Sample records for par neutrons rapides

  1. L'analyse par activation de neutrons de réacteur

    NASA Astrophysics Data System (ADS)

    Meyer, G.

    2003-02-01

    Quand les neutrons traversent la matière, certains sont transmis sans interaction, les autres interagissent avec le milieu traversé par diffusion et par absorption. Ce phénomène d'absorption est utilisé pour se protéger des neutrons, mais aussi pour les détecter; il peut également être utilisé pour identifier les noyaux “absorbants" et ainsi analyser le milieu traversé. En effet par différentes réactions nucléaires (n,γ), (n,p), (n,α), (n,fission), on obtient des noyaux résiduels qui sont souvent radioactifs; on dit que l'échantillon est “activé". Si l'on connaît le rendement d'activation et donc le pourcentage de noyaux ainsi “transmutés", les mesures de radioactivité induite vont permettre de déterminer la composition de l'échantillon irradié. Cette méthode dite d'analyse par activation neutronique est pratiquée depuis la découverte du neutron. Elle a permis grâce à sa sélectivité et à sa sensibilité d'avoir accès au domaine des traces et des ultra-traces dans des champs d'application très divers comme la métallurgie, l'archéologie, la biologie, la géochimie etc...

  2. Recuit thermique rapide de semi-conducteur par énergie micro-onde

    NASA Astrophysics Data System (ADS)

    Covas, M.; Gay, H. C.

    1993-05-01

    This paper proposes a new technique for rapid thermal annealing of semi-conductors. This technique is based on microwave energy, and offers the same advantages as the rapid thermal annealing by incoherent light, in terms of rapidity, and contamination. However, our technique reduces considerably the required energy for the annealing process. This technique has been compared to the rapid thermal by incoherent light: lab experiments, carried out on boron implanted silicon samples, showed that a power gain ratio of about 10 can be achieved. Nous proposons une méthode de recuit thermique rapide du silicium par énergie micro-onde. Cette technique offre les mêmes avantages que les traitements thermiques rapides par lumière incohérente, c'est-à-dire des durées de chauffage très brèves, limitant ainsi la diffusion des dopants, et un traitement plaquette par plaquette : les risques de contamination de tout un lot sont ainsi éliminés. De plus notre méthode requiert une faible énergie : pour parvenir à des recuits de qualité similaire à celle obtenue dans des fours de recuit rapide à lampes il faut un flux de puissance 10 fois plus faible.

  3. Gravitational radiation from rapidly rotating nascent neutron stars

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Shapiro, Stuart L.

    1995-01-01

    We study the secular evolution and gravitational wave signature of a newly formed, rapidly rotating neutron star. The neutron star may arise from core collapse in a massive star or from the accretion-induced collapse of a white dwarf. After a brief dynamical phase, the nascent neutron star settles into an axisymmetric, secularly unstable state. Gravitational radiation drives the star to a nonaxisymmetric, stationary equilibrium configuration via the bar-mode instability. The emitted quasi-periodic gravitational waves have a unique signature: the wave frequency sweeps downward from a few hundred Hertz to zero, while the wave amplitude increase from zero to a maximum and then decays back to zero. Such a wave signal could detected by broadband gravitational wave interferometers currently being constructed. We also characterize two other types of gravitational wave signals that could arise in principle from a rapidly rotating, secularly unstable neutron star: a high-frequency (f greater than or approximately = 1000 Hz) wave which increases the pattern-speed of the star, and a wave that actually increases the angular momentum of the star.

  4. Triaxial instabilities in rapidly rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Basak, Arkadip

    2018-06-01

    Viscosity driven bar mode secular instabilities of rapidly rotating neutron stars are studied using LORENE/Nrotstar code. These instabilities set a more rigorous limit to the rotation frequency of a neutron star than the Kepler frequency/mass-shedding limit. The procedure employed in the code comprises of perturbing an axisymmetric and stationary configuration of a neutron star and studying its evolution by constructing a series of triaxial quasi-equilibrium configurations. Symmetry breaking point was found out for Polytropic as well as 10 realistic equations of states (EOS) from the CompOSE data base. The concept of piecewise polytropic EOSs has been used to comprehend the rotational instability of Realistic EOSs and validated with 19 different Realistic EOSs from CompOSE. The possibility of detecting quasi-periodic gravitational waves from viscosity driven instability with ground-based LIGO/VIRGO interferometers is also discussed very briefly.

  5. Rapid burster - a weakly magnetized neutron star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanawa, T.; Hirotani, K.; Kawai, N.

    1989-01-01

    The magnetic field of a neutron star involved in the rapid burster MXB 1730-335 is studied using a MHD instability model for type II bursts. It is suggested that the magnetic field on the surface is about 10 to the 8th G. The radius of the magnetosphere is estimated to be about 10 km. Observational evidence supporting this hypothesis is examined. 30 references.

  6. Estradiol attenuates EGF-induced rapid uPAR mobilization and cell migration via the G-protein-coupled receptor 30 in ovarian cancer cells.

    PubMed

    Henic, Emir; Noskova, Vera; Høyer-Hansen, Gunilla; Hansson, Stefan; Casslén, Bertil

    2009-02-01

    Epidermal growth factor (EGF) stimulates proliferation and migration in ovarian cancer cells, and high tumor expression of the EGF system correlates with poor prognosis. Epidermal growth factor upregulates urokinase plasminogen activator receptor (uPAR) on the cell surface via 3 distinct mechanisms: rapid mobilization of uPAR from detergent-resistant domains, increased mRNA, and decreased degradation. G-protein-coupled receptor 30 (GPR30) is a newly identified membrane estrogen receptor (ER).The objective of this study was to explore the effects of 17beta-estradiol (E(2)) on uPAR expression and cell migration in ovarian cancer cells and further to identify the ER involved.We used 7 ovarian cancer cell lines, cell migration assay, cellular binding of (125)I-uPA, cellular degradation of (125)I-uPA/PAI-1 complex, enzyme-linked immunosorbent assay for uPAR, solid-phase enzyme immunoassay for ERalpha, and quantitative polymerase chain reaction. Estradiol attenuates the stimulatory effect of EGF on cell migration and uPAR expression. Specifically, E(2) reduces the very rapid increase of detergent extractable uPAR, which occurs within minutes of EGF stimulation and probably represents mobilization of uPAR from detergent-resistant domains such as lipid rafts. Estradiol influenced neither the amount of uPAR mRNA nor the rate of uPAR degradation or solubilization. The nuclear ER antagonists ICI 182780 and tamoxifen, which are GPR30 agonists, as well as the specifically constructed GPR30 agonist G1, mimicked the effect of E(2) on uPAR expression and cell migration. OVCAR-3 cells express mRNA for GPR30.Estradiol attenuates EGF-induced mobilization of ligated uPAR from detergent-resistant domains and subsequent migration in ovarian cancer cells. The response to various ER ligands indicates that this effect is mediated via the membrane ER GPR30.

  7. HOW CAN NEWLY BORN RAPIDLY ROTATING NEUTRON STARS BECOME MAGNETARS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Quan; Yu, Yun-Wei, E-mail: yuyw@mail.ccnu.edu.cn

    2014-05-10

    In a newly born (high-temperature and Keplerian rotating) neutron star, r-mode instability can lead to stellar differential rotation, which winds the seed poloidal magnetic field (∼10{sup 11} G) to generate an ultra-high (∼10{sup 17} G) toroidal field component. Subsequently, by succumbing to the Tayler instability, the toroidal field could be partially transformed into a new poloidal field. Through such dynamo processes, the newly born neutron star with sufficiently rapid rotation could become a magnetar on a timescale of ∼10{sup 2} {sup –} {sup 3} s, with a surface dipolar magnetic field of ∼10{sup 15} G. Accompanying the field amplification, the star could spinmore » down to a period of ∼5 ms through gravitational wave radiation due to the r-mode instability and, in particular, the non-axisymmetric stellar deformation caused by the toroidal field. This scenario provides a possible explanation for why the remnant neutron stars formed in gamma-ray bursts and superluminous supernovae could be millisecond magnetars.« less

  8. General relativistic spectra of accretion discs around rapidly rotating neutron stars: effect of light bending

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sudip; Bhattacharya, Dipankar; Thampan, Arun V.

    2001-08-01

    We present computed spectra, as seen by a distant observer, from the accretion disc around a rapidly rotating neutron star. Our calculations are carried out in a fully general relativistic framework, with an exact treatment of rotation. We take into account the Doppler shift, gravitational redshift and light-bending effects in order to compute the observed spectrum. We find that light bending significantly modifies the high-energy part of the spectrum. Computed spectra for slowly rotating neutron stars are also presented. These results would be important for modelling the observed X-ray spectra of low-mass X-ray binaries containing fast-spinning neutron stars.

  9. RAPIDLY EVOLVING AND LUMINOUS TRANSIENTS DRIVEN BY NEWLY BORN NEUTRON STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yun-Wei; Li, Shao-Ze; Dai, Zi-Gao, E-mail: yuyw@mail.ccnu.edu.cn

    2015-06-10

    We provide a general analysis on the properties of the emitting material of some rapidly evolving and luminous transients discovered recently with the Pan-STARRS1 Medium Deep Survey. It was found that these transients are probably produced by a low-mass non-relativistic outflow that is continuously powered by a newly born, rapidly spinning, and highly magnetized neutron star (NS). Such a system could originate from an accretion-induced collapse of a white dwarf or a merger of an NS–NS binary. Therefore, observations of these transients would be helpful for constraining white dwarf and NS physics and/or for searching and identifying gravitational wave signals frommore » the mergers.« less

  10. Rapidly rotating neutron stars in general relativity: Realistic equations of state

    NASA Technical Reports Server (NTRS)

    Cook, Gregory B.; Shapiro, Stuart L.; Teukolsky, Saul A.

    1994-01-01

    We construct equilibrium sequences of rotating neutron stars in general relativity. We compare results for 14 nuclear matter equations of state. We determine a number of important physical parameters for such stars, including the maximum mass and maximum spin rate. The stability of the configurations to quasi-radial perturbations is assessed. We employ a numerical scheme particularly well suited to handle rapid rotation and large departures from spherical symmetry. We provide an extensive tabulation of models for future reference. Two classes of evolutionary sequences of fixed baryon rest mass and entropy are explored: normal sequences, which behave very much like Newtonian sequences, and supramassive sequences, which exist for neutron stars solely because of general relativistic effects. Adiabatic dissipation of energy and angular momentum causes a star to evolve in quasi-stationary fashion along an evolutionary sequence. Supramassive sequences have masses exceeding the maximum mass of a nonrotating neutron star. A supramassive star evolves toward eventual catastrophic collapse to a black hole. Prior to collapse, the star actually spins up as it loses angular momentum, an effect that may provide an observable precursor to gravitational collapse to a black hole.

  11. Possibility of a crossed-beam experiment involving slow-neutron capture by unstable nuclei - ``rapid-process tron''

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Katayama, I.; Uwamino, Y.

    1993-02-01

    The possibility of a crossed beam facility of slow neutrons capturing unstable nuclei is examined in connection with the Japanese Hadron Project. With a pulsed proton beam of 50 Hz repetition and with a 100 μA average beam current, one obtains a spallation neutron source of 2.4 × 10 8 thermal neutrons/cm 3/spill over a 60 cm length with a 3 ms average duration time by using a D 2O moderator. By confining radioactive nuclei of 10 9 ions in a beam circulation ring of 0.3 MHz revolution frequency, so that nuclei pass through the neutron source, one obtains a collision luminosity of 3.9 × 10 24/cm 2/s. A new research domain aimed at studying rapid processes in nuclear genetics in a laboratory will be created.

  12. Techniques for measuring intercepted and absorbed PAR in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.

    1984-01-01

    The quantity of radiation potentially available for photosynthesis that is captured by the crop is best described as absorbed photosynthetically active radiation (PAR). Absorbed PAR (APAR) is the difference between descending and ascending fluxes. The four components of APAR were measured above and within two planting densities of corn (Zea mays L.) and several methods of measuring and estimating APAR were examined. A line quantum sensor that spatially averages the photosynthetic photon flux density provided a rapid and portable method of measuring APAR. PAR reflectance from the soil (Typic Argiaquoll) surface decreased from 10% to less than 1% of the incoming PAR as the canopy cover increased. PAR reflectance from the canopy decreased to less than 3% at maximum vegetative cover. Intercepted PAR (1 - transmitted PAR) generally overestimated absorbed PAR by less than 4% throughout most of the growing season. Thus intercepted PAR appears to be a reasonable estimate of absorbed PAR.

  13. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    NASA Astrophysics Data System (ADS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2016-11-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I-Love-Q relations.

  14. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S., E-mail: daniela.doneva@uni-tuebingen.de, E-mail: yazad@phys.uni-sofia.bg

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly andmore » rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I -Love- Q relations.« less

  15. Formulation and experimental evaluation of closed-form control laws for the rapid maneuvering of reactor neutronic power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, J.A.

    1989-09-01

    This report describes both the theoretical development and the experimental evaluation of a novel, robust methodology for the time-optimal adjustment of a reactor's neutronic power under conditions of closed-loop digital control. Central to the approach are the MIT-SNL Period-Generated Minimum Time Control Laws' which determine the rate at which reactivity should be changed in order to cause a reactor's neutronic power to conform to a specified trajectory. Using these laws, reactor power can be safely raised by five to seven orders of magnitude in a few seconds. The MIT-SNL laws were developed to facilitate rapid increases of neutronic power onmore » spacecraft reactors operating in an SDI environment. However, these laws are generic and have other applications including the rapid recovery of research and test reactors subsequent to an unanticipated shutdown, power increases following the achievement of criticality on commercial reactors, power adjustments on commercial reactors so as to minimize thermal stress, and automated startups. The work reported here was performed by the Massachusetts Institute of Technology under contract to the Sandia National Laboratories. Support was also provided by the US Department of Energy's Division of University and Industry Programs. The work described in this report is significant in that a novel solution to the problem of time-optimal control of neutronic power was identified, in that a rigorous description of a reactor's dynamics was derived in that the rate of change of reactivity was recognized as the proper control signal, and in that extensive experimental trials were conducted of these newly developed concepts on actual nuclear reactors. 43 refs., 118 figs., 11 tabs.« less

  16. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  17. A study of accretion discs around rapidly rotating neutron stars in general relativity and its applications to four low mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sudip

    2002-02-01

    We calculate the accretion disc temperature profiles, disc luminosities and boundary layer luminosities for rapidly rotating neutron stars considering the full effect of general relativity. We compare the theoretical values of these quantities with their values inferred from EXOSAT data for four low mass X-ray binary sources: XB 1820-30, GX 17+2, GX 9+1 and GX 349+2 and constrain the values of several properties of these sources. According to our calculations, the neutron stars in GX 9+1 and GX 349+2 are rapidly rotating and stiffer equations of state are unfavoured.

  18. The Rapid Burster

    NASA Image and Video Library

    2017-01-31

    These four images show an artist's impression of gas accreting onto the neutron star in the binary system MXB 1730-335, also known as the "Rapid Burster." In such a binary system, the gravitational pull of the dense neutron star is stripping gas away from its stellar companion (a low-mass star, not shown in these images). The gas forms an accretion disk and spirals towards the neutron star. Observations of the Rapid Burster using three X-ray space telescopes -- NASA's NuSTAR and Swift, and ESA's XMM-Newton -- have revealed what happens around the neutron star before and during a so-called "type-II" burst. These bursts are sudden, erratic and extremely intense releases of X-rays that liberate enormous amounts of energy during periods when very little emission occurs otherwise. Before the burst, the fast-spinning magnetic field of the neutron star keeps the gas flowing from the companion star at bay, preventing it from reaching closer to the neutron star and effectively creating an inner edge at the center of the disk (Figure 1, panel 1). During this phase, only small amounts of gas leak towards the neutron star. However, as the gas continues to flow and accumulate near this edge, it spins faster and faster. http://photojournal.jpl.nasa.gov/catalog/PIA21418

  19. Temperature profiles of accretion discs around rapidly rotating strange stars in general relativity: A comparison with neutron stars

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Thampan, A. V.; Bombaci, I.

    2001-06-01

    We compute the temperature profiles of accretion discs around rapidly rotating strange stars, using constant gravitational mass equilibrium sequences of these objects, considering the full effect of general relativity. Beyond a certain critical value of stellar angular momentum (J), we observe the radius (r_orb) of the innermost stable circular orbit (ISCO) to increase with J (a property seen neither in rotating black holes nor in rotating neutron stars). The reason for this is traced to the crucial dependence of dr_orb/dJ on the rate of change of the radial gradient of the Keplerian angular velocity at r_orb with respect to J. The structure parameters and temperature profiles obtained are compared with those of neutron stars, as an attempt to provide signatures for distinguishing between the two. We show that when the full gamut of strange star equation of state models, with varying degrees of stiffness are considered, there exists a substantial overlap in properties of both neutron stars and strange stars. However, applying accretion disc model constraints to rule out stiff strange star equation of state models, we notice that neutron stars and strange stars exclusively occupy certain parameter spaces. This result implies the possibility of distinguishing these objects from each other by sensitive observations through future X-ray detectors.

  20. PAR-1 and PAR-2 Expression Is Enhanced in Inflamed Odontoblast Cells.

    PubMed

    Alvarez, M M P; Moura, G E; Machado, M F M; Viana, G M; de Souza Costa, C A; Tjäderhane, L; Nader, H B; Tersariol, I L S; Nascimento, F D

    2017-12-01

    Protease-activated receptors (PARs) are G protein-coupled receptors, which are activated by proteolytical cleavage of the amino-terminus and act as sensors for extracellular proteases. We hypothesized that PAR-1 and PAR-2 can be modulated by inflammatory stimulus in human dental pulp cells. PAR-1 and PAR-2 gene expression in human pulp tissue and MDPC-23 cells were analyzed by quantitative polymerase chain reaction. Monoclonal PAR-1 and PAR-2 antibodies were used to investigate the cellular expression of these receptors using Western blot, flow cytometry, and confocal microscopy in MDPC-23 cells. Immunofluorescence assays of human intact and carious teeth were performed to assess the presence of PAR-1 and PAR-2 in the dentin-pulp complex. The results show for the first time that human odontoblasts and MDPC-23 cells constitutively express PAR-1 and PAR-2. PAR-2 activation increased significantly the messenger RNA expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MMP-14 in MDPC-23 cells ( P < 0.05), while the expression of these enzymes decreased significantly in the PAR-1 agonist group ( P < 0.05). The high-performance liquid chromatography and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis showed the presence of MMP-13 activity cleaving PAR-1 at specific, noncanonical site TLDPRS 42 ↓F 43 LL in human dental pulp tissues. Also, we detected a presence of a trypsin-like activity cleaving PAR-2 at canonical site SKGR 20 ↓S 21 LIGRL in pulp tissues. Confocal microscopy analysis of human dentin-pulp complex showed intense positive staining of PAR-1 and PAR-2 in the odontoblast processes in dentinal tubules of carious teeth compared to intact ones. The present results support the hypothesis of activation of the upregulated PAR-1 and PAR-2 by endogenous proteases abundant during the inflammatory response in dentin-pulp complex.

  1. Protease-activated receptor (PAR)-2 is required for PAR-1 signalling in pulmonary fibrosis

    PubMed Central

    Lin, Cong; von der Thüsen, Jan; Daalhuisen, Joost; ten Brink, Marieke; Crestani, Bruno; van der Poll, Tom; Borensztajn, Keren; Spek, C Arnold

    2015-01-01

    Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease of unknown aetiology. Compelling evidence suggests that both protease-activated receptor (PAR)-1 and PAR-2 participate in the development of pulmonary fibrosis. Previous studies have shown that bleomycin-induced lung fibrosis is diminished in both PAR-1 and PAR-2 deficient mice. We thus have been suggested that combined inactivation of PAR-1 and PAR-2 would be more effective in blocking pulmonary fibrosis. Human and murine fibroblasts were stimulated with PAR-1 and PAR-2 agonists in the absence or presence of specific PAR-1 or PAR-2 antagonists after which fibrotic markers like collagen and smooth muscle actin were analysed by Western blot. Pulmonary fibrosis was induced by intranasal instillation of bleomycin into wild-type and PAR-2 deficient mice with or without a specific PAR-1 antagonist (P1pal-12). Fibrosis was assessed by hydroxyproline quantification and (immuno)histochemical analysis. We show that specific PAR-1 and/or PAR-2 activating proteases induce fibroblast migration, differentiation and extracellular matrix production. Interestingly, however, combined activation of PAR-1 and PAR-2 did not show any additive effects on these pro-fibrotic responses. Strikingly, PAR-2 deficiency as well as pharmacological PAR-1 inhibition reduced bleomycin-induced pulmonary fibrosis to a similar extent. PAR-1 inhibition in PAR-2 deficient mice did not further diminish bleomycin-induced pulmonary fibrosis. Finally, we show that the PAR-1-dependent pro-fibrotic responses are inhibited by the PAR-2 specific antagonist. Targeting PAR-1 and PAR-2 simultaneously is not superior to targeting either receptor alone in bleomycin-induced pulmonary fibrosis. We postulate that the pro-fibrotic effects of PAR-1 require the presence of PAR-2. PMID:25689283

  2. Protease-activated receptor (PAR)-2 is required for PAR-1 signalling in pulmonary fibrosis.

    PubMed

    Lin, Cong; von der Thüsen, Jan; Daalhuisen, Joost; ten Brink, Marieke; Crestani, Bruno; van der Poll, Tom; Borensztajn, Keren; Spek, C Arnold

    2015-06-01

    Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease of unknown aetiology. Compelling evidence suggests that both protease-activated receptor (PAR)-1 and PAR-2 participate in the development of pulmonary fibrosis. Previous studies have shown that bleomycin-induced lung fibrosis is diminished in both PAR-1 and PAR-2 deficient mice. We thus have been suggested that combined inactivation of PAR-1 and PAR-2 would be more effective in blocking pulmonary fibrosis. Human and murine fibroblasts were stimulated with PAR-1 and PAR-2 agonists in the absence or presence of specific PAR-1 or PAR-2 antagonists after which fibrotic markers like collagen and smooth muscle actin were analysed by Western blot. Pulmonary fibrosis was induced by intranasal instillation of bleomycin into wild-type and PAR-2 deficient mice with or without a specific PAR-1 antagonist (P1pal-12). Fibrosis was assessed by hydroxyproline quantification and (immuno)histochemical analysis. We show that specific PAR-1 and/or PAR-2 activating proteases induce fibroblast migration, differentiation and extracellular matrix production. Interestingly, however, combined activation of PAR-1 and PAR-2 did not show any additive effects on these pro-fibrotic responses. Strikingly, PAR-2 deficiency as well as pharmacological PAR-1 inhibition reduced bleomycin-induced pulmonary fibrosis to a similar extent. PAR-1 inhibition in PAR-2 deficient mice did not further diminish bleomycin-induced pulmonary fibrosis. Finally, we show that the PAR-1-dependent pro-fibrotic responses are inhibited by the PAR-2 specific antagonist. Targeting PAR-1 and PAR-2 simultaneously is not superior to targeting either receptor alone in bleomycin-induced pulmonary fibrosis. We postulate that the pro-fibrotic effects of PAR-1 require the presence of PAR-2. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Rapid Neutrino Cooling in the Neutron Star MXB 1659-29.

    PubMed

    Brown, Edward F; Cumming, Andrew; Fattoyev, Farrukh J; Horowitz, C J; Page, Dany; Reddy, Sanjay

    2018-05-04

    We show that the neutron star in the transient system MXB 1659-29 has a core neutrino luminosity that substantially exceeds that of the modified Urca reactions (i.e., n+n→n+p+e^{-}+ν[over ¯]_{e} and inverse) and is consistent with the direct Urca (n→p+e^{-}+ν[over ¯]_{e} and inverse) reaction occurring in a small fraction of the core. Observations of the thermal relaxation of the neutron star crust following 2.5 yr of accretion allow us to measure the energy deposited into the core during accretion, which is then reradiated as neutrinos, and infer the core temperature. For a nucleonic core, this requires that the nucleons are unpaired and that the proton fraction exceeds a critical value to allow the direct Urca reaction to proceed. The neutron star in MXB 1659-29 is the first with a firmly detected thermal component in its x-ray spectrum that needs a fast neutrino-cooling process. Measurements of the temperature variation of the neutron star core during quiescence would place an upper limit on the core specific heat and serve as a check on the fraction of the neutron star core in which nucleons are unpaired.

  4. Rapid Neutrino Cooling in the Neutron Star MXB 1659-29

    NASA Astrophysics Data System (ADS)

    Brown, Edward F.; Cumming, Andrew; Fattoyev, Farrukh J.; Horowitz, C. J.; Page, Dany; Reddy, Sanjay

    2018-05-01

    We show that the neutron star in the transient system MXB 1659-29 has a core neutrino luminosity that substantially exceeds that of the modified Urca reactions (i.e., n +n →n +p +e-+ν¯ e and inverse) and is consistent with the direct Urca (n →p +e-+ν¯e and inverse) reaction occurring in a small fraction of the core. Observations of the thermal relaxation of the neutron star crust following 2.5 yr of accretion allow us to measure the energy deposited into the core during accretion, which is then reradiated as neutrinos, and infer the core temperature. For a nucleonic core, this requires that the nucleons are unpaired and that the proton fraction exceeds a critical value to allow the direct Urca reaction to proceed. The neutron star in MXB 1659-29 is the first with a firmly detected thermal component in its x-ray spectrum that needs a fast neutrino-cooling process. Measurements of the temperature variation of the neutron star core during quiescence would place an upper limit on the core specific heat and serve as a check on the fraction of the neutron star core in which nucleons are unpaired.

  5. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system

    PubMed Central

    Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian

    2015-01-01

    The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA–nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos—an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria. PMID:26647183

  6. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system.

    PubMed

    Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian

    2015-12-22

    The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos-an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.

  7. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system

    NASA Astrophysics Data System (ADS)

    Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian

    The segregation of DNA prior to cell division is essential for faithful genetic inheritance. In many bacteria, segregation of the low-copy-number plasmids involves an active partition system composed of ParA ATPase and its stimulator protein ParB. Recent experiments suggest that ParA/ParB system motility is driven by a diffusion-ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. We develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB bound cargo. Paradoxically, the resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work sheds light on a new emergent phenomenon in which non-motor proteins work collectively via mechanochemical coupling to propel cargos -- an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.

  8. The Universality of the Rapid Neutron-capture Process Revealed by a Possible Disrupted Dwarf Galaxy Star

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.; Schlaufman, Kevin C.

    2017-12-01

    The rapid neutron-capture or r-process is thought to produce the majority of the heavy elements (Z> 30) in extremely metal-poor stars. The same process is also responsible for a significant fraction of the heavy elements in the Sun. This universality of the r-process is one of its characteristic features, as well as one of the most important clues to its astrophysical origin. We report the discovery of an extremely metal-poor field giant with [{Sr},{Ba}/{{H}}]≈ -6.0 and [{Sr},{Ba}/{Fe}]≈ -3.0, the lowest abundances of strontium and barium relative to iron ever observed. Despite its low abundances, the star 2MASS J151113.24-213003.0 has [{Sr}/{Ba}]=-0.11+/- 0.14, therefore its neutron-capture abundances are consistent with the main solar r-process pattern that has [{Sr}/{Ba}]=-0.25. It has been suggested that extremely low neutron-capture abundances are a characteristic of dwarf galaxies, and we find that this star is on a highly eccentric orbit with an apocenter ≳100 kpc that lies in the disk of satellites in the halo of the Milky Way. We show that other extremely metal-poor stars with low [Sr, Ba/H] and [Sr, Ba/Fe] plus solar [Sr/Ba] tend to have orbits with large apocenters, consistent with a dwarf galaxy origin for this class of object. The nucleosynthesis event that produced the neutron-capture elements in 2MASS J151113.24-213003.0 must produce both strontium and barium together in the solar ratio. We exclude contributions from the s-process in intermediate-mass asymptotic giant branch or fast-rotating massive metal-poor stars, pair-instability supernovae, the weak r-process, and neutron-star mergers. We argue that the event was a Pop III or extreme Pop II core-collapse supernova explosion. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  9. Removal of focal segmental glomerulosclerosis (FSGS) factor suPAR using CytoSorb.

    PubMed

    Schenk, Heiko; Müller-Deile, Janina; Schmitt, Roland; Bräsen, Jan Hinrich; Haller, Hermann; Schiffer, Mario

    2017-12-01

    Treatment of primary focal segmental glomerulosclerosis (FSGS) and its recurrence after kidney transplantation associated with rapid deterioration of kidney function remains to be challenging despite advances in immunosuppressive therapy. The presence of circulating factors has been postulated to be a pivotal player in the pathogenesis of FSGS, although suPAR and CLCF-1 have been identified as the most promising causative factors. The potential therapeutic effect of suPAR elimination in an FSGS patient using CytoSorb, a hemoadsorption device that gained attention in the cytokine elimination in septic patients, was studied. Efficiency of total plasma exchange to remove suPAR was determined. CytoSorb hemoadsorption caused a 27.33% reduction of the suPAR level in a single treatment, whereas total plasma exchange showed a suPAR level reduction of 25.12% (n = 3; 95% confidence interval, 0.2777-0.8090; P < 0.01), which may indicate therapeutic potential in the treatment of primary FSGS and its recurrence in a kidney transplant. © 2017 Wiley Periodicals, Inc.

  10. Old and new neutron stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10/sup 38/s/sup -1/ of 10/sup 12/ eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, amore » substantial fraction of the 10/sup 8/ old dead pulsars in the Galaxy are the most probable source for the isotropically distributed ..gamma..-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables.« less

  11. Presence de Carbone-13 dans les elements combustibles de type (U,Pu)O 2 irradies en reacteur rapide

    NASA Astrophysics Data System (ADS)

    Kryger, Bernard; Hagemann, Robert

    1982-06-01

    Du carbone-13 produit par la réaction de capture neutronique 168O + 10n → 136C + 42He se forme dans les combustibles de type oxyde irradiés en neutrons rapides. Cette réaction, dont le seuil d'énergie se situe à 2.35 MeV, conduit à la formation d'une quantité de carbone-13 qui peut varier notablement suivant le spectre neutronique du réacteur (entre 20 et 40 × 10 -6g 13C/g (U,Pu)O 2 pour une fluence de 2 × 10 23 n/cm 2). DES mesures effectuées sur le combustible et la gaine par spectrométrie de masse après irradiation montrent qu'une fraction égale ou supérieure à la moitié du carbone-13 produit dans l'oxyde peut être transférée dans la gaine. Un tel comportement nous fait considérer le carbone-13 comme un véritable marqueur du carbone plus généralement contenu dans l'oxyde et, à ce titre, la détection de cet isotope devrait contribuer à élucider tout particulièrement les mécanismes de carburation de la gaine par les combustibles (U,Pu)O 2 des réacteurs surgénérateurs.

  12. Que peut-on voir avec des neutrons? Une introduction pour des non spécialistes

    NASA Astrophysics Data System (ADS)

    Schweizer, J.

    2005-11-01

    Le neutron est une particule élémentaire qui a été découverte en 1932 par James Chadwick. Ses caractéristiques principales sont résumées dans le tableau I. Il a été utilisé pour la première fois par Clifford Shull en 1946 comme outil pour des expériences de diffusion. Cette technique s'est depuis constamment développée pour concerner tous les aspects de la matière condensée: physique, chimie, matériaux, biologie. Il s'agit d'un outil tout à fait exceptionnel car le neutron possède des propriétés uniques et particulièrement adaptées pour ces études.

  13. Phosphorylation of Mycobacterium tuberculosis ParB Participates in Regulating the ParABS Chromosome Segregation System

    PubMed Central

    Baronian, Grégory; Ginda, Katarzyna; Berry, Laurence; Cohen-Gonsaud, Martin; Zakrzewska-Czerwińska, Jolanta; Jakimowicz, Dagmara; Molle, Virginie

    2015-01-01

    Here, we present for the first time that Mycobacterium tuberculosis ParB is phosphorylated by several mycobacterial Ser/Thr protein kinases in vitro. ParB and ParA are the key components of bacterial chromosome segregation apparatus. ParB is a cytosolic conserved protein that binds specifically to centromere-like DNA parS sequences and interacts with ParA, a weak ATPase required for its proper localization. Mass spectrometry identified the presence of ten phosphate groups, thus indicating that ParB is phosphorylated on eight threonines, Thr32, Thr41, Thr53, Thr110, Thr195, and Thr254, Thr300, Thr303 as well as on two serines, Ser5 and Ser239. The phosphorylation sites were further substituted either by alanine to prevent phosphorylation or aspartate to mimic constitutive phosphorylation. Electrophoretic mobility shift assays revealed a drastic inhibition of DNA-binding by ParB phosphomimetic mutant compared to wild type. In addition, bacterial two-hybrid experiments showed a loss of ParA-ParB interaction with the phosphomimetic mutant, indicating that phosphorylation is regulating the recruitment of the partitioning complex. Moreover, fluorescence microscopy experiments performed in the surrogate Mycobacterium smegmatis ΔparB strain revealed that in contrast to wild type Mtb ParB, which formed subpolar foci similar to M. smegmatis ParB, phoshomimetic Mtb ParB was delocalized. Thus, our findings highlight a novel regulatory role of the different isoforms of ParB representing a molecular switch in localization and functioning of partitioning protein in Mycobacterium tuberculosis. PMID:25807382

  14. Phosphorylation of Mycobacterium tuberculosis ParB participates in regulating the ParABS chromosome segregation system.

    PubMed

    Baronian, Grégory; Ginda, Katarzyna; Berry, Laurence; Cohen-Gonsaud, Martin; Zakrzewska-Czerwińska, Jolanta; Jakimowicz, Dagmara; Molle, Virginie

    2015-01-01

    Here, we present for the first time that Mycobacterium tuberculosis ParB is phosphorylated by several mycobacterial Ser/Thr protein kinases in vitro. ParB and ParA are the key components of bacterial chromosome segregation apparatus. ParB is a cytosolic conserved protein that binds specifically to centromere-like DNA parS sequences and interacts with ParA, a weak ATPase required for its proper localization. Mass spectrometry identified the presence of ten phosphate groups, thus indicating that ParB is phosphorylated on eight threonines, Thr32, Thr41, Thr53, Thr110, Thr195, and Thr254, Thr300, Thr303 as well as on two serines, Ser5 and Ser239. The phosphorylation sites were further substituted either by alanine to prevent phosphorylation or aspartate to mimic constitutive phosphorylation. Electrophoretic mobility shift assays revealed a drastic inhibition of DNA-binding by ParB phosphomimetic mutant compared to wild type. In addition, bacterial two-hybrid experiments showed a loss of ParA-ParB interaction with the phosphomimetic mutant, indicating that phosphorylation is regulating the recruitment of the partitioning complex. Moreover, fluorescence microscopy experiments performed in the surrogate Mycobacterium smegmatis ΔparB strain revealed that in contrast to wild type Mtb ParB, which formed subpolar foci similar to M. smegmatis ParB, phoshomimetic Mtb ParB was delocalized. Thus, our findings highlight a novel regulatory role of the different isoforms of ParB representing a molecular switch in localization and functioning of partitioning protein in Mycobacterium tuberculosis.

  15. APPARATUS FOR CONTROLLING NEUTRONIC REACTORS

    DOEpatents

    Dietrich, J.R.; Harrer, J.M.

    1958-09-16

    A device is described for rapidly cortrolling the reactivity of an active portion of a reactor. The inveniion consists of coaxially disposed members each having circumferenital sections of material having dlfferent neutron absorbing characteristics and means fur moving the members rotatably and translatably relative to each other within the active portion to vary the neutron flux therein. The angular and translational movements of any member change the neutron flux shadowing effect of that member upon the other member.

  16. Architecture of the ParF*ParG protein complex involved in prokaryotic DNA segregation.

    PubMed

    Barillà, Daniela; Hayes, Finbarr

    2003-07-01

    The mechanism by which low copy number plasmids are segregated at cell division involves the concerted action of two plasmid-encoded proteins that assemble on a centromere-like site. This study explores the topology of the DNA segregation machinery specified by the parFG locus of TP228, a partition system which is phylogenetically distinct from more well-characterized archetypes. A variety of genetic, biochemical and biophysical strategies revealed that the ParG protein is dimeric. ParF, which is more closely related to the cell division regulator MinD than to the prototypical ParA partition protein of plasmid P1, is instead multimeric and its polymeric state appears to be modulated by ATP which correlates with the proposed ATP-binding activity of ParF. ParG interacts in a sequence-specific manner with the DNA region upstream of the parFG locus and this binding is modulated by ParF. Intriguingly, the ParF and ParG proteins form at least two types of discrete complex in the absence of this region suggesting that the assembly dynamics of these proteins onto DNA is intricate.

  17. ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation

    PubMed Central

    Donczew, Magdalena; Mackiewicz, Paweł; Wróbel, Agnieszka; Flärdh, Klas; Zakrzewska-Czerwińska, Jolanta

    2016-01-01

    In unicellular bacteria, the ParA and ParB proteins segregate chromosomes and coordinate this process with cell division and chromosome replication. During sporulation of mycelial Streptomyces, ParA and ParB uniformly distribute multiple chromosomes along the filamentous sporogenic hyphal compartment, which then differentiates into a chain of unigenomic spores. However, chromosome segregation must be coordinated with cell elongation and multiple divisions. Here, we addressed the question of whether ParA and ParB are involved in the synchronization of cell-cycle processes during sporulation in Streptomyces. To answer this question, we used time-lapse microscopy, which allows the monitoring of growth and division of single sporogenic hyphae. We showed that sporogenic hyphae stop extending at the time of ParA accumulation and Z-ring formation. We demonstrated that both ParA and ParB affect the rate of hyphal extension. Additionally, we showed that ParA promotes the formation of massive nucleoprotein complexes by ParB. We also showed that FtsZ ring assembly is affected by the ParB protein and/or unsegregated DNA. Our results indicate the existence of a checkpoint between the extension and septation of sporogenic hyphae that involves the ParA and ParB proteins. PMID:27248800

  18. Molecular analysis of ciprofloxacin resistance mechanisms in Malaysian ESBL-producing Klebsiella pneumoniae isolates and development of mismatch amplification mutation assays (MAMA) for rapid detection of gyrA and parC mutations.

    PubMed

    Al-Marzooq, Farah; Mohd Yusof, Mohd Yasim; Tay, Sun Tee

    2014-01-01

    Ninety-three Malaysian extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates were investigated for ciprofloxacin resistance. Two mismatch amplification mutation (MAMA) assays were developed and used to facilitate rapid detection of gyrA and parC mutations. The isolates were also screened for plasmid-mediated quinolone resistance (PMQR) genes including aac(6')-Ib-cr, qepA, and qnr. Ciprofloxacin resistance (MICs 4- ≥ 32  μ g/mL) was noted in 34 (37%) isolates, of which 33 isolates had multiple mutations either in gyrA alone (n = 1) or in both gyrA and parC regions (n = 32). aac(6')-Ib-cr was the most common PMQR gene detected in this study (n = 61), followed by qnrB and qnrS (n = 55 and 1, resp.). Low-level ciprofloxacin resistance (MICs 1-2  μ g/mL) was noted in 40 (43%) isolates carrying qnrB accompanied by either aac(6')-Ib-cr (n = 34) or a single gyrA 83 mutation (n = 6). Ciprofloxacin resistance was significantly associated with the presence of multiple mutations in gyrA and parC regions. While the isolates harbouring gyrA and/or parC alteration were distributed into 11 PFGE clusters, no specific clusters were associated with isolates carrying PMQR genes. The high prevalence of ciprofloxacin resistance amongst the Malaysian ESBL-producing K. pneumoniae isolates suggests the need for more effective infection control measures to limit the spread of these resistant organisms in the hospital.

  19. Neutron Activation Analysis of Water - A Review

    NASA Technical Reports Server (NTRS)

    Buchanan, John D.

    1971-01-01

    Recent developments in this field are emphasized. After a brief review of basic principles, topics discussed include sources of neutrons, pre-irradiation physical and chemical treatment of samples, neutron capture and gamma-ray analysis, and selected applications. Applications of neutron activation analysis of water have increased rapidly within the last few years and may be expected to increase in the future.

  20. Neutron-powered precursors of kilonovae

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Bauswein, Andreas; Goriely, Stephane; Kasen, Daniel

    2015-01-01

    The merger of binary neutron stars (NSs) ejects a small quantity of neutron-rich matter, the radioactive decay of which powers a day to week long thermal transient known as a kilonova. Most of the ejecta remains sufficiently dense during its expansion that all neutrons are captured into nuclei during the r-process. However, recent general relativistic merger simulations by Bauswein and collaborators show that a small fraction of the ejected mass (a few per cent, or ˜10-4 M⊙) expands sufficiently rapidly for most neutrons to avoid capture. This matter originates from the shocked-heated interface between the merging NSs. Here, we show that the β-decay of these free neutrons in the outermost ejecta powers a `precursor' to the main kilonova emission, which peaks on a time-scale of ˜ few hours following merger at U-band magnitude ˜22 (for an assumed distance of 200 Mpc). The high luminosity and blue colours of the neutron precursor render it a potentially important counterpart to the gravitational wave source, that may encode valuable information on the properties of the merging binary (e.g. NS-NS versus NS-black hole) and the NS equation of state. Future work is necessary to assess the robustness of the fast-moving ejecta and the survival of free neutrons in the face of neutrino absorptions, although the precursor properties are robust to a moderate amount of leptonization. Our results provide additional motivation for short latency gravitational wave triggers and rapid follow-up searches with sensitive ground-based telescopes.

  1. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    PubMed

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Rapid X-ray variability properties during the unusual very hard state in neutron-star low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wijnands, R.; Parikh, A. S.; Altamirano, D.; Homan, J.; Degenaar, N.

    2017-11-01

    Here, we study the rapid X-ray variability (using XMM-Newton observations) of three neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) during their recently proposed very hard spectral state. All our systems exhibit a strong to very strong noise component in their power density spectra (rms amplitudes ranging from 34 per cent to 102 per cent) with very low characteristic frequencies (as low as 0.01 Hz). These properties are more extreme than what is commonly observed in the canonical hard state of neutron-star low-mass X-ray binaries observed at X-ray luminosities similar to those we observe from our sources. This suggests that indeed the very hard state is a spectral-timing state distinct from the hard state, although we argue that the variability behaviour of IGR J18245-2452 is very extreme and possibly this source was in a very unusual state. We also compare our results with the rapid X-ray variability of the accreting millisecond X-ray pulsars IGR J00291+5934 and Swift J0911.9-6452 (also using XMM-Newton data) for which previously similar variability phenomena were observed. Although their energy spectra (as observed using the Swift X-ray telescope) were not necessarily as hard (i.e. for Swift J0911.9-6452) as for our other three sources, we conclude that likely both sources were also in very similar state during their XMM-Newton observations. This suggests that different sources that are found in this new state might exhibit different spectral hardness and one has to study both the spectral and the rapid variability to identify this unusual state.

  3. Une cryptococcose disséminée compliquant un traitement par prednisone et azathioprime d'un pemphigus vulgaire

    PubMed Central

    Wafa, Ammouri; Hicham, Harmouche; Yassir, Afifi; Zoubida, Tazi Mezalek; Mohamed, Adnaoui; Mohamed, Aouni; Amine, Hassani; Abdelaziz, Maaouni

    2011-01-01

    L'infection à cryptocoque est une complication redoutable chez les patients traités par immunosuppresseurs et dont l’évolution peut être rapidement fatal en cas de retard diagnostic. Nous rapportons le cas d'une patiente âgée de 70 ans, ayant des antécédents de pemphigus vulgaire traité par prednisone et azathioprime et admise dans le service de médecine Interne pour des nodules sous cutanés atypiques. Le diagnostic retenu était celui d'une cryptococcose disséminée. L’évolution était rapidement fatale malgré le traitement antifongique. PMID:22187617

  4. Molecular Analysis of Ciprofloxacin Resistance Mechanisms in Malaysian ESBL-Producing Klebsiella pneumoniae Isolates and Development of Mismatch Amplification Mutation Assays (MAMA) for Rapid Detection of gyrA and parC Mutations

    PubMed Central

    Mohd Yusof, Mohd Yasim; Tay, Sun Tee

    2014-01-01

    Ninety-three Malaysian extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates were investigated for ciprofloxacin resistance. Two mismatch amplification mutation (MAMA) assays were developed and used to facilitate rapid detection of gyrA and parC mutations. The isolates were also screened for plasmid-mediated quinolone resistance (PMQR) genes including aac(6′)-Ib-cr, qepA, and qnr. Ciprofloxacin resistance (MICs 4– ≥ 32 μg/mL) was noted in 34 (37%) isolates, of which 33 isolates had multiple mutations either in gyrA alone (n = 1) or in both gyrA and parC regions (n = 32). aac(6′)-Ib-cr was the most common PMQR gene detected in this study (n = 61), followed by qnrB and qnrS (n = 55 and 1, resp.). Low-level ciprofloxacin resistance (MICs 1-2 μg/mL) was noted in 40 (43%) isolates carrying qnrB accompanied by either aac(6′)-Ib-cr (n = 34) or a single gyrA 83 mutation (n = 6). Ciprofloxacin resistance was significantly associated with the presence of multiple mutations in gyrA and parC regions. While the isolates harbouring gyrA and/or parC alteration were distributed into 11 PFGE clusters, no specific clusters were associated with isolates carrying PMQR genes. The high prevalence of ciprofloxacin resistance amongst the Malaysian ESBL-producing K. pneumoniae isolates suggests the need for more effective infection control measures to limit the spread of these resistant organisms in the hospital. PMID:24860827

  5. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  6. DETERMINATION OF SPECIFIC NEUTRONIC REACTIVITY

    DOEpatents

    Dessauer, G.

    1960-05-10

    A method is given for production-line determination of the specific neutronic reactivity of such objects as individual nuclear fuel or neutron absorber elements and is notable for rapidity and apparatus simplicity. The object is incorporated in a slightly sub-critical chain fission reactive assembly having a discrete neutron source, thereby establishing a K/sub eff/ within the crucial range of 0.95 to 0.995. The range was found to afford, uniquely, flux- transient damped response in a niatter of seconds simultaneously with acceptable analytical sensitivity. The resulting neutron flux measured at a situs spaced from both object and source within the assembly serves as a calibrable indication of said reactivity.

  7. PAR-2 agonists induce contraction of murine small intestine through neurokinin receptors.

    PubMed

    Zhao, Aiping; Shea-Donohue, Terez

    2003-10-01

    Protease-activated receptor-2 (PAR-2) is a G protein-coupled receptor and is expressed throughout the gut. It is well known that PAR-2 participates in the regulation of gastrointestinal motility; however, the results are inconsistent. The present study investigated the effect and mechanism of PAR-2 activation on murine small intestinal smooth muscle function in vitro. Both trypsin and PAR-2-activating peptide SLIGRL induced a small relaxation followed by a concentration-dependent contraction. The sensitivity to trypsin was greater than that to SLIGRL (EC50 = 0.03 vs. 40 microM), but maximal responses were similar (12.3 +/- 1.6 vs. 13.7 +/- 1.3 N/cm2). Trypsin-evoked contraction (1 microM) exhibited a rapid desensitization, whereas the desensitization of response to SLIGRL was less even at high concentration (50 microM). Atropine had no effect on PAR-2 agonist-induced contractions. In contrast, TTX and capsaicin significantly attenuated those contractions, implicating a neurogenic mechanism that may involve capsaicin-sensitive sensory nerves. Furthermore, contractions induced by trypsin and SLIGRL were reduced by neurokinin receptor NK1 antagonist SR-140333 or NK2 antagonist SR-48968 alone or were further reduced by combined application of SR-140333 and SR-48968, indicating the involvement of neurokinin receptors. In addition, desensitizing neurokinin receptors with substance P and/or neurokinin A decreased the PAR-2 agonist-evoked contraction. We concluded that PAR-2 agonists induced a contraction of murine intestinal smooth muscle that was mediated by nerves. The excitatory effect is also dependent on sensory neural pathways and requires both NK1 and NK2 receptors.

  8. Un Détecteur de Neutrons pour la Spectrométrie de Masses Manquantes

    NASA Astrophysics Data System (ADS)

    Bollini, D.; Buhler-Broglin, A.; Dalpiaz, P.; Massam, T.; Navach, F.; Navarria, F. L.; Schneegans, M. A.; Zichichi, A.

    A large (2 × 0.39 m3 plastic scintillator) neutron detector capable to measure with high accuracy the coordinates of the neutron interaction point as well as its time-of-flight is described. As a missing mass spectrometer, it allows to observe for example the η, meson with a mass resolution of ± 4.2 MeV. Nous décrivous un détectcur de neutrons de grand volume sensible (2 x 0,39 m3 de scintillatcur plastique) capable de mesurer avec précision les coordonnées du point d'interaction du neutron détecté ainsi que son temp-de-vol. Employé comme spectrométre de masses manquantes, it permet d'observer par exemple le méson η avec une resolution de ± 4,2 MeY.

  9. Expression of protease-activated receptor (PAR)-2, but not other PARs, is regulated by inflammatory cytokines in rat astrocytes.

    PubMed

    Sokolova, Elena; Aleshin, Stepan; Reiser, Georg

    2012-02-01

    Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS) and are believed to play an important role in normal brain functioning as well as in development of various inflammatory and neurodegenerative disorders. Pathological conditions cause altered expression of PARs in brain cells and therefore altered responsiveness to PAR activation. The exact mechanisms of regulation of PAR expression are not well studied. Here, we evaluated in rat astrocytes the influence of LPS, pro-inflammatory cytokines TNFα and IL-1β and continuous PAR activation by PAR agonists on the expression levels of PARs. These stimuli are important in inflammatory and neurological disorders, where their levels are increased. We report that LPS as well as cytokines TNFα and IL-1β affected only the PAR-2 level, but their effects were opposite. LPS and TNFα increased the functional expression of PAR-2, whereas IL-1β down-regulated the functional response of PAR-2. Agonists of PAR-1 specifically increased mRNA level of PAR-2, but not protein level. Transcript levels of other PARs were not changed after PAR-1 activation. Stimulation of the cells with PAR-2 or PAR-4 agonists did not alter PAR levels. We found that up-regulation of PAR-2 is dependent on PKC activity, mostly via its Ca²⁺-sensitive isoforms. Two transcription factors, NFκB and AP-1, are involved in up-regulation of PAR-2. These findings provide new information about the regulation of expression of PAR subtypes in brain cells. This is of importance for targeting PARs, especially PAR-2, for the treatment of CNS disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The Role of PAR2 in TGF-β1-Induced ERK Activation and Cell Motility

    PubMed Central

    Ungefroren, Hendrik; Witte, David; Fiedler, Christian; Gädeken, Thomas; Kaufmann, Roland; Lehnert, Hendrik

    2017-01-01

    Background: Recently, the expression of proteinase-activated receptor 2 (PAR2) has been shown to be essential for activin receptor-like kinase 5 (ALK5)/SMAD-mediated signaling and cell migration by transforming growth factor (TGF)-β1. However, it is not known whether activation of non-SMAD TGF-β signaling (e.g., RAS–RAF–MEK–extracellular signal-regulated kinase (ERK) signaling) is required for cell migration and whether it is also dependent on PAR2. Methods: RNA interference was used to deplete cells of PAR2, followed by xCELLigence technology to measure cell migration, phospho-immunoblotting to assess ERK1/2 activation, and co-immunoprecipitation to detect a PAR2–ALK5 physical interaction. Results: Inhibition of ERK signaling with the MEK inhibitor U0126 blunted the ability of TGF-β1 to induce migration in pancreatic cancer Panc1 cells. ERK activation in response to PAR2 agonistic peptide (PAR2–AP) was strong and rapid, while it was moderate and delayed in response to TGF-β1. Basal and TGF-β1-dependent ERK, but not SMAD activation, was blocked by U0126 in Panc1 and other cell types indicating that ERK activation is downstream or independent of SMAD signaling. Moreover, cellular depletion of PAR2 in HaCaT cells strongly inhibited TGF-β1-induced ERK activation, while the biased PAR2 agonist GB88 at 10 and 100 µM potentiated TGF-β1-dependent ERK activation and cell migration. Finally, we provide evidence for a physical interaction between PAR2 and ALK5. Our data show that both PAR2–AP- and TGF-β1-induced cell migration depend on ERK activation, that PAR2 expression is crucial for TGF-β1-induced ERK activation, and that the functional cooperation of PAR2 and TGF-β1 involves a physical interaction between PAR2 and ALK5. PMID:29261154

  11. Novel role for proteinase-activated receptor 2 (PAR2) in membrane trafficking of proteinase-activated receptor 4 (PAR4).

    PubMed

    Cunningham, Margaret R; McIntosh, Kathryn A; Pediani, John D; Robben, Joris; Cooke, Alexandra E; Nilsson, Mary; Gould, Gwyn W; Mundell, Stuart; Milligan, Graeme; Plevin, Robin

    2012-05-11

    Proteinase-activated receptors 4 (PAR(4)) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR(4) remain unknown. Here, we report novel features of the intracellular trafficking of PAR(4) to the plasma membrane. PAR(4) was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit β-COP1. Analysis of the PAR(4) protein sequence identified an arginine-based (RXR) ER retention sequence located within intracellular loop-2 (R(183)AR → A(183)AA), mutation of which allowed efficient membrane delivery of PAR(4). Interestingly, co-expression with PAR(2) facilitated plasma membrane delivery of PAR(4), an effect produced through disruption of β-COP1 binding and facilitation of interaction with the chaperone protein 14-3-3ζ. Intermolecular FRET studies confirmed heterodimerization between PAR(2) and PAR(4). PAR(2) also enhanced glycosylation of PAR(4) and activation of PAR(4) signaling. Our results identify a novel regulatory role for PAR(2) in the anterograde traffic of PAR(4). PAR(2) was shown to both facilitate and abrogate protein interactions with PAR(4), impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR(4) in normal physiology and disease.

  12. A Conserved Mode of Protein Recognition and Binding in a ParD−ParE Toxin−Antitoxin Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, Kevin M.; Crosson, Sean

    2010-05-06

    Toxin-antitoxin (TA) systems form a ubiquitous class of prokaryotic proteins with functional roles in plasmid inheritance, environmental stress response, and cell development. ParDE family TA systems are broadly conserved on plasmids and bacterial chromosomes and have been well characterized as genetic elements that promote stable plasmid inheritance. We present a crystal structure of a chromosomally encoded ParD-ParE complex from Caulobacter crescentus at 2.6 {angstrom} resolution. This TA system forms an {alpha}{sub 2}{beta}{sub 2} heterotetramer in the crystal and in solution. The toxin-antitoxin binding interface reveals extensive polar and hydrophobic contacts of ParD antitoxin helices with a conserved recognition and bindingmore » groove on the ParE toxin. A cross-species comparison of this complex structure with related toxin structures identified an antitoxin recognition and binding subdomain that is conserved between distantly related members of the RelE/ParE toxin superfamily despite a low level of overall primary sequence identity. We further demonstrate that ParD antitoxin is dimeric, stably folded, and largely helical when not bound to ParE toxin. Thus, the paradigmatic model in which antitoxin undergoes a disorder-to-order transition upon toxin binding does not apply to this chromosomal ParD-ParE TA system.« less

  13. In vivo neutron activation analysis of sodium and chlorine in tumor tissue after fast neutron therapy.

    PubMed

    Auberger, T; Koester, L; Knopf, K; Weissfloch, L

    1996-01-01

    In 12 patients with recurrences and metastases of different primaries (head and neck cancer, breast cancer, malignant melanoma, and osteosarcoma) who were treated with reactor fission neutrons the photon emission of irradiated tissue was measured after each radiotherapy fraction. Spectral analyses of the decay rates resulted in data for the exchange of sodium (Na) and chlorine (Cl) between the irradiated tissue and the body. About 60% of Na and Cl exchanged rapidly with a turnover half-life of 13 +/- 2 min. New defined mass exchange rates for Na and Cl amount to an average of 0.8 mval/min/kg of soft tissue. At the beginning of radiotherapy the turnover of the electrolytes in tissues with large tumor volumes was about twice that in tissues with small tumor volumes. Depending on the dose, neutron therapy led in all cases to variation in the metabolism. A maximum of Cl exchange and a minimum of Na exchange occurred after 10 Gy of neutrons (group of six previously untreated patients) or after 85 Gy (photon equivalent dose) of combined photon-neutron therapy. A significant increase in non-exchangeable fraction of Na from about 40 to 80% was observed in three tumors after a neutron dose of 10 Gy administered in five fractions correlated with a rapid reduction of tissue within 4 weeks after end of therapy. These results demonstrate for the first time the local response of the electrolyte metabolism to radiotherapy.

  14. Neutron tori around Kerr black holes

    NASA Technical Reports Server (NTRS)

    Witt, H. J.; Jaroszynski, M.; Haensel, P.; Paczynski, B.; Wambsganss, J.

    1994-01-01

    Models of stationary, axisymmetric, non-self-gravitating tori around stellar mass Kerr black holes are calculated. Such objects may form as a result of a merger between two neutron stars, a neutron star and a stellar mass black hole, or a 'failed supernova' collapse of a single rapidly rotating star. We explore a large range of parameters: the black hole mass and angular momentum, the torus mass, angular momentum and entropy. Physical conditions within the tori are similar to those in young and hot neutron stars, but their topology is different, and the range of masses and energies is much larger.

