Science.gov

Sample records for para ixodes pararicinus

  1. Borrelia infection in Ixodes pararicinus ticks (Acari: Ixodidae) from northwestern Argentina.

    PubMed

    Nava, Santiago; Barbieri, Amalia M; Maya, Leticia; Colina, Rodney; Mangold, Atilio J; Labruna, Marcelo B; Venzal, José M

    2014-11-01

    The aim of this work was to describe for the first time the presence of Borrelia burgdorferi sensu lato infecting ticks in Argentina. Unfed specimens of Ixodes pararicinus collected from vegetation in Jujuy Province were tested for Borrelia infection by PCR targeting the gene flagellin (fla), the rrfA-rrlB intergenic spacer region (IGS) and the 16S rDNA (rrs) gene. One male and one female of I. pararicinus collected in Jujuy were found to be positive to Borrelia infection with the three molecular markers tested. Phylogenetically, the Borrelia found in I. pararicinus from Jujuy belongs to the B. burgdorferi s.l complex, and it was similar to one of the genospecies detected in I. aragaoi from Uruguay. Also, this genospecies is closely related to two genospecies known from USA, Borrelia americana and the Borrelia sp. genospecies 1. The epidemiological risk that implies the infection with Borrelia in I. paracinus ticks from Argentina appears to be low because the genospecies detected is not suspected of having clinical relevance and there are no records of Ixodes ticks biting humans in the southern cone of South America. Further studies are needed to assess accurately if there is risk of borreliosis transmitted by ticks in South America. PMID:24979685

  2. Acaricidal effects of Corymbia citriodora oil containing para-menthane-3,8-diol against nymphs of Ixodes ricinus (Acari: Ixodidae).

    PubMed

    Elmhalli, Fawzeia H; Pålsson, Katinka; Orberg, Jan; Jaenson, Thomas G T

    2009-07-01

    The toxicity of para-menthane-3,8-diol (PMD), the main arthropod-repellent compound in the oil of the lemon eucalyptus, Corymbia citriodora, was evaluated against nymphs of Ixodes ricinus using five methods (A-E) of a contact toxicity bioassay. Mortality rates were estimated by recording numbers of dead nymphs at 30 min intervals during the first 5 h after the start of exposure and at longer intervals thereafter. The mortality rate increased with increasing concentration of PMD and duration of exposure with a distinct effect after 3.5 h. From the results obtained by methods A, C and E, the LC(50) range was 0.035-0.037 mg PMD/cm(2) and the LC(95) range was 0.095-0.097 mg PMD/cm(2) at 4 h of exposure; the LT(50) range was 2.1-2.8 h and the LT(95) range was 3.9-4.2 h at 0.1 mg PMD/cm(2). To determine the duration of toxic activity of PMD, different concentrations (0.002, 0.01, 0.1 mg PMD/cm(2)) were tested and mortality was recorded at each concentration after 1 h; thereafter new ticks were tested. This test revealed that the lethal activity of PMD remained for 24 h but appeared absent after 48 h. The overall results show that PMD is toxic to nymphs of I. ricinus and may be useful for tick control. PMID:19169833

  3. Coinfections Acquired from Ixodes Ticks

    PubMed Central

    Swanson, Stephen J.; Neitzel, David; Reed, Kurt D.; Belongia, Edward A.

    2006-01-01

    The pathogens that cause Lyme disease (LD), human anaplasmosis, and babesiosis can coexist in Ixodes ticks and cause human coinfections. Although the risk of human coinfection differs by geographic location, the true prevalence of coinfecting pathogens among Ixodes ticks remains largely unknown for the majority of geographic locations. The prevalence of dually infected Ixodes ticks appears highest among ticks from regions of North America and Europe where LD is endemic, with reported prevalences of ≤28%. In North America and Europe, the majority of tick-borne coinfections occur among humans with diagnosed LD. Humans coinfected with LD and babesiosis appear to have more intense, prolonged symptoms than those with LD alone. Coinfected persons can also manifest diverse, influenza-like symptoms, and abnormal laboratory test results are frequently observed. Coinfecting pathogens might alter the efficiency of transmission, cause cooperative or competitive pathogen interactions, and alter disease severity among hosts. No prospective studies to assess the immunologic effects of coinfection among humans have been conducted, but animal models demonstrate that certain coinfections can modulate the immune response. Clinicians should consider the likelihood of coinfection when pursuing laboratory testing or selecting therapy for patients with tick-borne illness. PMID:17041141

  4. Repellency of MyggA Natural spray (para-menthane-3,8-diol) and RB86 (neem oil) against the tick Ixodes ricinus (Acari: Ixodidae) in the field in east-central Sweden.

    PubMed

    Garboui, Samira S; Jaenson, Thomas G T; Pålsson, K

    2006-01-01

    In the field in south-central Sweden, we tested by randomised, standardised methodology the potential anti-tick repellent activity of two concentrations of MyggA Natural spray (containing PMD) (4.2 and 3.2 g/m2) and one of RB86 (with 70% neem oil containing azadirachtin) (3 g/m2) to host seeking nymphs of Ixodes ricinus. Each substance was applied separately to 1 m2 cotton flannel cloths. Nymphal ticks on the cloths, pulled over the vegetation, were recorded at 10-m stops. Nymphal numbers recorded differed significantly between treated cloths [4.2 or 3.2 g MyggA Natural spray/m2 and 3 g RB86/m2] and the untreated control (df = 3, chi2 = 112.74, P < 0.0001). Nymphal numbers also differed significantly among collectors (df = 3, chi2 = 15.80, P < 0.001). Repellency of treated cloths, i.e., 4.2 or 3.2 g MyggA Natural spray/m2 and 3 g RB 86/m2 declined from day 0 (i.e. the day of impregnation) to day 3 after impregnation from 77 to 24%, 58 to 16% and 47 to 0.5%, respectively. This study suggests that all three treatments have significant repellent activities against I. ricinus nymphs. PMID:17103083

  5. Natural hybridization between Ixodes ricinus and Ixodes persulcatus ticks evidenced by molecular genetics methods.

    PubMed

    Kovalev, S Y; Golovljova, I V; Mukhacheva, T A

    2016-02-01

    The recently shown phenomenon of natural hybridization between Ixodes persulcatus and Ixodes pavlovskyi ticks (Kovalev et al., 2015) stimulated similar studies in the sympatric zones of other tick species. In the present paper, 265 Ixodes ricinus and I. persulcatus ticks from Estonia were subjected to a search for interspecific hybrids based on nuclear (ITS2) and mitochondrial (cox1) markers as well as morphological features. Surprisingly, only 72.1% of ticks morphologically identified as I. ricinus actually were I. ricinus both at nuclear and mitochondrial markers, while the accuracy of morphological species identification for I. persulcatus was 99.3%. Among ticks morphologically identified as I. ricinus, 24.6% turned out to be interspecific hybrids and 3.3% were I. persulcatus. Generally, about 11% of the individuals studied were shown to be interspecific hybrids with different levels of nuclear DNA introgression. The analysis of hybrid populations proved the mating pair female I. ricinus×male I. persulcatus to form hybrids more efficiently, then female I. persulcatus×male I. ricinus. The same trend can be observed for backcrosses preferentially mating with I. ricinus. Hybridization between I. ricinus and I. persulcatus proved the existing view about their reproductive isolation to be untenable. Interspecific hybridization occurring between both closely (I. persulcatus and I. pavlovskyi) and more distantly (I. ricinus and I. persulcatus) related Ixodes species could introduce novel alleles that modify vector competence, host use or the ability to exploit diverse microhabitats. PMID:26460161

  6. Repellent efficacy of DEET, Icaridin, and EBAAP against Ixodes ricinus and Ixodes scapularis nymphs (Acari, Ixodidae).

    PubMed

    Büchel, Kerstin; Bendin, Juliane; Gharbi, Amina; Rahlenbeck, Sibylle; Dautel, Hans

    2015-06-01

    Repellent efficacy of 10% EBAAP (3-[N-butyl-N-acetyl]-aminopropionic acid, ethyl ester) and 10% Icaridin ((2-(2-hydroxyethyl)-1-piperidinecarboxylic acid 1-methylpropyl ester)) were evaluated against 20% DEET (N,N-diethyl-3-methylbenzamide) in human subject trials against ticks. Responses of host-seeking nymphs of the European castor bean tick (Ixodes ricinus L.; Acari: Ixodidae) and the North American blacklegged tick (I. scapularis Say; Acari: Ixodidae) were compared. Tests were carried out according to the US-EPA standard protocol with ethanolic solutions of the active ingredients of repellents being applied to the forearm of 10 volunteers. The upward movement of ticks was monitored until repellent failure taking up to 12.5 h. Application of 20% DEET resulted in median complete protection times (CPT; Kaplan-Meier median) between 4 and 4.5 h, while 10% EBAAP yielded CPTs of 3.5-4h. No significant differences were found between the efficacies of two repellents nor between the two species tested. The median of the CPT of a 10% Icaridin solution was 5h in nymphs of I. scapularis, but 8h in those of I. ricinus (P<0.01). Based on these studies, EBAAP and Icaridin are efficacious alternatives to DEET in their repellent activity against nymphs of the two Ixodes ticks with Icaridin demonstrating particularly promising results against I. ricinus. Future research should investigate whether similar results occur when adult Ixodes ticks or other tick species are tested. PMID:25936273

  7. [Persistence of bacteria and viruses in Ixodes].

    PubMed

    Podboronov, V M; Smirnova, I P

    2014-01-01

    Behaviour of viruses and salmonellas in ticks after their single or combined contamination was thoroughly studied on laboratory animals with bacteriemia or virusemia. When Ixodes ricinus was contaminated simultaneously with forest-spring encephalitis virus and salmonellas there were observed a decrease in the virus titer by the 30th-40th days and its death in 60 days. In case of the I. ricinus nymphs contamination, the virus titer after the combined contamination was by a factor of 10(2) lower in 60 days vs. the contamination with the virus alone and did not reach the contamination dose. The simultaneous contamination of the ticks with two pathogens (forest-spring encephalitis virus and salmonellas) resulted in inhibition of the growth and development of both the virus and the salmonellas. PMID:25975109

  8. Characterization of spirochetes isolated from ticks (Ixodes tanuki, Ixodes turdus, and Ixodes columnae) and comparison of the sequences with those of Borrelia burgdorferi sensu lato strains.

    PubMed Central

    Fukunaga, M; Hamase, A; Okada, K; Inoue, H; Tsuruta, Y; Miyamoto, K; Nakao, M

    1996-01-01

    Ixodes persulcatus serves as a tick vector for Borrelia garinii and Borrelia afzelii in Japan; however, unidentified spirochetes have been isolated from other species of ticks. In this study, 13 isolates from ticks (6 from Ixodes tanuki, 6 from Ixodes turdus, and 1 from Ixodes columnae) and 3 isolates from voles (Clethrionomys rufocanus) were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, rRNA gene restriction fragment length polymorphism, partial sequencing of the outer surface protein C (OspC) gene, whole DNA-DNA hybridization, and 16S rRNA gene sequence comparison. All of the results revealed that these Borrelia strains clearly represent at least two new species. A third is also likely, although additional strains have to be isolated and characterized before a separate species is designated. We designated all isolates of I. tanuki and C. rufocanus as group Hk501 and all isolates of I. turdus as group Ya501. Phylogenetic analysis based on 16S rRNA gene sequences distinguished these Borrelia strains from those belonging to hitherto known Borrelia species. Furthermore, the genomic groups, each with its own tick vectors with enzootic cycles, were quite different from each other and also from those of Lyme disease Borrelia species known to occur in Japan. The results of 16S rRNA gene sequence comparison suggest that the strain Am501 from I. columnae is related to group Hk501, although its level of DNA relatedness is less than 70%. PMID:8779571

  9. Prevalence and phylogenetic analysis of Babesia spp. in Ixodes ricinus and Ixodes persulcatus ticks in Latvia.

    PubMed

    Capligina, Valentina; Berzina, Inese; Bormane, Antra; Salmane, Ineta; Vilks, Karlis; Kazarina, Alisa; Bandere, Dace; Baumanis, Viesturs; Ranka, Renate

    2016-03-01

    Babesia spp. are tick-borne protozoan parasites that have been reported in many European countries and are considered to be emerging pathogens. Several Babesia spp. have been identified in ticks in Latvia. Recently, canine babesiosis cases were diagnosed for the first time in Latvia; therefore, continued studies on the prevalence and occurrence of new species are warranted. In the present study, questing tick samples collected in 2005-2007 were screened for the presence of Babesia spp.; in total, 432 Ixodes ricinus and 693 Ixodes persulcatus ticks were analyzed. Babesia spp. were detected in 1.4% of the I. ricinus ticks and in 1.9% of I. persulcatus ticks. Sequencing revealed that ixodid ticks in Latvia contained Babesia microti, Babesia capreoli, and Babesia venatorum. Babesia microti was the most prevalent species, accounting for 58% of all positive samples; moreover, two distinct B. microti genotypes were identified. Phylogenetic analysis of the full-length 18S rRNA gene of two B. capreoli/B. divergens isolates indicated a closer relationship to the B. capreoli clade than B. divergens. This is the first report of B. venatorum in I. persulcatus ticks in Latvia. Our results suggest that both I. ricinus and I. persulcatus ticks play important roles in the epidemiology of these zoonotic pathogens in Latvia. PMID:26481239

  10. Life cycle of Ixodes (Ixodes) loricatus (Acari: Ixodidae) under laboratory conditions.

    PubMed

    Schumaker, T T; Labruna, M B; Abel, I dos S; Clerici, P T

    2000-09-01

    The life cycle of Ixodes (Ixodes) loricatus Neumann, reared in the laboratory, is described. Engorged females collected from opossums trapped in the states of Minas Gerais and São Paulo, Brazil, which were used to start the laboratory colonies, were designated as BMG and CSP, respectively. Larval and nymphal ticks from both colonies fed separately on Rattus norvergicus Berkenhout or Calomys callosus Rengger, whereas Didelphis marsupialis L and Didelphis albiventris Lund were used as hosts for BMG and CSP adults, respectively. Biological and developmental data obtained from ticks of both the BMG and CSP colonies that were reared separately for two consecutive generations were compared. The percentage of fed or molted ticks reared on C. callosus was higher than that recorded for ticks fed on R. norvergicus in the majority of the observations. Despite significant differences among several of the biological parameters, the pattern of the life cycles of the two tick colonies was similar. Results indicated that the mean life cycle duration of I. (I.) loricatus was approximately 7 mo from parental oviposition to the occurrence of F1 eggs, regardless of geographic origin or host species. PMID:11004783

  11. Ixodes ticks: serum species sensitivity of anticomplement activity.

    PubMed

    Lawrie, C H; Randolph, S E; Nuttall, P A

    1999-12-01

    Ixodid ticks feed for extended periods of up to 2 weeks or more. To complete engorgement, they must overcome their host's innate immune mechanisms of which the complement system is a major component. Using in vitro assays, salivary gland extracts of the ixodid ticks, Ixodes ricinus, I. hexagonus, and I. uriae, were shown to inhibit activity of the alternative pathway of complement. The ability of the different Ixodes species to inhibit complement activity varied with the animal species used as a complement serum source. Serum species sensitivity correlates to the reported host range of the tick species tested. PMID:10600446

  12. Tick Genomics: The Ixodes genome project and beyond

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ticks and mites (subphylum Chelicerata; subclass Acari) are important pests of animals and plants worldwide. The Ixodes scapularis (black-legged tick) genome sequencing project marks the beginning of the genomics era for the field of acarology. This project is the first to sequence the genome of a...

  13. A snapshot of the Ixodes scapularis degradome.

    PubMed

    Mulenga, Albert; Erikson, Kelly

    2011-08-15

    Parasitic encoded proteases are essential to regulating interactions between parasites and their hosts and thus they represent attractive anti-parasitic druggable and/or vaccine target. We have utilized annotations of Ixodes scapularis proteases in gene bank and version 9.3 MEROPS database to compile an index of at least 233 putatively active and 150 putatively inactive protease enzymes that are encoded by the I. scapularis genome. The 233 putatively active protease homologs hereafter referred to as the degradome (the full repertoire of proteases encoded by the I. scapularis genome) represent ~1.14% of the 20485 putative I. scapularis protein content. Consistent with observations in other animals, the content of the I. scapularis degradome is ~6.0% (14/233) aspartic, ~19% (44/233) cysteine, ~40% (93/233) metallo, ~28.3% (66/233) serine and ~6.4% (15/233) threonine proteases. When scanned against other tick sequences, ~11% (25/233) of I. scapularis putatively active proteases are conserved in other tick species with ≥ 60% amino acid identity levels. The I. scapularis genome does not apparently encode for putatively inactive aspartic proteases. Of the 150 putative inactive protease homologs none are from the aspartic protease class, ~8% (12/150) are cysteine, ~58.7% (88/150) metallo, 30% (45/150) serine and ~3.3% (5/150) are threonine proteases. The I. scapularis tick genome appears to have evolutionarily lost proteolytic activity of at least 6 protease families, C56 and C64 (cysteine), M20 and M23 (metallo), S24 and S28 (serine) as revealed by a lack of the putatively active proteases in these families. The overall protease content is comparable to other organisms. However, the paucity of the S1 chymotrypsin/trypsin-like serine protease family in the I. scapularis genome where it is ~12.7% (28/233) of the degradome as opposed to ~22-48% content in other blood feeding arthropods, Pediculus humanus humanus, Anopheles gambiae, Aedes Aegypti and Culex pipiens

  14. Vector of Trypanosoma copemani identified as Ixodes sp.

    PubMed

    Austen, J M; Ryan, U M; Friend, J A; Ditcham, W G F; Reid, S A

    2011-06-01

    A total of 41 ticks were collected from 15 quokkas on Bald Island and 2 ticks from a Gilbert's potoroo from Two Peoples Bay. Three species of Ixodid ticks Ixodes australiensis, Ixodes hirsti and Ixodes myrmecobii were identified on the quokkas known to have a high prevalence of Trypanosoma copemani. Tick faeces from ticks isolated from 8 individual quokkas and a Gilbert's potoroo were examined with one identified as positive for trypanosomes. Faecal examination revealed trypanosomes similar to in vitro life-cycle stages of T. copemani. In total 12 ticks were dissected and trypanosomes found in sections of their midgut and haemolymph, 49 and 117 days after collection. Tick faeces, salivary glands and midguts from I. australiensis were screened using an 18S rRNA PCR with amplification seen only from the midguts. Sequencing showed 100% homology to T. copemani (genotype A) and 99.9% homology to the wombat (AII) isolate of T. copemani. Trypanosomes were only detected in I. australiensis as neither I. hirsti nor I. myrmecobii survived the initial 30-day storage conditions. We therefore identify a vector for T. copemani as I. australiensis and, given the detection of trypanosomes in the faeces, suggest that transmission is via the faecal-oral route. PMID:21518469

  15. Isolation and propagation of a Spiroplasma sp. from Slovakian Ixodes ricinus ticks in Ixodes spp. cell lines

    PubMed Central

    Bell-Sakyi, Lesley; Palomar, Ana M.; Kazimirova, Maria

    2015-01-01

    Ixodes spp. ticks are known to occasionally harbour spiroplasmas – helical mycoplasmas in the class Mollicutes; a previous study in Slovakia reported an overall prevalence of Spiroplasma ixodetis of 3% in Ixodes ricinus. In the present study, extracts of unfed adult I. ricinus ticks collected from vegetation in south-western Slovakia were added to a panel of cell lines derived from I. ricinus and Ixodes scapularis embryos. The cultures were monitored by preparation and examination of Giemsa-stained cytocentrifuge smears at intervals over the subsequent 16–18 months. Spiroplasma-like microorganisms were detected in cultures of both tick species after 2–3 months and subcultured onto fresh, uninfected cells of the appropriate cell line up to seven times. Molecular analysis using PCR assays targeting fragments of the 16S rRNA, ITS and rpoB genes confirmed the identity of the microorganisms as a Spiroplasma sp., with between 98.9% and 99.5% similarity to S. ixodetis. The sequences of the spiroplasmas isolated from three different pools of ticks collected on two different occasions were identical for all three genes tested. PMID:26003954

  16. Comparison of tick-borne microorganism communities in Ixodes spp. of the Ixodes ricinus species complex at distinct geographical regions.

    PubMed

    Movila, Alexandru; Dubinina, Helen V; Sitnicova, Natalia; Bespyatova, Liubov; Uspenskaia, Inga; Efremova, Galina; Toderas, Ion; Alekseev, Andrey N

    2014-05-01

    Characterizing the tick-borne microorganism communities of Ixodes ricinus (sheep tick) and Ixodes persulcatus (taiga tick) from the I. ricinus species complex in distinct geographical regions of Eastern Europe and European Russia, we demonstrated differences between the two ticks. Taiga ticks were more frequently mono- and co-infected than sheep ticks: 24.4 % (45/184 tested ticks) versus 17.5 % (52/297) and 4.3 % (8/184) versus 3.4 % (10/297), respectively. Ginsberg co-infection index values were significant at the various sites. Diversity of the tick-borne microorganism communities was estimated by the Shannon index, reaching values of 1.71 ± 0.46 and 1.20 ± 0.15 at the sheep-tick and the taiga-tick harbored sites, respectively. Richness of the tick-borne microorganism community in the sheep tick collection sites was about twice the value of the taiga tick collection sites. Future investigations are warranted to further characterize the peculiarities of the tick-borne microorganism communities among the ticks of the Ixodes ricinus complex. PMID:24356921

  17. Natural hybridization of the ticks Ixodes persulcatus and Ixodes pavlovskyi in their sympatric populations in Western Siberia.

    PubMed

    Kovalev, Sergey Y; Mikhaylishcheva, Maria S; Mukhacheva, Tatyana A

    2015-06-01

    Hybridization of ticks of the genus Ixodes has been described for several species under laboratory conditions although no molecular genetics evidence confirming interspecific hybridization in nature is available. We have designed a real time PCR targeted on nuclear (ITS2) and mitochondrial (cox1) markers to accurately identify tick species and to detect interspecific hybrids of Ixodes persulcatus and Ixodes pavlovskyi in their sympatric populations in Western Siberia. A survey of 783 individual ticks from a suburb of Tomsk showed that 44.2% of ticks belong to I. pavlovskyi species and 55.8% to I. persulcatus, based on the mtDNA data. Results obtained with the nuclear marker were not consistent, indicating that approximately 10% of the ticks were hybrids and about 5% revealed mtDNA introgression. Both hybridization and introgression have been shown to occur bidirectionally but more efficiently in the mating pair female I. pavlovskyi×male I. persulcatus than vice versa. The existence of the first generation hybrids and backcrosses challenges the existing view about effective reproductive barriers between I. pavlovskyi and I. persulcatus. While using only mitochondrial markers can lead to errors in determining tick species, we propose to use nuclear or both markers instead. The results obtained in the present paper and published earlier suggest that hybridization between closely related tick species in their sympatric zones is common rather than exceptional. The role of hybrid populations of vectors in the evolution of transmitted pathogens is also discussed. PMID:25858121

  18. Borrelia burgdorferi sensu lato in Ixodes cf. neuquenensis and Ixodes sigelos ticks from the Patagonian region of Argentina.

    PubMed

    Sebastian, Patrick S; Bottero, Maria Noelia Saracho; Carvalho, Luis; Mackenstedt, Ute; Lareschi, Marcela; Venzal, José M; Nava, Santiago

    2016-10-01

    This study was conducted to detect Borrelia burgdorferi sensu lato infection in ixodid ticks from the Patagonia region in the south of Argentina. Therefore, ticks were collected on rodents in the provinces of Chubut, Río Negro and Santa Cruz. These ticks were identified as nymphs of Ixodes cf. neuquenensis and Ixodes sigelos. The B. burgdorferi s.l. infection was tested by a battery of PCR methods targeting the gene flagellin (fla) and the rrfA-rrlB intergenic spacer region (IGS). Three pools of I. sigelos nymphs from Chubut and Santa Cruz provinces as well as one pool of I. cf. neuquenensis nymphs from Río Negro province were tested positive in the fla-PCR. The samples of I. sigelos were also positive for the IGS-PCR. Phylogenetically, the haplotypes found in the positive ticks belong to the B. burgdorferi s.l. complex, and they were closely related to Borrelia chilensis, a genospecies isolated from Ixodes stilesi in Chile. The pathogenic relevance of the Borrelia genospecies detected in both I. neuquenensis and I. sigelos is unknown. PMID:27372197

  19. Diapause in ticks of the medically important Ixodes ricinus species complex.

    PubMed

    Gray, Jeremy S; Kahl, Olaf; Lane, Robert S; Levin, Michael L; Tsao, Jean I

    2016-07-01

    Four members of the Ixodes ricinus species complex, Ixodes pacificus, Ixodes persulcatus, Ixodes ricinus and Ixodes scapularis, have, between them, a worldwide distribution within the northern hemisphere. They are responsible for the transmission of several animal and human pathogens, including the causal agents of Lyme borreliosis, tick-borne encephalitis, human granulocytic anaplasmosis and human babesiosis. Despite the importance of these ticks as vectors, the knowledge and understanding of the role that diapause plays in their complex life cycles are confused and incomplete. In view of the continuing geographic spread of these tick species, as well as the effects of climate change on vector-borne diseases, it is timely to encourage research on diapause phenomena to improve understanding of their biology and of pathogen transmission dynamics. In our review we seek to clarify thinking on the topic and to address gaps in our knowledge that require the attention of researchers. PMID:27263092

  20. Teratological Nymphal Ixodes scapularis (Acari: Ixodidae) From Wisconsin.

    PubMed

    Larson, Scott R; Paskewitz, Susan M

    2016-03-01

    Abnormalities of physiological development (teratological forms) in ticks are rare. The occurrence of gigantism, dwarfism, gynandromorphs, missing legs, extra legs, and asymmetries is most often reported from lab-reared specimens, but has been observed in field-collected specimens. All morphologically anomalous ticks (besides gynandromorphy) described to date are from species other than Ixodes scapularis Say (Acari: Ixodidae). Here we describe four teratological I. scapularis nymphs collected while dragging vegetation in Wisconsin in 2015, including two asymmetrical ticks, one with a missing leg, and one with an extra leg. PMID:26681790

  1. Tick paralysis in Australia caused by Ixodes holocyclus Neumann

    PubMed Central

    Hall-Mendelin, S; Craig, S B; Hall, R A; O’Donoghue, P; Atwell, R B; Tulsiani, S M; Graham, G C

    2011-01-01

    Ticks are obligate haematophagous ectoparasites of various animals, including humans, and are abundant in temperate and tropical zones around the world. They are the most important vectors for the pathogens causing disease in livestock and second only to mosquitoes as vectors of pathogens causing human disease. Ticks are formidable arachnids, capable of not only transmitting the pathogens involved in some infectious diseases but also of inducing allergies and causing toxicoses and paralysis, with possible fatal outcomes for the host. This review focuses on tick paralysis, the role of the Australian paralysis tick Ixodes holocyclus, and the role of toxin molecules from this species in causing paralysis in the host. PMID:21396246

  2. Life history of Ixodes (Ixodes) jellisoni (Acari: Ixodidae) and its vector competence for Borrelia burgdorferi sensu lato.

    PubMed

    Lane, R S; Peavey, C A; Padgett, K A; Hendson, M

    1999-05-01

    Ixodes (Ixodes) jellisoni Cooley & Kohls, a nonhuman biting and little known tick, is one of 4 members of the I. ricinus complex in the United States. A localized population of I. jellisoni inhabiting a grassland biotope in Mendocino County, CA, was studied from 1993 to 1997. Rodent trapping in all seasons revealed that the only host of both immature and adult I. jellisoni was the heteromyid rodent Dipodomys californicus Merriam. Field investigations suggested that I. jellisoni is nidicolous in habit, and laboratory findings demonstrated that it reproduces parthenogenetically. Known parthenogenetic females (n = 4) produced an average of 530 eggs of which 74% hatched, which was comparable to the fecundity and fertility of wild-caught females (n = 8). After the transstadial molt, 57 F1 or F2 nymphs derived from 2 wild-caught or 4 laboratory-reared, unmated females produced only females. Ixodes jellisoni males were not found on 112 wild-caught D. californicus individuals that were captured an average of 2 times. Collectively, these findings suggest that I. jellisoni may be obligatorily parthenogenetic. Borrelial isolates were obtained from 85% of 58 D. californicus and 33% of 21 I. jellisoni females removed from this rodent. None of the 7 infected female ticks passed borreliae ovarially to its F1 larval progeny. Eight D. californicus and 5 I. jellisoni-derived isolates that were genetically characterized belonged to 2 restriction pattern groups of Borrelia burgdorferi s.l. Neither restriction pattern group has been assigned to a particular genospecies yet. After placement on naturally infected D. californicus, noninfected larval ticks acquired and transstadially passed spirochetes as efficiently as (group 1 borreliae) or 6 times more efficiently (group 2 borreliae) than Ixodes pacificus Cooley & Kohls. As few as 1-4 infected I. jellisoni nymphs were capable of transmitting group 1 or group 2 borreliae to naive D. californicus. We conclude that I. jellisoni is a

  3. Anaplasma phagocytophilum in questing Ixodes ricinus ticks from Romania.

    PubMed

    Matei, Ioana Adriana; Kalmár, Zsuzsa; Magdaş, Cristian; Magdaş, Virginia; Toriay, Hortenzia; Dumitrache, Mirabela Oana; Ionică, Angela Monica; D'Amico, Gianluca; Sándor, Attila D; Mărcuţan, Daniel Ioan; Domşa, Cristian; Gherman, Călin Mircea; Mihalca, Andrei Daniel

    2015-04-01

    Granulocytic anaplasmosis is a common vector-borne disease of humans and animals with natural transmission cycle that involves tick vectors, among which Ixodes ricinus is the most important. The present paper reports the prevalence and geographical distribution of A. phagocytophilum in 10,438 questing Ixodes ricinus ticks collected at 113 locations from 40 counties of Romania. The unfed ticks were examined for the presence of A. phagocytophilum by PCR targeting a portion of ankA gene. The overall prevalence of infection was 3.42%, with local prevalences ranging between 0.29% and 22.45%, with an average prevalence of 5.39% in the infected localities. The infection with A. phagocytophilum was detected in 72 out of 113 localities and in 34 out of 40 counties. The highest prevalence was recorded in females followed by males and nymphs. The results and the distribution model have shown a large distribution of A. phagocytophilum, covering Romania's entire territory. This study is the first large scale survey of the presence of A. phagocytophilum in questing I. ricinus ticks from Romania. PMID:25838178

  4. [Morphofunctional changes in the midgut of ticks of the genus Ixodes (Acarina: Ixodidae) during life cycle].

    PubMed

    Grigor'eva, L A

    2009-01-01

    Morphofunctional investigations of five Ixodes species (Ixodes pacificus, I. pavlovsky, I. persulcatus, I. ricinus and I. scapularis) were carried out. It was established, that the change of midgut epithelium lags at the each next developmental stage, and it is not synchronized with general processes of metamorphosis and organogenesis during molts. The midgut epithelium of a previous phase of the life cycle persists and functions during the feeding stage at the next phase. PMID:19957908

  5. Pathogenicity of Bacillus thuringiensis variety kurstaki to Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Zhioua, E.; Heyer, K.; Browning, M.; Ginsberg, H.S.; LeBrun, R.A.

    1999-01-01

    Pathogenicity of the entomopathogenic bacterium Bacillus thuringiensis var. kurstaki de Barjac & Lemille was tested against the black-legged tick, Ixodes scapularis Say. Engorged larvae dipped in a solution of 108 spores per ml showed 96% mortality, 3 wk post-infection. The LC50 value for engorged larvae (concentration required to kill 50% of ticks) was 107 spores/ml. Bacillus thuringiensis shows considerable potential as a microbial control agent for the management of Ixodes scapularis.

  6. Pathogenicity of entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) to Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Zhioua, E.; Browning, M.; Johnson, P.W.; Ginsberg, H.S.; LeBrun, R.A.

    1997-01-01

    The entomopathogenic fungus Metarhizium anisopliae is highly pathogenic to the black-legged tick, Ixodes scapularis. Spore concentrations of 108/ml for engorged larvae and 107/ml for engorged females resulted in 100% tick mortality, 2 wk post-infection. The LC50 value for engorged larvae (concentration to kill 50% of ticks) was 107 spores/ml. Metarhizium anisopliae shows considerable potential as a microbial control agent for the management of Ixodes scapularis.

  7. Molecular Identification of Borrelia miyamotoi in Ixodes ricinus from Portugal.

    PubMed

    Nunes, Mónica; Parreira, Ricardo; Lopes, Nádia; Maia, Carla; Carreira, Teresa; Sousa, Carmelita; Faria, Sofia; Campino, Lenea; Vieira, M Luísa

    2015-08-01

    Borrelia miyamotoi, a relapsing fever spirochete, has been found recently in Ixodes ricinus ticks; however, little is known about its spatial distribution and potential local impact on human health. A total of 640 ticks (447 nymphs and 193 adults) collected throughout Portugal were analyzed using two nested PCR protocols, one targeting the flagellin gene and the other the internal transcribed space region between the 5S and the 23S rRNA. As a result, B. miyamotoi was detected, for the first time, in one guesting I. ricinus nymph collected in the Lisboa district. In addition, a prevalence of 11% (71/640) for B. burgdorferi sensu lato was obtained. Even though no human relapsing fever cases due to infection by B. miyamotoi have been reported yet in Portugal, surveillance must be improved to provide better insight into the prevalence and distribution of this spirochete in ticks. PMID:26273814

  8. Infection of Immature Ixodes scapularis (Acari: Ixodidae) by Membrane Feeding.

    PubMed

    Oliver, Jonathan D; Lynn, Geoffrey E; Burkhardt, Nicole Y; Price, Lisa D; Nelson, Curtis M; Kurtti, Timothy J; Munderloh, Ulrike G

    2016-03-01

    A reduction in the use of animals in infectious disease research is desirable for animal welfare as well as for simplification and standardization of experiments. An artificial silicone-based membrane-feeding system was adapted for complete engorgement of adult and nymphal Ixodes scapularis Say (Acari: Ixodidae), and for infecting nymphs with pathogenic, tick-borne bacteria. Six wild-type and genetically transformed strains of four species of bacteria were inoculated into sterile bovine blood and fed to ticks. Pathogens were consistently detected in replete nymphs by polymerase chain reaction. Adult ticks that ingested bacteria as nymphs were evaluated for transstadial transmission. Borrelia burgdorferi and Ehrlichia muris-like agent showed high rates of transstadial transmission to adult ticks, whereas Anaplasma phagocytophilum and Rickettsia monacensis demonstrated low rates of transstadial transmission/maintenance. Artificial membrane feeding can be used to routinely maintain nymphal and adult I. scapularis, and infect nymphs with tick-borne pathogens. PMID:26721866

  9. [EFFECT OF PYRETHROIDS ON TAIGA TICKS (IXODES PERSULCATUS IXODIDAE)].

    PubMed

    Germant, O M; Shashina, N I

    2016-01-01

    Nonspecific prevention of infections, the agents of which are transmitted by Ixodes ticks, is aimed at stopping the suction of the ticks to humans and is substantially based one the use of acaricides. The most interesting group of compounds to be used to individually protect humans is pyrethroids that cause different nerve conduction disturbances in the ticks, which result in their paralysis and death more significantly rapidly than the compounds from other chemical groups. The effect of 8 pyrethroids was investigated when the taiga ticks were in contact with the tissue treated with the compounds. The relationship of the chemical structure of pyrethroids with their acaricidal activity was analyzed from motor activity values and knockdown time. The test pyreithroids, in order of decreasing acaricidal activity, are imiprothrin cyphenothrin, cyfluthrin, alpha-cyperamethrin, zeta-cyperimethrin fenothrin, flumethrin. PMID:27029149

  10. Climate change and Ixodes tick-borne diseases of humans

    PubMed Central

    Ostfeld, Richard S.; Brunner, Jesse L.

    2015-01-01

    The evidence that climate warming is changing the distribution of Ixodes ticks and the pathogens they transmit is reviewed and evaluated. The primary approaches are either phenomenological, which typically assume that climate alone limits current and future distributions, or mechanistic, asking which tick-demographic parameters are affected by specific abiotic conditions. Both approaches have promise but are severely limited when applied separately. For instance, phenomenological approaches (e.g. climate envelope models) often select abiotic variables arbitrarily and produce results that can be hard to interpret biologically. On the other hand, although laboratory studies demonstrate strict temperature and humidity thresholds for tick survival, these limits rarely apply to field situations. Similarly, no studies address the influence of abiotic conditions on more than a few life stages, transitions or demographic processes, preventing comprehensive assessments. Nevertheless, despite their divergent approaches, both mechanistic and phenomenological models suggest dramatic range expansions of Ixodes ticks and tick-borne disease as the climate warms. The predicted distributions, however, vary strongly with the models' assumptions, which are rarely tested against reasonable alternatives. These inconsistencies, limited data about key tick-demographic and climatic processes and only limited incorporation of non-climatic processes have weakened the application of this rich area of research to public health policy or actions. We urge further investigation of the influence of climate on vertebrate hosts and tick-borne pathogen dynamics. In addition, testing model assumptions and mechanisms in a range of natural contexts and comparing their relative importance as competing models in a rigorous statistical framework will significantly advance our understanding of how climate change will alter the distribution, dynamics and risk of tick-borne disease. PMID:25688022

  11. Climate change and Ixodes tick-borne diseases of humans.

    PubMed

    Ostfeld, Richard S; Brunner, Jesse L

    2015-04-01

    The evidence that climate warming is changing the distribution of Ixodes ticks and the pathogens they transmit is reviewed and evaluated. The primary approaches are either phenomenological, which typically assume that climate alone limits current and future distributions, or mechanistic, asking which tick-demographic parameters are affected by specific abiotic conditions. Both approaches have promise but are severely limited when applied separately. For instance, phenomenological approaches (e.g. climate envelope models) often select abiotic variables arbitrarily and produce results that can be hard to interpret biologically. On the other hand, although laboratory studies demonstrate strict temperature and humidity thresholds for tick survival, these limits rarely apply to field situations. Similarly, no studies address the influence of abiotic conditions on more than a few life stages, transitions or demographic processes, preventing comprehensive assessments. Nevertheless, despite their divergent approaches, both mechanistic and phenomenological models suggest dramatic range expansions of Ixodes ticks and tick-borne disease as the climate warms. The predicted distributions, however, vary strongly with the models' assumptions, which are rarely tested against reasonable alternatives. These inconsistencies, limited data about key tick-demographic and climatic processes and only limited incorporation of non-climatic processes have weakened the application of this rich area of research to public health policy or actions. We urge further investigation of the influence of climate on vertebrate hosts and tick-borne pathogen dynamics. In addition, testing model assumptions and mechanisms in a range of natural contexts and comparing their relative importance as competing models in a rigorous statistical framework will significantly advance our understanding of how climate change will alter the distribution, dynamics and risk of tick-borne disease. PMID:25688022

  12. Distribution of Ixodes ricinus L., 1758 and Ixodes persulcatus Shulze, 1930 (Parasitoformes, Ixodidae) in Russia and adjacent countries in view of observable climate changes

    NASA Astrophysics Data System (ADS)

    Yasyukevich, V. V.; Kazakova, E. V.; Popov, I. O.; Semenov, S. M.

    2009-08-01

    Possible changes in the area inhabited by the ticks Ixodes ricinus and Ixodes persulcatus, the main transmitters of tick-borne encephalitis and Lyme disease in Russia, caused by temperature changes in 1976-2005 compared to 1946-1975 are discussed. It is shown that these changes could result in some areal expansion of these species. In the European part of Russia, I. ricinus expanded its areal boundaries to the east 100-300 km. I. persulcatus expanded its areal in the Asian part of Russia. Its boundary moved to the north and northeast 100-300 km. Areal expansion both of species has not been observed.

  13. Length of tick repellency depends on formulation of the repellent compound (icaridin = Saltidin®): tests on Ixodes persulcatus and Ixodes ricinus placed on hands and clothes.

    PubMed

    Abdel-Ghaffar, Fathy; Al-Quraishy, Saleh; Mehlhorn, Heinz

    2015-08-01

    The present study had the aim to test the repellent potential of the compound icaridin = Saltidin® against the tick species Ixodes ricinus and Ixodes persulcatus using different formulations of the compound. Tests were done on backs of impregnated human hands, on impregnated linen cloth and versus impregnated dog hair. It was found that 1. Ixodes persulcatus-the common Eastern European, Russian Ixodes species is significantly sensitive to icaridin = Saltidin® as I. ricinus protecting for the test period of 5 h. This is an important finding, since I. persulcatus is the vector of agents of the severe Eastern meningoencephalitis; 2. that this repellent compound acts similarly on both I. ricinus and I. persulcatus, when sprayed either on naked skin or on cloths; 3. that there are only slight differences in duration of the repellency when using different formulations containing icaridin = Saltidin®; 4. that icaridin = Saltidin® sprayed on dog hair has identical repellent effects like those seen on human skin and cloths; thus, this compound can also be used to protect animals such as dogs, cats, horses; and 5. that the icaridin = Saltidin® did not induce a bad sensation on skin, nor bad smells; furthermore, it was not sticky and did not leave residuals neither on clothes nor on dog's hair. PMID:25952705

  14. Comparative Metagenomic Profiling of Symbiotic Bacterial Communities Associated with Ixodes persulcatus, Ixodes pavlovskyi and Dermacentor reticulatus Ticks.

    PubMed

    Kurilshikov, Alexander; Livanova, Natalya N; Fomenko, Nataliya V; Tupikin, Alexey E; Rar, Vera A; Kabilov, Marsel R; Livanov, Stanislav G; Tikunova, Nina V

    2015-01-01

    Ixodes persulcatus, Ixodes pavlovskyi, and Dermacentor reticulatus ticks inhabiting Western Siberia are responsible for the transmission of a number of etiological agents that cause human and animal tick-borne diseases. Because these ticks are abundant in the suburbs of large cities, agricultural areas, and popular tourist sites and frequently attack people and livestock, data regarding the microbiomes of these organisms are required. Using metagenomic 16S profiling, we evaluate bacterial communities associated with I. persulcatus, I. pavlovskyi, and D. reticulatus ticks collected from the Novosibirsk region of Russia. A total of 1214 ticks were used for this study. DNA extracted from the ticks was pooled according to tick species and sex. Sequencing of the V3-V5 domains of 16S rRNA genes was performed using the Illumina Miseq platform. The following bacterial genera were prevalent in the examined communities: Acinetobacter (all three tick species), Rickettsia (I. persulcatus and D. reticulatus) and Francisella (D. reticulatus). B. burgdorferi sensu lato and B. miyamotoi sequences were detected in I. persulcatus and I. pavlovskyi but not in D. reticulatus ticks. The pooled samples of all tick species studied contained bacteria from the Anaplasmataceae family, although their occurrence was low. DNA from A. phagocytophilum and Candidatus Neoehrlichia mikurensis was first observed in I. pavlovskyi ticks. Significant inter-species differences in the number of bacterial taxa as well as intra-species diversity related to tick sex were observed. The bacterial communities associated with the I. pavlovskyi ticks displayed a higher biodiversity compared with those of the I. persulcatus and D. reticulatus ticks. Bacterial community structure was also diverse across the studied tick species, as shown by permutational analysis of variance using the Bray-Curtis dissimilarity metric (p = 0.002). Between-sex variation was confirmed by PERMANOVA testing in I. persulcatus (p = 0

  15. Comparative Metagenomic Profiling of Symbiotic Bacterial Communities Associated with Ixodes persulcatus, Ixodes pavlovskyi and Dermacentor reticulatus Ticks

    PubMed Central

    Kurilshikov, Alexander; Livanova, Natalya N.; Fomenko, Nataliya V.; Tupikin, Alexey E.; Rar, Vera A.; Kabilov, Marsel R.; Livanov, Stanislav G.; Tikunova, Nina V.

