB-2) Lipoprotein of Treponema pallidum: A Glucose-Binding Protein with Divergent Topology

    PubMed Central

    Brautigam, Chad A.; Deka, Ranjit K.; Liu, Wei Z.; Norgard, Michael V.

    2016-01-01

    Treponema pallidum, the bacterium that causes syphilis, is an obligate human parasite. As such, it must acquire energy, in the form of carbon sources, from the host. There is ample evidence that the principal source of energy for this spirochete is D-glucose acquired from its environment, likely via an ABC transporter. Further, there is genetic evidence of a D-glucose chemotaxis system in T. pallidum. Both of these processes may be dependent on a single lipidated chemoreceptor: Tp0684, also called TpMglB-2 for its sequence homology to MglB of Escherichia coli. To broaden our understanding of this potentially vital protein, we determined a 2.05-Å X-ray crystal structure of a soluble form of the recombinant protein. Like its namesake, TpMglB-2 adopts a bilobed fold that is similar to that of the ligand-binding proteins (LBPs) of other ABC transporters. However, the protein has an unusual, circularly permuted topology. This feature prompted a series of biophysical studies that examined whether the protein’s topological distinctiveness affected its putative chemoreceptor functions. Differential scanning fluorimetry and isothermal titration calorimetry were used to confirm that the protein bound D-glucose in a cleft between its two lobes. Additionally, analytical ultracentrifugation was employed to reveal that D-glucose binding is accompanied by a significant conformational change. TpMglB-2 thus appears to be fully functional in vitro, and given the probable central importance of the protein to T. pallidum’s physiology, our results have implications for the viability and pathogenicity of this obligate human pathogen. PMID:27536942

  7. Performance of the 47-Kilodalton Membrane Protein versus DNA Polymerase I Genes for Detection of Treponema pallidum by PCR in Ulcers

    PubMed Central

    Laurent, Frédéric; Schrenzel, Jacques; Charton, Béatrice; Jimenez-Getaz, Gisela; Tangomo, Manuela; Ferry, Tristan; Sednaoui, Patrice; Lautenschlager, Stephan; Toutous-Trellu, Laurence; Martinez de Tejada, Begoña; Cavassini, Matthias; Emonet, Stéphane; Perneger, Thomas; Salord, Hélène

    2014-01-01

    Treponema pallidum PCR (Tp-PCR) is a direct diagnostic method for primary and secondary syphilis, but there is no recommendation regarding the best choice of target gene. In this study, we sequentially tested 272 specimens from patients with sexually transmitted ulcers using Tp-PCR targeting the tpp47 and then polA genes. The two methods showed similar accuracies and an almost-perfect agreement. PMID:25520453

  8. Evidence for Posttranslational Protein Flavinylation in the Syphilis Spirochete Treponema pallidum: Structural and Biochemical Insights from the Catalytic Core of a Periplasmic Flavin-Trafficking Protein

    PubMed Central

    Deka, Ranjit K.; Brautigam, Chad A.; Liu, Wei Z.

    2015-01-01

    ABSTRACT The syphilis spirochete Treponema pallidum is an important human pathogen but a highly enigmatic bacterium that cannot be cultivated in vitro. T. pallidum lacks many biosynthetic pathways and therefore has evolved the capability to exploit host-derived metabolites via its periplasmic lipoprotein repertoire. We recently reported a flavin-trafficking protein in T. pallidum (Ftp_Tp; TP0796) as the first bacterial metal-dependent flavin adenine dinucleotide (FAD) pyrophosphatase that hydrolyzes FAD into AMP and flavin mononucleotide (FMN) in the spirochete’s periplasm. However, orthologs of Ftp_Tp from other bacteria appear to lack this hydrolytic activity; rather, they bind and flavinylate subunits of a cytoplasmic membrane redox system (Nqr/Rnf). To further explore this dichotomy, biochemical analyses, protein crystallography, and structure-based mutagenesis were used to show that a single amino acid change (N55Y) in Ftp_Tp converts it from an Mg2+-dependent FAD pyrophosphatase to an FAD-binding protein. We also demonstrated that Ftp_Tp has a second enzymatic activity (Mg2+-FMN transferase); it flavinylates protein(s) covalently with FMN on a threonine side chain of an appropriate sequence motif using FAD as the substrate. Moreover, mutation of a metal-binding residue (D284A) eliminates Ftp_Tp’s dual activities, thereby underscoring the role of Mg2+ in the enzyme-catalyzed reactions. The posttranslational flavinylation activity that can target a periplasmic lipoprotein (TP0171) has not previously been described. The observed activities reveal the catalytic flexibility of a treponemal protein to perform multiple functions. Together, these findings imply mechanisms by which a dynamic pool of flavin cofactor is maintained and how flavoproteins are generated by Ftp_Tp locally in the T. pallidum periplasm. PMID:25944861

  9. Evidence for posttranslational protein flavinylation in the syphilis spirochete Treponema pallidum: Structural and biochemical insights from the catalytic core of a periplasmic flavin-trafficking protein

    DOE PAGESBeta

    Deka, Ranjit K.; Brautigam, Chad A.; Liu, Wei Z.; Tomchick, Diana R.; Norgard, Michael V.