  15. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high-power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  16. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  17. Par Pond vegetation status 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1996-12-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995, and into themore » early spring and late summer of 1996. Communities similar to the pre-drawdown, Par Pond aquatic plant communities continue to become re-established. Emergent beds of maidencane, lotus, waterlily, watershield, and Pontederia are extensive and well developed. Measures of percent cover, width of beds, and estimates of area of coverage with satellite data indicate regrowth within two years of from 40 to 60% of levels prior to the draw down. Cattail occurrence continued to increase during the summer of 1996, especially in the former warm arm of Par Pond, but large beds common to Par Pond prior to the draw down still have not formed. Lotus has invaded and occupies many of the areas formerly dominated by cattail beds. To track the continued development of macrophytes in Par Pond, future surveys through the summer and early fall of 1997, along with the evaluation of satellite data to map the extent of the macrophyte beds of Par Pond, are planned.« less

  18. Matrix metalloproteases and PAR1 activation

    PubMed Central

    Austin, Karyn M.; Covic, Lidija

    2013-01-01

    Cardiovascular diseases, including atherothrombosis, are the leading cause of morbidity and mortality in the United States, Europe, and the developed world. Matrix metalloproteases (MMPs) have recently emerged as important mediators of platelet and endothelial function, and atherothrombotic disease. Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that is classically activated through cleavage of the N-terminal exodomain by the serine protease thrombin. Most recently, 2 MMPs have been discovered to have agonist activity for PAR1. Unexpectedly, MMP-1 and MMP-13 cleave the N-terminal exodomain of PAR1 at noncanonical sites, which result in distinct tethered ligands that activate G-protein signaling pathways. PAR1 exhibits metalloprotease-specific signaling patterns, known as biased agonism, that produce distinct functional outputs by the cell. Here we contrast the mechanisms of canonical (thrombin) and noncanonical (MMP) PAR1 activation, the contribution of MMP-PAR1 signaling to diseases of the vasculature, and the therapeutic potential of inhibiting MMP-PAR1 signaling with MMP inhibitors, including atherothrombotic disease, in-stent restenosis, heart failure, and sepsis. PMID:23086754

  19. The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif

    PubMed Central

    Barillà, Daniela; Carmelo, Emma; Hayes, Finbarr

    2007-01-01

    The ParF protein of plasmid TP228 belongs to the ubiquitous superfamily of ParA ATPases that drive DNA segregation in bacteria. ATP-bound ParF polymerizes into multistranded filaments. The partner protein ParG is dimeric, consisting of C-termini that interweave into a ribbon–helix–helix domain contacting the centromeric DNA and unstructured N-termini. ParG stimulates ATP hydrolysis by ParF ≈30-fold. Here, we establish that the mobile tails of ParG are crucial for this enhancement and that arginine R19 within the tail is absolutely required for activation of ParF nucleotide hydrolysis. R19 is part of an arginine finger-like loop in ParG that is predicted to intercalate into the ParF nucleotide-binding pocket thereby promoting ATP hydrolysis. Significantly, mutations of R19 abrogated DNA segregation in vivo, proving that intracellular stimulation of ATP hydrolysis by ParG is a key regulatory process for partitioning. Furthermore, ParG bundles ParF-ATP filaments as well as promoting nucleotide-independent polymerization. The N-terminal flexible tail is required for both activities, because N-terminal ΔParG polypeptides are defective in both functions. Strikingly, the critical arginine finger-like residue R19 is dispensable for ParG-mediated remodeling of ParF polymers, revealing that the ParG N-terminal tail possesses two separable activities in the interplay with ParF: a catalytic function during ATP hydrolysis and a mechanical role in modulation of polymerization. We speculate that activation of nucleotide hydrolysis via an arginine finger loop may be a conserved, regulatory mechanism of ParA family members and their partner proteins, including ParA-ParB and Soj-Spo0J that mediate DNA segregation and MinD-MinE that determine septum localization. PMID:17261809

  20. The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif.

    PubMed

    Barillà, Daniela; Carmelo, Emma; Hayes, Finbarr

    2007-02-06

    The ParF protein of plasmid TP228 belongs to the ubiquitous superfamily of ParA ATPases that drive DNA segregation in bacteria. ATP-bound ParF polymerizes into multistranded filaments. The partner protein ParG is dimeric, consisting of C-termini that interweave into a ribbon-helix-helix domain contacting the centromeric DNA and unstructured N-termini. ParG stimulates ATP hydrolysis by ParF approximately 30-fold. Here, we establish that the mobile tails of ParG are crucial for this enhancement and that arginine R19 within the tail is absolutely required for activation of ParF nucleotide hydrolysis. R19 is part of an arginine finger-like loop in ParG that is predicted to intercalate into the ParF nucleotide-binding pocket thereby promoting ATP hydrolysis. Significantly, mutations of R19 abrogated DNA segregation in vivo, proving that intracellular stimulation of ATP hydrolysis by ParG is a key regulatory process for partitioning. Furthermore, ParG bundles ParF-ATP filaments as well as promoting nucleotide-independent polymerization. The N-terminal flexible tail is required for both activities, because N-terminal DeltaParG polypeptides are defective in both functions. Strikingly, the critical arginine finger-like residue R19 is dispensable for ParG-mediated remodeling of ParF polymers, revealing that the ParG N-terminal tail possesses two separable activities in the interplay with ParF: a catalytic function during ATP hydrolysis and a mechanical role in modulation of polymerization. We speculate that activation of nucleotide hydrolysis via an arginine finger loop may be a conserved, regulatory mechanism of ParA family members and their partner proteins, including ParA-ParB and Soj-Spo0J that mediate DNA segregation and MinD-MinE that determine septum localization.

  1. Control of cleavage spindle orientation in Caenorhabditis elegans: The role of the genes par-2 and par-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, N.N.; Kirby, C.M.; Kemphues, K.J.

    1995-02-01

    Polarized asymmetric divisions play important roles in the development of plants and animals. The first two embryonic cleavages of Caenorhabditis elegans provide an opportunity to study the mechanisms controlling polarized asymmetric divisions. The first cleavage is unequal, producing daughters with different sizes and fates. The daughter blastomeres divide with different orientations at the second cleavage; the anterior blastomere divides equally across the long axis of the egg, whereas the posterior blastomere divides unequally along the long axis. We report here the results of our analysis of the genes par-2 and par-3 with respect to their contribution to the polarity ofmore » these divisions. Strong loss-of-function mutations in both genes lead to an equal first cleavage and an altered second cleavage. Interestingly, the mutations exhibit striking gene-specific differences at the second cleavage. The par-2 mutations lead to transverse spindle orientations in both blastomeres, whereas par-3 mutations lead to longitudinal spindle orientations in both blastomeres. The spindle orientation defects correlate with defects in centrosome movements during both the first and the second cell cycle. Temperature shift experiments with par-2 (it5ts) indicate that the par-2(+) activity is not required after the two-cell stage. Analysis of double mutants shows that par-3 is epistatic to par-2. We propose a model wherein par-2(+) and par-3(+) act in concert during the first cell cycle to affect asymmetric modification of the cytoskeleton. This polar modification leads to different behaviors of centrosomes in the anterior and posterior and leads ultimately to blastomere-specific spindle orientations at the second cleavage. 44 refs., 5 figs., 5 tabs.« less

  2. A route to the brightest possible neutron source?

    PubMed

    Taylor, Andrew; Dunne, Mike; Bennington, Steve; Ansell, Stuart; Gardner, Ian; Norreys, Peter; Broome, Tim; Findlay, David; Nelmes, Richard

    2007-02-23

    We review the potential to develop sources for neutron scattering science and propose that a merger with the rapidly developing field of inertial fusion energy could provide a major step-change in performance. In stark contrast to developments in synchrotron and laser science, the past 40 years have seen only a factor of 10 increase in neutron source brightness. With the advent of thermonuclear ignition in the laboratory, coupled to innovative approaches in how this may be achieved, we calculate that a neutron source three orders of magnitude more powerful than any existing facility can be envisaged on a 20- to 30-year time scale. Such a leap in source power would transform neutron scattering science.

  3. NASA'S Chandra Finds Superfluid in Neutron Star's Core

    NASA Astrophysics Data System (ADS)

    2011-02-01

    NASA's Chandra X-ray Observatory has discovered the first direct evidence for a superfluid, a bizarre, friction-free state of matter, at the core of a neutron star. Superfluids created in laboratories on Earth exhibit remarkable properties, such as the ability to climb upward and escape airtight containers. The finding has important implications for understanding nuclear interactions in matter at the highest known densities. Neutron stars contain the densest known matter that is directly observable. One teaspoon of neutron star material weighs six billion tons. The pressure in the star's core is so high that most of the charged particles, electrons and protons, merge resulting in a star composed mostly of uncharged particles called neutrons. Two independent research teams studied the supernova remnant Cassiopeia A, or Cas A for short, the remains of a massive star 11,000 light years away that would have appeared to explode about 330 years ago as observed from Earth. Chandra data found a rapid decline in the temperature of the ultra-dense neutron star that remained after the supernova, showing that it had cooled by about four percent over a 10-year period. "This drop in temperature, although it sounds small, was really dramatic and surprising to see," said Dany Page of the National Autonomous University in Mexico, leader of a team with a paper published in the February 25, 2011 issue of the journal Physical Review Letters. "This means that something unusual is happening within this neutron star." Superfluids containing charged particles are also superconductors, meaning they act as perfect electrical conductors and never lose energy. The new results strongly suggest that the remaining protons in the star's core are in a superfluid state and, because they carry a charge, also form a superconductor. "The rapid cooling in Cas A's neutron star, seen with Chandra, is the first direct evidence that the cores of these neutron stars are, in fact, made of superfluid and

  4. PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells

    PubMed Central

    Gur-Cohen, Shiri; Itkin, Tomer; Chakrabarty, Sagarika; Graf, Claudine; Kollet, Orit; Ludin, Aya; Golan, Karin; Kalinkovich, Alexander; Ledergor, Guy; Wong, Eitan; Niemeyer, Elisabeth; Porat, Ziv; Erez, Ayelet; Sagi, Irit; Esmon, Charles T; Ruf, Wolfram; Lapidot, Tsvee

    2016-01-01

    Retention of long-term repopulating hematopoietic stem cells (LT-HSCs) in the bone marrow is essential for hematopoiesis and for protection from myelotoxic injury. We report that signaling cascades that are traditionally viewed as coagulation-related also control retention of EPCR+ LT-HSCs in the bone marrow and their recruitment to the blood via two different protease activated receptor 1 (PAR1)-mediated pathways. Thrombin-PAR1 signaling induces nitric oxide (NO) production, leading to TACE-mediated EPCR shedding, enhanced CXCL12-CXCR4-induced motility, and rapid stem and progenitor cell mobilization. Conversely, bone marrow blood vessels provide a microenvironment enriched with protein C that retain EPCR+ LT-HSCs by limiting NO generation, reducing Cdc42 activity and enhancing VLA4 affinity and adhesion. Inhibition of NO production by activated protein C (aPC)-EPCR-PAR1 signaling reduces progenitor cell egress, increases NOlow bone marrow EPCR+ LT-HSCs retention and protects mice from chemotherapy-induced hematological failure and death. Our study reveals new roles for PAR1 and EPCR that control NO production to balance maintenance and recruitment of bone marrow EPCR+ LT-HSCs with clinical relevance. PMID:26457757

  5. Neutron reflectometry on highly absorbing films and its application to 10B4C-based neutron detectors

    PubMed Central

    Piscitelli, F.; Khaplanov, A.; Devishvili, A.; Schmidt, S.; Höglund, C.; Birch, J.; Dennison, A. J. C.; Gutfreund, P.; Hall-Wilton, R.; Van Esch, P.

    2016-01-01

    Neutron reflectometry is a powerful tool used for studies of surfaces and interfaces. The absorption in the typical studied materials is neglected and this technique is limited only to the reflectivity measurement. For strongly absorbing nuclei, the absorption can be directly measured by using the neutron-induced fluorescence technique which exploits the prompt particle emission of absorbing isotopes. This technique is emerging from soft matter and biology where highly absorbing nuclei, in very small quantities, are used as a label for buried layers. Nowadays, the importance of absorbing layers is rapidly increasing, partially because of their application in neutron detection; a field that has become more active also due to the 3He-shortage. We extend the neutron-induced fluorescence technique to the study of layers of highly absorbing materials, in particular 10B4C. The theory of neutron reflectometry is a commonly studied topic; however, when a strong absorption is present the subtle relationship between the reflection and the absorption of neutrons is not widely known. The theory for a general stack of absorbing layers has been developed and compared to measurements. We also report on the requirements that a 10B4C layer must fulfil in order to be employed as a converter in neutron detection. PMID:26997902

  6. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars

    NASA Technical Reports Server (NTRS)

    Eichler, David; Livio, Mario; Piran, Tsvi; Schramm, David N.

    1989-01-01

    It is pointed out here that neutron-star collisions should synthesize neutron-rich heavy elements, thought to be formed by rapid neutron capture (the r-process). Furthermore, these collisions should produce neutrino bursts and resultant bursts of gamma rays; the latter should comprise a subclass of observable gamma-ray bursts. It is argued that observed r-process abundances and gamma-ray burst rates predict rates for these collisions that are both significant and consistent with other estimates.

  7. Impedance measurements of the extraction kicker system for the rapid cycling synchrotron of China Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Huang, Liang-Sheng; Wang, Sheng; Liu, Yu-Dong; Li, Yong; Liu, Ren-Hong; Xiao, Ou-Zheng

    2016-04-01

    The fast extraction kicker system is one of the most important accelerator components and the main source of impedance in the Rapid Cycling Synchrotron of the China Spallation Neutron Source. It is necessary to understand the kicker impedance before its installation into the tunnel. Conventional and improved wire methods are employed in the impedance measurement. The experimental results for the kicker impedance are explained by comparison with simulation using CST PARTICLE STUDIO. The simulation and measurement results confirm that the window-frame ferrite geometry and the end plate are the important structures causing coupling impedance. It is proved in the measurements that the mismatching from the power form network to the kicker leads to a serious oscillation sideband of the longitudinal and vertical impedance and the oscillation can be reduced by ferrite absorbing material. Supported by National Natural Science Foundation of China (11175193, 11275221)

  8. Rapidly Rising Optical Transients from the Birth of Binary Neutron Stars

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Kashiyama, Kazumi; Murase, Kohta

    2017-11-01

    We study optical counterparts of a new-born pulsar in a double neutron star system like PSR J0737-3039A/B. This system is believed to have ejected a small amount of mass of { O }(0.1 {M}⊙ ) at the second core-collapse supernova. We argue that the initial spin of the new-born pulsar can be determined by the orbital period at the time when the second supernova occurs. The spin angular momentum of the progenitor is expected to be similar to that of the He-burning core, which is tidally synchronized with the orbital motion, and then the second remnant may be born as a millisecond pulsar. If the dipole magnetic field strength of the nascent pulsar is comparable with that inferred from the current spin-down rate of PSR J0737-3039B, the initial spin-down luminosity is comparable to the luminosity of super-luminous supernovae. We consider thermal emission arising from the supernova ejecta driven by the relativistic wind from such a new-born pulsar. The resulting optical light curves have a rise time of ˜10 days and a peak luminosity of ˜1044 erg s-1. The optical emission may last for a month to several months, due to the reprocessing of X-rays and UV photons via photoelectric absorption. These features are broadly consistent with those of the rapidly rising optical transients. The high spin-down luminosity and small ejecta mass are favorable for the progenitor of the repeating fast radio burst, FRB 121102. We discuss a possible connection between new-born double pulsars and fast radio bursts.

  9. PAR-2 regulates dental pulp inflammation associated with caries.

    PubMed

    Lundy, F T; About, I; Curtis, T M; McGahon, M K; Linden, G J; Irwin, C R; El Karim, I A

    2010-07-01

    Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated enzymatically by proteolysis of an N-terminal domain. The cleavage and activation of PARs by serine proteases represent a novel mechanism by which such enzymes could influence the host inflammatory response. The aim of this study was to determine whether PAR-2 expression and activation were increased in dental caries. Using immunohistochemistry, we showed PAR-2 to be localized to pulp cells subjacent to caries lesions, but minimally expressed by healthy pulp tissue. Trypsin and the PAR-2 agonist (PAR2-AP) activated PAR-2 in an in vitro functional assay. Endogenous molecules present in pulp cell lysates from carious teeth specifically activated PAR-2, but those from healthy teeth failed to do so. The activation of PAR-2 in vitro was shown to increase the expression of the pro-inflammatory mediator cyclo-oxygenase-2 (COX-2), providing a mechanism whereby PAR-2 could modulate pulpal inflammation.

  10. Par Pond vegetation status Summer 1995 -- Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1996-01-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar tomore » the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.« less

  11. A Simple Correlation for Neutron Capture Rates from Nuclear Masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, Aaron Joseph

    Recent studies of neutron capture performed at LANL have revealed a previously unrecognized connection between nuclear masses and the average neutron capture cross section. A team of three scientists from Los Alamos (P-27), Yale Univ., and Istanbul Univ. (Turkey) recently discovered this connection and have published their results as a Rapid Communication in Physical Review C. Neutron capture is a reaction in which a free neutron is absorbed by the nucleus, keeping the element unchanged, but changing isotopes. This reaction is typically exothermic. As a result, the reaction can proceed even when many other reaction channels are closed. In anmore » astrophysical environment, this means that neutron capture is the primary mechanism by which all of the elements with atomic number greater than nickel are produced is neutron capture.« less

  12. Anisotropy of the neutron fluence from a plasma focus.

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Shomo, L. P.; Kim, K. H.

    1972-01-01

    The fluence of neutrons from a plasma focus was measured by gamma spectrometry of an activated silver target. This method results in a significant increase in accuracy over the beta-counting method. Multiple detectors were used in order to measure the anisotropy of the fluence of neutrons. The fluence was found to be concentrated in a cone with a half-angle of 30 deg about the axis, and to drop off rapidly outside of this cone; the anisotropy was found to depend upon the total yield of neutrons. This dependence was strongest on the axis. Neither the axial concentration of the fluence of neutrons nor its dependence on the total yield of neutrons is explained by any of the currently proposed models. Some other explanations, including the possibility of an axially distributed source, are considered.

  13. Increased mast cell expression of PAR-2 in skin inflammatory diseases and release of IL-8 upon PAR-2 activation.

    PubMed

    Carvalho, Ricardo Filipe da Silva; Nilsson, Gunnar; Harvima, Ilkka Tapani

    2010-02-01

    Mast cells are increasingly present in the lesional skin of chronic skin inflammatory diseases including psoriasis and basal cell carcinoma (BCC). It has previously been shown that proteinase-activated receptor (PAR)-2 is expressed by mast cells, and tryptase is a potent activator of this receptor. In this study, skin biopsies from both healthy-looking and lesional skin of patients with psoriasis and superficial spreading BCC were collected and the expression of PAR-2 immunoreactivity in tryptase-positive mast cells was analysed. PAR-2 expression was confirmed in vitro in different mast cell populations. Cord-blood derived mast cells (CBMC) were stimulated with a PAR-2 activating peptide, 2-furoyl-LIGRLO-NH(2). Consequently, IL-8 and histamine production was analysed in the supernatants. We observed a significant increase in the percentage of mast cells expressing PAR-2 in the lesional skin of psoriasis and BCC patients compared with the healthy-looking skin. HMC-1.2, LAD-2 and CBMC mast cells all expressed PAR-2 both intracellularly and on the cell surface. CBMC activation with the PAR-2 activating peptide resulted in an increased secretion of IL-8, but no histamine release was observed. Furthermore, both PAR-2 and IL-8 were co-localized to the same tryptase-positive mast cells in the lesional BCC skin. These results show that mast cells express increased levels of PAR-2 in chronic skin inflammation. Also, mast cells can be activated by a PAR-2 agonist to secrete IL-8, a chemokine which can contribute to the progress of inflammation.

  14. Magnetic activity and radial velocity filtering of young Suns: the weak-line T-Tauri stars Par 1379 and Par 2244

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Carmona, A.; Donati, J.-F.; Hussain, G. A. J.; Gregory, S. G.; Alencar, S. H. P.; Bouvier, J.; The Matysse Collaboration

    2017-12-01

    We report the results of our spectropolarimetric monitoring of the weak-line T-Tauri stars (wTTSs) Par 1379 and Par 2244, within the MaTYSSE (Magnetic Topologies of Young Stars and the Survival of close-in giant Exoplanets) programme. Both stars are of a similar mass (1.6 and 1.8 M⊙) and age (1.8 and 1.1 Myr), with Par 1379 hosting an evolved low-mass dusty circumstellar disc, and with Par 2244 showing evidence of a young debris disc. We detect profile distortions and Zeeman signatures in the unpolarized and circularly polarized lines for each star, and have modelled their rotational modulation using tomographic imaging, yielding brightness and magnetic maps. We find that Par 1379 harbours a weak (250 G), mostly poloidal field tilted 65° from the rotation axis. In contrast, Par 2244 hosts a stronger field (860 G) split 3:2 between poloidal and toroidal components, with most of the energy in higher order modes, and with the poloidal component tilted 45° from the rotation axis. Compared to the lower mass wTTSs, V819 Tau and V830 Tau, Par 2244 has a similar field strength, but is much more complex, whereas the much less complex field of Par 1379 is also much weaker than any other mapped wTTS. We find moderate surface differential rotation of 1.4× and 1.8× smaller than Solar, for Par 1379 and Par 2244, respectively. Using our tomographic maps to predict the activity-related radial velocity (RV) jitter, and filter it from the RV curves, we find RV residuals with dispersions of 0.017 and 0.086 km s-1 for Par 1379 and Par 2244, respectively. We find no evidence for close-in giant planets around either star, with 3σ upper limits of 0.56 and 3.54 MJup (at an orbital distance of 0.1 au).

  15. PAR-2 inhibition reverses experimental pulmonary hypertension.

    PubMed

    Kwapiszewska, Grazyna; Markart, Philipp; Dahal, Bhola Kumar; Kojonazarov, Baktybek; Marsh, Leigh Matthew; Schermuly, Ralph Theo; Taube, Christian; Meinhardt, Andreas; Ghofrani, Hossein Ardeschir; Steinhoff, Martin; Seeger, Werner; Preissner, Klaus Theo; Olschewski, Andrea; Weissmann, Norbert; Wygrecka, Malgorzata

    2012-04-27

    A hallmark of the vascular remodeling process underlying pulmonary hypertension (PH) is the aberrant proliferation and migration of pulmonary arterial smooth muscle cells (PASMC). Accumulating evidence suggests that mast cell mediators play a role in the pathogenesis of PH. In the present study we investigated the importance of protease-activated receptor (PAR)-2 and its ligand mast cell tryptase in the development of PH. Our results revealed strong increase in PAR-2 and tryptase expression in the lungs of idiopathic pulmonary arterial hypertension (IPAH) patients, hypoxia-exposed mice, and monocrotaline (MCT)-treated rats. Elevated tryptase levels were also detected in plasma samples from IPAH patients. Hypoxia and platelet-derived growth factor (PDGF)-BB upregulated PAR-2 expression in PASMC. This effect was reversed by HIF (hypoxia inducible factor)-1α depletion, PDGF-BB neutralizing antibody, or the PDGF-BB receptor antagonist Imatinib. Attenuation of PAR-2 expression was also observed in smooth muscle cells of pulmonary vessels of mice exposed to hypoxia and rats challenged with MCT in response to Imatinib treatment. Tryptase induced PASMC proliferation and migration as well as enhanced synthesis of fibronectin and matrix metalloproteinase-2 in a PAR-2- and ERK1/2-dependent manner, suggesting that PAR-2-dependent signaling contributes to vascular remodeling by various mechanisms. Furthermore, PAR-2(-/-) mice were protected against hypoxia-induced PH, and PAR-2 antagonist application reversed established PH in the hypoxia mouse model. Our study identified a novel role of PAR-2 in vascular remodeling in the lung. Interference with this pathway may offer novel therapeutic options for the treatment of PH.

  16. Neutron capture reactions in astrophysics

    NASA Astrophysics Data System (ADS)

    Käppeler, F.

    1985-01-01

    About 2/3 of the chemical elements in nature were formed in neutron capture reactions. During the life of a star there are certain evolutionary stages where neutrons are available to build up the elements beyond iron which cannot be synthesized by charged particle reactions. The observed abundance pattern allows to distinguish a rapid and a slow neutron capture process (r- and s-process). The r-process taking place far from the valley of stability is difficult to investigate because of the required extrapolation of nuclear properties to extreme neutron rich nuclei. The s-process, on the other hand, proceeds along the valley of stability. Therefore, the involved isotopes are accessible to laboratory measurements. This information allows for quantitative calculation of s-process abundances and other parameters which represent constraints for stellar models. Two examples are outlined: (i) the s-process branching at A=147, 148 yields a rather accurate value for the neutron density. (ii) Comparison of s-process abundances with observations of stellar atmospheres are particularly interesting for the unstable isotopes 93Zr, 99Tc and 147Pm. Their deficiency with respect to stable neighbors may yield estimates for the transport time from the stellar interior to the surface.

  17. Microfabrication of a gadolinium-derived solid-state sensor for thermal neutrons

    PubMed Central

    Achyuthan, Komandoor E.; Allen, Matthew; Denton, Michele L. B.; Siegal, Michael P.; Manginell, Ronald P.

    2017-01-01

    Abstract Neutron sensing is critical in civilian and military applications. Conventional neutron sensors are limited by size, weight, cost, portability and helium supply. Here the microfabrication of gadolinium (Gd) conversion material–based heterojunction diodes for detecting thermal neutrons using electrical signals produced by internal conversion electrons (ICEs) is described. Films with negligible stress were produced at the tensile-compressive crossover point, enabling Gd coatings of any desired thickness by controlling the radiofrequency sputtering power and using the zero-point near p(Ar) of 50 mTorr at 100 W. Post-deposition Gd oxidation–induced spallation was eliminated by growing a residual stress-free 50 nm neodymium-doped aluminum cap layer atop Gd. The resultant coatings were stable for at least 6 years, demonstrating excellent stability and product shelf-life. Depositing Gd directly on the diode surface eliminated the air gap, leading to a 200-fold increase in electron capture efficiency and facilitating monolithic microfabrication. The conversion electron spectrum was dominated by ICEs with energies of 72, 132 and 174 keV. Results are reported for neutron reflection and moderation by polyethylene for enhanced sensitivity, and γ- and X-ray elimination for improved specificity. The optimal Gd thickness was 10.4 μm for a 300 μm-thick partially depleted diode of 300 mm2 active surface area. Fast detection (within 10 min) at a neutron source-to-diode distance of 11.7 cm was achieved with this configuration. All ICE energies along with γ-ray and Kα,β X-rays were modeled to emphasize correlations between experiment and theory. Semi-conductor thermal neutron detectors offer advantages for field-sensing of radioactive neutron sources. PMID:28369631

  18. The role of protease-activated receptors PAR-1 and PAR-2 in the repair of 16HBE 14o(-) epithelial cell monolayers in vitro.

    PubMed

    Ewen, D; Clarke, S L; Smith, J R; Berger, C; Salmon, G; Trevethick, M; Shute, J K

    2010-03-01

    We recently reported that repair following mechanical wounding of epithelial cell layers in vitro is dependent on fibrin formation and the activity of locally expressed coagulation cascade proteins. Serine proteases of the coagulation cascade are an important group of protease-activated receptor (PAR) activators and PAR-1 to 4 are expressed by the normal bronchial epithelium. We tested the hypothesis that activation of PAR-1 and PAR-2 by coagulation cascade proteases stimulates epithelial repair via effects on fibrin formation. Using mechanically wounded 16HBE 14o(-) epithelial cell layers in culture, we investigated the effect of PAR-1 and PAR-2 agonist peptides, control partially scrambled peptides and PAR-neutralizing antibodies on the rate of repair and fibrin formation. Coagulation factors in culture supernatants were measured by immunoblot. RT-PCR was used to investigate PAR-1, PAR-2 and PGE2 receptor (EP-1 to EP-4) expression in this model and qRT-PCR to quantify responses to wounding. Additionally, we investigated the effect of exogenously added factor Xa (FXa) and neutrophil elastase and the influence of PGE2 and indomethacin on the repair response. PAR-1 and PAR-2 peptide agonists stimulated the rate of repair and enhanced the formation of a fibrin provisional matrix to support the repair process. Conversely, PAR-neutralizing antibodies inhibited repair. Under serum-free culture conditions, 16HBE 14o(-) cells expressed EP-2 and EP-3, but not EP-1 or EP-4, receptors. Wounding induced an increased expression of EP-3 but did not alter EP-2, PAR-1 or PAR-2 expression. In the absence of PAR agonists, there was no evidence for a role for PGE2 in fibrin formation or the repair process. Indomethacin attenuated fibrin formation in wounded cultures only in the presence of the PAR-2 peptide. FXa stimulated epithelial repair while neutrophil elastase reduced the levels of coagulation factors and inhibited repair. Locally expressed serine proteases of the coagulation

  19. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    DOE PAGES

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; ...

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component)more » using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.« less

  20. Analysis of ParB-centromere interactions by multiplex SPR imaging reveals specific patterns for binding ParB in six centromeres of Burkholderiales chromosomes and plasmids.

    PubMed

    Pillet, Flavien; Passot, Fanny Marie; Pasta, Franck; Anton Leberre, Véronique; Bouet, Jean-Yves

    2017-01-01

    Bacterial centromeres-also called parS, are cis-acting DNA sequences which, together with the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids. The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex from which ParA-the motor protein, segregates the sister replicons. Closely related families of partition systems, called Bsr, were identified on the chromosomes and large plasmids of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes, displaying similar base compositions, notably a central CG dinucleotide. Despite centromeres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate interactions were nevertheless detected between few Bsr partition systems of replicons not belonging to the same genome. These observations suggested that Bsr partition systems could have a common ancestry but that evolution mostly erased the possibilities of cross-reactions between them, in particular to prevent replicon incompatibility. To detect novel similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS sequences and a wide collection of modified derivatives, to their cognate ParB. The study was carried out by Surface Plasmon Resonance imaging (SPRi) mulitplex analysis enabling a systematic survey of each nucleotide position within the centromere. We found that in each parS some positions could be changed while maintaining binding to ParB. Each centromere displays its own pattern of changes, but some positions are shared more or less widely. In addition from these changes we could speculate evolutionary links between these centromeres.

  1. La pelade par plaques

    PubMed Central

    Spano, Frank; Donovan, Jeff C.

    2015-01-01

    Résumé Objectif Présenter aux médecins de famille des renseignements de base pour faire comprendre l’épidémiologie, la pathogenèse, l’histologie et l’approche clinique au diagnostic de la pelade par plaques. Sources des données Une recension a été effectuée dans PubMed pour trouver des articles pertinents concernant la pathogenèse, le diagnostic et le pronostic de la pelade par plaques. Message principal La pelade par plaques est une forme de perte pileuse auto-immune dont la prévalence durant une vie est d’environ 2 %. Des antécédents personnels ou familiaux de troubles auto-immuns concomitants, comme le vitiligo ou une maladie de la thyroïde, peuvent être observés dans un petit sous-groupe de patients. Le diagnostic peut souvent être posé de manière clinique en se fondant sur la perte de cheveux non cicatricielle et circulaire caractéristique, accompagnée de cheveux en « point d’exclamation » en périphérie chez ceux dont le problème en est aux premiers stades. Le diagnostic des cas plus complexes ou des présentations inhabituelles peut être facilité par une biopsie et un examen histologique. Le pronostic varie largement et de mauvais résultats sont associés à une apparition à un âge précoce, une perte importante, la variante ophiasis, des changements aux ongles, des antécédents familiaux ou des troubles auto-immuns concomitants. Conclusion La pelade par plaques est une forme auto-immune de perte de cheveux périodiquement observée en soins primaires. Les médecins de famille sont bien placés pour identifier la pelade par plaques, déterminer la gravité de la maladie et poser le diagnostic différentiel approprié. De plus, ils sont en mesure de renseigner leurs patients à propos de l’évolution clinique de la maladie ainsi que du pronostic général selon le sous-type de patients.

  2. PH motifs in PAR1&2 endow breast cancer growth.

    PubMed

    Kancharla, A; Maoz, M; Jaber, M; Agranovich, D; Peretz, T; Grisaru-Granovsky, S; Uziely, B; Bar-Shavit, R

    2015-11-24

    Although emerging roles of protease-activated receptor1&2 (PAR1&2) in cancer are recognized, their underlying signalling events are poorly understood. Here we show signal-binding motifs in PAR1&2 that are critical for breast cancer growth. This occurs via the association of the pleckstrin homology (PH) domain with Akt/PKB as a key signalling event of PARs. Other PH-domain signal-proteins such as Etk/Bmx and Vav3 also associate with PAR1 and PAR2 through their PH domains. PAR1 and PAR2 bind with priority to Etk/Bmx. A point mutation in PAR2, H349A, but not in R352A, abrogates PH-protein association and is sufficient to markedly reduce PAR2-instigated breast tumour growth in vivo and placental extravillous trophoblast (EVT) invasion in vitro. Similarly, the PAR1 mutant hPar1-7A, which is unable to bind the PH domain, reduces mammary tumours and EVT invasion, endowing these motifs with physiological significance and underscoring the importance of these previously unknown PAR1 and PAR2 PH-domain-binding motifs in both pathological and physiological invasion processes.

  3. Keratometric alterations following the 25-gauge transconjunctival sutureless pars plana vitrectomy versus the conventional pars plana vitrectomy.

    PubMed

    Citirik, Mehmet; Batman, Cosar; Bicer, Tolga; Zilelioglu, Orhan

    2009-09-01

    To assess the alterations in keratometric astigmatism following the 25-gauge transconjunctival sutureless pars plana vitrectomy versus the conventional pars plana vitrectomy. Sixteen consecutive patients were enrolled into the study. Conventional vitrectomy was applied to eight of the cases and 25-gauge transconjunctival sutureless vitrectomy was performed in eight patients. Keratometry was performed before and after the surgery. In the 25-gauge transconjunctival sutureless pars plana vitrectomy group, statistically significant changes were not observed in the corneal curvature in any post-operative follow-up measurement (p > 0.05); whereas in the conventional pars plana vitrectomy group, statistically significant changes were observed in the first postoperative day (p = 0.01) and first postoperative month (p = 0.03). We noted that these changes returned to baseline in three months (p = 0.26). Both 25-gauge transconjunctival sutureless and conventional pars plana vitrectomy are effective surgical modalities for selected diseases of the posterior segment. Surgical procedures are critical for the visual rehabilitation of the patients. The post-operative corneal astigmatism of the vitrectomised eyes can be accurately determined at least two months post-operatively.

  4. Neutron Scattering from Polymers: Five Decades of Developing Possibilities.

    PubMed

    Higgins, J S

    2016-06-07

    The first three decades of my research career closely map the development of neutron scattering techniques for the study of molecular behavior. At the same time, the theoretical understanding of organization and motion of polymer molecules, especially in the bulk state, was developing rapidly and providing many predictions crying out for experimental verification. Neutron scattering is an ideal technique for providing the necessary evidence. This autobiographical essay describes the applications by my research group and other collaborators of increasingly sophisticated neutron scattering techniques to observe and understand molecular behavior in polymeric materials. It has been a stimulating and rewarding journey.

  5. Analysis of ParB-centromere interactions by multiplex SPR imaging reveals specific patterns for binding ParB in six centromeres of Burkholderiales chromosomes and plasmids

    PubMed Central

    Pillet, Flavien; Passot, Fanny Marie

    2017-01-01

    Bacterial centromeres–also called parS, are cis-acting DNA sequences which, together with the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids. The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex from which ParA—the motor protein, segregates the sister replicons. Closely related families of partition systems, called Bsr, were identified on the chromosomes and large plasmids of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes, displaying similar base compositions, notably a central CG dinucleotide. Despite centromeres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate interactions were nevertheless detected between few Bsr partition systems of replicons not belonging to the same genome. These observations suggested that Bsr partition systems could have a common ancestry but that evolution mostly erased the possibilities of cross-reactions between them, in particular to prevent replicon incompatibility. To detect novel similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS sequences and a wide collection of modified derivatives, to their cognate ParB. The study was carried out by Surface Plasmon Resonance imaging (SPRi) mulitplex analysis enabling a systematic survey of each nucleotide position within the centromere. We found that in each parS some positions could be changed while maintaining binding to ParB. Each centromere displays its own pattern of changes, but some positions are shared more or less widely. In addition from these changes we could speculate evolutionary links between these centromeres. PMID:28562673

  6. Neutrons on a surface of liquid helium

    NASA Astrophysics Data System (ADS)

    Grigoriev, P. D.; Zimmer, O.; Grigoriev, A. D.; Ziman, T.

    2016-08-01

    We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at 0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests of short-range gravity. The system might also be useful for neutron β -decay experiments. We also sketch new experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.

  7. Energy research with neutrons (ErwiN) and installation of a fast neutron powder diffraction option at the MLZ, Germany1

    PubMed Central

    Mühlbauer, Martin J.

    2018-01-01

    The need for rapid data collection and studies of small sample volumes in the range of cubic millimetres are the main driving forces for the concept of a new high-throughput monochromatic diffraction instrument at the Heinz Maier-Leibnitz Zentrum (MLZ), Germany. A large region of reciprocal space will be accessed by a detector with sufficient dynamic range and microsecond time resolution, while allowing for a variety of complementary sample environments. The medium-resolution neutron powder diffraction option for ‘energy research with neutrons’ (ErwiN) at the high-flux FRM II neutron source at the MLZ is foreseen to meet future demand. ErwiN will address studies of energy-related systems and materials with respect to their structure and uniformity by means of bulk and spatially resolved neutron powder diffraction. A set of experimental options will be implemented, enabling time-resolved studies, rapid parametric measurements as a function of external parameters and studies of small samples using an adapted radial collimator. The proposed powder diffraction option ErwiN will bridge the gap in functionality between the high-resolution powder diffractometer SPODI and the time-of-flight diffractometers POWTEX and SAPHiR at the MLZ. PMID:29896055

  8. Protease-activated receptor (PAR)2, but not PAR1, is involved in collateral formation and anti-inflammatory monocyte polarization in a mouse hind limb ischemia model.

    PubMed

    van den Hengel, Lisa G; Hellingman, Alwine A; Nossent, Anne Yael; van Oeveren-Rietdijk, Annemarie M; de Vries, Margreet R; Spek, C Arnold; van Zonneveld, Anton Jan; Reitsma, Pieter H; Hamming, Jaap F; de Boer, Hetty C; Versteeg, Henri H; Quax, Paul H A

    2013-01-01

    In collateral development (i.e. arteriogenesis), mononuclear cells are important and exist as a heterogeneous population consisting of pro-inflammatory and anti-inflammatory/repair-associated cells. Protease-activated receptor (PAR)1 and PAR2 are G-protein-coupled receptors that are both expressed by mononuclear cells and are involved in pro-inflammatory reactions, while PAR2 also plays a role in repair-associated responses. Here, we investigated the physiological role of PAR1 and PAR2 in arteriogenesis in a murine hind limb ischemia model. PAR1-deficient (PAR1-/-), PAR2-deficient (PAR2-/-) and wild-type (WT) mice underwent femoral artery ligation. Laser Doppler measurements revealed reduced post-ischemic blood flow recovery in PAR2-/- hind limbs when compared to WT, while PAR1-/- mice were not affected. Upon ischemia, reduced numbers of smooth muscle actin (SMA)-positive collaterals and CD31-positive capillaries were found in PAR2-/- mice when compared to WT mice, whereas these parameters in PAR1-/- mice did not differ from WT mice. The pool of circulating repair-associated (Ly6C-low) monocytes and the number of repair-associated (CD206-positive) macrophages surrounding collaterals in the hind limbs were increased in WT and PAR1-/- mice, but unaffected in PAR2-/- mice. The number of repair-associated macrophages in PAR2-/- hind limbs correlated with CD11b- and CD115-expression on the circulating monocytes in these animals, suggesting that monocyte extravasation and M-CSF-dependent differentiation into repair-associated cells are hampered. PAR2, but not PAR1, is involved in arteriogenesis and promotes the repair-associated response in ischemic tissues. Therefore, PAR2 potentially forms a new pro-arteriogenic target in coronary artery disease (CAD) patients.

  9. Small Angle Neutron Scattering experiments on ``side-on fixed"" liquid crystal polyacrylates

    NASA Astrophysics Data System (ADS)

    Leroux, N.; Keller, P.; Achard, M. F.; Noirez, L.; Hardouin, F.

    1993-08-01

    Small Angle Neutron Scattering experiments were carried out on liquid crystalline “side-on fixed” polyacrylates : we observe that the polymer backbone adopts a prolate conformation in the nematic phase. Such anisotropy of the global backbone is larger for smaller spacer length. In every case we measure at low temperatures a large chain extension as previously described in polysiloxanes. Par diffusion des neutrons aux petits angles nous observons que la chaîne de polyacrylates “en haltère” adopte une conformation type prolate en phase nématique. Son anisotropie est d'autant plus grande que l'espaceur est plus court. Dans tous les cas, nous retrouvons à basse température la forte extension de la chaîne polymère qui fut d'abord révélée dans les polysiloxanes.

  10. Superfluidity in the Core of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2013-04-01

    The year (1958) after the publication of the BCS theory, Bohr, Mottelson & Pines showed that nuclei should also contain superfluid neutrons and superconducting protons. In 1959, A. Migdal proposed that neutron superfluidity should also occur in the interior of neutron stars. Pairing in nuclei forms Cooper pairs with zero spin, but the relevant component of the nuclear interaction becomes repulsive at densities larger than the nuclear matter density. It has been proposed that neutron-neutron interaction in the spin-triplet state, and L=1 orbital angular momentum, that is known to be attractive from laboratory experiments, may result in a new form of neutron superfluidity in the neutron star interior. I will review our present understanding of the structure of neutron stars and describe how superfluidity strongly affects their thermal evolution. I will show how a ``Minimal Model'' that excludes the presence of ``exotic'' matter (Bose condensates, quarks, etc.) is compatible with most observations of the surface temperatures of young isolated neutron stars in the case this neutron superfluid exists. Compared to the case of isotropic spin-zero Cooper pairs, the formation of anisotropic spin-one Cooper pairs results in a strong neutrino emission that leads to an enhanced cooling of neutron stars after the onset of the pairing phase transition and allows the Minimal Cooling scenario to be compatible with most observations. In the case the pairing critical temperature Tc is less than about 6 x10^8 K, the resulting rapid cooling of the neutron star may be observable. It was recently reported that 10 years of Chandra observations of the 333 year young neutron star in the Cassiopeia A supernova remnant revealed that its temperature has dropped by about 5%. This result indicates that neutrons in this star are presently becoming superfluid and, if confirmed, provides us with the first direct observational evidence for neutron superfluidity at supra-nuclear densities.

  11. Microfabrication of a gadolinium-derived solid-state sensor for thermal neutrons

    DOE PAGES

    Pfeifer, Kent B.; Achyuthan, Komandoor E.; Allen, Matthew; ...

    2017-03-25

    Neutron sensing is critical in civilian and military applications. Conventional neutron sensors are limited by size, weight, cost, portability and helium supply. Here in this study, the microfabrication of gadolinium (Gd) conversion material–based heterojunction diodes for detecting thermal neutrons using electrical signals produced by internal conversion electrons (ICEs) is described. Films with negligible stress were produced at the tensile-compressive crossover point, enabling Gd coatings of any desired thickness by controlling the radiofrequency sputtering power and using the zero-point near p(Ar) of 50 mTorr at 100 W. Post-deposition Gd oxidation–induced spallation was eliminated by growing a residual stress-free 50 nm neodymium-dopedmore » aluminum cap layer atop Gd. The resultant coatings were stable for at least 6 years, demonstrating excellent stability and product shelf-life. Depositing Gd directly on the diode surface eliminated the air gap, leading to a 200-fold increase in electron capture efficiency and facilitating monolithic microfabrication. The conversion electron spectrum was dominated by ICEs with energies of 72, 132 and 174 keV. Results are reported for neutron reflection and moderation by polyethylene for enhanced sensitivity, and γ- and X-ray elimination for improved specificity. The optimal Gd thickness was 10.4 μm for a 300 μm-thick partially depleted diode of 300 mm 2 active surface area. Fast detection (within 10 min) at a neutron source-to-diode distance of 11.7 cm was achieved with this configuration. All ICE energies along with γ-ray and K α,β X-rays were modeled to emphasize correlations between experiment and theory. Semi-conductor thermal neutron detectors offer advantages for field-sensing of radioactive neutron sources.« less

  12. Microfabrication of a gadolinium-derived solid-state sensor for thermal neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeifer, Kent B.; Achyuthan, Komandoor E.; Allen, Matthew

    Neutron sensing is critical in civilian and military applications. Conventional neutron sensors are limited by size, weight, cost, portability and helium supply. Here in this study, the microfabrication of gadolinium (Gd) conversion material–based heterojunction diodes for detecting thermal neutrons using electrical signals produced by internal conversion electrons (ICEs) is described. Films with negligible stress were produced at the tensile-compressive crossover point, enabling Gd coatings of any desired thickness by controlling the radiofrequency sputtering power and using the zero-point near p(Ar) of 50 mTorr at 100 W. Post-deposition Gd oxidation–induced spallation was eliminated by growing a residual stress-free 50 nm neodymium-dopedmore » aluminum cap layer atop Gd. The resultant coatings were stable for at least 6 years, demonstrating excellent stability and product shelf-life. Depositing Gd directly on the diode surface eliminated the air gap, leading to a 200-fold increase in electron capture efficiency and facilitating monolithic microfabrication. The conversion electron spectrum was dominated by ICEs with energies of 72, 132 and 174 keV. Results are reported for neutron reflection and moderation by polyethylene for enhanced sensitivity, and γ- and X-ray elimination for improved specificity. The optimal Gd thickness was 10.4 μm for a 300 μm-thick partially depleted diode of 300 mm 2 active surface area. Fast detection (within 10 min) at a neutron source-to-diode distance of 11.7 cm was achieved with this configuration. All ICE energies along with γ-ray and K α,β X-rays were modeled to emphasize correlations between experiment and theory. Semi-conductor thermal neutron detectors offer advantages for field-sensing of radioactive neutron sources.« less

  13. A Neutron Based Interrogation System For SNM In Cargo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Steven Z.; Koltick, David S.

    A complete system has been simulated using experimentally obtained input parameters for the detection of special nuclear materials (SNM). A variation of the associated particle imaging (API) technique, referred to as reverse associated particle imaging detection (RAPID), has been developed in the context of detecting 5-kg spherical samples of U-235 in cargo. The RAPID technique allows for the interrogation of containers at neutron production rates between {approx}1x10{sup 8} neutrons/s and {approx}3x10{sup 8} neutrons/s. The merit of performance for the system is the time to detect the threat material with 95% probability of detection and 10{sup -4} false positive rate permore » interrogated voxel of cargo. Detection times of 5 minutes were found for a maximally loaded cargo container uniformly filled with iron and as low as 1 second in containers loaded to 1/4 of full capacity with either iron or wood. The worse case system performance, 30 minutes interrogation time, occurs for a maximally loaded container containing wood at 0.4 g/cm{sup 3}.« less

  14. Rapid response sensor for analyzing Special Nuclear Material

    DOE PAGES

    Mitra, S. S.; Doron, O.; Chen, A. X.; ...

    2015-06-18

    Rapid in-situ analytical techniques are attractive for characterizing Special Nuclear Material (SNM). Present techniques are time consuming, and require sample dissolution. Proof-of-principal studies are performed to demonstrate the utility of employing low energy neutrons from a portable pulsed neutron generator for non-destructive isotopic analysis of nuclear material. In particular, time-sequenced data acquisition, operating synchronously with the pulsing of a neutron generator, partitions the characteristic elemental prompt gamma-rays according to the type of the reaction; inelastic neutron scattering reactions during the ON state and thermal neutron capture reactions during the OFF state of the generator. Thus, the key challenge is isolatingmore » these signature gamma- rays from the prompt fission and β-delayed gamma-rays that are also produced during the neutron interrogation. A commercial digital multi-channel analyzer has been specially customized to enable time-resolved gamma-ray spectral data to be acquired in multiple user-defined time bins within each of the ON/OFF gate periods of the neutron generator. Preliminary results on new signatures from depleted uranium as well as modeling and benchmarking of the concept are presented, however this approach should should be applicable for virtually all forms of SNM.« less

  15. Doxycycline directly targets PAR1 to suppress tumor progression.

    PubMed

    Zhong, Weilong; Chen, Shuang; Zhang, Qiang; Xiao, Ting; Qin, Yuan; Gu, Ju; Sun, Bo; Liu, Yanrong; Jing, Xiangyan; Hu, Xuejiao; Zhang, Peng; Zhou, Honggang; Sun, Tao; Yang, Cheng

    2017-03-07

    Doxycycline have been reported to exert anti-cancer activity and have been assessed as anti-cancer agents in clinical trials. However, the direct targets of doxycycline in cancer cells remain unclear. In this study, we used a chemical proteomics approach to identify the Protease-activated receptor 1 (PAR1) as a specific target of inhibition of doxycycline. Binding assays and single-molecule imaging assays were performed to confirm the inhibition of doxycycline to PAR1. The effect of doxycycline on multi-omics and cell functions were assessed based on a PAR1/thrombin model. Molecular docking and molecular dynamic simulations revealed that doxycycline interacts with key amino acids in PAR1. Mutation of PAR1 further confirmed the computation-based results. Moreover, doxycycline provides highly selective inhibition of PAR1 signaling in tumors in vitro and in vivo. Using pathological clinical samples co-stained for doxycycline and PAR1, it was found that doxycycline fluorescence intensity and PAR1 expression shown a clear positive correlation. Thus, doxycycline may be a useful targeted anti-cancer drug that should be further investigated in clinical trials.

  16. PAR -- Interface to the ADAM Parameter System

    NASA Astrophysics Data System (ADS)

    Currie, Malcolm J.; Chipperfield, Alan J.

    PAR is a library of Fortran subroutines that provides convenient mechanisms for applications to exchange information with the outside world, through input-output channels called parameters. Parameters enable a user to control an application's behaviour. PAR supports numeric, character, and logical parameters, and is currently implemented only on top of the ADAM parameter system. The PAR library permits parameter values to be obtained, without or with a variety of constraints. Results may be put into parameters to be passed onto other applications. Other facilities include setting a prompt string, and suggested defaults. This document also introduces a preliminary C interface for the PAR library -- this may be subject to change in the light of experience.

  17. Asymmetric core collapse of rapidly rotating massive star

    NASA Astrophysics Data System (ADS)

    Gilkis, Avishai

    2018-02-01

    Non-axisymmetric features are found in the core collapse of a rapidly rotating massive star, which might have important implications for magnetic field amplification and production of a bipolar outflow that can explode the star, as well as for r-process nucleosynthesis and natal kicks. The collapse of an evolved rapidly rotating MZAMS = 54 M⊙ star is followed in three-dimensional hydrodynamic simulations using the FLASH code with neutrino leakage. A rotating proto-neutron star (PNS) forms with a non-zero linear velocity. This can contribute to the natal kick of the remnant compact object. The PNS is surrounded by a turbulent medium, where high shearing is likely to amplify magnetic fields, which in turn can drive a bipolar outflow. Neutron-rich material in the PNS vicinity might induce strong r-process nucleosynthesis. The rapidly rotating PNS possesses a rotational energy of E_rot ≳ 10^{52} erg. Magnetar formation proceeding in a similar fashion will be able to deposit a portion of this energy later on in the supernova ejecta through a spin-down mechanism. These processes can be important for rare supernovae generated by rapidly rotating progenitors, even though a complete explosion is not simulated in the present study.

  18. An ELISA method detecting the active form of suPAR.

    PubMed

    Zhou, Xiaolei; Xu, Mingming; Huang, Hailong; Mazar, Andrew; Iqbal, Zafar; Yuan, Cai; Huang, Mingdong

    2016-11-01

    Urokinase plasminogen activator receptor (uPAR) exists in a number of formats in human plasma, including soluble uPAR (suPAR) and uPAR fragments. We developed an ELISA method to detect specifically the active form suPAR, which binds to its natural ligand uPA. The intra CV and inter CV of this ELISA assay is 8.5% and 9.6% respectively, and the assay can recover 99.74% of added recombinant suPAR from 10% plasma. This assay is quite sensitive, capable of detecting down to 15pg/ml of suPAR, and can measure suPAR concentrations in the range of 0.031-8ng/ml with high linear relationship. Plasma samples from pregnant women were also measured for the active form of suPAR with this assay, giving an averaged level of 1.39ng/ml, slightly higher than the level of pooled plasma from healthy donors (0.96ng/ml). This study demonstrates the feasibility to measure the active form of suPAR, which will likely have value in clinical applications. Copyright © 2016. Published by Elsevier B.V.

  19. Doxycycline directly targets PAR1 to suppress tumor progression

    PubMed Central

    Qin, Yuan; Gu, Ju; Sun, Bo; Liu, Yanrong; Jing, Xiangyan; Hu, Xuejiao; Zhang, Peng; Zhou, Honggang; Sun, Tao; Yang, Cheng

    2017-01-01

    Doxycycline have been reported to exert anti-cancer activity and have been assessed as anti-cancer agents in clinical trials. However, the direct targets of doxycycline in cancer cells remain unclear. In this study, we used a chemical proteomics approach to identify the Protease-activated receptor 1 (PAR1) as a specific target of inhibition of doxycycline. Binding assays and single-molecule imaging assays were performed to confirm the inhibition of doxycycline to PAR1. The effect of doxycycline on multi-omics and cell functions were assessed based on a PAR1/thrombin model. Molecular docking and molecular dynamic simulations revealed that doxycycline interacts with key amino acids in PAR1. Mutation of PAR1 further confirmed the computation-based results. Moreover, doxycycline provides highly selective inhibition of PAR1 signaling in tumors in vitro and in vivo. Using pathological clinical samples co-stained for doxycycline and PAR1, it was found that doxycycline fluorescence intensity and PAR1 expression shown a clear positive correlation. Thus, doxycycline may be a useful targeted anti-cancer drug that should be further investigated in clinical trials. PMID:28187433

  20. The National Spallation Neutron Source Target Station.

    NASA Astrophysics Data System (ADS)

    Gabriel, T. A.

    1997-05-01

    The technologies that are being utilized to design and build a state-of-the-art high powered (>= 1 MW), short pulsed (<= 1 μsec), and reliable spallation neutron source target station are discussed. The protons which directly and indirectly produce the neutrons will be obtained from a 1 GeV proton accelerator composed of an ion gun, rfq, linac, and storage ring. Many scientific and technical disciplines are required to produce a successful target station. These disciplines include engineering, remote handling, neutronics, materials, thermal hydraulics, shock analysis, etc. In the areas of engineering and remote handling special emphasis is being given to rapid and efficient assembly and disassembly of critical parts of the target station. In the neutronics area, emphasis is being given to neutron yield and pulse optimization from the moderators, and heating and activation rates throughout the station. Development of structural materials to withstand aggressive radiation environments and that are compatible with other materials is also an important area. Thermal hydraulics and shock analysis are being closely studied since large amounts of energy are being deposited in small volumes in relatively short time periods (< 1 μsec). These areas will be expanded upon in the paper.

  1. High resolution melting analysis for rapid mutation screening in gyrase and Topoisomerase IV genes in quinolone-resistant Salmonella enterica.

    PubMed

    Ngoi, Soo Tein; Thong, Kwai Lin

    2014-01-01

    The increased Salmonella resistance to quinolones and fluoroquinolones is a public health concern in the Southeast Asian region. The objective of this study is to develop a high resolution melt curve (HRM) assay to rapidly screen for mutations in quinolone-resistant determining region (QRDR) of gyrase and topoisomerase IV genes. DNA sequencing was performed on 62 Salmonella strains to identify mutations in the QRDR of gyrA, gyrB, parC, and parE genes. Mutations were detected in QRDR of gyrA (n = 52; S83F, S83Y, S83I, D87G, D87Y, and D87N) and parE (n = 1; M438I). Salmonella strains with mutations within QRDR of gyrA are generally more resistant to nalidixic acid (MIC 16 > 256 μg/mL). Mutations were uncommon within the QRDR of gyrB, parC, and parE genes. In the HRM assay, mutants can be distinguished from the wild-type strains based on the transition of melt curves, which is more prominent when the profiles are displayed in difference plot. In conclusion, HRM analysis allows for rapid screening for mutations at the QRDRs of gyrase and topoisomerase IV genes in Salmonella. This assay markedly reduced the sequencing effort involved in mutational studies of quinolone-resistance genes.

  2. High Resolution Melting Analysis for Rapid Mutation Screening in Gyrase and Topoisomerase IV Genes in Quinolone-Resistant Salmonella enterica

    PubMed Central

    Thong, Kwai Lin

    2014-01-01

    The increased Salmonella resistance to quinolones and fluoroquinolones is a public health concern in the Southeast Asian region. The objective of this study is to develop a high resolution melt curve (HRM) assay to rapidly screen for mutations in quinolone-resistant determining region (QRDR) of gyrase and topoisomerase IV genes. DNA sequencing was performed on 62 Salmonella strains to identify mutations in the QRDR of gyrA, gyrB, parC, and parE genes. Mutations were detected in QRDR of gyrA (n = 52; S83F, S83Y, S83I, D87G, D87Y, and D87N) and parE (n = 1; M438I). Salmonella strains with mutations within QRDR of gyrA are generally more resistant to nalidixic acid (MIC 16 > 256 μg/mL). Mutations were uncommon within the QRDR of gyrB, parC, and parE genes. In the HRM assay, mutants can be distinguished from the wild-type strains based on the transition of melt curves, which is more prominent when the profiles are displayed in difference plot. In conclusion, HRM analysis allows for rapid screening for mutations at the QRDRs of gyrase and topoisomerase IV genes in Salmonella. This assay markedly reduced the sequencing effort involved in mutational studies of quinolone-resistance genes. PMID:25371903

  3. Measurement of the heaviest β-delayed 2-neutron emitter: 136Sb

    NASA Astrophysics Data System (ADS)

    Caballero-Folch, R.; Dillmann, I.; Taín, J. L.; Agramunt, J.; Domingo-Pardo, C.; Algora, A.; Äystö, J.; Calviño, F.; Canete, L.; Cortès, G.; Eronen, T.; Ganioglu, E.; Gelletly, W.; Gorelov, D.; Guadilla, V.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kolhinen, V.; Koponen, J.; Marta, M.; Mendoza, E.; Montaner-Pizá, A.; Moore, I.; Nobs, Ch.; Orrigo, S.; Penttilä, H.; Pohjalainen, I.; Reinikainen, J.; Riego, A.; Rinta-Antila, S.; Rubio, B.; Salvador-Castiñeira, P.; Simutkin, V.; Voss, A.

    2017-09-01

    The β-delayed neutron emission probability, Pn, of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition β-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of β-delayed one-neutron emitters (β1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, which can be studied and analyzed using specific detection systems. This contribution reports two recent measurements of β-delayed neutron emitters which allowed the determination of half-lives and the neutron branching ratio of isotopes in the mass region above A = 200 and N > 126, and a second experiment which confirmed 136Sb as the heaviest double neutron emitter (β2n) measured so far.

  4. On fundamental quality of fission chain reaction to oppose rapid runaways of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Shmelev, A. N.; Apse, V. A.; Kulikov, E. G.