    2015-01-01

    Ixodes persulcatus, Ixodes pavlovskyi, and Dermacentor reticulatus ticks inhabiting Western Siberia are responsible for the transmission of a number of etiological agents that cause human and animal tick-borne diseases. Because these ticks are abundant in the suburbs of large cities, agricultural areas, and popular tourist sites and frequently attack people and livestock, data regarding the microbiomes of these organisms are required. Using metagenomic 16S profiling, we evaluate bacterial communities associated with I. persulcatus, I. pavlovskyi, and D. reticulatus ticks collected from the Novosibirsk region of Russia. A total of 1214 ticks were used for this study. DNA extracted from the ticks was pooled according to tick species and sex. Sequencing of the V3-V5 domains of 16S rRNA genes was performed using the Illumina Miseq platform. The following bacterial genera were prevalent in the examined communities: Acinetobacter (all three tick species), Rickettsia (I. persulcatus and D. reticulatus) and Francisella (D. reticulatus). B. burgdorferi sensu lato and B. miyamotoi sequences were detected in I. persulcatus and I. pavlovskyi but not in D. reticulatus ticks. The pooled samples of all tick species studied contained bacteria from the Anaplasmataceae family, although their occurrence was low. DNA from A. phagocytophilum and Candidatus Neoehrlichia mikurensis was first observed in I. pavlovskyi ticks. Significant inter-species differences in the number of bacterial taxa as well as intra-species diversity related to tick sex were observed. The bacterial communities associated with the I. pavlovskyi ticks displayed a higher biodiversity compared with those of the I. persulcatus and D. reticulatus ticks. Bacterial community structure was also diverse across the studied tick species, as shown by permutational analysis of variance using the Bray-Curtis dissimilarity metric (p = 0.002). Between-sex variation was confirmed by PERMANOVA testing in I. persulcatus (p = 0

  16. County-Scale Distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the Continental United States.

    PubMed

    Eisen, Rebecca J; Eisen, Lars; Beard, Charles B

    2016-03-01

    The blacklegged tick, Ixodes scapularis Say, is the primary vector to humans in the eastern United States of the Lyme disease spirochete Borrelia burgdorferi, as well as causative agents of anaplasmosis and babesiosis. Its close relative in the far western United States, the western blacklegged tick Ixodes pacificus Cooley and Kohls, is the primary vector to humans in that region of the Lyme disease and anaplasmosis agents. Since 1991, when standardized surveillance and reporting began, Lyme disease case counts have increased steadily in number and in geographical distribution in the eastern United States. Similar trends have been observed for anaplasmosis and babesiosis. To better understand the changing landscape of risk of human exposure to disease agents transmitted by I. scapularis and I. pacificus, and to document changes in their recorded distribution over the past two decades, we updated the distribution of these species from a map published in 1998. The presence of I. scapularis has now been documented from 1,420 (45.7%) of the 3,110 continental United States counties, as compared with 111 (3.6%) counties for I. pacificus. Combined, these vectors of B. burgdorferi and other disease agents now have been identified in a total of 1,531 (49.2%) counties spread across 43 states. This marks a 44.7% increase in the number of counties that have recorded the presence of these ticks since the previous map was presented in 1998, when 1,058 counties in 41 states reported the ticks to be present. Notably, the number of counties in which I. scapularis is considered established (six or more individuals or one or more life stages identified in a single year) has more than doubled since the previous national distribution map was published nearly two decades ago. The majority of county status changes occurred in the North-Central and Northeastern states, whereas the distribution in the South remained fairly stable. Two previously distinct foci for I. scapularis in the

  17. Borrelia burgdorferi visualized in Ixodes scapularis tick excrement by immunofluorescence.

    PubMed

    Patton, Toni G; Brandt, Kevin S; Gilmore, Robert D

    2012-11-01

    The enzootic cycle of Borrelia burgdorferi, the etiologic agent of Lyme disease, involves Ixodes spp. ticks and vertebrates. Resident tick Borrelia, harbored inside the midgut, are eventually expelled with the tick's saliva into the vertebrate host when a tick consumes a blood meal. During this 4- to 5-day feeding period I. scapularis will defecate onto the host's skin. Previously we detected borrelial DNA in tick feces throughout engorgement. In this study we report the microscopic examination for B. burgdorferi in nymphal excrement. Using immunofluorescence assays, we observed Borrelia in all mouse skin and capsule fecal swabs tested, although we could not culture the spirochetes. These results update our previous analysis by revealing that spirochetes can also be visualized in tick excrement. Furthermore, the results emphasize that borrelial contamination by defecation is a possibility, and that caution should be exercised by researchers investigating pathogen/host/vector interactions. The biological significance of the presence of non-culturable Borrelia in tick feces during engorgement is unclear. PMID:22651382

  18. Relative humidity and activity patterns of Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Berger, K.A.; Ginsberg, Howard S.; Gonzalez, L.; Mather, T.N.

    2014-01-01

    Laboratory studies have shown clear relationships between relative humidity (RH) and the activity and survival of Ixodes scapularis Say (blacklegged tick). However, field studies have produced conflicting results. We examined this relationship using weekly tick count totals and hourly RH observations at three field sites, stratified by latitude, within the state of Rhode Island. Records of nymphal tick abundance were compared with several RH-related variables (e.g., RH at time of sampling and mean weekly daytime RH). In total, 825 nymphs were sampled in 2009, a year of greater precipitation, with a weighted average leaf litter RH recorded at time of sampling of 85.22%. Alternatively, 649 nymphs were collected in 2010, a year of relatively low precipitation, and a weighted average RH recorded at time of sampling was 75.51%. Negative binomial regression analysis of tick count totals identified cumulative hours <82% RH threshold as a significant factor observed in both years (2009: P = 0.0037; 2010: P < 0.0001). Mean weekly daytime RH did not significantly predict tick activity in either year. However, mean weekly daytime RH recorded with 1-wk lag before sample date was a significant variable (P = 0.0016) in 2010. These results suggest a lag effect between moisture availability and patterns of tick activity and abundance. Differences in the relative importance of each RH variable between years may have been due to abnormally wet summer conditions in 2009.

  19. Functional insights into recombinant TROSPA protein from Ixodes ricinus.

    PubMed

    Figlerowicz, Marek; Urbanowicz, Anna; Lewandowski, Dominik; Jodynis-Liebert, Jadwiga; Sadowski, Czeslaw

    2013-01-01

    Lyme disease (also called borreliosis) is a prevalent chronic disease transmitted by ticks and caused by Borrelia burgdorferi s. l. spirochete. At least one tick protein, namely TROSPA from I. scapularis, commonly occurring in the USA, was shown to be required for colonization of the vector by bacteria. Located in the tick gut, TROSPA interacts with the spirochete outer surface protein A (OspA) and initiates the tick colonization. Ixodes ricinus is a primary vector involved in B. burgdorferi s. l. transmission in most European countries. In this study, we characterized the capacities of recombinant TROSPA protein from I. ricinus to interact with OspA from different Borrelia species and to induce an immune response in animals. We also showed that the N-terminal part of TROSPA (a putative transmembrane domain) is not involved in the interaction with OspA and that reduction of the total negative charge on the TROSPA protein impaired TROSPA-OspA binding. In general, the data presented in this paper indicate that recombinant TROSPA protein retains the capacity to form a complex with OspA and induces a significant level of IgG in orally immunized rats. Thus, I. ricinus TROSPA may be considered a good candidate component for an animal vaccine against Borrelia. PMID:24204685

  20. Novel exposure sites for nymphal Ixodes pacificus within picnic areas.

    PubMed

    Padgett, Kerry A; Bonilla, Denise L

    2011-12-01

    Risk of exposure to nymphal Ixodes pacificus Cooley and Kohls ticks was investigated at 7 picnic areas in Tilden Regional Park, a heavily used recreation area of over 2000 acres in northwestern California, east of San Francisco Bay. Wooden picnic tables, tree trunks, logs, leaf litter, surrounding vegetation, and rock walls were checked for ticks using standard 1-m(2) flannel tick flags at biweekly intervals from March to August 2008. Results indicate that nymphal I. pacificus were commonly found on wooden picnic tables and other wooden materials, such as tree trunks and logs, at an equal proportion to those found in leaf litter. Nymphal I. pacificus in picnic areas peaked in April, with a secondary peak in early June. Five of 170 (2.9%) nymphal I. pacificus collected at picnic sites were positive for Borrelia spirochetes, of which 3 (1.8%) were identified as B. burgdorferi sensu stricto using molecular techniques. In addition, a nymphal I. auritulus collected from a rock wall in a picnic area tested positive for a mixture of B. burgdorferi and B. bissettii; this tick species feeds exclusively on birds. This study indicates a moderate risk of acquiring a nymphal tick at Tilden Park picnic areas, but due to the low B. burgdorferi infection prevalence, the risk of acquiring Lyme disease appears to be low. PMID:22108011

  1. Prevalence of Borrelia miyamotoi in Ixodes Ticks in Europe and the United States

    PubMed Central

    Crowder, Chris D.; Carolan, Heather E.; Rounds, Megan A.; Honig, Vaclav; Mothes, Benedikt; Haag, Heike; Nolte, Oliver; Luft, Ben J.; Grubhoffer, Libor; Ecker, David J.; Schutzer, Steven E.

    2014-01-01

    Borrelia miyamotoi, a relapsing fever-related spirochete transmitted by Ixodes ticks, has been recently shown to be a human pathogen. To characterize the prevalence of this organism in questing Ixodes ticks, we tested 2,754 ticks for a variety of tickborne pathogens by PCR and electrospray-ionization mass spectrometry. Ticks were collected from California, New York, Connecticut, Pennsylvania, and Indiana in the United States and from Germany and the Czech Republic in Europe from 2008 through 2012. In addition, an isolate from Japan was characterized. We found 3 distinct genotypes, 1 for North America, 1 for Europe, and 1 for Japan. We found B. miyamotoi infection in ticks in 16 of the 26 sites surveyed, with infection prevalence as high as 15.4%. These results show the widespread distribution of the pathogen, indicating an exposure risk to humans in areas where Ixodes ticks reside. PMID:25280366

  2. Vaccination against Bm86 Homologues in Rabbits Does Not Impair Ixodes ricinus Feeding or Oviposition.

    PubMed

    Coumou, Jeroen; Wagemakers, Alex; Trentelman, Jos J; Nijhof, Ard M; Hovius, Joppe W

    2014-01-01

    Human tick-borne diseases that are transmitted by Ixodes ricinus, such as Lyme borreliosis and tick borne encephalitis, are on the rise in Europe. Diminishing I. ricinus populations in nature can reduce tick exposure to humans, and one way to do so is by developing an anti-vector vaccine against tick antigens. Currently, there is only one anti-vector vaccine available against ticks, which is a veterinary vaccine based on the tick antigen Bm86 in the gut of Rhipicephalus microplus. Bm86 vaccine formulations cause a reduction in the number of Rhipicephalus microplus ticks that successfully feed, i.e. lower engorgement weights and a decrease in the number of oviposited eggs. Furthermore, Bm86 vaccines reduce transmission of bovine Babesia spp. Previously two conserved Bm86 homologues in I. ricinus ticks, designated as Ir86-1 and Ir86-2, were described. Here we investigated the effect of a vaccine against recombinant Ir86-1, Ir86-2 or a combination of both on Ixodes ricinus feeding. Recombinant Ixodes ricinus Bm86 homologues were expressed in a Drosophila expression system and rabbits were immunized with rIr86-1, rIr86-2, a combination of both or ovalbumin as a control. Each animal was infested with 50 female adults and 50 male adults Ixodes ricinus and tick mortality, engorgement weights and egg mass were analyzed. Although serum IgG titers against rIr86 proteins were elicited, no effect was found on tick feeding between the rIr86 vaccinated animals and ovalbumin vaccinated animals. We conclude that vaccination against Bm86 homologues in Ixodes ricinus is not an effective approach to control Ixodes ricinus populations, despite the clear effects of Bm86 vaccination against Rhipicephalus microplus. PMID:25919587

  3. Vaccination against Bm86 Homologues in Rabbits Does Not Impair Ixodes ricinus Feeding or Oviposition

    PubMed Central

    Coumou, Jeroen; Wagemakers, Alex; Trentelman, Jos J.; Nijhof, Ard M.; Hovius, Joppe W.

    2015-01-01

    Human tick-borne diseases that are transmitted by Ixodes ricinus, such as Lyme borreliosis and tick borne encephalitis, are on the rise in Europe. Diminishing I. ricinus populations in nature can reduce tick exposure to humans, and one way to do so is by developing an anti-vector vaccine against tick antigens. Currently, there is only one anti-vector vaccine available against ticks, which is a veterinary vaccine based on the tick antigen Bm86 in the gut of Rhipicephalus microplus. Bm86 vaccine formulations cause a reduction in the number of Rhipicephalus microplus ticks that successfully feed, i.e. lower engorgement weights and a decrease in the number of oviposited eggs. Furthermore, Bm86 vaccines reduce transmission of bovine Babesia spp. Previously two conserved Bm86 homologues in I. ricinus ticks, designated as Ir86-1 and Ir86-2, were described. Here we investigated the effect of a vaccine against recombinant Ir86-1, Ir86-2 or a combination of both on Ixodes ricinus feeding. Recombinant Ixodes ricinus Bm86 homologues were expressed in a Drosophila expression system and rabbits were immunized with rIr86-1, rIr86-2, a combination of both or ovalbumin as a control. Each animal was infested with 50 female adults and 50 male adults Ixodes ricinus and tick mortality, engorgement weights and egg mass were analyzed. Although serum IgG titers against rIr86 proteins were elicited, no effect was found on tick feeding between the rIr86 vaccinated animals and ovalbumin vaccinated animals. We conclude that vaccination against Bm86 homologues in Ixodes ricinus is not an effective approach to control Ixodes ricinus populations, despite the clear effects of Bm86 vaccination against Rhipicephalus microplus. PMID:25919587

  4. Molecular characterization of novel sulfotransferases from the tick, Ixodes scapularis

    PubMed Central

    2011-01-01

    Background Ixodes scapularis, commonly known as the blacklegged or deer tick, is the main vector of Lyme disease in the United States. Recent progress in transcriptome research has uncovered hundreds of different proteins expressed in the salivary glands of hard ticks, the majority of which have no known function, and include many novel protein families. We recently identified transcripts coding for two putative cytosolic sulfotransferases in these ticks which recognized phenolic monoamines as their substrates. In this current study, we characterize the genetic expression of these two cytosolic sulfotransferases throughout the tick life cycle as well as the enzymatic properties of the corresponding recombinant proteins. Interestingly, the resultant recombinant proteins showed sulfotransferase activity against both neurotransmitters dopamine and octopamine. Results The two sulfotransferase genes were coded as Ixosc SULT 1 & 2 and corresponding proteins were referred as Ixosc Sult 1 and 2. Using gene-specific primers, the sulfotransferase transcripts were detected throughout the blacklegged tick life cycle, including eggs, larvae, nymphs, adult salivary glands and adult midgut. Notably, the mRNA and protein levels were altered upon feeding during both the larval and nymphal life stages. Quantitative PCR results confirm that Ixosc SULT1 was statistically increased upon blood feeding while Ixosc SULT 2 was decreased. This altered expression led us to further characterize the function of these proteins in the Ixodid tick. The sulfotransferase genes were cloned and expressed in a bacterial expression system, and purified recombinant proteins Ixosc Sult 1(R) and 2(R) showed sulfotransferase activity against neurotransmitters dopamine and octopamine as well as the common sulfotransferase substrate p-nitrophenol. Thus, dopamine- or octopamine-sulfonation may be involved in altering the biological signal for salivary secretion in I. scapularis. Conclusions Collectively

  5. Deep Sequencing Analysis of the Ixodes ricinus Haemocytome

    PubMed Central

    Franta, Zdeněk; Pedra, Joao H. F.; Ribeiro, José M. C.

    2015-01-01

    Background Ixodes ricinus is the main tick vector of the microbes that cause Lyme disease and tick-borne encephalitis in Europe. Pathogens transmitted by ticks have to overcome innate immunity barriers present in tick tissues, including midgut, salivary glands epithelia and the hemocoel. Molecularly, invertebrate immunity is initiated when pathogen recognition molecules trigger serum or cellular signalling cascades leading to the production of antimicrobials, pathogen opsonization and phagocytosis. We presently aimed at identifying hemocyte transcripts from semi-engorged female I. ricinus ticks by mass sequencing a hemocyte cDNA library and annotating immune-related transcripts based on their hemocyte abundance as well as their ubiquitous distribution. Methodology/principal findings De novo assembly of 926,596 pyrosequence reads plus 49,328,982 Illumina reads (148 nt length) from a hemocyte library, together with over 189 million Illumina reads from salivary gland and midgut libraries, generated 15,716 extracted coding sequences (CDS); these are displayed in an annotated hyperlinked spreadsheet format. Read mapping allowed the identification and annotation of tissue-enriched transcripts. A total of 327 transcripts were found significantly over expressed in the hemocyte libraries, including those coding for scavenger receptors, antimicrobial peptides, pathogen recognition proteins, proteases and protease inhibitors. Vitellogenin and lipid metabolism transcription enrichment suggests fat body components. We additionally annotated ubiquitously distributed transcripts associated with immune function, including immune-associated signal transduction proteins and transcription factors, including the STAT transcription factor. Conclusions/significance This is the first systems biology approach to describe the genes expressed in the haemocytes of this neglected disease vector. A total of 2,860 coding sequences were deposited to GenBank, increasing to 27,547 the number so

  6. Identification of 24 h Ixodes scapularis immunogenic tick saliva proteins

    PubMed Central

    Lewis, Lauren A.; Radulović, Željko M.; Kim, Tae K.; Porter, Lindsay M.; Mulenga, Albert

    2015-01-01

    Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24 h post attachment to be transmitted. This study describes identification of 24 h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24 h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24 h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ~19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ~81% (147/182) of contigs were provisionally identified based on matches in GenBank including ~18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (~3%, 5/147), transporters and/or ligand binding proteins (~6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (~31%, 46/147), and those classified as miscellaneous (~24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24 h, before the majority of TBD agents can be transmitted. PMID:25825233

  7. Seasonal correlation of sporadic schizophrenia to Ixodes ticks and Lyme borreliosis

    PubMed Central

    Fritzsche, Markus

    2002-01-01

    Background Being born in winter and spring is considered one of the most robust epidemiological risk factors for schizophrenia. The aetiology and exact timing of this birth excess, however, has remained elusive so far. Since during phylogeny, Borrelia DNA has led to multiple germ-line mutations within the CB1 candidate gene for schizophrenia, a meta analysis has been performed of all papers on schizophrenic birth excesses with no less than 3000 cases each. All published numerical data were then plotted against the seasonal distributions of Ixodes ticks worldwide. Results In the United States, Europe and Japan the birth excesses of those individuals who later in life develop schizophrenia mirror the seasonal distribution of Ixodes ticks nine months earlier at the time of conception. South of the Wallace Line, which limits the spread of Ixodes ticks and Borrelia burgdorferi into Australia, seasonal trends are less significant, and in Singapore, being non-endemic for Ixodes ticks and Lyme disease, schizophrenic birth excesses are absent. Conclusion At present, it cannot be excluded that prenatal infection by B. burgdorferi is harmful to the implanting human blastocyst. The epidemiological clustering of sporadic schizophrenia by season and locality rather emphasises the risk to the unborn of developing a congenital, yet preventable brain disorder later in life. PMID:12453316

  8. Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: a summary of the literature and recent observations.

    PubMed

    Rollend, Lindsay; Fish, Durland; Childs, James E

    2013-02-01

    Transovarial transmission (TOT) of Borrelia burgdorferi (sensu lato), the agent of Lyme disease, by the Ixodes persulcatus group of hard ticks (Ixodidae) has frequently been reported in the literature since the discovery of Lyme disease 1982. Evidence for and against TOT by B. burgdorferi has led to uncertainty and confusion in the literature, causing misconceptions that may have public health consequences. In this report, we review the published information implicating B. burgdorferi as a bacterium transovarially transmitted among ticks of the Ixodes persulcatus group and present new data indicating the transovarially transmitted agent is actually Borrelia miyamotoi. B. miyamotoi, first described in 1995, is antigenically and phylogenetically related to B. burgdorferi, although more closely related to the relapsing fever-group Borrelia typically transmitted by soft ticks (Argasidae). Borrelia infections of unfed larvae derived from egg clutches of wild-caught Ixodes scapularis are demonstrated to result from transovarial transmission of B. miyamotoi, not B. burgdorferi. The presence of this second Borrelia species, apparently sympatric with B. burgdorferi worldwide also may explain other confusing observations reported on Borrelia/Ixodes relationships. PMID:23238242

  9. New Records of Ixodes affinis (Acari: Ixodidae) Parasitizing Avian Hosts in Southeastern Virginia.

    PubMed

    Heller, Erin L; Wright, Chelsea L; Nadolny, Robyn M; Hynes, Wayne L; Gaff, Holly D; Walters, Eric L

    2016-03-01

    Ixodes affinis Neumann (Acari: Ixodidae) is a hard-bodied tick species distributed throughout much of the southeastern United States. Although I. affinis does not parasitize humans, it is a competent vector of Borrelia burgdorferi sensu stricto, the causative-agent of Lyme disease, and thus contributes to the enzootic maintenance of this pathogen. This study presents evidence of I. affinis parasitizing five new host passerine species. During 2012-2014, 1,888 birds were captured and examined for ticks, and 18 immature I. affinis were collected from 12 birds-six Carolina Wrens (Thyrothorus ludovicianus); two Brown Thrashers (Toxostoma rufum); and one American Robin (Turdus migratorius), Eastern Towhee (Pipilo erythrophthalmus), Northern Cardinal (Cardinalis cardinalis), and White-throated Sparrow (Zonotrichia albicollis). Of 15 larvae and 3 nymphs collected, one nymph tested positive for B. burgdorferi DNA. I. affinis was found co-feeding on birds with immature Amblyomma americanum (L.), Ixodes brunneus Koch, Ixodes dentatus Marx, Ixodes scapularis Say, and Haemaphysalis leporispalustris Packard. The results of this research provide a better understanding of I. affinis hosts and identify avian taxa that may play a role in the maintenance and dispersal of this tick species. PMID:26586535

  10. High prevalence of Babesia microti 'Munich' type in small mammals from an Ixodes persulcatus/Ixodes trianguliceps sympatric area in the Omsk region, Russia.

    PubMed

    Rar, Vera; Yakimenko, Valeriy; Makenov, Marat; Tikunov, Artem; Epikhina, Tamara; Tancev, Aleksey; Bobrova, Oksana; Tikunova, Nina

    2016-09-01

    Babesia microti is a genetically diverse group of protozoan parasites whose life cycle is associated with both small mammals and Ixodes spp. ticks. In this study, the prevalence of different B. microti genetic groups in ticks and small rodents in an area with Ixodes persulcatus and Ixodes trianguliceps occurring in sympatry was examined. A total of 541 small mammals were captured during eight sampling periods between 2013 and 2015 at a site in the Omsk region of Russia and tested for the presence of B. microti using nested PCR with subsequent sequencing of positive samples. B. microti DNA was found in 31.6 % of examined samples, and prevalence rates ranged from 5.3 to 61.6 % in different sampling periods. The sequenced B. microti samples belonged to two genetic groups: enzootic B. microti 'Munich' type and zoonotic B. microti 'US' type. B. microti 'Munich' type was more common across all sampling periods, with greater than 80 % prevalence in infected animals. Despite the high B. microti 'Munich'-type prevalence in voles, B. microti was not found in any of 394 adult I. persulcatus ticks collected by flagging or in the 84 I. persulcatus or 20 I. trianguliceps ticks taken from voles and molted under laboratory conditions. It was demonstrated that B. microti 'Munich'-type DNA can be detected in the blood of naturally infected voles for at least 20 weeks after capture. Thus, the high prevalence of B. microti 'Munich' type in small mammals may be explained by the prolonged persistence of B. microti in the blood of wild voles. PMID:27212463

  11. Studies abound on how far north Ixodes scapularis ticks are transported by birds.

    PubMed

    Scott, John D

    2016-03-01

    Several studies report migratory songbirds transporting ticks northward during spring migration in Canada. The blacklegged tick, Ixodes scapularis, has been documented on Neotropical songbirds as far as Slave Lake, Alberta during northbound spring migration. In addition, Ixodes ticks have been collected from passerine migrants as far north as Watson Lake, Yukon (north of 60th latitude). The presence of Amblyomma ticks parasitizing long-distance migrants, which are moving from wintering grounds in the Neotropics to breeding grounds in Canada, confirms Neotropical songbirds transport ixodid ticks into Canada. Our avian, tick-host studies document 22 species of ticks on wild birds in Canada, and the majority of these species are not indigenous in Canada. Some of these songbird-transported ticks originate from as far south as Brazil. Clearly, passerine migrants transport ticks long distances into Canada during northward spring migration. The importation of ticks into Canada by migratory songbirds is no longer a "hypothesis," it is a fact. PMID:26739029

  12. Detection of Borrelia burgdorferi DNA in museum specimens of Ixodes dammini ticks.

    PubMed

    Persing, D H; Telford, S R; Rys, P N; Dodge, D E; White, T J; Malawista, S E; Spielman, A

    1990-09-21

    In order to investigate the potential for Borrelia burgdorferi infection before the recognition of Lyme disease as a clinical entity, the polymerase chain reaction (PCR) was used to examine museum specimens of Ixodes dammini (deer ticks) for the presence of spirochete-specific DNA sequences. One hundred and thirty-six archival tick specimens were obtained representing various continental U.S. locations; DNA sequences characteristic of modern day isolates of B. burgdorferi were detected in 13 1940s specimens from Montauk Point and Hither Hills, Long Island, New York. Five archival specimens of Dermacentor variabilis (dog tick) from the same collection and 118 Ixodes specimens from other endemic and nonendemic sites were negative. These data suggest that the appearance of the Lyme disease spirochete in suitable arthropod vectors preceded, by at least a generation, the formal recognition of this disease as a clinical entity in the United States. PMID:2402635

  13. Gut Microbiota of the Tick Vector Ixodes scapularis Modulate Colonization of the Lyme Disease Spirochete

    PubMed Central

    Narasimhan, Sukanya; Rajeevan, Nallakkandi; Liu, Lei; Zhao, Yang O.; Heisig, Julia; Pan, Jingyi; Eppler-Epstein, Rebecca; DePonte, Kathleen; Fish, Durland; Fikrig, Erol

    2014-01-01

    SUMMARY Arthopods, such as Ixodes ticks, serve as vectors for many human pathogens. The arthropod gut presents a pivotal microbial entry point and determines pathogen colonization and survival. We show that the gut microbiota of Ixodes scapularis, a major vector of the Lyme disease spirochete Borrelia burgdorferi, influence spirochete colonization of ticks. Perturbing the gut microbiota of larval ticks reduced Borrelia colonization, with dysbiosed larvae displaying decreased expression of the transcription factor STAT. Diminished STAT expression corresponded to lower expression of peritrophin, a key glycoprotein scaffold of the glycan-rich mucus-like peritrophic matrix (PM) that separates the gut lumen from the epithelium. The integrity of the I. scapularis PM was essential for B. burgdorferi to efficiently colonize the gut epithelium. These data elucidate a functional link between the gut microbiota, STAT-signaling, and pathogen colonization in the context of the gut epithelial barrier of an arthropod vector. PMID:24439898

  14. Insight into the sialome of the castor bean tick, Ixodes ricinus

    PubMed Central

    Chmelař, Jindřich; Anderson, Jennifer M; Mu, Jianbing; Jochim, Ryan C; Valenzuela, Jesus G; Kopecký, Jan

    2008-01-01

    Background In recent years, there have been several sialome projects revealing transcripts expressed in the salivary glands of ticks, which are important vectors of several human diseases. Here, we focused on the sialome of the European vector of Lyme disease, Ixodes ricinus. Results In the attempt to describe expressed genes and their dynamics throughout the feeding period, we constructed cDNA libraries from four different feeding stages of Ixodes ricinus females: unfed, 24 hours after attachment, four (partially fed) and seven days (fully engorged) after attachment. Approximately 600 randomly selected clones from each cDNA library were sequenced and analyzed. From a total 2304 sequenced clones, 1881 sequences forming 1274 clusters underwent subsequent functional analysis using customized bioinformatics software. Clusters were sorted according to their predicted function and quantitative comparison among the four libraries was made. We found several groups of over-expressed genes associated with feeding that posses a secretion signal and may be involved in tick attachment, feeding or evading the host immune system. Many transcripts clustered into families of related genes with stage-specific expression. Comparison to Ixodes scapularis and I. pacificus transcripts was made. Conclusion In addition to a large number of homologues of the known transcripts, we obtained several novel predicted protein sequences. Our work contributes to the growing list of proteins associated with tick feeding and sheds more light on the dynamics of the gene expression during tick feeding. Additionally, our results corroborate previous evidence of gene duplication in the evolution of ticks. PMID:18489795

  15. Linkages of Weather and Climate With Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae), Enzootic Transmission of Borrelia burgdorferi, and Lyme Disease in North America.

    PubMed

    Eisen, Rebecca J; Eisen, Lars; Ogden, Nicholas H; Beard, Charles B

    2016-03-01

    Lyme disease has increased both in incidence and geographic extent in the United States and Canada over the past two decades. One of the underlying causes is changes during the same time period in the distribution and abundance of the primary vectors: Ixodes scapularis Say and Ixodes pacificus Cooley and Kohls in eastern and western North America, respectively. Aside from short periods of time when they are feeding on hosts, these ticks exist in the environment where temperature and relative humidity directly affect their development, survival, and host-seeking behavior. Other important factors that strongly influence tick abundance as well as the proportion of ticks infected with the Lyme disease spirochete, Borrelia burgdorferi, include the abundance of hosts for the ticks and the capacity of tick hosts to serve as B. burgdorferi reservoirs. Here, we explore the linkages between climate variation and: 1) duration of the seasonal period and the timing of peak activity; 2) geographic tick distributions and local abundance; 3) enzootic B. burgdorferi transmission cycles; and 4) Lyme disease cases. We conclude that meteorological variables are most influential in determining host-seeking phenology and development, but, while remaining important cofactors, additional variables become critical when exploring geographic distribution and local abundance of ticks, enzootic transmission of B. burgdorferi, and Lyme disease case occurrence. Finally, we review climate change-driven projections for future impact on vector ticks and Lyme disease and discuss knowledge gaps and research needs. PMID:26681789

  16. Tissue-Specific Signatures in the Transcriptional Response to Anaplasma phagocytophilum Infection of Ixodes scapularis and Ixodes ricinus Tick Cell Lines.

    PubMed

    Alberdi, Pilar; Mansfield, Karen L; Manzano-Román, Raúl; Cook, Charlotte; Ayllón, Nieves; Villar, Margarita; Johnson, Nicholas; Fooks, Anthony R; de la Fuente, José

    2016-01-01

    Anaplasma phagocytophilum are transmitted by Ixodes spp. ticks and have become one of the most common and relevant tick-borne pathogens due to their impact on human and animal health. Recent results have increased our understanding of the molecular interactions between Ixodes scapularis and A. phagocytophilum through the demonstration of tissue-specific molecular pathways that ensure pathogen infection, development and transmission by ticks. However, little is known about the Ixodes ricinus genes and proteins involved in the response to A. phagocytophilum infection. The tick species I. scapularis and I. ricinus are evolutionarily closely related and therefore similar responses are expected in A. phagocytophilum-infected cells. However, differences may exist between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cells associated with tissue-specific signatures of these cell lines. To address this hypothesis, the transcriptional response to A. phagocytophilum infection was characterized by RNA sequencing and compared between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cell lines. The transcriptional response to infection of I. scapularis ISE6 cells resembled that of tick hemocytes while the response in I. ricinus IRE/CTVM20 cells was more closely related to that reported previously in infected tick midguts. The inhibition of cell apoptosis by A. phagocytophilum appears to be a key adaptation mechanism to facilitate infection of both vertebrate and tick cells and was used to investigate further the tissue-specific response of tick cell lines to pathogen infection. The results supported a role for the intrinsic pathway in the inhibition of cell apoptosis by A. phagocytophilum infection of I. scapularis ISE6 cells. In contrast, the results in I. ricinus IRE/CTVM20 cells were similar to those obtained in tick midguts and suggested a role for the JAK/STAT pathway in the inhibition of apoptosis in tick cells infected with A. phagocytophilum. Nevertheless, tick

  17. Tissue-Specific Signatures in the Transcriptional Response to Anaplasma phagocytophilum Infection of Ixodes scapularis and Ixodes ricinus Tick Cell Lines

    PubMed Central

    Alberdi, Pilar; Mansfield, Karen L.; Manzano-Román, Raúl; Cook, Charlotte; Ayllón, Nieves; Villar, Margarita; Johnson, Nicholas; Fooks, Anthony R.; de la Fuente, José

    2016-01-01

    Anaplasma phagocytophilum are transmitted by Ixodes spp. ticks and have become one of the most common and relevant tick-borne pathogens due to their impact on human and animal health. Recent results have increased our understanding of the molecular interactions between Ixodes scapularis and A. phagocytophilum through the demonstration of tissue-specific molecular pathways that ensure pathogen infection, development and transmission by ticks. However, little is known about the Ixodes ricinus genes and proteins involved in the response to A. phagocytophilum infection. The tick species I. scapularis and I. ricinus are evolutionarily closely related and therefore similar responses are expected in A. phagocytophilum-infected cells. However, differences may exist between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cells associated with tissue-specific signatures of these cell lines. To address this hypothesis, the transcriptional response to A. phagocytophilum infection was characterized by RNA sequencing and compared between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cell lines. The transcriptional response to infection of I. scapularis ISE6 cells resembled that of tick hemocytes while the response in I. ricinus IRE/CTVM20 cells was more closely related to that reported previously in infected tick midguts. The inhibition of cell apoptosis by A. phagocytophilum appears to be a key adaptation mechanism to facilitate infection of both vertebrate and tick cells and was used to investigate further the tissue-specific response of tick cell lines to pathogen infection. The results supported a role for the intrinsic pathway in the inhibition of cell apoptosis by A. phagocytophilum infection of I. scapularis ISE6 cells. In contrast, the results in I. ricinus IRE/CTVM20 cells were similar to those obtained in tick midguts and suggested a role for the JAK/STAT pathway in the inhibition of apoptosis in tick cells infected with A. phagocytophilum. Nevertheless, tick

  18. Evaluation of the speed of kill of sarolaner (Simparica™) against induced infestations of three species of ticks (Amblyomma maculatum, Ixodes scapularis, Ixodes ricinus) on dogs.

    PubMed

    Six, Robert H; Geurden, Thomas; Carter, Lori; Everett, William R; McLoughlin, A; Mahabir, Sean P; Myers, Melanie R; Slootmans, Nathalie

    2016-05-30

    The rapid speed of kill of sarolaner (Simparica™, Zoetis), a novel isoxazoline compound, was demonstrated against three tick species known to infest dogs in Europe or the United States. Efficacy was measured against an existing infestation and against subsequent weekly re-infestations for 35 days after treatment. Dogs were randomly allocated to treatment with a single oral dose of either placebo or sarolaner (2mg/kg) based on pre-treatment host-suitability tick counts. Dogs were infested with approximately 50 unfed adult Ixodes scapularis, Ixodes ricinus or Amblyomma maculatum ticks on Days-2, 7, 14, 21, 28 and 35. Tick counts were conducted at 4 (I. scapularis only), 8, 12 and 24h after treatment on Day 0 and after each subsequent re-infestation. No treatment-related adverse reactions occurred during any of these studies. Dogs in the placebo-treated groups maintained adequate tick infestations (recovery of 20-70% of applied ticks) throughout the duration of the studies. Following treatment, live tick counts were significantly reduced relative to placebo at the 8h post treatment counts indicating that sarolaner started killing existing infestations of ticks rapidly after treatment. Efficacy was 90.1% against I. ricinus, 98.8% against I. scapularis, and 99.2% against A. maculatum within 12h, and 100% efficacy was achieved at 24h after treatment against all three tick species. This speed of kill was maintained throughout the month with ≥95.7%, ≥98.7% and ≥89.6% efficacy against I. scapularis, I. ricinus, and A. maculatum, respectively, at 24h after re-infestation at least through Day 28. PMID:26928659

  19. Comparative bioinformatics, temporal and spatial expression analyses of Ixodes scapularis organic anion transporting polypeptides

    PubMed Central

    Radulović, Željko; Porter, Lindsay M.; Kim, Tae K.; Mulenga, Albert

    2015-01-01

    Organic anion-transporting polypeptides (Oatps) are an integral part of the detoxification mechanism in vertebrates and invertebrates. These cell surface proteins are involved in mediating the sodium-independent uptake and/or distribution of a broad array of organic amphipathic compounds and xenobiotic drugs. This study describes bioinformatics and biological characterization of 9 Oatp sequences in the Ixodes scapularis genome. These sequences have been annotated on the basis of 12 transmembrane domains, consensus motif D-X-RW-(I,V)-GAWW-X-G-(F,L)-L, and 11 conserved cysteine amino acid residues in the large extracellular loop 5 that characterize the Oatp superfamily. Ixodes scapularis Oatps may regulate non-redundant cross-tick species conserved functions in that they did not cluster as a monolithic group on the phylogeny tree and that they have orthologs in other ticks. Phylogeny clustering patterns also suggest that some tick Oatp sequences transport substrates that are similar to those of body louse, mosquito, eye worm, and filarial worm Oatps. Semi-quantitative RT-PCR analysis demonstrated that all 9 I. scapularis Oatp sequences were expressed during tick feeding. Ixodes scapularis Oatp genes potentially regulate functions during early and/or late-stage tick feeding as revealed by normalized mRNA profiles. Normalized transcript abundance indicates that I. scapularis Oatp genes are strongly expressed in unfed ticks during the first 24 h of feeding and/or at the end of the tick feeding process. Except for 2 I. scapularis Oatps, which were expressed in the salivary glands and ovaries, all other genes were expressed in all tested organs, suggesting the significance of I. scapularis Oatps in maintaining tick homeostasis. Different I. scapularis Oatp mRNA expression patterns were detected and discussed with reference to different physiological states of unfed and feeding ticks. PMID:24582512

  20. Genotypic Variation and Mixtures of Lyme Borrelia in Ixodes Ticks from North America and Europe

    PubMed Central

    Crowder, Chris D.; Matthews, Heather E.; Schutzer, Steven; Rounds, Megan A.; Luft, Benjamin J.; Nolte, Oliver; Campbell, Scott R.; Phillipson, Curtis A.; Li, Feng; Sampath, Ranga; Ecker, David J.; Eshoo, Mark W.

    2010-01-01

    Background Lyme disease, caused by various species of Borrelia, is transmitted by Ixodes ticks in North America and Europe. Studies have shown the genotype of Borrelia burgdorferi sensu stricto (s.s.) or the species of B. burgdorferi sensu lato (s.l.) affects the ability of the bacteria to cause local or disseminated infection in humans. Methodology/Principal Findings We used a multilocus PCR electrospray mass spectrometry assay to determine the species and genotype Borrelia from ticks collected in New York, Connecticut, Indiana, Southern Germany, and California and characterized isolates from parts of the United States and Europe. These analyses identified 53 distinct genotypes of B. burgdorferi sensu stricto with higher resolution than ospC typing. Genotypes of other members of the B. burgdorferi sensu lato complex were also identified and genotyped including B. afzelii, B. garinii, B. lusitaniae, B. spielmanii, and B. valaisiana. While each site in North America had genotypes unique to that location, we found genotypes shared between individual regions and two genotypes found across the United States. Significant B. burgdorferi s.s. genotypic diversity was observed between North America and Europe: only 6.6% of US genotypes (3 of 45) were found in Europe and 27% of the European genotypes (3 of 11) were observed in the US. Interestingly, 39% of adult Ixodes scapularis ticks from North America were infected with more than one genotype of B. burgdorferi s.s. and 22.2% of Ixodes ricinus ticks from Germany were infected with more than one genotype of B. burgdorferi s.l. Conclusions/Significance The presence of multiple Borrelia genotypes in ticks increases the probability that a person will be infected with more than one genotype of B. burgdorferi, potentially increasing the risks of disseminated Lyme disease. Our study indicates that the genotypic diversity of Borrelia in ticks in both North America and Europe is higher then previously reported and can have

  1. Siberian subtype tick-borne encephalitis virus in Ixodes ricinus in a newly emerged focus, Finland.

    PubMed

    Jääskeläinen, Anu; Tonteri, Elina; Pieninkeroinen, Ilkka; Sironen, Tarja; Voutilainen, Liina; Kuusi, Markku; Vaheri, Antti; Vapalahti, Olli

    2016-02-01

    The first tick-borne encephalitis (TBE) cases in Kotka, Finland appeared in 2010. Altogether ten human cases have been diagnosed by 2014. Four had long-lasting sequelae. We collected 195 Ixodes ricinus ticks, nine rodents, and eleven shrews from the archipelago of Kotka in 2011. Three Siberian subtype TBE virus (TBEV) strains were isolated from the ticks and three mammals were positive for TBEV antibodies. The archipelago of Kotka is a newly emerged TBE focus of Siberian subtype TBEV circulating notably in I. ricinus. The patients had on average longer hospitalization than reported for the European subtype infection. PMID:26548609

  2. Conjunctival Attachment of a Live Paralysis Tick, Ixodes holocyclus, in a Child: A Case Report

    PubMed Central

    Teong, Joanne M.Y.; Adler, Paul A.; Doggett, Stephen L.; Daneshvar, Dariush; Shields, Melissa K.

    2015-01-01

    We describe a rare clinical finding of conjunctival tick attachment in a child. A 10-year-old boy presented to the clinic with right-eye itch. He was found to have a live tick firmly attached to his right temporal conjunctiva. The tick was identified as the larval stage of the paralysis tick, Ixodes holocyclus. The tick was removed completely by conjunctival excision. Although various methods of removing a tick have been described in the literature, the goal of treatment is the safe and complete removal of the tick to prevent further transmission of pathogens, allergens, and toxins to the patient. PMID:25969685

  3. An Ixodes minor and Borrelia carolinensis enzootic cycle involving a critically endangered Mojave Desert rodent

    PubMed Central

    Foley, Janet; Ott-Conn, Caitlin; Worth, Joy; Poulsen, Amanda; Clifford, Deana

    2014-01-01

    Microtus californicus scirpensis is an endangered, isolated subspecies of California vole. It requires water pools and riparian bulrush (Schoenoplectus americanus) and occupies some of the rarest habitat of any North American mammal. The minimally vegetated, extremely arid desert surrounding the pools is essentially uninhabitable for Ixodes species ticks. We describe an enzootic cycle of Borrelia carolinensis in Ixodes minor ticks at a site 3500 km distant from the region in which I. minor is known to occur in Tecopa Host Springs, Inyo County, eastern Mojave Desert, California. Voles were live-trapped, and ticks and blood samples queried by PCR and DNA sequencing for identification and determination of the presence of Borrelia spp. Between 2011–2013, we found 21 Ixodes minor ticks (prevalence 4–8%) on Amargosa voles and Reithrodontomys megalotis. DNA sequencing of 16S rRNA from ticks yielded 99% identity to I. minor. There was 92% identity with I. minor in the calreticulin gene fragment. Three ticks (23.1%), 15 (24%) voles, three (27%) house mice, and one (7%) harvest mice were PCR positive for Borrelia spp. Sequencing of the 5S-23S intergenic spacer region and flagellin gene assigned Amargosa vole Borrelia strains to B. carolinensis. Ixodes minor, first described in 1902 from a single Guatemalan record, reportedly occurs only in the southeast American on small mammals and birds. The source of this tick in the Mojave Desert and time scale for introduction is not known but likely via migratory birds. Borrelia strains in the Amargosa ecosystem most closely resemble B. carolinensis. B. carolinensis occurs in a rodent-I. minor enzootic cycle in the southeast U.S. although its epidemiological significance for people or rodents is unknown. The presence of a tick and Borrelia spp. only known from southeast U.S. in this extremely isolated habitat on the other side of the continent is of serious concern because it suggests that the animals in the

  4. Infection of Ixodes ricinus (Acari: Ixodidae) by Borrelia burgdorferi sensu lato in North Africa

    USGS Publications Warehouse

    Zhioua, E.; Bouattour, A.; Hu, C.M.; Gharbi, M.; Aeschliman, A.; Ginsberg, H.S.; Gern, L.

    1999-01-01

    Free-living adult Ixodes ricinus L. were collected in Amdoun, situated in the Kroumiry mountains in northwestern Tunisia (North Africa). Using direct fluorescence antibody assay, the infection rate of field-collected I. ricinus by Borrelia burgdorferi sensu lato was 30.5% (n = 72). No difference in infection rate was observed between male and female ticks. Spirochetes that had been isolated from I. ricinus from Ain Drahim (Kroumiry Mountains) in 1988 were identified as Borrelia lusitaniae (formerly genospecies PotiB2). This is the first identification of a genospecies of Borrelia burgdorferi sensu lato from the continent of Africa.