    2015-05-05

    The syphilis spirochete Treponema pallidum is an important human pathogen but a highly enigmatic bacterium that cannot be cultivated in vitro. T. pallidum lacks many biosynthetic pathways and therefore has evolved the capability to exploit host-derived metabolites via its periplasmic lipoprotein repertoire. We recently reported a flavin-trafficking protein in T. pallidum (Ftp_Tp; TP0796) as the first bacterial metal-dependent flavin adenine dinucleotide (FAD) pyrophosphatase that hydrolyzes FAD into AMP and flavin mononucleotide (FMN) in the spirochete’s periplasm. However, orthologs of Ftp_Tp from other bacteria appear to lack this hydrolytic activity; rather, they bind and flavinylate subunits of a cytoplasmic membrane redoxmore » system (Nqr/Rnf). To further explore this dichotomy, biochemical analyses, protein crystallography, and structure-based mutagenesis were used to show that a single amino acid change (N55Y) in Ftp_Tp converts it from an Mg²⁺-dependent FAD pyrophosphatase to an FAD-binding protein. We also demonstrated that Ftp_Tp has a second enzymatic activity (Mg²⁺-FMN transferase); it flavinylates protein(s) covalently with FMN on a threonine side chain of an appropriate sequence motif using FAD as the substrate. Moreover, mutation of a metal-binding residue (D284A) eliminates Ftp_Tp’s dual activities, thereby underscoring the role of Mg²⁺ in the enzyme-catalyzed reactions. The posttranslational flavinylation activity that can target a periplasmic lipoprotein (TP0171) has not previously been described. The observed activities reveal the catalytic flexibility of a treponemal protein to perform multiple functions. Together, these findings imply mechanisms by which a dynamic pool of flavin cofactor is maintained and how flavoproteins are generated by Ftp_Tp locally in the T. pallidum periplasm.« less

  10. Performance of the 47-kilodalton membrane protein versus DNA polymerase I genes for detection of Treponema pallidum by PCR in ulcers.

    PubMed

    Gayet-Ageron, Angèle; Laurent, Frédéric; Schrenzel, Jacques; Charton, Béatrice; Jimenez-Getaz, Gisela; Tangomo, Manuela; Ferry, Tristan; Sednaoui, Patrice; Lautenschlager, Stephan; Toutous-Trellu, Laurence; Martinez de Tejada, Begoña; Cavassini, Matthias; Emonet, Stéphane; Perneger, Thomas; Salord, Hélène

    2015-03-01

    Treponema pallidum PCR (Tp-PCR) is a direct diagnostic method for primary and secondary syphilis, but there is no recommendation regarding the best choice of target gene. In this study, we sequentially tested 272 specimens from patients with sexually transmitted ulcers using Tp-PCR targeting the tpp47 and then polA genes. The two methods showed similar accuracies and an almost-perfect agreement. PMID:25520453

  11. Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I: OUTER MEMBRANE INSERTION, TRIMERIZATION, AND PORIN FUNCTION REQUIRE A C-TERMINAL β-BARREL DOMAIN.

    PubMed

    Anand, Arvind; LeDoyt, Morgan; Karanian, Carson; Luthra, Amit; Koszelak-Rosenblum, Mary; Malkowski, Michael G; Puthenveetil, Robbins; Vinogradova, Olga; Radolf, Justin D

    2015-05-01

    We previously identified Treponema pallidum repeat proteins TprC/D, TprF, and TprI as candidate outer membrane proteins (OMPs) and subsequently demonstrated that TprC is not only a rare OMP but also forms trimers and has porin activity. We also reported that TprC contains N- and C-terminal domains (TprC(N) and TprC(C)) orthologous to regions in the major outer sheath protein (MOSP(N) and MOSP(C)) of Treponema denticola and that TprC(C) is solely responsible for β-barrel formation, trimerization, and porin function by the full-length protein. Herein, we show that TprI also possesses bipartite architecture, trimeric structure, and porin function and that the MOSP(C)-like domains of native TprC and TprI are surface-exposed in T. pallidum, whereas their MOSP(N)-like domains are tethered within the periplasm. TprF, which does not contain a MOSP(C)-like domain, lacks amphiphilicity and porin activity, adopts an extended inflexible structure, and, in T. pallidum, is tightly bound to the protoplasmic cylinder. By thermal denaturation, the MOSP(N) and MOSP(C)-like domains of TprC and TprI are highly thermostable, endowing the full-length proteins with impressive conformational stability. When expressed in Escherichia coli with PelB signal sequences, TprC and TprI localize to the outer membrane, adopting bipartite topologies, whereas TprF is periplasmic. We propose that the MOSP(N)-like domains enhance the structural integrity of the cell envelope by anchoring the β-barrels within the periplasm. In addition to being bona fide T. pallidum rare outer membrane proteins, TprC/D and TprI represent a new class of dual function, bipartite bacterial OMP. PMID:25805501

  12. Syphilis-causing strains belong to separate SS14-like or Nichols-like groups as defined by multilocus analysis of 19 Treponema pallidum strains.