    2017-01-01

    It has been shown that the in-hour equation characterizes the barriers and resistibility of fission chain reaction (FCR) against rapid runaways in nuclear reactors. Traditionally, nuclear reactors are characterized by the presence of barriers based on delayed and prompt neutrons. A new barrier based on the reflector neutrons that can occur when the fast reactor core is surrounded by a weakly absorbing neutron reflector with heavy atomic weight was proposed. It has been shown that the safety of this fast reactor is substantially improved, and considerable elongation of prompt neutron lifetime "devalues" the role of delayed neutron fraction as the maximum permissible reactivity for the reactor safety.

  5. Proteinase-Activated Receptor 1 (PAR1) Regulates Leukemic Stem Cell Functions

    PubMed Central

    Bäumer, Nicole; Krause, Annika; Köhler, Gabriele; Lettermann, Stephanie; Evers, Georg; Hascher, Antje; Bäumer, Sebastian; Berdel, Wolfgang E.

    2014-01-01

    External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1−/− hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1−/− leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance. PMID:24740120

  6. Proteinase-Activated Receptor 1 (PAR1) regulates leukemic stem cell functions.

    PubMed

    Bäumer, Nicole; Krause, Annika; Köhler, Gabriele; Lettermann, Stephanie; Evers, Georg; Hascher, Antje; Bäumer, Sebastian; Berdel, Wolfgang E; Müller-Tidow, Carsten; Tickenbrock, Lara

    2014-01-01

    External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1-/- hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1-/- leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance.

  7. PAR(2) and temporomandibular joint inflammation in the rat.

    PubMed

    Denadai-Souza, A; Cenac, N; Casatti, C A; Câmara, P R de Souza; Yshii, L M; Costa, S K P; Vergnolle, N; Muscará, M N

    2010-10-01

    The proteinase-activated receptor 2 (PAR(2)) is a putative therapeutic target for arthritis. We hypothesized that the early pro-inflammatory effects secondary to its activation in the temporomandibular joint (TMJ) are mediated by neurogenic mechanisms. Immunofluorescence analysis revealed a high degree of neurons expressing PAR(2) in retrogradely labeled trigeminal ganglion neurons. Furthermore, PAR(2) immunoreactivity was observed in the lining layer of the TMJ, co-localizing with the neuronal marker PGP9.5 and substance-P-containing peripheral sensory nerve fibers. The intra-articular injection of PAR(2) agonists into the TMJ triggered a dose-dependent increase in plasma extravasation, neutrophil influx, and induction of mechanical allodynia. The pharmacological blockade of natural killer 1 (NK(1)) receptors abolished PAR(2)-induced plasma extravasation and inhibited neutrophil influx and mechanical allodynia. We conclude that PAR(2) activation is pro-inflammatory in the TMJ, through a neurogenic mechanism involving NK(1) receptors. This suggests that PAR(2) is an important component of innate neuro-immune response in the rat TMJ.

  8. PAR proteins regulate maintenance-phase myosin dynamics during Caenorhabditis elegans zygote polarization

    PubMed Central

    Small, Lawrence E.; Dawes, Adriana T.

    2017-01-01

    Establishment of anterior–posterior polarity in the Caenorhabditis elegans zygote requires two different processes: mechanical activity of the actin–myosin cortex and biochemical activity of partitioning-defective (PAR) proteins. Here we analyze how PARs regulate the behavior of the cortical motor protein nonmuscle myosin (NMY-2) to complement recent efforts that investigate how PARs regulate the Rho GTPase CDC-42, which in turn regulates the actin-myosin cortex. We find that PAR-3 and PAR-6 concentrate CDC-42–dependent NMY-2 in the anterior cortex, whereas PAR-2 inhibits CDC-42–dependent NMY-2 in the posterior domain by inhibiting PAR-3 and PAR-6. In addition, we find that PAR-1 and PAR-3 are necessary for inhibiting movement of NMY-2 across the cortex. PAR-1 protects NMY-2 from being moved across the cortex by forces likely originating in the cytoplasm. Meanwhile, PAR-3 stabilizes NMY-2 against PAR-2 and PAR-6 dynamics on the cortex. We find that PAR signaling fulfills two roles: localizing NMY-2 to the anterior cortex and preventing displacement of the polarized cortical actin–myosin network. PMID:28615321

  9. Inhibition of diacylglycerol lipase (DAGL) in the lateral hypothalamus of rats prevents the increase in REMS and food ingestion induced by PAR1 stimulation.

    PubMed

    Pérez-Morales, Marcel; López-Colomé, Ana María; Méndez-Díaz, Mónica; Ruiz-Contreras, Alejandra E; Prospéro-García, Oscar

    2014-08-22

    Stimulation of the protease-activated receptor 1 (PAR1) in vitro, was shown to induce synaptic retrograde signaling through the endocannabinoid 2-arachidonoylglycerol (2-AG) synthesis and activation of the cannabinoid receptor type 1 (CB1R). The activation of PAR1 by the agonist S1820 in the lateral hypothalamus (LH) increases rapid eye movement sleep (REMS) and food intake in rats, and both effects are prevented by the CB1R inverse agonist AM251. In the present study, we implanted rats with electrodes and with cannulae aimed bilaterally to the LH. We administered tetrahydrolipstatin (THL), an inhibitor of the diacylglycerol lipase (DAGL), the enzyme responsible for 2-AG synthesis, to evaluate the sleep-wake cycle and food ingestion. THL in the LH readily prevented the increase in REMS and food intake induced by PAR1 stimulation, further supporting 2-AG as an upstream activator of PAR1. Our results demonstrate that the effect of PAR1 on REMS and food intake is blocked by the inhibition of DAGL, further suggesting that PAR1 stimulation in the lateral hypothalamus of rats induces an increase in sleep and food intake through 2-AG. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs). KLK4 and PAR-2 are co-expressed during prostate cancer progression.

    PubMed

    Ramsay, Andrew J; Dong, Ying; Hunt, Melanie L; Linn, MayLa; Samaratunga, Hemamali; Clements, Judith A; Hooper, John D

    2008-05-02

    Kallikrein-related peptidase 4 (KLK4) is one of the 15 members of the human KLK family and a trypsin-like, prostate cancer-associated serine protease. Signaling initiated by trypsin-like serine proteases are transduced across the plasma membrane primarily by members of the protease-activated receptor (PAR) family of G protein-coupled receptors. Here we show, using Ca(2+) flux assays, that KLK4 signals via both PAR-1 and PAR-2 but not via PAR-4. Dose-response analysis over the enzyme concentration range 0.1-1000 nM indicated that KLK4-induced Ca(2+) mobilization via PAR-1 is more potent than via PAR-2, whereas KLK4 displayed greater efficacy via the latter PAR. We confirmed the specificity of KLK4 signaling via PAR-2 using in vitro protease cleavage assays and anti-phospho-ERK1/2/total ERK1/2 Western blot analysis of PAR-2-overexpressing and small interfering RNA-mediated receptor knockdown cell lines. Consistently, confocal microscopy analyses indicated that KLK4 initiates loss of PAR-2 from the cell surface and receptor internalization. Immunohistochemical analysis indicated the co-expression of agonist and PAR-2 in primary prostate cancer and bone metastases, suggesting that KLK4 signaling via this receptor will have pathological relevance. These data provide insight into KLK4-mediated cell signaling and suggest that signals induced by this enzyme via PARs may be important in prostate cancer.

  11. Microtubules induce self-organization of polarized PAR domains in C. elegans zygotes

    PubMed Central

    Motegi, Fumio; Zonies, Seth; Hao, Yingsong; Cuenca, Adrian A.; Griffin, Erik; Seydoux, Geraldine

    2011-01-01

    A hallmark of polarized cells is the segregation of the PAR polarity regulators into asymmetric domains at the cell cortex1, 2. Antagonistic interactions involving two conserved kinases, atypical protein kinase C (aPKC) and PAR-1, have been implicated in polarity maintenance1, 2, but the mechanisms that initiate the formation of asymmetric PAR domains are not understood. Here, we describe one pathway used by the sperm-donated centrosome to polarize the PAR proteins in Caenorhabditis elegans zygotes. Before polarization, cortical aPKC excludes PAR-1 kinase and its binding partner PAR-2 by phosphorylation. During symmetry breaking, microtubules nucleated by the centrosome locally protect PAR-2 from phosphorylation by aPKC, allowing PAR-2 and PAR-1 to access the cortex nearest the centrosome. Cortical PAR-1 phosphorylates PAR-3, causing the PAR-3/aPKC complex to leave the cortex. Our findings illustrate how microtubules, independent of actin dynamics, stimulate the self-organization of PAR proteins by providing local protection against a global barrier imposed by aPKC. PMID:21983565

  12. Aspergillus fumigatus Increased PAR-2 Expression and Elevated Proinflammatory Cytokines Expression Through the Pathway of PAR-2/ERK1/2 in Cornea.

    PubMed

    Niu, Yawen; Zhao, Guiqiu; Li, Cui; Lin, Jing; Jiang, Nan; Che, Chengye; Zhang, Jie; Xu, Qiang

    2018-01-01

    To determine the role of protease-activated receptor-2 (PAR-2) in cornea infected by Aspergillus fumigatus. PAR-2 was tested in normal and infected corneas of C57BL/6 mice. Mice corneas were infected with A. fumigatus with or without pretreatment of PAR-2 antagonist (FSLLRY-NH2). Polymorphonuclear neutrophilic leukocytes (PMNs) were stimulated with 75% ethanol-killed A. fumigatus with or without pretreatment of FSLLRY-NH2. Disease severity was documented by clinical score and photographs with a slit lamp. PCR, Western blot, and ELISA tested expression of PAR-2, IL-1β, TNF-α, IFN-γ, MIP-2, and p-ERK1/2. PMN infiltration was assessed by myeloperoxidase assay and immunofluorescent staining. PAR-2 expression was significantly elevated by A. fumigatus, whereas the upregulation was significantly inhibited by FSLLRY-NH2 in mice corneas. FSLLRY-NH2 decreased disease response, PMN infiltration, and proinflammatory cytokine expression compared with infected control. In PMNs, PAR-2 expression was also significantly increased by A. fumigatus, which was significantly inhibited by FSLLRY-NH2. FSLLRY-NH2 significantly inhibited proinflammatory cytokine protein expression, as compared with that in infected control cells, which may be modified by p-ERK1/2. These data provide evidence that A. fumigatus increased PAR-2 expression and elevated disease, PMN infiltration, and proinflammatory cytokine expression through PAR-2, which may be modified by p-ERK1/2.

  13. Relativistic g-modes in rapidly rotating neutron stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaertig, Erich; Kokkotas, Kostas D.; Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124

    2009-09-15

    We study the g-modes of fast rotating stratified neutron stars in the general relativistic Cowling approximation, where we neglect metric perturbations and where the background models take into account the buoyant force due to composition gradients. This is the first paper studying this problem in a general relativistic framework. In a recent paper [A. Passamonti, B. Haskell, N. Andersson, D. I. Jones, and I. Hawke, Mon. Not. R. Astron. Soc. 394, 730 (2009)], a similar study was performed within the Newtonian framework, where the authors presented results about the onset of CFS-unstable g-modes and the close connection between inertial andmore » gravity modes for sufficiently high rotation rates and small composition gradients. This correlation arises from the interplay between the buoyant force which is the restoring force for g-modes and the Coriolis force which is responsible for the existence of inertial modes. In our relativistic treatment of the problem, we find an excellent qualitative agreement with respect to the Newtonian results.« less

  14. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    NASA Astrophysics Data System (ADS)

    Lestone, J. P.

    2016-01-01

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  15. Dishevelled-induced phosphorylation regulates membrane localization of Par1b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terabayashi, Takeshi; Funato, Yosuke; Miki, Hiroaki, E-mail: hmiki@protein.osaka-u.ac.jp

    2008-10-31

    Par1b is an evolutionarily conserved kinase that plays crucial roles in cell polarity. Controlling intracellular localization of Par1b is important for its biological activity. We previously reported that Wnt stimulation or expression of Dvl promotes accumulation of Par1b in the membrane (T. Terabayashi, T.J. Itoh, H. Yamaguchi, Y. Yoshimura, Y. Funato, S. Ohno, H. Miki, Polarity-Regulating Kinase Partitioning-Defective 1/Microtubule Affinity-Regulating Kinase 2 Negatively Regulates Development of Dendrites on Hippocampal Neurons, J. Neurosci. 27 (2007) 13098-13107). However, its molecular mechanism remains unclear. Here we show the importance of Par1b phosphorylation in the regulation of membrane localization. We find that Thr-324 ismore » phosphorylated in a Dvl-dependent manner. Interestingly, the conversion of Thr-324 to Glu results in a significant accumulation of Par1b in the membrane, without any effects on the kinase activity. Moreover, the phospho-mimicking Par1b mutant does not antagonistically function against Dvl in microtubule stabilization and neurite extension, although wildtype Par1b does. These results suggest that membrane accumulation of Par1b induced by Dvl is regulated by its phosphorylation status, which is important for Par1b to regulate the microtubule dynamics.« less

  16. Protease-Activated Receptor 4 (PAR4): A Promising Target for Antiplatelet Therapy.

    PubMed

    Rwibasira Rudinga, Gamariel; Khan, Ghulam Jilany; Kong, Yi

    2018-02-14

    Cardiovascular diseases (CVDs) are currently among the leading causes of death worldwide. Platelet aggregation is a key cellular component of arterial thrombi and major cause of CVDs. Protease-activated receptors (PARs), including PAR1, PAR2, PAR3 and PAR4, fall within a subfamily of seven-transmembrane G-protein-coupled receptors (GPCR). Human platelets express PAR1 and PAR4, which contribute to the signaling transduction processes. In association with CVDs, PAR4 not only contributes to platelet activation but also is a modulator of cellular responses that serve as hallmarks of inflammation. Although several antiplatelet drugs are available on the market, they have many side effects that limit their use. Emerging evidence shows that PAR4 targeting is a safer strategy for preventing thrombosis and consequently may improve the overall cardiac safety profile. Our present review summarizes the PAR4 structural characteristics, activation mechanism, role in the pathophysiology of diseases and understanding the association of PAR4 targeting for improved cardiac protection. Conclusively, this review highlights the importance of PAR4 antagonists and its potential utility in different CVDs.

  17. Reduction of intracerebral hemorrhage by rivaroxaban after tPA thrombolysis is associated with downregulation of PAR-1 and PAR-2.

    PubMed

    Morihara, Ryuta; Yamashita, Toru; Kono, Syoichiro; Shang, Jingwei; Nakano, Yumiko; Sato, Kota; Hishikawa, Nozomi; Ohta, Yasuyuki; Heitmeier, Stefan; Perzborn, Elisabeth; Abe, Koji

    2017-09-01

    This study aimed to assess the risk of intracerebral hemorrhage (ICH) after tissue-type plasminogen activator (tPA) treatment in rivaroxaban compared with warfarin-pretreated male Wistar rat brain after ischemia in relation to activation profiles of protease-activated receptor-1, -2, -3, and -4 (PAR-1, -2, -3, and -4). After pretreatment with warfarin (0.2 mg/kg/day), low-dose rivaroxaban (60 mg/kg/day), high-dose rivaroxaban (120 mg/kg/day), or vehicle for 14 days, transient middle cerebral artery occlusion was induced for 90 min, followed by reperfusion with tPA (10 mg/kg/10 ml). Infarct volume, hemorrhagic volume, immunoglobulin G leakage, and blood parameters were examined. Twenty-four hours after reperfusion, immunohistochemistry for PARs was performed in brain sections. ICH volume was increased in the warfarin-pretreated group compared with the rivaroxaban-treated group. PAR-1, -2, -3, and -4 were widely expressed in the normal brain, and their levels were increased in the ischemic brain, especially in the peri-ischemic lesion. Warfarin pretreatment enhanced the expression of PAR-1 and PAR-2 in the peri-ischemic lesion, whereas rivaroxaban pretreatment did not. The present study shows a lower risk of brain hemorrhage in rivaroxaban-pretreated compared with warfarin-pretreated rats following tPA administration to the ischemic brain. It is suggested that the relative downregulation of PAR-1 and PAR-2 by rivaroxaban compared with warfarin pretreatment might be partly involved in the mechanism of reduced hemorrhagic complications in patients receiving rivaroxaban in clinical trials. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Factor X/Xa elicits protective signaling responses in endothelial cells directly via PAR-2 and indirectly via endothelial protein C receptor-dependent recruitment of PAR-1.

    PubMed

    Bae, Jong-Sup; Yang, Likui; Rezaie, Alireza R

    2010-11-05

    We recently demonstrated that the Gla domain-dependent interaction of protein C with endothelial protein C receptor (EPCR) leads to dissociation of the receptor from caveolin-1 and recruitment of PAR-1 to a protective signaling pathway. Thus, the activation of PAR-1 by either thrombin or PAR-1 agonist peptide elicited a barrier-protective response if endothelial cells were preincubated with protein C. In this study, we examined whether other vitamin K-dependent coagulation protease zymogens can modulate PAR-dependent signaling responses in endothelial cells. We discovered that the activation of both PAR-1 and PAR-2 in endothelial cells pretreated with factor FX (FX)-S195A, but not other procoagulant protease zymogens, also results in initiation of protective intracellular responses. Interestingly, similar to protein C, FX interaction with endothelial cells leads to dissociation of EPCR from caveolin-1 and recruitment of PAR-1 to a protective pathway. Further studies revealed that, FX activated by factor VIIa on tissue factor bearing endothelial cells also initiates protective signaling responses through the activation of PAR-2 independent of EPCR mobilization. All results could be recapitulated by the receptor agonist peptides to both PAR-1 and PAR-2. These results suggest that a cross-talk between EPCR and an unknown FX/FXa receptor, which does not require interaction with the Gla domain of FX, recruits PAR-1 to protective signaling pathways in endothelial cells.

  19. The Fate of Merging Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    A rapidly spinning, highly magnetized neutron star is one possible outcome when two smaller neutron stars merge. [Casey Reed/Penn State University]When two neutron stars collide, the new object that they make can reveal information about the interior physics of neutron stars. New theoretical work explores what we should be seeing, and what it can teach us.Neutron Star or Black Hole?So far, the only systems from which weve detected gravitational waves are merging black holes. But other compact-object binaries exist and are expected to merge on observable timescales in particular, binary neutron stars. When two neutron stars merge, the resulting object falls into one of three categories:a stable neutron star,a black hole, ora supramassive neutron star, a large neutron star thats supported by its rotation but will eventually collapse to a black hole after it loses angular momentum.Histograms of the initial (left) and final (right) distributions of objects in the authors simulations, for five different equations of state. Most cases resulted primarily in the formation of neutron stars (NSs) or supramassive neutron stars (sNSs), not black holes (BHs). [Piro et al. 2017]Whether a binary-neutron-star merger results in another neutron star, a black hole, or a supramassive neutron star depends on the final mass of the remnant and what the correct equation of state is that describes the interiors of neutron stars a longstanding astrophysical puzzle.In a recent study, a team of scientists led by Anthony Piro (Carnegie Observatories) estimated which of these outcomes we should expect for mergers of binary neutron stars. The teams results along with future observations of binary neutron stars may help us to eventually pin down the equation of state for neutron stars.Merger OutcomesPiro and collaborators used relativistic calculations of spinning and non-spinning neutron stars to estimate the mass range that neutron stars would have for several different realistic equations of

  20. PAR1 activation affects the neurotrophic properties of Schwann cells.

    PubMed

    Pompili, Elena; Fabrizi, Cinzia; Somma, Francesca; Correani, Virginia; Maras, Bruno; Schininà, Maria Eugenia; Ciraci, Viviana; Artico, Marco; Fornai, Francesco; Fumagalli, Lorenzo

    2017-03-01

    Protease-activated receptor-1 (PAR1) is the prototypic member of a family of four G-protein-coupled receptors that signal in response to extracellular proteases. In the peripheral nervous system, the expression and/or the role of PARs are still poorly investigated. High PAR1 mRNA expression was found in the rat dorsal root ganglia and the signal intensity of PAR1 mRNA increased in response to sciatic nerve transection. In the sciatic nerve, functional PAR1 receptor was reported at the level of non-compacted Schwann cell myelin microvilli of the nodes of Ranvier. Schwann cells are the principal population of glial cells of the peripheral nervous system which myelinate axons playing an important role during axonal regeneration and remyelination. The present study was undertaken in order to determine if the activation of PAR1 affects the neurotrophic properties of Schwann cells. Our results suggest that the stimulation of PAR1 could potentiate the Schwann cell ability to favour nerve regeneration. In fact, the conditioned medium obtained from Schwann cell cultures challenged with a specific PAR1 activating peptide (PAR1 AP) displays increased neuroprotective and neurotrophic properties with respect to the culture medium from untreated Schwann cells. The proteomic analysis of secreted proteins in untreated and PAR1 AP-treated Schwann cells allowed the identification of factors differentially expressed in the two samples. Some of them (such as macrophage migration inhibitory factor, matrix metalloproteinase-2, decorin, syndecan 4, complement C1r subcomponent, angiogenic factor with G patch and FHA domains 1) appear to be transcriptionally regulated after PAR1 AP treatment as shown by RT-PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. PAR2 (Protease-Activated Receptor 2) Deficiency Attenuates Atherosclerosis in Mice.

    PubMed

    Jones, Shannon M; Mann, Adrien; Conrad, Kelsey; Saum, Keith; Hall, David E; McKinney, Lisa M; Robbins, Nathan; Thompson, Joel; Peairs, Abigail D; Camerer, Eric; Rayner, Katey J; Tranter, Michael; Mackman, Nigel; Owens, A Phillip

    2018-06-01

    PAR2 (protease-activated receptor 2)-dependent signaling results in augmented inflammation and has been implicated in the pathogenesis of several autoimmune conditions. The objective of this study was to determine the effect of PAR2 deficiency on the development of atherosclerosis. PAR2 mRNA and protein expression is increased in human carotid artery and mouse aortic arch atheroma versus control carotid and aortic arch arteries, respectively. To determine the effect of PAR2 deficiency on atherosclerosis, male and female low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice (8-12 weeks old) that were Par2 +/+ or Par2 -/- were fed a fat- and cholesterol-enriched diet for 12 or 24 weeks. PAR2 deficiency attenuated atherosclerosis in the aortic sinus and aortic root after 12 and 24 weeks. PAR2 deficiency did not alter total plasma cholesterol concentrations or lipoprotein distributions. Bone marrow transplantation showed that PAR2 on nonhematopoietic cells contributed to atherosclerosis. PAR2 deficiency significantly attenuated levels of the chemokines Ccl2 and Cxcl1 in the circulation and macrophage content in atherosclerotic lesions. Mechanistic studies using isolated primary vascular smooth muscle cells showed that PAR2 deficiency is associated with reduced Ccl2 and Cxcl1 mRNA expression and protein release into the supernatant resulting in less monocyte migration. Our results indicate that PAR2 deficiency is associated with attenuation of atherosclerosis and may reduce lesion progression by blunting Ccl2 - and Cxcl1 -induced monocyte infiltration. © 2018 American Heart Association, Inc.

  2. Protease-activated receptor-2 (PAR(2)) in human periodontitis.

    PubMed

    Holzhausen, M; Cortelli, J R; da Silva, V Araújo; Franco, G C Nobre; Cortelli, S Cavalca; Vergnolle, N

    2010-09-01

    No evidence for the role of protease-activated receptor-2 (PAR(2)) in human periodontal disease has been demonstrated so far. Thus, we sought to investigate the expression of PAR(2) mRNA in chronic periodontitis, and to examine whether its expression is related to the presence of PAR(2) potential activators. Microbiological and gingival crevicular fluid samples were collected from individuals with chronic periodontitis and control individuals, and the presence of neutrophil serine proteinase 3 (P3) and Porphyromonas gingivalis was evaluated. PAR(2) mRNA expression was higher (p < 0.001) in those with chronic periodontitis compared with control individuals, and it was statistically decreased (p = 0.0006) after periodontal treatment. Furthermore, those with chronic periodontitis presented higher (p < 0.05) levels of IL-1alpha, IL-6, IL-8, and TNF-alpha, total proteolytic activity, P. gingivalis prevalence, and P3mRNA expression compared with control individuals. We conclude that PAR(2) mRNA expression and its potential activators are elevated in human chronic periodontitis, therefore suggesting that PAR(2) may play a role in periodontal inflammation.

  3. Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity

    PubMed Central

    Ruch, Travis R.; Bryant, David M.; Mostov, Keith E.; Engel, Joanne N.

    2017-01-01

    Pathogens can alter epithelial polarity by recruiting polarity proteins to the apical membrane, but how a change in protein localization is linked to polarity disruption is not clear. In this study, we used chemically induced dimerization to rapidly relocalize proteins from the cytosol to the apical surface. We demonstrate that forced apical localization of Par3, which is normally restricted to tight junctions, is sufficient to alter apical membrane identity through its interactions with phosphatidylinositol 3-kinase (PI3K) and the Rac1 guanine nucleotide exchange factor Tiam1. We further show that PI3K activity is required upstream of Rac1, and that simultaneously targeting PI3K and Tiam1 to the apical membrane has a synergistic effect on membrane remodeling. Thus, Par3 coordinates the action of PI3K and Tiam1 to define membrane identity, revealing a signaling mechanism that can be exploited by human mucosal pathogens. PMID:27881661

  4. StePar: an automatic code for stellar parameter determination

    NASA Astrophysics Data System (ADS)

    Tabernero, H. M.; González Hernández, J. I.; Montes, D.

    2013-05-01

    We introduce a new automatic code (StePar) for determinig stellar atmospheric parameters (T_{eff}, log{g}, ξ and [Fe/H]) in an automated way. StePar employs the 2002 version of the MOOG code (Sneden 1973) and a grid of Kurucz ATLAS9 plane-paralell model atmospheres (Kurucz 1993). The atmospheric parameters are obtained from the EWs of 263 Fe I and 36 Fe II lines (obtained from Sousa et al. 2008, A&A, 487, 373) iterating until the excitation and ionization equilibrium are fullfilled. StePar uses a Downhill Simplex method that minimizes a quadratic form composed by the excitation and ionization equilibrium conditions. Atmospheric parameters determined by StePar are independent of the stellar parameters initial-guess for the problem star, therefore we employ the canonical solar values as initial input. StePar can only deal with FGK stars from F6 to K4, also it can not work with fast rotators, veiled spectra, very metal poor stars or Signal to noise ratio below 30. Optionally StePar can operate with MARCS models (Gustafson et al. 2008, A&A, 486, 951) instead of Kurucz ATLAS9 models, additionally Turbospectrum (Alvarez & Plez 1998, A&A, 330, 1109) can replace the MOOG code and play its role during the parameter determination. StePar has been used to determine stellar parameters for some studies (Tabernero et al. 2012, A&A, 547, A13; Wisniewski et al. 2012, AJ, 143, 107). In addition StePar is being used to obtain parameters for FGK stars from the GAIA-ESO Survey.

  5. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF.

    PubMed

    Barillà, Daniela; Rosenberg, Mark F; Nobbmann, Ulf; Hayes, Finbarr

    2005-04-06

    Prokaryotic DNA segregation most commonly involves members of the Walker-type ParA superfamily. Here we show that the ParF partition protein specified by the TP228 plasmid is a ParA ATPase that assembles into extensive filaments in vitro. Polymerization is potentiated by ATP binding and does not require nucleotide hydrolysis. Analysis of mutations in conserved residues of the Walker A motif established a functional coupling between filament dynamics and DNA partitioning. The partner partition protein ParG plays two separable roles in the ParF polymerization process. ParF is unrelated to prokaryotic polymerizing proteins of the actin or tubulin families, but is a homologue of the MinD cell division protein, which also assembles into filaments. The ultrastructures of the ParF and MinD polymers are remarkably similar. This points to an evolutionary parallel between DNA segregation and cytokinesis in prokaryotic cells, and reveals a potential molecular mechanism for plasmid and chromosome segregation mediated by the ubiquitous ParA-type proteins.

  6. The role of pars flaccida in human middle ear sound transmission.

    PubMed

    Aritomo, H; Goode, R L; Gonzalez, J

    1988-04-01

    The role of the pars flaccida in middle ear sound transmission was studied with the use of twelve otoscopically normal, fresh, human temporal bones. Peak-to-peak umbo displacement in response to a constant sound pressure level at the tympanic membrane was measured with a noncontacting video measuring system capable of repeatable measurements down to 0.2 micron. Measurements were made before and after pars flaccida modifications at 18 frequencies between 100 and 4000 Hz. Four pars flaccida modifications were studied: (1) acoustic insulation of the pars flaccida to the ear canal with a silicone rubber baffle, (2) stiffening the pars flaccida with cyanoacrylate cement, (3) decreasing the tension of the pars flaccida with a nonperforating incision, and (4) perforation of the pars flaccida. All of the modifications (except the perforation) had a minimal effect on umbo displacement; this seems to imply that the pars flaccida has a minor acoustic role in human beings.

  7. PAR-1 contributes to the innate immune response during viral infection

    PubMed Central

    Antoniak, Silvio; Owens, A. Phillip; Baunacke, Martin; Williams, Julie C.; Lee, Rebecca D.; Weithäuser, Alice; Sheridan, Patricia A.; Malz, Ronny; Luyendyk, James P.; Esserman, Denise A.; Trejo, JoAnn; Kirchhofer, Daniel; Blaxall, Burns C.; Pawlinski, Rafal; Beck, Melinda A.; Rauch, Ursula; Mackman, Nigel

    2013-01-01

    Coagulation is a host defense system that limits the spread of pathogens. Coagulation proteases, such as thrombin, also activate cells by cleaving PARs. In this study, we analyzed the role of PAR-1 in coxsackievirus B3–induced (CVB3-induced) myocarditis and influenza A infection. CVB3-infected Par1–/– mice expressed reduced levels of IFN-β and CXCL10 during the early phase of infection compared with Par1+/+ mice that resulted in higher viral loads and cardiac injury at day 8 after infection. Inhibition of either tissue factor or thrombin in WT mice also significantly increased CVB3 levels in the heart and cardiac injury compared with controls. BM transplantation experiments demonstrated that PAR-1 in nonhematopoietic cells protected mice from CVB3 infection. Transgenic mice overexpressing PAR-1 in cardiomyocytes had reduced CVB3-induced myocarditis. We found that cooperative signaling between PAR-1 and TLR3 in mouse cardiac fibroblasts enhanced activation of p38 and induction of IFN-β and CXCL10 expression. Par1–/– mice also had decreased CXCL10 expression and increased viral levels in the lung after influenza A infection compared with Par1+/+ mice. Our results indicate that the tissue factor/thrombin/PAR-1 pathway enhances IFN-β expression and contributes to the innate immune response during single-stranded RNA viral infection. PMID:23391721

  8. β -decay of very neutron-rich Pd and Ag nuclei

    NASA Astrophysics Data System (ADS)

    Smith, Karl; S323 / S410 Collaboration

    2013-10-01

    The astrophysical origin of about half of the elements heavier than iron have been attributed to the rapid neutron capture process. The modeling of such a process requires not only the correct astrophysical conditions but also reliable nuclear physics. The properties of neutron-rich nuclei in the region just below the N = 82 shell closure are of particular interest as they are responsible for the A = 130 peak in the solar abundance pattern. An experiment to investigate half-lives and β-delayed neutron emission branching ratios of very neutron-rich Pd and Ag isotopes was performed at the GSI projectile FRagment Separator (FRS). The FRS was used to separate products from in-flight fission of a 900 MeV/u 238U beam. Ions of interest were then implanted in the Silicon IMplantation detector and Beta Absorber (SIMBA) array. The high pixelation of the implantation detectors allowed for time-position correlation of the order of several seconds between implants and decays. Neutrons emitted during the decay were detected by the BEta deLayEd Neutron detector (BELEN) which surrounded the SIMBA array. Resulting analysis of half-lives and neutron emission branching ratios including a time-dependent background will be presented.

  9. Par-baked Bread Technology: Formulation and Process Studies to Improve Quality.

    PubMed

    Almeida, Eveline Lopes; Steel, Caroline Joy; Chang, Yoon Kil

    2016-01-01

    Extending the shelf-life of bakery products has been an important requirement resulting from the mechanization of this industry and the need to increase the distance for the distribution of final products, caused by the increase in production and consumer demand. Technologies based on the interruption of the breadmaking process represent an alternative to overcome product staling and microbiological deterioration. The production of par-baked breads is one of these technologies. It consists of baking the bread in two stages, and due to the possibility of retarding the second stage, it can be said that the bread can always be offered fresh to the consumer. The technology inserts logistics as part of the production process and creates the "hot point" concept, these being the locations where the bread is finalized, such as in the consumers' homes or sales locations. In this work, a review of the papers published on this subject was carried out, and aspects related to both the formulation and the process were considered. This technology still faces a few challenges, such as solving bread quality problems that appear due to process modifications, and these will also be considered. The market for these breads has grown rapidly and the bakery industry searches innovations related to par-baked bread technology.

  10. Planets Around Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wolszczan, Alexander; Kulkarni, Shrinivas R; Anderson, Stuart B.

    2003-01-01

    The objective of this proposal was to continue investigations of neutron star planetary systems in an effort to describe and understand their origin, orbital dynamics, basic physical properties and their relationship to planets around normal stars. This research represents an important element of the process of constraining the physics of planet formation around various types of stars. The research goals of this project included long-term timing measurements of the planets pulsar, PSR B1257+12, to search for more planets around it and to study the dynamics of the whole system, and sensitive searches for millisecond pulsars to detect further examples of old, rapidly spinning neutron stars with planetary systems. The instrumentation used in our project included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM), the 100-m Green Bank Telescope with the Berkeley- Caltech Pulsar Machine (BCPM), and the 100-m Effelsberg and 64-m Parkes telescopes equipped with the observatory supplied backend hardware.

  11. Neutron Stars Rip Each Other Apart to Form Black Hole

    NASA Image and Video Library

    2014-05-13

    This supercomputer simulation shows one of the most violent events in the universe: a pair of neutron stars colliding, merging and forming a black hole. A neutron star is the compressed core left behind when a star born with between eight and 30 times the sun's mass explodes as a supernova. Neutron stars pack about 1.5 times the mass of the sun — equivalent to about half a million Earths — into a ball just 12 miles (20 km) across. As the simulation begins, we view an unequally matched pair of neutron stars weighing 1.4 and 1.7 solar masses. They are separated by only about 11 miles, slightly less distance than their own diameters. Redder colors show regions of progressively lower density. As the stars spiral toward each other, intense tides begin to deform them, possibly cracking their crusts. Neutron stars possess incredible density, but their surfaces are comparatively thin, with densities about a million times greater than gold. Their interiors crush matter to a much greater degree densities rise by 100 million times in their centers. To begin to imagine such mind-boggling densities, consider that a cubic centimeter of neutron star matter outweighs Mount Everest. By 7 milliseconds, tidal forces overwhelm and shatter the lesser star. Its superdense contents erupt into the system and curl a spiral arm of incredibly hot material. At 13 milliseconds, the more massive star has accumulated too much mass to support it against gravity and collapses, and a new black hole is born. The black hole's event horizon — its point of no return — is shown by the gray sphere. While most of the matter from both neutron stars will fall into the black hole, some of the less dense, faster moving matter manages to orbit around it, quickly forming a large and rapidly rotating torus. This torus extends for about 124 miles (200 km) and contains the equivalent of 1/5th the mass of our sun. Scientists think neutron star mergers like this produce short gamma-ray bursts (GRBs). Short

  12. β -decay studies of very neutron-rich Pd and Ag isotopes

    NASA Astrophysics Data System (ADS)

    Smith, Karl

    2014-03-01

    The rapid-neutron capture process (r-process) is attributed as the source of nearly half the elements heavier than iron. To gain insight into the r-process nucleosynthesis, uncertainties such as the nuclear physics involved must be minimized. An experiment was performed to measure properties of neutron-rich nuclei just below the N = 82 shell closure believed to be responsible for production of the A = 130 peak in the solar r-process abundance pattern. β-decay half-lives and neutron branching ratios, Pn values, were measured for Pd and Ag isotopes at the GSI Fragment Separator (FRS). The FRS provided in-flight separation and identification of fission fragments produced by a 900 MeV/u 238U beam. Ions of interest were implanted in the Silicon Implantation detector and Beta Absorber (SIMBA) array. The large pixelation of the array allowed for position-time correlation between implants and the corresponding β-decays. The parent nucleus may decay to an excited state in the daughter, above the neutron separation energy emitting a neutron. These neutrons were moderated and detected in Beta deLayEd Neutron (BELEN) detector surrounding SIMBA. Resulting analysis of half-lives and neutron emission branching ratios including a time-dependent background will be presented.

  13. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF

    PubMed Central

    Barillà, Daniela; Rosenberg, Mark F; Nobbmann, Ulf; Hayes, Finbarr

    2005-01-01

    Prokaryotic DNA segregation most commonly involves members of the Walker-type ParA superfamily. Here we show that the ParF partition protein specified by the TP228 plasmid is a ParA ATPase that assembles into extensive filaments in vitro. Polymerization is potentiated by ATP binding and does not require nucleotide hydrolysis. Analysis of mutations in conserved residues of the Walker A motif established a functional coupling between filament dynamics and DNA partitioning. The partner partition protein ParG plays two separable roles in the ParF polymerization process. ParF is unrelated to prokaryotic polymerizing proteins of the actin or tubulin families, but is a homologue of the MinD cell division protein, which also assembles into filaments. The ultrastructures of the ParF and MinD polymers are remarkably similar. This points to an evolutionary parallel between DNA segregation and cytokinesis in prokaryotic cells, and reveals a potential molecular mechanism for plasmid and chromosome segregation mediated by the ubiquitous ParA-type proteins. PMID:15775965

  14. Neo-Positivist Intrusions, Post-Qualitative Challenges, and PAR's Generative Indeterminacies

    ERIC Educational Resources Information Center

    Miller, Janet L.

    2017-01-01

    Although committed to PAR's overarching aspirations, many advocates also have noted myriad complexities of engaging in PAR, where ambiguities and disarrays--all kinds of inconclusive evidence--can proliferate. Uncertainties especially can erupt if PAR education-focused projects are positioned, oxymoronically, as expected to produce "high…

  15. Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis.

    PubMed

    Drout, M R; Piro, A L; Shappee, B J; Kilpatrick, C D; Simon, J D; Contreras, C; Coulter, D A; Foley, R J; Siebert, M R; Morrell, N; Boutsia, K; Di Mille, F; Holoien, T W-S; Kasen, D; Kollmeier, J A; Madore, B F; Monson, A J; Murguia-Berthier, A; Pan, Y-C; Prochaska, J X; Ramirez-Ruiz, E; Rest, A; Adams, C; Alatalo, K; Bañados, E; Baughman, J; Beers, T C; Bernstein, R A; Bitsakis, T; Campillay, A; Hansen, T T; Higgs, C R; Ji, A P; Maravelias, G; Marshall, J L; Bidin, C Moni; Prieto, J L; Rasmussen, K C; Rojas-Bravo, C; Strom, A L; Ulloa, N; Vargas-González, J; Wan, Z; Whitten, D D

    2017-12-22

    On 17 August 2017, gravitational waves (GWs) were detected from a binary neutron star merger, GW170817, along with a coincident short gamma-ray burst, GRB 170817A. An optical transient source, Swope Supernova Survey 17a (SSS17a), was subsequently identified as the counterpart of this event. We present ultraviolet, optical, and infrared light curves of SSS17a extending from 10.9 hours to 18 days postmerger. We constrain the radioactively powered transient resulting from the ejection of neutron-rich material. The fast rise of the light curves, subsequent decay, and rapid color evolution are consistent with multiple ejecta components of differing lanthanide abundance. The late-time light curve indicates that SSS17a produced at least ~0.05 solar masses of heavy elements, demonstrating that neutron star mergers play a role in rapid neutron capture (r-process) nucleosynthesis in the universe. Copyright © 2017, American Association for the Advancement of Science.

  16. Proteases in agricultural dust induce lung inflammation through PAR-1 and PAR-2 activation.

    PubMed

    Romberger, Debra J; Heires, Art J; Nordgren, Tara M; Souder, Chelsea P; West, William; Liu, Xiang-de; Poole, Jill A; Toews, Myron L; Wyatt, Todd A

    2015-08-15

    Workers exposed to aerosolized dust present in concentrated animal feeding operations (CAFOs) are susceptible to inflammatory lung diseases, such as chronic obstructive pulmonary disease. Extracts of dust collected from hog CAFOs [hog dust extract (HDE)] are potent stimulators of lung inflammatory responses in several model systems. The observation that HDE contains active proteases prompted the present study, which evaluated the role of CAFO dust proteases in lung inflammatory processes and tested whether protease-activated receptors (PARs) are involved in the signaling pathway for these events. We hypothesized that the damaging proinflammatory effect of HDE is due, in part, to the proteolytic activation of PARs, and inhibiting the proteases in HDE or disrupting PAR activation would attenuate HDE-mediated inflammatory indexes in bronchial epithelial cells (BECs), in mouse lung slices in vitro, and in a murine in vivo exposure model. Human BECs and mouse lung slice cultures stimulated with 5% HDE released significantly more of each of the cytokines measured (IL-6, IL-8, TNF-α, keratinocyte-derived chemokine/CXC chemokine ligand 1, and macrophage inflammatory protein-2/CXC chemokine ligand 2) than controls, and these effects were markedly diminished by protease inhibition. Inhibition of PARs also blunted the HDE-induced cytokine release from BECs. In addition, protease depletion inhibited HDE-induced BEC intracellular PKCα and PKCε activation. C57BL/6J mice administered 12.5% HDE intranasally, either once or daily for 3 wk, exhibited increased total cellular and neutrophil influx, bronchial alveolar fluid inflammatory cytokines, lung histopathology, and inflammatory scores compared with mice receiving protease-depleted HDE. These data suggest that proteases in dust from CAFOs are important mediators of lung inflammation, and these proteases and their receptors may provide novel targets for therapeutic intervention in CAFO dust-induced airways disease.

  17. AC magnetic field measurement using a small flip coil system for rapid cycling AC magnets at the China Spallation Neutron Source (CSNS)

    NASA Astrophysics Data System (ADS)

    Zhou, Jianxin; Kang, Wen; Li, Shuai; Liu, Yudong; Liu, Yiqin; Xu, Shouyan; Guo, Xiaoling; Wu, Xi; Deng, Changdong; Li, Li; Wu, Yuwen; Wang, Sheng

    2018-02-01

    The China Spallation Neutron Source (CSNS) has two major accelerator systems, a linear accelerator and a rapid cycling synchrotron (RCS). The RCS accelerator is used to accumulate and accelerate protons from the energy of 80 MeV to the design energy of 1.6 GeV at the repetition rate of 25 Hz, and extract the high energy beam to the target. The main magnets of the RCS accelerator are excited by AC current with DC bias. The magnetic field quality is very important for the RCS accelerator operation, since it should guarantee and focus a circulating beam. In order to characterize the AC magnets, a small flip coil measurement system has been developed and one of each type of AC magnets has been studied. The measurement system and selected measurement results are presented in this paper.

  18. Rapid scanning system for fuel drawers

    DOEpatents

    Caldwell, J.T.; Fehlau, P.E.; France, S.W.

    A nondestructive method for uniquely distinguishing among and quantifying the mass of individual fuel plates in situ in fuel drawers utilized in nuclear reactors is described. The method is both rapid and passive, eliminating the personnel hazard of the commonly used irradiation techniques which require that the analysis be performed in proximity to an intense neutron source such as a reactor. In the present technique, only normally decaying nuclei are observed. This allows the analysis to be performed anywhere. This feature, combined with rapid scanning of a given fuel drawer (in approximately 30 s), and the computer data analysis allows the processing of large numbers of fuel drawers efficiently in the event of a loss alert.

  19. Rapid scanning system for fuel drawers

    DOEpatents

    Caldwell, John T.; Fehlau, Paul E.; France, Stephen W.

    1981-01-01

    A nondestructive method for uniqely distinguishing among and quantifying the mass of individual fuel plates in situ in fuel drawers utilized in nuclear reactors is described. The method is both rapid and passive, eliminating the personnel hazard of the commonly used irradiation techniques which require that the analysis be performed in proximity to an intense neutron source such as a reactor. In the present technique, only normally decaying nuclei are observed. This allows the analysis to be performed anywhere. This feature, combined with rapid scanning of a given fuel drawer (in approximately 30 s), and the computer data analysis allows the processing of large numbers of fuel drawers efficiently in the event of a loss alert.

  20. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  1. 12 CFR 925.19 - Par value and price of stock.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Par value and price of stock. 925.19 Section... ASSOCIATES MEMBERS OF THE BANKS Stock Requirements § 925.19 Par value and price of stock. The capital stock of each Bank shall be sold at par, unless the Board has fixed a higher price. ...

  2. Effect and mechanism of PAR-2 on the proliferation of esophageal cancer cells.

    PubMed

    Quanjun, D; Qingyu, Z; Qiliang, Z; Liqun, X; Jinmei, C; Ziquan, L; Shike, H

    2016-11-01

    Esophageal Cancer (EC) is a common malignant tumor occurred in the digestive tract. In this study, we investigated the mechanism of Protease Activated Receptor 2 (PAR-2) on the proliferation of esophageal cancer cell. Transfected esophageal cancer (EC) cell (PAR-2shRNA EC109) was established with low stable PAR-2 expression. EC109 cell was treated with PAR-2 agonist, PAR-2 anti-agonist and MAPK inhibitor respectively; Untreated EC109 cell (blank control) and PAR-2shRNA EC109 cell were used for analysis also. The mRNA expressions of PAR-2, ERK1, Cyclin D1, and c-fos in each group were detected by reverse transcript and polymerase chain reaction. Western blot was used to detect the protein expressions in each group. The cell growth curves were drawn to compare the cell growth. Compared with the blank control, the mRNA and protein expressions of PAR-2, Cyclin D1, and c-fos in PAR-2 agonist group increased significantly (p < 0.05), while decreased significantly in PAR-2shRNA EC109 cell and MAPK inhibitor group (p < 0.05). The mRNA expression of ERK1 and protein expression of p-ERK1 increased in PAR-2 agonist group, decreased in PAR-2shRNA EC109 cell and MAPK inhibitor group when compared with blank control (p < 0.05). The growth of cells was upward in PAR-2 agonist group at cell growth phase when compared with blank control, while decreased in PAR-2 shRNA EC109 cell and MAPK inhibitor group with statistical difference (p < 0.05). PAR-2 regulate cell proliferation through the MAPK pathway in esophageal carcinoma cell, and Cyclin D1, c-fos are involved in this process.

  3. Neutron Stars Rip Each Other Apart to Form Black Hole

    NASA Image and Video Library

    2014-05-13

    Simulation frames from this NASA Goddard neutron star merger animation: bit.ly/1jolBYY Credit: NASA's Goddard Space Flight Center This supercomputer simulation shows one of the most violent events in the universe: a pair of neutron stars colliding, merging and forming a black hole. A neutron star is the compressed core left behind when a star born with between eight and 30 times the sun's mass explodes as a supernova. Neutron stars pack about 1.5 times the mass of the sun — equivalent to about half a million Earths — into a ball just 12 miles (20 km) across. As the simulation begins, we view an unequally matched pair of neutron stars weighing 1.4 and 1.7 solar masses. They are separated by only about 11 miles, slightly less distance than their own diameters. Redder colors show regions of progressively lower density. As the stars spiral toward each other, intense tides begin to deform them, possibly cracking their crusts. Neutron stars possess incredible density, but their surfaces are comparatively thin, with densities about a million times greater than gold. Their interiors crush matter to a much greater degree densities rise by 100 million times in their centers. To begin to imagine such mind-boggling densities, consider that a cubic centimeter of neutron star matter outweighs Mount Everest. By 7 milliseconds, tidal forces overwhelm and shatter the lesser star. Its superdense contents erupt into the system and curl a spiral arm of incredibly hot material. At 13 milliseconds, the more massive star has accumulated too much mass to support it against gravity and collapses, and a new black hole is born. The black hole's event horizon — its point of no return — is shown by the gray sphere. While most of the matter from both neutron stars will fall into the black hole, some of the less dense, faster moving matter manages to orbit around it, quickly forming a large and rapidly rotating torus. This torus extends for about 124 miles (200 km) and contains the

  4. Neutron Stars Rip Each Other Apart to Form Black Hole

    NASA Image and Video Library

    2017-12-08

    Simulation frames from this NASA Goddard neutron star merger animation: bit.ly/1jolBYY Credit: NASA's Goddard Space Flight Center This supercomputer simulation shows one of the most violent events in the universe: a pair of neutron stars colliding, merging and forming a black hole. A neutron star is the compressed core left behind when a star born with between eight and 30 times the sun's mass explodes as a supernova. Neutron stars pack about 1.5 times the mass of the sun — equivalent to about half a million Earths — into a ball just 12 miles (20 km) across. As the simulation begins, we view an unequally matched pair of neutron stars weighing 1.4 and 1.7 solar masses. They are separated by only about 11 miles, slightly less distance than their own diameters. Redder colors show regions of progressively lower density. As the stars spiral toward each other, intense tides begin to deform them, possibly cracking their crusts. Neutron stars possess incredible density, but their surfaces are comparatively thin, with densities about a million times greater than gold. Their interiors crush matter to a much greater degree densities rise by 100 million times in their centers. To begin to imagine such mind-boggling densities, consider that a cubic centimeter of neutron star matter outweighs Mount Everest. By 7 milliseconds, tidal forces overwhelm and shatter the lesser star. Its superdense contents erupt into the system and curl a spiral arm of incredibly hot material. At 13 milliseconds, the more massive star has accumulated too much mass to support it against gravity and collapses, and a new black hole is born. The black hole's event horizon — its point of no return — is shown by the gray sphere. While most of the matter from both neutron stars will fall into the black hole, some of the less dense, faster moving matter manages to orbit around it, quickly forming a large and rapidly rotating torus. This torus extends for about 124 miles (200 km) and contains the

  5. The signaling adapter Gab1 regulates cell polarity by acting as a PAR protein scaffold

    PubMed Central

    Yang, Ziqiang; Xue, Bin; Umitsu, Masataka; Ikura, Mitsuhiko; Muthuswamy, Senthil K.; Neel, Benjamin G.

    2012-01-01

    Summary Cell polarity plays a key role in development and is disrupted in tumors, yet the molecules and mechanisms that regulate polarity remain poorly defined. We found that the scaffolding adaptor GAB1 interacts with two polarity proteins, PAR1 and PAR3. GAB1 binds PAR1 and enhances its kinase activity. GAB1 brings PAR1 and PAR3 into a transient complex, stimulating PAR3 phosphorylation by PAR1. GAB1 and PAR6 bind the PAR3 PDZ1 domain and thereby compete for PAR3 binding. Consequently, GAB1 depletion causes PAR3 hypo-phosphorylation and increases PAR3/PAR6 complex formation, resulting in accelerated and enhanced tight junction formation, increased trans-epithelial resistance and lateral domain shortening. Conversely, GAB1 over-expression, in a PAR1/PAR3-dependent manner, disrupts epithelial apical-basal polarity, promotes multi-lumen cyst formation, and enhances growth factor-induced epithelial cell scattering. Our results identify GAB1 as a novel negative regulator of epithelial cell polarity that functions as a scaffold for modulating PAR protein complexes on the lateral membrane. PMID:22883624

  6. Colliding Neutron Stars as the Source of Heavy Elements

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Where do the heavy elements the chemical elements beyond iron in our universe come from? One of the primary candidate sources is the merger of two neutron stars, but recent observations have cast doubt on this model. Can neutron-star mergers really be responsible?Elements from Collisions?Periodic table showing the origin of each chemical element. Those produced by the r-process are shaded orange and attributed to supernovae in this image; though supernovae are one proposed source of r-process elements, an alternative source is the merger of two neutron stars. [Cmglee]When a binary-neutron-star system inspirals and the two neutron stars smash into each other, a shower of neutrons are released. These neutrons are thought to bombard the surrounding atoms, rapidly producing heavy elements in what is known as r-process nucleosynthesis.So could these mergers be responsible for producing the majority of the universes heavy r-process elements? Proponents of this model argue that its supported by observations. The overall amount of heavy r-process material in the Milky Way, for instance, is consistent with the expected ejection amounts from mergers, based both on predicted merger rates for neutron stars in the galaxy, and on the observed rates of soft gamma-ray bursts (which are thought to accompany double-neutron-star mergers).Challenges from Ultra-Faint DwarfsRecently, however, r-process elements have been observed in ultra-faint dwarf satellite galaxies. This discovery raises two major challenges to the merger model for heavy-element production:When neutron stars are born during a core-collapse supernova, mass is ejected, providing the stars with asymmetric natal kicks. During the second collapse in a double-neutron-star binary, wouldnt the kick exceed the low escape velocity of an ultra-faint dwarf, ejecting the binary before it could merge and enrich the galaxy?Ultra-faint dwarfs have very old stellar populations and the observation of r-process elements in these stars

  7. A neutron dosemeter for nuclear criticality accidents.

    PubMed

    d'Errico, F; Curzio, G; Ciolini, R; Del Gratta, A; Nath, R

    2004-01-01

    A neutron dosemeter which offers instant read-out has been developed for nuclear criticality accidents. The system is based on gels containing emulsions of superheated dichlorodifluoromethane droplets, which vaporise into bubbles upon neutron irradiation. The expansion of these bubbles displaces an equivalent volume of gel into a graduated pipette, providing an immediate measure of the dose. Instant read-out is achieved using an array of transmissive optical sensors which consist of coupled LED emitters and phototransistor receivers. When the gel displaced in the pipette crosses the sensing region of the photomicrosensors, it generates a signal collected on a computer through a dedicated acquisition board. The performance of the device was tested during the 2002 International Accident Dosimetry Intercomparison in Valduc, France. The dosemeter was able to follow the initial dose gradient of a simulated accident, providing accurate values of neutron kerma; however, the emulsion was rapidly depleted of all its drops. A model of the depletion effects was developed and it indicates that an adequate dynamic range of the dose response can be achieved by using emulsions of smaller droplets.

  8. Neutron capture on short-lived nuclei via the surrogate (d,pγ) reaction

    NASA Astrophysics Data System (ADS)

    Cizewski, Jolie A.; Ratkiewicz, Andrew

    2018-05-01

    Rapid r-process nucleosynthesis is responsible for the creation of about half of the elements heavier than iron. Neutron capture on shortlived nuclei in cold processes or during freeze out from hot processes can have a significant impact on the final observed r-process abundances. We are validating the (d,pγ) reaction as a surrogate for neutron capture with measurements on 95Mo targets and a focus on discrete transitions. The experimental results have been analyzed within the Hauser-Feshbach approach with non-elastic breakup of the deuteron providing a neutron to be captured. Preliminary results support the (d,pγ) reaction as a valid surrogate for neutron capture. We are poised to measure the (d,pγ) reaction in inverse kinematics with unstable beams following the development of the experimental techniques.

  9. PAR-2 expression in the gingival crevicular fluid reflects chronic periodontitis severity.

    PubMed

    Fukushima, Henrique; Alves, Vanessa Tubero Euzebio; Carvalho, Verônica Franco de; Ambrósio, Lucas Macedo Batitucci; Eichler, Rosangela Aparecida Dos Santos; Carvalho, Maria Helena Catelli de; Saraiva, Luciana; Holzhausen, Marinella

    2017-01-26

    Recent studies investigating protease-activated receptor type 2 (PAR-2) suggest an association between the receptor and periodontal inflammation. It is known that gingipain, a bacterial protease secreted by the important periodontopathogen Porphyromonas gingivalis can activate PAR-2. Previous studies by our group found that PAR-2 is overexpressed in the gingival crevicular fluid (GCF) of patients with moderate chronic periodontitis (MP). The present study aimed at evaluating whether PAR-2 expression is associated with chronic periodontitis severity. GCF samples and clinical parameters, including plaque and bleeding on probing indices, probing pocket depth and clinical attachment level, were collected from the control group (n = 19) at baseline, and from MP patients (n = 19) and severe chronic periodontitis (SP) (n = 19) patients before and 6 weeks after periodontal non-surgical treatment. PAR-2 and gingipain messenger RNA (mRNA) in the GCF of 4 periodontal sites per patient were evaluated by Reverse Transcription Polymerase Chain Reaction (RT-qPCR). PAR-2 and gingipain expressions were greater in periodontitis patients than in control group patients. In addition, the SP group presented increased PAR-2 and gingipain mRNA levels, compared with the MP group. Furthermore, periodontal treatment significantly reduced (p <0.05) PAR-2 expression in patients with periodontitis. In conclusion, PAR-2 is associated with chronic periodontitis severity and with gingipain levels in the periodontal pocket, thus suggesting that PAR-2 expression in the GCF reflects the severity of destruction during periodontal infection.

  10. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.

    PubMed

    Bharat, Tanmay A M; Murshudov, Garib N; Sachse, Carsten; Löwe, Jan

    2015-07-02

    Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.

  11. PAR-2 receptor-induced effects on human eccrine sweat gland cells.

    PubMed

    L Bovell, Douglas; Kofler, Barbara; Lang, Roland

    2009-01-01

    Serine proteases can induce cell signaling by stimulating G-protein-coupled receptors, called proteinase-activated receptors (PAR's) on a variety of epithelial cells. While PAR-2, one such receptor, activates cell signaling in a secretory cell line derived from human sweat glands, there was no information on their presence and effects on intact sweat glands. PAR-2 presence and activation of eccrine sweat glands isolated from human skin samples was investigated using Western blot analysis, immunohistochemistry, electron microscopy (EM) and Ca(2+) imaging. Anti-human PAR-2 antibody demonstrated the presence of these receptors in eccrine sweat glands. EM showed that PAR-2 activation resulted in degranulation of secretory cells. Ca(2+) imaging using PAR-2 activators demonstrated a two phase increase in [Ca(2+)](i) which was dependent on extracellular Ca(2+) for the second phase, and that the response could be blocked by prior incubation with xestospongin, the IP(3) receptor blocker. The results demonstrated that PAR-2 receptors are present in human sweat gland secretory cells and that these receptors are functionally active and can induce changes associated with secretory events in eccrine glands.

  12. The Los Alamos Neutron Science Center Spallation Neutron Sources

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  13. Bubbles, Bow Shocks and B Fields: The Interplay Between Neutron Stars and Their Environments

    NASA Astrophysics Data System (ADS)

    Gaensler, Bryan M.