  5. An Ixodes minor and Borrelia carolinensis enzootic cycle involving a critically endangered Mojave Desert rodent.

    PubMed

    Foley, Janet; Ott-Conn, Caitlin; Worth, Joy; Poulsen, Amanda; Clifford, Deana

    2014-03-01

    Microtus californicus scirpensis is an endangered, isolated subspecies of California vole. It requires water pools and riparian bulrush (Schoenoplectus americanus) and occupies some of the rarest habitat of any North American mammal. The minimally vegetated, extremely arid desert surrounding the pools is essentially uninhabitable for Ixodes species ticks. We describe an enzootic cycle of Borrelia carolinensis in Ixodes minor ticks at a site 3500 km distant from the region in which I. minor is known to occur in Tecopa Host Springs, Inyo County, eastern Mojave Desert, California. Voles were live-trapped, and ticks and blood samples queried by PCR and DNA sequencing for identification and determination of the presence of Borrelia spp. Between 2011-2013, we found 21 Ixodes minor ticks (prevalence 4-8%) on Amargosa voles and Reithrodontomys megalotis. DNA sequencing of 16S rRNA from ticks yielded 99% identity to I. minor. There was 92% identity with I. minor in the calreticulin gene fragment. Three ticks (23.1%), 15 (24%) voles, three (27%) house mice, and one (7%) harvest mice were PCR positive for Borrelia spp. Sequencing of the 5S-23S intergenic spacer region and flagellin gene assigned Amargosa vole Borrelia strains to B. carolinensis. Ixodes minor, first described in 1902 from a single Guatemalan record, reportedly occurs only in the southeast American on small mammals and birds. The source of this tick in the Mojave Desert and time scale for introduction is not known but likely via migratory birds. Borrelia strains in the Amargosa ecosystem most closely resemble B. carolinensis. B. carolinensis occurs in a rodent-I. minor enzootic cycle in the southeast U.S. although its epidemiological significance for people or rodents is unknown. The presence of a tick and Borrelia spp. only known from southeast U.S. in this extremely isolated habitat on the other side of the continent is of serious concern because it suggests that the animals in the ecosystem

  6. Avian tick paralysis caused by Ixodes brunneus in the southeastern United States

    USGS Publications Warehouse

    Luttrell, M.P.; Creekmore, L.H.; Mertins, J.W.

    1996-01-01

    Between 1988 and 1994, 16 definitive and 26 presumptive cases of tick paralysis were diagnosed in 10 species of birds from five southeastern states in the USA. All birds had engorged adult female Ixodes brunneus ticks on the head region and were partially paralyzed or dead. Cases occurred in the winter and early spring months, and most birds were passerines found in private yards or near feeders. All stages of I. brunneus feed exclusively on birds, and this species previously has been associated with avian tick paralysis. Little is known concerning the life cycle of this ixodid tick and its impact on wild bird populations.

  7. Variability and Action Mechanism of a Family of Anticomplement Proteins in Ixodes ricinus

    PubMed Central

    Lahaye, Kathia; Gensale, François; Denis, Valérie; Charloteaux, Benoît; Decrem, Yves; Prévôt, Pierre-Paul; Brossard, Michel; Vanhamme, Luc; Godfroid, Edmond

    2008-01-01

    Background Ticks are blood feeding arachnids that characteristically take a long blood meal. They must therefore counteract host defence mechanisms such as hemostasis, inflammation and the immune response. This is achieved by expressing batteries of salivary proteins coded by multigene families. Methodology/Principal Findings We report the in-depth analysis of a tick multigene family and describe five new anticomplement proteins in Ixodes ricinus. Compared to previously described Ixodes anticomplement proteins, these segregated into a new phylogenetic group or subfamily. These proteins have a novel action mechanism as they specifically bind to properdin, leading to the inhibition of C3 convertase and the alternative complement pathway. An excess of non-synonymous over synonymous changes indicated that coding sequences had undergone diversifying selection. Diversification was not associated with structural, biochemical or functional diversity, adaptation to host species or stage specificity but rather to differences in antigenicity. Conclusions/Significance Anticomplement proteins from I. ricinus are the first inhibitors that specifically target a positive regulator of complement, properdin. They may provide new tools for the investigation of role of properdin in physiological and pathophysiological mechanisms. They may also be useful in disorders affecting the alternative complement pathway. Looking for and detecting the different selection pressures involved will help in understanding the evolution of multigene families and hematophagy in arthropods. PMID:18167559

  8. Arsenophonus nasoniae and Rickettsiae Infection of Ixodes ricinus Due to Parasitic Wasp Ixodiphagus hookeri

    PubMed Central

    Bohacsova, Monika; Mediannikov, Oleg; Kazimirova, Maria; Raoult, Didier; Sekeyova, Zuzana

    2016-01-01

    Arsenophonus nasoniae, a male-killing endosymbiont of chalcid wasps, was recently detected in several hard tick species. Following the hypothesis that its presence in ticks may not be linked to the direct occurrence of bacteria in tick's organs, we identified A. nasoniae in wasps emerging from parasitised nymphs. We confirmed that 28.1% of Ixodiphagus hookeri wasps parasitizing Ixodes ricinus ticks were infected by A. nasoniae. Moreover, in examined I. ricinus nymphs, A. nasoniae was detected only in those, which were parasitized by the wasp. However, in part of the adult wasps as well as in some ticks that contained wasp's DNA, we did not confirm A. nasoniae. We also found, that in spite of reported male-killing, some newly emerged adult wasp males were also infected by A. nasoniae. Additionally, we amplified the DNA of Rickettsia helvetica and Rickettsia monacensis (known to be Ixodes ricinus-associated bacteria) in adult parasitoid wasps. This may be related either with the digested bacterial DNA in wasp body lumen or with a role of wasps in circulation of rickettsiae among tick vectors. PMID:26901622

  9. Arsenophonus nasoniae and Rickettsiae Infection of Ixodes ricinus Due to Parasitic Wasp Ixodiphagus hookeri.

    PubMed

    Bohacsova, Monika; Mediannikov, Oleg; Kazimirova, Maria; Raoult, Didier; Sekeyova, Zuzana

    2016-01-01

    Arsenophonus nasoniae, a male-killing endosymbiont of chalcid wasps, was recently detected in several hard tick species. Following the hypothesis that its presence in ticks may not be linked to the direct occurrence of bacteria in tick's organs, we identified A. nasoniae in wasps emerging from parasitised nymphs. We confirmed that 28.1% of Ixodiphagus hookeri wasps parasitizing Ixodes ricinus ticks were infected by A. nasoniae. Moreover, in examined I. ricinus nymphs, A. nasoniae was detected only in those, which were parasitized by the wasp. However, in part of the adult wasps as well as in some ticks that contained wasp's DNA, we did not confirm A. nasoniae. We also found, that in spite of reported male-killing, some newly emerged adult wasp males were also infected by A. nasoniae. Additionally, we amplified the DNA of Rickettsia helvetica and Rickettsia monacensis (known to be Ixodes ricinus-associated bacteria) in adult parasitoid wasps. This may be related either with the digested bacterial DNA in wasp body lumen or with a role of wasps in circulation of rickettsiae among tick vectors. PMID:26901622

  10. Rickettsia buchneri sp. nov., a rickettsial endosymbiont of the blacklegged tick Ixodes scapularis

    PubMed Central

    Felsheim, Roderick F.; Burkhardt, Nicole Y.; Oliver, Jonathan D.; Heu, Chan C.; Munderloh, Ulrike G.

    2015-01-01

    We obtained a rickettsial isolate from the ovaries of the blacklegged tick, Ixodes scapularis. The isolate (ISO7T) was grown in the Ixodes ricinus embryonic cell line IRE11. We characterized the isolate by transmission electron microscopy and gene sequencing. Phylogenetic analysis of 11 housekeeping genes demonstrated that the isolate fulfils the criteria to be classified as a representative of a novel rickettsial species closely related to ‘Rickettsia monacensis’. These rickettsiae form a clade separate from other species of rickettsiae. Gene sequences indicated that several genes important in rickettsial motility, invasiveness and temperature adaptation were mutated (e.g. sca2, rickA, hsp22, pldA and htrA). We propose the name Rickettsia buchneri sp. nov. for this bacterium that infects the ovaries of the tick I. scapularis to acknowledge the pioneering contributions of Professor Paul Buchner (1886–1978) to research on bacterial symbionts. The type strain of R. buchneri sp. nov. is strain ISO-7T ( = DSM 29016T = ATCC VR-1814T). PMID:25563918

  11. Variation in the Microbiota of Ixodes Ticks with Regard to Geography, Species, and Sex

    PubMed Central

    Van Treuren, Will; Ponnusamy, Loganathan; Brinkerhoff, R. Jory; Gonzalez, Antonio; Parobek, Christian M.; Juliano, Jonathan J.; Andreadis, Theodore G.; Falco, Richard C.; Ziegler, Lorenza Beati; Hathaway, Nicholas; Keeler, Corinna; Emch, Michael; Bailey, Jeffrey A.; Roe, R. Michael; Apperson, Charles S.; Knight, Rob

    2015-01-01

    Ixodes scapularis is the principal vector of Lyme disease on the East Coast and in the upper Midwest regions of the United States, yet the tick is also present in the Southeast, where Lyme disease is absent or rare. A closely related species, I. affinis, also carries the pathogen in the South but does not seem to transmit it to humans. In order to better understand the geographic diversity of the tick, we analyzed the microbiota of 104 adult I. scapularis and 13 adult I. affinis ticks captured in 19 locations in South Carolina, North Carolina, Virginia, Connecticut, and New York. Initially, ticks from 4 sites were analyzed by 454 pyrosequencing. Subsequently, ticks from these sites plus 15 others were analyzed by sequencing with an Illumina MiSeq machine. By both analyses, the microbiomes of female ticks were significantly less diverse than those of male ticks. The dissimilarity between tick microbiomes increased with distance between sites, and the state in which a tick was collected could be inferred from its microbiota. The genus Rickettsia was prominent in all locations. Borrelia was also present in most locations and was present at especially high levels in one site in western Virginia. In contrast, members of the family Enterobacteriaceae were very common in North Carolina I. scapularis ticks but uncommon in I. scapularis ticks from other sites and in North Carolina I. affinis ticks. These data suggest substantial variations in the Ixodes microbiota in association with geography, species, and sex. PMID:26150449

  12. Evidence for competition between Ixodes scapularis and Dermacentor albipictus feeding concurrently on white-tailed deer.

    PubMed

    Baer-Lehman, Marcie L; Light, Theo; Fuller, Nathan W; Barry-Landis, Katherine D; Kindlin, Craig M; Stewart, Richard L

    2012-11-01

    Competition among ticks, and among ectoparasites generally, has rarely been demonstrated. Ixodes scapularis and Dermacentor albipictus are both hard ticks commonly found feeding on deer harvested at Letterkenny Army Depot, in south central Pennsylvania, USA. The two species have contrasting life histories resulting in D. albipictus spending notably more time on the shared host. We hypothesized that this would give D. albipictus an advantage in locating and occupying optimal attachment sites (highly vascularized areas like the head and ears). Ticks were collected from 224 hunter-killed deer in December 2005 and November 2006 to determine if there is evidence of competition for attachment sites when these two species concurrently infest deer. A timed sample (3 min per region) of representative ticks was collected from the head (ears, face and neck regions) and body (axillae regions). Ixodes scapularis was more abundant and prevalent overall than D. albipictus. Dermacentor albipictus was found almost exclusively on the head, whereas I. scapularis was more evenly distributed, but somewhat more abundant on the body than on the head. The proportion of I. scapularis on the head was reduced at high D. albipictus abundances, but I. scapularis abundance did not alter the distribution of D. albipictus. This study supports the hypothesis of competition for preferred attachment sites between these two species of ticks, and suggests that D. albipictus may be competitively dominant over I. scapularis on the head region of concurrently infested white-tailed deer. PMID:22644381

  13. Occurrence of Ixodes scapularis (Acari: Ixodidae) on a selected segment of the Appalachian Trail.

    PubMed

    Oliver, J; Howard, J J

    1998-01-01

    A 918-km section of the Appalachian National Scenic Trail from the West Virginia-Maryland border to the Massachusetts-Vermont border was surveyed for the presence of Ixodes scapularis Say. The trail and its edges were drag-sampled during 4 hikes between May and October 1991. Trips were designed to survey areas of the Appalachian Trail when I. scapularis might be questing and to revisit states endemic for Lyme disease during differing times. After sampling for ticks, meteorological and ecological characteristics were measured at each site. In total, 1,776 km of the Appalachian Trail were hiked during 88 d and resulted in sampling 489 sites. All life stages of Ixodes scapularis (n = 46) were collected from 21 sites within a 331-km range of the Appalachian Trail between Salisbury, CT, to Delaware Water Gap, PA. This segment of Appalachian Trial is easily accessible to a large urban population and should be posted with tick warning signs to alert the public to the presence of I. scapularis. PMID:9542345

  14. Ectoparasites of Microtus californicus and Possible Emergence of an Exotic Ixodes Species Tick in California.

    PubMed

    Poulsen, Amanda; Conroy, Chris; Foley, Patrick; Ott-Conn, Caitlin; Roy, Austin; Brown, Richard; Foley, Janet

    2015-09-01

    California voles (Microtus californicus Peale) harbor fleas and ticks, may be infected with vector-borne pathogens, and could themselves suffer from disease and serve as a source of infection for people and other animals. Here we summarize publications, museum archives, and recent records of ticks and fleas from California voles. There have been 18 flea species reported on California voles with geographic locations reported for 13. During recent statewide surveys, we found six flea species, with the highest species richness in Humboldt County. We found three of five previously reported tick species as well as a tick resembling the eastern North American tick Ixodes minor Neumann (which we here designate Ixodes "Mojave morphotype") on isolated Amargosa voles and Owens Valley voles (Microtus californicus vallicola Bailey) in Inyo County in 2012 and 2014. Additional incidental observations of this Mojave morphotype tick were on a western harvest mouse (Reithrodontomys megalotis Baird) at the Mojave site and a montane vole (Microtus montanus Peale) in the Owens Valley, both in March, 2014. We cannot rule out that this tick species has been present in remote areas of California but gone unrecognized, but these data are consistent with recent introduction of this tick, possibly from migrating birds. Changes in the ectoparasite fauna suggest changing ecologies of vectors and vector-borne pathogens that could influence animals and people as well. PMID:26336217

  15. Infestation of urban populations of the Northern white-breasted hedgehog, Erinaceus roumanicus, by Ixodes spp. ticks in Poland.

    PubMed

    Dziemian, S; Michalik, J; Pi Łacińska, B; Bialik, S; Sikora, B; Zwolak, R

    2014-12-01

    Infestation by the nest-dwelling Ixodes hexagonus Leach and the exophilic Ixodes ricinus (Linnaeus) (Ixodida: Ixodidae) on the Northern white-breasted hedgehog, Erinaceus roumanicus (Erinaceomorpha: Erinaceidae), was investigated during a 4-year study in residential areas of the city of Poznań, west-central Poland. Of 341 hedgehogs, 303 (88.9%) hosted 10 061 Ixodes spp. ticks encompassing all parasitic life stages (larvae, nymphs, females). Ixodes hexagonus accounted for 73% and I. ricinus for 27% of the collected ticks. Male hedgehogs carried significantly higher tick burdens than females. Analyses of seasonal prevalence and abundance of I. hexagonus revealed relatively stable levels of infestation of all parasitic stages, with a modest summer peak in tick abundance noted only on male hosts. By contrast, I. ricinus females and nymphs peaked in spring and declined steadily thereafter in summer and autumn, whereas the less abundant larvae peaked in summer. This is the first longterm study to evaluate the seasonal dynamics of both tick species on populations of wild hedgehogs inhabiting urban residential areas. PMID:24861150

  16. Arthropod repellency, especially tick (Ixodes ricinus), exerted by extract from Artemisia abrotanum and essential oil from flowers of Dianthus caryophyllum.

    PubMed

    Tunón, H; Thorsell, W; Mikiver, A; Malander, I

    2006-06-01

    A toluene extract of southernwood (Artemisia abrotanum) and the essential oil from flowers of carnation (Dianthus caryophyllum ) exerted pronounced a repellent effect both against ticks (nymphs of Ixodes ricinus) and yellow fever mosquitoes (Aedes aegypti). The most potent repellents found were coumarin and thujyl alcohol from A. abrotanum and phenylethanol from D. caryophyllum where coumarin and thujyl alcohol were also detected. PMID:16624501

  17. Elemol and Amyris Oil Repel the Ticks Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in Laboratory Bioassays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential oil from Amyris balsamifera (Rutaceae) and elemol, a principal constituent of the essential oil of Osage orange, Maclura pomifera (Moraceae) were evaluated in in vitro and in vivo laboratory bioassays for repellent activity against host-seeking nymphs of the blacklegged tick, Ixodes sc...

  18. Toxicity and repellency of plant essential oils against the arthropod disease vectors Phlebotomus papatasi and Ixodes scapularis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sand fly Phlebotomus papatasi is an important blood feeder and the main vector of the trypanosomatid protozoa Leishmania major, which causes leishmaniasis in parts of the Afro-Eurasian region. The black- legged tick Ixodes scapularis is the primary tick vector of the bacterium Borrelia burgdorfe...

  19. CONTROL OF IXODES SCAPULARIS AND AMBLYOMMA AMERICANUM USING THE '4-POSTER' TREATMENT DEVICE ON DEER IN MARYLAND

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deer self-treatment devices (`4-posters¿) were evaluated for their efficacy in reducing populations of blacklegged ticks, Ixodes scapularis, and lone star ticks, Amblyomma americanum. At each of 3 locations in Maryland, 25 `4-posters¿ were operated in approximately 518 ha study areas. Populations ...

  20. Susceptibility of Four Tick Species Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis, and Rhipicephalus sanguineus (Acari: Ixodidae) to Nootkatone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential oil nootkatone has shown acaricidal activity on ticks. The toxicity of nootkatone was determined in laboratory assays using a vial coating technique against unfed nymphs of four Ixodid ticks: Amblyomma americanum L., Dermacentor variabilis (Say), Ixodes scapularis Say, and Rhipicepha...

  1. Ixodes ricinus Tick Lipocalins: Identification, Cloning, Phylogenetic Analysis and Biochemical Characterization

    PubMed Central

    Beaufays, Jérôme; Adam, Benoît; Decrem, Yves; Prévôt, Pierre-Paul; Santini, Sébastien; Brasseur, Robert; Brossard, Michel; Lins, Laurence

    2008-01-01

    Background During their blood meal, ticks secrete a wide variety of proteins that interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation of the inflammatory response. Methodology/Principal Findings Screening a cDNA library in association with RT-PCR and RACE methodologies allowed us to identify 14 new lipocalin genes in the salivary glands of the Ixodes ricinus hard tick. A computational in-depth structural analysis confirmed that LIRs belong to the lipocalin family. These proteins were called LIR for “Lipocalin from I. ricinus” and numbered from 1 to 14 (LIR1 to LIR14). According to their percentage identity/similarity, LIR proteins may be assigned to 6 distinct phylogenetic groups. The mature proteins have calculated pM and pI varying from 21.8 kDa to 37.2 kDa and from 4.45 to 9.57 respectively. In a western blot analysis, all recombinant LIRs appeared as a series of thin bands at 50–70 kDa, suggesting extensive glycosylation, which was experimentally confirmed by treatment with N-glycosidase F. In addition, the in vivo expression analysis of LIRs in I. ricinus, examined by RT-PCR, showed homogeneous expression profiles for certain phylogenetic groups and relatively heterogeneous profiles for other groups. Finally, we demonstrated that LIR6 codes for a protein that specifically binds leukotriene B4. Conclusions/Significance This work confirms that, regarding their biochemical properties, expression profile, and sequence signature, lipocalins in Ixodes hard tick genus, and more specifically in the Ixodes ricinus species, are segregated into distinct phylogenetic groups suggesting potential distinct function. This was particularly demonstrated by the ability of LIR6 to scavenge leukotriene B4. The other LIRs did not bind any of the ligands tested, such as 5-hydroxytryptamine, ADP, norepinephrine, platelet activating factor, prostaglandins D2 and E2, and finally leukotrienes B4 and C4. PMID:19096708

  2. Pathogenicity of Metarhizium anisopliae (Deuteromycetes) and permethrin to Ixodes scapularis (Acari: Ixodidae) nymphs

    USGS Publications Warehouse

    Hornbostel, V.L.; Zhioua, E.; Benjamin, M.A.; Ginsberg, H.S.; Ostfeld, R.S.

    2005-01-01

    Effectiveness of the entomopathogenic fungus Metarhizium anisopliae, for controlling nymphal Ixodes scapularis, was tested in laboratory and field trials. In the laboratory, M. anisopliae (Metschnikoff) Sorokin strain ESC1 was moderately pathogenic, with an LC50 of 107 spores/ml and induced 70% mortality at 109 spores/ml. In a field study, however, 109 spores/ml M. anisopliae did not effectively control questing I. scapularis nymphs, and significant differences were not detected in pre- and post-treatment densities. For nymphs collected and returned to the laboratory for observation, mortality was low in treatment groups, ranging from 20 to 36%. To assess whether a chemical acaricide would synergistically enhance pathogenicity of the fungus, we challenged unfed nymphal I. scapularis with combinations of M. anisopliae and permethrin, a relatively safe pyrethroid acaricide, in two separate bioassays. Significant interactions between M. anisopliae and permethrin were not observed, supporting neither synergism nor antagonism.

  3. Coinfection by Ixodes Tick-Borne Pathogens: Ecological, Epidemiological, and Clinical Consequences.

    PubMed

    Diuk-Wasser, Maria A; Vannier, Edouard; Krause, Peter J

    2016-01-01

    Ixodes ticks maintain a large and diverse array of human pathogens in the enzootic cycle, including Borrelia burgdorferi and Babesia microti. Despite the poor ecological fitness of B. microti, babesiosis has recently emerged in areas endemic for Lyme disease. Studies in ticks, reservoir hosts, and humans indicate that coinfection with B. burgdorferi and B. microti is common, promotes transmission and emergence of B. microti in the enzootic cycle, and causes greater disease severity and duration in humans. These interdisciplinary studies may serve as a paradigm for the study of other vector-borne coinfections. Identifying ecological drivers of pathogen emergence and host factors that fuel disease severity in coinfected individuals will help guide the design of effective preventative and therapeutic strategies. PMID:26613664

  4. Distribution of Ixodes dammini (Acari: Ixodidae) in residential lawns on Prudence Island, Rhode Island

    USGS Publications Warehouse

    Carroll, M.C.; Ginsberg, H.S.; Hyland, K.E.

    1992-01-01

    The distribution of nymphal Ixodes dammini Spielman, Clifford, Piesman & Corwin in residential lawns was assessed by flagging on Prudence Island, RI. The number of ticks per sample was five times greater in lawns adjacent to woods than in lawns adjacent to other lawns. Relative tick abundance was negatively correlated with distance from the woods, but the decline was gradual. Spirochete prevalence in ticks did not differ among lawn types or at different distances from the woods. Therefore, barriers that keep people away from the wood edge probably lower the risk of acquiring Lyme disease, but there is still a risk. Even with physical barriers at lawn-wood edges, personal precautions to prevent tick bites should be followed.

  5. Vaccination with cyclin-dependent kinase tick antigen confers protection against Ixodes infestation.

    PubMed

    Gomes, Helga; Moraes, Jorge; Githaka, Naftaly; Martins, Renato; Isezaki, Masayoshi; Vaz, Itabajara da Silva; Logullo, Carlos; Konnai, Satoru; Ohashi, Kazuhiko

    2015-07-30

    Among arthropods, ticks lead as vectors of animal diseases and rank second to mosquitoes in transmitting human pathogens. Cyclin-dependent kinases (CDK) participate in cell cycle control in eukaryotes. CDKs are serine/threonine protein kinases and these catalytic subunits are activated or inactivated at specific stages of the cell cycle. To determine the potential of using CDKs as anti-tick vaccine antigens, hamsters were immunized with recombinant Ixodes persulcatus CDK10, followed by a homologous tick challenge. Though it was not exactly unexpected, IpCDK10 vaccination significantly impaired tick blood feeding and fecundity, which manifested as low engorgement weights, poor oviposition, and a reduction in 80% of hatching rates. These findings may underpin the development of more efficacious anti-tick vaccines based on the targeting of cell cycle control proteins. PMID:26073111

  6. Borrelia garinii in Seabird Ticks (Ixodes uriae), Atlantic Coast, North America

    PubMed Central

    Muzaffar, Sabir Bin; Lavers, Jennifer; Lacombe, Eleanor H.; Cahill, Bruce K.; Lubelczyk, Charles B.; Kinsler, Allen; Mathers, Amy J.; Rand, Peter W.

    2006-01-01

    Borrelia garinii is the most neurotropic of the genospecies of B. burgdorferi sensu lato that cause Lyme disease in Europe, where it is transmitted to avian and mammalian reservoir hosts and to humans by Ixodes ricinus. B. garinii is also maintained in an enzootic cycle in seabirds by I. uriae, a tick found at high latitudes in both the Northern and Southern Hemispheres. To determine whether B. garinii is present in seabird ticks on the Atlantic Coast of North America, we examined 261 I. uriae ticks by polyclonal antiborrelial fluorescent antibody. Ten of 61 ticks from Gull Island, Newfoundland, were positive for borreliae by this screen. Amplicons of DNA obtained by PCR that targeted the B. garinii rrs-rrla intergenic spacer were sequenced and matched to GenBank sequences for B. garinii. The potential for introduction of this agent into the North American Lyme disease enzootic is unknown. PMID:17326943

  7. Immunity-related genes in Ixodes scapularis—perspectives from genome information

    PubMed Central

    Smith, Alexis A.; Pal, Utpal

    2014-01-01

    Ixodes scapularis, commonly known as the deer tick, transmits a wide array of human and animal pathogens including Borrelia burgdorferi. Despite substantial advances in our understanding of immunity in model arthropods, including other disease vectors, precisely how I. scapularis immunity functions and influences persistence of invading pathogens remains largely unknown. This review provides a comprehensive analysis of the recently sequenced I. scapularis genome for the occurrence of immune-related genes and related pathways. We will also discuss the potential influence of immunity-related genes on the persistence of tick-borne pathogens with an emphasis on the Lyme disease pathogen B. burgdorferi. Further enhancement of our knowledge of tick immune responses is critical to understanding the molecular basis of the persistence of tick-borne pathogens and development of novel interventions against the relevant infections. PMID:25202684

  8. Distinctive amino acid composition profiles in salivary proteins of the tick Ixodes scapularis

    PubMed Central

    Hughes, Austin L.; Friedman, Robert

    2012-01-01

    Bioinformatic analysis of the amino acid composition of proteins of the tick Ixodes scapularis showed that, in comparison to other secreted proteins, salivary proteins in general have higher frequencies of polar residues and lower frequencies of the non-polar residues leucine and valine. Computer prediction of linear B-cell epitopes showed that polar residues were associated with the presence of high-quality epitopes and that tick salivary proteins included significantly more proteins with predicted high-quality epitopes than did other secreted proteins. The results provided no evidence that salivary proteins as a whole have evolved characteristics minimizing their antigenicity to the vertebrate host. Certain salivary proteins may indeed have evolved low antigenicity, but the I. scapularis sialome include at least some apparently antigenic proteins that might be tested experimentally to determine whether they would be suitable candidates for anti-tick vaccines. PMID:22108016

  9. Seasonal changes in the fatty acid profile of the tick Ixodes ricinus (Acari, Ixodidae).

    PubMed

    Cuber, Piotr; Urbanek, Aleksandra; Naczk, Aleksandra; Stepnowski, Piotr; Gołębiowski, Marek

    2016-06-01

    Fatty acids (FAs) from nymphs, females and males of Ixodes ricinus were analysed by gas chromatography/mass spectrometry. Ticks were collected from May to October 2013. The most abundant FAs were 18:1, 18:0, 16:0 and 18:2 which are also dominant FAs of insects. Adults contained higher concentrations of FAs in general than nymphs because they contain more fat body and probably a thicker layer of epicuticular lipids. Larger quantities of FAs > 20 carbon atoms in the carboxylic chain were present in females, which generally show higher content of lipids essential for oogenesis, whereas there were similar amounts of 14-18 in both sexes. In September and October, ticks contained large concentrations of the majority of FAs except for 18:1, the most abundant one in ticks collected from May through August. Thus, most FAs, especially those with more than 20 C atoms, tend to increase at lower temperatures. PMID:26976134

  10. Darkness induces mobility, and saturation deficit limits questing duration, in the tick Ixodes ricinus.

    PubMed

    Perret, Jean-Luc; Guerin, Patrick M; Diehl, Peter A; Vlimant, Michéle; Gern, Lise

    2003-06-01

    The behaviour of Ixodes ricinus nymphs was recorded in 10-day experiments using computer-assisted video-tracking, in the absence of any host stimuli. These ticks switch spontaneously from questing in a desiccating atmosphere to quiescence in a water-saturated atmosphere after dark. Quantification of both questing and quiescence duration demonstrates that questing duration is inversely related to saturation deficit whereas quiescence duration is not. Distance walked after quiescence increased with desiccating conditions, while the distance walked after questing remained unchanged. Almost all locomotor activities of I. ricinus occurred during darkness under either a 14 h:10 h L:D or a 8 h:4 h L:D cycle. We established that all life stages of I. ricinus are equipped to sense shifts in light intensity with bilaterally placed strings of photoreceptors. This permits I. ricinus to use onset of darkness to trigger mobility when desiccation risk is reduced in nature. PMID:12728002

  11. [Life cycle of the taiga tick ixodes persulcatus in taiga forests of the eastern Sayan Plateau].

    PubMed

    2014-01-01

    The Ixodes persulcatus life cycle has been studied in natural environments of taiga fo- rests in The Eastern Sayan Plateau (56 10' N, 91 30' E). Engorged larvae and nymphs de- velop with a morphogenetic diapause or without diapause, with ratio of these two ways of development for larvae and nymphs 77.25/22.75% and 43.43/56.57%, respectively. The hypothetic season hemipopulation consists of 34.5 +/- 4.5, 50.1 +/- 1.3, 13.2 +/- 4.0 n 2.2% of unfed imagoes, completing 3-year, 4-year, 5-year, and 6-year life cycles, respectively. Mean life span is 3.83 +/- 0.10 years per generation. The "life table" predicting the probability to complete life cycle through phases from egg to adult, was developed. PMID:25507834

  12. [Life cycle of the taiga tick ixodes persulcatus in taiga forests of the eastern Sayan Plateau].

    PubMed

    Korotkov, Iu S

    2014-01-01

    The Ixodes persulcatus life cycle has been studied in natural environments of taiga fo- rests in The Eastern Sayan Plateau (56 10' N, 91 30' E). Engorged larvae and nymphs de- velop with a morphogenetic diapause or without diapause, with ratio of these two ways of development for larvae and nymphs 77.25/22.75% and 43.43/56.57%, respectively. The hypothetic season hemipopulation consists of 34.5 +/- 4.5, 50.1 +/- 1.3, 13.2 +/- 4.0 n 2.2% of unfed imagoes, completing 3-year, 4-year, 5-year, and 6-year life cycles, respectively. Mean life span is 3.83 +/- 0.10 years per generation. The "life table" predicting the probability to complete life cycle through phases from egg to adult, was developed. PMID:25434236

  13. Repellent activity of fractioned compounds from Chamaecyparis nootkatensis essential oil against nymphal Ixodes scapularis (Acari: Ixodidae).

    PubMed

    Dietrich, Gabrielle; Dolan, Marc C; Peralta-Cruz, Javier; Schmidt, Jason; Piesman, Joseph; Eisen, Rebecca J; Karchesy, Joseph J

    2006-09-01

    Preliminary repellent activity of 14 natural products isolated from essential oil components extracted from the heartwood of Alaska yellow cedar, Chamaecyparis nootkatensis (D. Don) Spach., were evaluated against nymphal Ixodes scapularis Say in a laboratory bioassay and compared with technical grade N,N-diethyl-3-methylbenzamide (deet). Four hours after treatment, nootkatone and valencene-13-ol had repellent concentration (RC)50 values of 0.0458 and 0.0712% (wt:vol), respectively; two additional Alaska yellow cedar compounds, nootkatone 1 --> 10 epoxide and carvacrol had reported RC50 values of 0.0858 and 0.112%, respectively. The observed RC50 value for deet was 0.0728% (wt:vol). Although not statistically significantly more active than deet, the ability of these natural products to repel ticks at relatively low concentrations may represent a potential alternative to synthetic commercial repellents. PMID:17017233

  14. Differential salivary gland transcript expression profile in Ixodes scapularis nymphs upon feeding or flavivirus infection

    PubMed Central

    McNally, Kristin L.; Mitzel, Dana N.; Anderson, Jennifer M.; Ribeiro, José M. C.; Valenzuela, Jesus G.; Myers, Timothy G.; Godinez, Alvaro; Wolfinbarger, James B.; Best, Sonja M.; Bloom, Marshall E.

    2011-01-01

    Ixodid ticks are vectors of human diseases such as Lyme disease, babesiosis, anaplasmosis, and tick-borne encephalitis. These diseases cause significant morbidity and mortality worldwide and are transmitted to humans during tick feeding. The tick-host-pathogen interface is a complex environment where host responses are modulated by the molecules in tick saliva to enable the acquisition of a blood meal. Disruption of host responses at the site of the tick bite may also provide an advantage for pathogens to survive and replicate. Thus, the molecules in tick saliva not only aid the tick in securing a nutrient-rich blood meal, but can also enhance the transmission and acquisition of pathogens. To investigate the effect of feeding and flavivirus infection on the salivary gland transcript expression profile in ticks, a first-generation microarray was developed using ESTs from a cDNA library derived from Ixodes scapularis salivary glands. When the salivary gland transcript profile in ticks feeding over the course of 3 days was compared to that in unfed ticks, a dramatic increase in transcripts related to metabolism was observed. Specifically, 578 transcripts were up-regulated compared to 151 down-regulated transcripts in fed ticks. When specific time points post attachment were analyzed, a temporal pattern of gene expression was observed. When Langat virus-infected ticks were compared to mock-infected ticks, transcript expression changes were observed at all 3 days of feeding. Differentially regulated transcripts include putative secreted proteins, lipocalins, Kunitz domain-containing proteins, anti-microbial peptides, and transcripts of unknown function. These studies identify salivary gland transcripts that are differentially regulated during feeding or in the context of flavivirus infection in Ixodes scapularis nymphs, a medically important disease vector. Further analysis of these transcripts may identify salivary factors that affect the transmission or replication of

  15. Molecular Investigations of Rickettsia helvetica Infection in Dogs, Foxes, Humans, and Ixodes Ticks▿

    PubMed Central

    Boretti, Felicitas S.; Perreten, Andrea; Meli, Marina L.; Cattori, Valentino; Willi, Barbara; Wengi, Nicole; Hornok, Sándor; Honegger, Hanspeter; Hegglin, Daniel; Woelfel, Roman; Reusch, Claudia E.; Lutz, Hans; Hofmann-Lehmann, Regina

    2009-01-01

    Rickettsia helvetica, a tick-borne member of the spotted-fever-group rickettsiae, is a suspected pathogen in humans; however, its role in animals is unknown. The aims of this study were to establish a R. helvetica-specific real-time TaqMan PCR assay and apply it to the analysis of tick vectors (to determine potential exposure risk) and blood samples from Canidae and humans (to determine prevalence of infection). The newly designed 23S rRNA gene assay for R. helvetica was more sensitive than a published citrate synthase gene (gltA) assay for several rickettsiae. Blood samples from 884 dogs, 58 foxes, and 214 human patients and 2,073 ticks (Ixodes spp.) collected from either vegetation or animals were analyzed. Although the maximal likelihood estimate of prevalence was 12% in unfed ticks and 36% in ticks collected from animals, none of the 1,156 blood samples tested PCR positive. Ticks from cats were more frequently PCR positive than ticks from dogs. Sequencing of the 23S rRNA and/or the gltA gene of 17 tick pools confirmed the presence of R. helvetica. Additionally, Rickettsia monacensis, which has not been previously found in Switzerland, was identified. In conclusion, R. helvetica was frequently detected in the tick population but not in blood samples. Nevertheless, due to the broad host range of Ixodes ticks and the high rate of infestation with this agent (i.e., R. helvetica was 13 times more frequent in unfed ticks than the tick-borne encephalitis virus), many mammals may be exposed to R. helvetica. The PCR assay described here represents an important tool for studying this topic. PMID:19329665

  16. Molecular Investigations of Rickettsia helvetica infection in dogs, foxes, humans, and Ixodes ticks.

    PubMed

    Boretti, Felicitas S; Perreten, Andrea; Meli, Marina L; Cattori, Valentino; Willi, Barbara; Wengi, Nicole; Hornok, Sándor; Honegger, Hanspeter; Hegglin, Daniel; Woelfel, Roman; Reusch, Claudia E; Lutz, Hans; Hofmann-Lehmann, Regina

    2009-05-01

    Rickettsia helvetica, a tick-borne member of the spotted-fever-group rickettsiae, is a suspected pathogen in humans; however, its role in animals is unknown. The aims of this study were to establish a R. helvetica-specific real-time TaqMan PCR assay and apply it to the analysis of tick vectors (to determine potential exposure risk) and blood samples from Canidae and humans (to determine prevalence of infection). The newly designed 23S rRNA gene assay for R. helvetica was more sensitive than a published citrate synthase gene (gltA) assay for several rickettsiae. Blood samples from 884 dogs, 58 foxes, and 214 human patients and 2,073 ticks (Ixodes spp.) collected from either vegetation or animals were analyzed. Although the maximal likelihood estimate of prevalence was 12% in unfed ticks and 36% in ticks collected from animals, none of the 1,156 blood samples tested PCR positive. Ticks from cats were more frequently PCR positive than ticks from dogs. Sequencing of the 23S rRNA and/or the gltA gene of 17 tick pools confirmed the presence of R. helvetica. Additionally, Rickettsia monacensis, which has not been previously found in Switzerland, was identified. In conclusion, R. helvetica was frequently detected in the tick population but not in blood samples. Nevertheless, due to the broad host range of Ixodes ticks and the high rate of infestation with this agent (i.e., R. helvetica was 13 times more frequent in unfed ticks than the tick-borne encephalitis virus), many mammals may be exposed to R. helvetica. The PCR assay described here represents an important tool for studying this topic. PMID:19329665

  17. Characterization of Gut-associated Cathepsin D Hemoglobinase from Tick Ixodes ricinus (IrCD1)*

    PubMed Central

    Sojka, Daniel; Franta, Zdeněk; Frantová, Helena; Bartošová, Pavla; Horn, Martin; Váchová, Jana; O'Donoghue, Anthony J.; Eroy-Reveles, Alegra A.; Craik, Charles S.; Knudsen, Giselle M.; Caffrey, Conor R.; McKerrow, James H.; Mareš, Michael; Kopáček, Petr

    2012-01-01

    To identify the gut-associated tick aspartic hemoglobinase, this work focuses on the functional diversity of multiple Ixodes ricinus cathepsin D forms (IrCDs). Out of three encoding genes representing Ixodes scapularis genome paralogs, IrCD1 is the most distinct enzyme with a shortened propeptide region and a unique pattern of predicted post-translational modifications. IrCD1 gene transcription is induced by tick feeding and is restricted to the gut tissue. The hemoglobinolytic role of IrCD1 was further supported by immunolocalization of IrCD1 in the vesicles of tick gut cells. Properties of recombinantly expressed rIrCD1 are consistent with the endo-lysosomal environment because the zymogen is autoactivated and remains optimally active in acidic conditions. Hemoglobin cleavage pattern of rIrCD1 is identical to that produced by the native enzyme. The preference for hydrophobic residues at the P1 and P1′ position was confirmed by screening a novel synthetic tetradecapeptidyl substrate library. Outside the S1-S1′ regions, rIrCD1 tolerates most amino acids but displays a preference for tyrosine at P3 and alanine at P2′. Further analysis of the cleavage site location within the peptide substrate indicated that IrCD1 is a true endopeptidase. The role in hemoglobinolysis was verified with RNAi knockdown of IrCD1 that decreased gut extract cathepsin D activity by >90%. IrCD1 was newly characterized as a unique hemoglobinolytic cathepsin D contributing to the complex intestinal proteolytic network of mainly cysteine peptidases in ticks. PMID:22539347

  18. Evidence for Ixodes holocyclus (Acarina: Ixodidae) as a vector for human lyme Borreliosis infection in Australia.

    PubMed

    Mayne, P; Song, S; Shao, R; Burke, J; Wang, Y; Roberts, T

    2014-01-01

    Ixodes holocyclus (Acarina: Ixodidae) and Ixodes cornuatus (Acarina: Ixodidae) are two tick species found in the more densely populated areas of Australia and are known to be the cause of the neurotoxic disease tick paralysis in humans and mammals. Borreliosis otherwise known as Lyme disease is an emerging infectious disease in humans in Australia. Borrelia burgdorferi sensu stricto (Spirochaetales: Spirochaetaceae) and sensu lato are closely related spirochetal species that are the causative agents of Lyme disease in humans. Clinical transmission of this tick-borne disease can be identified in several but not all cases by a characteristic rash known as erythema migrans. However, there has been no study of the tick vectors of this infection in Australia. We used morphological and molecular techniques to identify unequivocally the ticks on the patients of this study to be I. holocyclus and then show the presence of B. burgdorferi sensu stricto infection in erythema migrans biopsies. I. holocyclus has not previously been associated with erythema migrans or Lyme disease. Two patients presented to the lead author's medical practice with erythema migrans in mid and late 2012. The morphology and cytochrome oxidase 1 and ITS2 genes of the two ticks were studied. The skin at the attachment site was sampled by central biopsy for both real time and endpoint Borrelia polymerase chain reaction (PCR) analysis and subsequent sequencing. Morphologically, the two ticks were either I. holocyclus or I. cornuatus. Molecular studies and nucleotide sequencing revealed that both ticks were I. holocyclus. Real time and endpoint PCR on the central tissue biopsy samples returned positive results for B. burgdorferi DNA. Our results are evidence for transmission of B. burgdorferi sensu stricto species to humans by the tick I. holocyclus in Australia. I. holocyclus is commonly associated with human tick bites on virtually the entire eastern coastline of Australia. PMID:25434042

  19. Differential salivary gland transcript expression profile in Ixodes scapularis nymphs upon feeding or flavivirus infection.