    PubMed

    Nechvátal, Lukáš; Pětrošová, Helena; Grillová, Linda; Pospíšilová, Petra; Mikalová, Lenka; Strnadel, Radim; Kuklová, Ivana; Kojanová, Martina; Kreidlová, Miluše; Vaňousová, Daniela; Procházka, Přemysl; Zákoucká, Hana; Krchňáková, Alena; Smajs, David

    2014-07-01

    Treponema pallidum strains are closely related at the genome level but cause distinct diseases. Subspecies pallidum (TPA) is the causative agent of syphilis, subspecies pertenue (TPE) causes yaws while subspecies endemicum (TEN) causes bejel (endemic syphilis). Compared to the majority of treponemal genomic regions, several chromosomal loci were found to be more diverse. To assess genetic variability in diverse genomic positions, we have selected (based on published genomic data) and sequenced five variable loci, TP0304, TP0346, TP0488, TP0515 and TP0558, in 19 reference Treponema pallidum strains including all T. pallidum subspecies (TPA, TPE and TEN). Results of this multilocus analysis divided syphilitic isolates into two groups: SS14-like and Nichols-like. The SS14-like group is comprised of SS14, Grady, Mexico A and Philadelphia 1 strains. The Nichols-like group consisted of strains Nichols, Bal 73-1, DAL-1, MN-3, Philadelphia 2, Haiti B and Madras. The TP0558 locus was selected for further studies because it clearly distinguished between the SS14- and Nichols-like groups and because the phylogenetic tree derived from the TP0558 locus showed the same clustering pattern as the tree constructed from whole genome sequences. In addition, TP0558 was shown as the only tested locus that evolved under negative selection within TPA strains. Sequencing of a short fragment (573bp) of the TP0558 locus in a set of 25 clinical isolates from 22 patients collected in the Czech Republic during 2012-2013 revealed that clinical isolates follow the SS14- and Nichols-like distribution. PMID:24841252

  13. Syphilis epidemiology in 1994-2013, molecular epidemiological strain typing and determination of macrolide resistance in Treponema pallidum in 2013-2014 in Tuva Republic, Russia.

    PubMed

    Khairullin, Rafil; Vorobyev, Denis; Obukhov, Andrey; Kuular, Ural-Herel; Kubanova, Anna; Kubanov, Alexey; Unemo, Magnus

    2016-07-01

    The incidence of syphilis in the Tuva Republic (geographical centre of Asia), Russia has been exceedingly high historically. No detailed examinations and no molecular investigations of Treponema pallidum strains transmitted in the Tuva Republic, or in general, in Russia, were published internationally. We examined the syphilis epidemiology in 1994-2013, and the molecular epidemiology and macrolide resistance in T. pallidum strains in 2013-2014 in the Tuva Republic. Among 95 mainly primary or secondary syphilis patients, the arp, tpr, tp0548 and 23S rRNA genes in 85 polA gene-positive genital ulcer specimens were characterized. The syphilis incidence in Tuva Republic peaked in 1998 (1562), however declined to 177 in 2013. Among the 70 (82%) completely genotyped specimens, six molecular strain types were found. Strain type 14d/f accounted for 91%, but also 14c/f, 14d/g, 14b/f, 14i/f, 9d/f, and 4d/f were identified. Two (2.4%) specimens contained the 23S rRNA A2058G macrolide resistance mutation. This is the first internationally published typing study regarding T. pallidum in Russia, performed in the Tuva Republic with the highest syphilis incidence in Russia. The two molecular strain types 4d/f and 9d/f have previously been described only in Eastern and Northern China and for the first time, macrolide-resistant syphilis was described in Russia. PMID:27102715

  14. Treponema pallidum hemagglutination assay seroreactivity among healthy Indian donors and its association with other transfusion transmitted diseases

    PubMed Central

    Pahuja, Sangeeta; Gupta, Santosh Kumar; Pujani, Mukta; Jain, Manjula

    2014-01-01

    Background: The aim of the present study was to determine the prevalence of syphilis infection by Treponema pallidum hemagglutination assay (TPHA) among blood donors in Delhi and to study their correlation with other markers of transfusion transmitted infections such as hepatitis C virus (HCV), human immunodeficiency virus (HIV) and hepatitis B surface antigen (HBsAg) so as to establish the utility of TPHA over and above venereal diseases research laboratory test (VDRL), not only as a marker for testing T. pallidum infection, but also as a marker of high risk behavior. Materials and Methods: This prospective study was carried out in the Regional Blood Transfusion Centre, Lady Hardinge Medical College and associated Sucheta Kriplani Hospital, New Delhi for a period of 2 years. Donated blood was screened for TPHA seroreactivity along with screening for anti HIV I and II, anti-HCV, HBsAg by third generation enzyme-linked immunosorbent assay test. A total of 8082 serum samples of blood donors were collected from healthy blood donors in our blood bank. They were classified into two groups- test group and control group based on TPHA positivity. The co-occurrence of HBsAg, HIV and HCV infection were determined in TPHA positive blood donors (test group) in comparison with TPHA negative blood donors (control group). Results: We found the TPHA seroreactivity to be 4.4% in Delhi's blood donors. Nearly 8.2% (663/8082) of the donated blood had serological evidence of infection by at least one pathogen (syphilis/HIV/hepatitis B virus/HCV) and 6.63% (44/663) donors with positive serology had multiple infections (two or more). Quadruple infection was seen in one donor, triple infection was seen in three donors and double infection was seen in 40 donors. Prevalence of HIV seroreactivity was found to be statistically significant and HCV seroreactivity statistically insignificant in TPHA positive group in comparison to TPHA negative group. Discussion: In our study, the TPHA

  15. Increasing Endocannabinoid Levels in the Ventral Pallidum Restore Aberrant Dopamine Neuron Activity in the Subchronic PCP Rodent Model of Schizophrenia