    2006-12-01

    Young neutron stars embody Nature's extremes: they spin incredibly rapidly, move through space at enormous velocities, and are imbued with unimaginably strong magnetic fields. Since their progenitor stars do not have any of these characteristics, these properties are presumably all imparted to a neutron star during or shortly after the supernova explosion in which it is formed. This raises two fundamental questions: how do neutron stars attain these extreme parameters, and how are their vast reservoirs of energy then dissipated? I will explain how multi-wavelength observations of the environments of neutron stars not only provide vital forensic evidence on the physics of supernova core collapse, but also spectacularly reveal the winds, jets, shocks and outflows through which these remarkable objects couple to their surroundings.

  14. Preparation of a one-curie 171Tm target for the Detector for Advanced Neutron Capture Experiments (DANCE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, Jon M.; Taylor, Wayne A.; Rundberg, Robert S.

    2008-05-15

    Roughly one curie of 171Tm (t1/2=1.92a) has been produced and purified for the purpose of making a nuclear target for the first measurements of its neutron capture cross section. Target preparation consisted of three key steps: (1) material production; (2) separation and purification; and (3) electrodeposition onto a suitable backing material. Approximately 1.5 mg of the target material (at the time of separation) was produced by irradiating roughly 250 mg of its stable enriched 170Er lanthanide neighbor with neutrons at the ILL reactor in France. This production method resulted in a “difficult-to-separate” 1:167 mixture of near-neighboring lanthanides, Tm and Er.more » Separation and purification was accomplished using high-performance liquid chromatorgraphy (HPLC), with a proprietary cation exchange column (Dionex, CS-3) and alpha-hydroxyisobutyric acid (a-HIB) eluent. This technique yielded a final product of ~95% purity with respect to Tm. A portion (20 ug) of the Tm was electrodeposited on thin Be foil and delivered to the Los Alamos Neutron Science CEnter (LANSCE) for preliminary analysis of its neutron capture cross section using the Detector for Advanced Neutron Capture Experiments (DANCE). This paper discusses the major hurdles associated with the separation and purification step including, scale-up issues related to the use of HPLC for material separation and purification of the target material from a-HIB and 4-(2-pyridylazo)resorcinol (PAR) colorant.« less

  15. Brulure par Plaque de Bistouri Electrique: a Propos de Quatre Cas

    PubMed Central

    Khales, A.; Achbouk, A.; Belmir, R.; Cherkab, L.; Ennouhi, M.A.; Ababou, K.; Ihrai, H.

    2010-01-01

    Summary La brûlure par plaque de bistouri électrique est un accident rare mais grave par la profondeur de la lésion et par sa localisation, surtout quand qu’elle survient dans un contexte chirurgical dont le vécu reste difficile de la part du malade et du chirurgien. Cette brûlure bien que imprévisible reste grave par la profondeur et la localisation de la brûlure et par sa survenue dans un contexte opératoire, chez des patients malades. La prise en charge de la brûlure doit se faire en milieu spécialisé. La prévention reste le seul moyen d’éviter ce type d’accident. PMID:21991216

  16. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  17. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE PAGES

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-10-26

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  18. Expression of protease-activated-receptor 2 (PAR-2) in human esophageal mucosa.

    PubMed

    Inci, Kamuran; Edebo, Anders; Olbe, Lars; Casselbrant, Anna

    2009-01-01

    The role of duodenal reflux in gastroesophageal reflux disease (GERD) containing bile salts and pancreatic enzymes (with special attention to trypsin) is still under discussion. Proteinase-activated receptors (PARs) are a novel family and PAR-2 is a unique member of this family because it is activated by trypsin. The aim of the present study was to examine the presence and the position of the PAR-2 receptor in human esophageal mucosa in different subgroups of GERD. Distal biopsies taken from healthy controls, patients with erosive reflux disease (ERD), patients with specialized intestinal metaplasia (SIM) and adenocarcinoma were analyzed for the PAR-2 receptor with reverse-transcription polymerase chain reaction (RT-PCR), Western blotting and immunohistochemistry. Gene transcripts for the PAR-2 receptor were found in all groups, with increased levels in SIM patients compared to controls. However, this visual pattern was not seen for the protein expression of the PAR-2 receptor showing no apparent quantitative differences between the groups. Immunohistochemistry revealed distinct staining for the PAR-2 receptor in the luminal part of the esophageal epithelium. The localization of the PAR-2 receptor indicates that the receptor can be cleaved and activated by trypsin in duodenogastric esophageal refluxate. The data thus suggest that the trypsin-PAR-2 pathway may be involved in the pathogenesis of GERD.

  19. Neutron range spectrometer

    DOEpatents

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  20. Discovery of potent and selective small-molecule PAR-2 agonists.

    PubMed

    Seitzberg, Jimmi Gerner; Knapp, Anne Eeg; Lund, Birgitte Winther; Mandrup Bertozzi, Sine; Currier, Erika A; Ma, Jian-Nong; Sherbukhin, Vladimir; Burstein, Ethan S; Olsson, Roger

    2008-09-25

    Proteinase activated receptor-2 plays a crucial role in a wide variety of conditions with a strong inflammatory component. We present the discovery and characterization of two structurally different, potent, selective, and metabolically stable small-molecule PAR-2 agonists. These ligands may be useful as pharmacological tools for elucidating the complex physiological role of the PAR-2 receptors as well as for the development of PAR-2 antagonists.

  1. Endophthalmitis following pars plana vitrectomy for vitreous floaters

    PubMed Central

    Henry, Christopher R; Schwartz, Stephen G; Flynn, Harry W

    2014-01-01

    A case of Staphylococcus caprae endophthalmitis in a young patient following pars plana vitrectomy for symptomatic vitreous floaters is reported here. Recent literature suggests that there is an increasing trend of performing pars plana vitrectomy for symptomatic floaters. Although rare, the potential risk of endophthalmitis should be explicitly discussed with patients considering surgical intervention for vitreous floaters. PMID:25210434

  2. Endophthalmitis following pars plana vitrectomy for vitreous floaters.

    PubMed

    Henry, Christopher R; Schwartz, Stephen G; Flynn, Harry W

    2014-01-01

    A case of Staphylococcus caprae endophthalmitis in a young patient following pars plana vitrectomy for symptomatic vitreous floaters is reported here. Recent literature suggests that there is an increasing trend of performing pars plana vitrectomy for symptomatic floaters. Although rare, the potential risk of endophthalmitis should be explicitly discussed with patients considering surgical intervention for vitreous floaters.

  3. Neutron-Capture Elements in Very Metal-Poor Halo Stars

    NASA Astrophysics Data System (ADS)

    French, R. S.; Sneden, C.; Cowan, J. J.; Lawler, J. E.; Primas, F.; Beers, T. C.; Truran, J. W.

    2000-05-01

    Abundances of the most massive stable elements (Os -> Pb or 76 <= Z <= 82) in metal-poor stars can provide crucial information about the so-called ``third neutron-capture peak,'' and are critical to the radioactive-dating technique that uses unstable thorium and uranium as chronometers. As the relevant transitions occur in the UV and are inaccessable to ground-based telescopes, we have obtained high resolution (R ~= 30,000) UV spectra of 10 very metal-poor (--3.0 <= [Fe/H] <= --1.4) halo giants using the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope. Using iterative spectrum synthesis techniques, we derive abundances for some of these heavy elements. We compare our abundances to those predicted for very metal-poor stars based on a scaled solar system rapid-process (production in rapid neutron-capture synthesis events, such as occurs during supernovae explosions). This research is supported by NASA STScI grant GO-08342 and NSF grants AST-9618364 to C.S. and AST-9618332 to J.J.C.

  4. Expression of Par3 polarity protein correlates with poor prognosis in ovarian cancer.

    PubMed

    Nakamura, Hiroe; Nagasaka, Kazunori; Kawana, Kei; Taguchi, Ayumi; Uehara, Yuriko; Yoshida, Mitsuyo; Sato, Masakazu; Nishida, Haruka; Fujimoto, Asaha; Inoue, Tomoko; Adachi, Katsuyuki; Nagamatsu, Takeshi; Arimoto, Takahide; Oda, Katsutoshi; Osuga, Yutaka; Fujii, Tomoyuki

    2016-11-17

    Previous studies have shown that the cell polarity protein partitioning defective 3 (Par3) plays an essential role in the formation of tight junctions and definition of apical-basal polarity. Aberrant function of this protein has been reported to be involved in epithelial-mesenchymal transition (EMT) and cancer invasion. The aim of this study was to examine the functional mechanism of Par3 in ovarian cancer. First, we investigated the association between Par3 expression level and survival of 50 ovarian cancer patients. Next, we conducted an in vitro analysis of ovarian cancer cell lines, focusing on the cell line JHOC5, to investigate Par3 function. To investigate the function of Par3 in invasion, the IL-6/STAT3 pathway was analyzed upon Par3 knockdown with siRNA. The effect of siRNA treatment was assessed by qPCR, ELISA, and western blotting. Invasiveness and cell proliferation following treatment with siRNA against Par3 were investigated using Matrigel chamber, wound healing, and cell proliferation assays. Expression array data for ovarian cancer patient samples revealed low Par3 expression was significantly associated with good prognosis. Univariate analysis of clinicopathological factors revealed significant association between high Par3 levels and peritoneal dissemination at the time of diagnosis. Knockdown of Par3 in JHOC5 cells suppressed cell invasiveness, migration, and cell proliferation with deregulation of IL-6/STAT3 activity. Taken together, these results suggest that Par3 expression is likely involved in ovarian cancer progression, especially in peritoneal metastasis. The underlying mechanism may be that Par3 modulates IL-6 /STAT3 signaling. Here, we propose that the expression of Par3 in ovarian cancer may control disease outcome.

  5. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  6. Neutron production at 0° from the 40Ca+H reaction at Elab=357A and 565A MeV

    NASA Astrophysics Data System (ADS)

    Tuvè, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T. G.; Insolia, A.; Knott, C. N.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Reito, S.; Romanski, J.; Russo, G. V.; Soutoul, A.; Testard, O.; Tull, C. E.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.

    1997-08-01

    Neutrons produced in the 40Ca+H reaction at Elab=357A and 565A MeV have been detected using a three-module version of the multifunctional neutron spectrometer MUFFINS. The detector covered a narrow angular range around the beam in the forward direction (0°-3.2°). Semi-inclusive neutron production cross sections, at the two energies, are reported together with neutron energy spectra, angular, rapidity, and transverse momentum distributions. Comparison with a Boltzmann-Nordheim-Vlasov approach + phase space coalescence model is discussed.

  7. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardoel, Agatha A; Counce, Deborah M; Ekkebus, Allen E

    2011-06-01

    . This method of data collection provides a much more efficient way for users to gather data and get the most from their beam time. (7) New Laboratories for Users - The HFIR and SNS user communities continue to grow dramatically. In 2010, HFIR hosted 862 users and SNS 796, outpacing projections for both facilities. To meet the needs of those users, a new complex of 13 laboratories is now open for users at SNS. (8) Innovative Detectors Provide Relief from Helium-3 Shortage - Helium-3 ({sup 3}He) has been the gas of choice for gaseous detectors since the early days of neutron science. About two years ago, detector scientists worldwide faced the reality that stockpiles of {sup 3}He are dwindling rapidly, while demand for it has risen by a factor of five. The Neutron Sciences Detectors Group has developed two new types of detectors that don't rely on {sup 3}He: the Anger camera and the wavelength shifting fiber neutron detector, both of which use lithium ({sup 6}Li).« less

  8. ParABS Systems of the Four Replicons of Burkholderia cenocepacia: New Chromosome Centromeres Confer Partition Specificity†

    PubMed Central

    Dubarry, Nelly; Pasta, Franck; Lane, David

    2006-01-01

    Most bacterial chromosomes carry an analogue of the parABS systems that govern plasmid partition, but their role in chromosome partition is ambiguous. parABS systems might be particularly important for orderly segregation of multipartite genomes, where their role may thus be easier to evaluate. We have characterized parABS systems in Burkholderia cenocepacia, whose genome comprises three chromosomes and one low-copy-number plasmid. A single parAB locus and a set of ParB-binding (parS) centromere sites are located near the origin of each replicon. ParA and ParB of the longest chromosome are phylogenetically similar to analogues in other multichromosome and monochromosome bacteria but are distinct from those of smaller chromosomes. The latter form subgroups that correspond to the taxa of their hosts, indicating evolution from plasmids. The parS sites on the smaller chromosomes and the plasmid are similar to the “universal” parS of the main chromosome but with a sequence specific to their replicon. In an Escherichia coli plasmid stabilization test, each parAB exhibits partition activity only with the parS of its own replicon. Hence, parABS function is based on the independent partition of individual chromosomes rather than on a single communal system or network of interacting systems. Stabilization by the smaller chromosome and plasmid systems was enhanced by mutation of parS sites and a promoter internal to their parAB operons, suggesting autoregulatory mechanisms. The small chromosome ParBs were found to silence transcription, a property relevant to autoregulation. PMID:16452432

  9. Neutron Star Mergers and the R process

    NASA Astrophysics Data System (ADS)

    Joniak, Ronald; Ugalde, Claudio

    2017-09-01

    About half of the elements of the periodic table that are present today in the Solar System were synthesized before the formation of the Sun via a rapid neutron capture process (r process). However, the astrophysical site of the r process is a longstanding problem that has captivated both experimental and theoretical astrophysicists. Up to date, two possible scenarios for the site of the r process have been suggested: the first involves the high entropy wind of core collapse supernovae, and the second corresponds to the merger of two compact stellar objects such as neutron stars. We will study the robustness of the nucleosynthesis abundance pattern between the second and third r process peaks as produced by neutron star mergers with r process-like neutron exposures. First, we will vary parameters to obtain an understanding of the astrophysical mechanisms that create the r process. Next, we will create a program to obtain the best possible parameters based on a chi-squared test. Once we have the best fits, we will test the effect of fission in the overall isotope abundance pattern distribution. Later on, we will vary the ratio of masses of the two fission fragments and study its effect on elemental abundances. This research was supported by the UIC College of Liberal Arts and Sciences Undergraduate Research Initiative (LASURI).

  10. DANCEing with the Stars: Measuring Neutron Capture on Unstable Isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.; Bond, E.; Bredeweg, T. A.

    2009-03-10

    Isotopes heavier than iron are known to be produced in stars through neutron capture processes. Two major processes, the slow (s) and rapid (r) processes are each responsible for 50% of the abundances of the heavy isotopes. The neutron capture cross sections of the isotopes on the s process path reveal information about the expected abundances of the elements as well as stellar conditions and dynamics. Until recently, measurements on unstable isotopes, which are most important for determining stellar temperatures and reaction flow, have not been experimentally feasible. The Detector for Advance Neutron Capture Experiments (DANCE) located at the Losmore » Alamos Neutron Science Center (LANSCE) was designed to perform time-of-flight neutron capture measurements on unstable isotopes for nuclear astrophysics, stockpile stewardship, and reactor development. DANCE is a 4-{pi}BaF{sub 2} scintillator array which can perform measurements on sub-milligram samples of isotopes with half-lives as short as a few hundred days. These cross sections are critical for advancing our understanding of the production of the heavy isotopes.« less

  11. Determination of rhenium in molybdenite by neutron-activation analysis.

    PubMed

    Terada, K; Yoshimura, Y; Osaki, S; Kiba, T

    1967-01-01

    A neutron-activation method is described for the determination of rhenium in molybdenite. Radiochemical separation by a carrier technique was carried out very rapidly by means of successive liquid-liquid extraction processes. The recovery of rhenium, which was determined by a spectrophotometric method, was about 93%. About 10 samples could be analysed within 6 hr in parallel runs.

  12. Multiple-wavelength neutron holography with pulsed neutrons

    PubMed Central

    Hayashi, Kouichi; Ohoyama, Kenji; Happo, Naohisa; Matsushita, Tomohiro; Hosokawa, Shinya; Harada, Masahide; Inamura, Yasuhiro; Nitani, Hiroaki; Shishido, Toetsu; Yubuta, Kunio

    2017-01-01

    Local structures around impurities in solids provide important information for understanding the mechanisms of material functions, because most of them are controlled by dopants. For this purpose, the x-ray absorption fine structure method, which provides radial distribution functions around specific elements, is most widely used. However, a similar method using neutron techniques has not yet been developed. If one can establish a method of local structural analysis with neutrons, then a new frontier of materials science can be explored owing to the specific nature of neutron scattering—that is, its high sensitivity to light elements and magnetic moments. Multiple-wavelength neutron holography using the time-of-flight technique with pulsed neutrons has great potential to realize this. We demonstrated multiple-wavelength neutron holography using a Eu-doped CaF2 single crystal and obtained a clear three-dimensional atomic image around trivalent Eu substituted for divalent Ca, revealing an interesting feature of the local structure that allows it to maintain charge neutrality. The new holography technique is expected to provide new information on local structures using the neutron technique. PMID:28835917

  13. Multiple-wavelength neutron holography with pulsed neutrons.

    PubMed

    Hayashi, Kouichi; Ohoyama, Kenji; Happo, Naohisa; Matsushita, Tomohiro; Hosokawa, Shinya; Harada, Masahide; Inamura, Yasuhiro; Nitani, Hiroaki; Shishido, Toetsu; Yubuta, Kunio

    2017-08-01

    Local structures around impurities in solids provide important information for understanding the mechanisms of material functions, because most of them are controlled by dopants. For this purpose, the x-ray absorption fine structure method, which provides radial distribution functions around specific elements, is most widely used. However, a similar method using neutron techniques has not yet been developed. If one can establish a method of local structural analysis with neutrons, then a new frontier of materials science can be explored owing to the specific nature of neutron scattering-that is, its high sensitivity to light elements and magnetic moments. Multiple-wavelength neutron holography using the time-of-flight technique with pulsed neutrons has great potential to realize this. We demonstrated multiple-wavelength neutron holography using a Eu-doped CaF 2 single crystal and obtained a clear three-dimensional atomic image around trivalent Eu substituted for divalent Ca, revealing an interesting feature of the local structure that allows it to maintain charge neutrality. The new holography technique is expected to provide new information on local structures using the neutron technique.

  14. Hexagonal boron nitride neutron detectors with high detection efficiencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maity, A.; Grenadier, S. J.; Li, J.

    Here, neutron detectors fabricated from 10B enriched hexagonal boron nitride (h- 10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm 2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer onmore » both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h- 10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.« less

  15. Hexagonal boron nitride neutron detectors with high detection efficiencies

    NASA Astrophysics Data System (ADS)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2018-01-01

    Neutron detectors fabricated from 10B enriched hexagonal boron nitride (h-10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer on both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h-10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.

  16. Hexagonal boron nitride neutron detectors with high detection efficiencies

    DOE PAGES

    Maity, A.; Grenadier, S. J.; Li, J.; ...

    2018-01-23

    Here, neutron detectors fabricated from 10B enriched hexagonal boron nitride (h- 10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm 2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer onmore » both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h- 10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.« less

  17. Symmetry breaking and polarization of the C. elegans zygote by the polarity protein PAR-2.

    PubMed

    Zonies, Seth; Motegi, Fumio; Hao, Yingsong; Seydoux, Geraldine

    2010-05-01

    Polarization of the C. elegans zygote is initiated by ECT-2-dependent cortical flows, which mobilize the anterior PAR proteins (PAR-3, PAR-6 and PKC-3) away from the future posterior end of the embryo marked by the sperm centrosome. Here, we demonstrate the existence of a second, parallel and redundant pathway that can polarize the zygote in the absence of ECT-2-dependent cortical flows. This second pathway depends on the polarity protein PAR-2. We show that PAR-2 localizes to the cortex nearest the sperm centrosome even in the absence of cortical flows. Once on the cortex, PAR-2 antagonizes PAR-3-dependent recruitment of myosin, creating myosin flows that transport the anterior PAR complex away from PAR-2 in a positive-feedback loop. We propose that polarity in the C. elegans zygote is initiated by redundant ECT-2- and PAR-2-dependent mechanisms that lower PAR-3 levels locally, triggering a positive-feedback loop that polarizes the entire cortex.

  18. Specific and non-specific interactions of ParB with DNA: implications for chromosome segregation

    PubMed Central

    Taylor, James A.; Pastrana, Cesar L.; Butterer, Annika; Pernstich, Christian; Gwynn, Emma J.; Sobott, Frank; Moreno-Herrero, Fernando; Dillingham, Mark S.

    2015-01-01

    The segregation of many bacterial chromosomes is dependent on the interactions of ParB proteins with centromere-like DNA sequences called parS that are located close to the origin of replication. In this work, we have investigated the binding of Bacillus subtilis ParB to DNA in vitro using a variety of biochemical and biophysical techniques. We observe tight and specific binding of a ParB homodimer to the parS sequence. Binding of ParB to non-specific DNA is more complex and displays apparent positive co-operativity that is associated with the formation of larger, poorly defined, nucleoprotein complexes. Experiments with magnetic tweezers demonstrate that non-specific binding leads to DNA condensation that is reversible by protein unbinding or force. The condensed DNA structure is not well ordered and we infer that it is formed by many looping interactions between neighbouring DNA segments. Consistent with this view, ParB is also able to stabilize writhe in single supercoiled DNA molecules and to bridge segments from two different DNA molecules in trans. The experiments provide no evidence for the promotion of non-specific DNA binding and/or condensation events by the presence of parS sequences. The implications of these observations for chromosome segregation are discussed. PMID:25572315

  19. Par Pond vegetation status Summer 1995 -- October survey descriptive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1995-11-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the emergent shoreline aquatic plant communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level and continued with this late October survey. Communities similar to the pre-drawdown Par Pond aquatic plant communitiesmore » are becoming re-established; especially, beds of maiden cane, lotus, waterlily, and watershield are now extensive and well established. Cattail occurrence continues to increase, but large beds common to Par Pond prior to the drawdown have not formed. Future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.« less

  20. View from east to west of PAR site storage building; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from east to west of PAR site storage building; formerly PAR dispensary - Stanley R. Mickelsen Safeguard Complex, Storage Building, Across street from Family Housing Units 110 & 111, Nekoma, Cavalier County, ND

  1. Improved Satellite-based Photosysnthetically Active Radiation (PAR) for Air Quality Studies

    NASA Astrophysics Data System (ADS)

    Pour Biazar, A.; McNider, R. T.; Cohan, D. S.; White, A.; Zhang, R.; Dornblaser, B.; Doty, K.; Wu, Y.; Estes, M. J.

    2015-12-01

    One of the challenges in understanding the air quality over forested regions has been the uncertainties in estimating the biogenic hydrocarbon emissions. Biogenic volatile organic compounds, BVOCs, play a critical role in atmospheric chemistry, particularly in ozone and particulate matter (PM) formation. In southeastern United States, BVOCs (mostly as isoprene) are the dominant summertime source of reactive hydrocarbon. Despite significant efforts in improving BVOC estimates, the errors in emission inventories remain a concern. Since BVOC emissions are particularly sensitive to the available photosynthetically active radiation (PAR), model errors in PAR result in large errors in emission estimates. Thus, utilization of satellite observations to estimate PAR can help in reducing emission uncertainties. Satellite-based PAR estimates rely on the technique used to derive insolation from satellite visible brightness measurements. In this study we evaluate several insolation products against surface pyranometer observations and offer a bias correction to generate a more accurate PAR product. The improved PAR product is then used in biogenic emission estimates. The improved biogenic emission estimates are compared to the emission inventories over Texas and used in air quality simulation over the period of August-September 2013 (NASA's Discover-AQ field campaign). A series of sensitivity simulations will be performed and evaluated against Discover-AQ observations to test the impact of satellite-derived PAR on air quality simulations.

  2. PAR(2) expression in peripheral blood monocytes of patients with rheumatoid arthritis.

    PubMed

    Crilly, A; Burns, E; Nickdel, M B; Lockhart, J C; Perry, M E; Ferrell, P W; Baxter, D; Dale, J; Dunning, L; Wilson, H; Nijjar, J S; Gracie, J A; Ferrell, W R; McInnes, I B

    2012-06-01

    Proteinase-activated receptor 2 (PAR(2)) is a G protein-coupled receptor activated by serine proteinases with proinflammatory activity. A study was undertaken to investigate the presence and functional significance of PAR(2) expression on rheumatoid arthritis (RA)-derived leucocyte subsets. Venous blood was obtained from patients with RA and osteoarthritis (OA) as well as healthy control subjects. Surface expression of PAR(2) on peripheral blood mononuclear cells (PBMCs) was analysed by flow cytometry and interleukin 6 (IL-6) generation by ELISA. Patients with RA had elevated but variable surface expression of PAR(2) on CD14+ monocytes compared with control subjects (median (1st to 3rd quartiles) 1.76% (0.86-4.10%) vs 0.06% (0.03-0.81%), p<0.0001). CD3+ T cells showed a similar pattern with significantly higher PAR(2) expression in patients with RA compared with controls (3.05% (0.36-11.82%) vs 0.08% (0.02-0.28%), p<0.0001). For both subsets, PAR(2) expression was significantly higher (p<0.00001) in patients with high levels of disease activity: PAR(2) expression for both CD14+ and CD3+ cells correlated to C reactive protein and erythrocyte sedimentation rate. Furthermore, in a cohort of patients with newly diagnosed RA, elevated PAR(2) expression in both CD14+ and CD3+ cells was significantly reduced 3 months after methotrexate or sulfasalazine treatment and this reduction correlated significantly with the reduction in the 28-joint Disease Activity Scale score (p<0.05). PAR(2) expression on cells from patients with OA was low, similar to levels seen in control subjects. Generation of IL-6 by monocytes in response to a selective PAR(2) agonist was significantly greater in patients with RA than in patients with OA and control subjects (p<0.05). These findings are consistent with a pathogenic role for PAR(2) in RA.

  3. PAR2 expression in peripheral blood monocytes of patients with rheumatoid arthritis

    PubMed Central

    Crilly, A; Burns, E; Nickdel, M B; Lockhart, J C; Perry, M E; Ferrell, P W; Baxter, D; Dale, J; Dunning, L; Wilson, H; Nijjar, J S; Gracie, J A; Ferrell, W R; McInnes, I B

    2012-01-01

    Objectives Proteinase-activated receptor 2 (PAR2) is a G protein-coupled receptor activated by serine proteinases with proinflammatory activity. A study was undertaken to investigate the presence and functional significance of PAR2 expression on rheumatoid arthritis (RA)-derived leucocyte subsets. Methods Venous blood was obtained from patients with RA and osteoarthritis (OA) as well as healthy control subjects. Surface expression of PAR2 on peripheral blood mononuclear cells (PBMCs) was analysed by flow cytometry and interleukin 6 (IL-6) generation by ELISA. Results Patients with RA had elevated but variable surface expression of PAR2 on CD14+ monocytes compared with control subjects (median (1st to 3rd quartiles) 1.76% (0.86–4.10%) vs 0.06% (0.03–0.81%), p<0.0001). CD3+ T cells showed a similar pattern with significantly higher PAR2 expression in patients with RA compared with controls (3.05% (0.36–11.82%) vs 0.08% (0.02–0.28%), p<0.0001). For both subsets, PAR2 expression was significantly higher (p<0.00001) in patients with high levels of disease activity: PAR2 expression for both CD14+ and CD3+ cells correlated to C reactive protein and erythrocyte sedimentation rate. Furthermore, in a cohort of patients with newly diagnosed RA, elevated PAR2 expression in both CD14+ and CD3+ cells was significantly reduced 3 months after methotrexate or sulfasalazine treatment and this reduction correlated significantly with the reduction in the 28-joint Disease Activity Scale score (p<0.05). PAR2 expression on cells from patients with OA was low, similar to levels seen in control subjects. Generation of IL-6 by monocytes in response to a selective PAR2 agonist was significantly greater in patients with RA than in patients with OA and control subjects (p<0.05). Conclusions These findings are consistent with a pathogenic role for PAR2 in RA. PMID:22294633

  4. Why is the rapid burster different from all other galactic-bulge X-ray sources?

    NASA Astrophysics Data System (ADS)

    Milgrom, M.

    1987-01-01

    It is suggested that the rapid X-ray burster exhibits unique behavior because it contains a neutron star whose stellar radius is smaller than the minimum radius of a circular orbit that is stable according to general relativity. The star accretes from a disk that extends down to the last stable orbit. In this state, the disk is unstable against a rapid fall and accretion of its innermost part onto the star. The sudden dumping of mass gives rise to a burst of X-rays. The disk then heals, refilling the inner region at a pace that is dictated mainly by the global accretion rate, in order to ready itself for the next burst. In all other galactic-bulge-type sources, the neutron star is larger than the last stable orbit.

  5. A three-dimensional ParF meshwork assembles through the nucleoid to mediate plasmid segregation

    PubMed Central

    McLeod, Brett N.; Allison-Gamble, Gina E.; Barge, Madhuri T.; Tonthat, Nam K.; Schumacher, Maria A.; Hayes, Finbarr

    2017-01-01

    Abstract Genome segregation is a fundamental step in the life cycle of every cell. Most bacteria rely on dedicated DNA partition proteins to actively segregate chromosomes and low copy-number plasmids. Here, by employing super resolution microscopy, we establish that the ParF DNA partition protein of the ParA family assembles into a three-dimensional meshwork that uses the nucleoid as a scaffold and periodically shuttles between its poles. Whereas ParF specifies the territory for plasmid trafficking, the ParG partner protein dictates the tempo of ParF assembly cycles and plasmid segregation events by stimulating ParF adenosine triphosphate hydrolysis. Mutants in which this ParG temporal regulation is ablated show partition deficient phenotypes as a result of either altered ParF structure or dynamics and indicate that ParF nucleoid localization and dynamic relocation, although necessary, are not sufficient per se to ensure plasmid segregation. We propose a Venus flytrap model that merges the concepts of ParA polymerization and gradient formation and speculate that a transient, dynamic network of intersecting polymers that branches into the nucleoid interior is a widespread mechanism to distribute sizeable cargos within prokaryotic cells. PMID:28034957

  6. Neutron-beam-shaping assembly for boron neutron-capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaidi, L.; Kashaeva, E. A.; Lezhnin, S. I.

    A neutron-beam-shaping assembly consisting of a moderator, a reflector, and an absorber is used to form a therapeutic neutron beam for the boron neutron-capture therapy of malignant tumors at accelerator neutron sources. A new structure of the moderator and reflector is proposed in the present article, and the results of a numerical simulation of the neutron spectrum and of the absorbed dose in a modified Snyder head phantom are presented. The application of a composite moderator and of a composite reflector and the implementation of neutron production at the proton energy of 2.3MeV are shown to permit obtaining a high-qualitymore » therapeutic neutron beam.« less

  7. CAMEA—A novel multiplexing analyzer for neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Groitl, Felix; Graf, Dieter; Birk, Jonas Okkels; Markó, Márton; Bartkowiak, Marek; Filges, Uwe; Niedermayer, Christof; Rüegg, Christian; Rønnow, Henrik M.

    2016-03-01

    The analyzer detector system continuous angle multiple energy analysis will be installed on the cold-neutron triple-axis spectrometer RITA-2 at SINQ, PSI. CAMEA is optimized for efficiency in the horizontal scattering plane enabling rapid and detailed mapping of excitations. As a novelty the design employs a series of several sequential upward scattering analyzer arcs. Each arc is set to a different, fixed, final energy and scatters neutrons towards position sensitive detectors. Thus, neutrons with different final energies are recorded simultaneously over a large angular range. In a single data-acquisition many entire constant-energy lines in the horizontal scattering plane are recorded for a quasi-continuous angular coverage of about 60°. With a large combined coverage in energy and momentum, this will result in a very efficient spectrometer, which will be particularly suited for parametric studies under extreme conditions with restrictive sample environments (high field magnets or pressure cells) and for small samples of novel materials. In this paper we outline the concept and the specifications of the instrument currently under construction.

  8. Fast-Neutron Survey With Compact Plastic Scintillation Detectors.

    PubMed

    Preston, Rhys M; Tickner, James R

    2017-07-01

    With the rise of the Silicon Photomultiplier (SiPM), it is now practical to build compact scintillation detectors well suited to portable use. A prototype survey meter for fast-neutrons and gamma-rays, based around an EJ-299-34 plastic scintillator with SiPM readout, has been developed and tested. A custom digital pulse processor was used to perform pulse shape discrimination on-the-fly. Ambient dose equivalent H*(10) was calculated by means of two energy-dependent 'G-functions'. The sensitivity was calculated to be between 0.10 and 0.22 cps/(µSv/hr) for fast-neutrons with energies above 2.5 MeV. The prototype was used to survey various laboratory radiation fields, with the readings compared with commercial survey meters. The high sensitivity and lightweight nature of this detector makes it promising for rapid survey of the mixed neutron/gamma-ray fields encountered in industry and homeland security. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Croissance epitaxiale de GaAs sur substrats de Ge par epitaxie par faisceaux chimiques

    NASA Astrophysics Data System (ADS)

    Belanger, Simon

    La situation energetique et les enjeux environnementaux auxquels la societe est confrontee entrainent un interet grandissant pour la production d'electricite a partir de l'energie solaire. Parmi les technologies actuellement disponibles, la filiere du photovoltaique a concentrateur solaire (CPV pour concentrator photovoltaics) possede un rendement superieur et mi potentiel interessant a condition que ses couts de production soient competitifs. La methode d'epitaxie par faisceaux chimiques (CBE pour chemical beam epitaxy) possede plusieurs caracteristiques qui la rendent interessante pour la production a grande echelle de cellules photovoltaiques a jonctions multiples a base de semi-conducteurs III-V. Ce type de cellule possede la meilleure efficacite atteinte a ce jour et est utilise sur les satellites et les systemes photovoltaiques a concentrateur solaire (CPV) les plus efficaces. Une des principales forces de la technique CBE se trouve dans son potentiel d'efficacite d'utilisation des materiaux source qui est superieur a celui de la technique d'epitaxie qui est couramment utilisee pour la production a grande echelle de ces cellules. Ce memoire de maitrise presente les travaux effectues dans le but d'evaluer le potentiel de la technique CBE pour realiser la croissance de couches de GaAs sur des substrats de Ge. Cette croissance constitue la premiere etape de fabrication de nombreux modeles de cellules solaires a haute performance decrites plus haut. La realisation de ce projet a necessite le developpement d'un procede de preparation de surface pour les substrats de germanium, la realisation de nombreuses sceances de croissance epitaxiale et la caracterisation des materiaux obtenus par microscopie optique, microscopie a force atomique (AFM), diffraction des rayons-X a haute resolution (HRXRD), microscopie electronique a transmission (TEM), photoluminescence a basse temperature (LTPL) et spectrometrie de masse des ions secondaires (SIMS). Les experiences ont permis

  10. Effect of Par Frying on Composition and Texture of Breaded and Battered Catfish

    PubMed Central

    Woods, Kristin; Lea, Jeanne M.; Brashear, Suzanne S.; Boue, Stephen M.; Daigle, Kim W.; Bett-Garber, Karen L.

    2018-01-01

    Catfish is often consumed as a breaded and battered fried product; however, there is increasing interest in breaded and battered baked products as a healthier alternative. Par frying can improve the texture properties of breaded and battered baked products, but there are concerns about the increase in lipid uptake from par frying. The objective of this study was to examine the effect of different batters (rice, corn, and wheat) and the effect of par frying on the composition and texture properties of baked catfish. Catfish fillets were cut strips and then coated with batters, which had similar viscosities. Half of the strips were par fried in 177 °C vegetable oil for 1 min and the other half were not par fried. Samples were baked at 177 °C for 25 min. Analysis included % batter adhesion, cooking loss, protein, lipid, ash, and moisture, plus hardness and fracture quality measured using a texture analyzer. A trained sensory panel evaluated both breading and flesh texture attributes. Results found the lipid content of par fried treatments were significantly higher for both corn and wheat batters than for non-par fried treatments. Sensory analysis indicated that the texture of the coatings in the par fried treatments were significantly greater for hardness attributes. Fillet flakiness was significantly greater in the par fried treatments and corn-based batters had moister fillet strips compared to the wheat flour batters. Texture analyzer hardness values were higher for the par fried treatments. PMID:29570660

  11. Control of Smc Coiled Coil Architecture by the ATPase Heads Facilitates Targeting to Chromosomal ParB/parS and Release onto Flanking DNA

    PubMed Central

    Minnen, Anita; Bürmann, Frank; Wilhelm, Larissa; Anchimiuk, Anna; Diebold-Durand, Marie-Laure; Gruber, Stephan

    2016-01-01

    Summary Smc/ScpAB promotes chromosome segregation in prokaryotes, presumably by compacting and resolving nascent sister chromosomes. The underlying mechanisms, however, are poorly understood. Here, we investigate the role of the Smc ATPase activity in the recruitment of Smc/ScpAB to the Bacillus subtilis chromosome. We demonstrate that targeting of Smc/ScpAB to ParB/parS loading sites is strictly dependent on engagement of Smc head domains and relies on an open organization of the Smc coiled coils. We find that dimerization of the Smc hinge domain stabilizes closed Smc rods and hinders head engagement as well as chromosomal targeting. Conversely, the ScpAB sub-complex promotes head engagement and Smc rod opening and thereby facilitates recruitment of Smc to parS sites. Upon ATP hydrolysis, Smc/ScpAB is released from loading sites and relocates within the chromosome—presumably through translocation along DNA double helices. Our findings define an intermediate state in the process of chromosome organization by Smc. PMID:26904953

  12. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    NASA Astrophysics Data System (ADS)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka; JET Contributors

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  13. ParTIES: a toolbox for Paramecium interspersed DNA elimination studies.

    PubMed

    Denby Wilkes, Cyril; Arnaiz, Olivier; Sperling, Linda

    2016-02-15

    Developmental DNA elimination occurs in a wide variety of multicellular organisms, but ciliates are the only single-celled eukaryotes in which this phenomenon has been reported. Despite considerable interest in ciliates as models for DNA elimination, no standard methods for identification and characterization of the eliminated sequences are currently available. We present the Paramecium Toolbox for Interspersed DNA Elimination Studies (ParTIES), designed for Paramecium species, that (i) identifies eliminated sequences, (ii) measures their presence in a sequencing sample and (iii) detects rare elimination polymorphisms. ParTIES is multi-threaded Perl software available at https://github.com/oarnaiz/ParTIES. ParTIES is distributed under the GNU General Public Licence v3. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. View from west to east of PAR site resident engineer's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from west to east of PAR site resident engineer's office building (REOB) - Stanley R. Mickelsen Safeguard Complex, Resident Engineers Office Building, Southeast of intersection of PAR Access Road & Fourth Avenue, Nekoma, Cavalier County, ND

  15. Estimating Photosynthetically Available Radiation (PAR) at the Earth's surface from satellite observations

    NASA Technical Reports Server (NTRS)

    Frouin, Robert

    1993-01-01

    Current satellite algorithms to estimate photosynthetically available radiation (PAR) at the earth' s surface are reviewed. PAR is deduced either from an insolation estimate or obtained directly from top-of-atmosphere solar radiances. The characteristics of both approaches are contrasted and typical results are presented. The inaccuracies reported, about 10 percent and 6 percent on daily and monthly time scales, respectively, are useful to model oceanic and terrestrial primary productivity. At those time scales variability due to clouds in the ratio of PAR and insolation is reduced, making it possible to deduce PAR directly from insolation climatologies (satellite or other) that are currently available or being produced. Improvements, however, are needed in conditions of broken cloudiness and over ice/snow. If not addressed properly, calibration/validation issues may prevent quantitative use of the PAR estimates in studies of climatic change. The prospects are good for an accurate, long-term climatology of PAR over the globe.

  16. Neutron Transport Simulations for NIST Neutron Lifetime Experiment

    NASA Astrophysics Data System (ADS)

    Li, Fangchen; BL2 Collaboration Collaboration

    2016-09-01

    Neutrons in stable nuclei can exist forever; a free neutron lasts for about 15 minutes on average before it beta decays to a proton, an electron, and an antineutrino. Precision measurements of the neutron lifetime test the validity of weak interaction theory and provide input into the theory of the evolution of light elements in the early universe. There are two predominant ways of measuring the neutron lifetime: the bottle method and the beam method. The bottle method measures decays of ultracold neutrons that are stored in a bottle. The beam method measures decay protons in a beam of cold neutrons of known flux. An improved beam experiment is being prepared at the National Institute of Science and Technology (Gaithersburg, MD) with the goal of reducing statistical and systematic uncertainties to the level of 1 s. The purpose of my studies was to develop computer simulations of neutron transport to determine the beam collimation and study the neutron distribution's effect on systematic effects for the experiment, such as the solid angle of the neutron flux monitor. The motivation for the experiment and the results of this work will be presented. This work was supported, in part, by a Grant to Gettysburg College from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.

  17. ParCAT: A Parallel Climate Analysis Toolkit

    NASA Astrophysics Data System (ADS)

    Haugen, B.; Smith, B.; Steed, C.; Ricciuto, D. M.; Thornton, P. E.; Shipman, G.

    2012-12-01

    Climate science has employed increasingly complex models and simulations to analyze the past and predict the future of our climate. The size and dimensionality of climate simulation data has been growing with the complexity of the models. This growth in data is creating a widening gap between the data being produced and the tools necessary to analyze large, high dimensional data sets. With single run data sets increasing into 10's, 100's and even 1000's of gigabytes, parallel computing tools are becoming a necessity in order to analyze and compare climate simulation data. The Parallel Climate Analysis Toolkit (ParCAT) provides basic tools that efficiently use parallel computing techniques to narrow the gap between data set size and analysis tools. ParCAT was created as a collaborative effort between climate scientists and computer scientists in order to provide efficient parallel implementations of the computing tools that are of use to climate scientists. Some of the basic functionalities included in the toolkit are the ability to compute spatio-temporal means and variances, differences between two runs and histograms of the values in a data set. ParCAT is designed to facilitate the "heavy lifting" that is required for large, multidimensional data sets. The toolkit does not focus on performing the final visualizations and presentation of results but rather, reducing large data sets to smaller, more manageable summaries. The output from ParCAT is provided in commonly used file formats (NetCDF, CSV, ASCII) to allow for simple integration with other tools. The toolkit is currently implemented as a command line utility, but will likely also provide a C library for developers interested in tighter software integration. Elements of the toolkit are already being incorporated into projects such as UV-CDAT and CMDX. There is also an effort underway to implement portions of the CCSM Land Model Diagnostics package using ParCAT in conjunction with Python and gnuplot. Par

  18. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  19. A three-dimensional ParF meshwork assembles through the nucleoid to mediate plasmid segregation.

    PubMed

    McLeod, Brett N; Allison-Gamble, Gina E; Barge, Madhuri T; Tonthat, Nam K; Schumacher, Maria A; Hayes, Finbarr; Barillà, Daniela

    2017-04-07

    Genome segregation is a fundamental step in the life cycle of every cell. Most bacteria rely on dedicated DNA partition proteins to actively segregate chromosomes and low copy-number plasmids. Here, by employing super resolution microscopy, we establish that the ParF DNA partition protein of the ParA family assembles into a three-dimensional meshwork that uses the nucleoid as a scaffold and periodically shuttles between its poles. Whereas ParF specifies the territory for plasmid trafficking, the ParG partner protein dictates the tempo of ParF assembly cycles and plasmid segregation events by stimulating ParF adenosine triphosphate hydrolysis. Mutants in which this ParG temporal regulation is ablated show partition deficient phenotypes as a result of either altered ParF structure or dynamics and indicate that ParF nucleoid localization and dynamic relocation, although necessary, are not sufficient per se to ensure plasmid segregation. We propose a Venus flytrap model that merges the concepts of ParA polymerization and gradient formation and speculate that a transient, dynamic network of intersecting polymers that branches into the nucleoid interior is a widespread mechanism to distribute sizeable cargos within prokaryotic cells. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Effects of silenced PAR-2 on cell proliferation, invasion and metastasis of esophageal cancer.

    PubMed

    Chen, Jinmei; Xie, Liqun; Zheng, Yanmin; Liu, Caihong

    2017-10-01

    The present study aimed to investigate the effect of protease-activated receptor 2 (PAR-2) on cell proliferation, invasion and metastasis in the esophageal EC109 cell line. Two short hairpin RNA (shRNA) expression plasmids were constructed based on the PAR-2 mRNA sequence in humans, and they were transfected into the EC109 esophageal cancer cell line, and the stable interference cell line (shRNA-PAR-2 EC109) was obtained by puromycin selection. Following transfection of PAR-2 shRNA-1, PAR-2 expression was significantly downregulated in mRNA level and protein level in EC109 cells (P<0.05). The proliferation of EC109 cells transfected with PAR-2 shRNA was significantly lower than the negative control group (P<0.05). At 24, 48 and 72 h, the ratio of proliferation inhibition was 15.92, 24.89 and 32.28%, respectively. Compared with the control group, S-phase arrest was observed in cells transfected with shRNA-PAR-2. The ratio of cells in the S phase was 32.79±4.06, 26.54±1.37 and 33.45±2.46% at 24, 48 and 72 h, respectively. For invasion, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.05). For metastasis assay, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.01). In the present study, the PAR-2 shRNA plasmid was constructed successfully, which can significantly downregulate PAR-2 expression in EC109 cells. Subsequent to silencing of PAR-2, the proliferation of EC109 cells was inhibited and the capabilities of invasion and migration were reduced. It is indicated that PAR-2 may be a potential target in esophageal cancer.

  1. Dynamics of partially folded and unfolded proteins investigated with quasielastic neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Stadler, Andreas M.

    2018-05-01

    Molecular dynamics in proteins animate and play a vital role for biologically relevant processes of these biomacromolecules. Quasielastic incoherent neutron scattering (QENS) is a well-suited experimental method to study protein dynamics from the picosecond to several nanoseconds and in the Ångström length-scale. In QENS experiments of protein solutions hydrogens act as reporters for the motions of methyl groups or amino acids to which they are bound. Neutron Spin-Echo spectroscopy (NSE) offers the highest energy resolution in the field of neutron spectroscopy and allows the study of slow collective motions in proteins up to several hundred nanoseconds and in the nanometer length-scale. In the following manuscript I will review recent studies that stress the relevance of molecular dynamics for protein folding and for conformational transitions of intrinsically disordered proteins (IDPs). During the folding collapse the protein is exploring its accessible conformational space via molecular motions. A large flexibility of partially folded and unfolded proteins, therefore, is mandatory for rapid protein folding. IDPs are a special case as they are largely unstructured under physiological conditions. A large flexibility is a characteristic property of IDPs as it allows, for example, the interaction with various binding partners or the rapid response to different conditions.

  2. Paternal age related schizophrenia (PARS): Latent subgroups detected by k-means clustering analysis.

    PubMed

    Lee, Hyejoo; Malaspina, Dolores; Ahn, Hongshik; Perrin, Mary; Opler, Mark G; Kleinhaus, Karine; Harlap, Susan; Goetz, Raymond; Antonius, Daniel

    2011-05-01

    Paternal age related schizophrenia (PARS) has been proposed as a subgroup of schizophrenia with distinct etiology, pathophysiology and symptoms. This study uses a k-means clustering analysis approach to generate hypotheses about differences between PARS and other cases of schizophrenia. We studied PARS (operationally defined as not having any family history of schizophrenia among first and second-degree relatives and fathers' age at birth ≥ 35 years) in a series of schizophrenia cases recruited from a research unit. Data were available on demographic variables, symptoms (Positive and Negative Syndrome Scale; PANSS), cognitive tests (Wechsler Adult Intelligence Scale-Revised; WAIS-R) and olfaction (University of Pennsylvania Smell Identification Test; UPSIT). We conducted a series of k-means clustering analyses to identify clusters of cases containing high concentrations of PARS. Two analyses generated clusters with high concentrations of PARS cases. The first analysis (N=136; PARS=34) revealed a cluster containing 83% PARS cases, in which the patients showed a significant discrepancy between verbal and performance intelligence. The mean paternal and maternal ages were 41 and 33, respectively. The second analysis (N=123; PARS=30) revealed a cluster containing 71% PARS cases, of which 93% were females; the mean age of onset of psychosis, at 17.2, was significantly early. These results strengthen the evidence that PARS cases differ from other patients with schizophrenia. Hypothesis-generating findings suggest that features of PARS may include a discrepancy between verbal and performance intelligence, and in females, an early age of onset. These findings provide a rationale for separating these phenotypes from others in future clinical, genetic and pathophysiologic studies of schizophrenia and in considering responses to treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Par Pond vegetation status Summer 1995 -- June survey descriptive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1995-06-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the shoreline aquatic plant communities in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level, indicated that much of the original plant communities and the intermediate shoreline communities present on the exposed sediments havemore » been lost. The extensive old-field and emergent marsh communities that were present on the exposed shoreline during the drawdown have been flooded and much of the pre-drawdown Par Pond aquatic plant communities have not had sufficient time for re-establishment. The shoreline does, however, have extensive beds of maidencane which extend from the shoreline margin to areas as deep as 2 and perhaps 3 meters. Scattered individual plants of lotus and watershield are common and may indicate likely directions of future wetland development in Par Pond. In addition, within isolated coves, which apparently received ground water seepage and/or stream surface flows during the period of the Par Pond draw down, extensive beds of waterlilies and spike rush are common. Invasion of willow and red maple occurred along the lake shoreline as well. Although not absent from this survey, evidence of the extensive redevelopment of the large cattail and eel grass beds was not observed in this first survey of Par Pond. Future surveys during the growing seasons of 1995, 1996, and 1997 along with the evaluation of satellite date to map the areal extent of the macrophyte beds of Par Pond are planned.« less

  4. Provenance of the oil in par-fried French fries after finish frying.

    PubMed

    Al-Khusaibi, Mohammed; Gordon, Michael H; Lovegrove, Julie A; Niranjan, Keshavan

    2012-01-01

    Frozen par-fried French fries are finish-fried either by using the same type of oil used for par frying, or a different type. The nutritive quality of the final oil contained in the product depends on the relative amounts and the fatty acid (FA) composition of the oils used for par frying and finish frying. With the aim of understanding the provenance of the oil in the final product, par-fried French fries-either purchased ready or prepared in the laboratory-were finish fried in oils different from the ones used for par frying. The moisture content, oil content, and FA compositions of the par-fried and finish-fried products were experimentally determined, and the relative amounts of each of the oils present in the final product were calculated using the FAs as markers and undertaking a mass balance on each component FA. The results demonstrate that 89% to 93% of the total oil in the final product originates from the finish-frying step. The study also shows that a significant proportion of the oil absorbed during par frying is expelled from the product during finish frying. Further, the expulsion of par-frying oil was found to occur in the early stages of the finish-frying step. Experiments involving different combinations of par-frying and finish-frying oils showed that the relative proportions of the 2 oils did not depend on the individual fatty acid profiles. This study concludes that any positive health benefits of using an oil having a favorable FA profile for par frying, can potentially be lost, if the oil used for finish frying has a less favorable composition. This paper estimates the relative amounts of oil in French fries that have been fried in 2 stages-a par-frying step and a finish-frying step-which is commonly practiced in food service establishments as well as homes. The 2 key conclusions are: (1) nearly 90% of the oil content of the final product is the one used for finish frying; that is, a processor may use very good oil for par frying but if the

  5. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  6. [Four-port pars plana vitrectomy for severe proliferative diabetic retinopathy].

    PubMed

    Wei, Wen-bin; Yang, Qiong; Mo, Jing; Zhou, Dan

    2008-01-01

    To investigate the 4-port pars plana vitrectomy in eyes with severe proliferative diabetic retinopathy (PDR). It was a case-control study. Twenty-eight eyes in 27 patients with extensive fibrovascular proliferation associated with PDR were retrospectively collected, who were undergone 4-port pars plana vitreous surgery with bimanual manipulation techniques, such as membrane dissections and enbloc membranectomy. The control group consisted of 30 eyes in 30 patients with PDR which were undergone 3-port pars plana vitrectomy by the same surgeon. Twenty-eight eyes were undergone membrane dissection and enbloc membranectomy smoothly during 4-port pars plana vitrectomy, 2 iatrogenic holes occurred in 1 eye. During the follow up 7 months to 4.5 years, the retina was fully attached in all eyes, visual acuity had improved except 1 eye which complicated with neovascular glaucoma. In the control group, membranes partially remained in 2 eyes, 4 iatrogenic holes appeared in 3 eyes, neovascular glaucoma occurred in 3 eyes, the retina was reattached during the follow-up time from 12 to 34 months. For severe proliferative diabetic retinopathy, the 4-port pars plana vitrectomy with bimanual manipulations of membrane peeling is safe and efficiency.

  7. Neutron spectrometry in a mixed field of neutrons and protons with a phoswich neutron detector Part I: response functions for photons and neutrons of the phoswich neutron detector

    NASA Astrophysics Data System (ADS)

    Takada, M.; Taniguchi, S.; Nakamura, T.; Nakao, N.; Uwamino, Y.; Shibata, T.; Fujitaka, K.

    2001-06-01

    We have developed a phoswich neutron detector consisting of an NE213 liquid scintillator surrounded by an NE115 plastic scintillator to distinguish photon and neutron events in a charged-particle mixed field. To obtain the energy spectra by unfolding, the response functions to neutrons and photons were obtained by the experiment and calculation. The response functions to photons were measured with radionuclide sources, and were calculated with the EGS4-PRESTA code. The response functions to neutrons were measured with a white neutron source produced by the bombardment of 135 MeV protons onto a Be+C target using a TOF method, and were calculated with the SCINFUL code, which we revised in order to calculate neutron response functions up to 135 MeV. Based on these experimental and calculated results, response matrices for photons up to 20 MeV and neutrons up to 132 MeV could finally be obtained.

  8. Measurement of Continuous-Energy Neutron-Incident Neutron-Production Cross Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shigyo, Nobuhiro; Kunieda, Satoshi; Watanabe, Takehito

    Continuous energy neutron-incident neutron-production double differential cross sections were measured at the Weapons Neutron Research (WNR) facility of the Los Alamos Neutron Science Center. The energy of emitted neutrons was derived from the energy deposition in a detector. The incident-neutron energy was obtained by the time-of-flight method between the spallation target of WNR and the emitted neutron detector. Two types of detectors were adopted to measure the wide energy range of neutrons. The liquid organic scintillators covered up to 100 MeV. The recoil proton detectors that constitute the recoil proton radiator and phoswich type NaI (Tl) scintillators were used formore » neutrons above several tens of MeV. Iron and lead were used as sample materials. The experimental data were compared with the evaluated nuclear data, the results of GNASH, JQMD, and PHITS codes.« less

  9. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    NASA Astrophysics Data System (ADS)

    Franklyn, C. B.

    2011-12-01

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >1011 nṡs-1. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  10. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklyn, C. B.

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It ismore » further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.« less

  11. Neutron-$$\\gamma$$ competition for β-delayed neutron emission

    DOE PAGES

    Mumpower, Matthew Ryan; Kawano, Toshihiko; Moller, Peter

    2016-12-19

    Here we present a coupled quasiparticle random phase approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information, which starts with Gamow-Teller strength distributions in the daughter nucleus and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is γ-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-γ competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. Finally, a second consequence of this formalismmore » is a prediction of more neutrons on average being emitted after β decay for nuclei near the neutron drip line compared to models that do not consider the statistical decay.« less

  12. Reconstruction d’une Carbonisation du Pouce par Lambeau Chinois

    PubMed Central

    Khales, A.; Achbouk, J.A.; Moussaoui, A.; Belmir, R.; Tourabi, K.; Oufkir, A.; Ihrai, H.

    2010-01-01

    Summary La main en tant qu’organe majeur de la préhension peut être le siège de brûlures graves qui compromettent sa fonction. Bien qu’elle ne représente que 2% de la surface corporelle la brûlure de la main est grave et difficile à traiter, vu la vulnérabilité et la complexité de son appareil locomoteur. Nous rapportons dans ce travail le cas d’un patient victime d’une carbonisation de la main. Huit mois après le parage et la couverture par lambeau inguinal, le patient bénéficie d’une reconstruction du pouce par lambeau chinois associé à une greffe osseuse. Le résultat s’est avéré satisfaisant. Le lambeau chinois prouve par son apport vasculaire et par sa facilité technique qu’il est un moyen très intéressant dans la reconstruction du pouce - ou des doigts en général - surtout dans un contexte de brûlure. PMID:21991226

  13. Spectroscopic neutron radiography for a cargo scanning system

    NASA Astrophysics Data System (ADS)

    Rahon, Jill; Danagoulian, Areg; MacDonald, Thomas D.; Hartwig, Zachary S.; Lanza, Richard C.

    2016-06-01

    Detection of cross-border smuggling of illicit materials and contraband is a challenge that requires rapid, low-dose, and efficient radiographic technology. The work we describe here is derived from a technique which uses monoenergetic gamma rays from low energy nuclear reactions, such as 11B(d,nγ)12C, to perform radiographic analysis of shipping containers. Transmission ratios of multiple monoenergetic gamma lines resulting from several gamma producing nuclear reactions can be employed to detect materials of high atomic number (Z), the details of which will be described in a separate paper. Inherent in this particular nuclear reaction is the production of fast neutrons which could enable neutron radiography and further characterization of the effective-Z of the cargo, especially within the range of lower Z. Previous research efforts focused on the use of total neutron counts in combination with X-ray radiography to characterize the hydrogenous content of the cargo. We present a technique of performing transmitted neutron spectral analysis to reconstruct the effective Z and potentially the density of the cargo. This is made possible by the large differences in the energy dependence of neutron scattering cross-sections between hydrogenous materials and those of higher Z. These dependencies result in harder transmission spectra for hydrogenous cargoes than those of non-hydrogenous cargoes. Such observed differences can then be used to classify the cargo based on its hydrogenous content. The studies presented in this paper demonstrate that such techniques are feasible and can provide a contribution to cargo security, especially when used in concert with gamma radiography.

  14. Collapse of magnetized hypermassive neutron stars in general relativity.

    PubMed

    Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Shibata, Masaru; Stephens, Branson C

    2006-01-27

    Hypermassive neutron stars (HMNSs)--equilibrium configurations supported against collapse by rapid differential rotation--are possible transient remnants of binary neutron-star mergers. Using newly developed codes for magnetohydrodynamic simulations in dynamical spacetimes, we are able to track the evolution of a magnetized HMNS in full general relativity for the first time. We find that secular angular momentum transport due to magnetic braking and the magnetorotational instability results in the collapse of an HMNS to a rotating black hole, accompanied by a gravitational wave burst. The nascent black hole is surrounded by a hot, massive torus undergoing quasistationary accretion and a collimated magnetic field. This scenario suggests that HMNS collapse is a possible candidate for the central engine of short gamma-ray bursts.