    PubMed

    McNally, Kristin L; Mitzel, Dana N; Anderson, Jennifer M; Ribeiro, José M C; Valenzuela, Jesus G; Myers, Timothy G; Godinez, Alvaro; Wolfinbarger, James B; Best, Sonja M; Bloom, Marshall E

    2012-02-01

    Ixodid ticks are vectors of human diseases such as Lyme disease, babesiosis, anaplasmosis, and tick-borne encephalitis. These diseases cause significant morbidity and mortality worldwide and are transmitted to humans during tick feeding. The tick-host-pathogen interface is a complex environment where host responses are modulated by the molecules in tick saliva to enable the acquisition of a blood meal. Disruption of host responses at the site of the tick bite may also provide an advantage for pathogens to survive and replicate. Thus, the molecules in tick saliva not only aid the tick in securing a nutrient-rich blood meal, but can also enhance the transmission and acquisition of pathogens. To investigate the effect of feeding and flavivirus infection on the salivary gland transcript expression profile in ticks, a first-generation microarray was developed using ESTs from a cDNA library derived from Ixodes scapularis salivary glands. When the salivary gland transcript profile in ticks feeding over the course of 3 days was compared to that in unfed ticks, a dramatic increase in transcripts related to metabolism was observed. Specifically, 578 transcripts were up-regulated compared to 151 down-regulated transcripts in response to feeding. When specific time points post attachment were analyzed, a temporal pattern of gene expression was observed. When Langat virus-infected ticks were compared to mock-infected ticks, transcript expression changes were observed at all 3 days of feeding. Differentially regulated transcripts include putative secreted proteins, lipocalins, Kunitz domain-containing proteins, anti-microbial peptides, and transcripts of unknown function. These studies identify salivary gland transcripts that are differentially regulated during feeding or in the context of flavivirus infection in Ixodes scapularis nymphs, a medically important disease vector. Further analysis of these transcripts may identify salivary factors that affect the transmission or

  20. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies

    PubMed Central

    Schwarz, Alexandra; von Reumont, Björn M.; Erhart, Jan; Chagas, Andrezza C.; Ribeiro, José M. C.; Kotsyfakis, Michalis

    2013-01-01

    Tick salivary gland (SG) proteins possess powerful pharmacologic properties that facilitate tick feeding and pathogen transmission. For the first time, SG transcriptomes of Ixodes ricinus, an important disease vector for humans and animals, were analyzed using next-generation sequencing. SGs were collected from different tick life stages fed on various animal species, including cofeeding of nymphs and adults on the same host. Four cDNA samples were sequenced, discriminating tick SG transcriptomes of early- and late-feeding nymphs or adults. In total, 441,381,454 pyrosequencing reads and 67,703,183 Illumina reads were assembled into 272,220 contigs, of which 34,560 extensively annotated coding sequences are disclosed; 8686 coding sequences were submitted to GenBank. Overall, 13% of contigs were classified as secreted proteins that showed significant differences in the transcript representation among the 4 SG samples, including high numbers of sample-specific transcripts. Detailed phylogenetic reconstructions of two relatively abundant SG-secreted protein families demonstrated how this study improves our understanding of the molecular evolution of hematophagy in arthropods. Our data significantly increase the available genomic information for I. ricinus and form a solid basis for future tick genome/transcriptome assemblies and the functional analysis of effectors that mediate the feeding physiology and parasite-vector interaction of I. ricinus.—Schwarz, A., von Reumont, B.M., Erhart, J., Chagas, A.C., Ribeiro, J.M.C., Kotsyfakis, M. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. PMID:23964076

  1. Redescription of the male and description of the female of Ixodes abrocomae Lahille, 1916 (Acari: Ixodidae).

    PubMed

    Guglielmone, Alberto A; Nava, Santiago; Bazán-León, Enrique A; Vásquez, Rodrigo A; Mangold, Atilio J

    2010-10-01

    The male of Ixodes abrocomae Lahille, 1916 (Acari: Ixodidae) is redescribed and the female described for the first time from specimens collected on the rodents Abrothrix longipilis (Waterhouse), A. olivaceous (Waterhouse) and Phyllotis xanthopygus (Waterhouse) at Coquimbo, Chile. The males of I. abrocomae are peculiar in having the combination of the following features: length and width less than 2 mm and 1 mm, respectively; hypostome notched with two rows of stout denticles and several small internal denticles; article II of the palpi with two conspicuous dorsal setae; coxa I with two subequal spurs; coxae II-IV with a single spur plus an indication of a second spur; and a scutum with long, scattered hairs except for the glabrous postero-median field which reaches to the marginal fold. The females of I. abrocomae are peculiar in possessing a combination of: a pointed hypostome, with a 3/3 dentition of flared denticles; a long, narrow scutum with few 'hairs' and with punctations which are especially numerous in the posterior region; a triangular basis capituli, with oval porose areas lacking definitive borders and separated by the width of one area, and a sinuous posterior margin with small cornuae; one spur on coxae I-IV; and conspicuous setae on the interno-dorsal face of palpal article II and the ventral face of article I. Sequences of 16S rDNA were identical for male and female I. abrocomae, but differ by 3.8% and 5.5% from sequences of their closest relatives, I. stilesi Neumann, 1911 and I. sigelos Keirans, Clifford & Corwin, 1976, respectively. Characters enabling the separation of I. abrocomae from Ixodes spp. distributed in the southwestern Neotropics are presented. Records of I. abrocomae in different climatic areas and on different, widely distributed rodent hosts indicate that this species may be present beyond its known Chilean territorial range (Regions III and IV). PMID:20852985

  2. Population and Demographic Structure of Ixodes scapularis Say in the Eastern United States

    PubMed Central

    Sakamoto, Joyce M.; Goddard, Jerome; Rasgon, Jason L.

    2014-01-01

    Introduction The most significant vector of tick-borne pathogens in the United States is Ixodes scapularis Say (the blacklegged tick). Previous studies have identified significant genetic, behavioral and morphological differences between northern vs. southern populations of this tick. Because tick-borne pathogens are dependent on their vectors for transmission, a baseline understanding of the vector population structure is crucial to determining the risks and epidemiology of pathogen transmission. Methods We investigated population genetic variation of I. scapularis populations in the eastern United States using a multilocus approach. We sequenced and analyzed the mitochondrial COI and 16S genes and three nuclear genes (serpin2, ixoderin B and lysozyme) from wild specimens. Results We identified a deep divergence (3–7%) in I. scapularis COI gene sequences from some southern specimens, suggesting we had sampled a different Ixodes species. Analysis of mitochondrial 16S rRNA sequences did not support this hypothesis and indicated that all specimens were I. scapularis. Phylogenetic analysis and analysis of molecular variance (AMOVA) supported significant differences between northern vs. southern populations. Demographic analysis suggested that northern populations had experienced a bottleneck/expansion event sometime in the past, possibly associated with Pleistocene glaciation events. Conclusions Similar to other studies, our data support the division of northern vs. southern I. scapularis genetic lineages, likely due to differences in the demographic histories between these geographic regions. The deep divergence identified in some COI gene sequences highlights a potential hazard of relying solely on COI for species identification (“barcoding”) and population genetics in this important vector arthropod. PMID:25025532

  3. Description of the male, redescription of the female and 16S rDNA sequence of Ixodes aulacodi (Ixodidae).

    PubMed

    Chiţimia-Dobler, Lidia; D'Amico, Gianluca; Yao, Patrick Kouassi; Kalmár, Zsuzsa; Gherman, Călin Mircea; Mihalca, Andrei Daniel; Estrada-Peña, Agustin

    2016-04-01

    Ixodes (Afrixodes) aulacodiArthur, 1956 is a poorly known species that has been recorded predominantly in the wet countries of western and central Africa, mainly associated to the greater cane rat Thryonomys swinderianus (Temmink). We herein redescribe the female, describe the male (ascribed to the species from specimens found in copula) and provide the 16S rDNA sequence. We also provide complete illustrations of the adults based on specimens found on greater cane rats in Ivory Coast. Ixodes aulacodi is included in the group of species of the subgenus Afrixodes that have horseshoe shaped anal groove, and which lack auriculae and cornua. The female is easily separated when compared with other species because of a unique combination of characters: All the coxae have internal spurs, coxa II has two external spurs, syncoxae are absent, and trochanters I-III have one spur each. The male has a notched hypostome and lacks syncoxae, auriculae and cornua. PMID:26803353

  4. Synanthropic birds influence the distribution of Borrelia species: analysis of Ixodes ricinus ticks feeding on passerine birds.

    PubMed

    Dubska, Lenka; Literak, Ivan; Kocianova, Elena; Taragelova, Veronika; Sverakova, Veronika; Sychra, Oldrich; Hromadko, Miloslav

    2011-02-01

    Ixodes ricinus ticks collected from 835 birds and from vegetation in the Czech Republic were analyzed. Host-seeking ticks (n = 427) were infected predominantly by Borrelia afzelii (25%). Ticks (n = 1,012) from songbirds (Passeriformes) were infected commonly by Borrelia garinii (12.1%) and Borrelia valaisiana (13.4%). Juveniles of synanthropic birds, Eurasian blackbirds (Turdus merula) and song thrushes (Turdus philomelos), were major reservoir hosts of B. garinii. PMID:21148704

  5. Ixodes ricinus is the dominant questing tick in forest habitats in Romania: the results from a countrywide dragging campaign.

    PubMed

    Mihalca, A D; Gherman, C M; Magdaş, C; Dumitrache, M O; Györke, A; Sándor, A D; Domşa, C; Oltean, M; Mircean, V; Mărcuţan, D I; D'Amico, G; Păduraru, A O; Cozma, V

    2012-10-01

    In 2010 and 2011, questing ticks were collected from 188 forested locations in all the 41 counties of Romania using the dragging method. The total of 13,771 ticks collected belonged to eleven species: Ixodes ricinus (86.9 %), Dermacentor marginatus (9.5 %), Haemaphysalis punctata (2.6 %), H. concinna (0.6 %), H. sulcata (0.3 %), H. parva (0.1 %), Hyalomma marginatum (0.02 %), D. reticulatus (0.02 %), I. crenulatus (0.007 %), I. hexagonus (0.007 %) and I. laguri (0.007 %). Ixodes ricinus was present in 97.7 % (n = 180) of locations, occurring exclusively in 41.7 % of the locations, whereas it was the dominant species in 38.8 % of the other locations, accounting for over 70 % of the total tick community. The following most common questing ticks were D. marginatus, H. punctata and H. concinna. Ixodes ricinus co-occurred with one, two or three sympatric species. The occurrence of D. reticulatus in forested habitats from Romania was found to be accidental. PMID:22547023

  6. Presence of host-seeking Ixodes ricinus and their infection with Borrelia burgdorferi sensu lato in the Northern Apennines, Italy.

    PubMed

    Ragagli, Charlotte; Mannelli, Alessandro; Ambrogi, Cecilia; Bisanzio, Donal; Ceballos, Leonardo A; Grego, Elena; Martello, Elisa; Selmi, Marco; Tomassone, Laura

    2016-06-01

    Host-seeking ticks were collected in the Northern Apennines, Italy, by dragging at 35 sites, at altitudes ranging from 680 and 1670 m above sea level (asl), from April to November, in 2010 and 2011. Ixodes ricinus (4431 larvae, 597 nymphs and 12 adults) and Haemaphysalis punctata (11,209 larvae, 313 nymphs, and 25 adults) were the most abundant species, followed by Haemaphysalis sulcata (20 larvae, five nymphs, and 13 adults), Dermacentor marginatus (42 larvae and two adults) and Ixodes hexagonus (one nymph). Greatest numbers of ticks were collected at locations characterised by southern exposure and limestone substratum, at altitudes <1400 m asl; I. ricinus was most abundant in Turkey oak (Quercus cerris) wood, whereas H. punctata was mostly collected in hop hornbeam (Ostrya carpinifolia) wood and on exposed rocks. Ixodes ricinus was also found up to 1670 m asl, in high stand beech (Fagus sylvatica) wood. The overall prevalence of Borrelia burgdorferi sensu lato (sl) in 294 host-seeking I. ricinus nymphs was 8.5 %. Borrelia garinii was the most frequently identified genospecies (64.0 % of positive nymphs), followed by B. valaisiana, B. burgdorferi sensu stricto, B. afzelii, and B. lusitaniae. Based upon the comparison with the results of previous studies at the same location, these research findings suggest the recent invasion of the study area by the tick vector and the agents of Lyme borreliosis. PMID:26964552

  7. Abundance estimation of Ixodes ticks (Acari: Ixodidae) on roe deer (Capreolus capreolus)

    PubMed Central

    Lödige, Christina; Alings, Matthias; Vor, Torsten; Rühe, Ferdinand

    2010-01-01

    Despite the importance of roe deer as a host for Ixodes ticks in central Europe, estimates of total tick burden on roe deer are not available to date. We aimed at providing (1) estimates of life stage and sex specific (larvae, nymphs, males and females, hereafter referred to as tick life stages) total Ixodes burden and (2) equations which can be used to predict the total life stage burden by counting the life stage on a selected body area. Within a period of 1½ years, we conducted whole body counts of ticks from 80 hunter-killed roe deer originating from a beech dominated forest area in central Germany. Averaged over the entire study period (winter 2007–summer 2009), the mean tick burden per roe deer was 64.5 (SE ± 10.6). Nymphs were the most numerous tick life stage per roe deer (23.9 ± 3.2), followed by females (21.4 ± 3.5), larvae (10.8 ± 4.2) and males (8.4 ± 1.5). The individual tick burden was highly aggregated (k = 0.46); levels of aggregation were highest in larvae (k = 0.08), followed by males (k = 0.40), females (k = 0.49) and nymphs (k = 0.71). To predict total life stage specific burdens based on counts on selected body parts, we provide linear equations. For estimating larvae abundance on the entire roe deer, counts can be restricted to the front legs. Tick counts restricted to the head are sufficient to estimate total nymph burden and counts on the neck are appropriate for estimating adult ticks (females and males). In order to estimate the combined tick burden, tick counts on the head can be used for extrapolation. The presented linear models are highly significant and explain 84.1, 77.3, 90.5, 91.3, and 65.3% (adjusted R2) of the observed variance, respectively. Thus, these models offer a robust basis for rapid tick abundance assessment. This can be useful for studies aiming at estimating effects of abiotic and biotic factors on tick abundance, modelling tick population dynamics, modelling tick-borne pathogen

  8. Isolation and characterization of tick-borne encephalitis virus from Ixodes persulcatus in Mongolia in 2012.

    PubMed

    Muto, Memi; Bazartseren, Boldbaatar; Tsevel, Bazartseren; Dashzevge, Erdenechimeg; Yoshii, Kentaro; Kariwa, Hiroaki

    2015-07-01

    Tick-borne encephalitis virus (TBEV) is a zoonotic virus belonging to the genus Flavivirus, in the family Flaviviridae. The virus, which is endemic in Europe and northern parts of Asia, causes severe encephalitis. Tick-borne encephalitis (TBE) has been reported in Mongolia since the 1980s, but details about the biological characteristics of the endemic virus are lacking. In this study, 680 ticks (Ixodes persulcatus) were collected in Selenge aimag, northern Mongolia, in 2012. Nine Mongolian TBEV strains were isolated from tick homogenates. A sequence analysis of the envelope protein gene revealed that all isolates belonged to the Siberian subtype of TBEV. Two strains showed similar growth properties in cultured cells, but their virulence in mice differed. Whole genome sequencing revealed only thirteen amino acid differences between these Mongolian TBEV strains. Our results suggest that these naturally occurring amino acid mutations affected the pathogenicity of Mongolian TBEV. Our results may be an important platform for monitoring TBEV to evaluate the epidemiological risk in TBE endemic areas of Mongolia. PMID:26025267

  9. Highly variable acquisition rates of Ixodes scapularis (Acari: Ixodidae) by birds on an Atlantic barrier island.

    PubMed

    Mitra, S S; Buckley, P A; Buckley, F G; Ginsberg, H S

    2010-11-01

    Acquisition of ticks by bird hosts is a central process in the transmission cycles of many tick-borne zoonoses, but tick recruitment by birds has received little direct study. We documented acquisition of Ixodes scapularis Say on birds at Fire Island, NY, by removing ticks from mist-netted birds, and recording the number of ticks on birds recaptured within 4 d of release. Eight bird species acquired at least 0.8 ticks bird(-1) day(-1) during the seasonal peak for at least one age class of I. scapularis. Gray Catbirds, Eastern Towhees, Common Yellowthroats, and Northern Waterthrushes collectively accounted for 83% of all tick acquisitions; and six individuals apportioned among Black-billed Cuckoo, Gray Catbird, Eastern Towhee, and Common Yellowthroat were simultaneously infested with both larvae and nymphs. Bird species with the highest acquisition rates were generally ground foragers, whereas birds that did not acquire ticks in our samples generally foraged above the ground. Tick acquisition by birds did not differ between deciduous and coniferous forests. Among the 15 bird species with the highest recruitment rates, acquisition of nymphs was not correlated with acquisition of larvae. Tick acquisition rates by individual bird species were not correlated with the reservoir competence of those species for Lyme borreliae. However, birds with high tick acquisition rates can contribute large numbers of infected ticks, and thus help maintain the enzootic cycle, even if their levels of reservoir competence are relatively low. PMID:21175049

  10. From Chemistry to Behavior. Molecular Structure and Bioactivity of Repellents against Ixodes ricinus Ticks

    PubMed Central

    Fabbro, Simone Del; Nazzi, Francesco

    2013-01-01

    Tick-borne zoonoses are considered as emerging diseases. Tick repellents represent an effective tool for reducing the risk of tick bite and pathogens transmission. Previous work demonstrated the repellent activity of the phenylpropanoid eugenol against Ixodes ricinus; here we investigate the relationship between molecular structure and repellency in a group of substances related to that compound. We report the biological activity of 18 compounds varying for the presence/number of several moieties, including hydroxyl and methoxy groups and carbon side-chain. Each compound was tested at different doses with a bioassay designed to measure repellency against individual tick nymphs. Both vapor pressure and chemical features of the tested compounds appeared to be related to repellency. In particular, the hydroxyl and methoxy groups as well as the side-chain on the benzene ring seem to play a role. These results are discussed in light of available data on chemical perception in ticks. In the course of the study new repellent compounds were identified; the biological activity of some of them (at least as effective as the “gold standard” repellent DEET) appears to be very promising from a practical point of view. PMID:23805329

  11. Genomic insights into the Ixodes scapularis tick vector of Lyme disease.

    PubMed

    Gulia-Nuss, Monika; Nuss, Andrew B; Meyer, Jason M; Sonenshine, Daniel E; Roe, R Michael; Waterhouse, Robert M; Sattelle, David B; de la Fuente, José; Ribeiro, Jose M; Megy, Karine; Thimmapuram, Jyothi; Miller, Jason R; Walenz, Brian P; Koren, Sergey; Hostetler, Jessica B; Thiagarajan, Mathangi; Joardar, Vinita S; Hannick, Linda I; Bidwell, Shelby; Hammond, Martin P; Young, Sarah; Zeng, Qiandong; Abrudan, Jenica L; Almeida, Francisca C; Ayllón, Nieves; Bhide, Ketaki; Bissinger, Brooke W; Bonzon-Kulichenko, Elena; Buckingham, Steven D; Caffrey, Daniel R; Caimano, Melissa J; Croset, Vincent; Driscoll, Timothy; Gilbert, Don; Gillespie, Joseph J; Giraldo-Calderón, Gloria I; Grabowski, Jeffrey M; Jiang, David; Khalil, Sayed M S; Kim, Donghun; Kocan, Katherine M; Koči, Juraj; Kuhn, Richard J; Kurtti, Timothy J; Lees, Kristin; Lang, Emma G; Kennedy, Ryan C; Kwon, Hyeogsun; Perera, Rushika; Qi, Yumin; Radolf, Justin D; Sakamoto, Joyce M; Sánchez-Gracia, Alejandro; Severo, Maiara S; Silverman, Neal; Šimo, Ladislav; Tojo, Marta; Tornador, Cristian; Van Zee, Janice P; Vázquez, Jesús; Vieira, Filipe G; Villar, Margarita; Wespiser, Adam R; Yang, Yunlong; Zhu, Jiwei; Arensburger, Peter; Pietrantonio, Patricia V; Barker, Stephen C; Shao, Renfu; Zdobnov, Evgeny M; Hauser, Frank; Grimmelikhuijzen, Cornelis J P; Park, Yoonseong; Rozas, Julio; Benton, Richard; Pedra, Joao H F; Nelson, David R; Unger, Maria F; Tubio, Jose M C; Tu, Zhijian; Robertson, Hugh M; Shumway, Martin; Sutton, Granger; Wortman, Jennifer R; Lawson, Daniel; Wikel, Stephen K; Nene, Vishvanath M; Fraser, Claire M; Collins, Frank H; Birren, Bruce; Nelson, Karen E; Caler, Elisabet; Hill, Catherine A

    2016-01-01

    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host 'questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent. PMID:26856261

  12. Anti-complement activity of the Ixodes scapularis salivary protein Salp20.

    PubMed

    Hourcade, Dennis E; Akk, Antonina M; Mitchell, Lynne M; Zhou, Hui-fang; Hauhart, Richard; Pham, Christine T N

    2016-01-01

    Complement, a major component of innate immunity, presents a rapid and robust defense of the intravascular space. While regulatory proteins protect host cells from complement attack, when these measures fail, unrestrained complement activation may trigger self-tissue injury, leading to pathologic conditions. Of the three complement activation pathways, the alternative pathway (AP) in particular has been implicated in numerous disease and injury states. Consequently, the AP components represent attractive targets for therapeutic intervention. The common hard-bodied ticks from the family Ixodidae derive nourishment from the blood of their mammalian hosts. During its blood meal the tick is exposed to host immune effectors, including the complement system. In defense, the tick produces salivary proteins that can inhibit host immune functions. The Salp20 salivary protein of Ixodes scapularis inhibits the host AP pathway by binding properdin and dissociating C3bBbP, the active C3 convertase. In these studies we examined Salp20 activity in various complement-mediated pathologies. Our results indicate that Salp20 can inhibit AP-dependent pathogenesis in the mouse. Its efficacy may be part in due to synergic effects it provides with the endogenous AP regulator, factor H. While Salp20 itself would be expected to be highly immunogenic and therefore inappropriate for therapeutic use, its emergence speaks for the potential development of a non-immunogenic Salp20 mimic that replicates its anti-properdin activity. PMID:26675068

  13. Biological control of Ixodes ricinus larvae and nymphs with Metarhizium anisopliae blastospores.

    PubMed

    Wassermann, Marion; Selzer, Philipp; Steidle, Johannes L M; Mackenstedt, Ute

    2016-07-01

    The entomopathogenic fungus Metarhizium anisopliae is used as a biological pest control agent against various arthropod species, including ticks. However, the efficacy depends on tick species, tick stage and fungus strain. We studied the effect of M. anisopliae on engorged larvae and nymphs of Ixodes ricinus, the most abundant tick species in Europe, under laboratory and semi-field conditions. A significant reduction of engorged larvae and nymphs could be shown under laboratory as well as under semi-field conditions. Only 3.5% of the larvae treated in the lab and only 18.5% kept under semi-field conditions were able to develop into nymphs compared to the recovered nymphs of the control groups, which were regarded as 100%. Only 7.1% of nymphs were recovered as adult ticks after fungal treatment under semi-field conditions compared to the control (100%). The efficacy of blastospores of M. anisopliae against engorged larvae and nymphs of I. ricinus under semi-field conditions was demonstrated in this study, showing their high potential as a biological control agent of ticks. Further studies will have to investigate the effect of this agent against other stages of I. ricinus as well as other tick species before its value as a biological control agent against ticks can be fully assessed. PMID:27005430

  14. Molecular Evidence of Bartonella spp. in Questing Adult Ixodes pacificus Ticks in California

    PubMed Central

    Chang, C. C.; Chomel, B. B.; Kasten, R. W.; Romano, V.; Tietze, N.

    2001-01-01

    Ticks are the vectors of many zoonotic diseases in the United States, including Lyme disease, human monocytic and granulocytic ehrlichioses, and Rocky Mountain spotted fever. Most known Bartonella species are arthropod borne. Therefore, it is important to determine if some Bartonella species, which are emerging pathogens, could be carried or transmitted by ticks. In this study, adult Ixodes pacificus ticks were collected by flagging vegetation in three sites in Santa Clara County, Calif. PCR-restriction fragment length polymorphism and partial sequencing of 273 bp of the gltA gene were applied for Bartonella identification. Twenty-nine (19.2%) of 151 individually tested ticks were PCR positive for Bartonella. Male ticks were more likely to be infected with Bartonella than female ticks (26 versus 12%, P = 0.05). None of the nine ticks collected at Baird Ranch was PCR positive for Bartonella. However, 7 (50%) of 14 ticks from Red Fern Ranch and 22 (17%) of 128 ticks from the Windy Hill Open Space Reserve were infected with Bartonella. In these infected ticks, molecular analysis showed a variety of Bartonella strains, which were closely related to a cattle Bartonella strain and to several known human-pathogenic Bartonella species and subspecies: Bartonella henselae, B. quintana, B. washoensis, and B. vinsonii subsp. berkhoffii. These findings indicate that I. pacificus ticks may play an important role in Bartonella transmission among animals and humans. PMID:11283031

  15. Genomic insights into the Ixodes scapularis tick vector of Lyme disease

    PubMed Central

    Gulia-Nuss, Monika; Nuss, Andrew B.; Meyer, Jason M.; Sonenshine, Daniel E.; Roe, R. Michael; Waterhouse, Robert M.; Sattelle, David B.; de la Fuente, José; Ribeiro, Jose M.; Megy, Karine; Thimmapuram, Jyothi; Miller, Jason R.; Walenz, Brian P.; Koren, Sergey; Hostetler, Jessica B.; Thiagarajan, Mathangi; Joardar, Vinita S.; Hannick, Linda I.; Bidwell, Shelby; Hammond, Martin P.; Young, Sarah; Zeng, Qiandong; Abrudan, Jenica L.; Almeida, Francisca C.; Ayllón, Nieves; Bhide, Ketaki; Bissinger, Brooke W.; Bonzon-Kulichenko, Elena; Buckingham, Steven D.; Caffrey, Daniel R.; Caimano, Melissa J.; Croset, Vincent; Driscoll, Timothy; Gilbert, Don; Gillespie, Joseph J.; Giraldo-Calderón, Gloria I.; Grabowski, Jeffrey M.; Jiang, David; Khalil, Sayed M. S.; Kim, Donghun; Kocan, Katherine M.; Koči, Juraj; Kuhn, Richard J.; Kurtti, Timothy J.; Lees, Kristin; Lang, Emma G.; Kennedy, Ryan C.; Kwon, Hyeogsun; Perera, Rushika; Qi, Yumin; Radolf, Justin D.; Sakamoto, Joyce M.; Sánchez-Gracia, Alejandro; Severo, Maiara S.; Silverman, Neal; Šimo, Ladislav; Tojo, Marta; Tornador, Cristian; Van Zee, Janice P.; Vázquez, Jesús; Vieira, Filipe G.; Villar, Margarita; Wespiser, Adam R.; Yang, Yunlong; Zhu, Jiwei; Arensburger, Peter; Pietrantonio, Patricia V.; Barker, Stephen C.; Shao, Renfu; Zdobnov, Evgeny M.; Hauser, Frank; Grimmelikhuijzen, Cornelis J. P.; Park, Yoonseong; Rozas, Julio; Benton, Richard; Pedra, Joao H. F.; Nelson, David R.; Unger, Maria F.; Tubio, Jose M. C.; Tu, Zhijian; Robertson, Hugh M.; Shumway, Martin; Sutton, Granger; Wortman, Jennifer R.; Lawson, Daniel; Wikel, Stephen K.; Nene, Vishvanath M.; Fraser, Claire M.; Collins, Frank H.; Birren, Bruce; Nelson, Karen E.; Caler, Elisabet; Hill, Catherine A.

    2016-01-01

    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent. PMID:26856261

  16. Seasonal activity and host associations of Ixodes scapularis (Acari: Ixodidae) in southeastern Missouri.

    PubMed

    Kollars, T M; Oliver, J H; Kollars, P G; Durden, L A

    1999-11-01

    Based on tick collections recovered from wild vertebrates and by dragging, the seasonal occurrence of adult blacklegged ticks, Ixodes scapularis Say, extended from October through May in southeastern Missouri. Adult activity was bimodal with the higher peak occurring in November followed by a lower peak in February. The activity of immature I. scapularis had the general pattern of that found in the Northeast where Lyme disease is hyperendemic, with larval activity (July) peaking after that of nymphs (May and June). Vertebrates varied in their importance as hosts of I. scapularis. White-tailed deer, Odocoileus virginanus (Zimmerman), and coyotes, Canis latrans Say, were the primary hosts of adult I. scapularis. Broad-headed skinks, Eumeces laticeps (Schneider), and eastern fence lizards, Sceloporus undulatus (Latreille), were the primary hosts of nymphal I. scapularis. The broad-headed skink, 5-lined skink, Eumeces fasciatus (L.), and Carolina wren, Thryothorus ludovicianus (Latham), were the primary hosts of larval I. scapularis. Homeotherms were important hosts of immature I. scapularis, accounting for 30% of nymphs and 39% of larvae collected. The eastern cottontail rabbit, Sylvilagus floridanus (Allen), may play an important role in the epidemiology of Lyme disease in Missouri. Isolates of Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner were made from ticks recovered from rabbits, making the cottontail rabbit a key species for further study of the epidemiology of Lyme borreliosis in Missouri. PMID:10593072

  17. Ixodes dammini (Acari: Ixodidae) infestation on medium-sized mammals and blue jays in northwestern Illinois.

    PubMed

    Mannelli, A; Kitron, U; Jones, C J; Slajchert, T L

    1993-09-01

    High prevalence of infestation of five species of medium-sized mammals and blue jays, Cyanocitta cristata (L.), by immature Ixodes dammini Spielman, Clifford, Piesman and Corwin was found in Castle Rock State Park in northwestern Illinois during May-August 1991. Raccoons, Procyon lotor L., and opossums, Didelphis virginiana Kerr, were infested with the highest larval densities and were trapped primarily in bottomland forest and ecotone habitats. All species had similar nymphal densities, except the eastern cottontails, Sylvilagus floridanus Allen, which were infested with fewer nymphs. Infestation by I. dammini is reported for the first time for fox squirrels, Sciurus niger E. G. St. Hilaire, and for the first time in the midwestern United States for blue jays, C. cristata. These two species were hosts for nymphs in upland forest habitat. Molting rates varied among ticks that fed on different host species and among larvae that fed on individuals of the same species. Molting rate is proposed as an important factor in determining the relative importance of a host species to I. dammini population dynamics. PMID:8254647

  18. 'Candidatus Midichloria mitochondrii', an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle.

    PubMed

    Sassera, Davide; Beninati, Tiziana; Bandi, Claudio; Bouman, Edwin A P; Sacchi, Luciano; Fabbi, Massimo; Lo, Nathan

    2006-11-01

    An intracellular bacterium with the unique ability to enter mitochondria exists in the European vector of Lyme disease, the hard tick Ixodes ricinus. Previous phylogenetic analyses based on 16S rRNA gene sequences suggested that the bacterium formed a divergent lineage within the Rickettsiales (Alphaproteobacteria). Here, we present additional phylogenetic evidence, based on the gyrB gene sequence, that confirms the phylogenetic position of the bacterium. Based on these data, as well as electron microscopy (EM), in situ hybridization and other observations, we propose the name 'Candidatus Midichloria mitochondrii' for this bacterium. The symbiont appears to be ubiquitous in females of I. ricinus across the tick's distribution, while lower prevalence is observed in males (44%). Based on EM and in situ hybridization studies, the presence of 'Candidatus M. mitochondrii' in females appears to be restricted to ovarian cells. The bacterium was found to be localized both in the cytoplasm and in the intermembrane space of the mitochondria of ovarian cells. 'Candidatus M. mitochondrii' is the first bacterium to be identified that resides within animal mitochondria. PMID:17082386

  19. Seasonal activity of nymphal Ixodes scapularis (Acari: Ixodidae) in different habitats in New Jersey.

    PubMed

    Lord, C C

    1995-01-01

    Activity patterns of nymphal Ixodes scapularis Say were compared between habitat types (dominant tree types: mixed deciduous, oak, white pine, red cedar, sassafras, and spicebush). Both the time of peak abundance and the relative abundance of questing nymphs at the peak were compared. Several smoothing algorithms were tested with the data to determine if they could be used to estimate the time of peak abundance more accurately. Determination of the time of peak abundance using the raw data or simple moving averages was susceptible to outliers. Weighted averages were less susceptible to outliers. The seasonal pattern of nymphal abundance was similar in all habitat types. Variation in the time of peak abundance between habitats was low. Peak densities were lower in deciduous habitats (0.24 +/- 0.05 nymphs per square meter) than in nondeciduous habitats (0.85 +/- 0.15 nymphs per square meter); this could have resulted from higher host use of the nondeciduous areas. These data suggest that there are differences in the population dynamics of nymphs found in different habitats. PMID:7869344

  20. Substrate prediction of Ixodes ricinus salivary lipocalins differentially expressed during Borrelia afzelii infection

    PubMed Central

    Valdés, James J.; Cabezas-Cruz, Alejandro; Sima, Radek; Butterill, Philip T.; Růžek, Daniel; Nuttall, Patricia A.

    2016-01-01

    Evolution has provided ticks with an arsenal of bioactive saliva molecules that counteract host defense mechanisms. This salivary pharmacopoeia enables blood-feeding while enabling pathogen transmission. High-throughput sequencing of tick salivary glands has thus become a major focus, revealing large expansion within protein encoding gene families. Among these are lipocalins, ubiquitous barrel-shaped proteins that sequester small, typically hydrophobic molecules. This study was initiated by mining the Ixodes ricinus salivary gland transcriptome for specific, uncharacterized lipocalins: three were identified. Differential expression of these I. ricinus lipocalins during feeding at distinct developmental stages and in response to Borrelia afzelii infection suggests a role in transmission of this Lyme disease spirochete. A phylogenetic analysis using 803 sequences places the three I. ricinus lipocalins with tick lipocalins that sequester monoamines, leukotrienes and fatty acids. Both structural analysis and biophysical simulations generated robust predictions showing these I. ricinus lipocalins have the potential to bind monoamines similar to other tick species previously reported. The multidisciplinary approach employed in this study characterized unique lipocalins that play a role in tick blood-feeding and transmission of the most important tick-borne pathogen in North America and Eurasia. PMID:27584086

  1. Woodland type and spatial distribution of nymphal Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Ginsberg, H.S.; Zhioua, E.; Mitra, Siddhartha; Fischer, J.; Buckley, P.A.; Verret, F.; Underwood, H.B.; Buckley, F.G.

    2004-01-01

    Spatial distribution patterns of black-legged ticks, Ixodes scapularis, in deciduous and coniferous woodlands were studied by sampling ticks in different woodland types and at sites from which deer had been excluded and by quantifying movement patterns of tick host animals (mammals and birds) at the Lighthouse Tract, Fire Island, NY, from 1994 to 2000. Densities of nymphal ticks were greater in deciduous than coniferous woods in 3 of 7 yr. Only engorged ticks survived the winter, and overwintering survival of engorged larvae in experimental enclosures did not differ between deciduous and coniferous woods. Nymphs were not always most abundant in the same forest type as they had been as larvae, and the habitat shift between life stages differed in direction in different years. Therefore, forest type by itself did not account for tick distribution patterns. Nymphal densities were lower where deer had been excluded compared with areas with deer present for 3 yr after exclusion, suggesting that movement patterns of vertebrate hosts influenced tick distribution, but nymphal densities increased dramatically in one of the enclosures in the fourth year. Therefore, movements of ticks on animal hosts apparently contribute substantially to tick spatial distribution among woodland types, but the factor(s) that determine spatial distribution of nymphal I. scapularis shift from year to year.

  2. Pathogenicity of Steinernema carpocapsae and Steinernema glaseri (Nematoda:Steinernematidae) to Ixodes Scapularis (Acari:Ixodidae)

    USGS Publications Warehouse

    Zhioua, E.; LeBrun, R.A.; Ginsberg, H.S.; Aeschliman, A.

    1995-01-01

    The entomopathogenic nematodes Steinernema carpocapsae (Weiser) and S. glaseri (Steiner) are pathogenic to engorged adult, blacklegged ticks, Ixodes scapularis (Say), but not to unfed females, engorged nymphs, or engorged larvae. Nematodes apparently enter the tick through the genital pore, thus precluding infection of immature ticks. The timing of tick mortality, and overall mortality after 17 d, did not differ between infections by S. carpocapsae and S. glaseri. These nematodes typically do not complete their life cycles or produce infective juveniles in I. scapularis. However, both species successfully produced infective juveniles when the tick body was slit before nematode infection. Mortality of engorged I. scapularis females infected by S. carpocapsae was greater than uninfected controls, but did not vary significantly with nematode concentration (50-3,000 infective juveniles per 5-cm-diameter petri dish). The LC50 was 347.8 infective juveniles per petri dish (5 ticks per dish). Hatched egg masses of infected ticks weighed less than those of uninfected controls. Mortality of infected ticks was greatest between 20 and 30?C, and was lower at 15?C.

  3. Molecular characterization of 'Candidatus Rickettsia vini' in Ixodes arboricola from the Czech Republic and Slovakia.

    PubMed

    Novakova, Marketa; Bulkova, Alexandra; Costa, Francisco B; Kristin, Anton; Krist, Milos; Krause, Frantisek; Liznarova, Eva; Labruna, Marcelo B; Literak, Ivan

    2015-04-01

    The aim of this study was to analyze the prevalence of rickettsiae in the tree-hole tick Ixodes arboricola in the Czech Republic and Slovakia. During May to September of 2009 and 2013, bird boxes belonging to three different areas were screened for ticks. In total, 454 nestlings and 109 nests of 10 hole-breeding bird species were examined. Ticks were found on Ficedula albicollis, Parus major, Cyanistes caeruleus and Sitta europaea and/or in their nests. In total, 166 ticks (17 nymphs, 10 males and 139 females) were found at 3 areas (arithmetic mean±standard error: 55.3±45.9). All ticks were tested for the presence of Rickettsia species by polymerase chain reaction targeting the rickettsial genes gltA, ompA, ompB and htrA and amplicon sequencing. All individuals except 3 nymphs were infected with 'Candidatus Rickettsia vini'. Multilocus sequence typing showed closest proximity to Rickettsia japonica and Rickettsia heilongjiangensis cluster. The presence of 'Ca. R. vini' is reported for the first time in Slovakia. PMID:25769386

  4. The vector tick Ixodes ricinus feeding on an arboreal rodent-the edible dormouse Glis glis.

    PubMed

    Fietz, Joanna; Langer, Franz; Havenstein, Nadine; Matuschka, Franz-Rainer; Richter, Dania

    2016-04-01

    The reservoir competence and long life expectancy of edible dormice, Glis glis, suggest that they serve as efficient reservoir hosts for Lyme disease (LD) spirochetes. Their arboreality, however, may reduce the probability to encounter sufficient questing Ixodes ricinus ticks to acquire and perpetuate LD spirochetes. To define the potential role of this small arboreal hibernator in the transmission cycle of LD spirochetes, we examined their rate and density of infestation with subadult ticks throughout the season of activity. Of the 1081 edible dormice that we captured at five study sites in Southern Germany and inspected for ticks at 2946 capture occasions, 26 % were infested with at least one and as many as 26 subadult ticks on their ear pinnae. The distribution of ticks feeding on edible dormice was highly aggregated. Although only few individuals harbored nymphal ticks soon after their emergence from hibernation, the rate of nymphal infestation increased steadily throughout the season and reached about 35 % in September. Dormice inhabiting a site with few conspecifics seemed more likely to be infested by numerous ticks, particularly nymphs, than those individuals living in densely populated sites. Male dormice were more likely to be parasitized by numerous nymphs than were females, independent of their age and body mass. Our observation that season, population density, and sex affect the rates of ticks feeding on edible dormice suggests that the contribution of edible dormice to the transmission cycle of LD spirochetes depends mainly on their ranging behavior and level of activity. PMID:26670314

  5. Flagging versus dragging as sampling methods for nymphal Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Rulison, Eric L.; Kuczaj, Isis; Pang, Genevieve; Hickling, Graham J.; Tsao, Jean I.; Ginsberg, Howard S.

    2013-01-01

    The nymphal stage of the blacklegged tick, Ixodes scapularis (Acari: Ixodidae), is responsible for most transmission of Borrelia burgdorferi, the etiologic agent of Lyme disease, to humans in North America. From 2010 to fall of 2012, we compared two commonly used techniques, flagging and dragging, as sampling methods for nymphal I. scapularis at three sites, each with multiple sampling arrays (grids), in the eastern and central United States. Flagging and dragging collected comparable numbers of nymphs, with no consistent differences between methods. Dragging collected more nymphs than flagging in some samples, but these differences were not consistent among sites or sampling years. The ratio of nymphs collected by flagging vs dragging was not significantly related to shrub density, so habitat type did not have a strong effect on the relative efficacy of these methods. Therefore, although dragging collected more ticks in a few cases, the numbers collected by each method were so variable that neither technique had a clear advantage for sampling nymphal I. scapularis.

  6. Antigenically variable Borrelia burgdorferi isolated from cottontail rabbits and Ixodes dentatus in rural and urban areas.

    PubMed Central

    Anderson, J F; Magnarelli, L A; LeFebvre, R B; Andreadis, T G; McAninch, J B; Perng, G C; Johnson, R C

    1989-01-01

    Spirochetes were isolated from 71 subadult Ixodes dentatus removed from cottontail rabbits captured in Millbrook, N.Y., and in New York, N.Y. Spirochetes were also cultured from kidney tissues of six rabbits. While all isolates reacted with monoclonal antibody H9724, which identifies the spirochetes as borreliae, more than half did not bind with antibody H5332 and even fewer reacted with H3TS, both of which were produced to outer surface protein A of Borrelia burgdorferi. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles of three isolates differed from one another and from all previously characterized B. burgdorferi strains from humans, ticks, and wildlife in North America. The 12 periplasmic flagella that originated subterminally from each pointed end of a rabbit Borellia isolate contrasted with the 11 or fewer flagella for B. burgdorferi reported previously from North America. Although DNA homology and restriction endonuclease analysis also revealed differences among a rabbit kidney isolate, an I. dentatus isolate, and B. burgdorferi B31, similarities were sufficient to lead us to conclude that the borreliae in rabbits and I. dentatus are B. burgdorferi. Enzyme-linked immunosorbent assay titers of sera from humans with diagnosed Lyme disease to rabbit tick B. burgdorferi were often similar to one another and to those recorded for a reference B. burgdorferi strain. Images PMID:2913024

  7. Prevalence of Borrelia burgdorferi s. l. in Ixodes ricinus ticks from four localities in Bavaria, Germany.

    PubMed

    Vögerl, Maria; Zubriková, Dana; Pfister, Kurt

    2012-01-01

    As a part of a larger survey a total of 599 Ixodes ricinus ticks collected from four locations (Neustadt an der Waldnaab, Amberg, Poppenricht and Lintach) in the north of the Upper Palatinate in Bavaria were investigated for infection with Borrelia burgdorferi sensu lato (s. l.) species using the 5S-23S intergenic spacer of rRNA gene as a target in a nested PCR (Rijpkema et al., 1995) and a sequencing method. Overall, 15.8% ticks were infected with B. burgdorferi s. I. Borrelia afzelii (43.1%) was the predominant genospecies, followed by Borrelia valaisiana (14.7%), Borrelia garinii (13.7%) and Borrelia burgdorferi sensu stricto (6.3%). Also Borrelia spielmanii was found (1.1%). Of the infected ticks, 21.1% harbored multiple infections with B. burgdorferi s. I. The highest number of infected ticks was found in Amberg (22.5%) and the lowest number in Neustadt an der Waldnaab (11.9%). In Poppenricht and Lintach, the numbers of infected ticks were 12% and 18.7%, respectively. Human pathogenic Borrelia species were found to be prevalent at each study site thus representing the potential risk for people living and visiting these areas. PMID:23045802

  8. Fourier transform infrared spectroscopy of DNA from Borrelia burgdorferi sensu lato and Ixodes ricinus ticks.

    PubMed

    Muntean, Cristina M; Stefan, Razvan; Bindea, Maria; Cozma, Vasile

    2013-06-01

    In this work we present a method for detection of motile and immotile Borrelia burgdorferi genomic DNA, in relation with infectious and noninfectious spirochetes. An FT-IR study of DNA isolated from B. burgdorferi sensu lato strains and from positive and negative Ixodes ricinus ticks, respectively, is reported. Motile bacterial cells from the species B. burgdorferi sensu stricto, Borrelia garinii and Borrelia afzelii were of interest. Also, FT-IR absorbance spectra of DNA from immotile spirochetes of B. burgdorferi sensu stricto, in the absence and presence of different antibiotics (doxycycline, erythromycin, gentamicin, penicillin V or phenoxymethylpenicillin, tetracycline, respectively) were investigated. FT-IR spectra, providing a high molecular structural information, have been analyzed in the wavenumber range 400-1800 cm(-1). FT-IR signatures, spectroscopic band assignments and structural interpretations of these DNAs are reported. Spectral differences between FT-IR absorbances of DNAs from motile bacterial cells and immotile spirochetes, respectively, have been found. Particularly, alterations of the sugar-phosphate B-form chain in the case of DNA from Borrelia immotile cells, as compared with DNA from B. burgdorferi sensu lato motile cells have been observed. Based on this work, specific B. burgdorferi sensu lato and I. ricinus DNA-ligand interactions, respectively, might be further investigated using Fourier transform infrared spectroscopy. PMID:23563637

  9. Impact of Spring Bird Migration on the Range Expansion of Ixodes scapularis Tick Population.

    PubMed

    Wu, Xiaotian; Röst, Gergely; Zou, Xingfu

    2016-01-01

    Many observational studies suggest that seasonal migratory birds play an important role in spreading Ixodes scapularis, a vector of Lyme disease, along their migratory flyways, and they are believed to be responsible for geographic range expansion of I. scapularis in Canada. However, the interplay between the dynamics of I. scapularis on land and migratory birds in the air is not well understood. In this study, we develop a periodic delay meta-population model which takes into consideration the local landscape for tick reproduction within patches and the times needed for ticks to be transported by birds between patches. Assuming that the tick population is endemic in the source region, we find that bird migration may boost an already established tick population at the subsequent region and thus increase the risk to humans, or bird migration may help ticks to establish in a region where the local landscape is not appropriate for ticks to survive in the absence of bird migration, imposing risks to public health. This theoretical study reveals that bird migration plays an important role in the geographic range expansion of I. scapularis, and therefore our findings may suggest some strategies for Lyme disease prevention and control. PMID:26688012

  10. The influence of conspecific chemical cues on walking behavior of Ixodes ricinus males.

    PubMed

    Zemek, Rostislav; Bouman, Edwin A P; Dusbábek, Frantisek

    2007-01-01

    The influence of female and male cues on the male searching behavior of the sheep tick, Ixodes ricinus (Acari: Ixodidae), was studied under constant laboratory conditions by means of a computerized video tracking system. Males were released into an open glass arena in which one half had been exposed for 1 h to 5 freely walking unfed females or five males. The obtained track data were analyzed to reveal if male walking pattern was random or affected by cues of conspecifics left on the arena surface. The results showed that males spent significantly more time and walked a significantly longer distance in the area with female cues compared to the control area. Moreover, the walking path of males was more tortuous on the cues half than the control half. In contrast, walking behavior of males was not affected by male cues in any observed parameter. These results provide the first evidence that unfed females leave sex-specific semiochemicals on a substrate during their walk and that these cues have an effect on male searching behavior. Since this effect was not observed when female cues were 24-h old, the semiochemicals seem to either evaporate or are subject to degradation. The biological significance of these findings for mate-searching in I. ricinus males is discussed. PMID:17380275

  11. The patterns of seasonal activity of Ixodes vespertilionis (Acari: Ixodidae) on Rhinolophus hipposideros in nursery colonies.

