Science.gov

Sample records for parabolic solar cooker

  1. Solar Cookers.

    ERIC Educational Resources Information Center

    King, Richard C.

    1981-01-01

    Describes the use of solar cookers in the science classroom. Includes instructions for construction of a solar cooker, an explanation of how solar cookers work, and a number of suggested activities. (DS)

  2. Concentrating solar cookers with eccentric axis

    SciTech Connect

    Wang Xiping; Sha Yong Ling; Hou Shugin; Liu Zude

    1992-12-31

    This paper describes the design, development and use of a concentrating solar cooker with eccentric axis in China. For the same power, the older circular parabolic cookers are large in volume and less convenient to operate than the cooker with eccentric axis. Calculations are presented for the design of the cooker and for obtaining an accurate test of its efficiency.

  3. Solar cooker

    SciTech Connect

    Zwach, D.M.

    1987-09-29

    A solar unit is described comprising a solar oven having an open end. A generally concave parabolic main reflector is joined to the oven to move therewith and reflect solar radiation away from the oven. The main reflector has a central opening to the oven open end, a generally parabolic convex secondary reflector for reflecting the radiation from the main reflector through the central opening to the open end of the oven, means for mounting the secondary reflector on the main reflector for movement, a frame, and means for mounting the oven on the frame for adjustable movement relative to the frame. This permits adjusting the angular position relative to the earth. The last mentioned means includes means for supporting the oven including first and second pairs of pivot members that respectively have a fist pivot axis and a second pivot axis that extends perpendicular to the first pivot axis. The oven extends between each of the first pivot members and each of the second pivot members.

  4. Reliable solar cookers

    SciTech Connect

    Magney, G.K.

    1992-12-31

    The author describes the activities of SERVE, a Christian relief and development agency, to introduce solar ovens to the Afghan refugees in Pakistan. It has provided 5,000 solar cookers since 1984. The experience has demonstrated the potential of the technology and the need for a durable and reliable product. Common complaints about the cookers are discussed and the ideal cooker is described.

  5. New hot box solar cooker

    SciTech Connect

    Wang Xiping; Hou Shuqin; Sha Yongling; Liu Zude

    1992-12-31

    At present, over 100,000 solar cookers are in service in China. Most of these are concentrating cookers, making use of reflectors to concentrate sunlight at the cooking area. These cookers offer higher efficiency, more power and shorter cooking times. Since 1975 the authors have researched solar energy applications and, specifically, solar cookers. The major work has been the development of design calculations, selection of structure and materials, and performance testing. This paper describes the testing of several collection surface structures and box structures.

  6. Multiple uses of solar cookers

    SciTech Connect

    Shimeall, E.

    1992-12-31

    The author began using a solar cooker in 1980 and now uses it every day for six months of the year at her home in California. She describes using it for a variety of cooking activities including the canning of fruits and tomatoes. Energy savings in the home are said to be significant when compared to her neighbors due to use of the solar cooker, a solar water heater, and reduced need for air conditioning.

  7. Solar cookers--A solution ignored?

    SciTech Connect

    Allen, T.E.

    1992-12-31

    Despite the obvious benefits of solar cooking and the technical readiness of solar cookers, there has been a general consensus in many literary sources that solar cookers have very little potential for impact. This paper examines the attitude towards solar cookers that is projected by these experts in sustainable development. The results are surprising given that there seems to be a consensus that addressing the energy needs of the poor in the developing countries should be of high priority in designing a sustainable economy. Since the energy needs of the poor are primarily fuel for cooking, solar cookers seem to be the solution ignored.

  8. Project Solar Cooker SK 12

    SciTech Connect

    Jobst, G.

    1992-12-31

    A solar cooking unit designed for use in developing countries is described. The unit with its 1.4 meter solar collector is capable of bringing 3 liters of water to a boil in half an hour or less. Positioning the cooker for accurate tracking of the sun is achieved using the shadow of a pin on a small plate. Safety concerns are also addressed in the design. The unit can be used to meet the needs of as many of 20 people. Manufacture by local workers is possible and is the best guarantee of successful technology transfer.

  9. Solar box-cooker: Part 1-modeling

    SciTech Connect

    Thulasi Das, T.C. ); Karmakar, S. ); Rao, D.P. )

    1994-03-01

    Thermal models for the solar box-cookers loaded with one, two, or four vessels have been presented. The method of Taha and Eldighidy has been utilized to estimate the enhanced solar irradiance on the cooker due to the flat reflector fitted to the cooker. The coupling of the Taha and Eldighidy method with the thermal models yielded the models for the box-cookers. A great many transfer coefficients and view factors are required as the model inputs. The methods for their estimation are given. Analysis of the transfer processes, computer simulation of the cooker, and experimental data on some of the coefficients, which are peculiar to the cooker and not available in the literature are presented in the companion paper.

  10. TESTING AND REPORTING SOLAR COOKER PERFORMANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This Standard for quantifying solar cooker performance specifies that test results be presented as cooking power, in Watts, normalized for ambient conditions, relative to the temperature difference betweeen cooker contents and ambient air, both as a plot and as a regression equation for no less than...

  11. Advanced solar box and flat plate collector cookers

    SciTech Connect

    Grupp, M.; Bergler, H.

    1992-12-31

    Several new solar cooker systems have been developed at Synopsis during the last years: advanced box type cookers, featuring an optimized heat transfer from the absorber into the cooking vessel; flat plate cookers, based on a particular two-way collector with air as transfer fluid; flat plate cookers with heat-pipe transfer; specialized cookers for the baking of bread and flat bread. The working principle of these cookers is described, the structure of a thermal simulation model and results of thermal tests are presented. The results of the first year of local production and use of advanced boxes in India are reported.

  12. Promotion of solar box cooker technology

    SciTech Connect

    Stibravy, R.

    1992-09-01

    Over 1.5 billion people are affected by fuel wood shortage, according to the UN Food and Agricultural Organization. Meanwhile solar cookers are under-exploited. The author presents one version of this technology and discusses how it may be promoted world-wide. The increased use of non fossil fuel energy is essential world-wide in combating global warming trends, preserving the environment, conserving resources and achieving sustainable development. The Solar Box Cooker (SBC) - a box within a box - uses an easily available source of such energy that is also renewable (in contrast to energy that, once used, is not, such as oil, coal, gas, wood). It is also readily available for the developing world, and for much of the developed world too.