  15. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  16. TMS suppression of right pars triangularis, but not pars opercularis, improves naming in aphasia

    PubMed Central

    Naeser, Margaret A.; Martin, Paula I.; Theoret, Hugo; Kobayashi, Masahito; Fregni, Felipe; Nicholas, Marjorie; Tormos, Jose M.; Steven, Megan S.; Baker, Errol H.; Pascual-Leone, Alvaro

    2011-01-01

    This study sought to discover if an optimum 1 cm2 area in the non-damaged right hemisphere (RH) was present, which could temporarily improve naming in chronic, nonfluent aphasia patients when suppressed with repetitive transcranial magnetic stimulation (rTMS). Ten minutes of slow, 1 Hz rTMS was applied to suppress different RH ROIs in eight aphasia cases. Picture naming and response time (RT) were examined before, and immediately after rTMS. In aphasia patients, suppression of right pars triangularis (PTr) led to significant increase in pictures named, and significant decrease in RT. Suppression of right pars opercularis (POp), however, led to significant increase in RT, but no change in number of pictures named. Eight normals named all pictures correctly; similar to aphasia patients, RT significantly decreased following rTMS to suppress right PTr, versus right POp. Differential effects following suppression of right PTr versus right POp suggest different functional roles for these regions. PMID:21864891

  17. Half-lives and branchings for {beta}-delayed neutron emission for neutron-rich Co-Cu isotopes in the r-process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosmer, P.; Estrade, A.; Montes, F.

    The {beta} decays of very neutron-rich nuclides in the Co-Zn region were studied experimentally at the National Superconducting Cyclotron Laboratory using the NSCL {beta}-counting station in conjunction with the neutron detector NERO. We measured the branchings for {beta}-delayed neutron emission (P{sub n} values) for {sup 74}Co (18{+-}15%) and {sup 75-77}Ni (10{+-}2.8%, 14{+-}3.6%, and 30{+-}24%, respectively) for the first time, and remeasured the P{sub n} values of {sup 77-79}Cu, {sup 79,81}Zn, and {sup 82}Ga. For {sup 77-79}Cu and for {sup 81}Zn we obtain significantly larger P{sub n} values compared to previous work. While the new half-lives for the Ni isotopes frommore » this experiment had been reported before, we present here in addition the first half-life measurements of {sup 75}Co (30{+-}11 ms) and {sup 80}Cu (170{sub -50}{sup +110} ms). Our results are compared with theoretical predictions, and their impact on various types of models for the astrophysical rapid neutron-capture process (r-process) is explored. We find that with our new data, the classical r-process model is better able to reproduce the A=78-80 abundance pattern inferred from the solar abundances. The new data also influence r-process models based on the neutrino-driven high-entropy winds in core collapse supernovae.« less

  18. Apport des neutrons à l'analyse structurale des composés partiellement désordonnés

    NASA Astrophysics Data System (ADS)

    Cousson, A.

    2003-02-01

    La cristallographie est un outil extrêmement puissant qui pourrait être utilisé par de nombreux scientifiques dont les sujets de recherche sont en fait très éloignés. L'évolution des techniques ces dernières années a relégué par exemple la cristallographie des rayons X des petites molécules à un rôle mineur, un rôle de service. Certains ont même le sentiment semble-t-il que toutes les connaissances sont contenues dans de multiples logiciels capables par eux-mêmes de conduire une analyse structurale à un résultat correct unique. Il est souhaitable que chacun soit capable de réaliser l'étude structurale du composé qui l'intéresse et bien entendu nécessaire de comprendre ce que l'on fait, la qualité des résultats et leur analyse en dépend. L'objet de cette présentation est de montrer l'apport spécifique de la diffraction de neutrons sur monocristaux à l'étude du désordre, en particulier des atomes d'hydrogène, et ses conséquences sur la compréhension des propriétés physiques, à partir de développements et d'exemples récents.

  19. Development of 10B-Based 3He Replacement Neutron Detectors

    NASA Astrophysics Data System (ADS)

    King, Michael J.; Gozani, Tsahi; Hilliard, Donald B.

    2011-12-01

    Radiation portal monitors (RPM) are currently deployed at United States border crossings to passively inspect vehicles and persons for any emission of neutrons and/or gamma rays, which may indicate the presence of unshielded nuclear materials. The RPM module contains an organic scintillator with 3He proportional counters to detect gamma rays and thermalized neutrons, respectively. The supply of 3He is rapidly dwindling, requiring alternative detectors to provide the same function and performance. Our alternative approach is one consisting of a thinly-coated 10B flat-panel ionization chamber neutron detector that can be deployed as a direct drop-in replacement for current RPM 3He detectors. The uniqueness of our approach in providing a large-area detector is in the simplicity of construction, scalability of the unit cell detector, ease of adaptability to a variety of applications and low cost. Currently, Rapiscan Laboratories and Helicon Thin Film Systems have designed and developed an operational 100 cm2 multi-layer prototype 10BB-based ionization chamber.

  20. Computer-Aided Design and Fabrication of Wire-Wrap (Trademark) Type Circuit Boards: A New Symbolism and Its Implementation (Conception et Fabrication Automatisees de Circuits par Cablage Enroule: un Nouveau Symbolisme et son Application),

    DTIC Science & Technology

    1982-02-01

    facilitant la transition entre les plans d’ing~nierie 6lectronique et la matrice pertinente d’interconnexions requise pour le montage par c~blage enroul6 Wire...Wrap. Le d~veloppement de prototypes 6lectroniques s’est vu consid6rablement acc6l6r6 par la preparation plus rapide des donn~es d’interconnexions...directory, all located in *APL files (Sect. 7.0). A matrix called BANQUE is also formed by the program L to regroup those chip descriptions of the main

  1. SELF-REACTIVATING NEUTRON SOURCE FOR A NEUTRONIC REACTOR

    DOEpatents

    Newson, H.W.

    1959-02-01

    Reactors of the type employing beryllium in a reflector region around the active portion and to a neutron source for use therewith are discussed. The neutron source is comprised or a quantity of antimony permanently incorporated in, and as an integral part of, the reactor in or near the beryllium reflector region. During operation of the reactor the natural occurring antimony isotope of atomic weight 123 absorbs neutrons and is thereby transformed to the antimony isotope of atomic weight 124, which is radioactive and emits gamma rays. The gamma rays react with the beryllium to produce neutrons. The beryllium and antimony thus cooperate to produce a built in neutron source which is automatically reactivated by the operation of the reactor itself and which is of sufficient strength to maintain the slow neutron flux at a sufficiently high level to be reliably measured during periods when the reactor is shut down.

  2. Effects of silenced PAR-2 on cell proliferation, invasion and metastasis of esophageal cancer

    PubMed Central

    Chen, Jinmei; Xie, Liqun; Zheng, Yanmin; Liu, Caihong

    2017-01-01

    The present study aimed to investigate the effect of protease-activated receptor 2 (PAR-2) on cell proliferation, invasion and metastasis in the esophageal EC109 cell line. Two short hairpin RNA (shRNA) expression plasmids were constructed based on the PAR-2 mRNA sequence in humans, and they were transfected into the EC109 esophageal cancer cell line, and the stable interference cell line (shRNA-PAR-2 EC109) was obtained by puromycin selection. Following transfection of PAR-2 shRNA-1, PAR-2 expression was significantly downregulated in mRNA level and protein level in EC109 cells (P<0.05). The proliferation of EC109 cells transfected with PAR-2 shRNA was significantly lower than the negative control group (P<0.05). At 24, 48 and 72 h, the ratio of proliferation inhibition was 15.92, 24.89 and 32.28%, respectively. Compared with the control group, S-phase arrest was observed in cells transfected with shRNA-PAR-2. The ratio of cells in the S phase was 32.79±4.06, 26.54±1.37 and 33.45±2.46% at 24, 48 and 72 h, respectively. For invasion, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.05). For metastasis assay, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.01). In the present study, the PAR-2 shRNA plasmid was constructed successfully, which can significantly downregulate PAR-2 expression in EC109 cells. Subsequent to silencing of PAR-2, the proliferation of EC109 cells was inhibited and the capabilities of invasion and migration were reduced. It is indicated that PAR-2 may be a potential target in esophageal cancer. PMID:28943918

  3. Resolving Rapid Variation in Energy for Particle Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haut, Terry Scot; Ahrens, Cory Douglas; Jonko, Alexandra

    2016-08-23

    Resolving the rapid variation in energy in neutron and thermal radiation transport is needed for the predictive simulation capability in high-energy density physics applications. Energy variation is difficult to resolve due to rapid variations in cross sections and opacities caused by quantized energy levels in the nuclei and electron clouds. In recent work, we have developed a new technique to simultaneously capture slow and rapid variations in the opacities and the solution using homogenization theory, which is similar to multiband (MB) and to the finite-element with discontiguous support (FEDS) method, but does not require closure information. We demonstrated the accuracymore » and efficiency of the method for a variety of problems. We are researching how to extend the method to problems with multiple materials and the same material but with different temperatures and densities. In this highlight, we briefly describe homogenization theory and some results.« less

  4. Identification of a New Epitope in uPAR as a Target for the Cancer Therapeutic Monoclonal Antibody ATN-658, a Structural Homolog of the uPAR Binding Integrin CD11b (αM)

    PubMed Central

    Wei, Ying; Donate, Fernando; Juarez, Jose; Parry, Graham; Chen, Liqing; Meehan, Edward J.; Ahn, Richard W.; Ugolkov, Andrey; Dubrovskyi, Oleksii; O'Halloran, Thomas V.; Huang, Mingdong; Mazar, Andrew P.

    2014-01-01

    The urokinase plasminogen activator receptor (uPAR) plays a role in tumor progression and has been proposed as a target for the treatment of cancer. We recently described the development of a novel humanized monoclonal antibody that targets uPAR and has anti-tumor activity in multiple xenograft animal tumor models. This antibody, ATN-658, does not inhibit ligand binding (i.e. uPA and vitronectin) to uPAR and its mechanism of action remains unclear. As a first step in understanding the anti-tumor activity of ATN-658, we set out to identify the epitope on uPAR to which ATN-658 binds. Guided by comparisons between primate and human uPAR, epitope mapping studies were performed using several orthogonal techniques. Systematic site directed and alanine scanning mutagenesis identified the region of aa 268–275 of uPAR as the epitope for ATN-658. No known function has previously been attributed to this epitope Structural insights into epitope recognition were obtained from structural studies of the Fab fragment of ATN-658 bound to uPAR. The structure shows that the ATN-658 binds to the DIII domain of uPAR, close to the C-terminus of the receptor, corroborating the epitope mapping results. Intriguingly, when bound to uPAR, the complementarity determining region (CDR) regions of ATN-658 closely mimic the binding regions of the integrin CD11b (αM), a previously identified uPAR ligand thought to be involved in leukocyte rolling, migration and complement fixation with no known role in tumor progression of solid tumors. These studies reveal a new functional epitope on uPAR involved in tumor progression and demonstrate a previously unrecognized strategy for the therapeutic targeting of uPAR. PMID:24465541

  5. Neutron imaging integrated circuit and method for detecting neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarkar, Vivek V.; More, Mitali J.

    The present disclosure provides a neutron imaging detector and a method for detecting neutrons. In one example, a method includes providing a neutron imaging detector including plurality of memory cells and a conversion layer on the memory cells, setting one or more of the memory cells to a first charge state, positioning the neutron imaging detector in a neutron environment for a predetermined time period, and reading a state change at one of the memory cells, and measuring a charge state change at one of the plurality of memory cells from the first charge state to a second charge statemore » less than the first charge state, where the charge state change indicates detection of neutrons at said one of the memory cells.« less

  6. Thermal Neutron Radiography using a High-flux Compact Neutron Generator

    NASA Astrophysics Data System (ADS)

    Taylor, Michael; Sengbusch, Evan; Seyfert, Chris; Moll, Eli; Radel, Ross

    A novel neutron imaging system has been designed and constructed by Phoenix Nuclear Labs to investigate specimens when conventional X-ray imaging will not suffice. A first-generation electronic neutron generator is actively being used by the United States Army and is coupled with activation films for neutron radiography to inspect munitions and other critical defence and aerospace components. A second-generation system has been designed to increase the total neutron output from an upgraded gaseous deuterium target to 5×1011 DD n/s, generating higher neutron flux at the imaging plane and dramatically reducing interrogation time, while maintaining high spatial resolution and low geometric unsharpness. A description of the neutron generator and imaging system, including the beamline, target and detector platform, is given in this paper. State of the art neutron moderators, collimators and imaging detector components are also discussed in the context of increasing specimen throughput and optimizing image quality. Neutron radiographs captured with the neutron radiography system will be further compared against simulated images using the MCNP nuclear simulation code.

  7. The Fundamental Neutron Physics Beamline at the Spallation Neutron Source.

    PubMed

    Greene, Geoffrey; Cianciolo, Vince; Koehler, Paul; Allen, Richard; Snow, William Michael; Huffman, Paul; Gould, Chris; Bowman, David; Cooper, Martin; Doyle, John

    2005-01-01

    The Spallation Neutron Source (SNS), currently under construction at Oak Ridge National Laboratory with an anticipated start-up in early 2006, will provide the most intense pulsed beams of cold neutrons in the world. At a projected power of 1.4 MW, the time averaged fluxes and fluences of the SNS will approach those of high flux reactors. One of the flight paths on the cold, coupled moderator will be devoted to fundamental neutron physics. The fundamental neutron physics beamline is anticipated to include two beam-lines; a broad band cold beam, and a monochromatic beam of 0.89 nm neutrons for ultracold neutron (UCN) experiments. The fundamental neutron physics beamline will be operated as a user facility with experiment selection based on a peer reviewed proposal process. An initial program of five experiments in neutron decay, hadronic weak interaction and time reversal symmetry violation have been proposed.

  8. Plasmid partition system of the P1par family from the pWR100 virulence plasmid of Shigella flexneri.

    PubMed

    Sergueev, Kirill; Dabrazhynetskaya, Alena; Austin, Stuart

    2005-05-01

    P1par family members promote the active segregation of a variety of plasmids and plasmid prophages in gram-negative bacteria. Each has genes for ParA and ParB proteins, followed by a parS partition site. The large virulence plasmid pWR100 of Shigella flexneri contains a new P1par family member: pWR100par. Although typical parA and parB genes are present, the putative pWR100parS site is atypical in sequence and organization. However, pWR100parS promoted accurate plasmid partition in Escherichia coli when the pWR100 Par proteins were supplied. Unique BoxB hexamer motifs within parS define species specificities among previously described family members. Although substantially different from P1parS from the P1 plasmid prophage of E. coli, pWR100parS has the same BoxB sequence. As predicted, the species specificity of the two types proved identical. They also shared partition-mediated incompatibility, consistent with the proposed mechanistic link between incompatibility and species specificity. Among several informative sequence differences between pWR100parS and P1parS is the presence of a 21-bp insert at the center of the pWR100parS site. Deletion of this insert left much of the parS activity intact. Tolerance of central inserts with integral numbers of helical DNA turns reflects the critical topology of these sites, which are bent by binding the host IHF protein.

  9. Implementation of dynamic bias for neutron-photon pulse shape discrimination by using neural network classifiers

    NASA Astrophysics Data System (ADS)

    Cao, Zhong; Miller, L. F.; Buckner, M.

    In order to accurately determine dose equivalent in radiation fields that include both neutrons and photons, it is necessary to measure the relative number of neutrons to photons and to characterize the energy dependence of the neutrons. The relationship between dose and dose equivalent begins to increase rapidly at about 100 keV; thus, it is necessary to separate neutrons from photons for neutron energies as low as about 100 keV in order to measure dose equivalent in a mixed radiation field that includes both neutrons and photons. Preceptron and back propagation neural networks that use pulse amplitude and pulse rise time information obtain separation of neutron and photons with about 5% error for neutrons with energies as low as 100 keV, and this is accomplished for neutrons with energies that range from 100 keV to several MeV. If the ratio of neutrons to photons is changed by a factor of 10, the classification error increases to about 15% for the neural networks tested. A technique that uses the output from the preceptron as a priori for a Bayesian classifier is more robust to changes in the relative number of neutrons to photons, and it obtains a 5% classification error when this ratio is changed by a factor of ten. Results from this research demonstrate that it is feasible to use commercially available instrumentation in combination with artificial intelligence techniques to develop a practical detector that will accurately measure dose equivalent in mixed neutron-photon radiation fields.

  10. NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS

    DOEpatents

    Mills, F.T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.

  11. Neutronic Reactor Design to Reduce Neutron Loss

    DOEpatents

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  12. Expression of proteinase-activated receptor (PAR)-2 in monocytes from allergic patients and potential molecular mechanism.

    PubMed

    Ge, Shuqing; Li, Tao; Yao, Qijian; Yan, Hongling; Huiyun, Zhang; Zheng, Yanshan; Zhang, Bin; He, Shaoheng

    2016-12-01

    Serine proteases play an important role in inflammation via PARs. However, little is known of expression levels of PARs on monocytes of allergic patients, and influence of serine proteases and PARs on TNF-α secretion from monocytes. Using quantitative real-time PCR (qPCR) and flowcytometry techniques, we observed that the expression level of PAR-2 in monocytes of patients with allergic rhinitis and asthma was increased by 42.9 and 38.2 %. It was found that trypsin, thrombin, and tryptase induced up to 200, 320, and 310 % increase in TNF-α release from monocytes at 16 h, respectively. PAR-1 agonist peptide, SFLLR-NH 2 , and PAR-2 agonist peptide tc-LIGRLO-NH 2 provoked up to 210 and 240 % increase in release of TNF-α. Since SCH 79797, a PAR-1 antagonist, and PD98059, an inhibitor of ERK inhibited thrombin- and SFLLR-NH 2 -induced TNF-α release, the action of thrombin is most likely through a PAR-1- and ERK-mediated signaling mechanism. Similarly, because FSLLRN-NH 2 , an inhibitor of PAR-2 diminished tryptase- and tc-LIGRLO-NH 2 -induced TNF-α release, the action of tryptase appears PAR-2 dependent. Moreover, in vivo study showed that both recombinant cockroach major allergens Per a 1 and Per a 7 provoked upregulation of PAR-2 and PAR-1 expression on CD14+ cells in OVA-sensitized mouse peritoneum. In conclusion, increased expression of PAR-2 in monocytes of AR and asthma implicates that PAR-2 likely play a role in allergy. PAR-2- and PAR-1-mediated TNF-α release from monocytes suggests that these unique protease receptors are involved in the pathogenesis of inflammation.

  13. Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling

    PubMed Central

    Gur-Cohen, Shiri; Kollet, Orit; Graf, Claudine; Esmon, Charles T.; Ruf, Wolfram; Lapidot, Tsvee

    2016-01-01

    The common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/PAR1 signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation. Recent studies define two new PAR1-mediated signaling cascades that regulate EPCR+ LT-HSC BM retention and egress. EPCR/PAR1 signaling facilitates LT-HSC BM repopulation, retention, survival, and chemotherapy resistance by restricting nitric oxide (NO) production, maintaining NOlow LT-HSC BM retention with increased VLA4 expression, affinity, and adhesion. Conversely, acute stress and clinical mobilization upregulate thrombin generation and activate different PAR1 signaling which overcomes BM EPCR+ LT-HSC retention, inducing their recruitment to the bloodstream. Thrombin/PAR1 signaling induces NO generation, TACE-mediated EPCR shedding, and upregulation of CXCR4 and PAR1, leading to CXCL12-mediated stem and progenitor cell mobilization. This review discusses new roles for factors traditionally viewed as coagulation related, which independently act in the BM to regulate PAR1 signaling in bone- and blood-forming progenitor cells, navigating their fate by controlling NO production. PMID:26928241

  14. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    NASA Astrophysics Data System (ADS)

    Gobrecht, K.; Gutsmiedl, E.; Scheuer, A.

    2002-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universität München, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D 2O-reflector tank at 400 mm from the reactor core axis close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 l of liquid deuterium at 25 K, and in the structures, is evacuated by a two-phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10° from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the lifetime of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H 2) to the deuterium (D 2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long-term change of the hydrogen content in the deuterium is avoided by storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo 3Ni 2, the other one with 150 kg of ZrCo 0.8Ni 0.2. Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in <6 min at a pressure <3 bar. The new reactor will have 13 beam tubes, 4 of which are looking at the CNS, including two for very cold (VCN) and ultra-cold neutron (UCN) production. The latter will take place in the

  15. Traumatismes Oculaires par Petards: Bilan sur Trois Annees

    PubMed Central

    Zouaoui-Kesraoui, N.; Derdour, A.

    2009-01-01

    Summary Les accidents dus aux pétards sont des accidents graves. Leur recrudescence ces dernières années en Algérie, essentiellement durant les fêtes du Mawlid Ennabaoui (fête de la naissance du prophète), mérite à notre sens d'entreprendre des bilans exhaustifs dont celui-ci dans le but d'une sensibilisation de toutes les compétences concernées. Nous avons réuni sur trois années consécutives (2002, 2003, 2004) 60 dossiers de malades ayant subi des accidents oculaires par pétards. Nos patients sont répartis en 42 consultations pour blessures légères et 18 hospitalisations pour blessures graves. Parmi ces derniers, neuf ont présenté des complications et séquelles graves (cinq cas de cécité par atrophie du globe oculaire, trois cas de cécité cornéenne et un cas de cécité par trou maculaire). Dans tous ces cas l'incapacité permanente partielle est au minimum de 30%. Au vu de ces données nous proposons des mesures d'éducation sanitaire et une sensibilisation du grand public aux traumatismes oculaires, par le biais de mé dias appropriés: radio, télévision, affiches. PMID:21991157

  16. Thermal neutron detection system

    DOEpatents

    Peurrung, Anthony J.; Stromswold, David C.

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  17. PAR-1/MARK: a kinase essential for maintaining the dynamic state of microtubules.

    PubMed

    Hayashi, Kenji; Suzuki, Atsushi; Ohno, Shigeo

    2012-01-01

    The serine/threonine kinase, PAR-1, is an essential component of the evolutionary-conserved polarity-regulating system, PAR-aPKC system, which plays indispensable roles in establishing asymmetric protein distributions and cell polarity in various biological contexts (Suzuki, A. and Ohno, S. (2006). J. Cell Sci., 119: 979-987; Matenia, D. and Mandelkow, E.M. (2009). Trends Biochem. Sci., 34: 332-342). PAR-1 is also known as MARK, which phosphorylates classical microtubule-associated proteins (MAPs) and detaches MAPs from microtubules (Matenia, D. and Mandelkow, E.M. (2009). Trends Biochem. Sci., 34: 332-342). This MARK activity of PAR-1 suggests its role in microtubule (MT) dynamics, but surprisingly, only few studies have been carried out to address this issue. Here, we summarize our recent study on live imaging analysis of MT dynamics in PAR-1b-depleted cells, which clearly demonstrated the positive role of PAR-1b in maintaining MT dynamics (Hayashi, K., Suzuki, A., Hirai, S., Kurihara, Y., Hoogenraad, C.C., and Ohno, S. (2011). J. Neurosci., 31: 12094-12103). Importantly, our results further revealed the novel physiological function of PAR-1b in maintaining dendritic spine morphology in mature neurons.

  18. Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact

    PubMed Central

    2013-01-01

    Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease. PMID:24215724

  19. Par3L enhances colorectal cancer cell survival by inhibiting Lkb1/AMPK signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Taiyuan; Liu, Dongning; Lei, Xiong

    Partitioning defective 3-like protein (Par3L) is a recently identified cell polarity protein that plays an important role in mammary stem cell maintenance. Previously, we showed that high expression of Par3L is associated with poor survival in malignant colorectal cancer (CRC), but the underlying mechanism remained unknown. To this end, we established a Par3L knockout colorectal cancer cell line using the CRISPR/Cas system. Interestingly, reduced proliferation, enhanced cell death and caspase-3 activation were observed in Par3L knockout (KO) cells as compared with wildtype (WT) cells. Consistent with previous studies, we showed that Par3L interacts with a tumor suppressor protein liver kinasemore » B1 (Lkb1). Moreover, Par3L depletion resulted in abnormal activation of Lkb1/AMPK signaling cascade. Knockdown of Lkb1 in these cells could significantly reduce AMPK activity and partially rescue cell death caused by Par3L knockdown. Furthermore, we showed that Par3L KO cells were more sensitive to chemotherapies and irradiation. Together, these results suggest that Par3L is essential for colorectal cancer cell survival by inhibiting Lkb1/AMPK signaling pathway, and is a putative therapeutic target for CRC. - Highlights: • Par3L knockout using the CRISPR/Cas system induces apoptosis in colorectal cancer cells. • Par3L interacts with Lkb1 and regulates the activity of AMPK signaling cascade. • Par3L knockout cells are more sensitive to treatment of different chemotherapy drugs and irradiation.« less

  20. Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration

    PubMed Central

    Williams, Julie C.; Lee, Rebecca D.; Doerschuk, Claire M.; Mackman, Nigel

    2011-01-01

    Protease activated receptors (PAR) have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages. PMID:22175012

  1. Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration.

    PubMed

    Williams, Julie C; Lee, Rebecca D; Doerschuk, Claire M; Mackman, Nigel

    2011-01-01

    Protease activated receptors (PAR) have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages.

  2. BOREAS RSS-10 TOMS Circumpolar One-Degree PAR Images

    NASA Technical Reports Server (NTRS)

    Dye, Dennis G.; Holben, Brent; Nickeson, Jaime (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-10 team investigated the magnitude of daily, seasonal, and yearly variations of Photosynthetically Active Radiation (PAR) from ground and satellite observations. This data set contains satellite estimates of surface-incident PAR (400-700 nm, MJ/sq m) at one-degree spatial resolution. The spatial coverage is circumpolar from latitudes of 41 to 66 degrees north. The temporal coverage is from May through September for years 1979 through 1989. Eleven-year statistics are also provided: (1) mean, (2) standard deviation, and (3) coefficient of variation for 1979-89. The PAR estimates were derived from the global gridded ultraviolet reflectivity data product (average of 360, 380 nm) from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS). Image mask data are provided for identifying the boreal forest zone, and ocean/land and snow/ice-covered areas. The data are available as binary image format data files. The PAR data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  3. Neutron detector

    DOEpatents

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  4. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, P. W.; Gandolfi, S.

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  5. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE PAGES

    Zhao, P. W.; Gandolfi, S.

    2016-10-10

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  6. Neutron collimator design of neutron radiography based on the BNCT facility

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Peng; Yu, Bo-Xiang; Li, Yi-Guo; Peng, Dan; Lu, Jin; Zhang, Gao-Long; Zhao, Hang; Zhang, Ai-Wu; Li, Chun-Yang; Liu, Wan-Jin; Hu, Tao; Lü, Jun-Guang

    2014-02-01

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of the neutron collimator is greater than 1.0×106 n/cm2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography.

  7. Étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES)

    NASA Astrophysics Data System (ADS)

    Rahmani, A.; Benyaïch, F.; Bounakhla, M.; Bilal, E.; Moutte, J.; Gruffat, J. J.; Zahry, F.

    2004-11-01

    Dans ce travail, nous présentons une étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES). Les résultats de la calibration des spectromètres à dispersion d'énergie, à excitation par sources radioactives (55Fe, 109Cd et 241Am) et à excitation secondaire (cible secondaire Mo et Cu) du Centre National pour l'Energie, les Sciences et les Techniques Nucléaires (CNESTEN, Rabat, Maroc) sur des échantillons étalons de références de l'Agence International de l'Energie Atomique (AIEA) et du Community Bureau of Référence (BCR) ont été comparés aux résultats d'analyse des mêmes échantillons étalons par la spectrométrie X à dispersion de longueur d'onde (WD-XRF) et par spectrométrie d'émission atomique à source plasma couplé par induction (ICP-AES) au département GENERIC du centre SPIN à l'Ecole des Mines de Saint-Etienne (France). Les trois techniques d'analyse utilisées donnent des résultats comparables pour le dosage des éléments majeurs, alors que pour les traces on note des déviations importantes à cause des effets de matrice qui sont difficiles à corriger dans le cas de la fluorescence X.

  8. PAR-2 triggers placenta-derived protease-induced altered VE-cadherin reorganization at endothelial junctions in preeclampsia.

    PubMed

    Gu, Y; Groome, L J; Alexander, J S; Wang, Y

    2012-10-01

    PAR-2 is a G-protein coupled protease receptor whose activation in endothelial cells (ECs) is associated with increased solute permeability. VE-cadherin is an endothelial-specific junction protein, which exhibits a disorganized distribution at cell junction during inflammation and is a useful indicator of endothelial barrier dysfunction. In the present study, we tested the hypothesis that PAR-2 activation mediates placenta-derived chymotrypsin-like protease (CLP)-induced endothelial junction disturbance and permeability in preeclampsia (PE). PAR-2 and VE-cadherin were examined by immunofluorescent staining. Specific CLP induced PAR-2 activation and altered VE-cadherin distribution was assessed following depletion of protease chymotrypsin in the placental conditioned medium and after PAR-2 siRNA. VE-cadherin assembly was determined by treating cells with protease chymotrypsin and/or the specific PAR-2 agonist SLIGKV-NH2. Our results showed: 1) placental conditioned medium not only disturbed VE-cadherin distribution at cell junctions but also activated PAR-2 in ECs; 2) PAR-2 siRNA blocked the placental conditioned medium induced PAR-2 upregulation and disorganization of VE-cadherin at cell junctions; 3) PAR-2 agonist induced PAR-2 activation and VE-cadherin reorganization were dose-dependent; and 4) PAR-2 agonist could stimulate ERK1/2 activation. These results strongly suggest that proteases produced by the placenta elicit endothelial barrier dysfunction via a PAR-2 signaling regulatory mechanism in PE. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. PAR-2 triggers placenta-derived protease-induced altered VE-cadherin reorganization at endothelial junctions in preeclampsia

    PubMed Central

    Gu, Yang; Groome, Lynn J.; Alexander, J. Steven; Wang, Yuping

    2014-01-01

    PAR-2 is a G-protein coupled protease receptor whose activation in endothelial cells (ECs) is associated with increased solute permeability. VE-cadherin is an endothelial specific junction protein, which exhibits a disorganized distribution at cell junction during inflammation and is a useful indicator of endothelial barrier dysfunction. In the present study, we tested the hypothesis that PAR-2 activation mediates placenta-derived chymotrypsin-like protease (CLP)-induced endothelial junction disturbance and permeability in preeclampsia (PE). PAR-2 and VE-cadherin were examined by immunofluorescent staining. Specific CLP-induced PAR-2 activation and altered VE-cadherin distribution was assessed following depletion of protease chymotrypsin in the placental conditioned medium and after PAR-2 siRNA. VE-cadherin assembly was determined by treating cells with protease chymotrypsin and/or the specific PAR-2 agonist SLIGKV-NH2. Our results showed: 1) placental conditioned medium not only disturbed VE-cadherin distribution at cell junctions but also activated PAR-2 in ECs; 2) PAR-2 siRNA blocked the placental conditioned medium induced PAR-2 upregulation and disorganization of VE-cadherin at cell junctions; 3) PAR-2 agonist induced PAR-2 activation and VE-cadherin reorganization were dose-dependent; and 4) PAR-2 agonist could stimulate ERK1/2 activation. These results strongly suggest that proteases produced by the placenta elicit endothelial barrier dysfunction via a PAR-2 signaling regulatory mechanism in PE. PMID:22840244

  10. Is There an "F" in Your PAR? Understanding, Teaching and Doing Action Research

    ERIC Educational Resources Information Center

    Lorenzetti, Liza; Walsh, Christine Ann

    2014-01-01

    Participatory Action Research (PAR) is increasingly recognized within academic research and pedagogy. What are the benefits of including feminism within participatory action research and teaching? In responding to this question, we discuss the similarities and salient differences between PAR and feminist informed PAR (FPAR). There are eight themes…

  11. The accelerator neutron source for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.

    2016-11-01

    The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.

  12. Development of fast neutron radiography system based on portable neutron generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Chia Jia, E-mail: gei-i-kani@hotmail.com; Nilsuwankosit, Sunchai, E-mail: sunchai.n@chula.ac.th

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. Themore » raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.« less

  13. A Unified Equation of State on a Microscopic Basis : Implications for Neutron Stars Structure and Cooling

    NASA Astrophysics Data System (ADS)

    Burgio, G. F.

    2018-03-01

    We discuss the structure of Neutron Stars by modelling the homogeneous nuclear matter of the core by a suitable microscopic Equation of State, based on the Brueckner-Hartree-Fock many-body theory, and the crust, including the pasta phase, by the BCPM energy density functional which is based on the same Equation of State. This allows for a uni ed description of the Neutron Star matter over a wide density range. A comparison with other uni ed approaches is discussed. With the same Equation of State, which features strong direct Urca processes and using consistent nuclear pairing gaps as well as effective masses, we model neutron star cooling, in particular the current rapid cooldown of the neutron star Cas A. We nd that several scenarios are possible to explain the features of Cas A, but only large and extended proton 1 S 0 gaps and small neutron 3 PF 2 gaps can accommodate also the major part of the complete current cooling data.

  14. Monte Carlo simulation of secondary neutron dose for scanning proton therapy using FLUKA

    PubMed Central

    Lee, Chaeyeong; Lee, Sangmin; Lee, Seung-Jae; Song, Hankyeol; Kim, Dae-Hyun; Cho, Sungkoo; Jo, Kwanghyun; Han, Youngyih; Chung, Yong Hyun

    2017-01-01

    Proton therapy is a rapidly progressing field for cancer treatment. Globally, many proton therapy facilities are being commissioned or under construction. Secondary neutrons are an important issue during the commissioning process of a proton therapy facility. The purpose of this study is to model and validate scanning nozzles of proton therapy at Samsung Medical Center (SMC) by Monte Carlo simulation for beam commissioning. After the commissioning, a secondary neutron ambient dose from proton scanning nozzle (Gantry 1) was simulated and measured. This simulation was performed to evaluate beam properties such as percent depth dose curve, Bragg peak, and distal fall-off, so that they could be verified with measured data. Using the validated beam nozzle, the secondary neutron ambient dose was simulated and then compared with the measured ambient dose from Gantry 1. We calculated secondary neutron dose at several different points. We demonstrated the validity modeling a proton scanning nozzle system to evaluate various parameters using FLUKA. The measured secondary neutron ambient dose showed a similar tendency with the simulation result. This work will increase the knowledge necessary for the development of radiation safety technology in medical particle accelerators. PMID:29045491

  15. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  16. Neutron therapy of cancer

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.; Nellans, H. N.; Shaw, M. J.

    1969-01-01

    Reports relate applications of neutrons to the problem of cancer therapy. The biochemical and biophysical aspects of fast-neutron therapy, neutron-capture and neutron-conversion therapy with intermediate-range neutrons are presented. Also included is a computer program for neutron-gamma radiobiology.

  17. Neutron-capture Nucleosynthesis in the First Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and The McDonald Observatory of The University of Texas at Austin.

  18. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOEpatents

    Peurrung, Anthony J.

    1997-01-01

    An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.

  19. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  20. THE INTERMEDIATE NEUTRON-CAPTURE PROCESS AND CARBON-ENHANCED METAL-POOR STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampel, Melanie; Stancliffe, Richard J.; Lugaro, Maria

    Carbon-enhanced metal-poor (CEMP) stars in the Galactic Halo display enrichments in heavy elements associated with either the s (slow) or the r (rapid) neutron-capture process (e.g., barium and europium, respectively), and in some cases they display evidence of both. The abundance patterns of these CEMP- s / r stars, which show both Ba and Eu enrichment, are particularly puzzling, since the s and the r processes require neutron densities that are more than ten orders of magnitude apart and, hence, are thought to occur in very different stellar sites with very different physical conditions. We investigate whether the abundance patternsmore » of CEMP- s / r stars can arise from the nucleosynthesis of the intermediate neutron-capture process (the i process), which is characterized by neutron densities between those of the s and the r processes. Using nuclear network calculations, we study neutron capture nucleosynthesis at different constant neutron densities n ranging from 10{sup 7}–10{sup 15} cm{sup -3}. With respect to the classical s process resulting from neutron densities on the lowest side of this range, neutron densities on the highest side result in abundance patterns, which show an increased production of heavy s -process and r -process elements, but similar abundances of the light s -process elements. Such high values of n may occur in the thermal pulses of asymptotic giant branch stars due to proton ingestion episodes. Comparison to the surface abundances of 20 CEMP- s / r stars shows that our modeled i -process abundances successfully reproduce observed abundance patterns, which could not be previously explained by s -process nucleosynthesis. Because the i -process models fit the abundances of CEMP- s / r stars so well, we propose that this class should be renamed as CEMP- i .« less

  1. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer.

    PubMed

    Maglieri, Robert; Licea, Angel; Evans, Michael; Seuntjens, Jan; Kildea, John

    2015-11-01

    Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation-maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors' measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. The NNS may be used to reliably measure the neutron

  2. A Review of Significant Advances in Neutron Imaging from Conception to the Present

    NASA Astrophysics Data System (ADS)

    Brenizer, J. S.

    This review summarizes the history of neutron imaging with a focus on the significant events and technical advancements in neutron imaging methods, from the first radiograph to more recent imaging methods. A timeline is presented to illustrate the key accomplishments that advanced the neutron imaging technique. Only three years after the discovery of the neutron by English physicist James Chadwick in 1932, neutron imaging began with the work of Hartmut Kallmann and Ernst Kuhn in Berlin, Germany, from 1935-1944. Kallmann and Kuhn were awarded a joint US Patent issued in January 1940. Little progress was made until the mid-1950's when Thewlis utilized a neutron beam from the BEPO reactor at Harwell, marking the beginning of the application of neutron imaging to practical applications. As the film method was improved, imaging moved from a qualitative to a quantitative technique, with applications in industry and in nuclear fuels. Standards were developed to aid in the quantification of the neutron images and the facility's capabilities. The introduction of dynamic neutron imaging (initially called real-time neutron radiography and neutron television) in the late 1970's opened the door to new opportunities and new challenges. As the electronic imaging matured, the introduction of the CCD imaging devices and solid-state light intensifiers helped address some of these challenges. Development of improved imaging devices for the medical community has had a major impact on neutron imaging. Additionally, amorphous silicon sensors provided improvements in temporal resolution, while providing a reasonably large imaging area. The development of new neutron imaging sensors and the development of new neutron imaging techniques in the past decade has advanced the technique's ability to provide insight and understanding of problems that other non-destructive techniques could not provide. This rapid increase in capability and application would not have been possible without the

  3. Par-4-mediated recruitment of Amida to the actin cytoskeleton leads to the induction of apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boosen, Meike; Vetterkind, Susanne; Koplin, Ansgar

    Par-4 (prostate apoptosis response-4) sensitizes cells to apoptotic stimuli, but the exact mechanisms are still poorly understood. Using Par-4 as bait in a yeast two-hybrid screen, we identified Amida as a novel interaction partner, a ubiquitously expressed protein which has been suggested to be involved in apoptotic processes. Complex formation of Par-4 and Amida occurs in vitro and in vivo and is mediated via the C-termini of both proteins, involving the leucine zipper of Par-4. Amida resides mainly in the nucleus but displays nucleo-cytoplasmic shuttling in heterokaryons. Upon coexpression with Par-4 in REF52.2 cells, Amida translocates to the cytoplasm andmore » is recruited to actin filaments by Par-4, resulting in enhanced induction of apoptosis. The synergistic effect of Amida/Par-4 complexes on the induction of apoptosis is abrogated when either Amida/Par-4 complex formation or association of these complexes with the actin cytoskeleton is impaired, indicating that the Par-4-mediated relocation of Amida to the actin cytoskeleton is crucial for the pro-apoptotic function of Par-4/Amida complexes in REF52.2 cells. The latter results in enhanced phosphorylation of the regulatory light chain of myosin II (MLC) as has previously been shown for Par-4-mediated recruitment of DAP-like kinase (Dlk), suggesting that the recruitment of nuclear proteins involved in the regulation of apoptotic processes to the actin filament system by Par-4 represents a potent mechanism how Par-4 can trigger apoptosis.« less

  4. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  5. Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  6. Neutron multiplicity measurements with 3He alternative: Straw neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sanjoy; Wolff, Ronald; Detwiler, Ryan

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originatingmore » from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  7. Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors

    DOE PAGES

    Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.; ...

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  8. Detection System of the First Rapidly Relocatable Tagged Neutron Inspection System (RRTNIS), Developed in the Framework of the European H2020 C-BORD Project

    NASA Astrophysics Data System (ADS)

    Fontana, Cristiano Lino; Carnera, Alberto; Lunardon, Marcello; Pino, Felix; Sada, Cinzia; Soramel, Francesca; Stevanato, Luca; Nebbia, Giancarlo; Carasco, Cédric; Perot, Bertrand; Sardet, Alix; Sannie, Guillaume; Iovene, Alessandro; Tintori, Carlo; Grodzicki, Krystian; Moszyński, Marek; Sibczyński, Paweł; Swiderski, Lukasz; Moretto, Sandra

    The European project entitled ;effective Container inspection at BORDer control points; (C-BORD) focuses on the development and in-situ tests of a comprehensive cost-effective solution for the generalized Non-Intrusive Inspection (NII) of containers and large-volume freight at the European Union (EU) border. It copes with a large range of targets, including explosives, chemical warfare agents, illicit drugs, tobacco and Special Nuclear Materials. Within the C-BORD project, a new generation of Tagged Neutron Inspection System (TNIS) for cargo containers is foreseen. Unlike its predecessors, this system would be the first Rapidly Relocatable TNIS (RRTNIS). It will be a second-line defense system, to be used on sealed containers in order to detect explosives, illicit drugs and chemical agents in a suspect voxel (elementary volume unit). We report on the status of the RRTNIS system, in particular the overall design, the characterization of the large-volume NaI(Tl) gamma detectors, the digital analysis of the time measurements and the Data Acquisition System (DAQ).

  9. Neutron production in coincidence with fragments from the 40Ca + H reaction at Elab=357A and 565A MeV

    NASA Astrophysics Data System (ADS)

    Tuve, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T. G.; Knott, C. N.; Insolia, A.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Russo, G. V.; Soutoul, A.; Testard, O.; Tricomi, A.; Tull, C. E.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.

    1999-01-01

    Neutron production, in coincidence with fragments emitted in the 40Ca+H reaction at Elab=357A and 565A MeV, has been measured using a 3-module version of the multifunctional neutron spectrometer MUFFINS. The mean neutron multiplicities for neutrons detected in the angular range covered by MUFFINS (0°-3.2°) have been estimated from the comparison between the neutron cross sections, in coincidence with the fragments, and the elemental cross sections. We have found evidence for a preequilibrium emission of prompt neutrons in superposition to a ``slower'' deexcitation of the equilibrated remnant by emission of nucleons and fragments, as already seen in inclusive rapidity distributions. The energy dependence of the inclusive neutron production cross sections, measured in a previous work, is here interpreted as due to the stronger neutron focusing in the forward direction at the higher energy. Comparison with a BNV+phase space coalescence model is discussed.

  10. Neutron Capture Rates and the r-Process Abundance Pattern in Shocked Neutrino-Driven Winds

    NASA Astrophysics Data System (ADS)

    Barringer, Daniel; Surman, Rebecca

    2009-10-01

    The r-process is an important process in nucleosynthesis in which nuclei will undergo rapid neutron captures. Models of the r-process require nuclear data such as neutron capture rates for thousands of individual nuclei, many of which lie far from stability. Among the potential sites for the r-process, and the one that we investigate, is the shocked neutrino-driven wind in core-collapse supernovae. Here we examine the importance of the neutron capture rates of specific, individual nuclei in the second r-process abundance peak occurring at A ˜ 130 for a range of parameterized neutrino-driven wind trajectories. Of specific interest are the nuclei whose capture rates affect the abundances of nuclei outside of the A ˜ 130 peak. We found that increasing the neutron capture rate for a number of nuclei including ^135In, ^132Sn, ^133Sb, ^137Sb, and ^136Te can produce changes in the resulting abundance pattern of up to 13%.

  11. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOEpatents

    Peurrung, A.J.

    1997-08-19

    An improved method is disclosed for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue. 1 fig.

  12. Development of a 6LiF/ZnS-based Neutron Multiplicity Counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stave, Sean C.; Behling, Richard S.; Bernacki, Bruce E.

    2016-10-06

    Abstract–Neutron multiplicity counters are used in safeguards to provide rapid assay of samples which contain an unknown amount of plutonium in a potentially unknown configuration. A project at PNNL is using regular and nickel-quenched 6LiF/ZnS neutron-scintillator sheets and wavelength shifting plastic for light pipes in place of 3He. A combination of laboratory and modeling work predicts a LiF/ZnS-based system to be able to match or exceed the performance of the best 3He-based systems available. Also, the Ni-quenched material is expected to allow for improved neutron/gamma-ray discrimination at twice the event rate relative to the non-Ni-quenched LiF/ZnS. A new system basedmore » on the LiF/ZnS material is under construction and components are being used to optimize the detection efficiency and neutron/gamma-ray discrimination properties. Components of the new system are partially constructed and undergoing performance testing utilizing high-speed digitizers with field programmable gate arrays to perform the neutron/gamma-ray discrimination. The expected performance of the full-scale system is expected to be nearly the same as for 3He-based systems and is due for completion in 2016.« less

  13. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  14. Neutron streak camera

    DOEpatents

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  15. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1983-09-13

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  16. mTORC2 activation is regulated by the urokinase receptor (uPAR) in bladder cancer.

    PubMed

    Hau, Andrew M; Leivo, Mariah Z; Gilder, Andrew S; Hu, Jing-Jing; Gonias, Steven L; Hansel, Donna E

    2017-01-01

    Mammalian target of rapamycin complex 2 (mTORC2) has been identified as a major regulator of bladder cancer cell migration and invasion. Upstream pathways that mediate mTORC2 activation remain poorly defined. Urokinase-type plasminogen activator receptor (uPAR) is a GPI-anchored membrane protein and known activator of cell-signaling. We identified increased uPAR expression in 94% of invasive human bladder cancers and in 54-71% of non-invasive bladder cancers, depending on grade. Normal urothelium was uPAR-immunonegative. Analysis of publicly available datasets identified uPAR gene amplification or mRNA upregulation in a subset of bladder cancer patients with reduced overall survival. Using biochemical approaches, we showed that uPAR activates mTORC2 in bladder cancer cells. Highly invasive bladder cancer cell lines, including T24, J82 and UM-UC-3 cells, showed increased uPAR mRNA expression and protein levels compared with the less aggressive cell lines, UROtsa and RT4. uPAR gene-silencing significantly reduced phosphorylation of Serine-473 in Akt, an mTORC2 target. uPAR gene-silencing also reduced bladder cancer cell migration and Matrigel invasion. S473 phosphorylation was observed by immunohistochemistry in human bladder cancers only when the tumors expressed high levels of uPAR. S473 phosphorylation was not controlled by uPAR in bladder cancer cell lines that are PTEN-negative; however, this result probably did not reflect altered mTORC2 regulation. Instead, PTEN deficiency de-repressed alternative kinases that phosphorylate S473. Our results suggest that uPAR and mTORC2 are components of a single cell-signaling pathway. Targeting uPAR or mTORC2 may be beneficial in patients with bladder cancer. Copyright © 2016. Published by Elsevier Inc.

  17. Tryptase activates isolated adult cardiac fibroblasts via protease activated receptor-2 (PAR-2).

    PubMed

    Murray, David B; McLarty-Williams, Jennifer; Nagalla, Krishna T; Janicki, Joseph S

    2012-03-01

    Protease activated receptor-2 (PAR-2) derived cycloxygenase-2 (COX-2) was recently implicated in a cardiac mast cell and fibroblast cross-talk signaling cascade mediating myocardial remodeling secondary to mechanical stress. We designed this study to investigate in vitro assays of isolated adult cardiac fibroblasts to determine whether binding of tryptase to the PAR-2 receptor on cardiac fibroblasts will lead to increased expression of COX-2 and subsequent formation of the arachodonic acid metabolite 15-d-Prostaglandin J(2) (15-d-PGJ(2)). The effects of tryptase (100 mU) and co-incubation with PAR-2 inhibitor peptide sequence FSLLRY-NH(2) (10(-6)M) on proliferation, hydroxyproline concentration, 15-d-PGJ(2) formation and PAR-2/COX-2 expression were investigated in fibroblasts isolated from 9 week old SD rats. Tryptase induced a significant increase in fibroproliferation, hydroxyproline, 15-d-PGJ(2) formation and PAR-2 expression which were markedly attenuated by FSLLRY. Tryptase-induced changes in cardiac fibroblast function utilize a PAR-2 dependent mechanism.

  18. Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions

    PubMed Central

    Cunningham, Orla; Andolfo, Annapaola; Santovito, Maria Lisa; Iuzzolino, Lucia; Blasi, Francesco; Sidenius, Nicolai

    2003-01-01

    The urokinase-type plasminogen activator receptor (uPAR/CD87) is a glycosylphosphatidylinositol-anchored membrane protein with multiple functions in extracellular proteolysis, cell adhesion, cell migration and proliferation. We now report that cell surface uPAR dimerizes and that dimeric uPAR partitions preferentially to detergent-resistant lipid rafts. Dimerization of uPAR did not require raft partitioning as the lowering of membrane cholesterol failed to reduce dimerization and as a transmembrane uPAR chimera, which does not partition to lipid rafts, also dimerized efficiently. While uPA bound to uPAR independently of its membrane localization and dimerization status, uPA-induced uPAR cleavage was strongly accelerated in lipid rafts. In contrast to uPA, the binding of Vn occurred preferentially to raft- associated dimeric uPAR and was completely blocked by cholesterol depletion. PMID:14609946

  19. The possible use of a spallation neutron source for neutron capture therapy with epithermal neutrons.

    PubMed

    Grusell, E; Condé, H; Larsson, B; Rönnqvist, T; Sornsuntisook, O; Crawford, J; Reist, H; Dahl, B; Sjöstrand, N G; Russel, G

    1990-01-01

    Spallation is induced in a heavy material by 72-MeV protons. The resulting neutrons can be characterized by an evaporation spectrum with a peak energy of less than 2 MeV. The neutrons are moderated in two steps: first in iron and then in carbon. Results from neutron fluence measurements in a perspex phantom placed close to the moderator are presented. Monte Carlo calculations of neutron fluence in a water phantom are also presented under some chosen configurations of spallation source and moderator. The calculations and measurements are in good agreement and show that, for proton currents of less than 0.5 mA, useful thermal-neutron fluences are attainable in the depth of the brain. However, the dose contribution from the unavoidable gamma background component has not been included in the present investigation.

  20. Neutron capture therapies

    DOEpatents

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  1. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  2. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  3. The intracellular carboxyl tail of the PAR-2 receptor controls intracellular signaling and cell death.

    PubMed

    Zhu, Zhihui; Stricker, Rolf; Li, Rong yu; Zündorf, Gregor; Reiser, Georg

    2015-03-01

    The protease-activated receptors are a group of unique G protein-coupled receptors, including PAR-1, PAR-2, PAR-3 and PAR-4. PAR-2 is activated by multiple trypsin-like serine proteases, including trypsin, tryptase and coagulation proteases. The clusters of phosphorylation sites in the PAR-2 carboxyl tail are suggested to be important for the binding of adaptor proteins to initiate intracellular signaling to Ca(2+) and mitogen-activated protein kinases. To explore the functional role of PAR-2 carboxyl tail in controlling intracellular Ca(2+), ERK and AKT signaling, a series of truncated mutants containing different clusters of serines/threonines were generated and expressed in HEK293 cells. Firstly, we observed that lack of the complete C-terminus of PAR-2 in a mutated receptor gave a relatively low level of localization on the cell plasma membrane. Secondly, the shortened carboxyl tail containing 13 amino acids was sufficient for receptor internalization. Thirdly, the cells expressing truncation mutants showed deficits in their capacity to couple to intracellular Ca(2+) and ERK and AKT signaling upon trypsin challenge. In addition, HEK293 cells carrying different PAR-2 truncation mutants displayed decreased levels of cell survival after long-lasting trypsin stimulation. In summary, the PAR-2 carboxyl tail was found to control the receptor localization, internalization, intracellular Ca(2+) responses and signaling to ERK and AKT. The latter can be considered to be important for cell death control.

  4. PAR-2 mediates increased inflammatory cell adhesion and neointima formation following vascular injury in the mouse.

    PubMed

    Tennant, Gail M; Wadsworth, Roger M; Kennedy, Simon

    2008-05-01

    Activation of PAR-2 in the vasculature affects vascular tone and adhesion of leukocytes to the endothelium. Since adhesion of leukocytes is increased following vascular injury and is important in determining the extent of neointima formation, we hypothesised that mice lacking PAR-2 may have reduced neointima formation following vascular injury. PAR-2 activating peptides and trypsin induced endothelium-dependent relaxation of mouse carotid artery which was absent in the knockout mouse. Lack of a PAR-2 receptor did not affect lymphocyte adhesion under basal conditions, but reduced the contractile response produced by lymphocytes. Twenty-eight days after denuding injury, vessel contraction to lymphocytes was reduced in both strains while lymphocyte adhesion was significantly greater in PAR-2(+/+) mice compared to the PAR-2 knockout mice. Neointimal area was markedly reduced in the PAR-2 knockout mouse. Our data show that PAR-2 modulates inflammatory cell adhesion when stimulated and in mice lacking the PAR-2 receptor, adhesion to injured vessels is reduced with a consequent reduction in neointima formation.

  5. The polarity protein Par3 regulates APP trafficking and processing through the endocytic adaptor protein Numb.

    PubMed

    Sun, Miao; Asghar, Suwaiba Z; Zhang, Huaye

    2016-09-01

    The processing of amyloid precursor protein (APP) into β-amyloid peptide (Aβ) is a key step in the pathogenesis of Alzheimer's disease (AD), and trafficking dysregulations of APP and its secretases contribute significantly to altered APP processing. Here we show that the cell polarity protein Par3 plays an important role in APP processing and trafficking. We found that the expression of full length Par3 is significantly decreased in AD patients. Overexpression of Par3 promotes non-amyloidogenic APP processing, while depletion of Par3 induces intracellular accumulation of Aβ. We further show that Par3 functions by regulating APP trafficking. Loss of Par3 decreases surface expression of APP by targeting APP to the late endosome/lysosome pathway. Finally, we show that the effects of Par3 are mediated through the endocytic adaptor protein Numb, and Par3 functions by interfering with the interaction between Numb and APP. Together, our studies show a novel role for Par3 in regulating APP processing and trafficking. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Neutrino Processes in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be

  7. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  8. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  9. Proteolytic Activation of the Protease-activated Receptor (PAR)-2 by the Glycosylphosphatidylinositol-anchored Serine Protease Testisin*

    PubMed Central

    Driesbaugh, Kathryn H.; Buzza, Marguerite S.; Martin, Erik W.; Conway, Gregory D.; Kao, Joseph P. Y.; Antalis, Toni M.

    2015-01-01

    Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca2+ mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. PMID:25519908

  10. [Ambroise Paré in French literature].

    PubMed

    Dumaitre, P

    1995-01-01

    The 16th century by its passionate side has been the favourite one of authors of historical novels in which among the heroes of "cloak and dagger stories" appears sometime Ambroise Paré. Alexandre Dumas (the father) has shown him at the court of Charles IX in La Reine Margot (1845) where he does not however play a great role. On the contrary, Balzac in Le Martyr calviniste (1842) has given him a capital part close to the dying François II, whom he intended to trepanize but had to give up this idea as a consequence of the opposition of the queen-mother Catherine de Médicis. In the present century, Robert Merle in Paris ma bonne ville (Fortune de France, 3, 1980) shows Paré at the time of the Saint Barthélemy.

  11. The "neutron channel design"—A method for gaining the desired neutrons

    NASA Astrophysics Data System (ADS)

    Hu, G.; Hu, H. S.; Wang, S.; Pan, Z. H.; Jia, Q. G.; Yan, M. F.

    2016-12-01

    The neutrons with desired parameters can be obtained after initial neutrons penetrating various structure and component of the material. A novel method, the "neutron channel design", is proposed in this investigation for gaining the desired neutrons. It is established by employing genetic algorithm (GA) combining with Monte Carlo software. This method is verified by obtaining 0.01eV to 1.0eV neutrons from the Compact Accelerator-driven Neutron Source (CANS). One layer polyethylene (PE) moderator was designed and installed behind the beryllium target in CANS. The simulations and the experiment for detection the neutrons were carried out. The neutron spectrum at 500cm from the PE moderator was simulated by MCNP and PHITS software. The counts of 0.01eV to 1.0eV neutrons were simulated by MCNP and detected by the thermal neutron detector in the experiment. These data were compared and analyzed. Then this method is researched on designing the complex structure of PE and the composite material consisting of PE, lead and zirconium dioxide.

  12. Neutron production in coincidence with fragments from the 4Ca+H reactions at Elab=357 and 565 A MeV

    NASA Astrophysics Data System (ADS)

    Tuvà, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T. G.; Insolia, A.; Knott, C. N.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Russo, G. V.; Soutoul, A.; Testard, O.; Tricomi, A.; Tull, C. E.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.

    2000-04-01

    In the frame of the Transport Collaboration neutrons in coincidence with charged fragments produced in the 40Ca+H reaction at Elab=357 and 565 A MeV have been measured at the Heavy Ion Spectrometer System (HISS) facility of the Lawrence Berkeley National Laboratory, using the multifunctional neutron spectrometer MUFFINS. The detector covered a narrow angular range about the beam in the forward direction (0°-3.2°). In this contribution we report absolute neutron production cross sections in coincidence with charged fragments (10⩽Z⩽20). The neutron multiplicities have been estimated from the comparison between the neutron cross sections, in coincidence with the fragments, and the elemental cross sections. We have found evidence for a pre-equilibrium emission of prompt neutrons in superposition to a `slower' deexcitation of the equilibrated remnant by emission of nucleons and fragments, as already seen in the inclusive rapidity distributions.