    PubMed

    Piksa, Krzysztof; Górz, Andrzej; Nowak-Chmura, Magdalena; Siuda, Krzysztof

    2014-02-01

    The aim of this study was to describe the dynamics of the long-legged bat tick Ixodes vespertilionis infestation on the lesser horseshoe bat Rhinolophus hipposideros in 2 nursery colonies roosting in attics. Out of a total of 810 lesser horseshoe bats examined, 217 (26.8%) were found to be infested with a total of 464 I. vespertilionis individuals. The developmental stage most frequently found was the larva, followed by the nymph, and the adult female. Bats were significantly more frequently infested with I. vespertilionis ticks in the period April to May than in other months. In these months, all tick developmental stages were observed. During summer and autumn, only immature developmental stages were recorded, whilst in September and October larvae predominated. Considerable differences in tick load between nursery colonies were observed. The length of seasonal presence on bats, prevalence, and infestation intensity of I. vespertilionis on lesser horseshoe bats were higher in the nursery colony situated in close vicinity of a cave than in the colony situated far from the caves. The results suggest that the pattern of seasonal infestation of ticks on bats roosting in nursery colonies coincides with the seasonal activity of Rh. hipposideros in the caves. The first case of mixed infestation of the lesser horseshoe bat with I. vespertilionis and I. ricinus were also recorded. PMID:24252260

  12. Development of genomic resources for the tick Ixodes ricinus: isolation and characterization of single nucleotide polymorphisms.

    PubMed

    Quillery, E; Quenez, O; Peterlongo, P; Plantard, O

    2014-03-01

    Assessing the genetic variability of the tick Ixodes ricinus-an important vector of pathogens in Europe-is an essential step for setting up antitick control methods. Here, we report the first identification of a set of SNPs isolated from the genome of I. ricinus, by applying a reduction in genomic complexity, pyrosequencing and new bioinformatics tools. Almost 1.4 million of reads (average length: 528 nt) were generated with a full Roche 454 GS FLX run on two reduced representation libraries of I. ricinus. A newly developed bioinformatics tool (DiscoSnp), which isolates SNPs without requiring any reference genome, was used to obtain 321 088 putative SNPs. Stringent selection criteria were applied in a bioinformatics pipeline to select 1768 SNPs for the development of specific primers. Among 384 randomly SNPs tested by Fluidigm genotyping technology on 464 individuals ticks, 368 SNPs loci (96%) exhibited the presence of the two expected alleles. Hardy-Weinberg equilibrium tests conducted on six natural populations of ticks have shown that from 26 to 46 of the 384 loci exhibited significant heterozygote deficiency. PMID:24119113

  13. Vector Competence of the Tick Ixodes ricinus for Transmission of Bartonella birtlesii

    PubMed Central

    Reis, Caroline; Cote, Martine; Le Rhun, Danielle; Lecuelle, Benoit; Levin, Michael L.; Vayssier-Taussat, Muriel; Bonnet, Sarah I.

    2011-01-01

    Bartonella spp. are facultative intracellular vector-borne bacteria associated with several emerging diseases in humans and animals all over the world. The potential for involvement of ticks in transmission of Bartonella spp. has been heartily debated for many years. However, most of the data supporting bartonellae transmission by ticks come from molecular and serological epidemiological surveys in humans and animals providing only indirect evidences without a direct proof of tick vector competence for transmission of bartonellae. We used a murine model to assess the vector competence of Ixodes ricinus for Bartonella birtlesii. Larval and nymphal I. ricinus were fed on a B. birtlesii-infected mouse. The nymphs successfully transmitted B. birtlesii to naïve mice as bacteria were recovered from both the mouse blood and liver at seven and 16 days after tick bites. The female adults successfully emitted the bacteria into uninfected blood after three or more days of tick attachment, when fed via membrane feeding system. Histochemical staining showed the presence of bacteria in salivary glands and muscle tissues of partially engorged adult ticks, which had molted from the infected nymphs. These results confirm the vector competence of I. ricinus for B. birtlesii and represent the first in vivo demonstration of a Bartonella sp. transmission by ticks. Consequently, bartonelloses should be now included in the differential diagnosis for patients exposed to tick bites. PMID:21655306

  14. Fourier transform infrared spectroscopy of DNA from Borrelia burgdorferi sensu lato and Ixodes ricinus ticks

    NASA Astrophysics Data System (ADS)

    Muntean, Cristina M.; Stefan, Razvan; Bindea, Maria; Cozma, Vasile

    2013-06-01

    In this work we present a method for detection of motile and immotile Borrelia burgdorferi genomic DNA, in relation with infectious and noninfectious spirochetes. An FT-IR study of DNA isolated from B. burgdorferi sensu lato strains and from positive and negative Ixodes ricinus ticks, respectively, is reported. Motile bacterial cells from the species B. burgdorferi sensu stricto, Borrelia garinii and Borrelia afzelii were of interest. Also, FT-IR absorbance spectra of DNA from immotile spirochetes of B. burgdorferi sensu stricto, in the absence and presence of different antibiotics (doxycycline, erythromycin, gentamicin, penicillin V or phenoxymethylpenicillin, tetracycline, respectively) were investigated. FT-IR spectra, providing a high molecular structural information, have been analyzed in the wavenumber range 400-1800 cm-1. FT-IR signatures, spectroscopic band assignments and structural interpretations of these DNAs are reported. Spectral differences between FT-IR absorbances of DNAs from motile bacterial cells and immotile spirochetes, respectively, have been found. Particularly, alterations of the sugar-phosphate B-form chain in the case of DNA from Borrelia immotile cells, as compared with DNA from B. burgdorferi sensu lato motile cells have been observed. Based on this work, specific B. burgdorferi sensu lato and I. ricinus DNA-ligand interactions, respectively, might be further investigated using Fourier transform infrared spectroscopy.

  15. Detection of a novel Rickettsia (Alphaproteobacteria: Rickettsiales) in rotund ticks (Ixodes kingi) from Saskatchewan, Canada.

    PubMed

    Anstead, Clare A; Chilton, Neil B

    2013-04-01

    A novel Rickettsia was detected in the rotund tick, Ixodes kingi Bishopp, 1911, based on comparative DNA sequence analyses of 4 genes; the rickettsial-specific 17-kDa antigen gene, citrate synthase gene (gltA), the outer surface membrane protein A gene (ompA), and the 16S rRNA gene. The rickettsiae in I. kingi differed in nucleotide sequence from those of other Rickettsia species by 5.8-18.3% for the 17-kDa gene, 0.9-13.9% for gltA, 5.5-22.8% for ompA, and 0.9-1.6% for the 16S rRNA gene. Phylogenetic analyses of the sequence data revealed that this putative new species of Rickettsia, provisionally named Candidatus Rickettsia kingi, does not belong to the spotted fever group or typhus group of rickettsiae, but represents a sister taxon to R. canadensis and Candidatus Rickettsia tarasevichiae. This novel Rickettsia was found in 60 of the 87 (69%) ticks examined, which included all feeding life cycle stages of I. kingi. Although adult I. kingi occasionally parasitize dogs and humans, it remains to be determined if this Rickettsia is pathogenic to these host species. PMID:23419865

  16. The role of deer as vehicles to move ticks, Ixodes ricinus, between contrasting habitats.

    PubMed

    Ruiz-Fons, Francisco; Gilbert, Lucy

    2010-08-01

    In Europe the most important hosts maintaining Ixodes ricinus tick populations are deer. Therefore, excluding deer by fencing or culling are potential tick management tools. Here we test the hypothesis that deer act as vehicles for moving ticks between two distinct habitats: forest and open heather moorland. We utilised an ideal "natural experiment" whereby forests were either fenced or unfenced to prevent or allow deer to move between habitats. We aimed to test the hypothesis that deer cause a net movement of ticks from high tick density areas, i.e. forests, to low tick density areas, i.e. open moorland. We recorded I. ricinus and host abundance in 10 unfenced and seven fenced forests and their respective surrounding heather moorland. We found that fenced forests had fewer deer and fewer I. ricinus nymphs than unfenced forests. However, we found no evidence that fencing forests reduced I. ricinus abundance on adjacent heather moorland. Thus there was insufficient evidence for our hypothesis that deer cause a net movement of ticks from forest onto adjacent moorland. However, we found that deer abundance generally correlates with I. ricinus abundance. We conclude that fencing can be used as a tool to reduce ticks and disease risk in forests, but that fencing forests is unlikely to reduce ticks or disease risk on adjacent moorland. Instead, reducing deer numbers could be a potential tool to reduce tick abundance with implications for disease mitigation. PMID:20211625

  17. Bunyaviruses are common in male and female Ixodes scapularis ticks in central Pennsylvania.

    PubMed

    Sakamoto, Joyce M; Ng, Terry Fei Fan; Suzuki, Yasutsugu; Tsujimoto, Hitoshi; Deng, Xutao; Delwart, Eric; Rasgon, Jason L

    2016-01-01

    The blacklegged tick Ixodes scapularis is widely distributed in the United States and transmits multiple pathogens to humans, wildlife and domestic animals. Recently, several novel viruses in the family Bunyaviridae (South Bay virus (SBV) and Blacklegged tick phlebovirus (BTPV)) were identified infecting female I. scapularis ticks collected in New York State. We used metagenomic sequencing to investigate the distribution of viruses infecting male and female I. scapularis ticks collected in Centre County, Pennsylvania. We identified both SBV and BTPV in both male and female ticks from all collection locations. The role of male I. scapularis in pathogen epidemiology has been overlooked because they rarely bite and are not considered important pathogen vectors. However, males may act as reservoirs for pathogens that can then be transmitted to females during mating. Our data highlight the importance of examining all potential avenues of pathogen maintenance and transmission throughout the vector-pathogen life cycle in order to understand the epidemiology of tick-borne pathogens. PMID:27602290

  18. Bunyaviruses are common in male and female Ixodes scapularis ticks in central Pennsylvania

    PubMed Central

    Suzuki, Yasutsugu; Tsujimoto, Hitoshi; Deng, Xutao; Delwart, Eric

    2016-01-01

    The blacklegged tick Ixodes scapularis is widely distributed in the United States and transmits multiple pathogens to humans, wildlife and domestic animals. Recently, several novel viruses in the family Bunyaviridae (South Bay virus (SBV) and Blacklegged tick phlebovirus (BTPV)) were identified infecting female I. scapularis ticks collected in New York State. We used metagenomic sequencing to investigate the distribution of viruses infecting male and female I. scapularis ticks collected in Centre County, Pennsylvania. We identified both SBV and BTPV in both male and female ticks from all collection locations. The role of male I. scapularis in pathogen epidemiology has been overlooked because they rarely bite and are not considered important pathogen vectors. However, males may act as reservoirs for pathogens that can then be transmitted to females during mating. Our data highlight the importance of examining all potential avenues of pathogen maintenance and transmission throughout the vector-pathogen life cycle in order to understand the epidemiology of tick-borne pathogens. PMID:27602290

  19. Field and Laboratory Evaluations of the Efficacy of DEET Repellent against Ixodes Ticks.

    PubMed

    Ogawa, Kohei; Komagata, Osamu; Hayashi, Toshihiko; Itokawa, Kentaro; Morikawa, Shigeru; Sawabe, Kyoko; Tomita, Takashi

    2016-01-01

    The objective of this study was to clarify the efficacy of a currently available N,N-diethyl-m-toluamide (DEET) repellent against tick species in Japan. We performed 2 different field trials: "human trap," and "flag-dragging." In total, 482 ticks were collected from white flannel cloths in the field studies. The collected tick species were Ixodes persulcatus and I. ovatus, which accounted for 5.3% and 94.7% of the ticks in the human trap test and 31.4% and 68.6% in the flag-dragging test, respectively. The repellency levels of DEET-treated flannel cloths in the human trap and flag-dragging tests were 84.0% and 99.7%, respectively. The escape times for I. persulcatus and I. ovatus female adults from DEET-treated flannel cloths were determined. The median escape times for I. persulcatus and I. ovatus on DEET-treated flannel cloths were 48 s (95% confidence interval [CI]: 30-96) and 10 s (95% CI: 5-24), respectively. In contrast, many ticks remained on the untreated flannel cloths for 10 min after mounting. These results indicate that DEET repellents appear to prevent tick bites and that the use of DEET repellents against ticks is an effective personal protection measure. PMID:26073735

  20. Investigation of the validity of species status of Ixodes dammini (Acari: Ixodidae) using rDNA.

    PubMed Central

    Wesson, D M; McLain, D K; Oliver, J H; Piesman, J; Collins, F H

    1993-01-01

    The two internal transcribed spacers (ITS1 and ITS2) of rDNA of three members of the Ixodes ricinus "complex" (Acari: Ixodidae) were sequenced. Sequence variation was assessed for the North American species I. scapularis, I. dammini, and I. pacificus at three levels: within individual/population, between individuals of different geographic origin within a species, and between species. Both spacers are highly variable, particularly with regard to small deletions and additions which may arise via replication slippage. Homogenization of rDNA multigene arrays for particular sequence variants appears to occur at a relatively rapid rate, since I. pacificus sequences differ from the others at numerous invariant sites, facilitating the use of these sequences to assess sibling species relationships. Based on maximum parsimony and two distance methods (unweighted pair-group with arithmetic means and neighbor-joining), sequence variation in ITS1 and ITS2 suggests that I. scapularis and I. dammini are not distinct species and that even individuals from geographically isolated locations are very similar. Individuals from geographically separated populations of I. pacificus appear to be relatively less closely related to each other but distinct from those of I. scapularis/dammini. In I. scapularis/dammini, diversity within and between individuals from geographic populations contributed equally to total sequence diversity. PMID:8234280

  1. Distribution and Habitat of Ixodes pacificus (Acari: Ixodidae) and Prevalence of Borrelia burgdorferi in Utah.

    PubMed

    Davis, Ryan S; Ramirez, Ricardo A; Anderson, J Laine; Bernhardt, Scott A

    2015-11-01

    Knowledge about the distribution and abundance of the western black-legged tick, Ixodes pacificus Cooley and Kohls, in Utah is limited. Recent concerns over tick-borne diseases in Utah, primarily Lyme disease, have reinvigorated the need to understand the distribution and habitats favored by this tick species. We surveyed 157 sites throughout Utah to examine the distribution, abundance, and habitat of I. pacificus. In total, 343 adult ticks were collected from 2011 to 2013. Specifically, 119 I. pacificus, 217 Dermacentor andersoni Stiles, six D. albipictus Packard, and one D. hunteri Bishopp were collected. Overall, tick abundance was relatively low in the areas evaluated in Utah. I. pacificus collections were limited to sites above 1700 m. Ninety-two percent of I. pacificus were captured in the Sheeprock Mountains in Tooele County. I. pacificus positive collection sites were characterized by Gambel oak (Quercus gambelii Nuttall), juniper (Juniperus spp. L.), big sagebrush (Artemisia tridentata Nuttall) and black sagebrush (A. nova Nelson), and mixed grass habitat. All I. pacificus ticks were tested for the presence of Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner, sensu stricto) using real-time PCR. All ticks tested negative for B. burgdorferi. The likelihood of encountering I. pacificus and acquiring Lyme disease in the areas evaluated in Utah is considerably low due to low tick abundance and limited distribution, as well as low prevalence (or absence) of B. burgdorferi in Utah. PMID:26336263

  2. Substrate prediction of Ixodes ricinus salivary lipocalins differentially expressed during Borrelia afzelii infection.

    PubMed

    Valdés, James J; Cabezas-Cruz, Alejandro; Sima, Radek; Butterill, Philip T; Růžek, Daniel; Nuttall, Patricia A

    2016-01-01

    Evolution has provided ticks with an arsenal of bioactive saliva molecules that counteract host defense mechanisms. This salivary pharmacopoeia enables blood-feeding while enabling pathogen transmission. High-throughput sequencing of tick salivary glands has thus become a major focus, revealing large expansion within protein encoding gene families. Among these are lipocalins, ubiquitous barrel-shaped proteins that sequester small, typically hydrophobic molecules. This study was initiated by mining the Ixodes ricinus salivary gland transcriptome for specific, uncharacterized lipocalins: three were identified. Differential expression of these I. ricinus lipocalins during feeding at distinct developmental stages and in response to Borrelia afzelii infection suggests a role in transmission of this Lyme disease spirochete. A phylogenetic analysis using 803 sequences places the three I. ricinus lipocalins with tick lipocalins that sequester monoamines, leukotrienes and fatty acids. Both structural analysis and biophysical simulations generated robust predictions showing these I. ricinus lipocalins have the potential to bind monoamines similar to other tick species previously reported. The multidisciplinary approach employed in this study characterized unique lipocalins that play a role in tick blood-feeding and transmission of the most important tick-borne pathogen in North America and Eurasia. PMID:27584086

  3. Description of all the stages of Ixodes inopinatus n. sp. (Acari: Ixodidae).

    PubMed

    Estrada-Peña, Agustín; Nava, Santiago; Petney, Trevor

    2014-10-01

    All of the parasitic stages of Ixodes inopinatus n. sp. are described from specimens collected by flagging and on lizards and foxes. The new species replaces I. ricinus in dry areas of the Mediterranean region in Spain, Portugal, Morocco, Algeria and Tunisia. It has also been collected in areas of western Germany in sympatry with I. ricinus, far of its known distribution range and on an unusual host. The females of the new species can be separated from I. ricinus by the relative dimensions and punctations of the scutum, the length of the idiosomal setae, the size of the auriculae, and the aspect of the porose areas. Nymphs of I. inopinatus can be easily separated from I. ricinus by a combination of scutal dimensions, the relative size of scutal and alloscutal setae, and the relative size of the spurs on coxa I. The larvae of the new species have a broader than long scutum and unusually long Md1 to Md3 idiosomal setae. The new species is allopatric with I. ricinus in Spain and Portugal. It is hypothesized that it has been historically overlooked and reported as I. ricinus at least in northern Africa, southern Spain and parts of south-western Portugal. The existence of a new species in the I. ricinus complex makes necessary the critical assessment of its complete distribution, its abiotic preferences and seasonal activity, as well as its hosts and implications for the transmission of pathogens. PMID:25108790

  4. Autochthonous and migratory birds as a dispersion source for Ixodes ricinus in southern Italy.

    PubMed

    Falchi, Alessandro; Dantas-Torres, Filipe; Lorusso, Vincenzo; Malia, Egidio; Lia, Riccardo Paolo; Otranto, Domenico

    2012-10-01

    The present study was carried out in a protected wooded area, which is part of the Parco Regionale Gallipoli Cognato Piccole Dolomiti Lucane, one of the most important ecological reserves in southern Italy. From April 2010 to April 2011, 212 birds, comprising 22 species from 12 families, were captured and examined for ticks. A total of 75 (35.4 %) birds were found infested by ticks, with 451 ticks being collected. All ticks were identified as Ixodes ricinus, of which 241 (53.4 %) were larvae and 210 nymphs (46.6 %). The highest intensity of infestation was found in April 2010, when 117 ticks were retrieved on 25 birds. No ticks were found on birds (n = 5) netted in December 2010. High infestation rates were recorded on blackbirds (Turdus merula) (90 %; 29 birds examined) and on mistle thrushes (Turdus viscivorus) (100 %; 2 birds examined). The highest intensity of infestation by larvae was found on wrens (5.6 larvae/bird) and by nymphs on mistle thrushes (11.5 nymphs/bird). Temperature and number of hours of light showed to influence the activity of larvae and nymphs. These data support the notion that birds may be responsible for the heterogeneous distribution of I. ricinus in Europe, thus playing a role in the epidemiology of certain tick-borne pathogens. PMID:22610454

  5. Towards an Evolutionary Understanding of Questing Behaviour in the Tick Ixodes ricinus

    PubMed Central

    Tomkins, Joseph L.; Aungier, Jennifer; Hazel, Wade; Gilbert, Lucy

    2014-01-01

    The tick Ixodes ricinus finds its hosts by climbing vegetation and adopting a sit-and-wait tactic. This “questing” behaviour is known to be temperature-dependent, such that questing increases with temperature up to a point where the vapor pressure deficit (drying effect) forces ticks down to rehydrate in the soil or mat layer. Little if any attention has been paid to understanding the questing of ticks from an evolutionary perspective. Here we ask whether populations from colder climatic conditions respond differently in terms of the threshold temperature for questing and the rate of response to a fixed temperature. We find significant variation between populations in the temperature sensitivity of questing, with populations from cooler climates starting questing at lower temperatures than populations from warmer temperatures. Cool climate populations also quest sooner when the temperature is held constant. These patterns are consistent with local adaptation to temperature either through direct selection or acclimation and challenge the use of fixed thresholds for questing in modeling the spread of tick populations. Our results also show how both time and temperature play a role in questing, but we are unable to explain the relationship in terms of degree-time used to model Arthropod development. We find that questing in response to temperature fits well with a quantitative genetic model of the conditional strategy, which reveals how selection on questing may operate and hence may be of value in understanding the evolutionary ecology of questing. PMID:25333919

  6. Morphological features of Ixodes persulcatus and I. ricinus hybrids: nymphs and adults.

    PubMed

    Bugmyrin, Sergey V; Belova, Oxana A; Bespyatova, Liubov A; Ieshko, Eugeniy P; Karganova, Galina G

    2016-07-01

    Our aim was to reveal morphological features of first-generation Ixodes persulcatus and I. ricinus hybrids (nymphs and adults) obtained under laboratory conditions for further study of natural populations of these species in sympatry foci. In 65 nymphs of three groups I. ricinus (23 specimens), I. persulcatus (21 specimens), and hybrids (21 specimens), 16 parameters were evaluated (length/width of the scutum and capitulum, length of the hypostome, palp, tarsus I, coxa I, sternal setae, and various scutal and alloscutal setae) and discrimination analysis was performed allowing differentiation of hybrid nymphs from original species. General effectiveness of classification of I. ricinus, I. persulcatus, and hybrids was >95 %. Discriminant functions are presented allowing classification of I. persulcatus, I. ricinus, and hybrid nymphs. For description of morphology, 27 adult hybrids (13 males and 14 females) were examined under a stereo microscope at 14-28× (without preparation of permanent mounts). The following morphological distinctions of hybrids from original species were described: posterior marginal groove is not clear (as in I. ricinus) and absence of syncoxa on coxa I (as in I persulcatus). In hybrid males, simultaneous absence of syncoxa on coxa I (as in I. persulcatus) and a long internal spur on coxa I (as in I. ricinus) can be used as a diagnostic feature. Based on the detected characteristics, 10 of 157 ticks collected in Karelia in I. ricinus and I. persulcatus sympatry area were classified as hybrids. PMID:26984610

  7. Pathogenicity of Steinernema carpocapsae and S. glaseri (Nematoda: Steinernematidae) to Ixodes scapularis (Acari: Ixodidae).

    PubMed

    Zhioua, E; Lebrun, R A; Ginsberg, H S; Aeschlimann, A

    1995-11-01

    The entomopathogenic nematodes Steinernema carpocapsae (Weiser) and S. glaseri (Steiner) are pathogenic to engorged adult, blacklegged ticks, Ixodes scapularis (Say), but not to unfed females, engorged nymphs, or engorged larvae. Nematodes apparently enter the tick through the genital pore, thus precluding infection of immature ticks. The timing of tick mortality, and overall mortality after 17 d, did not differ between infections by S. carpocapsae and S. glaseri. These nematodes typically do not complete their life cycles or produce infective juveniles in I. scapularis. However, both species successfully produced infective juveniles when the tick body was slit before nematode infection. Mortality of engorged I. scapularis females infected by S. carpocapsae was greater than uninfected controls, but did not vary significantly with nematode concentration (50-3,000 infective juveniles per 5-cm-diameter petri dish). The LC50 was 347.8 infective juveniles per petri dish (5 ticks per dish). Hatched egg masses of infected ticks weighed less than those of uninfected controls. Mortality of infected ticks was greatest between 20 and 30 degrees C, and was lower at 15 degrees C. PMID:8551517

  8. How ticks get under your skin: insertion mechanics of the feeding apparatus of Ixodes ricinus ticks.

    PubMed

    Richter, Dania; Matuschka, Franz-Rainer; Spielman, Andrew; Mahadevan, L

    2013-12-22

    The tick Ixodes ricinus uses its mouthparts to penetrate the skin of its host and to remain attached for about a week, during which time Lyme disease spirochaetes may pass from the tick to the host. To understand how the tick achieves both tasks, penetration and attachment, with the same set of implements, we recorded the insertion events by cinematography, interpreted the mouthparts' function by scanning electron microscopy and identified their points of articulation by confocal microscopy. Our structural dynamic observations suggest that the process of insertion and attachment occurs via a ratchet-like mechanism with two distinct stages. Initially, the two telescoping chelicerae pierce the skin and, by moving alternately, generate a toehold. Subsequently, a breaststroke-like motion, effected by simultaneous flexure and retraction of both chelicerae, pulls in the barbed hypostome. This combination of a flexible, dynamic mechanical ratchet and a static holdfast thus allows the tick to solve the problem of how to penetrate skin and also remain stuck for long periods of time. PMID:24174106

  9. How ticks get under your skin: insertion mechanics of the feeding apparatus of Ixodes ricinus ticks

    PubMed Central

    Richter, Dania; Matuschka, Franz-Rainer; Spielman, Andrew; Mahadevan, L.

    2013-01-01

    The tick Ixodes ricinus uses its mouthparts to penetrate the skin of its host and to remain attached for about a week, during which time Lyme disease spirochaetes may pass from the tick to the host. To understand how the tick achieves both tasks, penetration and attachment, with the same set of implements, we recorded the insertion events by cinematography, interpreted the mouthparts’ function by scanning electron microscopy and identified their points of articulation by confocal microscopy. Our structural dynamic observations suggest that the process of insertion and attachment occurs via a ratchet-like mechanism with two distinct stages. Initially, the two telescoping chelicerae pierce the skin and, by moving alternately, generate a toehold. Subsequently, a breaststroke-like motion, effected by simultaneous flexure and retraction of both chelicerae, pulls in the barbed hypostome. This combination of a flexible, dynamic mechanical ratchet and a static holdfast thus allows the tick to solve the problem of how to penetrate skin and also remain stuck for long periods of time. PMID:24174106

  10. What ticks do under your skin: two-photon intravital imaging of Ixodes scapularis feeding in the presence of the lyme disease spirochete.

    PubMed

    Bockenstedt, Linda K; Gonzalez, David; Mao, Jialing; Li, Ming; Belperron, Alexia A; Haberman, Ann

    2014-03-01

    Lyme disease, due to infection with the Ixodes-tick transmitted spirochete Borrelia burgdorferi, is the most common tick-transmitted disease in the northern hemisphere. Our understanding of the tick-pathogen-vertebrate host interactions that sustain an enzootic cycle for B. burgdorferi is incomplete. In this article, we describe a method for imaging the feeding of Ixodes scapularis nymphs in real-time using two-photon intravital microscopy and show how this technology can be applied to view the response of Lyme borrelia in the skin of an infected host to tick feeding. PMID:24600332

  11. What Ticks Do Under Your Skin: Two-Photon Intravital Imaging of Ixodes Scapularis Feeding in the Presence of the Lyme Disease Spirochete

    PubMed Central

    Bockenstedt, Linda K.; Gonzalez, David; Mao, Jialing; Li, Ming; Belperron, Alexia A.; Haberman, Ann

    2014-01-01

    Lyme disease, due to infection with the Ixodes-tick transmitted spirochete Borrelia burgdorferi, is the most common tick-transmitted disease in the northern hemisphere. Our understanding of the tick-pathogen-vertebrate host interactions that sustain an enzootic cycle for B. burgdorferi is incomplete. In this article, we describe a method for imaging the feeding of Ixodes scapularis nymphs in real-time using two-photon intravital microscopy and show how this technology can be applied to view the response of Lyme borrelia in the skin of an infected host to tick feeding. PMID:24600332

  12. Infection of Ixodes spp. tick cells with different Anaplasma phagocytophilum isolates induces the inhibition of apoptotic cell death.

    PubMed

    Alberdi, Pilar; Ayllón, Nieves; Cabezas-Cruz, Alejandro; Bell-Sakyi, Lesley; Zweygarth, Erich; Stuen, Snorre; de la Fuente, José

    2015-09-01

    Anaplasma phagocytophilum is an intracellular rickettsial pathogen transmitted by Ixodes spp. ticks, which causes granulocytic anaplasmosis in humans, horses and dogs and tick-borne fever (TBF) in ruminants. In the United States, human granulocytic anaplasmosis (HGA) is highly prevalent while TBF has not been reported. However, in Europe the situation is the opposite, with high prevalence for TBF in sheep and low prevalence of HGA. The origin of these differences has not been identified and our hypothesis is that different A. phagocytophilum isolates impact differently on tick vector capacity through inhibition of apoptosis to establish infection of the tick vector. In this study we used three different isolates of A. phagocytophilum of human, canine and ovine origin to infect the Ixodes ricinus-derived cell line IRE/CTVM20 and the Ixodes scapularis-derived cell line ISE6 in order to characterize the effect of infection on the level of tick cell apoptosis. Inhibition of apoptosis was observed by flow cytometry as early as 24h post-infection for both tick cell lines and all three isolates of A. phagocytophilum, suggesting that pathogen infection inhibits apoptotic pathways to facilitate infection independently of the origin of the A. phagocytophilum isolate and tick vector species. However, infection with A. phagocytophilum isolates inhibited the intrinsic apoptosis pathway at different levels in I. scapularis and I. ricinus cells. These results suggested an impact of vector-pathogen co-evolution on the adaptation of A. phagocytophilum isolates to grow in tick cells as each isolate grew better in the tick cell line derived from its natural vector species. These results increase our understanding of the mechanisms of A. phagocytophilum infection and multiplication and suggest that multiple mechanisms may affect disease prevalence in different geographical regions. PMID:26183310

  13. Preliminary survey for entomopathogenic fungi associated with Ixodes scapularis (Acari: Ixodidae) in southern New York and New England, USA

    USGS Publications Warehouse

    Zhioua, E.; Ginsberg, H.S.; Humber, R.A.; LeBrun, R.A.

    1999-01-01

    Free-living larval, nymphal and adult Ixodes scapularis Say were collected from scattered locales in southern New England and New York to determine infection rates with entomopathogenic fungi. Infection rates of larvae, nymphs, males, and females were 0% (571), 0% (272), 0% (57), and 4.3% (47), respectively. Two entomopathogenic fungi were isolated from field-collected I. scapularis females from Fire Island, New York. Isolates were identified as Verticillium lecanii (Zimmermann) Viegas and Verticillium sp. (a member of the Verticillium lecanii species complex).

  14. Intracellular Symbionts and Other Bacteria Associated with Deer Ticks (Ixodes scapularis) from Nantucket and Wellfleet, Cape Cod, Massachusetts

    PubMed Central

    Benson, Micah J.; Gawronski, Jeffrey D.; Eveleigh, Douglas E.; Benson, David R.

    2004-01-01

    The diversity of bacteria associated with the deer tick (Ixodes scapularis) was assessed using PCR amplification, cloning, and sequencing of 16S rRNA genes originating from seven ticks collected from Nantucket Island and Wellfleet, Cape Cod, Mass. The majority of sequences obtained originated from gram-negative proteobacteria. Four intracellular bacteria were detected including strains of Ehrlichia, Rickettsia, and Wolbachia and an organism related to intracellular insect symbionts from the Cytophaga-Flavobacterium-Bacteroides group. Several strains of members of the Sphingomonadaceae were also detected in all but one tick. The results provide a view of the diversity of bacteria associated with I. scapularis ticks in the field. PMID:14711698

  15. Emergence of Ixodes scapularis and Borrelia burgdorferi, the Lyme disease vector and agent, in Ohio

    PubMed Central

    Wang, Peng; Glowacki, Meaghan N.; Hoet, Armando E.; Needham, Glen R.; Smith, Kathleen A.; Gary, Richard E.; Li, Xin

    2014-01-01

    Lyme disease, the most common vector-borne disease in the United States, is caused by a tick-borne infection with Borrelia burgdorferi. Currently, Ohio is considered by the Centers for Disease Control and Prevention (CDC) to be non-endemic for Lyme disease. The low incidence of Lyme disease in this state was largely attributed to the absence of the transmitting vector, Ixodes scapularis, commonly known as the blacklegged tick. However, a tick surveillance program established by Ohio Department of Health indicated that the number of I. scapularis in Ohio had increased sharply in recent years, from 0 - 5 ticks per year during 1983–2008 to 15 in 2009, 40 in 2010, and 184 in 2011. During the fall deer hunting season, examination of deer heads submitted to Ohio Department of Agriculture found 29 I. scapularis from 7 counties in 2010 and 1,830 from 25 counties in 2011. As of 2012, the tick had been found in 57 of the 88 counties of Ohio. In addition, all three active stages (larva, nymph, and adult) of I. scapularis were found in Tiverton Township of Coshocton County, demonstrating the presence of established tick populations at this central Ohio location. Of 530 nymphal or adult I. scapularis analyzed by quantitative polymerase chain reaction (qPCR), 32 (6.1%) tested positive for the B. burgdorferi flaB gene, ranging from 36 to 390,000 copies per tick. Antibodies to B. burgdorferi antigens were detected in 2 of 10 (20%) field-captured Peromyscus leucopus from Tiverton Township, and in 41 of 355 (11.5%) dogs residing in Ohio. Collectively, these data suggest that the enzootic life cycle of B. burgdorferi has become established in Ohio, which poses risk of Lyme disease to people and animals in the area. PMID:24926441

  16. Effect of a botanical acaricide on Ixodes scapularis (Acari: Ixodidae) and nontarget arthropods.

    PubMed

    Elias, Susan P; Lubelczyk, Charles B; Rand, Peter W; Staples, Joseph K; St Amand, Theodore W; Stubbs, Constance S; Lacombe, Eleanor H; Smith, Leticia B; Smith, Robert P

    2013-01-01

    We tested the effectiveness of the rosemary oil-based insecticide, Eco-Exempt IC2, to control all stages of Ixodes scapularis (Say) in southern Maine. We selected plots in oak-pine forest where I. scapularis is endemic and recorded the abundance of ticks and nontarget arthropods before and after applications of IC2, bifenthrin (a synthetic pyrethroid), and water (reference treatment). Licensed applicators applied high-pressure spray treatments during the summer nymphal and fall adult seasonal peaks. Both acaricides sprayed during the summer nymphal season reduced nymphal I. scapularis/hour to zero. IC2 was as effective as bifenthrin in controlling nymphs through the rest of the nymphal season and also controlled adult ticks 9 mo postspray compared with 16 mo for bifenthrin, and both acaricides reduced larvae through 14 mo postspray. Both acaricides sprayed during the fall adult season reduced adult I. scapularis/hour to zero; IC2 controlled adult ticks 6 mo postspray compared with 1 yr for bifenthrin. Both fall-applied acaricides controlled nymphs 9 mo postspray and reduced larvae up to 10 mo postspray. Impacts on some nontarget arthropods was assessed. Colleoptera, Hymenoptera, and Collembola declined 1 wk postspray in acaricide-treated plots, and in IC2 plots all numbers rebounded by 20 d postspray. For bees and other flower-visiting insects there were no detectable reductions in nests produced, number emerged from nests, or number of foraging visits to flowering plants in IC2 or bifenthrin plots. IC2 was phytotoxic to the leafy portions of select understory plants that appeared to recover by the next growing season. PMID:23427661

  17. Evaluation of Metarhizium anisopliae strain F52 (Hypocreales: Clavicipitaceae) for control of Ixodes scapularis (Acari: Ixodidae).

    PubMed

    Bharadwaj, Anuja; Stafford, Kirby C

    2010-09-01

    Field efficacy of an emulsifiable concentrate formulation of the entomopathogenic fungus Metarhizium anisopliae strain F52 for the control of Ixodes scapularis nymphs was evaluated at residential sites in northwestern Connecticut in 2007. Two spray applications with two rates, 3.2 x 10(5) and 1.3 x 10(6) spores/cm2, were made: the first on 8-9 May, 2-3 wk before nymphal activity, and the second on 29 June or 2 July when ticks were active. There was no significant difference in nymphal abundance between the three treatment groups (P = 0.490) after the first application, indicating that preseason or early applications are not effective, despite a bioasaay with yellow mealworms that showed spores in the treated areas was infective for at least 1 mo postapplication. By contrast, there was a significant difference in the number of nymphs collected between the treatments and control 3 wk (F = 16.928, df = 2, P < 0.001) and 5 wk (F = 6.627, df = 2, P = 0.002) after the second application. During the 3 wk after the second application, 87.1 and 96.1% fewer ticks were collected from lower and higher rate-treated sites, respectively, and after 5 wk, tick reductions were 53.2 and 73.8%, respectively. Over one- third (36.4% of 173) of the nymphs collected from the treated sites developed mycosis from M. anisopliae. The application of M. anisopliae strain F52 could provide another tool for the integrated approach to managing ticks in the residential landscape. PMID:20939382

  18. Detection of Bartonella spp. in Ixodes ricinus ticks and Bartonella seroprevalence in human populations.

    PubMed

    Müller, Andreas; Reiter, Michael; Schötta, Anna Margarita; Stockinger, Hannes; Stanek, Gerold

    2016-07-01

    Ticks are vectors for many bacterial, protozoan and viral pathogens and are potential vectors for Bartonella species. Hunters and foresters, therefore, may be regarded as high-risk groups for Bartonella infections. The aims of this study were (i) to identify Bartonella species in questing Ixodes ricinus ticks collected in all provinces of Austria, and (ii) to determine the prevalence of antibodies to Bartonella species in hunters and blood donors in eastern Austria. A total of 515 larval, nymphal and adult I. ricinus, collected throughout Austria in 2005, were selected from the tick library at the Institute for Hygiene and Applied Immunology of the Medical University of Vienna and screened in a specific real-time PCR that targeted a region of the ssrA gene of Bartonella species. The overall Bartonella infection rate was 2.1% (11/515) and the highest rate, 7.5% (4/53), was found in ticks from Vienna. This finding was confirmed by screening a further 60 I. ricinus collected from Vienna in 2013: of these, 6.7% (4/60) were positive for Bartonella spp. The rate of infection was always higher in adult ticks. Sequence analysis in the Bartonella-positive ticks identified several species, including B. henselae, B. doshiae and B. grahamii. To our knowledge this is the first time that these species have been identified in I. ricinus in Austria. Prevalence of IgG antibodies against B. henselae and B. quintana was determined in serum samples from hunters (100) and blood donors (100): in hunters 23% were positive for B. quintana and in 2 samples (2%), antibodies to both B. quintana and B. henselae were detected; in blood donors 22% were positive for B. quintana, 1% for B. henselae and 5% for both. These results indicate that exposure to ticks does not constitutes a relevant risk for Bartonella infection. PMID:26997137

  19. Diversity of viruses in Ixodes ricinus, and characterization of a neurotropic strain of Eyach virus.

    PubMed

    Moutailler, S; Popovici, I; Devillers, E; Vayssier-Taussat, M; Eloit, M

    2016-05-01

    Ticks transmit more pathogens-including bacteria, parasites and viruses-than any other arthropod vector. Although the epidemiological status of many tick-borne bacteria is very well characterized, tick-borne viruses are still relatively under-studied. Recently, several novel tick-borne viruses have been isolated from human febrile illnesses following tick bites, indicating the existence of other potential new and unknown tick-borne viruses. We used high-throughput sequencing to analyse the virome of Ixodes ricinus, the main vector of tick-borne pathogens in Europe. The majority of collected viral sequences were assigned to two potentially novel Nairovirus and Phlebovirus viruses, with prevalence rates ranging from 3.95% to 23.88% in adults and estimated to be between 0.14% and 72.16% in nymphs. These viruses could not be isolated from the brains of inoculated immunocompromised mice, perhaps indicating that they are unable to infect vertebrates. Within the I. ricinus virome, we also identified contigs with >90% identity to the known Eyach virus. Initially isolated in the 1980s, this virus was indirectly associated with human disease, but had never been extensively studied. Eyach virus prevalence varied between 0.07% and 5.26% in ticks from the French Ardennes and Alsace regions. Eyach virus was successfully isolated following intracerebral inoculation of immunocompromised mice with Eyach virus-positive tick extracts. This virus was also able to multiply and persist in the blood of immunocompetent mice inoculated by intraperitoneal injection, and caused brain infections in three of nine juveniles, without any obvious deleterious effects. PMID:27158509

  20. Geographical and environmental factors driving the increase in the Lyme disease vector Ixodes scapularis.

    PubMed

    Khatchikian, Camilo E; Prusinski, Melissa; Stone, Melissa; Backenson, P Bryon; Wang, Ing-Nang; Levy, Michael Z; Brisson, Dustin

    2012-10-01

    The population densities of many organisms have changed dramatically in recent history. Increases in the population density of medically relevant organisms are of particular importance to public health as they are often correlated with the emergence of infectious diseases in human populations. Our aim is to delineate increases in density of a common disease vector in North America, the blacklegged tick, and to identify the environmental factors correlated with these population dynamics. Empirical data that capture the growth of a population are often necessary to identify environmental factors associated with these dynamics. We analyzed temporally- and spatially-structured field collected data in a geographical information systems framework to describe the population growth of blacklegged ticks (Ixodes scapularis) and to identify environmental and climatic factors correlated with these dynamics. The density of the ticks increased throughout the study's temporal and spatial ranges. Tick density increases were positively correlated with mild temperatures, low precipitation, low forest cover, and high urbanization. Importantly, models that accounted for these environmental factors accurately forecast future tick densities across the region. Tick density increased annually along the south-to-north gradient. These trends parallel the increases in human incidences of diseases commonly vectored by I. scapularis. For example, I. scapularis densities are correlated with human Lyme disease incidence, albeit in a non-linear manner that disappears at low tick densities, potentially indicating that a threshold tick density is needed to support epidemiologically-relevant levels of the Lyme disease bacterium. Our results demonstrate a connection between the biogeography of this species and public health. PMID:24371541

  1. Reprolysin metalloproteases from Ixodes persulcatus, Rhipicephalus sanguineus and Rhipicephalus microplus ticks.

    PubMed

    Ali, Abid; Tirloni, Lucas; Isezaki, Masayoshi; Seixas, Adriana; Konnai, Satoru; Ohashi, Kazuhiko; da Silva Vaz Junior, Itabajara; Termignoni, Carlos

    2014-08-01

    Metalloproteases (MPs) have been considered essential for blood feeding and other physiological functions in several hematophagous animals, including ticks. We report the characterization of MP sequences of three important ticks from Asia, Africa and America: Ixodes persulcatus (Ip-MPs), Rhipicephalus sanguineus (Rs-MPs) and R. microplus (BrRm-MPs). Amino acid sequence identity between R. microplus and R. sanguineus MPs ranged from 76 to 100 %, and identities among I. persulcatus, I. ricinus and I. scapularis MP sequences ranged from 88 to 97 %. This high sequence identity and typical functional motifs show that all sequences are MPs. The presence of a zinc binding site, a Met-turn and cysteine rich domain at the C-terminal region indicates that these proteins belong to the reproplysin family of MPs. Differences in amino acid sequences of BrRm-MP1, BrRm-MP2, BrRm-MP4 and BrRm-MP5 (from Porto Alegre strain ticks) were 6, 2, 7 and 5 %, respectively, when compared with sequences deposited in GenBank for the same genes from other R. microplus isolates. Analyses of MPs predicted that they have various highly antigenic regions. Semi-quantitative RT-PCR analysis revealed the presence of transcripts in salivary glands of partially and fully fed female ticks. None of these transcripts were observed in males (except BrRm-MP4) and eggs. These enzymes may be functional components required during tick feeding to manipulate host defenses and support tick hematophagy. PMID:24687173

  2. Reciprocal Regulation of NF-kB (Relish) and Subolesin in the Tick Vector, Ixodes scapularis

    PubMed Central

    Galindo, Ruth C.; Kocan, Katherine M.; Blouin, Edmour F.; Mitra, Ruchira; Alberdi, Pilar; Villar, Margarita; de la Fuente, José

    2013-01-01

    Background Tick Subolesin and its ortholog in insects and vertebrates, Akirin, have been suggested to play a role in the immune response through regulation of nuclear factor-kappa B (NF-kB)-dependent and independent gene expression via interaction with intermediate proteins that interact with NF-kB and other regulatory proteins, bind DNA or remodel chromatin to regulate gene expression. The objective of this study was to characterize the structure and regulation of subolesin in Ixodes scapularis. I. scapularis is a vector of emerging pathogens such as Borrelia burgdorferi, Anaplasma phagocytophilum and Babesia microti that cause in humans Lyme disease, anaplasmosis and babesiosis, respectively. The genome of I. scapularis was recently sequenced, and this tick serves as a model organism for the study of vector-host-pathogen interactions. However, basic biological questions such as gene organization and regulation are largely unknown in ticks and other arthropod vectors. Principal Findings The results presented here provide evidence that subolesin/akirin are evolutionarily conserved at several levels (primary sequence, gene organization and function), thus supporting their crucial biological function in metazoans. These results showed that NF-kB (Relish) is involved in the regulation of subolesin expression in ticks, suggesting that as in other organisms, different NF-kB integral subunits and/or unknown interacting proteins regulate the specificity of the NF-kB-mediated gene expression. These results suggested a regulatory network involving cross-regulation between NF-kB (Relish) and Subolesin and Subolesin auto-regulation with possible implications in tick immune response to bacterial infection. Significance These results advance our understanding of gene organization and regulation in I. scapularis and have important implications for arthropod vectors genetics and immunology highlighting the possible role of NF-kB and Subolesin/Akirin in vector

  3. Influence of deer abundance on the abundance of questing adult Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Ginsberg, H.S.; Zhioua, E.