  13. Pasteurizing water with solar box cookers

    SciTech Connect

    Metcalf, R.

    1992-12-31

    The author describes the development of solar cookers that can be used to pasteurize water in developing countries. After a new test was developed for testing coliforms it became possible to test the efficiency of the pasteurization process. Secondly, a safety device was developed that indicates when pasteurization temperatures are reached. The author cautions that having an effective safety indicator will not insure a safe water supply. Further steps are needed to insure that water will not be recontaminated by improper handling after removal from the solar box.

  14. Through the wall solar cooker

    SciTech Connect

    Kerr, B.P.

    1987-04-07

    This patent describes a solar appliance for extending from the interior of a kitchen through an exterior wall of the building and beyond a predetermined distance in a cantilever manner to receive and concentrate in the appliance outside of the building, solar radiation rays for cooking purposes comprising: a housing, the housing being mounted to extend from a kitchen through an external wall of a building and beyond in a cantilever manner and forming a closed oven, the oven comprising a bottom, glass top, a pair of sides and a first end positioned with access from within the kitchen and comprising an oven door, a first reflective panel member mounted above, juxtapositioned to one edge of the glass top for positioning against the outer surface of the external wall and extending laterally therefrom for receiving and directing solar rays impinging thereon through the glass top and into the oven, and a second double-sided reflective panel mounted above and juxtapositioned to the glass top and extending substantially perpendicular to the first reflective panel for receiving solar rays impinging on either side thereof, and directing the solar rays into the oven.

  15. Nutritive value of foods cooked in solar cooker

    SciTech Connect

    Devadas, R.P.; Venmathi, A.

    1992-12-31

    This paper outlines the effects of solar cooking on the nutritive value of foods. Nutrients were measured in foods prepared in solar cookers and compared with those in foods prepared in pressure cookers. The foods prepared were parboiled rice, red gram dhal and beans, all foods commonly used in India. The prepared foods were analyzed for protein, minerals and vitamins and the results are presented in tables. It was concluded that solar cookers can be used satisfactorily for preparing cereals and legumes but do not perform well for seasoning, frying and making cheppatti.

  16. Solar box-cooker: Part II-analysis and simulation

    SciTech Connect

    Thulasi Das, T.C. ); Karmakar, S. ); Rao, D.P. )

    1994-03-01

    Based on the model proposed in the companion paper (Part I), a method is outlined simulation of the solar box-cookers loaded with one, two, or four vessels. The relative importance of various heat-exchange rates in the cooker were examined. The effect of parameters such as the thickness and size of the absorber plate, emissivity of the vessel, insulation thickness, and cooking time were studied. Cookers of three sizes were simulated to assess their adequacy in cooking. The studies indicate that the black paint on the vessels could be avoided if weathered stainless steel or aluminum vessels are used. The cooker with inner dimensions of 0.6 x 0.6 x 0.1 m[sup 3] was found to be adequate to cook lunch and dinner on a clear day even in the winter months. Experimental studies carried out to obtain the heat-transfer coefficients, required for simulation, are presented.

  17. Cookin' with Sun: Design and Build Solar Cookers

    ERIC Educational Resources Information Center

    Brand, Lance; Warren, Ande; Fitzgerald, Mike

    2006-01-01

    Having students design and construct solar cookers is a great way to teach them about designing to meet human needs and about many basic global issues related to health and the environment. Because the activity includes solid content from the fields of math, science and technology, it is an excellent vehicle for technology educators who want to…

  18. Cookin' with Sun: Design and Build Solar Cookers

    ERIC Educational Resources Information Center

    Brand, Lance; Warren, Ande; Fitzgerald, Mike

    2006-01-01

    Having students design and construct solar cookers is a great way to teach them about designing to meet human needs and about many basic global issues related to health and the environment. Because the activity includes solid content from the fields of math, science and technology, it is an excellent vehicle for technology educators who want to

  19. Solar cooking in Switzerland--Use of cookers in Africa and India

    SciTech Connect

    Pulfer, J.

    1992-12-31

    This paper describes the development of activities in Switzerland, Africa and India to promote the use of solar cookers. The most successful programs are said to be in Senegal in Western Africa, and Kenya and Sudan in Eastern Africa. These activities include information dissemination and sales of ready-made products. Although some projects are for individual homes, some have been developed for hospitals, prisons, schools, boarding houses, etc. These larger units are usually systems using parabolic reflectors and fireplaces or propane as a source of fuel when there is no sunshine.

  20. A novel advanced box-type solar cooker

    SciTech Connect

    Grupp, M.; Montagne, P.; Wackernagel, M. )

    1991-01-01

    An advanced version of the box-type solar cooker is presented: a fixed cooking vessel in good thermal contact with a conductive absorber plate is set into the glazing; the results are improved thermal performance, easier access to the cooking vessel and less frequent maintenance due to protection of all absorbing and reflecting surfaces. Outdoor tests show that 5 liters of water per sq m of opening surface can be brought to full boiling in less than one hour. A finite element simulation model of the advanced box cooker is presented. It is shown that the most decisive parameters are absorber-to-pot heat transfer and absorber conductivity. Field tests in Ethiopia and India are under way, local production in India has started.

  1. Solar cooker -- A viable technology for cooking family meals: An empirical study over two years

    SciTech Connect

    George, R.

    1995-10-01

    A solar cooker is a promising renewable energy technology for domestic cooking. A detailed study to assess cooking performance of boxtype solar cooker was carried out during different seasons, viz., pre-winter, winter and summer, over a two year period. The standard menu identified through sample survey of 100 urban families was solar-cooked and cooked in saucepots on coal and kerosene stoves. The ideal period to start solar cooking morning meal fell between 10:00 to 10:30 hours to serve the same around 12:30 hours while loading cooker between 12:00 to 13:30 hours resulted in ready-to-serve evening meal by 14:30 to 15:30 hours. Solar cooking retained nutrients to a greater extent than conventional cooking. The payback period of the cost of a solar cooker at the current price ranged between 260 to 400 active solar cooking days depending on the fuel solar cooker replaced. The paper discusses at length various aspects related to performance of boxtype solar cooker, economics of switching over to solar cooking and policy issues to enhance popularity of solar cooker as an attractive option to combat domestic cooking fuel crisis.

  2. Computer model studies of a solar cooker: A finned pot

    SciTech Connect

    Pejack, E.R.