    PubMed Central

    Chen, Li; Lodge, Daniel J

    2015-01-01

    Background: Schizophrenia is a debilitating disorder that affects 1% of the US population. While the exogenous administration of cannabinoids such as tetrahydrocannabinol is reported to exacerbate psychosis in schizophrenia patients, augmenting the levels of endogenous cannabinoids has gained attention as a possible alternative therapy to schizophrenia due to clinical and preclinical observations. Thus, patients with schizophrenia demonstrate an inverse relationship between psychotic symptoms and levels of the endocannabinoid anandamide. In addition, increasing endocannabinoid levels (by blockade of enzymatic degradation) has been reported to attenuate social withdrawal in a preclinical model of schizophrenia. Here we examine the effects of increasing endogenous cannabinoids on dopamine neuron activity in the sub-chronic phencyclidine (PCP) model. Aberrant dopamine system function is thought to underlie the positive symptoms of schizophrenia. Methods: Using in vivo extracellular recordings in chloral hydrate–anesthetized rats, we now demonstrate an increase in dopamine neuron population activity in PCP-treated rats. Results: Interestingly, endocannabinoid upregulation, induced by URB-597, was able to normalize this aberrant dopamine neuron activity. Furthermore, we provide evidence that the ventral pallidum is the site where URB-597 acts to restore ventral tegmental area activity. Conclusions: Taken together, we provide preclinical evidence that augmenting endogenous cannabinoids may be an effective therapy for schizophrenia, acting in part to restore ventral pallidal activity. PMID:25539511

  16. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry

    PubMed Central

    Castro, Daniel C.; Cole, Shannon L.; Berridge, Kent C.

    2015-01-01

    The study of the neural bases of eating behavior, hunger, and reward has consistently implicated the lateral hypothalamus (LH) and its interactions with mesocorticolimbic circuitry, such as mesolimbic dopamine projections to nucleus accumbens (NAc) and ventral pallidum (VP), in controlling motivation to eat. The NAc and VP play special roles in mediating the hedonic impact (“liking”) and motivational incentive salience (“wanting”) of food rewards, and their interactions with LH help permit regulatory hunger/satiety modulation of food motivation and reward. Here, we review some progress that has been made regarding this circuitry and its functions: the identification of localized anatomical hedonic hotspots within NAc and VP for enhancing hedonic impact; interactions of NAc/VP hedonic hotspots with specific LH signals such as orexin; an anterior-posterior gradient of sites in NAc shell for producing intense appetitive eating vs. intense fearful reactions; and anatomically distributed appetitive functions of dopamine and mu opioid signals in NAc shell and related structures. Such findings help improve our understanding of NAc, VP, and LH interactions in mediating affective and motivation functions, including “liking” and “wanting” for food rewards. PMID:26124708

  17. TP0326, a Treponema pallidum β-Barrel Assembly Machinery A (BamA) Ortholog and Rare Outer Membrane Protein

    PubMed Central

    Desrosiers, Daniel C.; Anand, Arvind; Luthra, Amit; Dunham-Ems, Star M; LeDoyt, Morgan; Cummings, Michael A. D.; Eshghi, Azad; Cameron, Caroline E.; Cruz, Adriana R.; Salazar, Juan C.; Caimano, Melissa J.; Radolf, Justin D.

    2011-01-01

    SUMMARY Definitive identification of Treponema pallidum (Tp) rare outer membrane proteins (OMPs) has long eluded researchers. TP0326, the sole protein in Tp with sequence homology to a Gram-negative OMP, belongs to the BamA family of proteins essential for OM biogenesis. Structural modeling predicted that five polypeptide transport-associated (POTRA) domains comprise the N-terminus of TP0326, while the C-terminus forms an 18-stranded amphipathic β-barrel. Circular dichroism, heat-modifiability by SDS-PAGE, Triton X-114 phase partitioning and liposome incorporation supported these topological predictions and confirmed that the β-barrel is responsible for the native protein's amphiphilicity. Expression analyses revealed that native TP0326 is expressed at low abundance, while a protease-surface accessibility assay confirmed surface exposure. Size-exclusion chromatography and blue native polyacrylamide gel electrophoresis revealed a modular Bam complex in Tp considerably larger than that of E. coli. Non-orthologous ancillary factors and self-association of TP0326 via its β-barrel may both contribute to the Bam complex. Tp-infected rabbits mount a vigorous antibody response to both POTRA and β-barrel portions of TP0326, whereas humans with secondary syphilis respond predominantly to POTRA. The syphilis spirochete appears to have devised a stratagem for harnessing the Bam pathway while satisfying its need to limit surface antigenicity. PMID:21488980

  18. Efficient preparation and metal specificity of the regulatory protein TroR from the human pathogen Treponema pallidum.

    PubMed

    Liu, Yi; Li, Wei; Wei, Yaozhu; Jiang, Yindi; Tan, Xiangshi

    2013-10-01

    TroR is a putative metal-dependent regulatory protein that has been linked to the virulence of the human pathogen Treponema pallidum. It shares high homology with the well-known iron-dependent regulatory protein DtxR from Corynebacterium diphtheriae, as well as the manganese-dependent MntR from Bacillus subtilis. However, it has been uncertain whether manganese or zinc is the natural cofactor of TroR to date. Herein, we established an efficient method named "double-fusion tagging" to obtain soluble TroR for the first time. A series of studies, including ICP, CD, fluorescence, ITC, and electrophoresis mobility shift assay (EMSA), were performed to resolve the discrepancies in its metal-binding specificity. In addition, bioinformatic analysis as well as mutation studies were carried out to find the genetic relationships of TroR with its homology proteins. In conclusion, our findings indicate that TroR is a manganese-dependent rather than a zinc-dependent regulatory protein. PMID:23945957

  19. Prevalence of antibodies against Treponema pallidum among HIV-positive patients in a tertiary care hospital in Mexico.