    1999-01-01

    Nymphal and adult Ixodes scapularis Say were sampled by flagging at 2 sites on a barrier island, Fire Island, NY, and at 2 sites on the nearby mainland. Nymphal densities did not differ consistently between island and mainland sites, but adult densities were consistently lower on the island. We tested whether lower adult densities on the island resulted from greater nymphal mortality on the island than the mainland, or whether adult ticks on the island were poorly sampled by flagging because they had attached abundantly to deer, which were common on Fire Island. Differential nymphal mortality on islands vs. mainland did not explain this difference in adult densities because survival of flat and engorged nymphs in enclosures was the same at island and mainland sites. Ticks were infected by parasitic wasps on the island and not the mainland, but the infection rate (4.3%) was too low to explain the difference in adult tick densities. In contrast, exclusion of deer by game fencing on Fire Island resulted in markedly increased numbers of adult ticks in flagging samples inside compared to samples taken outside the exclosures. Therefore, the scarcity of adult ticks in flagging samples on Fire Island resulted, at least in part, from the ticks being unavailable to flagging samples because they were on deer hosts. Differences in the densities of flagged ticks inside and outside the exclosures were used to estimate the percentage of questing adults on Fire Island that found deer hosts, excluding those that attached to other host species. Approximately 56% of these questing adult ticks found deer hosts in 1995 and 50% found deer hosts in 1996. Therefore, in areas where vertebrate hosts are highly abundant, large proportions of the questing tick population can find hosts. Moreover, comparisons of tick densities at different sites by flagging can potentially be biased by differences in host densities among sites.

  4. Ixodes ricinus and Its Endosymbiont Midichloria mitochondrii: A Comparative Proteomic Analysis of Salivary Glands and Ovaries.

    PubMed

    Di Venere, Monica; Fumagalli, Marco; Cafiso, Alessandra; De Marco, Leone; Epis, Sara; Plantard, Olivier; Bardoni, Anna; Salvini, Roberta; Viglio, Simona; Bazzocchi, Chiara; Iadarola, Paolo; Sassera, Davide

    2015-01-01

    Hard ticks are hematophagous arthropods that act as vectors of numerous pathogenic microorganisms of high relevance in human and veterinary medicine. Ixodes ricinus is one of the most important tick species in Europe, due to its role of vector of pathogenic bacteria such as Borrelia burgdorferi and Anaplasma phagocytophilum, of viruses such as tick borne encephalitis virus and of protozoans as Babesia spp. In addition to these pathogens, I. ricinus harbors a symbiotic bacterium, Midichloria mitochondrii. This is the dominant bacteria associated to I. ricinus, but its biological role is not yet understood. Most M. mitochondrii symbionts are localized in the tick ovaries, and they are transmitted to the progeny. M. mitochondrii bacteria have however also been detected in the salivary glands and saliva of I. ricinus, as well as in the blood of vertebrate hosts of the tick, prompting the hypothesis of an infectious role of this bacterium. To investigate, from a proteomic point of view, the tick I. ricinus and its symbiont, we generated the protein profile of the ovary tissue (OT) and of salivary glands (SG) of adult females of this tick species. To compare the OT and SG profiles, 2-DE profiling followed by LC-MS/MS protein identification were performed. We detected 21 spots showing significant differences in the relative abundance between the OT and SG, ten of which showed 4- to 18-fold increase/decrease in density. This work allowed to establish a method to characterize the proteome of I. ricinus, and to detect multiple proteins that exhibit a differential expression profile in OT and SG. Additionally, we were able to use an immunoproteomic approach to detect a protein from the symbiont. Finally, the method here developed will pave the way for future studies on the proteomics of I. ricinus, with the goals of better understanding the biology of this vector and of its symbiont M. mitochondrii. PMID:26398775

  5. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe

    PubMed Central

    2013-01-01

    Many factors are involved in determining the latitudinal and altitudinal spread of the important tick vector Ixodes ricinus (Acari: Ixodidae) in Europe, as well as in changes in the distribution within its prior endemic zones. This paper builds on published literature and unpublished expert opinion from the VBORNET network with the aim of reviewing the evidence for these changes in Europe and discusses the many climatic, ecological, landscape and anthropogenic drivers. These can be divided into those directly related to climatic change, contributing to an expansion in the tick’s geographic range at extremes of altitude in central Europe, and at extremes of latitude in Scandinavia; those related to changes in the distribution of tick hosts, particularly roe deer and other cervids; other ecological changes such as habitat connectivity and changes in land management; and finally, anthropogenically induced changes. These factors are strongly interlinked and often not well quantified. Although a change in climate plays an important role in certain geographic regions, for much of Europe it is non-climatic factors that are becoming increasingly important. How we manage habitats on a landscape scale, and the changes in the distribution and abundance of tick hosts are important considerations during our assessment and management of the public health risks associated with ticks and tick-borne disease issues in 21st century Europe. Better understanding and mapping of the spread of I. ricinus (and changes in its abundance) is, however, essential to assess the risk of the spread of infections transmitted by this vector species. Enhanced tick surveillance with harmonized approaches for comparison of data enabling the follow-up of trends at EU level will improve the messages on risk related to tick-borne diseases to policy makers, other stake holders and to the general public. PMID:23281838

  6. Population genetic structure of the Lyme disease vector Ixodes scapularis at an apparent spatial expansion front.

    PubMed

    Kelly, Rebecca R; Gaines, David; Gilliam, Will F; Brinkerhoff, R Jory

    2014-10-01

    Modeling and empirical evidence suggests that Lyme disease is undergoing geographic expansion from principal foci in the midwestern and northeastern United States. Virginia is at the southern edge of the current expansion zone and has seen dramatic rise in human Lyme disease cases since 2007, potentially owing to a recent increase in vector abundance. Ixodes scapularis is known throughout the eastern US but behavioral or physiological variation between northern and southern lineages might lead northern-variant ticks to more frequently parasitize humans. We hypothesized that recent spatial and numerical increase in Lyme disease cases is associated with demographic and/or spatial expansion of I. scapularis and that signals of these phenomena would be detectable and discernable in population genetic signals. In summer and fall 2011, we collected nymphal I. scapularis by drag sampling and adult I. scapularis from deer carcasses at hunting check stations at nine sites arranged along an east-west transect through central Virginia. We analyzed 16S mtDNA sequences data from up to 24 I. scapularis individuals collected from each site and detected a total of 24 haplotypes containing 29 segregating sites. We found no evidence for population genetic structure among these sites but we did find strong signals of both demographic and spatial expansion throughout our study system. We found two haplotypes (one individual each) representing a lineage of ticks that is only found in the southeastern United States, with the remaining individuals representing a less genetically diverse clade that is typical of the northern United States, but that has also been detected in the American South. Taken together, these results lead us to conclude that I. scapularis populations in Virginia are expanding and that this expansion may account for recent observed increases in Lyme disease. PMID:24882702

  7. Distribution, abundance, and habitat preferences of Ixodes ricinus (Acari: Ixodidae) in northern Spain.

    PubMed

    Estrada-Peña, A

    2001-05-01

    Ixodes ricinus (L.) was collected by standard dragging in 2,082 different sites in 18 broad vegetation categories in northern Spain to explore the influence of vegetation on its abundance. Of these, 785 sites were surveyed in 1995, 636 in 1996, and 661 in 1997. The impact of habitat features on differences in tick numbers is addressed. The tick was present in low numbers in areas of old, heterogeneous coniferous forests. Ticks appeared to prefer sites that had substantial secondary plant growth such as river canopies, heterogeneous Pinus uncinata forests, mixed forests, and deciduous heterogeneous woods. Highest tick abundance was recorded for sites that contained Quercus spp., as well as for mixed old forests that had many ecotones. I. ricinus was absent in open habitats, homogeneous young coniferous forests, and open hillsides. These differences were attributed to greater shrub cover and litter depth, which created more favorable microclimatic conditions for tick survival. The abundance of I. ricinus nymphs was not homogeneous in sites within the same habitat category and vegetation physiognomy at these sites did not appear to cause differences in tick abundance. Analysis of variance (ANOVA) indicated that variation in tick abundance could be explained by the exposure of the sampled site, at least for some zones within deciduous forest categories. However, this factor did not explain the variation observed in other habitats. Temperature and vegetation (normalized derived vegetation index) features were recorded daily by remotely sensed imagery throughout the study period and the data were used to obtain long-term mean and maximum values of the physical parameters considered. Multiple regression analysis performed between these long-term abiotic factors and nymphal abundance in positive sites showed high relationship (R2 coefficients) for every habitat category and explained >50% of the variation in tick abundance. PMID:11372959

  8. Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus

    PubMed Central

    2010-01-01

    Background Ticks are vectors of a wide variety of pathogens causing severe diseases in humans and domestic animals. Intestinal digestion of the host blood is an essential process of tick physiology and also a limiting factor for pathogen transmission since the tick gut represents the primary site for pathogen infection and proliferation. Using the model tick Ixodes ricinus, the European Lyme disease vector, we have previously demonstrated by genetic and biochemical analyses that host blood is degraded in the tick gut by a network of acidic peptidases of the aspartic and cysteine classes. Results This study reveals the digestive machinery of the I. ricinus during the course of blood-feeding on the host. The dynamic profiling of concentrations, activities and mRNA expressions of the major digestive enzymes demonstrates that the de novo synthesis of peptidases triggers the dramatic increase of the hemoglobinolytic activity along the feeding period. Overall hemoglobinolysis, as well as the activity of digestive peptidases are negligible at the early stage of feeding, but increase dramatically towards the end of the slow feeding period, reaching maxima in fully fed ticks. This finding contradicts the established opinion that blood digestion is reduced at the end of engorgement. Furthermore, we show that the digestive proteolysis is localized intracellularly throughout the whole duration of feeding. Conclusions Results suggest that the egressing proteolytic system in the early stage of feeding and digestion is a potential target for efficient impairment, most likely by blocking its components via antibodies present in the host blood. Therefore, digestive enzymes are promising candidates for development of novel 'anti-tick' vaccines capable of tick control and even transmission of tick-borne pathogens. PMID:21156061

  9. Diversity of viruses in Ixodes ricinus, and characterization of a neurotropic strain of Eyach virus

    PubMed Central

    Moutailler, S.; Popovici, I.; Devillers, E.; Vayssier-Taussat, M.; Eloit, M.

    2016-01-01

    Ticks transmit more pathogens—including bacteria, parasites and viruses—than any other arthropod vector. Although the epidemiological status of many tick-borne bacteria is very well characterized, tick-borne viruses are still relatively under-studied. Recently, several novel tick-borne viruses have been isolated from human febrile illnesses following tick bites, indicating the existence of other potential new and unknown tick-borne viruses. We used high-throughput sequencing to analyse the virome of Ixodes ricinus, the main vector of tick-borne pathogens in Europe. The majority of collected viral sequences were assigned to two potentially novel Nairovirus and Phlebovirus viruses, with prevalence rates ranging from 3.95% to 23.88% in adults and estimated to be between 0.14% and 72.16% in nymphs. These viruses could not be isolated from the brains of inoculated immunocompromised mice, perhaps indicating that they are unable to infect vertebrates. Within the I. ricinus virome, we also identified contigs with >90% identity to the known Eyach virus. Initially isolated in the 1980s, this virus was indirectly associated with human disease, but had never been extensively studied. Eyach virus prevalence varied between 0.07% and 5.26% in ticks from the French Ardennes and Alsace regions. Eyach virus was successfully isolated following intracerebral inoculation of immunocompromised mice with Eyach virus-positive tick extracts. This virus was also able to multiply and persist in the blood of immunocompetent mice inoculated by intraperitoneal injection, and caused brain infections in three of nine juveniles, without any obvious deleterious effects. PMID:27158509

  10. Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin

    PubMed Central

    2014-01-01

    Background Global environmental change is causing spatial and temporal shifts in the distribution of species and the associated diseases of humans, domesticated animals and wildlife. In the on-going debate on the influence of climate change on vectors and vector-borne diseases, there is a lack of a comprehensive interdisciplinary multi-factorial approach utilizing high quality spatial and temporal data. Methods We explored biotic and abiotic factors associated with the latitudinal and altitudinal shifts in the distribution of Ixodes ricinus observed during the last three decades in Norway using antibodies against Anaplasma phagocytophilum in sheep as indicators for tick presence. Samples obtained from 2963 sheep from 90 farms in 3 ecologically different districts during 1978 – 2008 were analysed. We modelled the presence of antibodies against A. phagocytophilum to climatic-, environmental and demographic variables, and abundance of wild cervids and domestic animals, using mixed effect logistic regressions. Results Significant predictors were large diurnal fluctuations in ground surface temperature, spring precipitation, duration of snow cover, abundance of red deer and farm animals and bush encroachment/ecotones. The length of the growth season, mean temperature and the abundance of roe deer were not significant in the model. Conclusions Our results highlight the need to consider climatic variables year-round to disentangle important seasonal variation, climatic threshold changes, climate variability and to consider the broader environmental change, including abiotic and biotic factors. The results offer novel insight in how tick and tick-borne disease distribution might be modified by future climate and environmental change. PMID:24401487

  11. Passive Surveillance of Ixodes scapularis (Say), Their Biting Activity, and Associated Pathogens in Massachusetts

    PubMed Central

    Xu, Guang; Mather, Thomas N.; Hollingsworth, Craig S.

    2016-01-01

    Abstract A passive surveillance of tick-borne pathogens was conducted over a 7-year period (2006–2012), in which a total of 3551 ticks were submitted to the University of Massachusetts for PCR testing. The vast majority of these ticks were Ixodes scapularis from Massachusetts (N = 2088) and hence were the focus of further analysis. Two TaqMan duplex qPCR assays were developed to test I. scapularis ticks for the presence of three human pathogens: Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti. I. scapularis submissions were concentrated from Cape Cod, the eastern half of the state outside of the Boston metropolitan area, parts of Franklin and Hampshire counties along the Quabbin Reservoir watershed, and southwestern Berkshire county. Differences in seasonal activity pattern were observed for different developmental stages of I. scapularis. The largest proportion of tick bite victims were age 9 years and under. Nymphal ticks were found more often on lower extremities of their hosts, while more adult ticks were found on the head. Overall infection rate of B. burgdorferi, A. phagocytophilum, and B. microti in human-biting ticks was 29.6%, 4.6%, and 1.8%, respectively. B. burgdorferi-infected ticks were widely distributed, but A. phagocytophilum- and B. microti-infected I. scapularis were found mainly in the eastern half of the state. We found that 1.8%, 1.0%, and 0.4% of ticks were coinfected by B. burgdorferi and A. phagocytophilum, B. burgdorferi and B. microti, and A. phagocytophilum and B. microti, respectively, and 0.3% of ticks had triple coinfection. PMID:27248292

  12. Emergence of Ixodes scapularis and Borrelia burgdorferi, the Lyme disease vector and agent, in Ohio.

    PubMed

    Wang, Peng; Glowacki, Meaghan N; Hoet, Armando E; Needham, Glen R; Smith, Kathleen A; Gary, Richard E; Li, Xin

    2014-01-01

    Lyme disease, the most common vector-borne disease in the United States, is caused by a tick-borne infection with Borrelia burgdorferi. Currently, Ohio is considered by the Centers for Disease Control and Prevention (CDC) to be non-endemic for Lyme disease. The low incidence of Lyme disease in this state was largely attributed to the absence of the transmitting vector, Ixodes scapularis, commonly known as the blacklegged tick. However, a tick surveillance program established by Ohio Department of Health indicated that the number of I. scapularis in Ohio had increased sharply in recent years, from 0 - 5 ticks per year during 1983-2008 to 15 in 2009, 40 in 2010, and 184 in 2011. During the fall deer hunting season, examination of deer heads submitted to Ohio Department of Agriculture found 29 I. scapularis from 7 counties in 2010 and 1,830 from 25 counties in 2011. As of 2012, the tick had been found in 57 of the 88 counties of Ohio. In addition, all three active stages (larva, nymph, and adult) of I. scapularis were found in Tiverton Township of Coshocton County, demonstrating the presence of established tick populations at this central Ohio location. Of 530 nymphal or adult I. scapularis analyzed by quantitative polymerase chain reaction (qPCR), 32 (6.1%) tested positive for the B. burgdorferi flaB gene, ranging from 36 to 390,000 copies per tick. Antibodies to B. burgdorferi antigens were detected in 2 of 10 (20%) field-captured Peromyscus leucopus from Tiverton Township, and in 41 of 355 (11.5%) dogs residing in Ohio. Collectively, these data suggest that the enzootic life cycle of B. burgdorferi has become established in Ohio, which poses risk of Lyme disease to people and animals in the area. PMID:24926441

  13. The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis.

    PubMed

    Hunter, Daniel J; Torkelson, Jessica L; Bodnar, James; Mortazavi, Bobak; Laurent, Timothy; Deason, Jeff; Thephavongsa, Khanhkeo; Zhong, Jianmin

    2015-01-01

    Ticks and other arthropods often are hosts to nutrient providing bacterial endosymbionts, which contribute to their host's fitness by supplying nutrients such as vitamins and amino acids. It has been detected, in our lab, that Ixodes pacificus is host to Rickettsia species phylotype G021. This endosymbiont is predominantly present, and 100% maternally transmitted in I. pacificus. To study roles of phylotype G021 in I. pacificus, bioinformatic and molecular approaches were carried out. MUMmer genome alignments of whole genome sequence of I. scapularis, a close relative to I. pacificus, against completely sequenced genomes of R. bellii OSU85-389, R. conorii, and R. felis, identified 8,190 unique sequences that are homologous to Rickettsia sequences in the NCBI Trace Archive. MetaCyc metabolic reconstructions revealed that all folate gene orthologues (folA, folC, folE, folKP, ptpS) required for de novo folate biosynthesis are present in the genome of Rickettsia buchneri in I. scapularis. To examine the metabolic capability of phylotype G021 in I. pacificus, genes of the folate biosynthesis pathway of the bacterium were PCR amplified using degenerate primers. BLAST searches identified that nucleotide sequences of the folA, folC, folE, folKP, and ptpS genes possess 98.6%, 98.8%, 98.9%, 98.5% and 99.0% identity respectively to the corresponding genes of Rickettsia buchneri. Phylogenetic tree constructions show that the folate genes of phylotype G021 and homologous genes from various Rickettsia species are monophyletic. This study has shown that all folate genes exist in the genome of Rickettsia species phylotype G021 and that this bacterium has the genetic capability for de novo folate synthesis. PMID:26650541

  14. IrFC - An Ixodes ricinus injury-responsive molecule related to Limulus Factor C.

    PubMed

    Urbanová, Veronika; Hartmann, David; Grunclová, Lenka; Šíma, Radek; Flemming, Tina; Hajdušek, Ondřej; Kopáček, Petr

    2014-10-01

    Limulus Clotting Factor C is a multi-domain serine protease that triggers horseshoe crab hemolymph clotting in the presence of trace amounts of bacterial lipopolysaccharides. Here we describe and functionally characterize an homologous molecule, designated as IrFC, from the hard tick Ixodes ricinus. Tick Factor C consists of an N-terminal cysteine-rich domain, four complement control protein (sushi) modules, an LCCL domain, a truncated C-lectin domain and a C-terminal trypsin-type domain. Developmental expression profiling by quantitative real-time PCR revealed that the irfc mRNA is expressed in all stages including eggs. In tissues dissected from adult I. ricinus females, the irfc mRNA is present mainly in tick hemocytes and accordingly, indirect immunofluorescence microscopy localized IrFC intracellularly, in tick hemocytes. Irfc mRNA levels were markedly increased upon injection of sterile saline, or different microbes, demonstrating that the irfc gene transcription occurs in response to injury. This indicates a possible role of IrFC in hemolymph clotting and/or wound healing, although these defense mechanisms have not been yet definitely demonstrated in ticks. RNAi silencing of irfc expression resulted in a significant reduction in phagocytic activity of tick hemocytes against the Gram-negative bacteria Chryseobacterium indologenes and Escherichia coli, but not against the yeast, Candida albicans. This result suggests that IrFC plays a role in the tick primordial complement system and as such possibly mediates transmission of tick-borne pathogens. PMID:24924263

  15. Molecular evidence for bacterial pathogens in Ixodes ricinus ticks infesting Shetland ponies.

    PubMed

    Skotarczak, Bogumiła; Wodecka, Beata; Rymaszewska, Anna; Adamska, Małgorzata

    2016-06-01

    Ixodes ricinus has the potential to transmit zoonotic pathogens to humans and domestic animals. The feeding I. ricinus (n = 1737) collected from 49 Shetland ponies and questing ones from vegetation (n = 371) were tested for the presence and differentiation of the bacterial species. DNA of I. ricinus ticks was examined with PCR and sequencing analysis to identify species of Borrelia burgdorferi sensu lato (Bbsl), Anaplasma phagocytophilum and Rickettsia spp. Altogether, 24.3 % I. ricinus of the infested horses and 12.4 % ticks from vegetation carried at least one pathogen species. Horse-feeding ticks (19.2 %) were significantly more frequently infected with Borrelia spp. than questing ticks (4.8 %). Among Bbsl species, in I. ricinus infesting ponies, B. garinii, B. afzelii, B. burgdorferi sensu stricto, B. valaisiana and B. lusitanie and one species, B. miyamotoi related to relapsing fever group, were detected. The 73 flaB gene sequences of Borrelia obtained from feeding I. ricinus have been deposited in GenBank. Among Rickettsia species, two were identified: R. helvetica which was dominant and R. monacensis. Infections with more than one pathogenic species, involving mostly Bbsl and R. helvetica were detected in 6.3 % of infected ticks collected from horses. Shetland ponies may play an important role in the epidemiological cycle of Bbsl and probably could contribute to the natural cycle of A. phagocytophilum and R. helvetica as host for infected ticks. The awareness about these infectious agents in ticks from ponies might be an important criterion for the risk assessment of human diseases, especially as these animals are maintained for recreational purposes. PMID:26920921

  16. Ixodes ricinus and Its Endosymbiont Midichloria mitochondrii: A Comparative Proteomic Analysis of Salivary Glands and Ovaries

    PubMed Central

    Di Venere, Monica; Fumagalli, Marco; Cafiso, Alessandra; De Marco, Leone; Epis, Sara; Plantard, Olivier; Bardoni, Anna; Salvini, Roberta; Viglio, Simona; Bazzocchi, Chiara; Iadarola, Paolo; Sassera, Davide

    2015-01-01

    Hard ticks are hematophagous arthropods that act as vectors of numerous pathogenic microorganisms of high relevance in human and veterinary medicine. Ixodes ricinus is one of the most important tick species in Europe, due to its role of vector of pathogenic bacteria such as Borrelia burgdorferi and Anaplasma phagocytophilum, of viruses such as tick borne encephalitis virus and of protozoans as Babesia spp. In addition to these pathogens, I. ricinus harbors a symbiotic bacterium, Midichloria mitochondrii. This is the dominant bacteria associated to I. ricinus, but its biological role is not yet understood. Most M. mitochondrii symbionts are localized in the tick ovaries, and they are transmitted to the progeny. M. mitochondrii bacteria have however also been detected in the salivary glands and saliva of I. ricinus, as well as in the blood of vertebrate hosts of the tick, prompting the hypothesis of an infectious role of this bacterium. To investigate, from a proteomic point of view, the tick I. ricinus and its symbiont, we generated the protein profile of the ovary tissue (OT) and of salivary glands (SG) of adult females of this tick species. To compare the OT and SG profiles, 2-DE profiling followed by LC-MS/MS protein identification were performed. We detected 21 spots showing significant differences in the relative abundance between the OT and SG, ten of which showed 4- to 18-fold increase/decrease in density. This work allowed to establish a method to characterize the proteome of I. ricinus, and to detect multiple proteins that exhibit a differential expression profile in OT and SG. Additionally, we were able to use an immunoproteomic approach to detect a protein from the symbiont. Finally, the method here developed will pave the way for future studies on the proteomics of I. ricinus, with the goals of better understanding the biology of this vector and of its symbiont M. mitochondrii. PMID:26398775

  17. The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis

    PubMed Central

    Bodnar, James; Mortazavi, Bobak; Laurent, Timothy; Deason, Jeff; Thephavongsa, Khanhkeo; Zhong, Jianmin

    2015-01-01

    Ticks and other arthropods often are hosts to nutrient providing bacterial endosymbionts, which contribute to their host’s fitness by supplying nutrients such as vitamins and amino acids. It has been detected, in our lab, that Ixodes pacificus is host to Rickettsia species phylotype G021. This endosymbiont is predominantly present, and 100% maternally transmitted in I. pacificus. To study roles of phylotype G021 in I. pacificus, bioinformatic and molecular approaches were carried out. MUMmer genome alignments of whole genome sequence of I. scapularis, a close relative to I. pacificus, against completely sequenced genomes of R. bellii OSU85-389, R. conorii, and R. felis, identified 8,190 unique sequences that are homologous to Rickettsia sequences in the NCBI Trace Archive. MetaCyc metabolic reconstructions revealed that all folate gene orthologues (folA, folC, folE, folKP, ptpS) required for de novo folate biosynthesis are present in the genome of Rickettsia buchneri in I. scapularis. To examine the metabolic capability of phylotype G021 in I. pacificus, genes of the folate biosynthesis pathway of the bacterium were PCR amplified using degenerate primers. BLAST searches identified that nucleotide sequences of the folA, folC, folE, folKP, and ptpS genes possess 98.6%, 98.8%, 98.9%, 98.5% and 99.0% identity respectively to the corresponding genes of Rickettsia buchneri. Phylogenetic tree constructions show that the folate genes of phylotype G021 and homologous genes from various Rickettsia species are monophyletic. This study has shown that all folate genes exist in the genome of Rickettsia species phylotype G021 and that this bacterium has the genetic capability for de novo folate synthesis. PMID:26650541

  18. Passive Surveillance of Ixodes scapularis (Say), Their Biting Activity, and Associated Pathogens in Massachusetts.

    PubMed

    Xu, Guang; Mather, Thomas N; Hollingsworth, Craig S; Rich, Stephen M

    2016-08-01

    A passive surveillance of tick-borne pathogens was conducted over a 7-year period (2006-2012), in which a total of 3551 ticks were submitted to the University of Massachusetts for PCR testing. The vast majority of these ticks were Ixodes scapularis from Massachusetts (N = 2088) and hence were the focus of further analysis. Two TaqMan duplex qPCR assays were developed to test I. scapularis ticks for the presence of three human pathogens: Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti. I. scapularis submissions were concentrated from Cape Cod, the eastern half of the state outside of the Boston metropolitan area, parts of Franklin and Hampshire counties along the Quabbin Reservoir watershed, and southwestern Berkshire county. Differences in seasonal activity pattern were observed for different developmental stages of I. scapularis. The largest proportion of tick bite victims were age 9 years and under. Nymphal ticks were found more often on lower extremities of their hosts, while more adult ticks were found on the head. Overall infection rate of B. burgdorferi, A. phagocytophilum, and B. microti in human-biting ticks was 29.6%, 4.6%, and 1.8%, respectively. B. burgdorferi-infected ticks were widely distributed, but A. phagocytophilum- and B. microti-infected I. scapularis were found mainly in the eastern half of the state. We found that 1.8%, 1.0%, and 0.4% of ticks were coinfected by B. burgdorferi and A. phagocytophilum, B. burgdorferi and B. microti, and A. phagocytophilum and B. microti, respectively, and 0.3% of ticks had triple coinfection. PMID:27248292

  19. Mitogenomes reveal diversity of the European Lyme borreliosis vector Ixodes ricinus in Italy.

    PubMed

    Carpi, Giovanna; Kitchen, Andrew; Kim, Hie Lim; Ratan, Aakrosh; Drautz-Moses, Daniela I; McGraw, John J; Kazimirova, Maria; Rizzoli, Annapaola; Schuster, Stephan C

    2016-08-01

    In Europe, the Ixodes ricinus tick is the most important vector of the etiological agents of Lyme borreliosis and several other emerging tick-borne diseases. Because tick-borne pathogens are dependent on their vectors for transmission, understanding the vector population structure is crucial to inform public health research of pathogen dynamics and spread. However, the population structure and dynamics of this important vector species are not well understood as most genetic studies utilize short mitochondrial and nuclear sequences with little diversity. Herein we obtained and analyzed complete mitochondrial genome (hereafter "mitogenome") sequences to better understand the genetic diversity and the population structure of I. ricinus from two long-standing tick-borne disease foci in northern Italy. Complete mitogenomes of 23 I. ricinus ticks were sequenced at high coverage. Out of 23 mitogenome sequences we identified 17 unique haplotypes composed of 244 segregating sites. Phylogenetic reconstruction using 18 complete mitogenome sequences revealed the coexistence of four highly divergent I. ricinus maternal lineages despite the narrow spatial scale over which these samples were obtained (100km). Notably, the estimated coalescence time of the 18 mitogenome haplotypes is ∼427 thousand years ago (95% HPD 330, 540). This divergence between I. ricinus lineages is consistent with the mitochondrial diversity of other arthropod vector species and indicates that long-term I. ricinus populations may have been less structured and larger than previously thought. Thus, this study suggests that a rapid and accurate retrieval of full mitochondrial genomes from this disease vector enables fine-resolution studies of tick intraspecies genetic relationships, population differentiation, and demographic history. PMID:27165938

  20. Ecology of the interaction between Ixodes loricatus (Acari: Ixodidae) and Akodon azarae (Rodentia: Criceridae).

    PubMed

    Colombo, Valeria C; Nava, Santiago; Antoniazzi, Leandro R; Monje, Lucas D; Racca, Andrea L; Guglielmone, Alberto A; Beldomenico, Pablo M

    2015-10-01

    The present study explores associations of different factors (i.e. host parameters, presence of other ectoparasites and [mainly biotic] environmental factors) with burdens of Ixodes loricatus immature stages in one of its main hosts in Argentina, the rodent Akodon azarae. For 2 years, rodents were trapped and sampled monthly at 16 points located in four different sites in the Parana River Delta region. Data were analysed with generalized linear mixed models with a negative binomial response (counts of larvae or nymphs). The independent variables assessed were (a) environmental: trapping year, presence of cattle, type of vegetation, rodent abundance; (b) host parameters: body length, sex, body condition, blood cell counts, natural antibody titers and (c) co-infestation with other ectoparasites. Two-way interaction terms deemed a priori as relevant were also included in the analysis. Most of the associations investigated were found significant, but in general, the direction and magnitude of the associations were context-dependent. An exception was the presence of cattle, which was consistently negatively associated with both larvae and nymphs independently of all other variables considered and had the strongest effect on tick burdens. Mites, fleas and Amblyomma triste were also significantly associated (mostly positively) with larval and nymph burdens, and in many cases, they influenced associations with environmental or host factors. Our findings strongly support that raising cattle may have a substantial impact on the dynamics of I. loricatus and that interactions within the ectoparasite community may be an important-but generally ignored-driver of tick dynamics. PMID:26122994

  1. Spatial distribution of larval Ixodes scapularis (Acari:Ixodidae) on Peromyscus leucopus and Microtus pennsylvanicus at two island sites

    USGS Publications Warehouse

    Markowski, D.; Hyland, K.E.; Ginsberg, H.S.

    1997-01-01

    Larval blacklegged ticks, Ixodes scapularis, were collected from white-footed mice, Peromyscus leucopus, on Prudence Island (where Microtus pennsylavanicus were not captured) and from meadow voles, M. pennsylvanicus, on Patience Island (where P. leucopus was absent) in Narragansett Bay, Rhode Island from June to October 1992. Ixodes scapularis larvae were also collected by flagging in the vicinity of host captures. On both islands, the relative density of larvae changed from July to September in samples from hosts, but not in flagging samples. Consequently, different sampling techniques can give different assessments of tick populations. Larvae were highly aggregated on both of the host species throughout the sampling period. As the mean relative density of larvae increased in the environment (based on flagging samples), larvae on the hosts became more dense and more crowded. Increased densities of larvae in the environment were not correlated with increased patchiness in the distribution of larvae among host animals on either island. Changes in the spatial distribution of larval I. scapularis on each host species had similar trends as larval densities and distributions within the environment. These results suggest that M. pennsylvanicus can serve as an alternative host for immature I. scapularis in a P. leucopus-free environment and have similar distributional characteristics.

  2. Ixodes tick saliva suppresses the keratinocyte cytokine response to TLR2/TLR3 ligands during early exposure to Lyme borreliosis.

    PubMed

    Bernard, Quentin; Gallo, Richard L; Jaulhac, Benoît; Nakatsuji, Teruaki; Luft, Benjamin; Yang, Xiahoua; Boulanger, Nathalie

    2016-01-01

    Ixodes hard tick induces skin injury by its sophisticated biting process. Its saliva plays a key role to enable an efficient blood meal that lasts for several days. We hypothesized that this feeding process may also be exploited by pathogens to facilitate their transmission, especially in the context of arthropod-borne diseases. To test this, we used Lyme borreliosis as a model. This bacterial infection is caused by Borrelia burgdorferi sensu lato transmitted by Ixodes. We co-incubated Borrelia with human keratinocytes in the presence of poly (I: C), a dsRNA TLR3 agonist generated by skin injury. This induced a strong cytokine response from human primary keratinocytes that was much greater than that induced by Borrelia alone. OspC, a TLR2/1 agonist and a major surface lipoprotein of Borrelia also amplified the process. Interestingly, tick saliva inhibited cytokine responses by keratinocytes to these TLR agonists. We propose that Borrelia uses the immunoprivileged site produced by tick saliva to facilitate its transmission. PMID:26307945

  3. Field Applications of Entomopathogenic Fungi Beauveria bassiana (Hypocreales: Clavicipitaceae) and Metarhizium anisopliae F52 (Hypocreales: Nectriaceae) for the Control of Ixodes scapularis (Acari: Ixodidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two commercial formulations of Beauveria bassiana (Balsamo-Crivelli) Vuillemin were applied to residential sites in Old Lyme, Connecticut for the control of nymphs of the blacklegged tick, Ixodes scapularis in 1999 and 2000. The pyrethroid bifenthrin was applied to other homes for comparison with B....

  4. Sustained control of Gibson Island, MD populations of Ixodes scapularis and Amblyomma americanium (Acari:Ixodidae) by community-administered '4-Poster' deer self-treatment bait stations.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1998, 25 ‘4-poster’ tick control devices were deployed on Gibson Island, MD as part of the USDA Northeast Area-Wide Tick Control Project (NEATCP). Treatments concluded in June, 2002, having achieved 80 and 99.5% control of blacklegged ticks, Ixodes scapularis, and lone star ticks, Amblyomma ameri...

  5. Anaplasma phagocytophilum in Questing Ixodes ricinus Ticks: Comparison of Prevalences and Partial 16S rRNA Gene Variants in Urban, Pasture, and Natural Habitats

    PubMed Central

    Pfister, Kurt; Thiel, Claudia; Herb, Ingrid; Mahling, Monia; Silaghi, Cornelia

    2013-01-01

    Urban, natural, and pasture areas were investigated for prevalences and 16S rRNA gene variants of Anaplasma phagocytophilum in questing Ixodes ricinus ticks. The prevalences differed significantly between habitat types, and year-to-year variations in prevalence and habitat-dependent occurrence of 16S rRNA gene variants were detected. PMID:23263964

  6. Efficacy and environmental persistence of nootkatone for the control of the blacklegged tick, Ixodes scapularis (Acari: Ixodidae) in the residential landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the ability of the plant-derived compound nootkatone to control nymphs of the blacklegged tick, Ixodes scapularis Say, applied to the perimeter of lawns around homes in Lyme disease endemic areas of Connecticut. Three formulations of nootkatone ranging from 0.05 to 0.84% (0.06 to 1.03 g...

  7. Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding.

    PubMed

    Kim, Tae Kwon; Tirloni, Lucas; Pinto, Antônio F M; Moresco, James; Yates, John R; da Silva Vaz, Itabajara; Mulenga, Albert

    2016-01-01

    Ixodes scapularis is the most medically important tick species and transmits five of the 14 reportable human tick borne disease (TBD) agents in the USA. This study describes LC-MS/MS identification of 582 tick- and 83 rabbit proteins in saliva of I. scapularis ticks that fed for 24, 48, 72, 96, and 120 h, as well as engorged but not detached (BD), and spontaneously detached (SD). The 582 tick proteins include proteases (5.7%), protease inhibitors (7.4%), unknown function proteins (22%), immunity/antimicrobial (2.6%), lipocalin (3.1%), heme/iron binding (2.6%), extracellular matrix/ cell adhesion (2.2%), oxidant metabolism/ detoxification (6%), transporter/ receptor related (3.2%), cytoskeletal (5.5%), and housekeeping-like (39.7%). Notable observations include: (i) tick saliva proteins of unknown function accounting for >33% of total protein content, (ii) 79% of proteases are metalloproteases, (iii) 13% (76/582) of proteins in this study were found in saliva of other tick species and, (iv) ticks apparently selectively inject functionally similar but unique proteins every 24 h, which we speculate is the tick's antigenic variation equivalent strategy to protect important tick feeding functions from host immune system. The host immune responses to proteins present in 24 h I. scapularis saliva will not be effective at later feeding stages. Rabbit proteins identified in our study suggest the tick's strategic use of host proteins to modulate the feeding site. Notably fibrinogen, which is central to blood clotting and wound healing, was detected in high abundance in BD and SD saliva, when the tick is preparing to terminate feeding and detach from the host. A remarkable tick adaptation is that the feeding lesion is completely healed when the tick detaches from the host. Does the tick concentrate fibrinogen at the feeding site to aide in promoting healing of the feeding lesion? Overall, these data provide broad insight into molecular mechanisms regulating different tick

  8. Seasonal activity patterns of Ixodes pacificus nymphs in relation to climatic conditions.

    PubMed

    Eisen, L; Eisen, R J; Lane, R S

    2002-09-01

    In western North America, the tick Ixodes pacificus Cooley & Kohls (Acari: Ixodidae) is the primary vector to humans and domestic animals of the disease agents causing Lyme disease and granulocytic ehrlichiosis. We examined the seasonal activity patterns of I. pacificus nymphs over a 4-year period, including the wet and cold El Niño winter/spring of 1998, in a dry oak/madrone woodland, and for one year in a cooler and moister redwood/tanoak woodland in Mendocino County, California. Linear regressions were used to estimate when nymphal densities first exceeded and then fell below 25, 50 and 75% of the recorded yearly peak densities. In oak/madrone woodland, nymphs typically were active by mid-March, reached 50% of their yearly peak densities in early to mid-April, peaked by early May, fell below 50% of their peak densities by early to mid-June, and were absent by late July to mid-August. The lengths of the periods with nymphal densities exceeding 50 and 75% of the recorded yearly peaks in oak/madrone woodland were associated positively with rainfall and negatively with maximum air temperatures during April-May. Moreover, nymphal numbers typically reached 50% of their peak 10-15 days later, remained at levels above 50% of the peak 1.3-1.5 times longer, and started declining 4-6 weeks later under cooler, moister climatic conditions (oak/madrone woodland in 1998 and redwood/tanoak woodland in 2000) relative to warmer, drier conditions (oak/madrone woodland in 2000-2001). In oak/madrone woodland, nymphal densities typically started to decline when mean maximum daily air temperatures exceeded 23 degrees C. Nymphal densities were higher in dry oak/madrone relative to moist redwood/tanoak woodland from mid-March to late May 2000, similar in both habitat types in early June, but higher in redwood/tanoak woodland from late June onwards. We conclude that large-scale studies of the density of I. pacificus nymphs in California need to consider spatial variation in the length

  9. Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding

    PubMed Central

    Pinto, Antônio F. M.; Moresco, James; Yates, John R.; da Silva Vaz, Itabajara; Mulenga, Albert

    2016-01-01

    Ixodes scapularis is the most medically important tick species and transmits five of the 14 reportable human tick borne disease (TBD) agents in the USA. This study describes LC-MS/MS identification of 582 tick- and 83 rabbit proteins in saliva of I. scapularis ticks that fed for 24, 48, 72, 96, and 120 h, as well as engorged but not detached (BD), and spontaneously detached (SD). The 582 tick proteins include proteases (5.7%), protease inhibitors (7.4%), unknown function proteins (22%), immunity/antimicrobial (2.6%), lipocalin (3.1%), heme/iron binding (2.6%), extracellular matrix/ cell adhesion (2.2%), oxidant metabolism/ detoxification (6%), transporter/ receptor related (3.2%), cytoskeletal (5.5%), and housekeeping-like (39.7%). Notable observations include: (i) tick saliva proteins of unknown function accounting for >33% of total protein content, (ii) 79% of proteases are metalloproteases, (iii) 13% (76/582) of proteins in this study were found in saliva of other tick species and, (iv) ticks apparently selectively inject functionally similar but unique proteins every 24 h, which we speculate is the tick's antigenic variation equivalent strategy to protect important tick feeding functions from host immune system. The host immune responses to proteins present in 24 h I. scapularis saliva will not be effective at later feeding stages. Rabbit proteins identified in our study suggest the tick's strategic use of host proteins to modulate the feeding site. Notably fibrinogen, which is central to blood clotting and wound healing, was detected in high abundance in BD and SD saliva, when the tick is preparing to terminate feeding and detach from the host. A remarkable tick adaptation is that the feeding lesion is completely healed when the tick detaches from the host. Does the tick concentrate fibrinogen at the feeding site to aide in promoting healing of the feeding lesion? Overall, these data provide broad insight into molecular mechanisms regulating different tick

  10. Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis

    PubMed Central

    Kocan, Katherine M.; Bonzón-Kulichenko, Elena; Alberdi, Pilar; Blouin, Edmour F.; Weisheit, Sabine; Mateos-Hernández, Lourdes; Cabezas-Cruz, Alejandro; Bell-Sakyi, Lesley; Vancová, Marie; Bílý, Tomáš; Meyer, Damien F.; Sterba, Jan; Contreras, Marinela; Rudenko, Nataliia; Grubhoffer, Libor; Vázquez, Jesús; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen transmitted by Ixodes scapularis that causes human granulocytic anaplasmosis. Here, a high throughput quantitative proteomics approach was used to characterize A. phagocytophilum proteome during rickettsial multiplication and identify proteins involved in infection of the tick vector, I. scapularis. The first step in this research was focused on tick cells infected with A. phagocytophilum and sampled at two time points containing 10–15% and 65–71% infected cells, respectively to identify key bacterial proteins over-represented in high percentage infected cells. The second step was focused on adult female tick guts and salivary glands infected with A. phagocytophilum to compare in vitro results with those occurring during bacterial infection in vivo. The results showed differences in the proteome of A. phagocytophilum in infected ticks with higher impact on protein synthesis and processing than on bacterial replication in tick salivary glands. These results correlated well with the developmental cycle of A. phagocytophilum, in which cells convert from an intracellular reticulated, replicative form to the nondividing infectious dense-core form. The analysis of A. phagocytophilum differentially represented proteins identified stress response (GroEL, HSP70) and surface (MSP4) proteins that were over-represented in high percentage infected tick cells and salivary glands when compared to low percentage infected cells and guts, respectively. The results demonstrated that MSP4, GroEL and HSP70 interact and bind to tick cells, thus playing a role in rickettsia-tick interactions. The most important finding of these studies is the increase in the level of certain bacterial stress response and surface proteins in A. phagocytophilum-infected tick cells and salivary glands with functional implication in tick-pathogen interactions. These results gave a new dimension to the role of these stress response and surface

  11. Dominance of Dermacentor reticulatus over Ixodes ricinus (Ixodidae) on livestock, companion animals and wild ruminants in eastern and central Poland.