    1992-12-31

    A mathematical model of a box-type solar cooker, accounting for the solar energy input and internal heat exchange among the pot, walls, top cover and air has been developed and reported earlier. The model considers the variable sun angle and intensity, box and reflector orientation, heat losses, cooking time, wind, and other variables. In the present application of the model, an extended surface, or fin, is attached to the pot. The fin acts to increase the direct solar radiation to the pot-fin system as well as add surface area for convection from the air in the box. Results for specific geometries of fins with variable length and thickness show that the food temperatures can be appreciably increased with the finned pot.

  3. The ``Sol Kitchen'' solar coffee can cooker kit and curriculum package

    SciTech Connect

    Donald, R.M.

    1999-07-01

    The Sol Kitchen Solar Coffee Can Cooker Kit is being developed, by Solar utilities, as a product, with several contexts in mind, including (1) the need to sustain the long term market development of solar energy through education, (2) the need for an improved set of performance criteria for the technology, as it is presented in the classroom and (3) an awareness of newly evolving bench marks in environmental education ({hor_ellipsis}which is about learning how to save the earth.). The category of technology discussed in this paper is the solar cooker, also known as, the solar oven, furnace, or box cooker, with or without reflective panels. The use of full scale solar cookers, modified to act as curriculum aids, can augment educational programs; but only if they work well, are appropriate to the educational objectives, and engage the attention and active involvement of the learners.

  4. Shenandoah parabolic dish solar collector

    SciTech Connect

    Kinoshita, G.S.

    1985-01-01

    The objectives of the Shenandoah, Georgia, Solar Total Energy System are to design, construct, test, and operate a solar energy system to obtain experience with large-scale hardware systems for future applications. This report describes the initial design and testing activities conducted to select and develop a collector that would serve the need of such a solar total energy system. The parabolic dish was selected as the collector most likely to maximize energy collection as required by this specific site. The fabrication, testing, and installation of the parabolic dish collector incorporating improvements identified during the development testing phase are described.

  5. Twelve years experience with solar cookers: Necessary tools for a clean environment

    SciTech Connect

    Nandwani, S.S.

    1992-12-31

    In this review the author shares his personal experience of 12 years on cooking and working with hot box type Solar Ovens (SO), Electric cum Solar Oven (ECSO) and simple Heat Storage Oven (HESO). In addition to informing, advantages and limitations of conventional hot box Solar Oven, economic, social, ecological, and dissemination aspects will be mentioned. Finally some other applications of the solar cooker alone, as well as combined with other solar thermal devices like water heaters, driers and stills, are discussed.

  6. A new kind of efficient solar cookers with and without temporary heat storage

    SciTech Connect

    Schwarzer, K.; Bieger, W.; Meer, A. von; Krings, T.

    1992-12-31

    Solar cookers are described that were tested for future use in developing countries. They consisted of a flat plate collector and one cooking unit with or without temporary heat storage. The goal was to develop inexpensive and efficient systems using materials available in developing countries. The tests showed that cooking with solar is comparable to cooking with electricity or gas and can be adapted to daily cooking processes, including broiling and baking.

  7. First and Second Law Efficiencies in the Cooking Process of Eggplant using a Solar Cooker Box-Type

    NASA Astrophysics Data System (ADS)

    Terres, H.; Chávez, S.; Lizardi, A.; López, R.; Vaca, M.; Flores, J.; Salazar, A.

    2015-01-01

    In this work an experimental procedure and the determination of first and second law efficiencies for the cooking process of eggplant using a solar cooker box-type are shown. The eggplant was modelled as cylinder. In the experimental process a NI Compact Field Point was used as acquisition data system which allows measure temperatures in simultaneous form. The temperatures evolution was defined using thermocouples located at water, surface and central point of the eggplant. After to measure the evolution temperatures in a solar cooker thermodynamics principles were applied to determine the first and second laws. The results obtained indicates what is the numerical difference between the first and second laws in the cooking process of eggplant. The results allow to understand how the inlet energy that impacts on solar cooker is converted in energy useful in the cooking process of eggplant. This work be used in future designs of solar cookers.

  8. Oven receiver: An approach toward the revival of concentrating solar cookers

    SciTech Connect

    Habeebullah, M.B.; Khalifa, A.M.; Olwi, I.

    1995-04-01

    Concentrating type solar cookers are expected to demonstrate high performance because of the large collection area employed. However, the net amount of heat used is still low. This is greatly attributed to the large amount of heat losses from the bare food pots used. Introducing the oven type concept as an alternative approach for collecting the concentrated solar energy would drastically boost the overall cooker efficiency. In this work, the transient heat balance equations were developed for predicting the thermal behavior of an oven type concentrating solar cooker. This simulation was used to show theoretically the great advantage of using a glass-sided oven over the conventional bare receiver pot. The resulting mathematical model was solved using numerical integration. The transient nature of solar radiation and effects of wind speed variation were all taken into consideration. The analysis showed that the oven type receiving pot has both a higher fluid temperature and overall receiver efficiency compared to the bare receiver type, working under similar conditions. 18 refs., 12 figs., 3 tabs.

  9. Solar Parabolic Dish Annual Technology Evaluation Report

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1982 are summarized. Included are discussions on designs of module development including their concentrator, receiver, and power conversion subsystems. Analyses and test results, along with progress on field tests, Small Community Experiment System development, and tests at the Parabolic Dish Test Site are also included.

  10. Solar parabolic dish technology evaluation report

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.

    1984-01-01

    The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1983 are summarized. Included are discussions on designs of module development including concentrator, receiver, and power conversion subsystems together with a separate discussion of field tests, Small Community Experiment system development, and tests at the Parabolic Dish Test Site.

  11. Heat Transfer Convection in The Cooking of Apple Using a Solar Cooker Box-Type

    NASA Astrophysics Data System (ADS)

    Terres, H.; Chávez, S.; Lizardi, A.; López, R.; Vaca, M.; Flores, J.; Salazar, A.

    2015-01-01

    In this work, experimental results to determine the convection heat transfer coefficient in the cooking process of apple using a solar cooker box-type are presented. Experimental data of temperatures for water, surface and central point of the apple were used. To determine the convection coefficient, the apple was modelled as a sphere. The temperatures evolution was defined using thermocouples located at water, surface and central point in the vegetables. Using heat transfer convection equations in transitory state and the temperatures measured, the Biot number and the convection coefficient were determined.

  12. Solar Thermal Power Systems parabolic dish project

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.