    PubMed

    Mata-Marín, José Antonio; Sandoval-Sánchez, Juan Joel; Huerta-García, Gloria; Arroyo-Anduiza, Carla Ileana; Alcalá-Martínez, Enrique; Mata-Marín, Luis Alberto; Sandoval-Ramirez, Jorge Luis; Gaytán-Martínez, Jesús

    2015-02-01

    Our objective was to determine the seroprevalence of syphilis among HIV-infected patients in a tertiary care hospital in Mexico City. A cross-sectional study was developed, and 318 HIV-positive patients were evaluated from January to February 2013 at Hospital de Infectología, National Medical Center 'La Raza' (a tertiary care hospital specialising in infectious diseases in Mexico City). Laboratory data were screened for the detection of antibodies against Treponema pallidum. Patients completed a questionnaire relating to socio-demographic data and factors associated with syphilis. Of the 318 patients, 83% were men. The mean age ± SD was 36 ± 11 years; 52% were men who have sex with men and 47% had undertaken higher education. The overall seroprevalence of syphilis among these patients was 25% (95% confidence interval 21%, 30%). Men who have sex with men had a significantly higher seroprevalence (30% vs. 15%, p = 0.009). We conclude that, in Mexico, there is a high seroprevalence of syphilis antibodies in HIV-infected patients and that men who have sex with men are the group most affected. PMID:24713227

  20. The Social Amoeba Polysphondylium pallidum Loses Encystation and Sporulation, but Can Still Erect Fruiting Bodies in the Absence of Cellulose

    PubMed Central

    Du, Qingyou; Schaap, Pauline

    2014-01-01

    Amoebas and other freely moving protists differentiate into walled cysts when exposed to stress. As cysts, amoeba pathogens are resistant to biocides, preventing treatment and eradication. Lack of gene modification procedures has left the mechanisms of encystation largely unexplored. Genetically tractable Dictyostelium discoideum amoebas require cellulose synthase for formation of multicellular fructifications with cellulose-rich stalk and spore cells. Amoebas of its distant relative Polysphondylium pallidum (Ppal), can additionally encyst individually in response to stress. Ppal has two cellulose synthase genes, DcsA and DcsB, which we deleted individually and in combination. Dcsa- mutants formed fruiting bodies with normal stalks, but their spore and cyst walls lacked cellulose, which obliterated stress-resistance of spores and rendered cysts entirely non-viable. A dcsa-/dcsb- mutant made no walled spores, stalk cells or cysts, although simple fruiting structures were formed with a droplet of amoeboid cells resting on an sheathed column of decaying cells. DcsB is expressed in prestalk and stalk cells, while DcsA is additionally expressed in spores and cysts. We conclude that cellulose is essential for encystation and that cellulose synthase may be a suitable target for drugs to prevent encystation and render amoeba pathogens susceptible to conventional antibiotics. PMID:25113829

  1. Epitope mapping of B-cell determinants on the 15-kilodalton lipoprotein of Treponema pallidum (Tpp15) with synthetic peptides.

    PubMed Central

    Baughn, R E; Demecs, M; Taber, L H; Musher, D M

    1996-01-01

    The antigenicity of the 15-kDa lipoprotein of Treponema pallidum (Tpp15 or TpN15) was comprehensively evaluated in epitope-scanning studies with overlapping deca- and octapeptides and polygonal rabbit and human infant immunoglobulins (Igs) and antisera. This approach enabled us to identify potentially important regions and to determine the optimal dilutions of Igs or antisera for use in further studies. IgM and IgG from both species were capable of recognizing multiple, continuous epitopes. A total of 13 peptides, principally clustered in the central regions of the protein, were recognized by all syphilitic sera and Ig fractions. On the basis of window analyses, frequency profiles, and alanine substitution studies, five heptapeptides were selected for mimetic studies. Two of these five immunodominant, continuous epitopes initially appeared to be species specific; however, antisera elicited against mimetics of all five epitopes were polyspecific, recognizing similar motifs on several other treponemal proteins, including those of avirulent organisms. The only mimetic which yielded positive reactions with infant IgM and syphilitic sera in the absence of cross-reactions with rabbit antisera to avirulent treponemes was the variant of the VMYASSG motif. These findings are relevant to the development of simple, inexpensive assays for the serodiagnosis of active syphilis. PMID:8698467

  2. Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K.

    PubMed

    Morgan, Cecilia A; Lukehart, Sheila A; Van Voorhis, Wesley C

    2003-10-01

    Syphilis has been recognized as a disease since the late 1400s, yet there is no practical vaccine available. One impediment to the development of a vaccine is the lack of understanding of multiple reinfections in humans despite the development of robust immune responses during the first episode. It has been shown that the Treponema pallidum repeat protein K (TprK) differs in seven discrete variable (V) regions in isolates and that the antibody response during infection is directed to these V regions. Immunization with TprK confers significant protection against infection with the homologous strain. We hypothesize that the antigenic diversity of TprK is involved in immune evasion, which contributes to the lack of heterologous protection. Here, using the rabbit model, we show a correlation between limited heterologous protection and tprK diversity in the challenge inoculum. We demonstrate that antibody responses to the V regions of one TprK molecule show limited cross-reactivity with heterologous TprK V regions. PMID:14500480

  3. TprC/D (Tp0117/131), a Trimeric, Pore-Forming Rare Outer Membrane Protein of Treponema pallidum, Has a Bipartite Domain Structure

    PubMed Central

    Anand, Arvind; Luthra, Amit; Dunham-Ems, Star; Caimano, Melissa J.; Karanian, Carson; LeDoyt, Morgan; Cruz, Adriana R.; Salazar, Juan C.