  13. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  14. Nuclear reactor neutron shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactormore » cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.« less

  15. Tryptase - PAR2 axis in Experimental Autoimmune Prostatitis, a model for Chronic Pelvic Pain Syndrome

    PubMed Central

    Roman, Kenny; Done, Joseph D.; Schaeffer, Anthony J.; Murphy, Stephen F.; Thumbikat, Praveen

    2014-01-01

    Chronic prostatitis/Chronic pelvic pain syndrome (CP/CPPS) affects up to 15% of the male population and is characterized by pelvic pain. Mast cells are implicated in the murine experimental autoimmune prostatitis (EAP) model as key to chronic pelvic pain development. The mast cell mediator tryptase-β and its cognate receptor protease-activated receptor 2 (PAR2) are involved in mediating pain in other visceral disease models. Prostatic secretions and urines from CP/CPPS patients were examined for the presence of mast cell degranulation products. Tryptase-β and PAR2 expression were examined in murine experimental autoimmune prostatitis (EAP). Pelvic pain and inflammation were assessed in the presence or absence of PAR2 expression and upon PAR2 neutralization. Tryptase-β and carboxypeptidase A3 were elevated in CP/CPPS compared to healthy volunteers. Tryptase-β was capable of inducing pelvic pain and was increased in EAP along with its receptor PAR2. PAR2 was required for the development of chronic pelvic pain in EAP. PAR2 signaling in dorsal root ganglia lead to ERK1/2 phosphorylation and calcium influx. PAR2 neutralization using antibodies attenuated chronic pelvic pain in EAP. The tryptase-PAR2 axis is an important mediator of pelvic pain in EAP and may play a role in the pathogenesis of CP/CPPS. PMID:24726923

  16. Discovery of potent peptide-mimetic antagonists for the human thrombin receptor, protease-activated receptor-1 (PAR-1).

    PubMed

    Maryanoff, Bruce E; Zhang, Han-Cheng; Andrade-Gordon, Patricia; Derian, Claudia K

    2003-03-01

    Protease-activated receptors (PARs) represent a unique family of seven-transmembrane G-protein-coupled receptors, which are enzymatically cleaved to expose a new extracellular N-terminus that acts as a tethered activating ligand. PAR-1 is cleaved and activated by the serine protease alpha-thrombin, is expressed in various tissues (e.g. platelets and vascular cells), and is involved in cellular responses associated with hemostasis, proliferation, and tissue injury. By using a de novo design approach, we have discovered a series of potent heterocycle-based peptide-miimetic antagonists of PAR-1, exemplified by advanced leads RWJ-56110 (22) and RWJ-58259 (32). These compounds are potent, selective PAR-1 antagonists, devoid of PAR-1 agonist and thrombin inhibitory activity: they bind to PAR-1, interfere with calcium mobilization and cellular functions associated with PAR-1, and do not affect PAR-2, PAR-3, or PAR-4. RWJ-56110 was determined to be a direct inhibitor of PAR-1 activation and internalization, without affecting PAR-1 N-terminal cleavage. At high concentrations of alpha-thrombin, RWJ-56110 fully blocked activation responses in human vascular cells, but not in human platelets; whereas, at high concentrations of TRAP-6, RWJ-56110 blocked activation responses in both cell types. This result is consistent with the presence of another thrombin receptor on human platelets, namely PAR-4. RWJ-56110 and RWJ-58259 clearly interrupt the binding of a tethered ligand to its receptor. RWJ-58259 demonstrated antirestenotic activity in a rat balloon angioplasty model and antithrombotic activity in a cynomolgus monkey arterial injury model. Such PAR-1 antagonists should not only serve as useful tools to delineate the physiological and pathophysiological roles of PAR-1, but also may have therapeutic potential for treating thrombosis and restenosis in humans.

  17. Examining relational empowerment for elementary school students in a yPAR program.

    PubMed

    Langhout, Regina Day; Collins, Charles; Ellison, Erin Rose

    2014-06-01

    This paper joins relational empowerment, youth empowerment, and Bridging Multiple Worlds frameworks to examine forms of relational empowerment for children in two intermediary institutions-school and a youth participatory action research after-school program (yPAR ASP). Participants were twelve children, most of whom were Latina/o and from im/migrant families, enrolled in a yPAR ASP for 2 years. A mixed-method approach was utilized; we analyzed children's interviews, self-defined goals, and their social networks to examine their experiences of relational empowerment. We conclude that children experienced each of the five relational empowerment factors-collaborative competence, bridging social divisions, facilitating others' empowerment, mobilizing networks, and passing on a legacy-in the yPAR ASP setting, and some factors in school. These experiences, however, were more pronounced in the yPAR ASP setting. Additionally, social network analyses revealed that a small but meaningful percentage of actors bridged worlds, especially home and family, but by year 2, also school and the yPAR ASP. Finally, most helpers for school-based goals came from school, but a sizable number came from family, friends, and home worlds, and by year 2, also came from the yPAR ASP. Implications range from theoretical to methodological development, including the use of social network analysis as a tool to descriptively examine relational power in context.

  18. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  19. Role of the parCBA Operon of the Broad-Host-Range Plasmid RK2 in Stable Plasmid Maintenance

    PubMed Central

    Easter, Carla L.; Schwab, Helmut; Helinski, Donald R.

    1998-01-01

    The par region of the stably maintained broad-host-range plasmid RK2 is organized as two divergent operons, parCBA and parDE, and a cis-acting site. parDE encodes a postsegregational killing system, and parCBA encodes a resolvase (ParA), a nuclease (ParB), and a protein of unknown function (ParC). The present study was undertaken to further delineate the role of the parCBA region in the stable maintenance of RK2 by first introducing precise deletions in the three genes and then assessing the abilities of the different constructs to stabilize RK2 in three strains of Escherichia coli and two strains of Pseudomonas aeruginosa. The intact parCBA operon was effective in stabilizing a conjugation-defective RK2 derivative in E. coli MC1061K and RR1 but was relatively ineffective in E. coli MV10Δlac. In the two strains in which the parCBA operon was effective, deletions in parB, parC, or both parB and parC caused an approximately twofold reduction in the stabilizing ability of the operon, while a deletion in the parA gene resulted in a much greater loss of parCBA activity. For P. aeruginosa PAO1161Rifr, the parCBA operon provided little if any plasmid stability, but for P. aeruginosa PAC452Rifr, the RK2 plasmid was stabilized to a substantial extent by parCBA. With this latter strain, parA and res alone were sufficient for stabilization. The cer resolvase system of plasmid ColE1 and the loxP/Cre system of plasmid P1 were tested in comparison with the parCBA operon. We found that, not unlike what was previously observed with MC1061K, cer failed to stabilize the RK2 plasmid with par deletions in strain MV10Δlac, but this multimer resolution system was effective in stabilizing the plasmid in strain RR1. The loxP/Cre system, on the other hand, was very effective in stabilizing the plasmid in all three E. coli strains. These observations indicate that the parA gene, along with its res site, exhibits a significant level of plasmid stabilization in the absence of the parC and

  20. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.

    2009-01-28

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) events from (n,f) events. The first direct observation of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less

  1. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, Marian

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less

  2. Activation of PAR-2 elicits NO-dependent and CGRP-independent dilation of the dural artery.

    PubMed

    Bhatt, Deepak K; Ploug, Kenneth B; Ramachandran, Roshni; Olesen, Jes; Gupta, Saurabh

    2010-06-01

    The goal of this study was to determine the vascular effects of protease-activated receptor-2 (PAR-2) activation in the rat cranial vasculature. The role of PAR-2 in pain and inflammatory conditions has been established but the information available on its effects and receptor distribution in the trigeminal vascular axis is limited. We studied the dilatory function and expression of PAR-2 in the neuro-vascular circuit, critical in migraine pathogenesis. We also investigated the interaction of PAR-2 with calcitonin gene-related peptide (CGRP) and dural mast cells. We used an improved model of intravital microscopy on the closed cranial window in rats to study the vascular effects of PAR-2 activating peptides (PAR-2 APs; SLIGRL-NH(2), 2-Furoyl-LIGRLO-NH(2)) in the dural vasculature. Measurement of immunoreactive CGRP in skull halves and in trigeminal nucleus caudalis was done by using an enzyme-linked immunosorbent assay. We also analyzed the presence of PAR-2 in different migraine relevant tissues by quantitative real-time PCR and Western blot analysis. PAR-2 APs and trypsin induced a dose-dependent increase in dural artery diameter. The topical application of a nonspecific nitric oxide synthase (NOS) inhibitor, L-N(G)-Nitroarginine methyl ester, attenuated SLIGRL-NH(2) responses. Olcegepant, a CGRP receptor antagonist, did not a have significant effect on the SLIGRL-NH(2) responses, though exogenous CGRP responses were completely blocked. There was no significant release of CGRP from skull halves incubated with SLIGRL-NH(2) as compared with those incubated with the corresponding negative peptide. Chronic mast cell degranulation did not change the vascular effects of PAR-2 APs. mRNA and protein expression of PAR-2 were found throughout trigeminovasuclar axis. PAR-2 activation leads to vasodilation of dural arteries and these responses are partially mediated by nitric oxide. As PAR-2 is present throughout trigeminovasuclar axis, it may have a role in migraine

  3. Proteolytic activation of the protease-activated receptor (PAR)-2 by the glycosylphosphatidylinositol-anchored serine protease testisin.

    PubMed

    Driesbaugh, Kathryn H; Buzza, Marguerite S; Martin, Erik W; Conway, Gregory D; Kao, Joseph P Y; Antalis, Toni M

    2015-02-06

    Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca(2+) mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  5. NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR

    DOEpatents

    Young, G.J.

    1959-06-30

    The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

  6. Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron

    Science.gov Websites

    Analysis of NaH and NaD, DOE Technical Report, April 1947 The Diffraction of Neutrons by Crystalline Powders; DOE Technical Report; 1948 Neutron Diffraction Studies, DOE Technical Report, 1948 Laue Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron Diffraction, DOE Technical Report, April

  7. Semiconductor neutron detector

    DOEpatents

    Ianakiev, Kiril D [Los Alamos, NM; Littlewood, Peter B [Cambridge, GB; Blagoev, Krastan B [Arlington, VA; Swinhoe, Martyn T [Los Alamos, NM; Smith, James L [Los Alamos, NM; Sullivan, Clair J [Los Alamos, NM; Alexandrov, Boian S [Los Alamos, NM; Lashley, Jason Charles [Santa Fe, NM

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  8. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  9. A Neutron Diffractometer for a Long Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Sokol, Paul; Wang, Cailin

    Long pulsed neutron sources are being actively developed as small university based sources and are being considered for the next generation of high powered sources, such as the European Neutron Source (ESS) and the Spallation Neutron Source (SNS) second target station. New instrumentation concepts will be required to effectively utilize the full spectrum of neutrons generated by these sources. Neutron diffractometers, which utilize time-of-flight (TOF) techniques for wavelength resolution, are particularly problematic. We describe an instrument for a long pulsed source that provides resolution comparable to that obtained on short pulsed sources without the need of long incident flight paths. We accomplish this by utilizing high speed choppers to impose a time structure on the spectrum of incident neutrons. By strategically positioning these choppers the response matrix assumes a convenient form that can be deconvoluted from the measured TOF spectrum to produce the diffraction pattern of the sample. We compare the performance of this instrument to other possible diffraction instruments that could be utilized on a long pulsed source.

  10. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  11. Correlated Observations of Epithermal Neutrons and Polar Illumination for Orbital Neutron Detectors

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Malakhov, A.; Livengood, T.; hide

    2012-01-01

    We correlate Lunar Reconnaisance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) and the Lunar Prospector Neutron Spectrometer's (LPNS) orbital epithermal neutron maps of the Lunar high-latitudes with co-registered illumination maps derived from the Lunar Orbiter Laser Altimeter (LOLA) topography. Epithermal neutron count rate maps were derived from the LEND: 1) Collimated Sensor for Epithermal Neutrons, CSETNI-4 2) Uncollimated Sensor for Epithermal Neutrons, SETN and the Uncollimated Lunar Prospector: 3) Low-altitude and 4) High-altitude mapping phases. In this abstract we illustrate 1) and 3) and include 2) and 4) in our presentation. The correlative study provides unique perspectives on the regional epithermal neutron fluences from the Lunar polar regions under different detector and altitude configurations.

  12. Actin dynamics regulate immediate PAR-2-dependent responses to acute epidermal permeability barrier abrogation.

    PubMed

    Roelandt, Truus; Heughebaert, Carol; Verween, Gunther; Giddelo, Christina; Verbeken, Gilbert; Pirnay, Jean-Paul; Devos, Daniel; Crumrine, Debra; Roseeuw, Diane; Elias, Peter M; Hachem, Jean-Pierre

    2011-02-01

    Lamellar body (LB) secretion and terminal differentiation of stratum granulosum (SG) cells are signaled by both protease activated receptor-2 (PAR-2) and caveolin-1 (cav-1). To address the early dynamics of LB secretion, we examined cytoskeletal remodeling of keratinocytes in 3 mouse models following acute barrier abrogation: hairless mice, PAR-2 knockout (-/-) and cav-1 -/-. Under basal conditions, globular (G)-actin accumulates in SG cells cytosol, while filamentous (F)-actin is restricted to peri-membrane domains. Barrier abrogation induces the apical movement of F-actin and the retreat of the SG-G-actin front, paralleled by upstream cytoskeletal kinases activation. This phenomenon was both enhanced by PAR-2 agonist, and inhibited by cytochalasin-D and in PAR-2 knockout mice. We found that plasma membrane conformational changes causing LB secretion are controlled by PAR-2-dependent cytoskeletal rearrangements. We next addressed the interaction dynamics between cytoskeleton and plasma membrane following PAR-2-induced actin stress fiber formation in both cav-1 -/- and wildtype cells. Actin stress fiber formation is increased in cav-1 -/- cells prior to and following PAR-2 agonist peptide-treatment, while absence of cav-1 inhibits E-cadherin-mediated cell-to-cell adhesion. PAR-2 drives cytoskeletal/plasma membrane dynamics that regulate early LB secretion following barrier abrogation, stress fiber formation and keratinocyte adhesion. Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Least-Squares Neutron Spectral Adjustment with STAYSL PNNL

    NASA Astrophysics Data System (ADS)

    Greenwood, L. R.; Johnson, C. D.

    2016-02-01

    The STAYSL PNNL computer code, a descendant of the STAY'SL code [1], performs neutron spectral adjustment of a starting neutron spectrum, applying a least squares method to determine adjustments based on saturated activation rates, neutron cross sections from evaluated nuclear data libraries, and all associated covariances. STAYSL PNNL is provided as part of a comprehensive suite of programs [2], where additional tools in the suite are used for assembling a set of nuclear data libraries and determining all required corrections to the measured data to determine saturated activation rates. Neutron cross section and covariance data are taken from the International Reactor Dosimetry File (IRDF-2002) [3], which was sponsored by the International Atomic Energy Agency (IAEA), though work is planned to update to data from the IAEA's International Reactor Dosimetry and Fusion File (IRDFF) [4]. The nuclear data and associated covariances are extracted from IRDF-2002 using the third-party NJOY99 computer code [5]. The NJpp translation code converts the extracted data into a library data array format suitable for use as input to STAYSL PNNL. The software suite also includes three utilities to calculate corrections to measured activation rates. Neutron self-shielding corrections are calculated as a function of neutron energy with the SHIELD code and are applied to the group cross sections prior to spectral adjustment, thus making the corrections independent of the neutron spectrum. The SigPhi Calculator is a Microsoft Excel spreadsheet used for calculating saturated activation rates from raw gamma activities by applying corrections for gamma self-absorption, neutron burn-up, and the irradiation history. Gamma self-absorption and neutron burn-up corrections are calculated (iteratively in the case of the burn-up) within the SigPhi Calculator spreadsheet. The irradiation history corrections are calculated using the BCF computer code and are inserted into the SigPhi Calculator

  14. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited)

    NASA Astrophysics Data System (ADS)

    Yeamans, C. B.; Gharibyan, N.

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  15. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited).

    PubMed

    Yeamans, C B; Gharibyan, N

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 10 15 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  16. Prognosis in adenocarcinomas of lower oesophagus, gastro-oesophageal junction and cardia evaluated by uPAR-immunohistochemistry.

    PubMed

    Laerum, Ole Didrik; Ovrebo, Kjell; Skarstein, Arne; Christensen, Ib Jarle; Alpízar-Alpízar, Warner; Helgeland, Lars; Danø, Keld; Nielsen, Boye Schnack; Illemann, Martin

    2012-08-01

    Adenocarcinomas of lower oesophagus, gastro-oesophageal junction and cardia in humans are highly invasive tumours with poor prognosis. The localisation of urokinase-type plasminogen activator receptor (uPAR) was determined in 66 patients; 60 with adenocarcinomas and six cases with Barrett's oesophagus. uPAR was expressed in nearly all cases of invasive adenocarcinomas by populations of cancer cells, macrophages and myofibroblasts at both the invasion front and the tumour core. In areas with high-grade dysplasia or with Barrett's metaplasia adjacent to the tumour tissue, no uPAR-immunoreactivity was found. High local expression of uPAR, therefore, appears to be a characteristic marker for invasive behaviour in this tumour, suggesting that uPAR's contribution to matrix degradation during invasive growth is a late event in carcinogenesis. Using a scoring system for semiquantitative estimation of uPAR-positivity on immmunohistochemically stained specimens, a significant association was found between poor overall survival and high uPAR-score for cancer cells in the tumour core and for macrophages peripherally at the tumour invasion zone. In multivariate analysis, these two uPAR-scores were confirmed as highly significant prognostic parameters independent of Tumour, Node, Metastasis (TNM)-stage and World Health Organization (WHO) classification. The proteolytic action of these malignant and nonmalignant accessory cells thus seemed to follow two main patterns: one dominated by uPAR positive cancer cells and one by uPAR-positive macrophages. Scoring of uPAR-positivity might be a useful parameter for onset of invasion and prognosis in these adenocarcinomas. Copyright © 2011 UICC.

  17. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    USGS Publications Warehouse

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  18. Re-Signifying Participatory Action Research (PAR) in Higher Education: What Does "P" Stand for in PAR?

    ERIC Educational Resources Information Center

    Santos, Doris

    2016-01-01

    While carrying out a study aimed at understanding the contribution of participatory action research (PAR) to the political realm in contemporary higher education, a problematic situation was found when doing a literature review in the field of action research. This problem concerns the intermittent appearance of the "participatory"…

  19. Interfacial magnetism in complex oxide heterostructures probed by neutrons and x-rays.

    PubMed

    Liu, Yaohua; Ke, Xianglin

    2015-09-23

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces are under intensive investigation, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied via polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.

  20. Estimation of photosynthetically available radiation (PAR) from OCEANSAT-I OCM using a simple atmospheric radiative transfer model

    NASA Astrophysics Data System (ADS)

    Tripathy, Madhumita; Raman, Mini; Chauhan, Prakash

    2015-10-01

    Photosynthetically available radiation (PAR) is an important variable for radiation budget, marine and terrestrial ecosystem models. OCEANSAT-1 Ocean Color Monitor (OCM) PAR was estimated using two different methods under both clear and cloudy sky conditions. In the first approach, aerosol optical depth (AOD) and cloud optical depth (COD) were estimated from OCEANSAT-1 OCM TOA (top-of-atmosphere) radiance data on a pixel by pixel basis and PAR was estimated from extraterrestrial solar flux for fifteen spectral bands using a radiative transfer model. The second approach used TOA radiances measured by OCM in the PAR spectral range to compute PAR. This approach also included surface albedo and cloud albedo as inputs. Comparison between OCEANSAT-1 OCM PAR at noon with in situ measured PAR shows that root mean square difference was 5.82% for the method I and 7.24% for the method II in daily time scales. Results indicate that methodology adopted to estimate PAR from OCEANSAT-1 OCM can produce reasonably accurate PAR estimates over the tropical Indian Ocean region. This approach can be extended to OCEANSAT-2 OCM and future OCEANSAT-3 OCM data for operational estimation of PAR for regional marine ecosystem applications.

  1. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Reijonen, Jani [Oakland, CA

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  2. MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula

    PubMed Central

    Verdier, Jerome; Zhao, Jian; Torres-Jerez, Ivone; Ge, Shujun; Liu, Chenggang; He, Xianzhi; Mysore, Kirankumar S.; Dixon, Richard A.; Udvardi, Michael K.

    2012-01-01

    MtPAR (Medicago truncatula proanthocyanidin regulator) is an MYB family transcription factor that functions as a key regulator of proanthocyanidin (PA) biosynthesis in the model legume Medicago truncatula. MtPAR expression is confined to the seed coat, the site of PA accumulation. Loss-of-function par mutants contained substantially less PA in the seed coat than the wild type, whereas levels of anthocyanin and other specialized metabolites were normal in the mutants. In contrast, massive accumulation of PAs occurred when MtPAR was expressed ectopically in transformed hairy roots of Medicago. Transcriptome analysis of par mutants and MtPAR-expressing hairy roots, coupled with yeast one-hybrid analysis, revealed that MtPAR positively regulates genes encoding enzymes of the flavonoid–PA pathway via a probable activation of WD40-1. Expression of MtPAR in the forage legume alfalfa (Medicago sativa) resulted in detectable levels of PA in shoots, highlighting the potential of this gene for biotechnological strategies to increase PAs in forage legumes for reduction of pasture bloat in ruminant animals. PMID:22307644

  3. Neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  4. Characterizing a fast-response, low-afterglow liquid scintillator for neutron time-of-flight diagnostics in fast ignition experiments.

    PubMed

    Abe, Y; Hosoda, H; Arikawa, Y; Nagai, T; Kojima, S; Sakata, S; Inoue, H; Iwasa, Y; Iwano, K; Yamanoi, K; Fujioka, S; Nakai, M; Sarukura, N; Shiraga, H; Norimatsu, T; Azechi, H

    2014-11-01

    The characteristics of oxygen-enriched liquid scintillators with very low afterglow are investigated and optimized for application to a single-hit neutron spectrometer for fast ignition experiments. It is found that 1,2,4-trimethylbenzene has better characteristics as a liquid scintillator solvent than the conventional solvent, p-xylene. In addition, a benzophenon-doped BBQ liquid scintillator is shown to demonstrate very rapid time response, and therefore has potential for further use in neutron diagnostics with fast time resolution.

  5. Astrocytes Secrete Exosomes Enriched with Proapoptotic Ceramide and Prostate Apoptosis Response 4 (PAR-4)

    PubMed Central

    Wang, Guanghu; Dinkins, Michael; He, Qian; Zhu, Gu; Poirier, Christophe; Campbell, Andrew; Mayer-Proschel, Margot; Bieberich, Erhard

    2012-01-01

    Amyloid protein is well known to induce neuronal cell death, whereas only little is known about its effect on astrocytes. We found that amyloid peptides activated caspase 3 and induced apoptosis in primary cultured astrocytes, which was prevented by caspase 3 inhibition. Apoptosis was also prevented by shRNA-mediated down-regulation of PAR-4, a protein sensitizing cells to the sphingolipid ceramide. Consistent with a potentially proapoptotic effect of PAR-4 and ceramide, astrocytes surrounding amyloid plaques in brain sections of the 5xFAD mouse (and Alzheimer disease patient brain) showed caspase 3 activation and were apoptotic when co-expressing PAR-4 and ceramide. Apoptosis was not observed in astrocytes with deficient neutral sphingomyelinase 2 (nSMase2), indicating that ceramide generated by nSMase2 is critical for amyloid-induced apoptosis. Antibodies against PAR-4 and ceramide prevented amyloid-induced apoptosis in vitro and in vivo, suggesting that apoptosis was mediated by exogenous PAR-4 and ceramide, potentially associated with secreted lipid vesicles. This was confirmed by the analysis of lipid vesicles from conditioned medium showing that amyloid peptide induced the secretion of PAR-4 and C18 ceramide-enriched exosomes. Exosomes were not secreted by nSMase2-deficient astrocytes, indicating that ceramide generated by nSMase2 is critical for exosome secretion. Consistent with the ceramide composition in amyloid-induced exosomes, exogenously added C18 ceramide restored PAR-4-containing exosome secretion in nSMase2-deficient astrocytes. Moreover, isolated PAR-4/ceramide-enriched exosomes were taken up by astrocytes and induced apoptosis in the absence of amyloid peptide. Taken together, we report a novel mechanism of apoptosis induction by PAR-4/ceramide-enriched exosomes, which may critically contribute to Alzheimer disease. PMID:22532571

  6. Plasma suPAR as a prognostic biological marker for ICU mortality in ARDS patients.

    PubMed

    Geboers, Diederik G P J; de Beer, Friso M; Tuip-de Boer, Anita M; van der Poll, Tom; Horn, Janneke; Cremer, Olaf L; Bonten, Marc J M; Ong, David S Y; Schultz, Marcus J; Bos, Lieuwe D J

    2015-07-01

    We investigated the prognostic value of plasma soluble urokinase plasminogen activator receptor (suPAR) on day 1 in patients with the acute respiratory distress syndrome (ARDS) for intensive care unit (ICU) mortality and compared it with established disease severity scores on day 1. suPAR was determined batchwise in plasma obtained within 24 h after admission. 632 ARDS patients were included. Significantly (P = 0.02) higher median levels of suPAR were found with increasing severity of ARDS: 5.9 ng/ml [IQR 3.1-12.8] in mild ARDS (n = 82), 8.4 ng/ml [IQR 4.1-15.0] in moderate ARDS (n = 333), and 9.0 ng/ml [IQR 4.5-16.0] in severe ARDS (n = 217). Non-survivors had higher median levels of suPAR [12.5 ng/ml (IQR 5.1-19.5) vs. 7.4 ng/ml (3.9-13.6), P < 0.001]. The area under the receiver operator characteristic curve (ROC-AUC) for mortality of suPAR (0.62) was lower than the ROC-AUC of the APACHE IV score (0.72, P = 0.007), higher than that of the ARDS definition classification (0.53, P = 0.005), and did not differ from that of the SOFA score (0.68, P = 0.07) and the oxygenation index (OI) (0.58, P = 0.29). Plasma suPAR did not improve the discrimination of the established disease severity scores, but did improve net reclassification of the APACHE score (29%), SOFA score (23%), OI (38%), and Berlin definition classification (39%). As a single biological marker, the prognostic value for death of plasma suPAR in ARDS patients is low. Plasma suPAR, however, improves the net reclassification, suggesting a potential role for suPAR in ICU mortality prediction models.

  7. IFN-γ, CXCL16, uPAR: potential biomarkers for systemic lupus erythematosus.

    PubMed

    Wen, Si; He, Fang; Zhu, Xuejing; Yuan, Shuguang; Liu, Hong; Sun, Lin

    2018-01-01

    IFN-γ, CXCL16 and uPAR have recently been regarded as potential biomarkers in systemic lupus erythematosus (SLE). However, few researches have focused on the comparison of these three markers in SLE. We conducted this study to evaluate their role as biomarkers of disease activity and renal damage. We enrolled 50 SLE patients with or without lupus nephritis (LN) and 15 healthy control subjects. The levels of IFN-γ, CXCL16, uPAR in serum, urine and renal tissues were detected by ELISA or immunohistochemistry. Relevant clinical and laboratory features were recorded. Serum and urine IFN-γ, CXCL16 and suPAR levels in SLE patients were significantly higher than that in healthy controls. Moreover, LN patients had higher levels than non-LN patients. A positive correlation was observed between these markers, and disease activity and suPAR had a stronger association with disease activity. The expression of these biomarkers in renal tissues was significantly higher in LN patients and was also associated with the activity of pathological lesions. IFN-γ, CXCL16 and uPAR are promising as effective biomarkers of disease activity, renal damage, and the activity of pathological lesions in SLE.

  8. Participatory action research (PAR) in middle school: opportunities, constraints, and key processes.

    PubMed

    Ozer, Emily J; Ritterman, Miranda L; Wanis, Maggie G

    2010-09-01

    Late childhood and early adolescence represent a critical transition in the developmental and academic trajectory of youth, a time in which there is an upsurge in academic disengagement and psychopathology. PAR projects that can promote youth's sense of meaningful engagement in school and a sense of efficacy and mattering can be particularly powerful given the challenges of this developmental stage. In the present study, we draw on data from our own collaborative implementation of PAR projects in secondary schools to consider two central questions: (1) How do features of middle school settings and the developmental characteristics of the youth promote or inhibit the processes, outcomes, and sustainability of the PAR endeavor? and (2) How can the broad principles and concepts of PAR be effectively translated into specific intervention activities in schools, both within and outside of the classroom? In particular, we discuss a participatory research project conducted with 6th and 7th graders at an urban middle school as a means of highlighting the opportunities, constraints, and lessons learned in our efforts to contribute to the high-quality implementation and evaluation of PAR in diverse urban public schools.

  9. Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology.

    PubMed

    Bache, Michael; Bosco, Filippo G; Brøgger, Anna L; Frøhling, Kasper B; Alstrøm, Tommy Sonne; Hwu, En-Te; Chen, Ching-Hsiu; Eugen-Olsen, Jesper; Hwang, Ing-Shouh; Boisen, Anja

    2013-11-08

    In this work the use of a high-throughput nanomechanical detection system based on a DVD-ROM optical drive and cantilever sensors is presented for the detection of urokinase plasminogen activator receptor inflammatory biomarker (uPAR). Several large scale studies have linked elevated levels of soluble uPAR (suPAR) to infectious diseases, such as HIV, and certain types of cancer. Using hundreds of cantilevers and a DVD-based platform, cantilever deflection response from antibody-antigen recognition is investigated as a function of suPAR concentration. The goal is to provide a cheap and portable detection platform which can carry valuable prognostic information. In order to optimize the cantilever response the antibody immobilization and unspecific binding are initially characterized using quartz crystal microbalance technology. Also, the choice of antibody is explored in order to generate the largest surface stress on the cantilevers, thus increasing the signal. Using optimized experimental conditions the lowest detectable suPAR concentration is currently around 5 nM. The results reveal promising research strategies for the implementation of specific biochemical assays in a portable and high-throughput microsensor-based detection platform.

  10. TGF-β induced PAR-1 expression promotes tumor progression and osteoclast differentiation in giant cell tumor of bone.

    PubMed

    Wang, Ting; Jiao, Jian; Zhang, Hao; Zhou, Wang; Li, Zhenxi; Han, Shuai; Wang, Jing; Yang, Xinghai; Huang, Quan; Wu, Zhipeng; Yan, Wangjun; Xiao, Jianru

    2017-10-15

    Although protease activated receptor-1 (PAR-1) has been confirmed as an oncogene in many cancers, the role of PAR-1 in giant cell tumor (GCT) of bone has been rarely reported. The mechanism of PAR-1 in tumor-induced osteoclastogenesis still remains unclear. In the present study, we detected that PAR-1 was significantly upregulated in GCT of bone compared to normal tissues, while TGF-β was also overexpressed in GCT tissues and could promote the expression of PAR-1 in a dose and time dependent manner. Using the luciferase reporter assay, we found that two downstreams of TGF-β, Smad3 and Smad4, could activate the promoter of PAR-1, which might explain the mechanism of TGF-β induced PAR-1 expression. Meanwhile, PAR-1 was also overexpressed in microvesicles from stromal cells of GCT (GCTSCs), and might be transported from GCTSCs to monocytes through microvesicles. In addition, knockout of PAR-1 by TALENs in GCTSCs inhibited tumor growth, angiogenesis and osteoclastogenesis in GCT in vitro. Using the chick CAM models, we further showed that inhibition of PAR-1 suppressed tumor growth and giant cell formation in vivo. Using microarray assay, we detected a number of genes involved in osteoclastogenesis as the possible downstreams of PAR-1, which may partly explain the mechanism of PAR-1 in GCT. In brief, for the first time, these results reveal an upstream regulatory role of TGF-β in PAR-1 expression, and PAR-1 expression promotes tumor growth, angiogenesis and osteoclast differentiation in GCT of bone. Hence, PAR-1 represents a novel potential therapeutic target for GCT of bone. © 2017 UICC.

  11. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  12. FRUIT: An operational tool for multisphere neutron spectrometry in workplaces

    NASA Astrophysics Data System (ADS)

    Bedogni, Roberto; Domingo, Carles; Esposito, Adolfo; Fernández, Francisco

    2007-10-01

    FRUIT (Frascati Unfolding Interactive Tool) is an unfolding code for Bonner sphere spectrometers (BSS) developed, under the Labview environment, at the INFN-Frascati National Laboratory. It models a generic neutron spectrum as the superposition of up to four components (thermal, epithermal, fast and high energy), fully defined by up to seven positive parameters. Different physical models are available to unfold the sphere counts, covering the majority of the neutron spectra encountered in workplaces. The iterative algorithm uses Monte Carlo methods to vary the parameters and derive the final spectrum as limit of a succession of spectra fulfilling the established convergence criteria. Uncertainties on the final results are evaluated taking into consideration the different sources of uncertainty affecting the input data. Relevant features of FRUIT are (1) a high level of interactivity, allowing the user to follow the convergence process, (2) the possibility to modify the convergence tolerances during the run, allowing a rapid achievement of meaningful solutions and (3) the reduced dependence of the results from the initial hypothesis. This provides a useful instrument for spectrometric measurements in workplaces, where detailed a priori information is usually unavailable. This paper describes the characteristics of the code and presents the results of performance tests over a significant variety of reference and workplace neutron spectra ranging from thermal up to hundreds MeV neutrons.

  13. The 14-3-3 protein PAR-5 regulates the asymmetric localization of the LET-99 spindle positioning protein.

    PubMed

    Wu, Jui-Ching; Espiritu, Eugenel B; Rose, Lesilee S

    2016-04-15

    PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in Caenorhabditis elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The 14-3-3 Protein PAR-5 Regulates the Asymmetric localization of the LET-99 Spindle Positioning Protein

    PubMed Central

    Rose, Lesilee S.

    2016-01-01

    PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in C. elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization. PMID:26921457

  15. Simulating Carbon Flux Dynamics with the Product of PAR Absorbed by Chlorophyll (fAPARchl)

    NASA Astrophysics Data System (ADS)

    Yao, T.; Zhang, Q.

    2016-12-01

    A common way to estimate the gross primary production (GPP) is to use the fraction of photosynthetically radiation (PAR) absorbed by vegetation (FPAR). However, only the PAR absorbed by chlorophyll of the canopy, not the PAR absorbed by the foliage or by the entire canopy, is used for photosynthesis. MODIS fAPARchl product, which refers to the fraction of PAR absorbed by chlorophyll of the canopy, is derived from Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance by using an advanced leaf-canopy-soil-water-snow coupled radiative transfer model PROSAIL4. PROSAIL4 can retrieve surface water cover fraction, snow cover fraction, and physiologically active canopy chemistry components (chlorophyll concentration and water content), fraction of photosynthetically active radiation (PAR) absorbed by a canopy (fAPARcanopy), fraction of PAR absorbed by photosynthetic vegetation (PV) component (mainly chlorophyll) throughout the canopy (fAPARPV, i.e., fAPARchl) and fraction of PAR absorbed by non-photosynthetic vegetation (NPV) component of the canopy (fAPARNPV). We have successfully retrieved these vegetation parameters for selected areas with PROSAIL4 and the MODIS images, or simulated spectrally MODIS-like images. In this study, the product of PAR absorbed by chlorophyll (fAPARchl) has been used to simulate carbon flux over different kinds of vegetation types. The results show that MODIS fAPARchl product has the ability to better characterize phenology than current phenology model in the Community Land Model and it also will likely be able to increase the accuracy of carbon fluxes simulations.

  16. uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells.

    PubMed

    Laurenzana, Anna; Chillà, Anastasia; Luciani, Cristina; Peppicelli, Silvia; Biagioni, Alessio; Bianchini, Francesca; Tenedini, Elena; Torre, Eugenio; Mocali, Alessandra; Calorini, Lido; Margheri, Francesca; Fibbi, Gabriella; Del Rosso, Mario

    2017-09-15

    In this manuscript, we show the involvement of the uPA/uPAR system in the regulation of aerobic glycolysis of melanoma cells. uPAR over-expression in human melanoma cells controls an invasive and glycolytic phenotype in normoxic conditions. uPAR down-regulation by siRNA or its uncoupling from integrins, and hence from integrin-linked tyrosine kinase receptors (IL-TKRs), by an antagonist peptide induced a striking inhibition of the PI3K/AKT/mTOR/HIF1α pathway, resulting into impairment of glucose uptake, decrease of several glycolytic enzymes and of PKM2, a checkpoint that controls metabolism of cancer cells. Further, binding of uPA to uPAR regulates expression of molecules that govern cell invasion, including extracellular matrix metallo-proteinases inducer (EMPPRIN) and enolase, a glycolytyc enzyme that also serves as a plasminogen receptor, thus providing a common denominator between tumor metabolism and phenotypic invasive features. Such effects depend on the α5β1-integrin-mediated uPAR connection with EGFR in melanoma cells with engagement of the PI3K-mTOR-HIFα pathway. HIF-1α trans-activates genes whose products mediate tumor invasion and glycolysis, thus providing the common denominator between melanoma metabolism and its invasive features. These findings unveil a unrecognized interaction between the invasion-related uPAR and IL-TKRs in the control of glycolysis and disclose a new pharmacological target (i.e., uPAR/IL-TKRs axis) for the therapy of melanoma. © 2017 UICC.

  17. The Ubiquity of the Rapid Neutron-capture Process

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Cowan, John J.; Karakas, Amanda I.; Kratz, Karl-Ludwig; Lugaro, Maria; Simmerer, Jennifer; Farouqi, Khalil; Sneden, Christopher

    2010-12-01

    To better characterize the abundance patterns produced by the r-process, we have derived new abundances or upper limits for the heavy elements zinc (Zn, Z= 30), yttrium (Y, Z= 39), lanthanum (La, Z= 57), europium (Eu, Z= 63), and lead (Pb, Z= 82). Our sample of 161 metal-poor stars includes new measurements from 88 high-resolution and high signal-to-noise spectra obtained with the Tull Spectrograph on the 2.7 m Smith Telescope at the McDonald Observatory, and other abundances are adopted from the literature. We use models of the s-process in asymptotic giant branch stars to characterize the high Pb/Eu ratios produced in the s-process at low metallicity, and our new observations then allow us to identify a sample of stars with no detectable s-process material. In these stars, we find no significant increase in the Pb/Eu ratios with increasing metallicity. This suggests that s-process material was not widely dispersed until the overall Galactic metallicity grew considerably, perhaps even as high as [Fe/H] =-1.4, in contrast with earlier studies that suggested a much lower mean metallicity. We identify a dispersion of at least 0.5 dex in [La/Eu] in metal-poor stars with [Eu/Fe] <+0.6 attributable to the r-process, suggesting that there is no unique "pure" r-process elemental ratio among pairs of rare earth elements. We confirm earlier detections of an anti-correlation between Y/Eu and Eu/Fe bookended by stars strongly enriched in the r-process (e.g., CS 22892-052) and those with deficiencies of the heavy elements (e.g., HD 122563). We can reproduce the range of Y/Eu ratios using simulations of high-entropy neutrino winds of core-collapse supernovae that include charged-particle and neutron-capture components of r-process nucleosynthesis. The heavy element abundance patterns in most metal-poor stars do not resemble that of CS 22892-052, but the presence of heavy elements such as Ba in nearly all metal-poor stars without s-process enrichment suggests that the r

  18. Time-resolved neutron imaging at ANTARES cold neutron beamline

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.

    2015-07-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and integrated over multiple cycles. A fast MCP/Timepix neutron counting detector was used to image the water distribution within a model steam engine operating at 10 Hz frequency. Within <10 minutes integration the amount of water was measured as a function of cycle time with a sub-mm spatial resolution, thereby demonstrating the capabilities of time-resolved neutron radiography for the future applications. The neutron spectrum of the ANTARES beamline as well as transmission spectra of a Fe sample were also measured with the Time Of Flight (TOF) technique in combination with a high resolution beam chopper. The energy resolution of our setup was found to be ~ 0.8% at 5 meV and ~ 1.7% at 25 meV. The background level (most likely gammas and epithermal/fast neutrons) of the ANTARES beamline was also measured in our experiments and found to be on the scale of 3% when no filters are installed in the beam. Online supplementary data available from stacks.iop.org/jinst/10

  19. PERSONNEL NEUTRON DOSIMETER

    DOEpatents

    Fitzgerald, J.J.; Detwiler, C.G. Jr.

    1960-05-24

    A description is given of a personnel neutron dosimeter capable of indicating the complete spectrum of the neutron dose received as well as the dose for each neutron energy range therein. The device consists of three sets of indium foils supported in an aluminum case. The first set consists of three foils of indium, the second set consists of a similar set of indium foils sandwiched between layers of cadmium, whereas the third set is similar to the second set but is sandwiched between layers of polyethylene. By analysis of all the foils the neutron spectrum and the total dose from neutrons of all energy levels can be ascertained.

  20. Blockade of protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with low bleeding.

    PubMed

    Wong, Pancras C; Seiffert, Dietmar; Bird, J Eileen; Watson, Carol A; Bostwick, Jeffrey S; Giancarli, Mary; Allegretto, Nick; Hua, Ji; Harden, David; Guay, Jocelyne; Callejo, Mario; Miller, Michael M; Lawrence, R Michael; Banville, Jacques; Guy, Julia; Maxwell, Brad D; Priestley, E Scott; Marinier, Anne; Wexler, Ruth R; Bouvier, Michel; Gordon, David A; Schumacher, William A; Yang, Jing

    2017-01-04

    Antiplatelet agents are proven efficacious treatments for cardiovascular and cerebrovascular diseases. However, the existing drugs are compromised by unwanted and sometimes life-threatening bleeding that limits drug usage or dosage. There is a substantial unmet medical need for an antiplatelet drug with strong efficacy and low bleeding risk. Thrombin is a potent platelet agonist that directly induces platelet activation via the G protein (heterotrimeric guanine nucleotide-binding protein)-coupled protease-activated receptors PAR1 and PAR4. A PAR1 antagonist is approved for clinical use, but its use is limited by a substantial bleeding risk. Conversely, the potential of PAR4 as an antiplatelet target has not been well characterized. Using anti-PAR4 antibodies, we demonstrated a low bleeding risk and an effective antithrombotic profile with PAR4 inhibition in guinea pigs. Subsequently, high-throughput screening and an extensive medicinal chemistry effort resulted in the discovery of BMS-986120, an orally active, selective, and reversible PAR4 antagonist. In a cynomolgus monkey arterial thrombosis model, BMS-986120 demonstrated potent and highly efficacious antithrombotic activity. BMS-986120 also exhibited a low bleeding liability and a markedly wider therapeutic window compared to the standard antiplatelet agent clopidogrel tested in the same nonhuman primate model. These preclinical findings define the biological role of PAR4 in mediating platelet aggregation. In addition, they indicate that targeting PAR4 is an attractive antiplatelet strategy with the potential to treat patients at a high risk of atherothrombosis with superior safety compared with the current standard of care. Copyright © 2017, American Association for the Advancement of Science.

  1. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  2. Proteinase-Activated Receptor-1 and Immunomodulatory Effects of a PAR1-Activating Peptide in a Mouse Model of Prostatitis

    PubMed Central

    Stanton, M. Mark; Nelson, Lisa K.; Benediktsson, Hallgrimur; Hollenberg, Morley D.; Buret, Andre G.; Ceri, Howard

    2013-01-01

    Background. Nonbacterial prostatitis has no established etiology. We hypothesized that proteinase-activated receptor-1 (PAR1) can play a role in prostatitis. We therefore investigated the effects of PAR1 stimulation in the context of a new model of murine nonbacterial prostatitis. Methods. Using a hapten (ethanol-dinitrobenzene sulfonic acid- (DNBS-)) induced prostatitis model with both wild-type and PAR1-null mice, we examined (1) the location of PAR1 in the mouse prostate and (2) the impact of a PAR1-activating peptide (TFLLR-NH2: PAR1-TF) on ethanol-DNBS-induced inflammation. Results. Ethanol-DNBS-induced inflammation was maximal at 2 days. In the tissue, PAR1 was expressed predominantly along the apical acini of prostatic epithelium. Although PAR1-TF on its own did not cause inflammation, its coadministration with ethanol-DNBS reduced all indices of acute prostatitis. Further, PAR1-TF administration doubled the prostatic production of interleukin-10 (IL-10) compared with ethanol-DNBS treatment alone. This enhanced IL-10 was not observed in PAR1-null mice and was not caused by the reverse-sequence receptor-inactive peptide, RLLFT-NH2. Surprisingly, PAR1-TF, also diminished ethanol-DNBS-induced inflammation in PAR1-null mice. Conclusions. PAR1 is expressed in the mouse prostate and its activation by PAR1-TF elicits immunomodulatory effects during ethanol-DNBS-induced prostatitis. However, PAR1-TF also diminishes ethanol-DNBS-induced inflammation via a non-PAR1 mechanism by activating an as-yet unknown receptor. PMID:24459330

  3. New precision measurements of free neutron beta decay with cold neutrons

    DOE PAGES

    Baeßler, Stefan; Bowman, James David; Penttilä, Seppo I.; ...

    2014-10-14

    Precision measurements in free neutron beta decay serve to determine the coupling constants of beta decay, and offer several stringent tests of the standard model. This study describes the free neutron beta decay program planned for the Fundamental Physics Beamline at the Spallation Neutron Source at Oak Ridge National Laboratory, and finally puts it into the context of other recent and planned measurements of neutron beta decay observables.

  4. Organic metal neutron detector

    DOEpatents

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  5. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  6. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments.

    PubMed

    Lee, K W; Sheu, R J

    2015-04-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Cortical PAR polarity proteins promote robust cytokinesis during asymmetric cell division

    PubMed Central

    Jordan, Shawn N.; Davies, Tim; Zhuravlev, Yelena; Dumont, Julien; Shirasu-Hiza, Mimi

    2016-01-01

    Cytokinesis, the physical division of one cell into two, is thought to be fundamentally similar in most animal cell divisions and driven by the constriction of a contractile ring positioned and controlled solely by the mitotic spindle. During asymmetric cell divisions, the core polarity machinery (partitioning defective [PAR] proteins) controls the unequal inheritance of key cell fate determinants. Here, we show that in asymmetrically dividing Caenorhabditis elegans embryos, the cortical PAR proteins (including the small guanosine triphosphatase CDC-42) have an active role in regulating recruitment of a critical component of the contractile ring, filamentous actin (F-actin). We found that the cortical PAR proteins are required for the retention of anillin and septin in the anterior pole, which are cytokinesis proteins that our genetic data suggest act as inhibitors of F-actin at the contractile ring. Collectively, our results suggest that the cortical PAR proteins coordinate the establishment of cell polarity with the physical process of cytokinesis during asymmetric cell division to ensure the fidelity of daughter cell formation. PMID:26728855

  8. Neutron beam characterization measurements at the Manuel Lujan Jr. neutron scattering center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal; Muhrer, Guenter; Daemen, Luke L

    We have measured the neutron beam characteristics of neutron moderators at the Manuel Lujan Jr. Neutron Scattering Center at LANSCE. The absolute thermal neutron flux, energy spectra and time emission spectra were measured for the high resolution and high intensity decoupled water, partially coupled liquid hydrogen and partially coupled water moderators. The results of our experimental study will provide an insight into aging of different target-moderator-reflector-shield components as well as new experimental data for benchmarking of neutron transport codes.

  9. The pars intermedia: an anatomic basis for a coordinated vascular response to female genital arousal.

    PubMed

    Shih, Cheryl; Cold, Christopher J; Yang, Claire C

    2013-06-01

    The pars intermedia is an area of the vulva that has been inconsistently described in the literature. We conducted anatomic studies to better describe the tissues and vascular structures of the pars intermedia and proposed a functional rationale of the pars intermedia in the female sexual response. Nine cadaveric vulvectomy specimens were used. Each was serially sectioned and stained with hematoxylin and eosin and Masson's trichrome. Histologic ultrastructural description of the pars intermedia. The pars intermedia contains veins traveling longitudinally in the angle of the clitoris, supported by collagen-rich stromal tissues. These veins drain the different vascular compartments of the vulva, including the clitoris, the bulbs, and labia minora; also, the interconnecting veins link the different vascular compartments. The pars intermedia is not composed of erectile tissue, distinguishing it from the erectile tissues of the corpora cavernosa of the clitoris as well as the corpus spongiosum of the clitoral (vestibular) bulbs. The venous communications of the pars intermedia, linking the erectile tissues with the other vascular compartments of the vulva, appear to provide the anatomic basis for a coordinated vascular response during female sexual arousal. © 2012 International Society for Sexual Medicine.

  10. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis.

    PubMed

    Zigler, Maya; Kamiya, Takafumi; Brantley, Emily C; Villares, Gabriel J; Bar-Eli, Menashe

    2011-11-01

    Progression of melanoma is dependent on cross-talk between tumor cells and the adjacent microenvironment. The thrombin receptor, protease-activated receptor-1 (PAR-1), plays a key role in exerting this function during melanoma progression. PAR-1 and its activating factors, which are expressed on tumor cells and the surrounding stroma, induce not only coagulation but also cell signaling, which promotes the metastatic phenotype. Several adhesion molecules, cytokines, growth factors, and proteases have recently been identified as downstream targets of PAR-1 and have been shown to modulate interactions between tumor cells and the microenvironment in the process of melanoma growth and metastasis. Inhibiting such interactions by targeting PAR-1 could potentially be a useful therapeutic modality for melanoma patients. ©2011 AACR.

  11. Growing Larger Crystals for Neutron Diffraction

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    2003-01-01

    Obtaining crystals of suitable size and high quality has been a major bottleneck in macromolecular crystallography. With the advent of advanced X-ray sources and methods the question of size has rapidly dwindled, almost to the point where if one can see the crystal then it was big enough. Quality is another issue, and major national and commercial efforts were established to take advantage of the microgravity environment in an effort to obtain higher quality crystals. Studies of the macromolecule crystallization process were carried out in many labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. While technological improvements are resulting in a diminishing of the minimum crystal size required, neutron diffraction structural studies still require considerably larger crystals, by several orders of magnitude, than X-ray studies. From a crystal growth physics perspective there is no reason why these 'large' crystals cannot be obtained: the question is generally more one of supply than limitations mechanism. This talk will discuss our laboratory s current model for macromolecule crystal growth, with highlights pertaining to the growth of crystals suitable for neutron diffraction studies.

  12. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  13. Project Plan 7930 Cell G PaR Remote Handling System Replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinney, Kathryn A

    2009-10-01

    For over 40 years the US Department of Energy (DOE) and its predecessors have made Californium-252 ({sup 252}Cf) available for a wide range of industries including medical, nuclear fuels, mining, military and national security. The Radiochemical Engineering Development Center (REDC) located within the Oak Ridge National Laboratory (ORNL) processes irradiated production targets from the High Flux Isotope Reactor (HFIR). Operations in Building 7930, Cell G provide over 70% of the world's demand for {sup 252}Cf. Building 7930 was constructed and equipped in the mid-1960s. Current operations for {sup 252}Cf processing in Building 7930, Cell G require use of through-the-wall manipulatorsmore » and the PaR Remote Handling System. Maintenance and repairs for the manipulators is readily accomplished by removal of the manipulator and relocation to a repair shop where hands-on work can be performed in glove boxes. Contamination inside cell G does not currently allow manned entry and no provisions were created for a maintenance area inside the cell. There has been no maintenance of the PaR system or upgrades, leaving operations vulnerable should the system have a catastrophic failure. The Cell G PaR system is currently being operated in a run to failure mode. As the manipulator is now 40+ years old there is significant risk in this method of operation. In 2006 an assessment was completed that resulted in recommendations for replacing the manipulator operator control and power centers which are used to control and power the PaR manipulator in Cell G. In mid-2008 the chain for the bridge drive failed and subsequent examinations indicated several damaged links (see Figure 1). To continue operations the PaR manipulator arm is being used to push and pull the bridge as a workaround. A retrieval tool was fabricated, tested and staged inside Cell G that will allow positioning of the bridge and manipulator arm for removal from the cell should the PaR system completely fail. A fully

  14. Serologically Defined Variations in Malaria Endemicity in Pará State, Brazil

    PubMed Central

    Cunha, Maristela G.; Silva, Eliane S.; Sepúlveda, Nuno; Costa, Sheyla P. T.; Saboia, Tiago C.; Guerreiro, João F.; Póvoa, Marinete M.; Corran, Patrick H.; Riley, Eleanor; Drakeley, Chris J.

    2014-01-01

    Background Measurement of malaria endemicity is typically based on vector or parasite measures. A complementary approach is the detection of parasite specific IgG antibodies. We determined the antibody levels and seroconversion rates to both P. vivax and P. falciparum merozoite antigens in individuals living in areas of varying P. vivax endemicity in Pará state, Brazilian Amazon region. Methodology/Principal Findings The prevalence of antibodies to recombinant antigens from P. vivax and P. falciparum was determined in 1,330 individuals. Cross sectional surveys were conducted in the north of Brazil in Anajás, Belém, Goianésia do Pará, Jacareacanga, Itaituba, Trairão, all in the Pará state, and Sucuriju, a free-malaria site in the neighboring state Amapá. Seroprevalence to any P. vivax antigens (MSP1 or AMA-1) was 52.5%, whereas 24.7% of the individuals were seropositive to any P. falciparum antigens (MSP1 or AMA-1). For P. vivax antigens, the seroconversion rates (SCR) ranged from 0.005 (Sucuriju) to 0.201 (Goianésia do Pará), and are strongly correlated to the corresponding Annual Parasite Index (API). We detected two sites with distinct characteristics: Goianésia do Pará where seroprevalence curve does not change with age, and Sucuriju where seroprevalence curve is better described by a model with two SCRs compatible with a decrease in force of infection occurred 14 years ago (from 0.069 to 0.005). For P. falciparum antigens, current SCR estimates varied from 0.002 (Belém) to 0.018 (Goianésia do Pará). We also detected a putative decrease in disease transmission occurred ∼29 years ago in Anajás, Goianésia do Pará, Itaituba, Jacareacanga, and Trairão. Conclusions We observed heterogeneity of serological indices across study sites with different endemicity levels and temporal changes in the force of infection in some of the sites. Our study provides further evidence that serology can be used to measure and monitor transmission of both major

  15. Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex.

    PubMed

    Roll, Patrice; Vernes, Sonja C; Bruneau, Nadine; Cillario, Jennifer; Ponsole-Lenfant, Magali; Massacrier, Annick; Rudolf, Gabrielle; Khalife, Manal; Hirsch, Edouard; Fisher, Simon E; Szepetowski, Pierre

    2010-12-15

    It is a challenge to identify the molecular networks contributing to the neural basis of human speech. Mutations in transcription factor FOXP2 cause difficulties mastering fluent speech (developmental verbal dyspraxia, DVD), whereas mutations of sushi-repeat protein SRPX2 lead to epilepsy of the rolandic (sylvian) speech areas, with DVD or with bilateral perisylvian polymicrogyria. Pathophysiological mechanisms driven by SRPX2 involve modified interaction with the plasminogen activator receptor (uPAR). Independent chromatin-immunoprecipitation microarray screening has identified the uPAR gene promoter as a potential target site bound by FOXP2. Here, we directly tested for the existence of a transcriptional regulatory network between human FOXP2 and the SRPX2/uPAR complex. In silico searches followed by gel retardation assays identified specific efficient FOXP2-binding sites in each of the promoter regions of SRPX2 and uPAR. In FOXP2-transfected cells, significant decreases were observed in the amounts of both SRPX2 (43.6%) and uPAR (38.6%) native transcripts. Luciferase reporter assays demonstrated that FOXP2 expression yielded a marked inhibition of SRPX2 (80.2%) and uPAR (77.5%) promoter activity. A mutant FOXP2 that causes DVD (p.R553H) failed to bind to SRPX2 and uPAR target sites and showed impaired down-regulation of SRPX2 and uPAR promoter activity. In a patient with polymicrogyria of the left rolandic operculum, a novel FOXP2 mutation (p.M406T) was found in the leucine-zipper (dimerization) domain. p.M406T partially impaired the FOXP2 regulation of SRPX2 promoter activity, whereas that of the uPAR promoter remained unchanged. Together with recently described FOXP2-CNTNAP2 and SRPX2/uPAR links, the FOXP2-SRPX2/uPAR network provides exciting insights into molecular pathways underlying speech-related disorders.

  16. Protease activated receptor-2 (PAR2): possible target of phytochemicals.

    PubMed

    Kakarala, Kavita Kumari; Jamil, Kaiser

    2015-09-01

    The use of phytochemicals either singly or in combination with other anticancer drugs comes with an advantage of less toxicity and minimal side effects. Signaling pathways play central role in cell cycle, cell growth, metabolism, etc. Thus, the identification of phytochemicals with promising antagonistic effect on the receptor/s playing key role in single transduction may have better therapeutic application. With this background, phytochemicals were screened against protease-activated receptor 2 (PAR2). PAR2 belongs to the superfamily of GPCRs and is an important target for breast cancer. Using in silico methods, this study was able to identify the phytochemicals with promising binding affinity suggesting their therapeutic potential in the treatment of breast cancer. The findings from this study acquires importance as the information on the possible agonists and antagonists of PAR2 is limited due its unique mechanism of activation.

  17. Traumatisme de la main par injection a haute pression

    PubMed Central

    Mabchoure, K.; Diouri, M.; Bahechar, N.; Chlihi, A.

    2016-01-01

    Summary Les traumatismes de la main par injection à haute pression sont des accidents relativement rares et souvent mal connus par le praticien. Les lésions qui dépendent du produit injecté et du site d’injection sont pourvoyeuses de séquelles esthétiques et fonctionnelles lourdes. Le traitement repose sur la chirurgie, l’antibiothérapie et la rééducation précoce et spécifique. Nous rapportons notre expérience ainsi qu’une revue de la littérature. PMID:27857654

  18. Characterization of neutron calibration fields at the TINT's 50 Ci americium-241/beryllium neutron irradiator

    NASA Astrophysics Data System (ADS)

    Liamsuwan, T.; Channuie, J.; Ratanatongchai, W.

    2015-05-01

    Reliable measurement of neutron radiation is important for monitoring and protection in workplace where neutrons are present. Although Thailand has been familiar with applications of neutron sources and neutron beams for many decades, there is no calibration facility dedicated to neutron measuring devices available in the country. Recently, Thailand Institute of Nuclear Technology (TINT) has set up a multi-purpose irradiation facility equipped with a 50 Ci americium-241/beryllium neutron irradiator. The facility is planned to be used for research, nuclear analytical techniques and, among other applications, calibration of neutron measuring devices. In this work, the neutron calibration fields were investigated in terms of neutron energy spectra and dose equivalent rates using Monte Carlo simulations, an in-house developed neutron spectrometer and commercial survey meters. The characterized neutron fields can generate neutron dose equivalent rates ranging from 156 μSv/h to 3.5 mSv/h with nearly 100% of dose contributed by neutrons of energies larger than 0.01 MeV. The gamma contamination was less than 4.2-7.5% depending on the irradiation configuration. It is possible to use the described neutron fields for calibration test and routine quality assurance of neutron dose rate meters and passive dosemeters commonly used in radiation protection dosimetry.