  13. Building a parabolic solar concentrator prototype

    NASA Astrophysics Data System (ADS)

    Escobar-Romero, J. F. M.; Montiel, S. Vázquez y.; Granados-Agustín, F.; Cruz-Martínez, V. M.; Rodríguez-Rivera, E.; Martínez-Yáñez, L.

    2011-01-01

    In order to not further degrade the environment, people have been seeking to replace non-renewable natural resources such as fossil fuels by developing technologies that are based on renewable resources. An example of these technologies is solar energy. In this paper, we show the building and test of a solar parabolic concentrator as a prototype for the production of steam that can be coupled to a turbine to generate electricity or a steam engine in any particular industrial process.

  14. Parabolic dish collectors - A solar option

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    A description is given of several parabolic-dish high temperature solar thermal systems currently undergoing performance trials. A single parabolic dish has the potential for generating 20 to 30 kW of electricity with fluid temperatures from 300 to 1650 C. Each dish is a complete power-producing unit, and may function either independently or as part of a group of linked modules. The two dish designs under consideration are of 11 and 12 meter diameters, yielding receiver operating temperatures of 925 and 815 C, respectively. The receiver designs described include (1) an organic working fluid (toluene) Rankine cycle engine; (2) a Brayton open cycle unit incorporating a hybrid combustion chamber and nozzle and a shaft-coupled permanent magnet alternator; and (3) a modified Stirling cycle device originally designed for automotive use. Also considered are thermal buffer energy storage and thermochemical transport and storage.

  15. Antireflection Pyrex envelopes for parabolic solar collectors

    NASA Astrophysics Data System (ADS)

    McCollister, H. L.; Pettit, R. B.

    1983-11-01

    Antireflective (AR) coatings, applied to the glass envelopes used in parabolic trough solar collectors around the receiver tube in order to reduce thermal losses, can increase solar transmittance by 7 percent. An AR surface has been formed on Pyrex by first heat treating the glass to cause a compositional phase separation, removing a surface layer after heat treatment through the use of a preetching solution, and finally etching in a solution that contains hydrofluorosilic and ammonium bifluoride acids. AR-coated samples with solar transmittance values of more than 0.97, by comparison to an untreated sample value of 0.91, have been obtained for the 560-630 C range of heat treatment temperatures. Optimum values have also been determined for the other processing parameters.

  16. Alignment method for parabolic trough solar concentrators

    DOEpatents

    Diver, Richard B.

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  17. Steam engine research for solar parabolic dish

    NASA Astrophysics Data System (ADS)

    Demler, R. L.

    1981-05-01

    The parabolic dish solar concentrator provides an opportunity to generate high grade energy in a modular system. Most of the capital is projected to be in the dish and its installation. Assurance of a high production demand of a standard dish could lead to dramatic cost reductions. High production volume in turn depends upon maximum application flexibility by providing energy output options, e.g., heat, electricity, chemicals and combinations thereof. Subsets of these options include energy storage and combustion assist. A steam engine design and experimental program is described which investigate the efficiency potential of a small 25 kW compound reheat cycle piston engine. An engine efficiency of 35 percent is estimated for a 700 C steam temperature from the solar receiver.

  18. Steam engine research for solar parabolic dish

    NASA Technical Reports Server (NTRS)

    Demler, R. L.

    1981-01-01

    The parabolic dish solar concentrator provides an opportunity to generate high grade energy in a modular system. Most of the capital is projected to be in the dish and its installation. Assurance of a high production demand of a standard dish could lead to dramatic cost reductions. High production volume in turn depends upon maximum application flexibility by providing energy output options, e.g., heat, electricity, chemicals and combinations thereof. Subsets of these options include energy storage and combustion assist. A steam engine design and experimental program is described which investigate the efficiency potential of a small 25 kW compound reheat cycle piston engine. An engine efficiency of 35 percent is estimated for a 700 C steam temperature from the solar receiver.

  19. Proceedings of the Fifth Parabolic Dish Solar Thermal Power Program

    NASA Technical Reports Server (NTRS)

    Lucas, J. W. (Editor)

    1984-01-01

    The proceedings of the Fifth Parabolic Dish Solar Thermal Power Program Annual Review are presented. The results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program were emphasized. Among the topics discussed were: overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development along with associated hardware and test results; distributed systems operating experience; international parabolic dish development activities; and non-DOE-sponsored domestic dish activities. Solar electric generation was also addressed.

  20. Proceedings of the Fifth Parabolic Dish Solar Thermal Power Program

    SciTech Connect

    Lucas, J.W.

    1984-03-01

    The proceedings of the Fifth Parabolic Dish Solar Thermal Power Program Annual Review are presented. The results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program were emphasized. Among the topics discussed were: overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development along with associated hardware and test results distributed systems operating experience international parabolic dish development activities and non-DOE-sponsored domestic dish activities. Solar electric generation was also addressed. For individual titles, see N84-28225 through N84-28258.

  1. Solar parabolic dish technology annual evaluation report. Fiscal year 1983

    SciTech Connect

    Not Available

    1984-04-15

    This report summarizes the activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1983. Included are discussions on designs of module development including their concentrator, receiver, and power conversion subsystem together with a separate discussion of concentrator development. Analyses and test results, along with progress on field tests, Small Community Experiment system development, and tests at the Parabolic Dish Test Site are also included.

  2. Test results, Industrial Solar Technology parabolic trough solar collector

    SciTech Connect

    Dudley, V.E.; Evans, L.R.; Matthews, C.W.

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  3. Solar Thermal Power Plants with Parabolic-Trough Collectors

    NASA Astrophysics Data System (ADS)

    Zarza, E.; Valenzuela, L.; León, J.

    2004-12-01

    Parabolic-trough collectors (PTC) are solar concentrating devices suitable to work in the 150°C- 400°C temperature range. Power plants based on this type of solar collectors are a very efficient way to produce electricity with solar energy. At present, there are eight commercial solar plants (called SEGS-II, III,.. IX) producing electricity with parabolic-trough collectors and their total output power is 340 MW. Though all SEGS plants currently in operation use thermal oil as a heat transfer fluid between the solar field and the power block, direct steam generation (DSG) in the receiver tubes is a promising option to reduce the cost of electricity produced with parabolic- trough power plants. Most of technical uncertainties associated to the DSG technology were studied and solved in the DISS project and it is expected that this new technology will be commercially available in a short term. In Spain, the Royal Decree No. 436/204 (March 12th , 2004) has defined a premium of 0,18€/kWh for the electricity produced by solar thermal power plants, thus promoting the installation of solar thermal power plants up to a limit of 200 MW. Due to the current legal and financial framework defined in Spain, several projects to install commercial solar power plants with parabolic-trough collectors are currently underway.