    2012-01-01

    Identification of Treponema pallidum rare outer membrane proteins (OMPs) has been a longstanding objective of syphilis researchers. We recently developed a consensus computational framework that employs a battery of cellular localization and topological prediction tools to generate ranked clusters of candidate rare OMPs (D. L. Cox et al., Infect. Immun. 78:5178–5194, 2010). TP0117/TP0131 (TprC/D), a member of the T. pallidum repeat (Tpr) family, was a highly ranked candidate. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning, and liposome incorporation confirmed that full-length, recombinant TprC (TprCFl) forms a β-barrel capable of integrating into lipid bilayers. Moreover, TprCFl increased efflux of terbium-dipicolinic acid complex from large unilamellar vesicles and migrated as a trimer by blue-native PAGE. We found that in T. pallidum, TprC is heat modifiable, trimeric, expressed in low abundance, and, based on proteinase K accessibility and opsonophagocytosis assays, surface exposed. From these collective data, we conclude that TprC is a bona fide rare OMP as well as a functional ortholog of Escherichia coli OmpF. We also discovered that TprC has a bipartite architecture consisting of a soluble N-terminal portion (TprCN), presumably periplasmic and bound directly or indirectly to peptidoglycan, and a C-terminal β-barrel (TprCC). Syphilitic rabbits generate antibodies exclusively against TprCC, while secondary syphilis patients fail to mount a detectable antibody response against either domain. The syphilis spirochete appears to have resolved a fundamental dilemma arising from its extracellular lifestyle, namely, how to enhance OM permeability without increasing its vulnerability to the antibody-mediated defenses of its natural human host. PMID:22389487

  4. Whole Genome Sequences of Three Treponema pallidum ssp. pertenue Strains: Yaws and Syphilis Treponemes Differ in Less than 0.2% of the Genome Sequence

    PubMed Central

    Chen, Lei; Pospíšilová, Petra; Strouhal, Michal; Qin, Xiang; Mikalová, Lenka; Norris, Steven J.; Muzny, Donna M.; Gibbs, Richard A.; Fulton, Lucinda L.; Sodergren, Erica; Weinstock, George M.; Šmajs, David

    2012-01-01

    Background The yaws treponemes, Treponema pallidum ssp. pertenue (TPE) strains, are closely related to syphilis causing strains of Treponema pallidum ssp. pallidum (TPA). Both yaws and syphilis are distinguished on the basis of epidemiological characteristics, clinical symptoms, and several genetic signatures of the corresponding causative agents. Methodology/Principal Findings To precisely define genetic differences between TPA and TPE, high-quality whole genome sequences of three TPE strains (Samoa D, CDC-2, Gauthier) were determined using next-generation sequencing techniques. TPE genome sequences were compared to four genomes of TPA strains (Nichols, DAL-1, SS14, Chicago). The genome structure was identical in all three TPE strains with similar length ranging between 1,139,330 bp and 1,139,744 bp. No major genome rearrangements were found when compared to the four TPA genomes. The whole genome nucleotide divergence (dA) between TPA and TPE subspecies was 4.7 and 4.8 times higher than the observed nucleotide diversity (π) among TPA and TPE strains, respectively, corresponding to 99.8% identity between TPA and TPE genomes. A set of 97 (9.9%) TPE genes encoded proteins containing two or more amino acid replacements or other major sequence changes. The TPE divergent genes were mostly from the group encoding potential virulence factors and genes encoding proteins with unknown function. Conclusions/Significance Hypothetical genes, with genetic differences, consistently found between TPE and TPA strains are candidates for syphilitic treponemes virulence factors. Seventeen TPE genes were predicted under positive selection, and eleven of them coded either for predicted exported proteins or membrane proteins suggesting their possible association with the cell surface. Sequence changes between TPE and TPA strains and changes specific to individual strains represent suitable targets for subspecies- and strain-specific molecular diagnostics. PMID:22292095

  5. Unexpectedly high prevalence of Treponema pallidum infection in the oral cavity of human immunodeficiency virus-infected patients with early syphilis who had engaged in unprotected sex practices.

    PubMed

    Yang, C-J; Chang, S-Y; Wu, B-R; Yang, S-P; Liu, W-C; Wu, P-Y; Zhang, J-Y; Luo, Y-Z; Hung, C-C; Chang, S-C