    PubMed

    Mierzejewska, Ewa J; Welc-Faleciak, Renata; Karbowiak, Grzegorz; Kowalec, Maciej; Behnke, Jerzy M; Bajer, Anna

    2015-05-01

    The most common tick species parasitizing animals in Poland are Ixodes ricinus and Dermacentor reticulatus. These tick species differ in their distribution, habitats, seasonal activity and host specificity. Ixodes ricinus is the most prevalent and widely distributed, whereas the range of D. reticulatus is limited to eastern and central parts of the country with several new foci in the middle-west and the west. However, as in many central European countries, the range of D. reticulatus is expanding, and some authors have correlated this expansion with an increasing number of available hosts. The aim of the present study was to determine the tick fauna on domestic and livestock animals in two areas endemic for I. ricinus and D. reticulatus and to compare the risk of infestation with different tick species in open and forest areas. Over a 14 month period, 732 ticks were collected from five host species including domestic animals (dogs and cats), livestock (cows and horses) and wildlife (European bison) in two areas, central and NE Poland, endemic for D. reticulatus. Three tick species were recorded: D. reticulatus (623 individuals; 85.1% of all collected ticks), I. ricinus (106 individuals; 14.5%) and three females of Ixodes hexagonus (0.4%) from a dog. Dermacentor reticulatus was the dominant tick species found on four host species and constituted 86, 81, 97 and 100% of all ticks from dogs, horses, cows and bison, respectively, and was collected from animals throughout the year, including during the winter. The common tick, I. ricinus, was the dominant tick collected from cats (94%). Fully-engorged, ready-for-reproduction females of D. reticulatus were collected from all host species. In May 2012, questing ticks were collected by dragging in forest or open habitats. The density of adult marsh ticks in open areas was around 2 ticks/100 m(2) in the majority of locations, with a maximum of 9.5 ticks/100 m(2). The density of adult I. ricinus was much lower in its typical

  12. Detection of a Borrelia miyamotoi sensu lato relapsing-fever group spirochete from Ixodes pacificus in California.

    PubMed

    Mun, Jeomhee; Eisen, Rebecca J; Eisen, Lars; Lane, Robert S

    2006-01-01

    We investigated whether host-seeking nymphs and adults of the western blacklegged tick, Ixodes pacificus Cooley & Kohls, the primary vector of Lyme disease spirochetes in far-western North America, are infected naturally with relapsing-fever group spirochetes in Mendocino County, California. Relapsing-fever group borreliae were detected in four (1.7%) of 234 nymphal and two (0.7%) of 282 adult host-seeking I. pacificus ticks by polymerase chain reaction and sequence analysis of the 16S rRNA and flagellin genes, respectively, exhibiting 99 and 98.5% sequence homology to Borrelia miyamotoi Fukunaga. Phylogenetic analysis based on these two genes revealed that the borreliae detected in these ticks belong to the relapsing-fever group and that these are closely related to, if not identical with, B. miyamotoi. PMID:16506458

  13. A rickettsia-like organism from Ixodes uriae ticks collected on the Kerguelen Islands (French Subantarctic Territories).

    PubMed

    Chastel, C; Demazure, M; Chastel, O; Genevois, F; Legrand, M C; Grulet, O; Odermatt, M; Le Goff, F

    1993-02-01

    A rickettsia-like microorganism was isolated in suckling mice from Ixodes uriae ticks collected from penguins breeding on Mayes Island, Kerguelen Archipelago, French Subantarctic Territories. At isolation, this agent mimicked a tick-borne arbovirus. Finally, electron microscopy studies of infected suckling mouse livers showed the presence of inclusions filled with pleomorphic microorganism in the cytoplasm of some hepatocytes, sometimes dividing by binary fission and thus of obviously non-viral nature. No firm serological relationship was demonstrated with Chlamydia psittaci, C. trachomatis, C. pneumoniae, Coxiella burnetti, Cowdria ruminentium, Ehrlichia canis, E. phagocytophila, E. risticii or the WSU/1044 agent. The exact taxonomic position of the "Mayes" agent remains to be clarified. PMID:8105647

  14. Ixodes ricinus Salivary Serpin IRS-2 Affects Th17 Differentiation via Inhibition of the Interleukin-6/STAT-3 Signaling Pathway

    PubMed Central

    Páleníková, Jana; Lieskovská, Jaroslava; Langhansová, Helena; Kotsyfakis, Michalis; Chmelař, Jindřich

    2015-01-01

    Th17 cells constitute a subset of CD4+ T lymphocytes that play a crucial role in protection against extracellular bacteria and fungi. They are also associated with tissue injury in autoimmune and inflammatory diseases. Here, we report that serpin from the tick Ixodes ricinus, IRS-2, inhibits Th17 differentiation by impairment of the interleukin-6 (IL-6)/STAT-3 signaling pathway. Following activation, mature dendritic cells produce an array of cytokines, including the pleiotropic cytokine IL-6, which triggers the IL-6 signaling pathway. The major transcription factor activated by IL-6 is STAT-3. We show that IRS-2 selectively inhibits production of IL-6 in dendritic cells stimulated with Borrelia spirochetes, which leads to attenuated STAT-3 phosphorylation and finally to impaired Th17 differentiation. The results presented extend the knowledge about the effect of tick salivary serpins on innate immunity cells and their function in driving adaptive immune responses. PMID:25712932

  15. Molecular detection of Rickettsia, Borrelia, and Babesia species in Ixodes ricinus sampled in northeastern, central, and insular areas of Italy.

    PubMed

    Castro, Lyda R; Gabrielli, Simona; Iori, Albertina; Cancrini, Gabriella

    2015-07-01

    The aim of the present study was to provide insight into the diversity of tick-borne pathogens circulating in Italy, carried/transmitted by Ixodes ricinus, one of the most abundant tick species in the country. A total of 447 specimens sampled in five areas of northeastern, central and insular Italy were analysed by polymerase chain reaction and sequencing for the presence of rickettsiae, borreliae and babesiae. Several rickettsial species of the spotted fever group of zoonotic concern and other zoonotic pathogens were found, such as Borrelia burgdorferi s.s., Borrelia afzelii, Borrelia garinii, and Babesia venatorum. These findings confirm a wide distribution of tick-borne bacterial and protozoan species in Italy, and highlight the sanitary importance of I. ricinus, often recorded as feeding on humans. PMID:25784072

  16. Immunity against Ixodes scapularis Salivary Proteins Expressed within 24 Hours of Attachment Thwarts Tick Feeding and Impairs Borrelia Transmission

    PubMed Central

    Narasimhan, Sukanya; DePonte, Kathleen; Marcantonio, Nancy; Liang, Xianping; Royce, Thomas E.; Nelson, Kenneth F.; Booth, Carmen J.; Koski, Benjamin; Anderson, John F.; Kantor, Fred; Fikrig, Erol

    2007-01-01

    In North America, the black-legged tick, Ixodes scapularis, an obligate haematophagus arthropod, is a vector of several human pathogens including Borrelia burgdorferi, the Lyme disease agent. In this report, we show that the tick salivary gland transcriptome and proteome is dynamic and changes during the process of engorgement. We demonstrate, using a guinea pig model of I. scapularis feeding and B. burgdorferi transmission, that immunity directed against salivary proteins expressed in the first 24 h of tick attachment — and not later — is sufficient to evoke all the hallmarks of acquired tick-immunity, to thwart tick feeding and also to impair Borrelia transmission. Defining this subset of proteins will promote a mechanistic understanding of novel I. scapularis proteins critical for the initiation of tick feeding and for Borrelia transmission. PMID:17505544

  17. Large Scale Spatial Risk and Comparative Prevalence of Borrelia miyamotoi and Borrelia burgdorferi Sensu Lato in Ixodes pacificus

    PubMed Central

    Padgett, Kerry; Bonilla, Denise; Kjemtrup, Anne; Vilcins, Inger-Marie; Yoshimizu, Melissa Hardstone; Hui, Lucia; Sola, Milagros; Quintana, Miguel; Kramer, Vicki

    2014-01-01

    Borrelia miyamotoi is a newly described emerging pathogen transmitted to people by Ixodes species ticks and found in temperate regions of North America, Europe, and Asia. There is limited understanding of large scale entomological risk patterns of B. miyamotoi and of Borreila burgdorferi sensu stricto (ss), the agent of Lyme disease, in western North America. In this study, B. miyamotoi, a relapsing fever spirochete, was detected in adult (n = 70) and nymphal (n = 36) Ixodes pacificus ticks collected from 24 of 48 California counties that were surveyed over a 13 year period. Statewide prevalence of B. burgdorferi sensu lato (sl), which includes B. burgdorferi ss, and B. miyamotoi were similar in adult I. pacificus (0.6% and 0.8%, respectively). In contrast, the prevalence of B. burgdorferi sl was almost 2.5 times higher than B. miyamotoi in nymphal I. pacificus (3.2% versus 1.4%). These results suggest similar risk of exposure to B. burgdorferi sl and B. miyamotoi from adult I. pacificus tick bites in California, but a higher risk of contracting B. burgdorferi sl than B. miyamotoi from nymphal tick bites. While regional risk of exposure to these two spirochetes varies, the highest risk for both species is found in north and central coastal California and the Sierra Nevada foothill region, and the lowest risk is in southern California; nevertheless, tick-bite avoidance measures should be implemented in all regions of California. This is the first study to comprehensively evaluate entomologic risk for B. miyamotoi and B. burgdorferi for both adult and nymphal I. pacificus, an important human biting tick in western North America. PMID:25333277

  18. Diversity of Ixodes-borne Borrelia species--clinical, pathogenetic, and diagnostic implications and impact on vaccine development.

    PubMed

    van Dam, Alje P

    2002-01-01

    Among Borrelia spirochetes carried by hard ticks belonging to the various Ixodes species, at least 10 species can be distinguished. Of these, Borrelia burgdorferi sensu stricto is involved in human Lyme borreliosis in North America and Europe, and Borrelia garinii and Borrelia afzelii in human disease in Europe and Asia. The pathogenetic significance of the other species is uncertain. Although some of the Borrelia species are restricted to certain tick species, Ixodes ricinus, the vector of Lyme borreliosis in Europe, can be infested by at least five different species, including all three pathogenic species. There is evidence that different Borrelia species are preferentially found in different hosts: In Europe, B. afzelii is frequently found in small mammals, whereas B. garinii and Borrelia valaisiana are often found in birds. This could very well be related to differential sensitivity of these species to complement-mediated bactericidal activity of different hosts. Borrelial complement regulator acquiring proteins, among them OspE or Erp proteins, bind to host factor H and related proteins, and this binding protects against activation of complement by the spirochetal surface. The binding is different for proteins originating from different species and is also depending on the host origin of factor H. In Europe, B. garinii is mainly found in neuroborreliosis, whereas in skin disease B. afzelii is more frequently found. The reason is unclear. The majority of human sera cross-react between proteins of different Borrelia species, but some sera react only with proteins from one of the species. This holds especially for reactivity with OspC. A vaccine against B. burgdorferi sensu stricto has been licensed, but was recently redrawn from the market because of commercial reasons. A vaccine protecting against all three pathogenic species is not yet available. PMID:12804166

  19. Genetic diversity of Ixodes pavlovskyi and I. persulcatus (Acari: Ixodidae) from the sympatric zone in the south of Western Siberia and Kazakhstan.

    PubMed

    Livanova, Natalia N; Tikunov, Artem Yu; Kurilshikov, Alexander M; Livanov, Stanislav G; Fomenko, Nataliya V; Taranenko, Dmitrii E; Kvashnina, Anna E; Tikunova, Nina V

    2015-11-01

    The most epidemiologically significant tick species in Siberia involved in transmission of a large number of pathogens causing human infectious diseases is Ixodes persulcatus. Ixodes pavlovskyi, being more active, also poses epidemiological threats. These tick species share morphology, activity seasons and geographic distribution range. In this paper, we characterize the geographic and genetic structures of I. persulcatus and I. pavlovskyi populations inhabiting the southern part of Western Siberia (Russia and Kazakhstan)--the western part of I. pavlovskyi distribution range. The data are based on six distinct Ixodes tick populations. Analysis of the concatenated mitochondrial marker sequences (16S rRNA and COI) and the nuclear sequence (ITS2) showed genetic polymorphisms in both I. persulcatus and I. pavlovskyi ticks inhabiting the sympatric zone. We could not determine the phylogeographic structure of I. pavlovskyi populations whereas for I. persulcatus significant within-region variance was shown. Notably, the abundance of I. persulcatus ticks negatively correlates with nucleotide and haplotype diversity in the concatenated sequence of mitochondrial gene (16S rRNA and COI) fragments. This is the first description of the genetic polymorphism of I. persulcatus and I. pavlovskyi ticks coexisting in a sympatric zone based on analysis of mitochondrial and nuclear markers. PMID:26201397

  20. Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host.

    PubMed

    Kotsyfakis, Michalis; Schwarz, Alexandra; Erhart, Jan; Ribeiro, José M C

    2015-01-01

    Ixodes ricinus is a tick that transmits the pathogens of Lyme and several arboviral diseases. Pathogens invade the tick midgut, disseminate through the hemolymph, and are transmitted to the vertebrate host via the salivary glands; subverting these processes could be used to interrupt pathogen transfer. Here, we use massive de novo sequencing to characterize the transcriptional dynamics of the salivary and midgut tissues of nymphal and adult I. ricinus at various time points after attachment on the vertebrate host. Members of a number of gene families show stage- and time-specific expression. We hypothesize that gene expression switching may be under epigenetic control and, in support of this, identify 34 candidate proteins that modify histones. I. ricinus-secreted proteins are encoded by genes that have a non-synonymous to synonymous mutation rate even greater than immune-related genes. Midgut transcriptome (mialome) analysis reveals several enzymes associated with protein, carbohydrate, and lipid digestion, transporters and channels that might be associated with nutrient uptake, and immune-related transcripts including antimicrobial peptides. This publicly available dataset supports the identification of protein and gene targets for biochemical and physiological studies that exploit the transmission lifecycle of this disease vector for preventative and therapeutic purposes. PMID:25765539

  1. Population genetic structure of the tree-hole tick Ixodes arboricola (Acari: Ixodidae) at different spatial scales

    PubMed Central

    Van Oosten, A R; Heylen, D J A; Jordaens, K; Backeljau, T; Matthysen, E

    2014-01-01

    The endophilic tick Ixodes arboricola infests cavity-nesting birds, and its dispersal strongly depends on the movements of its host. Population genetic structure of I. arboricola was studied with seven polymorphic microsatellite markers. We collected 268 ticks from 76 nest boxes in four woodlots near Antwerp, Belgium. These nest boxes are mainly used by the principal hosts of I. arboricola, the great tit Parus major and the blue tit Cyanistes caeruleus. As these birds typically return to the same cavity for roosting or breeding, ticks within nest boxes were expected to be highly related, and tick populations were expected to be spatially structured among woodlots and among nest boxes within woodlots. In line with the expectations, genetic population structure was found among woodlots and among nest boxes within woodlots. Surprisingly, there was considerable genetic variation among ticks within nest boxes. This could be explained by continuous gene flow from ticks from nearby tree holes, yet this remains to be tested. A pairwise relatedness analysis conducted for all pairs of ticks within nest boxes showed that relatedness among larvae was much higher than among later instars, which suggests that larvae are the most important instar for tick dispersal. Overall, tick populations at the studied spatial scale are not as differentiated as predicted, which may influence the scale at which host–parasite evolution occurs. PMID:24781806

  2. Loop analysis for pathogens: niche partitioning in the transmission graph for pathogens of the North American tick Ixodes scapularis.

    PubMed

    Davis, Stephen; Bent, Stephen J

    2011-01-21

    In population biology, loop analysis is a method of decomposing a life cycle graph into life history pathways so as to compare the relative contributions of pathways to the population growth rate across species and populations. We apply loop analysis to the transmission graph of five pathogens known to infect the black-legged tick, Ixodes scapularis. In this context loops represent repeating chains of transmission that could maintain the pathogen. They hence represent completions of the life cycle, in much the same way as loops in a life cycle graph do for plants and animals. The loop analysis suggests the five pathogens fall into two distinct groups. Borellia burgdorferi, Babesia microti and Anaplasma phagocytophilum rely almost exclusively on a single loop representing transmission to susceptible larvae feeding on vertebrate hosts that were infected by nymphs. Borellia miyamotoi, in contrast, circulates among a separate set of host types and utilizes loops that are a mix of vertical transmission and horizontal transmission. For B. miyamotoi the main loop is from vertebrate hosts to susceptible nymphs, where the vertebrate hosts were infected by larvae that were infected from birth. The results for Powassan virus are similar to B. miyamotoi. The predicted impacts of the known variation in tick phenology between populations of I. scapularis in the Midwest and Northeast of the United States are hence markedly different for the two groups. All of these pathogens benefit, though, from synchronous activity of larvae and nymphs. PMID:20950628

  3. Genotypic diversity of an emergent population of Borrelia burgdorferi at a coastal Maine island recently colonized by Ixodes scapularis.

    PubMed

    MacQueen, Douglas D; Lubelczyk, Charles; Elias, Susan P; Cahill, Bruce K; Mathers, Amy J; Lacombe, Eleanor H; Rand, Peter W; Smith, Robert P

    2012-06-01

    The recent range expansion of Ixodes scapularis has been accompanied by the emergence of Borrelia burgdorferi. The development of genetic diversity in B. burgdorferi at these sites of emergence and its relationship to range expansion is poorly understood. We followed colonization of I. scapularis on a coastal Maine island over a 17-year period. B. burgdorferi's emergence was documented, as was expansion of ospC strain diversity. Ticks collected from rodents and vegetation were examined for the presence of B. burgdorferi. Sequencing and reverse line blot were used to detect B. burgdorferi ospC major groups (oMG). No I. scapularis were found until year four of the study, after which time they increased in abundance. No B. burgdorferi was detected by darkfield microscopy in I. scapularis until 10 years into the study, when 4% of adult ticks were infected. Seven years later, 43% of adult ticks were infected. In 2003, one oMG accounted for 91% of B. burgdorferi strains. This "founder" strain persisted in 2005, but by 2007 was a minority of the 7 oMGs present. Given the island's isolation, gene flow by avian introduction of multiple strains is suggested in the development of B. burgdorferi oMG diversity. PMID:22217172

  4. Detection of Anaplasma phagocytophilum genotypes that are potentially virulent for human in wild ruminants and Ixodes ricinus in Central Italy.

    PubMed

    Di Domenico, M; Pascucci, I; Curini, V; Cocco, A; Dall'Acqua, F; Pompilii, C; Cammà, C

    2016-07-01

    Human granulocytic anaplasmosis (HGA) is an emerging tick-borne zoonosis worldwide. As is the case for many tick-borne diseases, the epidemiological cycle is associated to the environmental conditions, including the presence of wild vertebrate reservoir hosts, vectors, climate and vegetation. In this study a total number of 87 spleen samples of wild ruminants carcasses from Central Italy, and 77 Ixodes ricinus collected from the same dead animals were screened for Anaplasma phagocytophilum by using Real Time PCR. A. phagocytophilum DNA was detected in 75%, 66.7% and 54.2% of the spleen samples from red deer (Cervus elaphus), Apennine chamois (Rupicapra pyrenaica ornata) and roe deer (Capreolus capreolus) respectively, whereas it was detected in the 31.2% of I. ricinus. A total of 27 positive samples were characterized by sequencing a portion of the groEL gene. Two A. phagocytophilum lineages could clearly be delineated from the phylogenetic tree. Four sequences from red deer, 2 from I. ricinus and 1 from Apennine chamois clustered into lineage I together with those previously described as virulent genotypes related to HGA. The presence of A. phagocytophilum DNA in the Apennine chamois represents the first report for this Italian endemic subspecies. PMID:27020736

  5. Allozyme polymorphism of Mdh and alpha-Gpdh in Ixodes ricinus populations: comparison of borreliae-infected and uninfected ticks.

    PubMed

    Radulović, Zeljko; Milutinović, Marija; Andelković, Marko; Vujcić, Zoran; Tomanović, Snezana; Bozić, Natasa; Marinković, Dragoslav

    2006-01-01

    Ixodes ricinus Linnaeus (Acari: Ixodidae) ticks are vectors of numerous infectious diseases in humans and animals. The allozyme variability of MDH and alpha-Gpdh was detected by native polyacrylamide gel electrophoresis in I. ricinus natural populations in three localities in Serbia. Four alleles of Mdh locus (MDH 1, MDH 2, MDH 3 and MDH X) and four alleles of alpha-Gpdh locus (VS, S, F and VF) were detected. Interpopulation differences in Mdh and alpha-Gpdh allele frequencies were statistically insignificant. Significant difference in alpha-Gpdh allele frequencies between males and females was recorded in the largest sample only. Differences in allele frequencies, detected between borreliae-infected and uninfected I. ricinus ticks, were close to the level of statistical significance, especially for alpha-Gpdh locus. Clear significant difference appeared in females when sexes were tested separatelly (P = 0.037). It is interesting that genotypes containing rarer alleles (MDH 1 and S) were infected in higher proportion in comparison to other genotypes. Our results point towards a possible role of Mdh and alpha-Gpdh loci in I. ricinus ticks in the determination of energy requirements for host seeking. Sex differences in alpha-Gpdh allele frequencies suggest that selective pressure, concerning efficiency of reserve materials utilisation, points to alpha-Gpdh rather than to Mdh locus. PMID:17072538

  6. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States.

    PubMed Central

    Brownstein, John S; Holford, Theodore R; Fish, Durland

    2003-01-01

    An understanding of the spatial distribution of the black-legged tick, Ixodes scapularis, is a fundamental component in assessing human risk for Lyme disease in much of the United States. Although a county-level vector distribution map exists for the United States, its accuracy is limited by arbitrary categories of its reported presence. It is unknown whether reported positive areas can support established populations and whether negative areas are suitable for established populations. The steadily increasing range of I. scapularis in the United States suggests that all suitable habitats are not currently occupied. Therefore, we developed a spatially predictive logistic model for I. scapularis in the 48 conterminous states to improve the previous vector distribution map. We used ground-observed environmental data to predict the probability of established I. scapularis populations. The autologistic analysis showed that maximum, minimum, and mean temperatures as well as vapor pressure significantly contribute to population maintenance with an accuracy of 95% (p < 0.0001). A cutoff probability for habitat suitability was assessed by sensitivity analysis and was used to reclassify the previous distribution map. The spatially modeled relationship between I. scapularis presence and large-scale environmental data provides a robust suitability model that reveals essential environmental determinants of habitat suitability, predicts emerging areas of Lyme disease risk, and generates the future pattern of I. scapularis across the United States. PMID:12842766

  7. No Observed Effect of Landscape Fragmentation on Pathogen Infection Prevalence in Blacklegged Ticks (Ixodes scapularis) in the Northeastern United States

    PubMed Central

    Zolnik, Christine P.; Falco, Richard C.; Kolokotronis, Sergios-Orestis; Daniels, Thomas J.

    2015-01-01

    Pathogen prevalence within blacklegged ticks (Ixodes scapularis Say, 1821) tends to vary across sites and geographic regions, but the underlying causes of this variation are not well understood. Efforts to understand the ecology of Lyme disease have led to the proposition that sites with higher host diversity will result in lower disease risk due to an increase in the abundance of inefficient reservoir species relative to the abundance of species that are highly competent reservoirs. Although the Lyme disease transmission cycle is often cited as a model for this “dilution effect hypothesis”, little empirical evidence exists to support that claim. Here we tested the dilution effect hypothesis for two pathogens transmitted by the blacklegged tick along an urban-to-rural gradient in the northeastern United States using landscape fragmentation as a proxy for host biodiversity. Percent impervious surface and habitat fragment size around each site were determined to assess the effect of landscape fragmentation on nymphal blacklegged tick infection with Borrelia burgdorferi and Anaplasma phagocytophilum. Our results do not support the dilution effect hypothesis for either pathogen and are in agreement with the few studies to date that have tested this idea using either a landscape proxy or direct measures of host biodiversity. PMID:26430734

  8. Borrelia burgdorferi sensu lato and co-infections with Anaplasma phagocytophilum and Rickettsia spp. in Ixodes ricinus in Hamburg, Germany.

    PubMed

    May, K; Jordan, D; Fingerle, V; Strube, C

    2015-12-01

    To obtain initial data on Borrelia burgdorferi sensu lato (Spirochaetales: Spirochaetaceae) in Ixodes ricinus (Ixodida: Ixodidae) ticks in Hamburg, Germany, 1400 questing ticks were collected by flagging at 10 different public recreation areas in 2011 and analysed using probe-based quantitative real-time polymerase chain reaction. The overall rate of infection with B. burgdorferi s.l. was 34.1%; 30.0% of adults were infected (36.7% of females and 26.0% of males), as were 34.5% of nymphs. Significant differences in tick infection rates were observed between the spring and summer/autumn months, as well as among sampling locations. Borrelia genospecies identification by reverse line blotting was successful in 43.6% of positive tick samples. The most frequent genospecies was Borrelia garinii/Borrelia bavariensis, followed by Borrelia afzelii, Borrelia valaisiana, B. burgdorferi sensu stricto, Borrelia spielmanii, Borrelia bissettii and Borrelia lusitaniae. Based on previously published data, co-infection of Borrelia and Rickettsiales spp. was determined in 25.8% of ticks. Overall, 22.9% of ticks were co-infected with Rickettsia spp. (Rickettsiales: Rickettsiaceae), 1.7% with Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and 1.2% with both pathogens. Study results show a high prevalence of Borrelia-positive ticks in recreation areas in the northern German city of Hamburg and the potential health risk to humans in these areas should not be underestimated. PMID:26096626

  9. Molecular Phylogeny of a tick, Ixodes granulatus (Acari: Ixodidae) based on cytochrome oxidase subunit I (COI) marker

    NASA Astrophysics Data System (ADS)

    Lah, Ernieenor Faraliana Che; Yaakop, Salmah; Ahamad, Mariana; George, Ernna; Nor, Shukor Md

    2014-09-01

    Identification of a local species of tick, Ixodes granulatus from the family Ixodidae is essential because it has potential to be vector for spotted fever group (SFG) rickettsia and tick thypus. The aim of this study is to portray the relationships among several populations of I. granulatus collected from different species of animal hosts and localities in Peninsular Malaysia. Polymerase Chain Reaction was conducted by amplifying mitochondrial DNA marker, namely cytochrome oxidase subunit I (COI) sequences from 15 individual ticks that attached to five different hosts caught from three different localities. Confirmation of the species identity was accomplished using BLAST program. Neighbor-joining (NJ) and Maximum Parsimony (MP) tree based on COI sequences were constructed by using PAUP 4.0b10 to identify the relationship among species. The result of this study showed a high genetic heterogeneity between I. granulatus and other species of the same genus (7.2-23.7%). Furthermore, a low intraspecific variation was observed among the species of I. granulatus collected from different localities (0-3.7%). This study produced the first establishment of molecular marker for clarifying genetic species variation and diversity of local I. granulatus tick which contribute to the control of tick-borne infections.

  10. A Rickettsiella Bacterium from the Hard Tick, Ixodes woodi: Molecular Taxonomy Combining Multilocus Sequence Typing (MLST) with Significance Testing

    PubMed Central

    Leclerque, Andreas; Kleespies, Regina G.

    2012-01-01

    Hard ticks (Acari: Ixodidae) are known to harbour intracellular bacteria from several phylogenetic groups that can develop both mutualistic and pathogenic relationships to the host. This is of particular importance for public health as tick derived bacteria can potentially be transmitted to mammals, including humans, where e.g. Rickettsia or Coxiella act as severe pathogens. Exact molecular taxonomic identification of tick associated prokaryotes is a necessary prerequisite of the investigation of their relationship to both the tick and possible vertebrate hosts. Previously, an intracellular bacterium had been isolated from a monosexual, parthenogenetically reproducing laboratory colony of females of the hard tick, Ixodes woodi Bishopp, and had preliminarily been characterized as a “Rickettsiella-related bacterium”. In the present molecular taxonomic study that is based on phylogenetic reconstruction from both 16 S ribosomal RNA and protein-encoding marker sequences complemented with likelihood-based significance testing, the bacterium from I. woodi has been identified as a strain of the taxonomic species Rickettsiella grylli. It is the first time that a multilocus sequence typing (MLST) approach based on a four genes comprising MLST scheme has been implemented in order to classify a Rickettsiella-like bacterium to this species. The study demonstrated that MLST holds potential for a better resolution of phylogenetic relationships within the genus Rickettsiella, but requires sequence determination from further Rickettsiella-like bacteria in order to complete the current still fragmentary picture of Rickettsiella systematics. PMID:22675436

  11. Microhabitat-independent regional differences in survival of unfed Ixodes scapularis nymphs (Acari:Ixodidae) in Connecticut.

    PubMed

    Bertrand, M R; Wilson, M L

    1997-03-01

    The effects of habitat and microclimate on survival of unfed nymphal black-legged ticks, Ixodes scapularis Say (approximately I. damnini Spielman, Clifford, Piesman & Corwin), were studied under natural conditions in southcentral and northwestern Connecticut. At both coastal and inland locations, survival of 3 groups of 20 wild-caught questing nymphs placed in nylon mesh bags was monitored in each of 3 different habitats (field, forest canopy, and forest/field edge) during summer 1995. Simultaneously, soil temperature, ground-level air temperature, and relative humidity were measured continuously within each habitat at both sites. The number of ticks surviving in each habitat was monitored weekly. Average daily survival rates of nymphs were related inversely to soil temperature but were not related to air temperature or humidity. Overall, nymphal ticks at the inland site survived significantly longer than those at the coastal site; however, no significant differences in mortality rates were found among habitats. These results suggest that inland environmental conditions are suitable for lengthy survival of unfed nymphal I. scapularis in regions where this tick is not yet abundant. PMID:9103759

  12. Biases associated with several sampling methods used to estimate abundance of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae).

    PubMed

    Schulze, T L; Jordan, R A; Hung, R W

    1997-11-01

    Several tick sampling methods were evaluated for ixodes scapularis Say and Amblyomma americanum (I.) in oak-dominated mixed hard-wood, pitch pine-dominated, and mixed hardwood and pine forests in coastal New Jersey. Walking surveys were more efficient for collecting I. scapularis adults than dragging by a factor of > 2:1. In contrast, drag sampling yielded nearly twice as many A. americanum adults compared with walking surveys. I. scapularis subadults were rarely collected during walking surveys. A. americanum nymphs were collected from drags approximately 3:1 over walking surveys. Twice as many A. americanum larvae were obtained from drags compared with walking surveys. All developmental stages of A. americanum responded positively to carbon dioxide. Pitfall traps and leaf litter samples collected very few ticks. Tick distribution among habitats varied significantly with the sampling method chosen, and the relative ranking of sites with respect to tick abundance varied depending on the stage of tick sampled. Failure to recognize the biases in these commonly used sampling techniques can potentially lead to incorrect conclusions that can have significant adverse public health consequences. PMID:9439115

  13. Geographical distribution and prevalence of Borrelia burgdorferi genospecies in questing Ixodes ricinus from Romania: a countrywide study.

    PubMed

    Kalmár, Zsuzsa; Mihalca, Andrei D; Dumitrache, Mirabela O; Gherman, Călin M; Magdaş, Cristian; Mircean, Viorica; Oltean, Miruna; Domşa, Cristian; Matei, Ioana A; Mărcuţan, Daniel I; Sándor, Attila D; D'Amico, Gianluca; Paştiu, Anamaria; Györke, Adriana; Gavrea, Raluca; Marosi, Béla; Ionică, Angela; Burkhardt, Etelka; Toriay, Hortenzia; Cozma, Vasile

    2013-09-01

    The paper reports the prevalence and geographical distribution of Borrelia burgdorferi sensu lato (s.l.) and its genospecies in 12,221 questing Ixodes ricinus ticks collected at 183 locations from all the 41 counties of Romania. The unfed ticks were examined for the presence of B. burgdorferi s.l. by PCR targeting the intergenic spacer 5S-23S. Reverse line blot hybridization (RLB) and restriction fragment length polymorphism (RFLP) analysis were performed for identification of B. burgdorferi genospecies. The overall prevalence of infection was 1.4%, with an average local prevalence between 0.75% and 18.8%. B. burgdorferi s.l. was found in ticks of 55 of the 183 localities. The overall prevalence B. burgdorferi s.l. in ticks in the infected localities was 3.8%. The total infection prevalence was higher in female ticks than in other developmental stages. Three Borrelia genospecies were detected. The most widely distributed genospecies was B. afzelii, followed by B. garinii and B. burgdorferi sensu stricto (s.s.). The study is the first countrywide study and the first report of B. burgdorferi s.s. in Romania. The distribution maps show that higher prevalences were recorded in hilly areas, but Lyme borreliosis spirochetes were also present in forested lowlands, albeit with a lower prevalence. PMID:23890805

  14. The Prevalence of Zoonotic Tick-Borne Pathogens in Ixodes Scapularis Collected in the Hudson Valley, New York State

    PubMed Central

    Aliota, Matthew T.; Dupuis, Alan P.; Wilczek, Michael P.; Peters, Ryan J.; Ostfeld, Richard S.

    2014-01-01

    Abstract Ixodes scapularis, the blacklegged tick, is capable of transmitting the pathogens that cause Lyme disease (Borrelia burgdorferi), babesiosis (Babesia microti), anaplasmosis (Anaplasma phagocytophilum), and to a lesser extent Powassan encephalitis (deer tick virus [DTV]). These pathogens represent significant public health problems, but little is known about the occurrence and co-infection prevalence of these pathogens in I. scapularis. Here, we used standard PCR and pathogen-specific primers to estimate the prevalence of infection of A. phagocytophilium, B. burgdorferi, B. microti, and Ehrlichia chaffeensis in questing nymph and adult I. scapularis collected from sites in Putnam and Dutchess counties in southern New York in 2011. To detect DTV infection, cell cultures were observed for the presence of cytopathic effects and positive results were confirmed via real time RT-PCR. In 466 individually sampled adult ticks, B. burgdorferi had the highest prevalence of infection (55%) followed by A. phagocytophilum (18.2%), DTV (3.4%), B. microti (3.2%), and E. chaffeensis (1.5%). Infection with two pathogens occurred in 13.3% of ticks, and 10 ticks were infected with three combinations of three pathogens. These results provide an estimate of the rate of co-infection, which then can help inform the epidemiological risk of contracting multiple zoonotic tick-borne pathogens within the Hudson Valley region of New York State. PMID:24689680

  15. The High Diversity and Global Distribution of the Intracellular Bacterium Rickettsiella in the Polar Seabird Tick Ixodes uriae.

    PubMed

    Duron, Olivier; Cremaschi, Julie; McCoy, Karen D

    2016-04-01

    Obligate intracellular bacteria of the Rickettsiella genus are emerging as both widespread and biologically diverse in arthropods. Some Rickettsiella strains are highly virulent entomopathogenic agents, whereas others are maternally inherited endosymbionts exerting very subtle manipulations on host phenotype to promote their own spread. Recently, a variety of Rickettsiella strains have been reported from ticks, but their biology is entirely unknown. In the present study, we examined the incidence and diversity of Rickettsiella in 11 geographically distinct populations of the polar seabird tick Ixodes uriae. We found Rickettsiella in most tick populations with a prevalence ranging from 3 to 24 %. 16S ribosomal RNA (rRNA) and GroEL gene sequences revealed an unexpected diversity of Rickettsiella, with 12 genetically distinct Rickettsiella strains present in populations of I. uriae. Phylogenetic investigations further revealed that these Rickettsiella strains do not cluster within a tick-specific clade but rather exhibit distinct evolutionary origins demonstrating frequent horizontal transfers between distantly related arthropod species. Tick rearing further showed that Rickettsiella are present in eggs laid by infected females with no evidence of abortive development. Using this data set, we discuss the potential biological significance of Rickettsiella in seabird ticks. Most notably, we suggest that these organisms may not be pathogenic forms but rather use more subtle adaptive strategies to persist within tick populations. PMID:26573831

  16. Anaplasma phagocytophilum groEL gene heterogeneity in Ixodes ricinus larvae feeding on roe deer in Northeastern Italy.

    PubMed

    Carpi, Giovanna; Bertolotti, Luigi; Pecchioli, Elena; Cagnacci, Francesca; Rizzoli, Annapaola

    2009-04-01

    Anaplasma phagocytophilum is an emerging tick-borne pathogen with both veterinary and human health implications. The role of wildlife hosts for this pathogen are not well defined, even thought roe deer (Capreolus capreolus) has been suggested to contribute to the occurrence of this tick-borne diseases in Europe. Therefore the aim of the present study was to investigate the potential role of this ungulate species as a reservoir of human pathogenic strains of A. phagocytophilum in a tick-borne diseases endemic area in Northeastern Italy. Ixodes ricinus feeding on roe deer were collected and analyzed for the presence for A. phagocytophilum by a molecular approach targeting 16S rRNA and groEL genes. The mean prevalence of A. phagocytophilum recorded was 5.11%, highlighting the ability of roe deer to infect the I. ricinus larval stage. The results of further genetic characterization of the strains of A. phagocytophilum herein isolated, based on phylogenetic information contained in groEL gene sequences, showed substantial heterogeneity among sequences analyzed. Nevertheless, these findings suggest that the roe deer population of the Trentino region of Italy harbors strains of A. phagocytophilum of unknown pathogenicity for humans. PMID:18945191

  17. Sympatric occurrence of Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna ticks and Rickettsia and Babesia species in Slovakia.

    PubMed

    Svehlová, Andrea; Berthová, Lenka; Sallay, Balázs; Boldiš, Vojtech; Sparagano, Olivier A E; Spitalská, Eva

    2014-09-01

    Vojka nad Dunajom in the south-west of the Slovak Republic is a locality with sympatric occurrence of 3 species of ticks. This study investigated the spatial distribution of Dermacentor reticulatus, Ixodes ricinus, and Haemaphysalis concinna ticks in this area and determined the prevalence of Babesia and Rickettsia species in questing adults of these tick species considered as potential risk for humans and animals. Ticks were collected by blanket dragging over the vegetation from September 2011 to October 2012. All ticks were subjected to DNA extraction and individually assayed with PCR-based methods targeting the gltA, sca4, 23S rRNA genes of Rickettsia spp. and the 18S rRNA gene of Babesia spp. D. reticulatus was the dominant species occurring in this area (67.7%, n=600), followed by I. ricinus (31.8%, n=282) and H. concinna (0.5%, n=4) ticks. Rickettsial infection was determined in 10.8% (n=65) and 11.7% (n=33) of D. reticulatus and I. ricinus ticks, respectively. Babesia spp. infection was confirmed in 1.8% (n=11) of D. reticulatus and 0.4% (n=1) of I. ricinus ticks. DNA of 6 different pathogenic tick-borne species, Rickettsia helvetica, Rickettsia monacensis, Rickettsia slovaca, Rickettsia raoultii, Babesia canis, and Babesia venatorum were identified in this locality with sympatric occurrence of I. ricinus, D. reticulatus, and H. concinna ticks. PMID:24973275

  18. [The abundance and distribution of the Ixodes persulcatus (Acari: Ixodidae) near its northern spreading limit in the Ural Mountains].

    PubMed

    Livanova, N N; Livanov, S G

    2006-01-01

    A count of the tick species Ixodes persulcatus Schulze, 1930 was carried out in the "Denezhkin Kamen" Nature Reserve and adjacent territories (the Severoural'sk and Ivdel' Districts of the Sverdlovsk Region, the Northern Urals geographical province) in the 2005. The abundance and distribution of unengorged adults has been evaluated on an area of 22.5 square kilometers (N 60 degrees 27'-60 degrees 30' E 059 degrees 38'-059 degrees 42'). The area includes proportionally main landscape and vegetation elements of the region studied, from mountain analogues of the middle and northern taiga up to tundra. One tick species, I. persulcatus, has been collected by flagging with the abundance from 0.4 up to 6.8 (average 1.6 +/- 0.9) specimens per flag-hour. The observed values of abundance are classified into three classes (I - ticks are absent, II - 1-2 specimens, and III - 3-7 specimens per flag-hour). The class I amounts 20, II - 75, and III - 5% of the area examined. It has been revealed by the expert evaluation of the 2003-2004 and counts of the 2005 that ticks occur stably in the Northern Ural, reaching N 61 degrees and 400 m above sea level. The level of the species abundance remained constant till the middle of summer. In this period the activity of ticks dependent on the weather optimum only. PMID:17042282

  19. Isolation of Lyme disease Borrelia from puffins (Fratercula arctica) and seabird ticks (Ixodes uriae) on the Faeroe Islands.

    PubMed

    Gylfe; Olsen, B; Strasevicius, D; Marti Ras, N; Weihe, P; Noppa, L; Ostberg, Y; Baranton, G; Bergström, S

    1999-04-01

    This is the first report on the isolation of Lyme disease Borrelia from seabirds on the Faeroe Islands and the characteristics of its enzootic cycle. The major components of the Borrelia cycle include the puffin (Fratercula arctica) as the reservoir and Ixodes uriae as the vector. The importance of this cycle and its impact on the spread of human Lyme borreliosis have not yet been established. Borrelia spirochetes isolated from 2 of 102 sampled puffins were compared to the borreliae previously obtained from seabird ticks, I. uriae. The rrf-rrl intergenic spacer and the rrs and the ospC genes were sequenced and a series of phylogenetic trees were constructed. Sequence data and restriction fragment length polymorphism analysis grouped the strains together with Borrelia garinii. In a seroepidemiological survey performed with residents involved in puffin hunting on the Faeroe Islands, 3 of 81 serum samples were found to be positive by two commonly used clinical tests: a flagellin-based enzyme-linked immunosorbent assay (ELISA) and Western blotting. These three positive serum samples also had high optical density values in a whole-cell ELISA. The finding of seropositive Faeroe Islanders who are regularly exposed to I. uriae indicate that there may be a transfer of B. garinii by this tick species to humans. PMID:10074497

  20. Heligmosomoides polygyrus reduces infestation of Ixodes ricinus in free-living yellow-necked mice, Apodemus flavicollis.

    PubMed

    Ferrari, N; Cattadori, I M; Rizzoli, A; Hudson, P J

    2009-03-01

    Free-living animals are usually inhabited by a community of parasitic species that can interact with each other and alter both host susceptibility and parasite transmission. In this study we tested the prediction that an increase in the gastrointestinal nematode Heligmosomoides polygyrus would increase the infestation of the tick Ixodes ricinus, in free-living yellow-necked mice, Apodemus flavicollis. An extensive cross-sectional trapping survey identified a negative relationship between H. polygyrus and I. ricinus counter to the prediction. An experimental reduction of the nematode infection through anthelmintic treatment resulted in an increase in tick infestation, suggesting that this negative association was one of cause and effect. Host characteristics (breeding condition and age) and habitat variables also contributed to affect tick infestation. While these results were counter to the prediction, they still support the hypothesis that interactions between parasite species can shape parasite community dynamics in natural systems. Laboratory models may act differently from natural populations and the mechanism generating the negative association is discussed. PMID:19154651

  1. Molecular and pharmacological characterization of two D(1)-like dopamine receptors in the Lyme disease vector, Ixodes scapularis.