  4. Federal technology alert. Parabolic-trough solar water heating

    SciTech Connect

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  5. Parabolic Dish Solar Thermal Power Annual Program Review Proceedings

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.

    1982-01-01

    The results of activities of the parabolic dish technology and applications development element of DOE's Solar Thermal Energy System Program are presented. Topics include the development and testing of concentrators, receivers, and power conversion units; system design and development for engineering experiments; economic analysis and marketing assessment; and advanced development activities. A panel discussion concerning industrial support sector requirements is also documented.

  6. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    SciTech Connect

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  7. Performance contracting for parabolic trough solar thermal systems

    SciTech Connect

    Brown, H.; Hewett, R.; Walker, A.; Gee, R.; May, K.

    1997-12-31

    Several applications of solar energy have proven viable in the energy marketplace, due to competitive technology and economic performance. One example is the parabolic trough solar collectors, which use focused solar energy to maximize efficiency and reduce material use in construction. Technical improvements are complemented by new business practices to make parabolic trough solar thermal systems technically and economically viable in an ever widening range of applications. Technical developments in materials and fabrication techniques reduce production cost and expand applications from swimming pool heating and service hot water, to higher-temperature applications such as absorption cooling and process steam. Simultaneously, new financing mechanisms such as a recently awarded US Department of Energy (DOE) Federal Energy Management Program (FEMP) indefinite quantity Energy Savings Performance Contract (Super ESPC) facilitate and streamline implementation of the technology in federal facilities such as prisons and military bases.

  8. Irrigation market for solar thermal parabolic dish systems

    NASA Technical Reports Server (NTRS)

    Habib-Agahi, H.; Jones, S. C.

    1981-01-01

    The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.

  9. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  10. Proceedings: Fourth Parabolic Dish Solar Thermal Power Program Review

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of activities within the parabolic dish technology and applications development program are presented. Stirling, organic Rankine and Brayton module technologies, associated hardware and test results to date; concentrator development and progress; economic analyses; and international dish development activities are covered. Two panel discussions, concerning industry issues affecting solar thermal dish development and dish technology from a utility/user perspective, are also included.

  11. Irrigation market for solar-thermal parabolic-dish systems

    SciTech Connect

    Habib-agahi, H.; Jones, S.C.

    1981-09-01

    The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. A model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. Results indicate that the near-term market for such systems depends not only on the type of crop and method of irrigation, but also on the optimal utilization of each added module, which in turn depends on the price of conventional fuel, real discount rate, marginal cost of the solar thermal power system, local insolation level and parabolic dish system efficiency. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14% real discount rate is assumed to 220,000 modules when the real discount rate drops to 8%. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98% of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71%) of the total market.

  12. Cooking with the Sun. How To Build and Use Solar Cookers.

    ERIC Educational Resources Information Center

    Halacy, Beth; Halacy, Dan

    For those working with solar energy and/or conservation and the careful use of resources, constructing a solar oven can be a fun and useful activity. This book describes the construction and use of solar ovens for cooking. Construction details are provided for two inexpensive solar ovens and a reflector hot plate that can then be used to cook 100…

  13. Cooking with the Sun. How To Build and Use Solar Cookers.

    ERIC Educational Resources Information Center

    Halacy, Beth; Halacy, Dan

    For those working with solar energy and/or conservation and the careful use of resources, constructing a solar oven can be a fun and useful activity. This book describes the construction and use of solar ovens for cooking. Construction details are provided for two inexpensive solar ovens and a reflector hot plate that can then be used to cook 100

  14. Beaming-In On Student-Made Solar Technology

    ERIC Educational Resources Information Center

    Chiotelis, Charles L.

    1978-01-01

    Completion of a unit on heat energy motivated students to devise their own solar collectors, parabolic solar cookers, and designs for a solar home. Using their solar projects, the students tests hypotheses they might have had concerning heating capacities, insulation values, or energy conversions. (MA)

  15. Secondary concentrators for parabolic dish solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Poon, P. T.

    1981-01-01

    A variety of different concepts are currently being studied with the objective to lower the cost of parabolic mirrors and to provide alternatives. One of the considered approaches involves the use of compound concentrators. A compound solar concentrator is a concentrator in which the sunlight is reflected or refracted more than once. It consists of a primary mirror or lens, whose aperture determines the amount of sunlight gathered, and a smaller secondary mirror or lens. Additional small optical elements may also be incorporated. The possibilities and problems regarding a use of compound concentrators in parabolic dish systems are discussed. Attention is given to concentrating secondary lenses, secondary imaging and concentrating mirrors, conical secondary mirrors, compound elliptic secondary concentrating mirrors, and hyperbolic trumpet secondary concentrating mirrors.

  16. Exergetic analysis of parabolic trough solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Ruperez, B.; San Miguel, G.

    2014-12-01

    A very important component to achieve sustainable development in the energy sector is the improvement of energy efficiency of widely applied thermodynamic processes. Evaluation and optimization methods of energy processes play a crucial role in fulfilling this goal. A suitable method for the evaluation and optimization of energy conversion systems has been proven to be the exergetic analysis. In this work, two parabolic trough solar thermal power plants are simulated in detail using commercial software, and they are further analysed and compared using an exergetic analysis. The first plant uses a thermal fluid to produce the steam required in a steam generator, while the second one produces the steam directly in the solar field. The analysis involves the evaluation of the individual components of the power plants, as well as the performance evaluation of the overall structures. The main goal is to detect thermodynamic inefficiencies of the two different configurations and propose measures to minimize those. We find that the two examined plants have similar main sources of exergy destruction: the solar field (parabolic trough solar collectors), followed by the steam generator. This reveals the importance of an optimal design of these particular components, which could reduce inefficiencies present in the system. The differences in the exergy destruction and exergetic efficiencies of individual components of the two plants are analyzed in detail based on comparable operational conditions.

  17. Thermal storage requirements for parabolic dish solar power plants

    NASA Technical Reports Server (NTRS)

    Wen, L.; Steele, H.