    2015-08-01

    Between 2010 and 2014, we obtained swab specimens to detect Treponema pallidum, with PCR assays, from the oral cavities of 240 patients with 267 episodes of syphilis who reported engaging in unprotected sex practices. The detected treponemal DNA was subjected to genotyping. All of the syphilis cases occurred in men who have sex with men (MSM), and 242 (90.6%) occurred in human immunodeficiency virus-infected patients. The stages of syphilis included 38 cases (14.2%) of primary syphilis of the genital region, 76 (28.5%) of secondary syphilis, 21 (7.9%) of primary and secondary syphilis, 125 (46.8%) of early latent syphilis, and seven (2.6%) others. Concurrent oral ulcers were identified in 22 cases (8.2%). Treponemal DNA was identified from the swabs of 113 patients (42.2%), including 15 (68.2%) with oral ulcers. The most common genotype of T. pallidum was 14f/f. The presence of oral ulcers was associated with identification of T. pallidum in the swab specimens (15/22 (68.2%) vs. 98/245 (40.0%)) (p = 0.01). In multivariate analysis, secondary syphilis (adjusted OR 6.79; 95% CI 1.97-23.28) and rapid plasma reagin (RPR) titres of ≥1: 32 (adjusted OR 2.23; 95% CI 1.02-4.89) were independently associated with the presence of treponemal DNA in patients without oral ulcers. We conclude that detection of treponemal DNA in the oral cavity with PCR assays is not uncommon in MSM, most of whom reported having unprotected oral sex. Although the presence of oral ulcers is significantly associated with detection of treponemal DNA, treponemal DNA is more likely to be identified in patients without oral ulcers who present with secondary syphilis and RPR titres of ≥1: 32. PMID:25964151

  6. Tromp1, a putative rare outer membrane protein, is anchored by an uncleaved signal sequence to the Treponema pallidum cytoplasmic membrane.

    PubMed Central

    Akins, D R; Robinson, E; Shevchenko, D; Elkins, C; Cox, D L; Radolf, J D

    1997-01-01

    Treponema pallidum rare outer membrane protein 1 (Tromp1) has extensive sequence homology with substrate-binding proteins of ATP-binding cassette transporters. Because such proteins typically are periplasmic or cytoplasmic membrane associated, experiments were conducted to clarify Tromp1's physicochemical properties and cellular location in T. pallidum. Comparison of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobilities of (i) native Tromp1 and Tromp1 synthesized by coupled in vitro transcription-translation and (ii) native Tromp1 and recombinant Tromp1 lacking the N-terminal signal sequence revealed that the native protein is not processed. Other studies demonstrated that recombinant Tromp1 lacks three basic porin-like properties: (i) the ability to form aqueous channels in liposomes which permit the influx of small hydrophilic solutes, (ii) an extensive beta-sheet secondary structure, and (iii) amphiphilicity. Subsurface localization of native Tromp1 was demonstrated by immunofluorescence analysis of treponemes encapsulated in gel microdroplets, while opsonization assays failed to detect surface-exposed Tromp1. Incubation of motile treponemes with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)-diazarine, a photoactivatable, lipophilic probe, also did not result in the detection of Tromp1 within the outer membranes of intact treponemes but, instead, resulted in the labeling of a basic 30.5-kDa presumptive outer membrane protein. Finally, analysis of fractionated treponemes revealed that native Tromp1 is associated predominantly with cell cylinders. These findings comprise a body of evidence that Tromp1 actually is anchored by an uncleaved signal sequence to the periplasmic face of the T. pallidum cytoplasmic membrane, where it likely subserves a transport-related function. PMID:9260949

  7. Enhanced Extracellular Glutamate and Dopamine in the Ventral Pallidum of Alcohol-Preferring AA and Alcohol-Avoiding ANA Rats after Morphine

    PubMed Central

    Kemppainen, Heidi; Nurmi, Harri; Raivio, Noora; Kiianmaa, Kalervo

    2015-01-01

    The purpose of the present study was to investigate the role of ventral pallidal opioidergic mechanisms in the control of ethanol intake by studying the effects of acute administration of morphine on the levels of GABA, glutamate, and dopamine in the ventral pallidum. The study was conducted using the alcohol-preferring Alko Alcohol (AA) and alcohol-avoiding Alko Non-Alcohol (ANA) rat lines that have well-documented differences in their voluntary ethanol intake and brain opioidergic systems. Therefore, examination of neurobiological differences between the lines is supposed to help to identify the neuronal mechanisms underlying ethanol intake, since selection pressure is assumed gradually to lead to enrichment of alleles promoting high or low ethanol intake, respectively. The effects of an acute dose of morphine (1 or 10 mg/kg s.c.) on the extracellular levels of GABA and glutamate in the ventral pallidum were monitored with in vivo microdialysis. The concentrations of GABA and glutamate in the dialyzates were determined with a high performance liquid chromatography system using fluorescent detection, while electrochemical detection was used for dopamine. The levels of glutamate in the rats injected with morphine 1 mg/kg were significantly above the levels found in the controls and in the rats receiving morphine 10 mg/kg. Morphine 10 mg/kg also increased the levels of dopamine. Morphine could not, however, modify the levels of GABA. The rat lines did not differ in any of the effects of morphine. The data suggest that the glutamatergic and dopaminergic systems in the ventral pallidum may mediate some effects of morphine. Since there were no differences between the AA and ANA lines, the basic hypothesis underlying the use of the genetic animal model suggests that the effects of morphine detected probably do not underlie the different intake of ethanol by the lines and contribute to the control of ethanol intake in these animals. PMID:25653621

  8. Seroprevalence of the Hepatitis B, Hepatitis C, and Human Immunodeficiency Viruses and Treponema pallidum at the Beijing General Hospital from 2010 to 2014: A Cross-Sectional Study

    PubMed Central

    Xu, Shaoxia; Wang, Qiaofeng; Zhang, Weihong; Qiu, Zhifeng; Cui, Jingtao; Yan, Wenjuan; Ni, Anping