  19. PAR-1 mediated apoptosis of breast cancer cells by V. cholerae hemagglutinin protease.

    PubMed

    Ray, Tanusree; Pal, Amit

    2016-05-01

    Bacterial toxins have emerged as promising agents in cancer treatment strategy. Hemagglutinin (HAP) protease secreted by Vibrio cholerae induced apoptosis in breast cancer cells and regresses tumor growth in mice model. The success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity for normal tissues. Increased expression of Protease Activated Receptor-1 (PAR-1) has been reported in different malignant cells. In this study we report that HAP induced activation and over expression of PAR-1 in breast cancer cells (EAC). Immunoprecipitation studies have shown that HAP specifically binds with PAR-1. HAP mediated activation of PAR-1 caused nuclear translocation of p50-p65 and the phosphorylation of p38 which triggered the activation of NFκB and MAP kinase signaling pathways. These signaling pathways enhanced the cellular ROS level in malignant cells that induced the intrinsic pathway of cell apoptosis. PAR-1 mediated apoptosis by HAP of malignant breast cells without effecting normal healthy cells in the same environment makes it a good therapeutic agent for treatment of cancer.

  20. Response of six neutron survey meters in mixed fields of fast and thermal neutrons.

    PubMed

    Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S

    2013-10-01

    Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.

  1. The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanvir, N. R.; Levan, A. J.; González-Fernández, C.

    Here, we report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A). The evolution of the transient light is consistent with predictions for the behavior of a "kilonova/macronova" powered by the radioactive decay of massive neutron-rich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide-dominated ejecta, and the much slower evolution in the near-infraredmore » $${K}_{{\\rm{s}}}$$-band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the third r-process peak (atomic masses $$A\\approx 195$$). This discovery thus confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major—if not the dominant—site of rapid neutron capture nucleosynthesis in the universe.« less

  2. The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars

    DOE PAGES

    Tanvir, N. R.; Levan, A. J.; González-Fernández, C.; ...

    2017-10-16

    Here, we report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A). The evolution of the transient light is consistent with predictions for the behavior of a "kilonova/macronova" powered by the radioactive decay of massive neutron-rich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide-dominated ejecta, and the much slower evolution in the near-infraredmore » $${K}_{{\\rm{s}}}$$-band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the third r-process peak (atomic masses $$A\\approx 195$$). This discovery thus confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major—if not the dominant—site of rapid neutron capture nucleosynthesis in the universe.« less

  3. Isotope-Identifying neutron reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru; Petrenko, A. V.; Gundorin, N. A.

    2015-07-15

    The possibilities of an isotope-indentifying study of layered structures in different regimes of a neutron wave field are considered. The detection of specularly reflected neutrons and secondary radiation (caused by neutron capture) in the form of charged particles, γ quanta, and nuclear fission fragments, as well as neutrons spin-flipped in a noncollinear magnetic field and on nuclei of elements with spin, makes it possible to implement isotope-indentifying neutron reflectometry.

  4. Allergic sensitization enhances anion current responsiveness of murine trachea to PAR-2 activation.

    PubMed

    Rievaj, Juraj; Davidson, Courtney; Nadeem, Ahmed; Hollenberg, Morley; Duszyk, Marek; Vliagoftis, Harissios

    2012-03-01

    Protease-activated receptor 2 (PAR-2) is a G protein-coupled receptor possibly involved in the pathogenesis of asthma. PAR-2 also modulates ion transport in cultured epithelial cells, but these effects in native airways are controversial. The influence of allergic inflammation on PAR-2-induced changes in ion transport has received little attention. Here, we studied immediate changes in transepithelial short circuit current (I (sc)) induced by PAR-2 activation in the tracheas of naive and allergic mice. Activation of PAR-2 with an apically added activation peptide (AP) induced a small increase in I (sc), while a much larger increase was observed following basolateral AP addition. In ovalbumin-sensitized and -challenged animals used as a model of allergic airway inflammation, the effect of basolateral AP addition was enhanced. Responses to basolateral AP in both naive and allergic mice were not decreased by blocking sodium absorption with amiloride or CFTR function with CFTR(inh)172 but were reduced by the cyclooxygenase inhibitor indomethacin and largely blocked (>80%) by niflumic acid, a calcium-activated chloride channels' (CaCC) blocker. Allergic mice also showed an enhanced response to ATP and thapsigargin. There was no change in mRNA expression of Par-2 or of the chloride channels Ano1 (Tmem16a) and Bestrophin 2 in tracheas from allergic mice, while mRNA levels of Bestrophin 1 were increased. In conclusion, basolateral PAR-2 activation in the mouse airways led to increased anion secretion through apical CaCC, which was more pronounced in allergic animals. This could be a protective mechanism aimed at clearing allergens and defending against mucus plugging.

  5. Dose equivalent neutron dosimeter

    DOEpatents

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  6. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, Alberto; Gohar, Yousry

    2016-06-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the timemore » is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.« less

  7. ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to ab Initio Data.

    PubMed

    Zahariev, Federico; De Silva, Nuwan; Gordon, Mark S; Windus, Theresa L; Dick-Perez, Marilu

    2017-03-27

    A newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides, important for metal extraction chemistry, are parametrized using ParFit. ParFit is in an open source program available for free on GitHub ( https://github.com/fzahari/ParFit ).

  8. Neutron-neutron quasifree scattering in nd breakup at 10 MeV

    NASA Astrophysics Data System (ADS)

    Malone, R. C.; Crowe, B.; Crowell, A. S.; Cumberbatch, L. C.; Esterline, J. H.; Fallin, B. A.; Friesen, F. Q. L.; Han, Z.; Howell, C. R.; Markoff, D.; Ticehurst, D.; Tornow, W.; Witała, H.

    2016-03-01

    The neutron-deuteron (nd) breakup reaction provides a rich environment for testing theoretical models of the neutron-neutron (nn) interaction. Current theoretical predictions based on rigorous ab-initio calculations agree well with most experimental data for this system, but there remain a few notable discrepancies. The cross section for nn quasifree (QFS) scattering is one such anomaly. Two recent experiments reported cross sections for this particular nd breakup configuration that exceed theoretical calculations by almost 20% at incident neutron energies of 26 and 25 MeV [1, 2]. The theoretical values can be brought into agreement with these results by increasing the strength of the 1S0 nn potential matrix element by roughly 10%. However, this modification of the nn effective range parameter and/or the 1S0 scattering length causes substantial charge-symmetry breaking in the nucleon-nucleon force and suggests the possibility of a weakly bound di-neutron state [3]. We are conducting new measurements of the cross section for nn QFS in nd breakup. The measurements are performed at incident neutron beam energies below 20 MeV. The neutron beam is produced via the 2H(d, n)3He reaction. The target is a deuterated plastic cylinder. Our measurements utilize time-of-flight techniques with a pulsed neutron beam and detection of the two emitted neutrons in coincidence. A description of our initial measurements at 10 MeV for a single scattering angle will be presented along with preliminary results. Also, plans for measurements at other energies with broad angular coverage will be discussed.

  9. Borner Ball Neutron Detector

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.

  10. Interfacial Magnetism in Complex Oxide Heterostructures Probed by Neutrons and X-rays

    DOE PAGES

    Liu, Yaohua; Ke, Xianglin

    2015-09-02

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces have all been intensively investigated, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied viamore » polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.« less

  11. Introduction to neutron stars

    NASA Astrophysics Data System (ADS)

    Lattimer, James M.

    2015-02-01

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  12. Introduction to neutron stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lattimer, James M.

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts canmore » set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.« less

  13. Pars plana Ahmed valve and vitrectomy in patients with glaucoma associated with posterior segment disease.

    PubMed

    Wallsh, Josh O; Gallemore, Ron P; Taban, Mehran; Hu, Charles; Sharareh, Behnam

    2013-01-01

    To assess the safety and efficacy of a modified technique for pars plana placement of the Ahmed valve in combination with pars plana vitrectomy in the treatment of glaucoma associated with posterior segment disease. Thirty-nine eyes with glaucoma associated with posterior segment disease underwent pars plana vitrectomy combined with Ahmed valve placement. All valves were placed in the pars plana using a modified technique, without the pars plana clip, and using a scleral patch graft. The 24 eyes diagnosed with neovascular glaucoma had an improvement in intraocular pressure from 37.6 mmHg to 13.8 mmHg and best-corrected visual acuity from 2.13 logarithm of minimum angle of resolution to 1.40 logarithm of minimum angle of resolution. Fifteen eyes diagnosed with steroid-induced glaucoma had an improvement in intraocular pressure from 27.9 mmHg to 14.1 mmHg and best-corrected visual acuity from 1.38 logarithm of minimum angle of resolution to 1.13 logarithm of minimum angle of resolution. Complications included four cases of cystic bleb formation and one case of choroidal detachment and explantation for hypotony. Ahmed valve placement through the pars plana during vitrectomy is an effective option for managing complex cases of glaucoma without the use of the pars plana clip.

  14. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.

    1999-05-11

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.

  15. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, Woo Y.; Jones, James L.; Nigg, David W.; Harker, Yale D.

    1999-01-01

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.

  16. NeutronSTARS: A segmented neutron and charged particle detector for low-energy reaction studies

    DOE PAGES

    Akindele, O. A.; Casperson, R. J.; Wang, B. S.; ...

    2017-08-10

    NeutronSTARS (Neutron-S ilicon T elescope A rray for R eaction S tudies) consists of 2.2-tons of gadolinium-doped liquid scintillator for neutron detection and large area silicon detectors for charged particle identification. This detector array is intended for low-energy-nuclear-reaction measurements that result in the emission of neutrons such as and fission. This paper describes the NeutronSTARS experimental setup, calibration, and the array’s response to neutral and charged particles.

  17. A family of ParA-like ATPases promotes cell pole maturation by facilitating polar localization of chemotaxis proteins

    PubMed Central

    Ringgaard, Simon; Schirner, Kathrin; Davis, Brigid M.; Waldor, Matthew K.

    2011-01-01

    Stochastic processes are thought to mediate localization of membrane-associated chemotaxis signaling clusters in peritrichous bacteria. Here, we identified a new family of ParA-like ATPases (designated ParC [for partitioning chemotaxis]) encoded within chemotaxis operons of many polar-flagellated γ-proteobacteria that actively promote polar localization of chemotaxis proteins. In Vibrio cholerae, a single ParC focus is found at the flagellated old pole in newborn cells, and later bipolar ParC foci develop as the cell matures. The cell cycle-dependent redistribution of ParC occurs by its release from the old pole and subsequent relocalization at the new pole, consistent with a “diffusion and capture” model for ParC dynamics. Chemotaxis proteins encoded in the same cluster as ParC have a similar unipolar-to-bipolar transition; however, they reach the new pole after the arrival of ParC. Cells lacking ParC exhibit aberrantly localized foci of chemotaxis proteins, reduced chemotaxis, and altered motility, which likely accounts for their enhanced colonization of the proximal small intestine in an animal model of cholera. Collectively, our findings indicate that ParC promotes the efficiency of chemotactic signaling processes. In particular, ParC-facilitated development of a functional chemotaxis apparatus at the new pole readies this site for its development into a functional old pole after cell division. PMID:21764856

  18. Transient early neurotrophin release and delayed inflammatory cytokine release by microglia in response to PAR-2 stimulation

    PubMed Central

    2012-01-01

    Activated microglia exerts both beneficial and deleterious effects on neurons, but the signaling mechanism controlling these distinct responses remain unclear. We demonstrated that treatment of microglial cultures with the PAR-2 agonist, 2-Furoyl-LIGRLO-NH2, evoked early transient release of BDNF, while sustained PAR-2 stimulation evoked the delayed release of inflammatory cytokines (IL-1β and TNF-α) and nitric oxide. Culture medium harvested during the early phase (at 1 h) of microglial activation induced by 2-Furoyl-LIGRLO-NH2 (microglial conditioned medium, MCM) had no deleterious effects on cultured neurons, while MCM harvested during the late phase (at 72 h) promoted DNA fragmentation and apoptosis as indicated by TUNEL and annexin/PI staining. Blockade of PAR-1 during the early phase of PAR-2 stimulation enhanced BDNF release (by 11%, small but significant) while a PAR-1 agonist added during the late phase (24 h after 2-Furoyl-LIGRLO-NH2 addition) suppressed the release of cytokines and NO. The neuroprotective and neurotoxic effects of activated microglial exhibit distinct temporal profiles that are regulated by PAR-1 and PAR-2 stimulation. It may be possible to facilitate neuronal recovery and repair by appropriately timed stimulation and inhibition of microglial PAR-1 and PAR-2 receptors. PMID:22731117

  19. Transient early neurotrophin release and delayed inflammatory cytokine release by microglia in response to PAR-2 stimulation.

    PubMed

    Chen, Chen-Wen; Chen, Qian-Bo; Ouyang, Qing; Sun, Ji-Hu; Liu, Fang-Ting; Song, Dian-Wen; Yuan, Hong-Bin

    2012-06-25

    Activated microglia exerts both beneficial and deleterious effects on neurons, but the signaling mechanism controlling these distinct responses remain unclear. We demonstrated that treatment of microglial cultures with the PAR-2 agonist, 2-Furoyl-LIGRLO-NH2, evoked early transient release of BDNF, while sustained PAR-2 stimulation evoked the delayed release of inflammatory cytokines (IL-1 β and TNF-α) and nitric oxide. Culture medium harvested during the early phase (at 1 h) of microglial activation induced by 2-Furoyl-LIGRLO-NH2 (microglial conditioned medium, MCM) had no deleterious effects on cultured neurons, while MCM harvested during the late phase (at 72 h) promoted DNA fragmentation and apoptosis as indicated by TUNEL and annexin/PI staining. Blockade of PAR-1 during the early phase of PAR-2 stimulation enhanced BDNF release (by 11%, small but significant) while a PAR-1 agonist added during the late phase (24 h after 2-Furoyl-LIGRLO-NH2 addition) suppressed the release of cytokines and NO. The neuroprotective and neurotoxic effects of activated microglial exhibit distinct temporal profiles that are regulated by PAR-1 and PAR-2 stimulation. It may be possible to facilitate neuronal recovery and repair by appropriately timed stimulation and inhibition of microglial PAR-1 and PAR-2 receptors.

  20. On the origin of the March 5, 1979 gamma ray transient: A vibrating neutron star in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Bonazzola, S.; Cline, T. L.; Kazanas, D.; Meszaros, P.; Lingenfelter, R. E.

    1980-01-01

    It is proposed that a vibrating neutron star in the Large Magellanic Cloud is the source of the March 5 transient. Neutron star vibrations transport energy rapidly to the surface, heat the atmosphere by wave dissipation, and decay by gravitational radiation reaction. The electromagnetic emission arises from e(+)-e(-) pairs which cool and annihilate in the strong magnetic field of the neutron star. The field also confines the pairs, and this allows the production of the redshifted annihilation feature observed in the data. The redshift implies a gravitational radiation damping time which agrees with the 0.15 second duration of the impulsive phase of the event. Thus, the March 5 transient may be both the first detection of a vibrating neutron star and indirect evidence for gravitational radiation.

  1. Neutron Scattering Announcements

    Science.gov Websites

    will be added. We encourage everyone interested in neutron scattering to take full advantage of this neutron source ESS. After an initial layout phase using analytical considerations further assessment of Home Page | Facilities | Reference | Software | Conferences | Announcements | Mailing Lists Neutron

  2. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sears, Jason, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Link, Anthony, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Schmidt, Andrea, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation duringmore » the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.« less

  3. Double-layer neutron shield design as neutron shielding application

    NASA Astrophysics Data System (ADS)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.

  4. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  5. Neutron and high-resolution room-temperature X-ray data collection from crystallized lytic polysaccharide monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacik, John -Paul; Mekasha, Sophanit; Forsberg, Zarah

    Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1–3 mm 3) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected andmore » processed to 1.1 Å resolution in space group P2 12 12 1. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. As a result, joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes.« less

  6. Neutron and high-resolution room-temperature X-ray data collection from crystallized lytic polysaccharide monooxygenase

    DOE PAGES

    Bacik, John -Paul; Mekasha, Sophanit; Forsberg, Zarah; ...

    2015-01-01

    Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1–3 mm 3) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected andmore » processed to 1.1 Å resolution in space group P2 12 12 1. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. As a result, joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes.« less

  7. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  8. Non-destructive diagnostics of irradiated materials using neutron scattering from pulsed neutron sources

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey; Sikolenko, Vadim

    2004-09-01

    The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.

  9. Magnetic trapping of neutrons

    PubMed

    Huffman; Brome; Butterworth; Coakley; Dewey; Dzhosyuk; Golub; Greene; Habicht; Lamoreaux; Mattoni; McKinsey; Wietfeldt; Doyle

    2000-01-06

    Accurate measurement of the lifetime of the neutron (which is unstable to beta decay) is important for understanding the weak nuclear force and the creation of matter during the Big Bang. Previous measurements of the neutron lifetime have mainly been limited by certain systematic errors; however, these could in principle be avoided by performing measurements on neutrons stored in a magnetic trap. Neutral-particle and charged-particle traps are widely used for studying both composite and elementary particles, because they allow long interaction times and isolation of particles from perturbing environments. Here we report the magnetic trapping of neutrons. The trapping region is filled with superfluid 4He, which is used to load neutrons into the trap and as a scintillator to detect their decay. Neutrons in the trap have a lifetime of 750(+330)(-200) seconds, mainly limited by their beta decay rather than trap losses. Our experiment verifies theoretical predictions regarding the loading process and magnetic trapping of neutrons. Further refinement of this method should lead to improved precision in the neutron lifetime measurement.

  10. Modeles numeriques de la stimulation optique de neurones assistee par nanoparticules plasmoniques

    NASA Astrophysics Data System (ADS)

    Le Hir, Nicolas

    La stimulation de neurones par laser emerge depuis plusieurs annees comme une alternative aux techniques plus traditionnelles de stimulation artificielle. Contrairement a celles-ci, la stimulation lumineuse ne necessite pas d'interagir directement avec le tissu organique, comme c'est le cas pour une stimulation par electrodes, et ne necessite pas de manipulation genetique comme c'est le cas pour les methodes optogenetiques. Plus recemment, la stimulation lumineuse de neurones assistee par nanoparticules a emerge comme un complement a la stimulation simplement lumineuse. L'utilisation de nanoparticules complementaires permet d'augmenter la precision spatiale du procede et de diminuer la fluence necessaire pour observer le phenomene. Ceci vient des proprietes d'interaction entre les nanoparticules et le faisceau laser, comme par exemple les proprietes d'absorption des nanoparticules. Deux phenomenes princpaux sont observes. Dans certains cas, il s'agit d'une depolarisation de la membrane, ou d'un potentiel d'action. Dans d'autres experiences, un influx de calcium vers l'interieur du neurone est detecte par une augmentation de la fluorescence d'une proteine sensible a la concentration calcique. Certaines stimulations sont globales, c'est a dire qu'une perturbation se propage a l'ensemble du neurone : c'est le cas d'un potentiel d'action. D'autres sont, au contraire, locales et ne se propagent pas a l'ensemble de la cellule. Si une stimulation lumineuse globale est rendue possible par des techniques relativement bien maitrisees a l'heure actuelle, comme l'optogenetique, une stimulation uniquement locale est plus difficile a realiser. Or, il semblerait que les methodes de stimulation lumineuse assistees par nanoparticules puissent, dans certaines conditions, offrir cette possibilite. Cela serait d'une grande aide pour conduire de nouvelles etudes sur le fonctionnement des neurones, en offrant de nouvelles possibilites experimentales en complement des possibilites

  11. Brulures par Diluant

    PubMed Central

    Benbrahim, A.; Jerrah, H.; Diouri, M.; Bahechar, N.; Boukind, E.H.

    2009-01-01

    Summary La flamme de diluant est une cause non rare de brûlure dans le contexte marocain. Nous avons jugé intéressant de faire une étude épidémiologique sur la brûlure par flamme de diluant (BFD) au centre national des brûlés (CNB) du CHU Ibn-Rochd de Casablanca. Ce travail a été réalisé sur une période de 10 mois (septembre 2007/juin 2008). Le but du travail est de montrer les caractéristiques de ce type de brûlures pour les prévenir et ce par l'information sur le diluant, produit causant ces brûlures, et ses différents dangers, la brûlure notamment. Durant cette période, nous avons colligé 17 cas de BFD sur un total de 356 patients admis au CNB pour brûlures aiguës toute étiologie confondue. La moyenne d'age des patients concernés est de 32 ans. Ils sont presque tous de sexe masculin (16 hommes/1 femme) et ont des antécédents de toxicomanie et/ou de délinquance. Tous nos patients sont de bas niveau socio-économique et habitent dans des bidonvilles pour la plupart. La brûlure est souvent secondaire à une agression dans la rue (92% des cas). Concernant les caractéristiques de la brûlure, la surface cutanée brûlée moyenne est de 23%; elle est souvent profonde et siège surtout au niveau des membres supérieurs et du tronc. PMID:21991179

  12. Bacterial actin homolog ParM: arguments for an apolar, antiparallel double helix.

    PubMed

    Erickson, Harold P

    2012-09-28

    The bacterial actin homolog ParM has always been modeled as a polar filament, comprising two parallel helical strands, like actin itself. I present arguments here that ParM may be an apolar filament, in which the two helical strands are antiparallel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Grazing Incidence Neutron Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  14. Grazing incidence neutron optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2012-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20 .ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  15. Proteinase-activated receptor (PAR)-2 activation impacts bone resorptive properties of human osteoarthritic subchondral bone osteoblasts.

    PubMed

    Amiable, Nathalie; Tat, Steeve Kwan; Lajeunesse, Daniel; Duval, Nicolas; Pelletier, Jean-Pierre; Martel-Pelletier, Johanne; Boileau, Christelle

    2009-06-01

    In osteoarthritis (OA), the subchondral bone undergoes a remodelling process involving several factors synthesized by osteoblasts. In this study, we investigated the expression, production, modulation, and role of PAR-2 in human OA subchondral bone osteoblasts. PAR-2 expression and production were determined by real-time PCR and flow cytometry, respectively. PAR-2 modulation was investigated in OA subchondral bone osteoblasts treated with IL-1 beta (100 pg/ml), TNF-alpha (5 ng/ml), TGF-beta1 (10 ng/ml), PGE(2) (500 nM), IL-6 (10 ng/ml) and IL-17 (10 ng/ml). Membranous RANKL protein was assessed by flow cytometry, and OPG, MMP-1, MMP-9, MMP-13, IL-6 and intracellular signalling pathways by specific ELISAs. Bone resorptive activity was measured by using a co-culture model of human PBMC and OA subchondral bone osteoblasts. PAR-2 expression and production (p<0.05) were markedly increased when human OA subchondral bone osteoblasts were compared to normal. On OA osteoblasts, PAR-2 production was significantly increased by IL-1 beta, TNF-alpha and PGE(2). Activation of PAR-2 with a specific agonist, SLIGKV-NH(2), induced a significant up-regulation of MMP-1, MMP-9, IL-6, and membranous RANKL, but had no effect on MMP-13 or OPG production. Interestingly, bone resorptive activity was also significantly enhanced following PAR-2 activation. The PAR-2 effect was mediated by activation of the MAP kinases Erk1/2 and JNK. This study is the first to demonstrate that PAR-2 activation plays a role in OA subchondral bone resorption via an up-regulation of major bone remodelling factors. These results shed new light on the potential of PAR-2 as a therapeutic target in OA.

  16. Performance verification of an epithermal neutron flux monitor using accelerator-based BNCT neutron sources

    NASA Astrophysics Data System (ADS)

    Guan, X.; Murata, I.; Wang, T.

    2017-09-01

    The performance of an epithermal neutron flux monitor developed for boron neutron capture therapy (BNCT) is verified by Monte Carlo simulations using accelerator-based neutron sources (ABNSs). The results indicate that the developed epithermal neutron flux monitor works well and it can be efficiently used in practical applications to measure the epithermal neutron fluxes of ABNSs in a high accuracy.

  17. Simple, empirical approach to predict neutron capture cross sections from nuclear masses

    NASA Astrophysics Data System (ADS)

    Couture, A.; Casten, R. F.; Cakirli, R. B.

    2017-12-01

    Background: Neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40 % , and has limited predictive power, with predictions from different models rapidly differing by an order of magnitude a few nucleons from the last measurement. Purpose: To develop a new approach to predicting neutron capture cross sections over broad ranges of nuclei that accounts for their values where known and which has reliable predictive power with small uncertainties for many nuclei where they are unknown. Methods: Experimental neutron capture cross sections were compared to empirical mass observables in regions of similar structure. Results: We present an extremely simple method, based solely on empirical mass observables, that correlates neutron capture cross sections in the critical energy range from a few keV to a couple hundred keV. We show that regional cross sections are compactly correlated in medium and heavy mass nuclei with the two-neutron separation energy. These correlations are easily amenable to predict unknown cross sections, often converting the usual extrapolations to more reliable interpolations. It almost always reproduces existing data to within 25 % and estimated uncertainties are below about 40 % up to 10 nucleons beyond known data. Conclusions: Neutron capture cross sections display a surprisingly strong connection to the two-neutron separation energy, a nuclear structure property. The simple, empirical correlations uncovered provide model-independent predictions of

  18. Towards an improved LAI collection protocol via simulated field-based PAR sensing

    DOE PAGES

    Yao, Wei; Van Leeuwen, Martin; Romanczyk, Paul; ...

    2016-07-14

    In support of NASA’s next-generation spectrometer—the Hyperspectral Infrared Imager (HyspIRI)—we are working towards assessing sub-pixel vegetation structure from imaging spectroscopy data. Of particular interest is Leaf Area Index (LAI), which is an informative, yet notoriously challenging parameter to efficiently measure in situ. While photosynthetically-active radiation (PAR) sensors have been validated for measuring crop LAI, there is limited literature on the efficacy of PAR-based LAI measurement in the forest environment. This study (i) validates PAR-based LAI measurement in forest environments, and (ii) proposes a suitable collection protocol, which balances efficiency with measurement variation, e.g., due to sun flecks and various-sized canopymore » gaps. A synthetic PAR sensor model was developed in the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model and used to validate LAI measurement based on first-principles and explicitly-known leaf geometry. Simulated collection parameters were adjusted to empirically identify optimal collection protocols. Furthermore, these collection protocols were then validated in the field by correlating PAR-based LAI measurement to the normalized difference vegetation index (NDVI) extracted from the “classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) data (R 2 was 0.61). The results indicate that our proposed collecting protocol is suitable for measuring the LAI of sparse forest (LAI < 3–5 ( m 2/m 2)).« less

  19. Tiam1 interaction with the PAR complex promotes talin-mediated Rac1 activation during polarized cell migration

    PubMed Central

    Wang, Shujie; Watanabe, Takashi; Matsuzawa, Kenji; Katsumi, Akira; Kakeno, Mai; Matsui, Toshinori; Ye, Feng; Sato, Kazuhide; Murase, Kiyoko; Sugiyama, Ikuko; Kimura, Kazushi; Mizoguchi, Akira; Ginsberg, Mark H.; Collard, John G.

    2012-01-01

    Migrating cells acquire front-rear polarity with a leading edge and a trailing tail for directional movement. The Rac exchange factor Tiam1 participates in polarized cell migration with the PAR complex of PAR3, PAR6, and atypical protein kinase C. However, it remains largely unknown how Tiam1 is regulated and contributes to the establishment of polarity in migrating cells. We show here that Tiam1 interacts directly with talin, which binds and activates integrins to mediate their signaling. Tiam1 accumulated at adhesions in a manner dependent on talin and the PAR complex. The interactions of talin with Tiam1 and the PAR complex were required for adhesion-induced Rac1 activation, cell spreading, and migration toward integrin substrates. Furthermore, Tiam1 acted with talin to regulate adhesion turnover. Thus, we propose that Tiam1, with the PAR complex, binds to integrins through talin and, together with the PAR complex, thereby regulates Rac1 activity and adhesion turnover for polarized migration. PMID:23071154

  20. Characterization of a point mutation in the parC gene of Mycoplasma bovirhinis associated with fluoroquinolone resistance.

    PubMed

    Hirose, K; Kawasaki, Y; Kotani, K; Abiko, K; Sato, H

    2004-05-01

    Quinolone-resistant (QR) mutants of Mycoplasma bovirhinis strain PG43 (type strain) were generated by stepwise selection in increasing concentrations of enrofloxacin (ENR). An alteration was found in the quinolone resistance-determining region (QRDR) of the parC gene coding for the ParC subunit of topoisomerase IV from these mutants, but not in the gyrA, gyrB, and parE gene coding for the GyrA and GyrB subunits of DNA gyrase and the ParE subunit of topoisomerase IV. Similarly, such an alteration in QRDR of parC was found in the field isolates of M. bovirhinis, which possessed various levels of QR. The substitution of leucine (Leu) by serine (Ser) at position 80 of QRDR of ParC was observed in both QR-mutants and QR-isolates. This is the first report of QR based on a point mutation of the parC gene in M. bovirhinis.

  1. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  2. A method for estimating the diffuse attenuation coefficient (KdPAR)from paired temperature sensors

    USGS Publications Warehouse

    Read, Jordan S.; Rose, Kevin C.; Winslow, Luke A.; Read, Emily K.

    2015-01-01

    A new method for estimating the diffuse attenuation coefficient for photosynthetically active radiation (KdPAR) from paired temperature sensors was derived. We show that during cases where the attenuation of penetrating shortwave solar radiation is the dominant source of temperature changes, time series measurements of water temperatures at multiple depths (z1 and z2) are related to one another by a linear scaling factor (a). KdPAR can then be estimated by the simple equation KdPAR ln(a)/(z2/z1). A suggested workflow is presented that outlines procedures for calculating KdPAR according to this paired temperature sensor (PTS) method. This method is best suited for conditions when radiative temperature gains are large relative to physical noise. These conditions occur frequently on water bodies with low wind and/or high KdPARs but can be used for other types of lakes during time periods of low wind and/or where spatially redundant measurements of temperatures are available. The optimal vertical placement of temperature sensors according to a priori knowledge of KdPAR is also described. This information can be used to inform the design of future sensor deployments using the PTS method or for campaigns where characterizing sub-daily changes in temperatures is important. The PTS method provides a novel method to characterize light attenuation in aquatic ecosystems without expensive radiometric equipment or the user subjectivity inherent in Secchi depth measurements. This method also can enable the estimation of KdPAR at higher frequencies than many manual monitoring programs allow.

  3. Neutron spectrum determination in a sub-critical assembly using the multi-disc neutron activation technique

    NASA Astrophysics Data System (ADS)

    Koseoglou, P.; Vagena, E.; Stoulos, S.; Manolopoulou, M.

    2016-09-01

    Neutron spectrum of the sub-critical nuclear assembly-reactor of Aristotle University of Thessaloniki was measured at three radial distances from the reactor core. The neutron activation technique was applied irradiating 15 thick foils - disc of various elements at each position. The data of 38 (n, γ), (n, p) and (n, α) reactions were analyzed for specific activity determination. Discs instead of foils were used due to the relevant low neutron flux, so the gamma self-absorption as well as the neutron self-shielding factors has been calculated using GEANT simulations in order to determine the activity induced. The specific activities calculated for all isotopes studied were the input to the SANDII code, which was built specifically for the neutron spectrum de-convolution when the neutron activation technique is used. For the optimization of the results a technique was applied in order to minimize the influence of the initial-"guessed" spectrum shape SANDII uses. The neutron spectrum estimated presents a peak in the regions of (i) thermal neutrons ranged between 0.001 and 1 eV peaking at neutron energy ∼0.1 eV and (ii) fast neutrons ranged between 0.1 and 20 MeV peaking at neutron energy ∼1.2 MeV. The reduction of thermal neutrons is higher than the fast one as the distance from the reactor core increases since thermal neutrons capture by natural U-fuel has higher cross section than the fast neutrons.

  4. Dose-equivalent neutron dosimeter

    DOEpatents

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  5. Neutron Scattering Web

    Science.gov Websites

    Neutron Scattering Home Page A new portal for neutron scattering has just been established at neutronsources.org. The information contained here in the Neutron Scattering Web has been transferred to the new site . We will leave the current content here for archival purposes but no new content will be added. We

  6. Historic macrophyte development in Par Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grace, J.B.

    1985-08-01

    Aerial photographs from 1975, 1980, and 1983 were examined to evaluate the changes that have occurred in the wetland vegetation of Par Pond, a reactor-cooling reservoir. Evaluation of the aerial photographs was based on comparisons with ground-level vegetation maps made during July 1984. Comparisons of photographs from August and December of 1983 revealed the main seasonal change in the aerial coverage of wetland vegetation to be the wintertime loss of non-persistent emergent species such as Nelumbo lutea and Nymphaea odorata. Comparisons between September 1980 and August 1983 revealed that the lakeward extent of non-persistent macrophytes has increased by an averagemore » of 8.2 m, though not all sites have changed equally. For persistent macrophytes (principally Typha), the average increase in lakeward extent between December 1975 and August 1983 was 3.48 m. The extensive development of wetland vegetation in Par Pond as well as the substantial spread of vegetation over only a few years time indicates the high suitability of this habitat for the growth of wetland plants.« less

  7. Developpement d'un montage simulant l'erosion par la pluie pour l'evaluation des revetements glaciophobes dans le domaine aerospatial

    NASA Astrophysics Data System (ADS)

    Tremblay, Sarah-Eve

    Ce memoire presente le developpement d’un montage simulant l’erosion par la pluie afin d’effectuer l’evaluation de differents revetements glaciophobes dans le domaine aerospatial. Bien que plusieurs revetements presentent une bonne efficacite a reduire l’adherence et/ou l’accumulation de glace, ils ne repondent pas necessairement aux normes de resistance a l’erosion simulee par les gouttes de pluie les frappant a grande vitesse. Il n’existe qu’une installation en Amerique du Nord offrant un service d’essai qui evalue la resistance a l’erosion par la pluie suivant les normes aerospatiales. Etant l’unique institution pouvant faire la certification de peintures utilisees sur les avions en ce qui a trait a l’erosion par la pluie, ce service est donc difficile d’acces et couteux. Le laboratoire international des materiaux antigivre (LIMA) a developpe un essai plus rapide et moins couteux, facilitant ainsi le developpement de revetements glaciophobes devant resister a l’erosion par la pluie. Dans cette etude, le developpement du montage d’erosion par la pluie effectue au laboratoire des materiaux antigivre (LIMA) est presente. En particulier, des essais sur quatre (4) revetements dont la resistance a l’erosion est connue, et sur trois revetements industriels, ont ete effectues afin d’ajuster les differents parametres du montage comme la pression et la temperature de l’eau ainsi que la robustesse du montage. Ensuite, des essais de sensibilite et de reproductibilite des resultats ont egalement ete effectues pour fin de validation du montage et du protocole experimental. Pour ce faire, le montage de type jet d’eau developpe consiste principalement en une pompe a haute pression qui projette un jet d’eau continu passant par les orifices d’un disque tournant. Cette operation permet de generer une goutte de pluie simulee qui est projetee sur un echantillon de revetement statique. L’essai est base sur la norme standard ASTM (Liquid

  8. Design of a boron neutron capture enhanced fast neutron therapy assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhonglu

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator nearmore » the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm 2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm 2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm 2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm 2 collimator. Five 1.0-cm thick 20x20 cm 2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The measured dose enhancement at 5.0-cm depth in the head phantom for the 5

  9. Gamma signatures of the C-BORD Tagged Neutron Inspection System

    NASA Astrophysics Data System (ADS)

    Sardet, A.; Pérot, B.; Carasco, C.; Sannié, G.; Moretto, S.; Nebbia, G.; Fontana, C.; Pino, F.; Iovene, A.; Tintori, C.

    2018-01-01

    In the frame of C-BORD project (H2020 program of the EU), a Rapidly relocatable Tagged Neutron Inspection System (RRTNIS) is being developed to non-intrusively detect explosives, chemical threats, and other illicit goods in cargo containers. Material identification is performed through gamma spectroscopy, using twenty NaI detectors and four LaBr3 detectors, to determine the different elements composing the inspected item from their specific gamma signatures induced by fast neutrons. This is performed using an unfolding algorithm to decompose the energy spectrum of a suspect item, selected by X-ray radiography and on which the RRTNIS inspection is focused, on a database of pure element gamma signatures. This paper reports on simulated signatures for the NaI and LaBr3 detectors, constructed using the MCNP6 code. First experimental spectra of a few elements of interest are also presented.

  10. Pulsed neutron detector

    DOEpatents

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  11. Proposal for the Simultaneous Measurement of the Neutron-Neutron and Neutron-Proton Quasi-Free Scattering Cross Section via the Neutron-Deuteron Breakup Reaction at E n = 19 MeV

    NASA Astrophysics Data System (ADS)

    Tornow, W.; Howell, C. R.; Crowell, A. S.

    2013-12-01

    In order to confirm or refute the present discrepancy between data and calculation for the neutron-neutron quasi-free scattering cross section in the neutron-deuteron breakup reaction, we describe a new experimental approach currently being pursued at TUNL.

  12. Effect of neutron energy and fluence on deuterium retention behaviour in neutron irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroe; Yuyama, Kenta; Li, Xiaochun; Hatano, Yuji; Toyama, Takeshi; Ohta, Masayuki; Ochiai, Kentaro; Yoshida, Naoaki; Chikada, Takumi; Oya, Yasuhisa

    2016-02-01

    Deuterium (D) retention behaviours for 14 MeV neutron irradiated tungsten (W) and fission neutron irradiated W were evaluated by thermal desorption spectroscopy (TDS) to elucidate the correlation between D retention and defect formation by different energy distributions of neutrons in W at the initial stage of fusion reactor operation. These results were compared with that for Fe2+ irradiated W with various damage concentrations. Although dense vacancies and voids within the shallow region near the surface were introduced by Fe2+ irradiation, single vacancies with low concentration were distributed throughout the sample for 14 MeV neutron irradiated W. Only the dislocation loops were introduced by fission neutron irradiation at low neutron fluence. The desorption peak of D for fission neutron irradiated W was concentrated at low temperature region less than 550 K, but that for 14 MeV neutron irradiated W was extended toward the higher temperature side due to D trapping by vacancies. It can be said that the neutron energy distribution could have a large impact on irradiation defect formation and the D retention behaviour.

  13. Active Neutron-Based Interrogation System with D-D Neutron Source for Detection of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Misawa, T.; Yagi, T.; Pyeon, C. H.; Kimura, M.; Masuda, K.; Ohgaki, H.

    2015-10-01

    The detection of special nuclear materials (SNM) is an important issue for nuclear security. The interrogation systems used in a sea port and an airport are developed in the world. The active neutron-based interrogation system is the one of the candidates. We are developing the active neutron-based interrogation system with a D-D fusion neutron source for the nuclear security application. The D-D neutron source is a compact discharge-type fusion neutron source called IEC (Inertial-Electrostatic Confinement fusion) device which provides 2.45 MeV neutrons. The nuclear materials emit the highenergy neutrons by fission reaction. High-energy neutrons with energies over 2.45 MeV amount to 30% of all the fission neutrons. By using the D-D neutron source, the detection of SNMs is considered to be possible with the attention of fast neutrons if there is over 2.45 MeV. Ideally, neutrons at En>2.45 MeV do not exist if there is no nuclear materials. The detection of fission neutrons over 2.45 MeV are hopeful prospect for the detection of SNM with a high S/N ratio. In the future, the experiments combined with nuclear materials and a D-D neutron source will be conducted. Furthermore, the interrogation system will be numerically investigated by using nuclear materials, a D-D neutron source, and a steel container.

  14. A Single-Cell Biochemistry Approach Reveals PAR Complex Dynamics during Cell Polarization.

    PubMed

    Dickinson, Daniel J; Schwager, Francoise; Pintard, Lionel; Gotta, Monica; Goldstein, Bob

    2017-08-21

    Regulated protein-protein interactions are critical for cell signaling, differentiation, and development. For the study of dynamic regulation of protein interactions in vivo, there is a need for techniques that can yield time-resolved information and probe multiple protein binding partners simultaneously, using small amounts of starting material. Here we describe a single-cell protein interaction assay. Single-cell lysates are generated at defined time points and analyzed using single-molecule pull-down, yielding information about dynamic protein complex regulation in vivo. We established the utility of this approach by studying PAR polarity proteins, which mediate polarization of many animal cell types. We uncovered striking regulation of PAR complex composition and stoichiometry during Caenorhabditis elegans zygote polarization, which takes place in less than 20 min. PAR complex dynamics are linked to the cell cycle by Polo-like kinase 1 and govern the movement of PAR proteins to establish polarity. Our results demonstrate an approach to study dynamic biochemical events in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Focused Study of Thermonuclear Bursts on Neutron Stars

    NASA Astrophysics Data System (ADS)

    Chenevez, Jérôme

    2009-05-01

    X-ray bursters form a class of Low Mass X-Ray Binaries where accreted material from a donor star undergoes rapid thermonuclear burning in the surface layers of a neutron star. The flux released can temporarily exceed the Eddington limit and drive the photosphere to large radii. Such photospheric radius expansion bursts likely eject nuclear burning ashes into the interstellar medium, and may make possible the detection of photoionization edges. Indeed, theoretical models predict that absorption edges from 58Fe at 9.2 keV, 60Zn and 62Zn at 12.2 keV should be detectable by the future missions Simbol-X and NuSTAR. A positive detection would thus probe the nuclear burning as well as the gravitational redshift from the neutron star. Moreover, likely observations of atomic X-ray spectral components reflected from the inner accretion disk have been reported. The high spectral resolution capabilities of the focusing X-ray telescopes may therefore make possible to differentiate between the potential interpretations of the X-ray bursts spectral features.

  16. High intensity, pulsed thermal neutron source

    DOEpatents

    Carpenter, J.M.

    1973-12-11

    This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)

  17. The DNA binding parvulin Par17 is targeted to the mitochondrial matrix by a recently evolved prepeptide uniquely present in Hominidae

    PubMed Central

    Kessler, Daniel; Papatheodorou, Panagiotis; Stratmann, Tina; Dian, Elke Andrea; Hartmann-Fatu, Cristina; Rassow, Joachim; Bayer, Peter; Mueller, Jonathan Wolf

    2007-01-01

    Background The parvulin-type peptidyl prolyl cis/trans isomerase Par14 is highly conserved in all metazoans. The recently identified parvulin Par17 contains an additional N-terminal domain whose occurrence and function was the focus of the present study. Results Based on the observation that the human genome encodes Par17, but bovine and rodent genomes do not, Par17 exon sequences from 10 different primate species were cloned and sequenced. Par17 is encoded in the genomes of Hominidae species including humans, but is absent from other mammalian species. In contrast to Par14, endogenous Par17 was found in mitochondrial and membrane fractions of human cell lysates. Fluorescence of EGFP fusions of Par17, but not Par14, co-localized with mitochondrial staining. Par14 and Par17 associated with isolated human, rat and yeast mitochondria at low salt concentrations, but only the Par17 mitochondrial association was resistant to higher salt concentrations. Par17 was imported into mitochondria in a time and membrane potential-dependent manner, where it reached the mitochondrial matrix. Moreover, Par17 was shown to bind to double-stranded DNA under physiological salt conditions. Conclusion Taken together, the DNA binding parvulin Par17 is targeted to the mitochondrial matrix by the most recently evolved mitochondrial prepeptide known to date, thus adding a novel protein constituent to the mitochondrial proteome of Hominidae. PMID:17875217

  18. Thermal Neutron Imaging Using A New Pad-Based Position Sensitive Neutron Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dioszegi I.; Vanier P.E.; Salwen C.

    2016-10-29

    Thermal neutrons (with mean energy of 25 meV) have a scattering mean free path of about 20 m in air. Therefore it is feasible to find localized thermal neutron sources up to ~30 m standoff distance using thermal neutron imaging. Coded aperture thermal neutron imaging was developed in our laboratory in the nineties, using He-3 filled wire chambers. Recently a new generation of coded-aperture neutron imagers has been developed. In the new design the ionization chamber has anode and cathode planes, where the anode is composed of an array of individual pads. The charge is collected on each of themore » individual 5x5 mm2 anode pads, (48x48 in total, corresponding to 24x24 cm2 sensitive area) and read out by application specific integrated circuits (ASICs). The high sensitivity of the ASICs allows unity gain operation mode. The new design has several advantages for field deployable imaging applications, compared to the previous generation of wire-grid based neutron detectors. Among these are the rugged design, lighter weight and use of non-flammable stopping gas. For standoff localization of thermalized neutron sources a low resolution (11x11 pixel) coded aperture mask has been fabricated. Using the new larger area detector and the coarse resolution mask we performed several standoff experiments using moderated californium and plutonium sources at Idaho National Laboratory. In this paper we will report on the development and performance of the new pad-based neutron camera, and present long range coded-aperture images of various thermalized neutron sources.« less

  19. Peeling Off Neutron Skins from Neutron-Rich Nuclei: Constraints on the Symmetry Energy from Neutron-Removal Cross Sections

    NASA Astrophysics Data System (ADS)

    Aumann, T.; Bertulani, C. A.; Schindler, F.; Typel, S.

    2017-12-01

    An experimentally constrained equation of state of neutron-rich matter is fundamental for the physics of nuclei and the astrophysics of neutron stars, mergers, core-collapse supernova explosions, and the synthesis of heavy elements. To this end, we investigate the potential of constraining the density dependence of the symmetry energy close to saturation density through measurements of neutron-removal cross sections in high-energy nuclear collisions of 0.4 to 1 GeV /nucleon . We show that the sensitivity of the total neutron-removal cross section is high enough so that the required accuracy can be reached experimentally with the recent developments of new detection techniques. We quantify two crucial points to minimize the model dependence of the approach and to reach the required accuracy: the contribution to the cross section from inelastic scattering has to be measured separately in order to allow a direct comparison of experimental cross sections to theoretical cross sections based on density functional theory and eikonal theory. The accuracy of the reaction model should be investigated and quantified by the energy and target dependence of various nucleon-removal cross sections. Our calculations explore the dependence of neutron-removal cross sections on the neutron skin of medium-heavy neutron-rich nuclei, and we demonstrate that the slope parameter L of the symmetry energy could be constrained down to ±10 MeV by such a measurement, with a 2% accuracy of the measured and calculated cross sections.

  20. High energy neutron dosimeter

    DOEpatents

    Rai, K.S.F.

    1994-01-11

    A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

  1. High energy neutron dosimeter

    DOEpatents

    Sun, Rai Ko S.F.

    1994-01-01

    A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

  2. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    DOEpatents

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  3. Development of An Epi-thermal Neutron Field for Fundamental Researches for BNCT with A DT Neutron Source

    NASA Astrophysics Data System (ADS)

    Osawa, Yuta; Imoto, Shoichi; Kusaka, Sachie; Sato, Fuminobu; Tanoshita, Masahiro; Murata, Isao

    2017-09-01

    Boron Neutron Capture Therapy (BNCT) is known to be a new promising cancer therapy suppressing influence against normal cells. In Japan, Accelerator Based Neutron Sources (ABNS) are being developed for BNCT. For the spread of ABNS based BNCT, we should characterize the neutron field beforehand. For this purpose, we have been developing a low-energy neutron spectrometer based on 3He position sensitive proportional counter. In this study, a new intense epi-thermal neutron field was developed with a DT neutron source for verification of validity of the spectrometer. After the development, the neutron field characteristics were experimentally evaluated by using activation foils. As a result, we confirmed that an epi-thermal neutron field was successfully developed suppressing fast neutrons substantially. Thereafter, the neutron spectrometer was verified experimentally. In the verification, although a measured detection depth distribution agreed well with the calculated distribution by MCNP, the unfolded spectrum was significantly different from the calculated neutron spectrum due to contribution of the side neutron incidence. Therefore, we designed a new neutron collimator consisting of a polyethylene pre-collimator and boron carbide neutron absorber and confirmed numerically that it could suppress the side incident neutrons and shape the neutron flux to be like a pencil beam.

  4. Microscopie par rayons X dans la fenêtre de l'eau : faisabilité et intérêt pour la biologie d'un instrument de laboratoire

    NASA Astrophysics Data System (ADS)

    Adam, J. F.; Moy, J. P.

    2005-06-01

    La biologie étudie des structures ou des phénomènes sub-cellulaires. Pour cela la microscopie est la technique d'observation privilégiée. La résolution spatiale de la microscopie optique s'avère bien souvent insuffisante pour de telles observations. Les techniques plus résolvantes, comme la microscopie électronique par transmission sont souvent destructrices et d'une complexité peu adaptée aux besoins des biologistes. La microscopie par rayons X dans la fenêtre de l'eau permet l'imagerie rapide de cellules dans leur milieu naturel, nécessite peu de préparation et offre des résolutions de quelques dizaines de nanomètres. De plus, il existe un bon contraste naturel entre les structures carbonées (protéines, lipides) et l'eau. Actuellement cette technique est limitée aux centres de rayonnement synchrotron, ce qui impose une planification et des déplacements incompatibles avec les besoins de la biologie. Un tel microscope fonctionnant avec uns source de laboratoire serait d'une grande utilité. Ce document présente un état de l'art de la microscopie par rayons X dans la fenêtre de l'eau. Un cahier des charges détaillé pour un appareil de laboratoire ayant les performances optiques requises par les biologistes est présenté et confronté aux microscopes X de laboratoire déjà existants. Des solutions concernant la source et les optiques sont également discutées.

  5. NEUTRON SHIELDING STRUCTURE

    DOEpatents

    Mattingly, J.T.

    1962-09-25

    A lightweight neutron shielding structure comprises a honeycomb core which is filled with a neutron absorbing powder. The honeycomb core is faced with parallel planar facing sheets to form a lightweight rigid unit. Suitable absorber powders are selected from among the following: B, B/sub 4/C, B/sub 2/O/ sub 3/, CaB/sub 6/, Li/sub 2/CO3, LiOH, LiBO/sub 2/, Li/s ub 2/O. The facing sheets are constructed of a neutron moderating material, so that fast neutrons will be moderated while traversing the facing sheets, and ultimately be absorbed by the absorber powder in the honeycomb. Beryllium is a preferred moderator material for use in the facing sheets. The advantage of the structure is that it combines the rigidity and light weight of a honeycomb construction with the neutron absorption properties of boron and lithium. (AEC)

  6. Inelastic neutron scattering study of icosahedral AlFeCu quasicrystal

    NASA Astrophysics Data System (ADS)

    Quilichini, M.; Hennion, B.; Heger, G.; Lefebvre, S.; Quivy, A.

    1992-02-01

    Dynamical properties of quasiperiodic structures are rather tricky and far from being understood. For quasicrystals only little information is available both theoretically and experimentally. In this paper we present new experimental results obtained by inelastic neutron scattering on a monodomain quasicrystal of Al{63}Cu{25}Fe{12} already investigated in a previous study [1]. In section 1 we recall the basic features of the quasiperiodic structures and briefly review theoretical works on the dynamics of quasicrystals which can be of some help to appreciate the experimental data presented in section 2 and discussed in section 3. Les propriétés dynamiques des structures quasipériodiques sont complexes et pas encore complètement comprises. Pour les quasicristaux on ne possède que peu d'études dynamiques tant du point de vue théorique qu'expérimental. Dans cette lettre nous présentons des nouveaux résultats obtenus par diffusion inélastique de neutrons avec un quasicristal monodomaine de Al{63}Cu{25}Fe{12} que nous avions déjà étudié [1]. Dans la partie 1 nous rappelons quelques propriétés spécifiques des structures quasipériodiques et nous résumons brièvement les travaux théoriques qui nous permettent une interprétation qualitative des données expérimentales présentées dans la partie 2 et discutées dans la partie 3.

  7. Neutron-neutron angular correlations in spontaneous fission of 252Cf and 240Pu

    NASA Astrophysics Data System (ADS)

    Verbeke, J. M.; Nakae, L. F.; Vogt, R.

    2018-04-01

    Background: Angular anisotropy has been observed between prompt neutrons emitted during the fission process. Such an anisotropy arises because the emitted neutrons are boosted along the direction of the parent fragment. Purpose: To measure the neutron-neutron angular correlations from the spontaneous fission of 252Cf and 240Pu oxide samples using a liquid scintillator array capable of pulse-shape discrimination. To compare these correlations to simulations combining the Monte Carlo radiation transport code MCNPX with the fission event generator FREYA. Method: Two different analysis methods were used to study the neutron-neutron correlations with varying energy thresholds. The first is based on setting a light output threshold while the second imposes a time-of-flight cutoff. The second method has the advantage of being truly detector independent. Results: The neutron-neutron correlation modeled by FREYA depends strongly on the sharing of the excitation energy between the two fragments. The measured asymmetry enabled us to adjust the FREYA parameter x in 240Pu, which controls the energy partition between the fragments and is so far inaccessible in other measurements. The 240Pu data in this analysis was the first available to quantify the energy partition for this isotope. The agreement between data and simulation is overall very good for 252Cf(sf ) and 240Pu(sf ) . Conclusions: The asymmetry in the measured neutron-neutron angular distributions can be predicted by FREYA. The shape of the correlation function depends on how the excitation energy is partitioned between the two fission fragments. Experimental data suggest that the lighter fragment is disproportionately excited.

  8. Thermal neutron filter design for the neutron radiography facility at the LVR-15 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltes, Jaroslav; Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague,; Viererbl, Ladislav

    2015-07-01

    In 2011 a decision was made to build a neutron radiography facility at one of the unused horizontal channels of the LVR-15 research reactor in Rez, Czech Republic. One of the key conditions for operating an effective radiography facility is the delivery of a high intensity, homogeneous and collimated thermal neutron beam at the sample location. Additionally the intensity of fast neutrons has to be kept as low as possible as the fast neutrons may damage the detectors used for neutron imaging. As the spectrum in the empty horizontal channel roughly copies the spectrum in the reactor core, which hasmore » a high ratio of fast neutrons, neutron filter components have to be installed inside the channel in order to achieve desired beam parameters. As the channel design does not allow the instalment of complex filters and collimators, an optimal solution represent neutron filters made of large single-crystal ingots of proper material composition. Single-crystal silicon was chosen as a favorable filter material for its wide availability in sufficient dimensions. Besides its ability to reasonably lower the ratio of fast neutrons while still keeping high intensities of thermal neutrons, due to its large dimensions, it suits as a shielding against gamma radiation from the reactor core. For designing the necessary filter dimensions the Monte-Carlo MCNP transport code was used. As the code does not provide neutron cross-section libraries for thermal neutron transport through single-crystalline silicon, these had to be created by approximating the theory of thermal neutron scattering and modifying the original cross-section data which are provided with the code. Carrying out a series of calculations the filter thickness of 1 m proved good for gaining a beam with desired parameters and a low gamma background. After mounting the filter inside the channel several measurements of the neutron field were realized at the beam exit. The results have justified the expected calculated

  9. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wambach, J.; Anisworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quaisiparticle interaction in neutron matter is presented. Both particle-particle (pp) and particle-hole (ph) correlation are are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for the particle hole interaction and the scattering amplitude on the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the S-1 gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  10. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wambach, J; Ainsworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quasiparticle interaction in neutron matter is presented. Both-particle (pp) and particle-hole (ph) correlations are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for particle-hole interaction and the scattering amplitude of the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules for the scattering amplitude are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the (1)S(sub 0) gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  11. Vps26B-retromer negatively regulates plasma membrane resensitization of PAR-2.

    PubMed

    Bugarcic, Andrea; Vetter, Irina; Chalmers, Silke; Kinna, Genevieve; Collins, Brett M; Teasdale, Rohan D

    2015-11-01

    Retromer is a trimeric complex composed of Vps26, Vps29, and Vps35 and has been shown to be involved in trafficking and sorting of transmembrane proteins within the endosome. The Vps26 paralog, Vps26B, defines a distinct retromer complex (Vps26B-retromer) in vivo and in vitro. Although endosomally associated, Vps26B-retromer does not bind the established retromer transmembrane cargo protein, cation-independent mannose 6-phosphate receptor (CI-M6PR), indicating it has a distinct role to retromer containing the Vps26A paralog. In the present study we use the previously established Vps26B-expressing HEK293 cell model to address the role of Vps26B-retromer in trafficking of the protease activated G-protein coupled receptor PAR-2 to the plasma membrane. In these cells there is no apparent defect in the initial activation of the receptor, as evidenced by release of intracellular calcium, ERK1/2 signaling and endocytosis of activated receptor PAR-2 into degradative organelles. However, we observe a significant delay in plasma membrane repopulation of the protease activated G protein-coupled receptor PAR-2 following stimulation, resulting in a defect in PAR-2 activation after resensitization. Here we propose that PAR-2 plasma membrane repopulation is regulated by Vps26B-retromer, describing a potential novel role for this complex. © 2015 International Federation for Cell Biology.

  12. THERMAL NEUTRON INTENSITIES IN SOILS IRRADIATED BY FAST NEUTRONS FROM POINT SOURCES. (R825549C054)

    EPA Science Inventory

    Thermal-neutron fluences in soil are reported for selected fast-neutron sources, selected soil types, and selected irradiation geometries. Sources include 14 MeV neutrons from accelerators, neutrons from spontaneously fissioning 252Cf, and neutrons produced from alp...

  13. Localization of amylin-like immunoreactivity in melanocyte-stimulating hormone-containing cells of the pars intermedia but not those of the pars distalis in the axolotl (Ambystoma mexicanum) pituitary.