    1980-01-01

    The cost effectiveness of a high temperature thermal storage system is investigated for a representative parabolic dish solar power plant. The plant supplies electrical power in accordance with a specific, seasonally varying demand profile. The solar power received by the plant is supplemented by power from fuel combustion. The cost of electricity generated by the solar power plant is calculated, using the cost of mass-producible subsystems (specifically, parabolic dishes, receivers, and power conversion units) now being designed for this type of solar plant. The trade-off between fuel and thermal storage is derived in terms of storage effectiveness, the cost of storage devices, and the cost of fuel. Thermal storage requirements, such as storage capacity, storage effectiveness, and storage cost are established based on the cost of fuel and the overall objective of minimizing the cost of the electricity produced by the system. As the cost of fuel increases at a rate faster than general inflation, thermal storage systems in the $40 to $70/kWthr range could become cost effective in the near future.

  18. Fifth parabolic dish solar thermal power program annual review: proceedings

    SciTech Connect

    1984-03-01

    The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

  19. Thermo-electronic solar power conversion with a parabolic concentrator

    NASA Astrophysics Data System (ADS)

    Olukunle, Olawole C.; De, Dilip K.

    2016-02-01

    We consider the energy dynamics of the power generation from the sun when the solar energy is concentrated on to the emitter of a thermo-electronic converter with the help of a parabolic mirror. We use the modified Richardson-Dushman equation. The emitter cross section is assumed to be exactly equal to the focused area at a height h from the base of the mirror to prevent loss of efficiency. We report the variation of output power with solar insolation, height h, reflectivity of the mirror, and anode temperature, initially assuming that there is no space charge effect. Our methodology allows us to predict the temperature at which the anode must be cooled in order to prevent loss of efficiency of power conversion. Novel ways of tackling the space charge problem have been discussed. The space charge effect is modeled through the introduction of a parameter f (0 < f < 1) in the thermos-electron emission equation. We find that the efficiency of the power conversion depends on solar insolation, height h, apart from radii R of the concentrator aperture and emitter, and the collector material properties. We have also considered solar thermos electronic power conversion by using single atom-layer graphene as an emitter.

  20. The JPL parabolic dish project. [solar collectors technology development

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.; Williams, A. N.

    1980-01-01

    The parabolic dish solar collector is a highly versatile concentrating collector system that can produce heat for many thermal processes and electricity by coupling the collector to a suitable heat engine. This paper discusses a project for the development of these collector systems and summarizes contracts with industry for developing the dish subsystems which include concentrator, receiver, and heat engine. An early market for dishes is the dispersed small community market which depends heavily on oil to operate diesel or steam turbine plants in order to generate electricity. The present contracts with industry for conducting engineering experiments using the developed dish hardware to demonstrate the technology in these early opportunity markets is also discussed.

  1. Solar parabolic dish thermal power systems - Technology and applications

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.; Marriott, A. T.

    1979-01-01

    Activities of two projects at JPL in support of DOE's Small Power Systems Program are reported. These two projects are the Point-Focusing Distributed Receiver (PFDR) Technology Project and the Point-Focusing Thermal and Electric Applications (PFTEA) Project. The PFDR Technology Project's major activity is developing the technology of solar concentrators, receivers and power conversion subsystems suitable for parabolic dish or point-focusing distributed receiver power systems. Other PFDR activities include system integration and cost estimation under mass production, as well as the testing of the hardware. The PFTEA Project's first major activity is applications analysis, that is seeking ways to introduce PFDR systems into appropriate user sectors. The second activity is systems engineering and development wherein power plant systems are analyzed for specific applications. The third activity is the installation of a series of engineering experiments in various user environments to obtain actual operating experience

  2. Mechanism of Hydrogen Formation in Solar Parabolic Trough Receivers

    SciTech Connect

    Moens, L.; Blake, D. M.

    2008-03-01

    Solar parabolic trough systems for electricity production are receiving renewed attention, and new solar plants are under construction to help meet the growing demands of the power market in the Western United States. The growing solar trough industry will rely on operating experience it has gained over the last two decades. Recently, researchers found that trough plants that use organic heat transfer fluids (HTF) such as Therminol VP-1 are experiencing significant heat losses in the receiver tubes. The cause has been traced back to the accumulation of excess hydrogen gas in the vacuum annulus that surrounds the steel receiver tube, thus compromising the thermal insulation of the receiver. The hydrogen gas is formed during the thermal decomposition of the organic HTF that circulates inside the receiver loop, and the installation of hydrogen getters inside the annulus has proven to be insufficient for controlling the hydrogen build-up over the lifetime of the receivers. This paper will provide an overview of the chemical literature dealing with the thermal decomposition of diphenyl oxide and biphenyl, the two constituents of Therminol VP-1.

  3. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    SciTech Connect

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  4. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  5. Solar thermal power systems: parabolic dish project. Annual technical report, Fiscal Year 1980

    SciTech Connect

    Not Available

    1981-05-15

    The status of the JPL Solar Thermal Power Systems Project is summarized. Included is a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.

  6. Joint Indo-German program on solar energy: Parabolic dish program, step 1

    NASA Astrophysics Data System (ADS)

    Wolz, F.

    1984-08-01

    A 4 m diameter parabolic dish solar collector is described. A test loop including tracking system was built. It is shown that the technical concept and the applied technologies are suitable under Indian environmental conditions. Temperatures up to 350 C are reached.

  7. Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study

    SciTech Connect

    Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.

    2011-01-01

    As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.

  8. Recent Solar Measurements Results at the Parabolic Dish Test Site

    NASA Technical Reports Server (NTRS)

    Ross, D. L.

    1984-01-01

    After the Mexican volcanic eruptions of March 28, April 3 and 4, 1982, the question of its effect on insolation levels at the Parabolic Dish Test Site (PDTS) naturally arose. Clearly, the answer to the original question is that the Mexican volcanic explosion had a significant impact on energy and insolation levels at the PDTS and, furthermore, it has been quite long lasting. The first really significant decrease in energy and insolation levels occurred in June 1982 when the energy level decreased by 19.7% while the peak insolation levels went down by 4.0%. June of 1982 was also the first month (of 13 consecutive months) when peak insolation levels did not equal or exceed 1,000 W/sq m. Signs of a recovery from the effects of the volcanic explosion began to appear in May of 1983, when the energy level exceeded that of May 1981 as well as May 1982. It would appear that energy and insolation levels are improving at the PDTS, but have not quite reached normal or pre-volcanic levels. At this time the data would seem to suggest a return to normal energy and insolation levels will occur in the very near future.