    2015-01-01

    Background The hepatitis B, hepatitis C, human immunodeficiency viruses and Treponema pallidum are important causes of infectious diseases concern to public health. Methods Between 2010 and 2014, we used an automated chemiluminescence microparticle immunoassay to detect the hepatitis B, hepatitis C, and human immunodeficiency viruses as well as Treponema pallidum (the rapid plasma regain test was used in 2010–2011). Positive human immunodeficiency virus tests were confirmed via western blotting. Results Among 416,130 subjects, the seroprevalences for hepatitis B virus, hepatitis C virus, human immunodeficiency virus, and Treponema pallidum were 5.72%, 1.23%, 0.196%, and 0.76%, respectively. Among 671 patients with positive human immunodeficiency virus results, 392 cases were confirmed via western blotting. Hepatitis B and human immunodeficiency virus infections were more frequent in men (7.78% and 0.26%, respectively) than in women (4.45% and 0.021%, respectively). The hepatitis B and C virus seroprevalences decreased from 6.21% and 1.58%, respectively, in 2010, to 5.37% and 0.988%, respectively, in 2014. The human immunodeficiency virus seroprevalence increased from 0.04% in 2010 to 0.17% in 2014, and was elevated in the Infectious Disease (2.65%), Emergency (1.71%), and Dermatology and Sexually Transmitted Diseases (1.12%) departments. The specificity of the human immunodeficiency virus screening was 71.4%. The false positive rates for the Treponema pallidum screening tests increased in patients who were 60–70 years old. The co-infection rates for the hepatitis C and human immunodeficiency viruses were 0.47% in hepatitis C virus-positive patients and 7.33% in human immunodeficiency virus-positive patients. Conclusions During 2010–2014, hepatitis B virus and human immunodeficiency virus infections were more frequent among men at our institution. Although the seroprevalences of hepatitis B and C viruses decreased, the seroprevalence of human immunodeficiency

  9. CpG adjuvant enhances the mucosal immunogenicity and efficacy of a Treponema pallidum DNA vaccine in rabbits

    PubMed Central

    Zhao, Feijun; Liu, Shuangquan; Zhang, Xiaohong; Yu, Jian; Zeng, Tiebing; Gu, Weiming; Cao, Xunyu; Chen, Xi; Wu, Yimou

    2013-01-01

    Objectives: The protective response against Treponema pallidum (Tp) infection of a DNA vaccine enhanced by an adjuvant CpG ODN was investigated. Results: The mucosal adjuvant CpG ODN enhanced the production of higher levels of anti-TpGpd antibodies induced by pcD/Gpd-IL-2 in rabbits. It also resulted in higher levels of secretion of IL-2 and IFN-γ, and facilitated T cell proliferation and differentiation (p < 0.05). No significant difference about testing index above-mentioned was found in the intranasal immunization group of pcD/Gpd-IL-2 vaccine adjuvanted by CpG ODN when compared with the immunization by pcD/Gpd-IL-2 vaccine intramuscular injection alone (p > 0.05). Furthermore, CpG ODN stimulated the production of mucosa-specific anti-sIgA antibodies and resulted in the lowest Tp-positive rate (6.7%) for Tp-infection of skin lesions and the lowest rates (8.3%) of ulceration lesions, thus achieving better protective effects. Methods: New Zealand rabbits were immunized with the eukaryotic vector encoding recombinant pcD/Gpd-IL-2 using intramuscular multi-injection or together with mucosal enhancement via a nasal route. The effect of the mucosal adjuvant CpG ODN was examined. Conclusions:The CpG ODN adjuvant significantly enhances the humoral and cellular immune effects of the immunization by pcD/Gpd-IL-2 with mucosal enhancement via nasal route. It also stimulates strong mucosal immune effects, thus initiating more efficient immune-protective effects. PMID:23563515

  10. Characterization of Treponema pallidum Particle Agglutination Assay-Negative Sera following Screening by Treponemal Total Antibody Enzyme Immunoassays ▿

    PubMed Central

    Maple, P. A. C.; Ratcliffe, D.; Smit, E.

    2010-01-01

    Following a laboratory audit, a significant number of Treponema pallidum particle agglutination assay (TPPA)-negative sera were identified when TPPA was used as a confirmatory assay of syphilis enzyme immunoassay (EIA) screening-reactive sera (SSRS). Sera giving such discrepant results were further characterized to assess their significance. A panel of 226 sera was tested by the Abbott Murex ICE Syphilis EIA and then by the Newmarket Syphilis EIA II. TPPA testing was performed on 223 sera. Further testing by the Venereal Disease Research Laboratory (VDRL) test, the Mercia Syphilis IgM EIA, the fluorescent treponemal antibody (FTA-ABS) assay, and INNO-LIA immunoblotting was undertaken in discrepant cases. One hundred eighty-seven of 223 (83.8%) SSRS were TPPA reactive, while 26 (11.6%) sera which were reactive in both the ICE and Newmarket EIAs were nonreactive by TPPA. The majority (68%) of the TPPA-discrepant sera were from HIV-positive patients and did not represent early acute cases, based on previous or follow-up samples, which were available for 22/26 samples. FTA-ABS testing was performed on 24 of these sera; 14 (58.3%) were FTA-ABS positive, and 10 (41.7%) were FTA-ABS negative. Twenty-one of these 26 sera were tested by INNO-LIA, and an additional 4 FTA-ABS-negative samples were positive. In this study, significant numbers (18/26) of SSRS- and TPPA-negative sera were shown by further FTA-ABS and LIA (line immunoblot assay) testing to be positive. The reason why certain sera are negative by TPPA but reactive by treponemal EIA and other syphilis confirmatory assays is not clear, and these initial findings should be further explored. PMID:20844087