    PubMed

    Suzuki, Hirohumi; Yamamoto, Toshiharu

    2016-04-01

    Immunohistochemical techniques were employed to investigate the distribution of amylin-like immunoreactivity in the axolotl (Ambystoma mexicanum) pituitary. Amylin-immunoreactive cells were observed in the pars intermedia, and these cells were found to be immunoreactive for α-melanocyte-stimulating hormone (αMSH) as well. In contrast, αMSH-immunoreactive cells in the pars distalis were immuno-negaitive for amylin. These light microscopic findings were confirmed by immunoelectron microscopy. Amylin-immunoreactive signals were located on the haloes of presumable secretory granules in association with αMSH-immunoreactive signals in the amylin-positive cells. However, in the pars distalis, the αMSH-positive cells did not contain amylin-immunoreactive secretory granules. Western blot analysis of axolotl pituitary extracts revealed the labeling of a protein band at approximately 10.5-kDa by the anti-rat amylin serum, which was not labeled by the anti-αMSH antibody. These findings indicate that amylin secreted from MSH-producing cells in the pars intermedia may modulate MSH secretion in an autocrine fashion and may participate in MSH functions such as fatty homeostasis together with MSH. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. In Vitro Activity of Five Quinolones and Analysis of the Quinolone Resistance-Determining Regions of gyrA, gyrB, parC, and parE in Ureaplasma parvum and Ureaplasma urealyticum Clinical Isolates from Perinatal Patients in Japan

    PubMed Central

    Kawai, Yasuhiro; Nakura, Yukiko; Wakimoto, Tetsu; Nomiyama, Makoto; Tokuda, Tsugumichi; Takayanagi, Toshimitsu; Shiraishi, Jun; Wasada, Kenshi; Kitajima, Hiroyuki; Fujita, Tomio; Nakayama, Masahiro; Mitsuda, Nobuaki; Nakanishi, Isao; Takeuchi, Makoto

    2015-01-01

    Ureaplasma spp. cause several disorders, such as nongonococcal urethritis, miscarriage, and preterm delivery with lung infections in neonates, characterized by pathological chorioamnionitis in the placenta. Although reports on antibiotic resistance in Ureaplasma are on the rise, reports on quinolone-resistant Ureaplasma infections in Japan are limited. The purpose of this study was to determine susceptibilities to five quinolones of Ureaplasma urealyticum and Ureaplasma parvum isolated from perinatal samples in Japan and to characterize the quinolone resistance-determining regions in the gyrA, gyrB, parC, and parE genes. Out of 28 clinical Ureaplasma strains, we isolated 9 with high MICs of quinolones and found a single parC gene mutation, resulting in the change S83L. Among 158 samples, the ParC S83L mutation was found in 37 samples (23.4%), including 1 sample harboring a ParC S83L–GyrB P462S double mutant. Novel mutations of ureaplasmal ParC (S83W and S84P) were independently found in one of the samples. Homology modeling of the ParC S83W mutant suggested steric hindrance of the quinolone-binding pocket (QBP), and de novo prediction of peptide structures revealed that the ParC S84P may break/kink the formation of the α4 helix in the QBP. Further investigations are required to unravel the extent and mechanism of antibiotic resistance of Ureaplasma spp. in Japan. PMID:25645833

  15. A slow neutron polarimeter for the measurement of parity-odd neutron rotary power.

    PubMed

    Snow, W M; Anderson, E; Barrón-Palos, L; Bass, C D; Bass, T D; Crawford, B E; Crawford, C; Dawkins, J M; Esposito, D; Fry, J; Gardiner, H; Gan, K; Haddock, C; Heckel, B R; Holley, A T; Horton, J C; Huffer, C; Lieffers, J; Luo, D; Maldonado-Velázquez, M; Markoff, D M; Micherdzinska, A M; Mumm, H P; Nico, J S; Sarsour, M; Santra, S; Sharapov, E I; Swanson, H E; Walbridge, S B; Zhumabekova, V

    2015-05-01

    We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10(-7) rad/m.

  16. First neutron generation in the BINP accelerator based neutron source.

    PubMed

    Bayanov, B; Burdakov, A; Chudaev, V; Ivanov, A; Konstantinov, S; Kuznetsov, A; Makarov, A; Malyshkin, G; Mekler, K; Sorokin, I; Sulyaev, Yu; Taskaev, S

    2009-07-01

    Pilot innovative facility for neutron capture therapy was built at Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. The results of the first experiments on neutron generation are reported and discussed.

  17. Par-4, a Gene Required for Cytoplasmic Localization and Determination of Specific Cell Types in Caenorhabditis Elegans Embryogenesis

    PubMed Central

    Morton, D. G.; Roos, J. M.; Kemphues, K. J.

    1992-01-01

    Specification of some cell fates in the early Caenorhabditis elegans embryo is mediated by cytoplasmic localization under control of the maternal genome. Using nine newly isolated mutations, and two existing mutations, we have analyzed the role of the maternally expressed gene par-4 in cytoplasmic localization. We recovered seven new par-4 alleles in screens for maternal effect lethal mutations that result in failure to differentiate intestinal cells. Two additional par-4 mutations were identified in noncomplementation screens using strains with a high frequency of transposon mobility. All 11 mutations cause defects early in development of embryos produced by homozygous mutant mothers. Analysis with a deficiency in the region indicates that it33 is a strong loss-of-function mutation. par-4(it33) terminal stage embryos contain many cells, but show no morphogenesis, and are lacking intestinal cells. Temperature shifts with the it57ts allele suggest that the critical period for both intestinal differentiation and embryo viability begins during oogenesis, about 1.5 hr before fertilization, and ends before the four-cell stage. We propose that the primary function of the par-4 gene is to act as part of a maternally encoded system for cytoplasmic localization in the first cell cycle, with par-4 playing a particularly important role in the determination of intestine. Analysis of a par-4;par-2 double mutant suggests that par-4 and par-2 gene products interact in this system. PMID:1582558

  18. Modulating the Neutron Flux from a Mirror Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov, D D

    2011-09-01

    A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronousmore » detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.« less

  19. Prototype Stilbene Neutron Collar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, M. K.; Shumaker, D.; Snyderman, N.

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceedsmore » the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.« less

  20. Fission-neutrons source with fast neutron-emission timing

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Baramsai, B.; Bond, E. M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  1. Organic metal neutron detector

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1987-01-01

    A device for detecting neutrons comprises a layer of conductive polymer sandwiched between electrodes, which may be covered on each face with a neutron transmissive insulating material layer. Conventional electrodes are used for a non-imaging integrating total neutron fluence-measuring embodiment, while wire grids are used in an imaging version of the device. The change in conductivity of the polymer after exposure to a neutron flux is determined in either case to provide the desired data. Alternatively, the exposed conductive polymer layer may be treated with a chemical reagent which selectively binds to the sites altered by neutrons to produce an image of the flux detected.

  2. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  3. Neutron Skins and Neutron Stars in the Multimessenger Era

    NASA Astrophysics Data System (ADS)

    Fattoyev, F. J.; Piekarewicz, J.; Horowitz, C. J.

    2018-04-01

    The historical first detection of a binary neutron star merger by the LIGO-Virgo Collaboration [B. P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017), 10.1103/PhysRevLett.119.161101] is providing fundamental new insights into the astrophysical site for the r process and on the nature of dense matter. A set of realistic models of the equation of state (EOS) that yield an accurate description of the properties of finite nuclei, support neutron stars of two solar masses, and provide a Lorentz covariant extrapolation to dense matter are used to confront its predictions against tidal polarizabilities extracted from the gravitational-wave data. Given the sensitivity of the gravitational-wave signal to the underlying EOS, limits on the tidal polarizability inferred from the observation translate into constraints on the neutron-star radius. Based on these constraints, models that predict a stiff symmetry energy, and thus large stellar radii, can be ruled out. Indeed, we deduce an upper limit on the radius of a 1.4 M⊙ neutron star of R⋆1.4<13.76 km . Given the sensitivity of the neutron-skin thickness of Pb 208 to the symmetry energy, albeit at a lower density, we infer a corresponding upper limit of about Rskin208≲0.25 fm . However, if the upcoming PREX-II experiment measures a significantly thicker skin, this may be evidence of a softening of the symmetry energy at high densities—likely indicative of a phase transition in the interior of neutron stars.

  4. Dibaryons in neutron stars

    NASA Technical Reports Server (NTRS)

    Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.

    1991-01-01

    The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.

  5. u-PAR expression in cancer associated fibroblast: new acquisitions in multiple myeloma progression.

    PubMed

    Ciavarella, S; Laurenzana, A; De Summa, S; Pilato, B; Chillà, A; Lacalamita, R; Minoia, C; Margheri, F; Iacobazzi, A; Rana, A; Merchionne, F; Fibbi, G; Del Rosso, M; Guarini, A; Tommasi, S; Serratì, S

    2017-03-24

    Multiple Myeloma (MM) is a B-cell malignancy in which clonal plasma cells progressively expand within the bone marrow (BM) as effect of complex interactions with extracellular matrix and a number of microenvironmental cells. Among these, cancer-associated fibroblasts (CAF) mediate crucial reciprocal signals with MM cells and are associated to aggressive disease and poor prognosis. A large body of evidence emphasizes the role of the urokinase plasminogen activator (u-PA) and its receptor u-PAR in potentiating the invasion capacity of tumor plasma cells, but little is known about their role in the biology of MM CAF. In this study, we investigated the u-PA/u-PAR axis in MM-associated fibroblasts and explore additional mechanisms of tumor/stroma interplay in MM progression. CAF were purified from total BM stromal fraction of 64 patients including monoclonal gammopathy of undetermined significance, asymptomatic and symptomatic MM, as well as MM in post-treatment remission. Flow cytometry, Real Time PCR and immunofluorescence were performed to investigate the u-PA/u-PAR system in relation to the level of activation of CAF at different stages of the disease. Moreover, proliferation and invasion assays coupled with silencing experiments were used to prove, at functional level, the function of u-PAR in CAF. We found higher activation level, along with increased expression of pro-invasive molecules, including u-PA, u-PAR and metalloproteinases, in CAF from patients with symptomatic MM compared to the others stages of the disease. Consistently, CAF from active MM as well as U266 cell line under the influence of medium conditioned by active MM CAF, display higher proliferative rate and invasion potential, which were significantly restrained by u-PAR gene expression inhibition. Our data suggest that the stimulation of u-PA/u-PAR system contributes to the activated phenotype and function of CAF during MM progression, providing a biological rationale for future targeted therapies

  6. A Delayed Neutron Counting System for the Analysis of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Sellers, Madison Theresa

    Nuclear forensic analysis is a modem science that uses numerous analytical techniques to identify and attribute nuclear materials in the event of a nuclear explosion, radiological terrorist attack or the interception of illicit nuclear material smuggling. The Canadian Department of National Defence has participated in recent international exercises that have highlighted the Nation's requirement to develop nuclear forensics expertise, protocol and capabilities, specifically pertaining to the analysis of special nuclear materials (SNM). A delayed neutron counting (DNC) system has been designed and established at the Royal Military College of Canada (RMC) to enhance the Government's SNM analysis capabilities. This analytical technique complements those already at RMC by providing a rapid and non-destructive method for the analysis of the fissile isotopes of both uranium (U) and plutonium (Pu). The SLOWPOKE-2 reactor at RMC produces a predominately thermal neutron flux. These neutrons induce fission in the SNM isotopes 233U, 235U and 239Pu releasing prompt fast neutrons, energy and radioactive fission fragments. Some of these fission fragments undergo beta - decay and subsequently emit neutrons, which can be recorded by an array of sensitive 3He detectors. The significant time period between the fission process and the release of these neutrons results in their identification as 'delayed neutrons'. The recorded neutron spectrum varies with time and the count rate curve is unique to each fissile isotope. In-house software, developed by this project, can analyze this delayed neutron curve and provides the fissile mass in the sample. Extensive characterization of the DNC system has been performed with natural U samples with 235 U content ranging from 2--7 microg. The system efficiency and dead time behaviour determined by the natural uranium sample analyses were validated by depleted uranium samples with similar quantities of 235 U resulting in a typical relative error of

  7. Signatures of Heavy Element Production in Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Barnes, Jennifer

    2018-06-01

    Compact object mergers involving at least one neutron star have long been theorized to be sites of astrophysical nucleosynthesis via rapid neutron capture (the r-process). The observation in light and gravitational waves of the first neutron star merger (GW1701817) this past summer provided a stunning confirmation of this theory. Electromagnetic emission powered by the radioactive decay of freshly synthesized nuclei from mergers encodes information about the composition burned by the r-process, including whether a particular merger event synthesized the heaviest nuclei along the r-process path, or froze out at lower mass number. However, efforts to model the emission in detail must still contend with many uncertainties. For instance, the uncertain nuclear masses far from the valley of stability influence the final composition burned by the r-process, as will weak interactions operating in the merger’s immediate aftermath. This in turn can affect the color electromagnetic emission. Understanding the details of these transients’ spectra will also require a detailed accounting the electronic transitions of r-process elements and ions, in order to identify the strong transitions that underlie spectral formation. This talk will provide an overview of our current understanding of radioactive transients from mergers, with an emphasis on the role of experiment in providing critical inputs for models and reducing uncertainty.

  8. Proteinase-activated receptor 2 (PAR(2)) in cholangiocarcinoma (CCA) cells: effects on signaling and cellular level.

    PubMed

    Kaufmann, Roland; Hascher, Alexander; Mussbach, Franziska; Henklein, Petra; Katenkamp, Kathrin; Westermann, Martin; Settmacher, Utz

    2012-12-01

    In this study, we demonstrate functional expression of the proteinase-activated receptor 2 (PAR(2)), a member of a G-protein receptor subfamily in primary cholangiocarcinoma (PCCA) cell cultures. Treatment of PCCA cells with the serine proteinase trypsin and the PAR(2)-selective activating peptide, furoyl-LIGRLO-NH(2), increased migration across a collagen membrane barrier. This effect was inhibited by a PAR(2)-selective pepducin antagonist peptide (P2pal-18S) and it was also blocked with the Met receptor tyrosine kinase (Met) inhibitors SU 11274 and PHA 665752, the MAPKinase inhibitors PD 98059 and SL 327, and the Stat3 inhibitor Stattic. The involvement of Met, p42/p44 MAPKinases and Stat3 in PAR(2)-mediated PCCA cell signaling was further supported by the findings that trypsin and the PAR(2)-selective agonist peptide, 2-furoyl-LIGRLO-NH(2), stimulated activating phosphorylation of these signaling molecules in cholangiocarcinoma cells. With our results, we provide a novel signal transduction module in cholangiocarcinoma cell migration involving PAR(2)-driven activation of Met, p42/p44 MAPKinases and Stat3.

  9. NEW NEUTRON-CAPTURE MEASUREMENTS IN 23 OPEN CLUSTERS. I. THE r -PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overbeek, Jamie C.; Friel, Eileen D.; Jacobson, Heather R., E-mail: joverbee@indiana.edu

    2016-06-20

    Neutron-capture elements, those with Z > 35, are the least well understood in terms of nucleosynthesis and formation environments. The rapid neutron-capture, or r -process, elements are formed in the environments and/or remnants of massive stars, while the slow neutron-capture, or s -process, elements are primarily formed in low-mass AGB stars. These elements can provide much information about Galactic star formation and enrichment, but observational data are limited. We have assembled a sample of 68 stars in 23 open clusters that we use to probe abundance trends for six neutron-capture elements (Eu, Gd, Dy, Mo, Pr, and Nd) with clustermore » age and location in the disk of the Galaxy. In order to keep our analysis as homogeneous as possible, we use an automated synthesis fitting program, which also enables us to measure multiple (3–10) lines for each element. We find that the pure r -process elements (Eu, Gd, and Dy) have positive trends with increasing cluster age, while the mixed r - and s -process elements (Mo, Pr, and Nd) have insignificant trends consistent with zero. Pr, Nd, Eu, Gd, and Dy have similar, slight (although mostly statistically significant) gradients of ∼0.04 dex kpc{sup −1}. The mixed elements also appear to have nonlinear relationships with R {sub GC}.« less

  10. Ultracold Neutron Sources

    NASA Astrophysics Data System (ADS)

    Martin, Jeffery

    2016-09-01

    The free neutron is an excellent laboratory for searches for physics beyond the standard model. Ultracold neutrons (UCN) are free neutrons that can be confined to material, magnetic, and gravitational traps. UCN are compelling for experiments requiring long observation times, high polarization, or low energies. The challenge of experiments has been to create enough UCN to reach the statistical precision required. Production techniques involving neutron interactions with condensed matter systems have resulted in some successes, and new UCN sources are being pursued worldwide to exploit higher UCN densities offered by these techniques. I will review the physics of how the UCN sources work, along with the present status of the world's efforts. research supported by NSERC, CFI, and CRC.

  11. A new method for measuring the neutron lifetime using an in situ neutron detector

    DOE PAGES

    Morris, Christopher L.; Adamek, Evan Robert; Broussard, Leah Jacklyn; ...

    2017-05-30

    Here, we describe a new method for measuring surviving neutrons in neutron lifetime measurements using bottled ultracold neutrons (UCN), which provides better characterization of systematic uncertainties and enables higher precision than previous measurement techniques. We also used an active detector that can be lowered into the trap to measure the neutron distribution as a function of height and measure the influence of marginally trapped UCN on the neutron lifetime measurement. Additionally, measurements have demonstrated phase-space evolution and its effect on the lifetime measurement.

  12. A new method for measuring the neutron lifetime using an in situ neutron detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Christopher L.; Adamek, Evan Robert; Broussard, Leah Jacklyn

    Here, we describe a new method for measuring surviving neutrons in neutron lifetime measurements using bottled ultracold neutrons (UCN), which provides better characterization of systematic uncertainties and enables higher precision than previous measurement techniques. We also used an active detector that can be lowered into the trap to measure the neutron distribution as a function of height and measure the influence of marginally trapped UCN on the neutron lifetime measurement. Additionally, measurements have demonstrated phase-space evolution and its effect on the lifetime measurement.

  13. 14 MeV calibration of JET neutron detectors—phase 1: calibration and characterization of the neutron source

    NASA Astrophysics Data System (ADS)

    Batistoni, P.; Popovichev, S.; Cufar, A.; Ghani, Z.; Giacomelli, L.; Jednorog, S.; Klix, A.; Lilley, S.; Laszynska, E.; Loreti, S.; Packer, L.; Peacock, A.; Pillon, M.; Price, R.; Rebai, M.; Rigamonti, D.; Roberts, N.; Tardocchi, M.; Thomas, D.; Contributors, JET

    2018-02-01

    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is  ±10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within  ±5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in

  14. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  15. r -process nucleosynthesis from matter ejected in binary neutron star mergers [On r -process nucleosynthesis from matter ejected in binary neutron star mergers

    DOE PAGES

    Bovard, Luke; Martin, Dirk; Guercilena, Federico; ...

    2017-12-05

    Here, when binary systems of neutron stars merge, a very small fraction of their rest mass is ejected, either dynamically or secularly. This material is neutron-rich and its nucleosynthesis provides the astrophysical site for the production of heavy elements in the Universe, together with a kilonova signal confirming neutron-star mergers as the origin of short gamma-ray bursts. We perform full general-relativistic simulations of binary neutron-star mergers employing three different nuclear-physics equations of state (EOSs), considering both equal- and unequal-mass configurations, and adopting a leakage scheme to account for neutrino radiative losses. Using a combination of techniques, we carry out anmore » extensive and systematic study of the hydrodynamical, thermodynamical, and geometrical properties of the matter ejected dynamically, employing the WinNet nuclear-reaction network to recover the relative abundances of heavy elements produced by each configurations. Among the results obtained, three are particularly important. First, we find that, within the sample considered here, both the properties of the dynamical ejecta and the nucleosynthesis yields are robust against variations of the EOS and masses. Second, using a conservative but robust criterion for unbound matter, we find that the amount of ejected mass is ≲10 –3 M⊙, hence at least one order of magnitude smaller than what normally assumed in modelling kilonova signals. Finally, using a simplified and gray-opacity model we assess the observability of the infrared kilonova emission finding, that for all binaries the luminosity peaks around ~1/2 day in the H-band, reaching a maximum magnitude of –13, and decreasing rapidly after one day.« less

  16. r -process nucleosynthesis from matter ejected in binary neutron star mergers [On r -process nucleosynthesis from matter ejected in binary neutron star mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovard, Luke; Martin, Dirk; Guercilena, Federico

    Here, when binary systems of neutron stars merge, a very small fraction of their rest mass is ejected, either dynamically or secularly. This material is neutron-rich and its nucleosynthesis provides the astrophysical site for the production of heavy elements in the Universe, together with a kilonova signal confirming neutron-star mergers as the origin of short gamma-ray bursts. We perform full general-relativistic simulations of binary neutron-star mergers employing three different nuclear-physics equations of state (EOSs), considering both equal- and unequal-mass configurations, and adopting a leakage scheme to account for neutrino radiative losses. Using a combination of techniques, we carry out anmore » extensive and systematic study of the hydrodynamical, thermodynamical, and geometrical properties of the matter ejected dynamically, employing the WinNet nuclear-reaction network to recover the relative abundances of heavy elements produced by each configurations. Among the results obtained, three are particularly important. First, we find that, within the sample considered here, both the properties of the dynamical ejecta and the nucleosynthesis yields are robust against variations of the EOS and masses. Second, using a conservative but robust criterion for unbound matter, we find that the amount of ejected mass is ≲10 –3 M⊙, hence at least one order of magnitude smaller than what normally assumed in modelling kilonova signals. Finally, using a simplified and gray-opacity model we assess the observability of the infrared kilonova emission finding, that for all binaries the luminosity peaks around ~1/2 day in the H-band, reaching a maximum magnitude of –13, and decreasing rapidly after one day.« less

  17. PREFACE: Fundamental Neutron Physics: Introduction and Overview Fundamental Neutron Physics: Introduction and Overview

    NASA Astrophysics Data System (ADS)

    Holstein, Barry R.

    2009-10-01

    In the 77 years since its discovery by Chadwick in 1932, the neutron has come to play an increasingly important role in contemporary physics. As the next to lightest baryon, it is, of course, one of the two primary components of the atomic nucleus and studies of isotopes (nuclei with varying numbers of neutrons but the same proton number) and of the neutron drip line are one of the important focuses of the recently approved radioactive beam machine to be built at Michigan State University. Precise knowledge of its ~900 second lifetime is crucial to determination of the time at which nucleosynthesis occurs in the early universe. Because it is electrically neutral, the neutron can penetrate the atomic cloud and neutron scattering has become a powerful tool in the study of the structure of materials in condensed matter and biophysics. These are all important issues, but will not be addressed in the articles presented below. Rather, in the set of manuscripts published herein, we show various ways in which the neutron has come to probe fundamental questions in physics. We present six such articles: Because of its simple structure, neutron beta decay has served as a laboratory for the study of possible symmetry violations, including search for possible Script T-violation via measurement of the D coefficient, search for second class currents and/or possible CVC violation via examination of recoil terms, search for right-handed currents via examination of correlations, search for S, T couplings via measurement of the b parameter, etc. The study of neutron decay is reviewed in the article by Jeff Nico. The use of the neutron as a probe of possible Script T-violation via the existence of a non-zero electric dipole moment is discussed in the article by Steve Lamoreaux. The neutron is a prime player in the experimental study of hadronic parity violation, via experiments involving radiative capture and spin rotation, as examined in the article by Barry Holstein. Because of its

  18. Intense, directed neutron beams from a laser-driven neutron source at PHELIX

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, A.; Bagnoud, V.; Deppert, O.; Favalli, A.; Frydrych, S.; Hornung, J.; Jahn, D.; Schaumann, G.; Tebartz, A.; Wagner, F.; Wurden, G.; Zielbauer, B.; Roth, M.

    2018-05-01

    Laser-driven neutrons are generated by the conversion of laser-accelerated ions via nuclear reactions inside a converter material. We present results from an experimental campaign at the PHELIX laser at GSI in Darmstadt where protons and deuterons were accelerated from thin deuterated plastic foils with thicknesses in the μm and sub-μm range. The neutrons were generated inside a sandwich-type beryllium converter, leading to reproducible neutron numbers around 1011 neutrons per shot. The angular distribution was measured with a high level of detail using up to 30 bubble detectors simultaneously. It shows a laser forward directed component of up to 1.42 × 1010 neutrons per steradian, corresponding to a dose of 43 mrem scaled to a distance of 1 m from the converter.

  19. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    NASA Astrophysics Data System (ADS)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm; Iversen, Frank; Liu, Zhuo; Thomsen, Karen; Pedersen, Michael; Skrydstrup, Troels; Nielsen, Niels Chr.; Ploug, Michael; Kjems, Jørgen

    2013-08-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery.Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific

  20. Pocked surface neutron detector

    DOEpatents

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  1. Paraplégie compliquant une plaie abdominale antérieure par arme blanche

    PubMed Central

    Elahmadi, Brahim; Awab, Almahdi; El Moussaoui, Rachid; El Hijri, Ahmed; Azzouzi, Abderrahim; Alilou, Mustapha

    2015-01-01

    Les traumatismes médullaires sont des complications rares des plaies abdominales antérieures par arme blanche. Son diagnostic est difficile parfois retardé. L'imagerie par résonance magnétique reste l'examen de choix. Le traitement dépend du tableau clinique et de la gravité de la souffrance médullaire. Le pronostic est corrélé à l’étendue et à la nature de la lésion médullaire. Nous rapportons un cas exceptionnel d'un traumatisme médullaire chez une patiente victime d'une plaie abdominale antérieure par arme blanche. PMID:25995808

  2. In vitro activity of five quinolones and analysis of the quinolone resistance-determining regions of gyrA, gyrB, parC, and parE in Ureaplasma parvum and Ureaplasma urealyticum clinical isolates from perinatal patients in Japan.

    PubMed

    Kawai, Yasuhiro; Nakura, Yukiko; Wakimoto, Tetsu; Nomiyama, Makoto; Tokuda, Tsugumichi; Takayanagi, Toshimitsu; Shiraishi, Jun; Wasada, Kenshi; Kitajima, Hiroyuki; Fujita, Tomio; Nakayama, Masahiro; Mitsuda, Nobuaki; Nakanishi, Isao; Takeuchi, Makoto; Yanagihara, Itaru

    2015-04-01

    Ureaplasma spp. cause several disorders, such as nongonococcal urethritis, miscarriage, and preterm delivery with lung infections in neonates, characterized by pathological chorioamnionitis in the placenta. Although reports on antibiotic resistance in Ureaplasma are on the rise, reports on quinolone-resistant Ureaplasma infections in Japan are limited. The purpose of this study was to determine susceptibilities to five quinolones of Ureaplasma urealyticum and Ureaplasma parvum isolated from perinatal samples in Japan and to characterize the quinolone resistance-determining regions in the gyrA, gyrB, parC, and parE genes. Out of 28 clinical Ureaplasma strains, we isolated 9 with high MICs of quinolones and found a single parC gene mutation, resulting in the change S83L. Among 158 samples, the ParC S83L mutation was found in 37 samples (23.4%), including 1 sample harboring a ParC S83L-GyrB P462S double mutant. Novel mutations of ureaplasmal ParC (S83W and S84P) were independently found in one of the samples. Homology modeling of the ParC S83W mutant suggested steric hindrance of the quinolone-binding pocket (QBP), and de novo prediction of peptide structures revealed that the ParC S84P may break/kink the formation of the α4 helix in the QBP. Further investigations are required to unravel the extent and mechanism of antibiotic resistance of Ureaplasma spp. in Japan. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Monomer–dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies

    PubMed Central

    Caiolfa, Valeria R.; Zamai, Moreno; Malengo, Gabriele; Andolfo, Annapaola; Madsen, Chris D.; Sutin, Jason; Digman, Michelle A.; Gratton, Enrico; Blasi, Francesco; Sidenius, Nicolai

    2007-01-01

    To search for functional links between glycosylphosphatidylinositol (GPI) protein monomer–oligomer exchange and membrane dynamics and confinement, we studied urokinase plasminogen activator (uPA) receptor (uPAR), a GPI receptor involved in the regulation of cell adhesion, migration, and proliferation. Using a functionally active fluorescent protein–uPAR in live cells, we analyzed the effect that extracellular matrix proteins and uPAR ligands have on uPAR dynamics and dimerization at the cell membrane. Vitronectin directs the recruitment of dimers and slows down the diffusion of the receptors at the basal membrane. The commitment to uPA–plasminogen activator inhibitor type 1–mediated endocytosis and recycling modifies uPAR diffusion and induces an exchange between uPAR monomers and dimers. This exchange is fully reversible. The data demonstrate that cell surface protein assemblies are important in regulating the dynamics and localization of uPAR at the cell membrane and the exchange of monomers and dimers. These results also provide a strong rationale for dynamic studies of GPI-anchored molecules in live cells at steady state and in the absence of cross-linker/clustering agents. PMID:18056417

  4. Optical heterogeneous bioassay for the detection of the inflammatory biomarker suPAR

    NASA Astrophysics Data System (ADS)

    Tombelli, S.; Trono, C.; Adinolfi, B.; Chiavaioli, F.; Giannetti, A.; Eugen-Olsen, J.; Bernini, R.; Grimaldi, I. A.; Persichetti, G.; Testa, G.; Baldini, F.

    2015-03-01

    Soluble urokinase plasminogen activator receptor (suPAR) is an inflammatory protein present in blood and a marker of disease presence, severity and prognosis. A heterogeneous sandwich assay is proposed for quantifying suPAR by employing a capture antibody from rat and a biotinylated detection antibody from mouse. Optical detection was achieved by a successive exposure of the biotinylated sandwich to streptavidin labelled with ATTO647N. The heterogeneous assay was implemented on a multichannel polymethylmetacrylate (PMMA) optical biochip, potentially capable of the simultaneous detection of more than one analyte. Capture antibody was immobilized on the PMMA surface of the microfluidic channel and the assay was performed with the following protocol: i) surface blocking with BSA, ii) incubation with suPAR or PBS, iii) incubation with biotinylated suPAR detection Ab and iv) incubation with streptavidin-ATTO647N. Promising preliminary results were obtained with this protocol. Moreover, an improved optical setup is proposed which avoids the mechanical scanning of the chip and consequently the in-series fluorescence excitation and read out, allowing the simultaneous measurement of the fluorescence on all the channels of the microfluidic chip.

  5. Detection of special nuclear material by observation of delayed neutrons with a novel fast neutron composite detector

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Nattress, Jason; Barhoumi Meddeb, Amira; Foster, Albert; Trivelpiece, Cory; Rose, Paul; Erickson, Anna; Ounaies, Zoubeida; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material is crucial to countering nuclear terrorism and proliferation, but its detection is challenging. By observing the emission of delayed neutrons, which is a unique signature of nuclear fission, the presence of nuclear material can be inferred. We report on the observation of delayed neutrons from natural uranium by using monoenergetic photons and neutrons to induce fission. An interrogating beam of 4.4 MeV and 15.1 MeV gamma-rays and neutrons was produced using the 11B(d,n-γ)12C reaction and used to probe different targets. Neutron detectors with complementary Cherenkov detectors then discriminate material undergoing fission. A Li-doped glass-polymer composite neutron detector was used, which displays excellent n/ γ discrimination even at low energies, to observe delayed neutrons from uranium fission. Delayed neutrons have relatively low energies (~0.5 MeV) compared to prompt neutrons, which makes them difficult to detect using recoil-based detectors. Neutrons were counted and timed after the beam was turned off to observe the characteristic decaying time profile of delayed neutrons. The expected decay of neutron emission rate is in agreement with the common parametrization into six delayed neutron groups.

  6. Neutron Scattering Reference

    Science.gov Websites

    Conversion Factors Periodic Table of the Elements Chart of the Nuclides Map of the Nuclides Computer Index of (Atominstitut der Österreichischen Universitäten) Neutron Activation Table of Elements Neutron Scattering at neutronsources.org. The information contained here in the Neutron Scattering Web has been

  7. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    PubMed

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of Par Frying on Composition and Texture of Breaded and Battered Catfish

    USDA-ARS?s Scientific Manuscript database

    Catfish is often consumed as a breaded and battered fried product; however, baking is considered a healthier alternative to frying. One method of improving the texture properties of baked products is to par fried prior to baking. The objective of this study was to examine the effect of par frying ...

  9. Nanostructure Neutron Converter Layer Development

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Lowther, Sharon E. (Inventor); Kang, Jin Ho (Inventor); Thibeault, Sheila A. (Inventor); Sauti, Godfrey (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  10. Measurement of the Neutron Lifetime with Ultra-cold Neutrons Stored in a Magneto-gravitational Trap

    NASA Astrophysics Data System (ADS)

    Ezhov, V. F.; Andreev, A. Z.; Ban, G.; Bazarov, B. A.; Geltenbort, P.; Glushkov, A. G.; Knyazkov, V. A.; Kovrizhnykh, N. A.; Krygin, G. B.; Naviliat-Cuncic, O.; Ryabov, V. L.

    2018-05-01

    We report a measurement of the neutron lifetime using ultra-cold neutrons stored in a magneto-gravitational trap made of permanent magnets. Neutrons surviving in the trap after fixed storage times have been counted and the trap losses have continuously been monitored during storage by detecting neutrons leaking from the trap. The value of the neutron lifetime resulting from this measurement is τ n = (878.3 ± 1.6stat ± 1.0syst) s. A unique feature of this experiment is the monitoring of leaking neutrons providing a robust control of the main systematic loss.

  11. Lambeaux autofermants pour le traitement des brulures electriques du scalp par haut voltage

    PubMed Central

    Hafidi, J.; El Mazouz, S.; El Mejatti, H.; Fejjal, N.; Gharib, N.E.; Abbassi, A.; Belmahi, A.M.

    2011-01-01

    Summary Les brûlures électriques par haut voltage sont responsables de gros dégâts tissulaires en immédiat et dans les jours suivant l’accident du fait de la chaleur importante dégagée par effet joule et de la thrombose microvasculaire évolutive. Les pertes de substances du scalp secondaires à ces brûlures nécessitent une couverture par lambeaux vu la destruction du périoste et du calvarium en regard. De juin 1997 à juin 2008, 15 patients ont été traités pour des pertes de substance du scalp secondaires à des brûlures électriques par haut voltage de diamètre allant de 8 à 11 cm et siégeant dans la région tonsurale. Ces patients ont été opérés dans la première semaine suivant l’accident. Les pertes de substance du scalp de taille moyenne secondaires à ces brûlures peuvent être couvertes per primam de façon fiable par des lambeaux locaux axialisés et multiples. Nous relatons l’expérience du Service de Chirurgie Plastique du Centre Hospitalier Universitaire Ibn-Sina, Rabat, Maroc, dans la gestion et la prise en charge de ces brûlures. PMID:22262963

  12. Switchable radioactive neutron source device

    DOEpatents

    Boyar, Robert E.; DeVolpi, Alexander; Stanford, George S.; Rhodes, Edgar A.

    1989-01-01

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons.

  13. Switchable radioactive neutron source device

    DOEpatents

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  14. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells.

    PubMed

    Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François

    2015-04-20

    During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    PubMed

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Coalescing neutron stars - a step towards physical models. II. Neutrino emission, neutron tori, and gamma-ray bursts.

    NASA Astrophysics Data System (ADS)

    Ruffert, M.; Janka, H.-T.; Takahashi, K.; Schaefer, G.

    1997-03-01

    Three-dimensional hydrodynamical, Newtonian calculations of the coalescence of equal-mass binary neutron stars are performed with the "Piecewise Parabolic Method". The properties of neutron star matter are described by the equation of state of Lattimer & Swesty (1991, Nucl. Phys. A535, 331) which allows us to include the emission of neutrinos and to evaluate our models for the νν-annihilation in the vicinity of the merging stars. When the stars have merged into one rapidly spinning massive body, a hot toroidal cloud of gas with a mass of about 0.1-0.2Msun_ forms around the wobbling and pulsating central ~3Msun_ object. At that time the total neutrino luminosity climbs to a maximum value of 1-1.5x10^53^erg/s of which 90-95% originate from the toroidal gas cloud surrounding the very dense core. The mean energies of ν_e_, ν_e_, and heavy-lepton neutrinos ν_x_ are around 12MeV, 20MeV, and 27MeV, respectively. The characteristics of the neutrino emission are very similar to the emission from type-II supernovae, except for the ν_e_ luminosity from the merged neutron stars which is a factor 3-6 higher than the luminosities of the other neutrino species. When the neutrino luminosities are highest, νν-annihilation deposits about 0.2-0.3% of the emitted neutrino energy in the immediate neighborhood of the merger, and the maximum integral energy deposition rate is 3-4x10^50^erg/s. Since the 3Msun_ core of the merged object will most likely collapse into a black hole within milliseconds, the energy that can be pumped into a pair-photon fireball is insufficient by a factor of about 1000 to explain γ-ray bursts at cosmological distances with an energy of the order of 10^51^/(4π) erg/steradian. Analytical estimates show that the additional energy provided by the annihilation of νν pairs emitted from a possible accretion torus of ~0.1Msun_ around the central black hole is still more than a factor of 10 too small, unless focussing of the fireball into a jet

  17. New experimental research stand SVICKA neutron field analysis using neutron activation detector technique

    NASA Astrophysics Data System (ADS)

    Varmuza, Jan; Katovsky, Karel; Zeman, Miroslav; Stastny, Ondrej; Haysak, Ivan; Holomb, Robert

    2018-04-01

    Knowledge of neutron energy spectra is very important because neutrons with various energies have a different material impact or a biological tissue impact. This paper presents basic results of the neutron flux distribution inside the new experimental research stand SVICKA which is located at Brno University of Technology in Brno, Czech Republic. The experiment also focused on the investigation of the sandwich biological shielding quality that protects staff against radiation effects. The set of indium activation detectors was used to the investigation of neutron flux distribution. The results of the measurement provide basic information about the neutron flux distribution inside all irradiation channels and no damage or cracks are present in the experimental research stand biological shielding.

  18. Property changes of G347A graphite due to neutron irradiation

    DOE PAGES

    Campbell, Anne A.; Katoh, Yutai; Snead, Mary A.; ...

    2016-08-18

    A new, fine-grain nuclear graphite, grade G347A from Tokai Carbon Co., Ltd., has been irradiated in the High Flux Isotope Reactor at Oak Ridge National Laboratory to study the materials property changes that occur when exposed to neutron irradiation at temperatures of interest for Generation-IV nuclear reactor applications. Specimen temperatures ranged from 290°C to 800 °C with a maximum neutron fluence of 40 × 10 25 n/m 2 [E > 0.1 MeV] (~30dpa). Lastly, observed behaviors include: anisotropic behavior of dimensional change in an isotropic graphite, Young's modulus showing parabolic fluence dependence, electrical resistivity increasing at low fluence and additionalmore » increase at high fluence, thermal conductivity rapidly decreasing at low fluence followed by continued degradation, and a similar plateau value of the mean coefficient of thermal expansion for all irradiation temperatures.« less

  19. In vitro and in vivo inhibition of proangiogenic retinal phenotype by an antisense oligonucleotide downregulating uPAR expression.

    PubMed

    Lulli, Matteo; Cammalleri, Maurizio; Granucci, Irene; Witort, Ewa; Bono, Silvia; Di Gesualdo, Federico; Lupia, Antonella; Loffredo, Rosa; Casini, Giovanni; Dal Monte, Massimo; Capaccioli, Sergio

    2017-08-26

    Neoangiogenesis is the main pathogenic event involved in a variety of retinal diseases. It has been recently demonstrated that inhibiting the urokinase-type plasminogen activator receptor (uPAR) results in reduced angiogenesis in a mouse model of oxygen-induced retinopathy (OIR), establishing uPAR as a therapeutic target in proliferative retinopathies. Here, we evaluated in cultured human retinal endothelial cells (HRECs) and in OIR mice the potential of a specific antisense oligodeoxyribonucleotide (ASO) in blocking the synthesis of uPAR and in providing antiangiogenic effects. uPAR expression in HRECs was inhibited by lipofection with the phosphorotioated 5'-CGGCGGGTGACCCATGTG-3' ASO-uPAR, complementary to the initial translation site of uPAR mRNA. Inhibition of uPAR expression via ASO-uPAR was evaluated in HRECs by analyzing VEGF-induced tube formation and migration. In addition, the well-established and reproducible murine OIR model was used to induce retinal neovascularization in vivo. OIR mice were injected intraperitoneally with ASO-uPAR and retinopathy was evaluated considering the extent of the avascular area in the central retina and neovascular tuft formation. The ASO-uPAR specifically decreased uPAR mRNA and protein levels in HRECs and mitigated VEGF-induced tube formation and cell migration. Noteworthy, in OIR mice ASO-uPAR administration reduced both the avascular area and the formation of neovascular tufts. In conclusion, although the extrapolation of these experimental findings to the clinic is not straightforward, ASO-uPAR may be considered a potential therapeutic tool for treatment of proliferative retinal diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. FAST NEUTRON SPECTROMETER USING SPACED SEMICONDUCTORS FOR MEASURING TOTAL ENERGY OF NEUTRONS CAPTURED

    DOEpatents

    Love, T.A.; Murray, R.B.

    1964-04-14

    A fast neutron spectrometer was designed, which utilizes a pair of opposed detectors having a layer of /sup 6/LiF between to produce alpha and T pair for each neutron captured to provide signals, which, when combined, constitute a measure of neutron energy. (AEC)

  1. Giant Rapid X-ray Flares in Extragalactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Irwin, Jimmy

    2018-01-01

    There is only one known class of non-destructive, highly energetic astrophysical object in the Universe whose energy emission varies by more than a factor of 100 on time scales of less than a minute -- soft gamma repeaters/anomalous X-ray pulsars, whose flares are believed to be caused by the energy release from the cracking of a neutron star's surface by very strong magnetic fields. All other known violent, rapid explosions, including gamma-ray bursts and supernovae, are believed to destroy the object in the process. Here, we report the discovery of a second class of non-destructive, highly energetic rapidly flaring X-ray object located within two nearby galaxies with fundamentally different properties than soft gamma repeaters/anomalous X-ray pulsars. One source is located within a suspected globular cluster of the host galaxy and flared one time, while the other source is located in either a globular cluster of the host galaxy or the core of a stripped dwarf companion galaxy that flared on six occasions over a seven year time span. When not flaring, the sources appear as normal accreting neutron star or black hole X-ray binaries, indicating that the flare event does not significantly disrupt the host system. While the nature of these sources is still unclear, the discovery of these sources in decade-old archival Chandra X-ray Observatory data illustrates the under-utilization of X-ray timing as a means to discover new classes of explosive events in the Universe.

  2. ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to ab Initio Data

    DOE PAGES

    Zahariev, Federico; De Silva, Nuwan; Gordon, Mark S.; ...

    2017-02-23

    Here, a newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides,more » important for metal extraction chemistry, are parametrized using ParFit.« less

  3. ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to ab Initio Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahariev, Federico; De Silva, Nuwan; Gordon, Mark S.

    Here, a newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides,more » important for metal extraction chemistry, are parametrized using ParFit.« less

  4. Evidence for a Broad Relativistic Iron Line from the Neutron Star LMXB Ser X-1

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.

    2007-01-01

    We report on an analysis of XMM-Newton data from the neutron star low mass X-ray binary (LMXB) Serpens X-1 (Ser X-1). Spectral analysis of EPIC PN data indicates that the previously known broad iron Ka emission line in this source has a significantly skewed structure with a moderately extended red wing. The asymmetric shape of the line is well described with the laor and diskline models in XSPEC, which strongly supports an inner accretion disk origin of the line. To our knowledge this is the first strong evidence for a relativistic line in a neutron star LMXB. This finding suggests that the broad lines seen in other neutron star LMXBs likely originate from the inner disk as well. Detailed study of such lines opens up a new way to probe neutron star parameters and their strong gravitational fields. The laor model describes the line from Ser X-1 somewhat better than diskline, and suggests that the inner accretion disk radius is less than 6GM/c(exp 2). This is consistent with the weak magnetic fields of LMXBs, and may point towards a high compactness and rapid spin of the neutron star. Finally, the inferred source inclination angle in the approximate range 50-60 deg is consistent with the lack of dipping from Ser X-1.

  5. Décontamination nucléaire par laser UV

    NASA Astrophysics Data System (ADS)

    Delaporte, Ph.; Gastaud, M.; Marine, W.; Sentis, M.; Uteza, O.; Thouvenot, P.; Alcaraz, J. L.; Le Samedy, J. M.; Blin, D.

    2003-06-01

    Le développement et l'utilisation de procédés propres pour le nettoyage ou la préparation de surfaces est l'une des priorités du milieu industriel. Cet intérêt est d'autant plus grand dans le domaine du nucléaire pour lequel la réduction des déchets est un axe de recherche important. Un dispositif de décontamination nucléaire par laser UV impulsionnel a été développé et testé. Il est composé. d'un laser à excimères de 1kW, d'un faisceau de fibres optiques et d'un dispositif de récupération des particules. Les essais réalisés en milieu actif ont démontré sa capacité à nettoyer des surfaces métalliques polluées par différents radioéléments avec des facteurs de décontamination généralement supérieurs à 10. Ce dispositif permet de décontaminer de grandes surfaces de géométrie simple en réduisant fortement la génération de déchets secondaires. Il est, à ce jour et dans ces conditions d'utilisations, le procédé de décontamination par voie sèche le plus efficace.

  6. Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro

    NASA Astrophysics Data System (ADS)

    Kim, Myong-Seop; Park, Sang-Jun

    2009-08-01

    Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.

  7. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    DOE PAGES

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; ...

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  8. Fundamental neutron physics beamline at the spallation neutron source at ORNL

    DOE PAGES

    Fomin, N.; Greene, G. L.; Allen, R. R.; ...

    2014-11-04

    In this paper, we describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. Finally, we present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams.

  9. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  10. Identification of exosite residues of factor Xa involved in recognition of PAR-2 on endothelial cells.

    PubMed

    Manithody, Chandrashekhara; Yang, Likui; Rezaie, Alireza R

    2012-03-27

    Recent results have indicated that factor Xa (FXa) cleaves protease-activated receptor 2 (PAR-2) to elicit protective intracellular signaling responses in endothelial cells. In this study, we investigated the molecular determinants of the specificity of FXa interaction with PAR-2 by monitoring the cleavage of PAR-2 by FXa in endothelial cells transiently transfected with a PAR-2 cleavage reporter construct in which the extracellular domain of the receptor was fused to cDNA encoding for alkaline phosphatase. Comparison of the cleavage efficiency of PAR-2 by a series of FXa mutants containing mutations in different surface loops indicated that the acidic residues of 39-loop (Glu-36, Glu-37, and Glu-39) and the basic residues of 60-loop (Lys-62 and Arg-63), 148-loop (Arg-143, Arg-150, and Arg-154), and 162-helix (Arg-165 and Lys-169) contribute to the specificity of receptor recognition by FXa on endothelial cells. This was evidenced by significantly reduced activity of mutants toward PAR-2 expressed on transfected cells. The extent of loss in the PAR-2 cleavage activity of FXa mutants correlated with the extent of loss in their PAR-2-dependent intracellular signaling activity. Further characterization of FXa mutants indicated that, with the exception of basic residues of 162-helix, which play a role in the recognition specificity of the prothrombinase complex, none of the surface loop residues under study makes a significant contribution to the activity of FXa in the prothrombinase complex. These results provide new insight into mechanisms through which FXa specifically interacts with its macromolecular substrates in the clotting and signaling pathways.

  11. Modeling the Spin Equilibrium of Neutron Stars in LMXBs Without Gravitational Radiation

    NASA Technical Reports Server (NTRS)

    Andersson, N.; Glampedakis, K.; Haskell, B.; Watts, A. L.

    2004-01-01

    In this paper we discuss the spin-equilibrium of accreting neutron stars in LMXBs. We demonstrate that, when combined with a naive spin-up torque, the observed data leads to inferred magnetic fields which are at variance with those of galactic millisecond radiopulsars. This indicates the need for either additional spin-down torques (eg. gravitational radiation) or an improved accretion model. We show that a simple consistent accretion model can be arrived at by accounting for radiation pressure in rapidly accreting systems (above a few percent of the Eddington accretion rate). In our model the inner disk region is thick and significantly sub-Keplerian, and the estimated equilibrium periods are such that the LMXB neutron stars have properties that accord well with the galactic millisecond radiopulsar sample. The implications for future gravitational-wave observations are also discussed briefly.

  12. High-density QCD phase transitions inside neutron stars: Glitches and gravitational waves

    NASA Astrophysics Data System (ADS)

    Srivastava, A. M.; Bagchi, P.; Das, A.; Layek, B.

    2017-10-01

    We discuss physics of exotic high baryon density QCD phases which are believed to exist in the core of a neutron star. This can provide a laboratory for exploring exotic physics such as axion emission, KK graviton production etc. Much of the physics of these high-density phases is model-dependent and not very well understood, especially the densities expected to occur inside neutron stars. We follow a different approach and use primarily universal aspects of the physics of different high-density phases and associated phase transitions. We study effects of density fluctuations during transitions with and without topological defect production and study the effect on pulsar timings due to changing moment of inertia of the star. We also discuss gravitational wave production due to rapidly changing quadrupole moment of the star due to these fluctuations.

  13. Enhanced proliferation of human hepatoma cells by PAR-2 agonists via the ERK/AP-1 pathway.

    PubMed

    Xie, Liqun; Zheng, Yanmin; Li, Xuan; Zhao, Junyan; Chen, Xiaoyi; Chen, Li; Zhou, Jing; Hai, Ou; Li, Fei

    2012-11-01

    To investigate the expression and role of PAR-2 in the proliferation of the human hepatoma cell line HepG2, PAR-2 protein and mRNA expression were evaluated by immuno-histochemistry, immunofluorescence and RT-PCR analysis. The signaling pathways downstream of PAR-2 activation that lead to hepatoma cell proliferation were analyzed. The results showed that PAR-2 is expressed in human hepatoma cells and PAR-2 mRNA expression was found to be upregulated in cells treated with trypsin or SLIGKV-NH2 (P<0.001). The proliferation rate of HepG2 cells treated with trypsin or SLIGKV-NH2 was significantly increased (P<0.001). The percentage of S phase, G2/M phase and the proliferation index (PI) of HepG2 cells treated with trypsin or SLIGKV-NH2 were significantly elevated (P<0.001). The proliferative responses of HepG2 to trypsin and SLIGKV-NH2 were associated with the upregulation of c-fos and PCNA, which were significantly blocked by PD98059 pretreatment. In conclusion, our results indicate that PAR-2 enhances proliferation of human hepatoma cells possibly via the ERK/AP-1 pathway.

  14. Etude des performances de solveurs deterministes sur un coeur rapide a caloporteur sodium

    NASA Astrophysics Data System (ADS)

    Bay, Charlotte

    The reactors of next generation, in particular SFR model, represent a true challenge for current codes and solvers, used mainly for thermic cores. There is no guarantee that their competences could be straight adapted to fast neutron spectrum, or to major design differences. Thus it is necessary to assess the validity of solvers and their potential shortfall in the case of fast neutron reactors. As part of an internship with CEA (France), and at the instigation of EPM Nuclear Institute, this study concerns the following codes : DRAGON/DONJON, ERANOS, PARIS and APOLLO3. The precision assessment has been performed using Monte Carlo code TRIPOLI4. Only core calculation was of interest, namely numerical methods competences in precision and rapidity. Lattice code was not part of the study, that is to say nuclear data, self-shielding, or isotopic compositions. Nor was tackled burnup or time evolution effects. The study consists in two main steps : first evaluating the sensitivity of each solver to calculation parameters, and obtain its optimal calculation set ; then compare their competences in terms of precision and rapidity, by collecting usual quantities (effective multiplication factor, reaction rates map), but also more specific quantities which are crucial to the SFR design, namely control rod worth and sodium void effect. The calculation time is also a key factor. Whatever conclusion or recommendation that could be drawn from this study, they must first of all be applied within similar frameworks, that is to say small fast neutron cores with hexagonal geometry. Eventual adjustments for big cores will have to be demonstrated in developments of this study.

  15. The physics of photons and neutrons with applications of deuterium labeling methods to polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wignall, G.D.

    1986-12-01

    Over the past decade small-angle neutron scattering (SANS), has found numerous applications in the fields of biology, polymer science, physical chemistry, materials science, metallurgy, colloids, and solid state physics. A number of excellent references are available which contain basic neutron scattering theory though these text books reflect the origins of the technique and the examples are largely drawn from physics e.g., single crystals, simple liquids, monatomic gases, liquid metals, magnetic materials, etc. in view of the large numbers of nonspecialists who are increasingly using neutron scattering, the need has become apparent for presentations which can provide rapid access to themore » method without unnecessary detail and mathematical rigor. This article is meant to serve as a general introduction to the symposium ''Scattering Deformation and Fracture in Polymers,'' and is intended to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to apply the technique to provide new information in areas of their own particular interests. In view of space limitations, the general theory will be given in the case for neutron scattering and analogies and differences with photon scattering (x-rays) will be pointed out at the appropriate point. 90 refs., 6 figs.« less

  16. Questioning Our Questions: Assessing Question Asking Practices to Evaluate a yPAR Program

    ERIC Educational Resources Information Center

    Grace, Sarah; Langhout, Regina Day

    2014-01-01

    The purpose of this research was to examine question asking practices in a youth participatory action research (yPAR) after school program housed at an elementary school. The research question was: In which ways did the adult question asking practices in a yPAR setting challenge and/or reproduce conventional models of power in educational…

  17. Resolving the neutron lifetime puzzle

    NASA Astrophysics Data System (ADS)

    Mumm, Pieter

    2018-05-01

    Free electrons and protons are stable, but outside atomic nuclei, free neutrons decay into a proton, electron, and antineutrino through the weak interaction, with a lifetime of ∼880 s (see the figure). The most precise measurements have stated uncertainties below 1 s (0.1%), but different techniques, although internally consistent, disagree by 4 standard deviations given the quoted uncertainties. Resolving this “neutron lifetime puzzle” has spawned much experimental effort as well as exotic theoretical mechanisms, thus far without a clear explanation. On page 627 of this issue, Pattie et al. (1) present the most precise measurement of the neutron lifetime to date. A new method of measuring trapped neutrons in situ allows a more detailed exploration of one of the more pernicious systematic effects in neutron traps, neutron phase-space evolution (the changing orbits of neutrons in the trap), than do previous methods. The precision achieved, combined with a very different set of systematic uncertainties, gives hope that experiments such as this one can help resolve the current situation with the neutron lifetime.

  18. [Effect of ERK/AP-1 signaling pathway on proliferation of hepatoma cells induced by PAR-2 agonists].

    PubMed

    Zheng, Yan-min; Xie, Li-qun; Li, Xuan; Zhao, Jun-yan; Chen, Xiao-yi; Chen, Li; Zhou, Jing; Li, Fei

    2009-12-01

    To investigate the expression of protease activated receptor-2 (PAR-2) in human HepG2 hepatoma cells and elucidate the effects of trypsin and PAR-2 agonist peptide SLIGKV-NH(2) upon the proliferation of hepatoma cells and its intracellular signaling mechanism. PAR-2 protein and mRNA expression were detected by immunofluorescence and RT-PCR. The cells were treated with SLIGKV-NH(2), trypsin, reverse PAR-2 agonist peptide VKGILS-NH(2) or PD98059. The changes of cell cycle distribution were evaluated by flow cytometry. The proliferative potential of HepG2 cells was estimated by MTT. The changes of PAR-2, c-fos and PCNA mRNA expression were detected by RT-PCR. The changes of c-fos and PCNA protein expression were detected by Western blotting. PAR-2 protein and mRNA were expressed in HepG2 cells. PAR-2 mRNA expression (PAR-2/beta-actin) were 0.70 +/- 0.04 and 0.99 +/- 0.05 respectively in cells treated with trypsin and SLIGKV-NH(2). They were both significantly higher than that in the control group (0.35 +/- 0.05, F = 135.534, P < 0.01). Percent G(0)/G(1) phase of HepG2 cells treated with trypsin or SLIGKV-NH(2) were significantly lower than those in the control group [(56.11 +/- 0.85)%, (57.85 +/- 0.46)% vs (79.12 +/- 0.67)%, both P < 0.01] Percent S phase, G(2)/M phase and proliferation index (PI) of HepG2 cells treated with trypsin or SLIGKV-NH(2) were significantly elevated (P < 0.01). The proliferation-enhancing effects and the up-regulation of mRNA and protein of c-fos and PCNA induced by trypsin or SLIGKV-NH(2) were significantly blocked by pretreatment with PD98059 (P < 0.01). There was no statistical significance in proliferation of HepG2 cells between the reverse PAR-2 agonist peptide VKGILS-NH(2) and control group (P > 0.05). PAR-2 is expressed in HepG2 hepatoma cells. PAR-2 activation induced by trypsin or SLIGKV-NH(2) promotes the proliferation of HepG2 cells partially via the ERK/AP-1 pathway.

  19. Neutron coincidence detectors employing heterogeneous materials

    DOEpatents

    Czirr, J. Bartley; Jensen, Gary L.

    1993-07-27

    A neutron detector relies upon optical separation of different scintillators to measure the total energy and/or number of neutrons from a neutron source. In pulse mode embodiments of the invention, neutrons are detected in a first detector which surrounds the neutron source and in a second detector surrounding the first detector. An electronic circuit insures that only events are measured which correspond to neutrons first detected in the first detector followed by subsequent detection in the second detector. In spectrometer embodiments of the invention, neutrons are thermalized in the second detector which is formed by a scintillator-moderator and neutron energy is measured from the summed signals from the first and second detectors.

  20. Combination with CK19 Might Increase the Prognostic Power of Hep Par 1 in Hepatocellular Carcinoma after Curative Resection.

    PubMed

    Jin, Ye; Liang, Zhi-Yong; Zhou, Wei-Xun; Zhou, Li

    2017-07-31

    Hepatocyte Paraffin 1 (Hep Par 1) and cytokeratin 19 (CK19) were shown to be associated with post-surgical prognosis of hepatocellular carcinoma (HCC). However, further validation might be needed. Besides, their combined evaluation has not been reported. The present study was designed to address the issues. Expressions of Hep Par 1 and CK19 were detected using tissue microarray-based immunohistochemical staining in 79 patients with HCC underwent curative hepatectomy. Their associations with cliniopathologic variables, overall and recurrence-free survival were analyzed. Hep Par 1 was highly expressed in 61 patients (77.2%), whereas CK19 was positive in 8 patients (10.1%). Moreover, expressions of these two proteins were all associated with tumor-node-metastasis (TNM) stage and vascular invasion. It was found that high Hep Par 1 expression was univariately associated with good overall and recurrence-free survival, while CK19 was marginally prognostic. Also in univariate analyses, combination of the two markers more effectively predicted for long-term prognosis in HCC than Hep Par 1 did. However, neither Hep Par 1 nor Hep Par 1/CK19 was multivariately significant. Finally, Hep Par 1/CK19 combined with TNM stage might obtain more satisfactory outcome prediction, especially for overall survival. Combination of CK19 with Hep Par 1 might have higher prognostic power, which might be further improved by adding TNM stage, than Hep Par 1 alone, in resected HCC. Of course, subsequent confirmation is necessary.