  9. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  10. Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems

    SciTech Connect

    Fujita, T.; Awaya, H.I.; Birur, G.C.; Bowyer, J.M.; Schredder, J.M.

    1982-08-01

    Optional arrangements for generating electrical power from solar thermal parabolic dish systems are compared. An option which employs a cluster of two-axis tracking parabolic dish collectors to supply solar-derived heat to a ground-based thermal storage/power conversion unit is assessed. Each multi-dish cluster is a power module, and a large power system can be composed of a multiplicity of such modules. The use of advanced Stirling and Brayton engines is investigated. An important finding is that promising multi-dish clusters employing advanced sensible and latent heat thermal storage attain energy costs comparable to those of dishbattery systems over a wide range of dish cluster sizes. This has major implementation advantages in allowing the selection of cluster sizes and associated engines that are tailored to application system requirements and, in particular, permitting the use of a wide range of engines that are being developed for other applications.

  11. Handbook for the conceptual design of parabolic trough solar energy systems process heat applications

    NASA Astrophysics Data System (ADS)

    Harrigan, R. W.

    1981-07-01

    This report presents the techniques needed to execute conceptual designs of process heat systems employing parabolic trough solar collectors. The design tools are presented in graphical format, and each of 26 SOLMET sites is explicitly represented. The conceptual design resultant from the application of the design charts contained within this handbook approximates the collector area needed to displace a constant thermal demand, the land area needed for collector deployment, the appropriate quantity of sensible heat storage, the fraction of fossil fuel displaced by solar, and the capital cost of the collector-storage subsystem.

  12. Optimization of spherical facets for parabolic solar concentrators

    NASA Technical Reports Server (NTRS)

    White, J. E.; Erikson, R. J.; Sturgis, J. D.; Elfe, T. B.

    1986-01-01

    Solar concentrator designs which employ deployable hexagonal panels are being developed for space power systems. An offset optical configuration has been developed which offers significant system level advantages over previously proposed collector designs for space applications. Optical analyses have been performed which show offset reflector intercept factors to be only slightly lower than those for symmetric reflectors with the same slope error. Fluxes on the receiver walls are asymmetric but manageable by varying the tilt angle of the receiver. Greater producibility is achieved by subdividing the hexagonal panels into triangular mirror facets of spherical contour. Optical analysis has been performed upon these to yield near-optimum sizes and radii.

  13. Optical characterization of solar furnace system using fixed geometry nonimaging focusing heliostat and secondary parabolic concentrator

    NASA Astrophysics Data System (ADS)

    Chong, Kok-Keong; Lim, Chuan-Yang; Keh, Wee-Liang; Fan, Jian-Hau; Rahman, Faidz Abdul

    2011-10-01

    A novel solar furnace system has been proposed to be consisted of a Nonimaging Focusing Heliostat and a smaller parabolic concentrator. In this configuration, the primary heliostat consists of 11×11 array of concave mirrors with a total reflective area of 121 m2 while the secondary parabolic concentrator has a focal length of 30 cm. To simplify the design and reduce the cost, fixed geometry of the primary heliostat is adopted to omit the requirement of continuous astigmatic correction throughout a year. The overall performance of the novel solar furnace configuration can be optimized if the heliostat's spinning-axis is fixed in the orientation dependent on the latitude angle so that the annual variation of incidence angle is the least, which ranges from 33° to 57°. Case study of the novel solar furnace system has been performed with the use of ray-tracing method to simulate solar flux distribution profile for two different target distances, i.e. 50 m and 100 m. The simulated results have revealed that the maximum solar concentration ratio ranges from 20,530 suns to 26,074 suns for the target distance of 50 m, and ranges from 40,366 suns to 43,297 suns for the target distance of 100 m.

  14. Thermal buffering of receivers for parabolic dish solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.; Gajanana, B. C.; Marcus, C. J.

    1980-01-01

    A parabolic dish solar thermal power plant comprises a field of parabolic dish power modules where each module is composed of a two-axis tracking parabolic dish concentrator which reflects sunlight (insolation) into the aperture of a cavity receiver at the focal point of the dish. The heat generated by the solar flux entering the receiver is removed by a heat transfer fluid. In the dish power module, this heat is used to drive a small heat engine/generator assembly which is directly connected to the cavity receiver at the focal point. A computer analysis is performed to assess the thermal buffering characteristics of receivers containing sensible and latent heat thermal energy storage. Parametric variations of the thermal inertia of the integrated receiver-buffer storage systems coupled with different fluid flow rate control strategies are carried out to delineate the effect of buffer storage, the transient response of the receiver-storage systems and corresponding fluid outlet temperature. It is concluded that addition of phase change buffer storage will substantially improve system operational characteristics during periods of rapidly fluctuating insolation due to cloud passage.

  15. 7 CFR 58.709 - Cookers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... cookers shall be the steam jacketed or direct steam type. They shall be constructed of stainless steel or... constructed of stainless steel pipes and fittings which can be readily cleaned. If direct steam is applied to... on direct steam type cookers shall be mounted flush with cooker wall, be constructed of...

  16. 7 CFR 58.709 - Cookers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... cookers shall be the steam jacketed or direct steam type. They shall be constructed of stainless steel or... constructed of stainless steel pipes and fittings which can be readily cleaned. If direct steam is applied to... on direct steam type cookers shall be mounted flush with cooker wall, be constructed of...

  17. 7 CFR 58.709 - Cookers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... cookers shall be the steam jacketed or direct steam type. They shall be constructed of stainless steel or... constructed of stainless steel pipes and fittings which can be readily cleaned. If direct steam is applied to... on direct steam type cookers shall be mounted flush with cooker wall, be constructed of...

  18. 7 CFR 58.709 - Cookers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... cookers shall be the steam jacketed or direct steam type. They shall be constructed of stainless steel or... constructed of stainless steel pipes and fittings which can be readily cleaned. If direct steam is applied to... on direct steam type cookers shall be mounted flush with cooker wall, be constructed of...

  19. Cost/performance of solar reflective surfaces for parabolic dish concentrators

    NASA Technical Reports Server (NTRS)

    Bouquet, F.