    PubMed

    Meyer, Jason M; Ejendal, Karin F K; Watts, Val J; Hill, Catherine A

    2011-08-01

    Advancements in tick neurobiology may impact the development of acaricides to control those species that transmit human and animal diseases. Here, we report the first cloning and pharmacological characterization of two neurotransmitter binding G protein-coupled receptors in the Lyme disease (blacklegged) tick, Ixodes scapularis. The genes IscaGPRdop1 and IscaGPRdop2 were identified in the I. scapularis genome assembly and predicted as orthologs of previously characterized D(1)-like dopamine receptors in the fruit fly Drosophila melanogaster and honeybee Apis mellifera. Heterologous expression in HEK 293 cells demonstrated that each receptor functioned as a D(1)-like dopamine receptor because significant increases in levels of intracellular cyclic adenosine monophosphate (cAMP) were detected following dopamine treatment. Importantly, the receptors were distinct in their pharmacological properties regarding concentration-dependent response to dopamine, constitutive activity, and response to other biogenic amines. Exposure to a variety of dopamine receptor agonists and antagonists further demonstrated a D(1)-like pharmacology of these dopamine receptors and highlighted their differential activities in vitro. PMID:21457782

  2. Tick Histamine Release Factor Is Critical for Ixodes scapularis Engorgement and Transmission of the Lyme Disease Agent

    PubMed Central

    Dai, Jianfeng; Narasimhan, Sukanya; Zhang, Lili; Liu, Lei; Wang, Penghua; Fikrig, Erol

    2010-01-01

    Ticks are distributed worldwide and affect human and animal health by transmitting diverse infectious agents. Effective vaccines against most tick-borne pathogens are not currently available. In this study, we characterized a tick histamine release factor (tHRF) from Ixodes scapularis and addressed the vaccine potential of this antigen in the context of tick engorgement and B. burgdorferi transmission. Results from western blotting and quantitative Reverse Transcription-PCR showed that tHRF is secreted in tick saliva, and upregulated in Borrelia burgdorferi-infected ticks. Further, the expression of tHRF was coincident with the rapid feeding phase of the tick, suggesting a role for tHRF in tick engorgement and concomitantly, for efficient B. burgdorferi transmission. Silencing tHRF by RNA interference (RNAi) significantly impaired tick feeding and decreased B. burgdorferi burden in mice. Interfering with tHRF by actively immunizing mice with recombinant tHRF, or passively transferring tHRF antiserum, also markedly reduced the efficiency of tick feeding and B. burgdorferi burden in mice. Recombinant tHRF was able to bind to host basophils and stimulate histamine release. Therefore, we speculate that tHRF might function in vivo to modulate vascular permeability and increase blood flow to the tick bite-site, facilitating tick engorgement. These findings suggest that blocking tHRF might offer a viable strategy to complement ongoing efforts to develop vaccines to block tick feeding and transmission of tick-borne pathogens. PMID:21124826

  3. An ELISA to Detect Serum Antibodies to the Salivary Gland Toxin of Ixodes holocyclus Neumann in Dogs and Rodents

    PubMed Central

    Hall-Mendelin, S.; O'Donoghue, P.; Atwell, R. B.; Lee, R.; Hall, R. A.

    2011-01-01

    The Ixodes holocyclus tick causes paralysis in up to 10,000 companion and domestic animals each year in Australia. Treatment requires the removal of the parasite and the administration of a commercial tick antiserum that is prepared from hyperimmune dogs. Each batch of this serum is initially tested for toxin-neutralising potency in a mouse bioassay that is expensive, time consuming, and subjective. With the aim of developing a rapid in vitro assay to replace the bioassay, we used a partially purified antigen prepared from I. holocyclus salivary glands to develop an ELISA to detect toxin-reactive antibodies in hyperimmune dog sera. The optimised ELISA reliably detected antibodies reactive to I. holocyclus salivary gland antigens. Parallel testing of sera with a negative control antigen prepared from the salivary glands of the nontoxic tick Rhipicephalus (Boophilus) microplus provided further evidence that we were detecting toxin-specific antibodies in the assay. Using the ELISA, we could also detect antibodies induced in rats after experimental infestation with I. holocyclus. This assay shows promise as an alternative means of assessing the potency of batches of hyperimmune dog serum and to screen for toxin-reactive monoclonal antibodies produced from immunised rodents. PMID:21687655

  4. 'Candidatus Rickettsia mendelii', a novel basal group rickettsia detected in Ixodes ricinus ticks in the Czech Republic.

    PubMed

    Hajduskova, Eva; Literak, Ivan; Papousek, Ivo; Costa, Francisco B; Novakova, Marketa; Labruna, Marcelo B; Zdrazilova-Dubska, Lenka

    2016-04-01

    A novel rickettsial sequence in the citrate synthase gltA gene indicating a novel Rickettsia species has been detected in 7 out of 4524 Ixodes ricinus ticks examined within several surveys performed in the Czech Republic from 2005 to 2009. This new Candidatus Rickettsia sp. sequence has been found in 2 nymphs feeding on wild birds (Luscinia megarhynchos and Erithacus rubecula), in a male tick from vegetation, and 4 ticks feeding on a dog (3 males, 1 female tick). Portions of the ompA, ompB, sca4, and htrA genes were not amplifiable in these samples. A maximum likelihood tree of rickettsiae based on comparisons of partial amino acid sequences of citrate synthase and nucleotide sequences of 16S rDNA genes and phylogenetic analysis revealed a basal position of the novel species in the proximity of R. bellii and R. canadensis. The novel species has been named 'Candidatus Rickettsia mendelii' after the founder of genetics, Gregor Mendel. PMID:26873811

  5. Control of Ixodes ricinus and Dermacentor reticulatus tick infestations in rabbits vaccinated with the Q38 Subolesin/Akirin chimera.

    PubMed

    Contreras, Marinela; de la Fuente, José

    2016-06-01

    Diseases transmitted by ticks greatly impact human and animal health and their control is important for the eradication of tick-borne diseases. Vaccination is an environmentally friendly alternative for tick control. Recent results have suggested that Subolesin/Akirin (SUB/AKR) are good candidate antigens for the control of arthropod vector infestations. Here, we describe the effect of vaccination with the Q38 chimera containing SUB/AKR conserved protective epitopes on Ixodes ricinus and Dermacentor reticulatus tick larval mortality, feeding and molting. We demonstrated that Q38 vaccination had an efficacy of 99.9% and 46.4% on the control of I. ricinus and D. reticulatus larvae by considering the cumulative effect on reducing tick survival and molting. The effect of the Q38 vaccine on larval feeding and molting is essential to reduce tick infestations and supports that Q38 might be a candidate universal antigen for the control of multiple tick species that can infest the same host. PMID:27154388

  6. Efficacy of a granular formulation containing Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) microsclerotia against nymphs of Ixodes scapularis (Acari: Ixoididae).

    PubMed

    Behle, Robert W; Jackson, Mark A; Flor-Weiler, Lina B

    2013-02-01

    Technical improvements in the production and formulation of microbial agents will increase the potential for development of biological pesticides that are able to compete with chemical insecticides in the marketplace. Here we report the efficacy of a simple granule formulation containing microsclerotia of Metarhizium brunneum (Petch) (Hypocreales: Clavicipitaceae) for control of unfed and fed nymphs of Ixodes scpaularis Say (Acari: Ixoididae). Microsclerotial granules of M. brunneum applied to moist potting mix produce infective conidia within 2 wk and conidia remained viable for up to 8 wk after application. Microsclerotial granules produced from 3.05 x 10(9) to 1.24 x 10(10) conidia g(-1) granules in potting mix. Both unfed and fed nymphs were susceptible to infection when exposed to treated potting soil with up to 56 and 74% mortality, respectively. M. brunneum demonstrated a transtadial infection for fed nymphs exposed to treated potting mix with signs of a fungal infection becoming apparent only after molting into adults. High conidial production rates from microsclerotial granules of M. brunneum combined with significant tick mortality support the need for additional research to evaluate the efficacy of this treatment technology as a biopesticide option for control of ticks. PMID:23448015

  7. Insights into the development of Ixodes scapularis: a resource for research on a medically important tick species.

    PubMed

    Kocan, Katherine M; de la Fuente, José; Coburn, Lisa A

    2015-01-01

    Ticks (Acari: Ixodida) are arthropod ectoparasites dependent on a bloodmeal from a vertebrate host at each developmental stage for completion of their life cycle. This tick feeding cycle impacts animal health by causing damage to hides, secondary infections, immune reactions and diseases caused by transmission of pathogens. The genus Ixodes includes several medically important species that vector diseases, including granulocytic anaplasmosis and Lyme disease. I. scapularis, commonly called the black-legged or deer tick, is a medically-important tick species in North America and therefore was the first tick genome to be sequenced, thus serving as an important resource for tick research. This Primer focuses on the normal developmental cycle and laboratory rearing of I. scapularis. Definition of normal morphology, along with a consistent source of laboratory-reared I. scapularis, are fundamental for all aspects of future research, especially the effects of genetic manipulation and the evaluation of tick vaccine efficacy. Recent research important for the advancement of tick research, namely the development of tick cell culture systems for study of ticks and tick-borne pathogens, RNA interference for genetic manipulation of ticks and discovery of candidate antigens for development of tick vaccines, are briefly presented along with areas to target for future research. PMID:26576940

  8. Evidence of Anaplasma phagocytophilum and Borrelia burgdorferi infection in cats after exposure to wild-caught adult Ixodes scapularis.

    PubMed

    Lappin, Michael R; Chandrashekar, Ramaswamy; Stillman, Brett; Liu, Jiayou; Mather, Thomas N

    2015-07-01

    Cats are infected by Anaplasma phagocytophilum and Borrelia burgdorferi when exposed to infected Ixodes scapularis (black-legged ticks). The purpose of our study was to allow wild-caught I. scapularis to feed on healthy research cats (n = 4) and temporally evaluate for A. phagocytophilum DNA in blood by a polymerase chain reaction (PCR) assay as well as for antibody responses to the B. burgdorferi C6 peptide, to the A. phagocytophilum P44 peptide, and to a novel A. phagocytophilum peptide (P44-4). Prior to I. scapularis infestation, all cats were negative for antibodies against both organisms based on a kit optimized for dog serum, and negative for A. phagocytophilum DNA in blood using a conventional PCR assay. Using the pre-infestation samples, an enzyme-linked immunosorbent assay for detecting antibodies against the P44-4 peptide was optimized. Cats were infested with wild-caught I. scapularis for 7 days. Genomic DNA of A. phagocytophilum was amplified from the blood before antibodies were detected in all 4 cats. Antibodies against the C6 peptide, P44 peptide, and P44-4 peptide were detected in the sera of all 4 cats. Antibodies against P44-4 were detected prior to those against P44 in 3 out of 4 cats. The results suggest that a PCR assay should be considered in acutely ill cats with suspected anaplasmosis that are seronegative. PMID:26179101

  9. Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host

    PubMed Central

    Kotsyfakis, Michalis; Schwarz, Alexandra; Erhart, Jan; Ribeiro, José M. C.

    2015-01-01

    Ixodes ricinus is a tick that transmits the pathogens of Lyme and several arboviral diseases. Pathogens invade the tick midgut, disseminate through the hemolymph, and are transmitted to the vertebrate host via the salivary glands; subverting these processes could be used to interrupt pathogen transfer. Here, we use massive de novo sequencing to characterize the transcriptional dynamics of the salivary and midgut tissues of nymphal and adult I. ricinus at various time points after attachment on the vertebrate host. Members of a number of gene families show stage- and time-specific expression. We hypothesize that gene expression switching may be under epigenetic control and, in support of this, identify 34 candidate proteins that modify histones. I. ricinus-secreted proteins are encoded by genes that have a non-synonymous to synonymous mutation rate even greater than immune-related genes. Midgut transcriptome (mialome) analysis reveals several enzymes associated with protein, carbohydrate, and lipid digestion, transporters and channels that might be associated with nutrient uptake, and immune-related transcripts including antimicrobial peptides. This publicly available dataset supports the identification of protein and gene targets for biochemical and physiological studies that exploit the transmission lifecycle of this disease vector for preventative and therapeutic purposes. PMID:25765539

  10. Life cycle of the taiga tick Ixodes persulcatus (Acari: Ixodidae) in the North-West of Russia.

    PubMed

    Grigoryeva, L A; Stanyukovich, M K

    2016-07-01

    The life cycle of Ixodes persulcatus lasts 3 years in the conditions of the Leningrad province (North-West Russia), the development of each phase taking a year. The normal age of the taiga tick is 3 years. The calendar age of larvae and nymphs reaches 11-12 months under favorable abiotic and biotic factors, while the calendar age of adults does not exceed 11 months. At the preimaginal phases of development the ticks that breed in August can feed before or after winter. However, their metamorphosis begins and reaches completion within the same timeframes (from late June to early August) and lasts for about 30-50 (60) days. The survival rate of hungry and engorged larvae and nymphs after wintering is quite high (88.6-100 %). We explain the low activity of larvae and nymphs in late summer and autumn by incomplete development. Morphogenetic diapause of engorged larvae and nymphs interrupts digestion but not metamorphosis which starts only in late June and July after the complete absorption of blood from the gut cavity. PMID:26979586

  11. Chemical composition and repellency of essential oils from four medicinal plants against Ixodes ricinus nymphs (Acari: Ixodidae).

    PubMed

    El-Seedi, Hesham R; Khalil, Nasr S; Azeem, Muhammad; Taher, Eman A; Göransson, Ulf; Pålsson, Katinka; Borg-Karlson, Anna-Karin

    2012-09-01

    In our search for effective tick repellents from plant origin, we investigated the effect of essential oils of four medicinal and culinary plants belonging to the family Lamiaceae on nymphs of the tick Ixodes ricinus (L.). The essential oils of the dry leaves of Rosmarinus officinalis (Rosemary) (L.), Mentha spicata (Spearmint) (L.), Origanum majorana (Majoram) (L.), and Ocimum basilicum (Basil) (L.) were isolated by steam distillation and 15 microg/cm2 concentration of oils was tested against ticks in a laboratory bioassay. The oils of R. officinalis, M. spicata, and O. majorana showed strong repellency against the ticks 100, 93.2, and 84.3%, respectively, whereas O. basilicum only showed 64.5% repellency. When tested in the field, the oils of R. officinalis and M. spicata showed 68.3 and 59.4% repellency at a concentration of 6.5 microg/cm2 on the test cloths. The oils were analyzed by gas chromatography mass spectrometry and the major compounds from the most repellent oils were 1,8-cineole, camphor, linalool, 4-terpineol, borneol, and carvone. PMID:23025188

  12. Francisella tularensis: No Evidence for Transovarial Transmission in the Tularemia Tick Vectors Dermacentor reticulatus and Ixodes ricinus

    PubMed Central

    Genchi, Marco; Prati, Paola; Vicari, Nadia; Manfredini, Andrea; Sacchi, Luciano; Clementi, Emanuela; Bandi, Claudio; Epis, Sara; Fabbi, Massimo

    2015-01-01

    Background Tularemia is a zoonosis caused by the Francisella tularensis, a highly infectious Gram-negative coccobacillus. Due to easy dissemination, multiple routes of infection, high environmental contamination and morbidity and mortality rates, Francisella is considered a potential bioterrorism threat and classified as a category A select agent by the CDC. Tick bites are among the most prevalent modes of transmission, and ticks have been indicated as a possible reservoir, although their reservoir competence has yet to be defined. Tick-borne transmission of F. tularensis was recognized in 1923, and transstadial transmission has been demonstrated in several tick species. Studies on transovarial transmission, however, have reported conflicting results. Objective The aim of this study was to evaluate the role of ticks as reservoirs for Francisella, assessing the transovarial transmission of F. tularensis subsp. holarctica in ticks, using experimentally-infected females of Dermacentor reticulatus and Ixodes ricinus. Results Transmission electron microscopy and fluorescence in situ hybridization showed F. tularensis within oocytes. However, cultures and bioassays of eggs and larvae were negative; in addition, microscopy techniques revealed bacterial degeneration/death in the oocytes. Conclusions These results suggest that bacterial death might occur in oocytes, preventing the transovarial transmission of Francisella. We can speculate that Francisella does not have a defined reservoir, but that rather various biological niches (e.g. ticks, rodents), that allow the bacterium to persist in the environment. Our results, suggesting that ticks are not competent for the bacterium vertical transmission, are congruent with this view. PMID:26244842

  13. Nymphal survival and habitat distribution of Ixodes scapularis and Amblyomma americanum ticks (Acari:Ixodidae) on Fire Island, New York

    USGS Publications Warehouse

    Ginsberg, H.S.; Zhioua, E.

    1996-01-01

    The distribution and survival of Ixodes scapularis and Amblyomma americanum were studied in deciduous and coniferous wooded habitats and in open habitats on Fire Island, New York, USA. The survival of nymphal I. scapularis in field enclosures was greater in forests than in open habitats, suggesting that greater survival contributes to the higher tick population in the woods. The nymphs of each species were more common in deciduous thickets (predominantly Aronia arbutifolia and Vaccinium corynbosum) than in coniferous woods (mostly Pinus rigida) in most but not all years. Larval I. scapularis were more common in coniferous sites in 1994, while the same ticks, as nymphs, were more common in deciduous sites in 1995. The survival of the nymphs was not consistently greater in either the deciduous or coniferous woods. Therefore, factors other than nymphal survival (e.g. larval overwintering survival and tick movement on hosts) probably influenced the relative nymph abundance in different forest types. Overall, the survival of A. americanum was far higher than that of I. scapularis.

  14. Efficacy of plant-derived and synthetic compounds on clothing as repellents against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae).

    PubMed

    Jordan, Robert A; Schulze, Terry L; Dolan, Marc C

    2012-01-01

    We conducted field trials to compare the relative repellent activity of two natural product compounds (nootkatone and carvacrol) with commercially available plant-derived (EcoSMART organic insect repellent) and permethrin-based (Repel Permanone) repellents against adult Ixodes scapularis Say and Amblyomma americanum (L.) (Acari: Ixodidae) by using treated coveralls. One day after treatment, nootkatone and carvacrol provided 100% repellency of I. scapularis adults, with nootkatone maintaining complete protection through 3 d, whereas carvacrol showed steadily declining repellency against I. scapularis during the 7-d course of the trials. Nootkatone was at least as effective against host-seeking A. americanum as against I. scapularis through 3 d. Carvacrol provided little protection against A. americanum adults. Both natural compounds performed well initially in comparison with the commercial products. After 7 d, nootkatone was the most effective against both species followed in order of activity by Permanone, EcoSMART, and carvacrol. Nootkatone seems to have offer considerable potential as a clothing repellent against both I. scapularis and A. americanum. PMID:22308777

  15. Geographic information systems and spatial analysis of adult Ixodes scapularis (Acari: Ixodidae) in the Middle Atlantic region of the U.S.A

    USGS Publications Warehouse

    Bunnell, J.E.; Price, S.D.; Das, A.; Shields, T.M.; Glass, G.E.

    2003-01-01

    In the Middle Atlantic region of the U.S.A., the vector of Lyme disease, human granulocytic ehrlichiosis, babesiosis, and other human and veterinary pathogens is the black-legged tick, Ixodes scapularis Say. In 1997 and 1998, 663 adult I. scapularis ticks were collected from 320 transects spanning 66,400 km2 in five states of the Middle Atlantic region. Tick abundance patterns were clustered, with relatively high numbers along the coastal plain of the Chesapeake Bay, decreasing to the west and south. There were significant associations between tick abundance and land cover, distance to water, distance to forest edge, elevation, and soil type.

  16. Is the small mammal (Clethrionomys glareolus) or the tick vector (Ixodes ricinus) the primary overwintering reservoir for the Lyme borreliosis spirochete in Sweden?

    PubMed

    Tälleklint, L; Jaenson, T G

    1995-10-01

    We determined the capacity of bank voles (Clethrionomys glareolus) to infect feeding Ixodes ricinus ticks with Borrelia burgdorferi sensu lato (infectivity), during June to October 1991 and June to September 1992 in south-central Sweden. In both years, the infectivity of older voles to ticks was higher in August to September (48% to 59%) than in June to July (20% to 32%). We propose that the infectivity of bank vole populations in Sweden decreases during winter and spring due to death of highly infective voles and recruitment of uninfective young ones, and that the tick vector, rather than the mammalian host, is the primary overwintering reservoir of B. burgdorferi. PMID:8592387

  17. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden

    PubMed Central

    2012-01-01

    Background Ixodes ricinus is the main vector in Europe of human-pathogenic Lyme borreliosis (LB) spirochaetes, the tick-borne encephalitis virus (TBEV) and other pathogens of humans and domesticated mammals. The results of a previous 1994 questionnaire, directed at people living in Central and North Sweden (Svealand and Norrland) and aiming to gather information about tick exposure for humans and domestic animals, suggested that Ixodes ricinus ticks had become more widespread in Central Sweden and the southern part of North Sweden from the early 1980s to the early 1990s. To investigate whether the expansion of the tick's northern geographical range and the increasing abundance of ticks in Sweden were still occurring, in 2009 we performed a follow-up survey 16 years after the initial study. Methods A questionnaire similar to the one used in the 1994 study was published in Swedish magazines aimed at dog owners, home owners, and hunters. The questionnaire was published together with a popular science article about the tick's biology and role as a pathogen vector in Sweden. The magazines were selected to get information from people familiar with ticks and who spend time in areas where ticks might be present. Results Analyses of data from both surveys revealed that during the near 30-year period from the early 1980s to 2008, I. ricinus has expanded its distribution range northwards. In the early 1990s ticks were found in new areas along the northern coastline of the Baltic Sea, while in the 2009 study, ticks were reported for the first time from many locations in North Sweden. This included locations as far north as 66°N and places in the interior part of North Sweden. During this 16-year period the tick's range in Sweden was estimated to have increased by 9.9%. Most of the range expansion occurred in North Sweden (north of 60°N) where the tick's coverage area doubled from 12.5% in the early 1990s to 26.8% in 2008. Moreover, according to the respondents, the abundance

  18. Detection of Wolbachia in the Tick Ixodes ricinus is Due to the Presence of the Hymenoptera Endoparasitoid Ixodiphagus hookeri

    PubMed Central

    Plantard, Olivier; Bouju-Albert, Agnès; Malard, Marie-Astrid; Hermouet, Axelle; Capron, Gilles; Verheyden, Hélène

    2012-01-01

    The identification of micro-organisms carried by ticks is an important issue for human and animal health. In addition to their role as pathogen vectors, ticks are also the hosts for symbiotic bacteria whose impact on tick biology is poorly known. Among these, the bacterium Wolbachia pipientis has already been reported associated with Ixodes ricinus and other tick species. However, the origins of Wolbachia in ticks and their consequences on tick biology (known to be very diverse in invertebrates, ranging from nutritional symbionts in nematodes to reproductive manipulators in insects) are unknown. Here we report that the endoparasitoid wasp Ixodiphagus hookeri (Hymenoptera, Chalcidoidea, Encyrtidae) – strictly associated with ticks for their development - is infested at almost 100% prevalence by a W. pipientis strain belonging to a Wolbachia supergroup that has already been reported as associated with other hymenopteran parasitoids. In a natural population of I. ricinus that suffers high parasitism rates due to I. hookeri, we used specific PCR primers for both hymenopteran and W. pipientis gene fragments to show that all unfed tick nymphs parasitized by I. hookeri also harbored Wolbachia, while unparasitized ticks were Wolbachia-free. We demonstrated experimentally that unfed nymphs obtained from larvae exposed to I. hookeri while gorging on their vertebrate host also harbor Wolbachia. We hypothesize that previous studies that have reported W. pipientis in ticks are due to the cryptic presence of the endoparasitoid wasp I. hookeri. This association has remained hidden until now because parasitoids within ticks cannot be detected until engorgement of the nymphs brings the wasp eggs out of diapause. Finally, we discuss the consequences of this finding for our understanding of the tick microbiome, and their possible role in horizontal gene transfer among pathogenic and symbiotic bacteria. PMID:22292021

  19. Nuclear Markers Reveal Predominantly North to South Gene Flow in Ixodes scapularis, the Tick Vector of the Lyme Disease Spirochete

    PubMed Central

    Van Zee, Janice; Piesman, Joseph F.; Hojgaard, Andrias; Black IV, William Cormack

    2015-01-01

    Ixodes scapularis, the tick vector of the Lyme disease spirochete, is distributed over most of the eastern United States, but >80% of all Lyme disease cases occur in the northeast. The role that genetic differences between northern and southern tick populations play in explaining this disparate distribution of Lyme disease cases is unclear. The present study was conducted with 1,155 SNP markers in eight nuclear genes; the 16S mitochondrial gene was examined for comparison with earlier studies. We examined 350 I. scapularis from 7 states covering a representative area of the species. A demographic analysis using Bayesian Extended Skyline Analysis suggested that I. scapularis populations in Mississippi and Georgia began expanding 500,000 years ago, those in Florida and North Carolina 200,000 years ago and those from Maryland and New Jersey only during the past 50,000 years with an accompanying bottleneck. Wisconsin populations only began expanding in the last 20,000 years. Analysis of current migration patterns suggests large amounts of gene flow in northern collections and equally high rates of gene flow among southern collections. In contrast there is restricted and unidirectional gene flow between northern and southern collections, mostly occurring from northern into southern populations. Northern populations are characterized by nymphs that quest above the leaf litter, are easy to collect by flagging, frequently feed on mammals such as rodents and shrews, commonly attach to people, and about 25% of which are infected with B. burgdorferi. If there is a genetic basis for these behaviors, then the patterns detected in this study are of concern because they suggest that northern I. scapularis populations with a greater ability to vector B. burgdorferi to humans are expanding south. PMID:26536360

  20. Susceptibility of Ixodes scapularis (Acari: Ixodidae) to Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) using three exposure assays in the laboratory.

    PubMed

    Bharadwaj, Anuja; Stafford, Kirby C

    2012-02-01

    An emulsifiable concentrate (EC) and granular (G) formulation of the entomopathogenic fungus, Metarhizium brunneum strain F52 (formerly Metarhizium anisopliae strain F52) were tested against unfed adults and nymphs of Ixodes scapularis Say in the laboratory. Three exposure methods; dip, surface contact, and direct spray application, and three exposure time intervals (3, 30, and 300 min) were used to evaluate the EC formulation. Application rates ranged from 2.6 x 10(2) to 2.6 x 10(8) conidia/cm2. The surface treatment was used for granular formulation with concentrations ranging from 2.3 x 10(5) to 2.3 x 10(7) conidia/cm2 for same three exposure times. Both the EC and G formulations of this fungus were highly pathogenic against I. scapularis adults and nymphs. Logistic regression analysis found formulation, spore concentration, time of exposure, and observation period were significant or highly significant factors influencing tick mortality. For adult I. scapularis, the spray application with the EC formulation of M. brunneum F52 resulted in a lower LC50 (5.9 x 10(4) conidia/cm2) at 30 min than surface exposure to the EC (LC50 = 1.3 x 10(6) conidia/cm2) or G formulation (LC50 = 8.1 x 10(5) conidia/cm2). At higher concentrations, fungal activity was evident in adult I. scapularis held at 5 degrees C suggesting the fungus may provide control in the cooler fall season. While the observed pathogenicity of a fungus against ticks can be dependent upon the bioassay assessment, we found nymphs and adults of I. scapularis to be highly susceptible to M. brunneum F52, regardless of the exposure method used. PMID:22420275

  1. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis.

    PubMed

    Ayllón, Nieves; Villar, Margarita; Galindo, Ruth C; Kocan, Katherine M; Šíma, Radek; López, Juan A; Vázquez, Jesús; Alberdi, Pilar; Cabezas-Cruz, Alejandro; Kopáček, Petr; de la Fuente, José

    2015-03-01

    Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A

  2. Coexistence of Borrelia burgdorferi s.l. genospecies within Ixodes ricinus ticks from central and eastern Poland.

    PubMed

    Sytykiewicz, Hubert; Karbowiak, Grzegorz; Chorostowska-Wynimko, Joanna; Szpechciński, Adam; Supergan-Marwicz, Marta; Horbowicz, Marcin; Szwed, Magdalena; Czerniewicz, Paweł; Sprawka, Iwona

    2015-12-01

    The purpose of the study was to assess the prevalence and coinfection rates of Borrelia burgdorferi sensu lato genotypes in Ixodes ricinus (L.) ticks sampled from diverse localities in central and eastern regions of Poland. In years 2009-2011, questing nymphs and adults of I. ricinus were collected using a flagging method at 18 localities representing distinct ecosystem types: urban green areas, suburban forests and rural woodlands. Molecular detection of B. burgdorferi s.l. genospecies was based on amplification of a fla gene using nested PCR technique, subsequent PCR-RFLP analysis and bidirectional sequencing. It was revealed that 45 samples (2.1%) harboured two different B. burgdorferi s.l. genospecies, whereas triple infections with various spirochetes was found in 11 (0.5%) individuals. Generally, the highest average coinfection rates were evidenced in arachnids gathered at rural woodlands, intermediate at suburban forests, while the lowest were recorded at urban green areas. Overall, single spirochete infections were noted in 16.3% (n = 352/2,153) ticks. Importantly, it is the first report evidencing the occurrence of Borrelia miyamotoi (0.3%, n = 7/2153) in I. ricinus populations within central Poland. Circumstantial variability of B. burgdorferi s.l. genospecies in the common tick individuals sampled at various habitat types in central and eastern Poland was displayed. The coexistence of two or three different spirochete genospecies in single adult ticks, as well as the presence of B. miyamotoi were demonstrated. Therefore, further studies uncovering the co-circulation of the tested bacteria and other human pathogens in I. ricinus ticks are required. PMID:26408587

  3. Vector competence of the blacklegged tick, Ixodes scapularis, for the recently recognized Lyme borreliosis spirochete Candidatus Borrelia mayonii.

    PubMed

    Dolan, Marc C; Hojgaard, Andrias; Hoxmeier, J Charles; Replogle, Adam J; Respicio-Kingry, Laurel B; Sexton, Christopher; Williams, Martin A; Pritt, Bobbi S; Schriefer, Martin E; Eisen, Lars

    2016-07-01

    A novel species within the Borrelia burgdorferi sensu lato complex, provisionally named Borrelia mayonii, was recently found to be associated with Lyme borreliosis in the Upper Midwest of the United States. Moreover, B. mayonii was detected from host-seeking Ixodes scapularis, the primary vector of B. burgdorferi sensu stricto in the eastern United States. We therefore conducted a study to confirm the experimental vector competence of I. scapularis for B. mayonii (strain MN14-1420), using colony ticks originating from adults collected in Connecticut and CD-1 white mice. Larvae fed on mice 10 weeks after needle-inoculation with B. mayonii acquired spirochetes and maintained infection through the nymphal stage at an average rate of 12.9%. In a transmission experiment, 40% of naïve mice exposed to a single infected nymph developed viable infections, as compared with 87% of mice fed upon by 2-3 infected nymphs. Transmission of B. mayonii by one or more feeding infected nymphs was uncommon up to 48h after attachment (one of six mice developed viable infection) but occurred frequently when nymphs were allowed to remain attached for 72-96h or feed to completion (11 of 16 mice developed viable infection). Mice infected via tick bite maintained viable infection with B. mayonii, as determined by ear biopsy culture, for at least 28 weeks. Our results demonstrate that I. scapularis is capable of serving as a vector of B. mayonii. This finding, together with data showing that field-collected I. scapularis are infected with B. mayonii, indicate that I. scapularis likely is a primary vector to humans of this recently recognized Lyme borreliosis spirochete. PMID:26922324

  4. Prevalence of Borrelia burgdorferi in white-footed mice and Ixodes dammini at Fort McCoy, Wis.

    PubMed Central

    Anderson, J F; Duray, P H; Magnarelli, L A

    1987-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, was isolated from 15 of 17 white-footed mice (Peromyscus leucopus) and 54 of 82 subadult Ixodes dammini from Fort McCoy, Wis. Of the 47 isolates tested, all reacted in indirect fluorescent-antibody tests with monoclonal antibodies directed against a surface protein of B. burgdorferi (approximate molecular weight, 31,000) and flagellins that are common to all Borrelia species. Indirect fluorescent-antibody reactions were variable when an antibody that binds to a surface protein with an approximate molecular weight of 34,000 was tested. The major proteins of isolates from ticks and mice had approximate molecular weights of 31,000, 34,000, and 41,000. Antibodies to B. burgdorferi were present (titer, greater than or equal to 1:64) in 16 of 97 white-tailed deer (Odocoileus virginianus). The mean number of subadult I. dammini on mice captured in June 1986 was 6.5, and the mean number of adult I. dammini on deer killed in November 1986 was 5.9. The presence of ticks and the high prevalence of I. dammini and mice infected with B. burgdorferi establish that Fort McCoy is an area in which the Lyme disease agent is highly endemic, even though there have been relatively few documented cases in humans. The low number of reported cases in humans may be a result of National Guard and reserve unit personnel returning home to civilian life and having symptoms expressed subsequently, or it could be due to misdiagnosis or nonreporting. Images PMID:3305566

  5. Prevalence of the Lyme Disease Spirochete, Borrelia burgdorferi, in Blacklegged Ticks, Ixodes scapularis at Hamilton-Wentworth, Ontario.

    PubMed

    Scott, John D; Anderson, John F; Durden, Lance A; Smith, Morgan L; Manord, Jodi M; Clark, Kerry L

    2016-01-01

    Lyme disease has emerged as a major health concern in Canada, where the etiological agent, Borrelia burgdorferi sensu lato (s.l.), a spirochetal bacterium, is typically spread by the bite of certain ticks. This study explores the presence of B. burgdorferi s.l. in blacklegged ticks, Ixodes scapularis, collected at Dundas, Ontario (a locality within the region of Hamilton-Wentworth). Using passive surveillance, veterinarians and pet groomers were asked to collect blacklegged ticks from dogs and cats with no history of travel. Additionally, I. scapularis specimens were submitted from local residents and collected by flagging. Overall, 12 (41%) of 29 blacklegged ticks were infected with B. burgdorferi s.l. Using polymerase chain reaction (PCR) and DNA sequencing, two borrelial amplicons were characterized as B. burgdorferi sensu stricto (s.s.), a genospecies pathogenic to humans and certain domestic animals. Notably, three different vertebrate hosts each had two engorged I. scapularis females removed on the same day and, likewise, one cat had three repeat occurrences of this tick species. These multiple infestations suggest that a population of I. scapularis may be established in this area. The local public health unit has been underreporting the presence of B. burgdorferi s.l.-infected I. scapularis in the area encompassing Dundas. Our findings raise concerns about the need to erect tick warning signs in parkland areas. Veterinarians, medical professionals, public health officials, and the general public must be vigilant that Lyme disease-carrying blacklegged ticks pose a public health risk in the Dundas area and the surrounding Hamilton-Wentworth region. PMID:27226771

  6. Genospecies of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks from the Autonomous Province of Trento, Italy.

    PubMed

    Pecchioli, Elena; Hauffe, Heidi C; Tagliapietra, Valentina; Bandi, Claudio; Genchi, Claudio; Rizzoli, Annapaola

    2007-02-01

    Sequences of the variable intergenic spacer region 5S (rrfA) 23S (rrlB) rRNA were used to identify Borrelia genospecies present in Ixodes ricinus nymphs collected from the Lamar Lakes area of the Province of Trento, Italy (overall prevalence=6.3%). Four genospecies were identified, one for the first time in this Province (B. valaisiana), and three which have been noted previously (B. afzelii, B. garinii, and B. burgdorferi s.s.). In order to compare the genetic variability of these genospecies in Trento with that at a European level, our 21 sequences (15 new haplotypes) and all appropriate European Borrelia sequences registered in GenBank (up to the end of 2004) were subjected to a phylogenetic analysis (for a total of 73 sequences and 43 haplotypes). Clusters of sequences representing the five main European genospecies (afzelii, garinii, burgdorferi s.s., valaisiana, lusitaniae) are well-supported. At least two other groups of haplotypes (genospecies) are suggested by our analysis; moreover, divergent evolution may be occurring in several genospecies. The maximum uncorrected pairwise differences between sequences within genospecies ranges from 1.5% (B. burgdorferi s.s.), to 2.3% (B. garinii and B. valaisiana) to 4.7% (B. afzelii), and are not correlated with geographical distribution. Within the Province of Trento, these values for the same genospecies are 1.5%, 2.3%, 0.9%, 1.9%, respectively. These high mutation rates within genospecies suggest that the sequencing of haplotypes should continue if we are to fully understand and monitor the evolution and epidemiology of Borrelia. PMID:17137840

  7. Survey of Ixodes pacificus Ticks in California Reveals a Diversity of Microorganisms and a Novel and Widespread Anaplasmataceae Species

    PubMed Central

    Eshoo, Mark W.; Carolan, Heather E.; Massire, Christian; Chou, Danny M.; Crowder, Chris D.; Rounds, Megan A.; Phillipson, Curtis A.; Schutzer, Steven E.; Ecker, David J.

    2015-01-01

    Ixodes pacificus ticks can harbor a wide range of human and animal pathogens. To survey the prevalence of tick-borne known and putative pathogens, we tested 982 individual adult and nymphal I. pacificus ticks collected throughout California between 2007 and 2009 using a broad-range PCR and electrospray ionization mass spectrometry (PCR/ESI-MS) assay designed to detect a wide range of tick-borne microorganisms. Overall, 1.4% of the ticks were found to be infected with Borrelia burgdorferi, 2.0% were infected with Borrelia miyamotoi and 0.3% were infected with Anaplasma phagocytophilum. In addition, 3.0% were infected with Babesia odocoilei. About 1.2% of the ticks were co-infected with more than one pathogen or putative pathogen. In addition, we identified a novel Anaplasmataceae species that we characterized by sequencing of its 16S rRNA, groEL, gltA, and rpoB genes. Sequence analysis indicated that this organism is phylogenetically distinct from known Anaplasma species with its closest genetic near neighbors coming from Asia. The prevalence of this novel Anaplasmataceae species was as high as 21% at one site, and it was detected in 4.9% of ticks tested statewide. Based upon this genetic characterization we propose that this organism be called ‘Candidatus Cryptoplasma californiense’. Knowledge of this novel microbe will provide awareness for the community about the breadth of the I. pacificus microbiome, the concept that this bacterium could be more widely spread; and an opportunity to explore whether this bacterium also contributes to human or animal disease burden. PMID:26375033

  8. Detection of Wolbachia in the tick Ixodes ricinus is due to the presence of the hymenoptera endoparasitoid Ixodiphagus hookeri.

    PubMed

    Plantard, Olivier; Bouju-Albert, Agnès; Malard, Marie-Astrid; Hermouet, Axelle; Capron, Gilles; Verheyden, Hélène

    2012-01-01

    The identification of micro-organisms carried by ticks is an important issue for human and animal health. In addition to their role as pathogen vectors, ticks are also the hosts for symbiotic bacteria whose impact on tick biology is poorly known. Among these, the bacterium Wolbachia pipientis has already been reported associated with Ixodes ricinus and other tick species. However, the origins of Wolbachia in ticks and their consequences on tick biology (known to be very diverse in invertebrates, ranging from nutritional symbionts in nematodes to reproductive manipulators in insects) are unknown. Here we report that the endoparasitoid wasp Ixodiphagus hookeri (Hymenoptera, Chalcidoidea, Encyrtidae)--strictly associated with ticks for their development--infested at almost 100% prevalence by a W. pipientis strain belonging to a Wolbachia supergroup that has already been reported as associated with other hymenopteran parasitoids. In a natural population of I. ricinus that suffers high parasitism rates due to I. hookeri, we used specific PCR primers for both hymenopteran and W. pipientis gene fragments to show that all unfed tick nymphs parasitized by I. hookeri also harbored Wolbachia, while unparasitized ticks were Wolbachia-free. We demonstrated experimentally that unfed nymphs obtained from larvae exposed to I. hookeri while gorging on their vertebrate host also harbor Wolbachia. We hypothesize that previous studies that have reported W. pipientis in ticks are due to the cryptic presence of the endoparasitoid wasp I. hookeri. This association has remained hidden until now because parasitoids within ticks cannot be detected until engorgement of the nymphs brings the wasp eggs out of diapause. Finally, we discuss the consequences of this finding for our understanding of the tick microbiome, and their possible role in horizontal gene transfer among pathogenic and symbiotic bacteria. PMID:22292021

  9. Modelling the Phenological Relationships of Questing Immature Ixodes Ricinus (Ixodidae) Using Temperature and NDVI Data.

    PubMed

    Alonso-Carné, J; García-Martín, A; Estrada-Peña, A

    2016-02-01

    All active stages of the tick Ixodes ricinus were collected monthly at two sites in northern Spain between the years 2000 and 2007. We used percentile accumulation of the active stage in the environment to evaluate simple and coherent correlations between accumulation of the active stages of larvae and nymphs and medium-resolution MODIS satellite-derived information on the climate, including monthly and accumulated temperature and the Normalized Difference Vegetation Index (NDVI). This framework is not intended to predict the actual abundance of ticks in the field as a measure of the hazard to humans, but to provide a basic structure for addressing the phenology of the tick in its geographic range. We demonstrated that the accumulation of larval ticks in the active stage is a sigmoid function of the accumulated temperature from the beginning of the calendar year. We also demonstrated that the accumulated temperature necessary to recruit nymphs from the questing larval stage is a function of the changes in accumulated larvae and nymphs and the accumulated temperature and NDVI recorded by the Aqua sensor. The low p-values obtained in the regressions confirmed that such recruitment can be calculated using time intervals to estimate, for example, the beginning of the questing period or the time of the year when a population peak can be expected. The comparison among predicted and actual accumulated temperatures between larvae and nymph recruitment had an averaged error of ±20 days in one complete year. The use of accumulated temperature and NDVI proposed in this study opens up the re-evaluation of reports on the phenology of the tick in Europe. This framework is intended to evaluate the same correlations along the tick's range and predict its phenological patterns in areas of pathogen transmission risk for humans. PMID:25965508

  10. IrAE – an asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus

    PubMed Central

    Sojka, Daniel; Hajdušek, Ondřej; Dvořák, Jan; Sajid, Mohammed; Franta, Zdeněk; Schneider, Eric L.; Craik, Charles S.; Vancová, Marie; Burešová, Veronika; Bogyo, Matthew; Sexton, Kelly B.; McKerrow, James H.; Caffrey, Conor R.; Kopáček, Petr

    2008-01-01

    Ticks are ectoparasitic blood-feeders and important vectors for pathogens including arboviruses, rickettsiae, spirochetes and protozoa. As obligate blood-feeders, one possible strategy to retard disease transmission is disruption of the parasite’s ability to digest host proteins. However, the constituent peptidases in the parasite gut and their potential interplay in the digestion of the blood meal are poorly understood. We have characterized a novel asparaginyl endopeptidase (legumain) from the hard tick Ixodes ricinus (termed IrAE), which is the first such characterization of a clan CD family C13 cysteine peptidase (protease) in arthropods. By RT-PCR of different tissues, IrAE mRNA was only expressed in the tick gut. Indirect immunofluorescence and electron microscopy localized IrAE in the digestive vesicles of gut cells and within the peritrophic matrix. IrAE was functionally expressed in Pichia pastoris and reacted with a specific peptidyl fluorogenic substrate, and acyloxymethyl ketone and aza-asparagine Michael acceptor inhibitors. IrAE activity was unstable at pH ≥ 6.0 and was shown to have a strict specificity for asparagine at P1 using a positional scanning synthetic combinatorial library. The enzyme hydrolyzed protein substrates with a pH optimum of 4.5, consistent with the pH of gut cell digestive vesicles. Thus, IrAE cleaved the major protein of the blood meal, hemoglobin, to a predominant peptide of 4 kDa. Also, IrAE trans-processed and activated the zymogen form of Schistosoma mansoni cathepsin B1 – an enzyme contributing to hemoglobin digestion in the gut of that bloodfluke. The possible functions of IrAE in the gut digestive processes of I. ricinus are compared with those suggested for other hematophagous parasites. PMID:17336985