    1980-01-01

    Materials for highly reflective surfaces for use in parabolic dish solar concentrators are discussed. Some important factors concerning performance of the mirrors are summarized, and typical costs are treated briefly. Capital investment cost/performance ratios for various materials are computed specifically for the double curvature parabolic concentrators using a mathematical model. The results are given in terms of initial investment cost for reflective surfaces per thermal kilowatt delivered to the receiver cavity for various operating temperatures from 400 to 1400 C. Although second surface glass mirrors are emphasized, first surface, chemically brightened and anodized aluminum surfaces as well as second surface, metallized polymeric films are treated. Conventional glass mirrors have the lowest cost/performance ratios, followed closely by aluminum reflectors. Ranges in the data due to uncertainties in cost and mirror reflectance factors are given.

  20. Convection heat loss from cavity receiver in parabolic dish solar thermal power system: A review

    SciTech Connect

    Wu, Shuang-Ying; Xiao, Lan; Li, You-Rong; Cao, Yiding

    2010-08-15

    The convection heat loss from cavity receiver in parabolic dish solar thermal power system can significantly reduce the efficiency and consequently the cost effectiveness of the system. It is important to assess this heat loss and subsequently improve the thermal performance of the receiver. This paper aims to present a comprehensive review and systematic summarization of the state of the art in the research and progress in this area. The efforts include the convection heat loss mechanism, experimental and numerical investigations on the cavity receivers with varied shapes that have been considered up to date, and the Nusselt number correlations developed for convection heat loss prediction as well as the wind effect. One of the most important features of this paper is that it has covered numerous cavity literatures encountered in various other engineering systems, such as those in electronic cooling devices and buildings. The studies related to those applications may provide valuable information for the solar receiver design, which may otherwise be ignored by a solar system designer. Finally, future development directions and the issues that need to be further investigated are also suggested. It is believed that this comprehensive review will be beneficial to the design, simulation, performance assessment and applications of the solar parabolic dish cavity receivers. (author)

  1. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  2. Enhancing Optical Efficiency of a Linear Parabolic Solar Collector through Nanofluids

    NASA Astrophysics Data System (ADS)

    Khullar, Vikrant; Tyagi, Himanshu

    2011-10-01

    This paper explores different types of nanofluids (namely aluminium nanoparticles dispersed in water, ethylene glycol, propylene glycol and therminol VP-1) for their suitability as working fluid in direct absorption linear parabolic solar collectors. Lambert Beer's law has been invoked to compute intensity attenuation as it passes through the nanofluid. Intensity attenuation and subsequent energy transfer takes place through absorption and scattering of solar radiations by the participating media (nanofluid). The current analysis quantitatively compares the solar energy capturing capacity for the four nanofluids. Optical efficiency as a function of receiver radius and volume fraction of nanoparticles has been computed for the four nanofluids, also thermal efficiency as a function of volume fraction has been found out.

  3. Optical analysis of parabolic dish concentrators for solar dynamic power systems in space

    NASA Technical Reports Server (NTRS)

    Jefferies, K. S.

    1985-01-01

    An optical analysis of a parabolic solar collection system operating in Earth orbit was performed using ray tracing techniques. The analysis included the effects of: (1) solar limb darkening, (2) parametric variation of mirror surface error, (3) parametric variation of mirror rim angle, and (4) parametric variation of alignment and pointing error. This ray tracing technique used numerical integration to combine the effects of rays emanating from different parts of the sun at different intensities with the effects of normally distributed mirror-surface errors to compute the angular intensity distribution of rays leaving the mirror surface. A second numerical integration was then performed over the surface of the parabolic mirror to compute the radial distribution of brightness at the mirror focus. Major results of the analysis included: (1) solar energy can be collected at high temperatures with high efficiency, (2) higher absorber temperatures can be achieved at lower efficiencies, or higher efficiencies can be achieved at lower temperatures, and (3) collection efficiency is near its maximum level across a broad plateau of rim angles from 40 deg to 70 deg.

  4. An optimized model and test of the China's first high temperature parabolic trough solar receiver

    SciTech Connect

    Gong, Guangjie; Huang, Xinyan; Wang, Jun; Hao, Menglong

    2010-12-15

    The vacuum solar receiver is the key component of a parabolic trough solar plant, which plays a prominent role in the gross system efficiency. Recently, China's first high temperature vacuum receiver, Sanle-3 HCE, has been developed and produced by Southeast University and Sanle Electronic Group. Before being utilized in China's first parabolic trough solar plant, accurately estimating the thermal properties of this new receiver is important. This paper first establishes and optimizes a 1-D theoretical model at Matlab program to compute the receiver's major heat loss through glass envelope, and then systematically analyzes the major influence factors of heat loss. With the laboratorial steady state test stand, the heat losses of both good vacuum and non-vacuum Sanle-3 receivers were surveyed. Comparison shows the original 1-D model agrees with the ends covered test while remarkably deviating from end exposed test. For the purpose of identifying the influence of receiver's end to total heat loss, an additional 3-D model is built by CFD software to further investigate the different heat transfer processes of receiver's end components. The 3-D end model is verified by heating power and IR temperature distribution images in the test. Combining the optimized 1-D model with the new 3-D end model, the comparison with test data shows a good accordance. At the same time the heat loss curve and emittance curve of this new receiver are given and compared with those of several other existing receivers as references. (author)

  5. Test results on parabolic dish concentrators for solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, Leonard D.

    1989-01-01

    This paper presents results of development testing of various solar thermal parabolic dish concentrators. The concentrators were mostly designed for the production of electric power using dish-mounted Rankine, Brayton or Stirling cycle engines, intended to be produced at low cost. Measured performance for various dishes included optical efficiencies ranging from 0.32 to 0.86 at a geometric concentration ratio of 500, and from about 0.09 to 0.85 at a geometric concentration ratio of 3000. Some malfunctions were observed. The tests should provide operating information of value in developing concentrators with improved performance and reduced maintenance.

  6. Measured performances of curved inverted-vee, absorber compound parabolic concentrating solar-energy collectors

    SciTech Connect

    Norton, B. ); Prapas, D.E. ); Eames, P.C.; Probert, S.D. )

    1989-01-01

    The design and thermal performance of modified compound parabolic concentrating (CPC) solar-energy collectors are described. The designs incorporate a curved inverted-Vee absorber fin, which allows a reflector of simple geometry to be used. This CPC collector, has exhibited a superior performance to that of a conventional cusp-reflector CPC design, owing to the enhancement of the optical efficiency obtained by eliminating gap optical losses and an enhanced heat removal factor. The consequence upon the performance of a further design refinement, which inhibited the convective heat losses, is also reported.

  7. Comparison of electrochemical and thermal storage for hybrid parabolic dish solar power plants

    SciTech Connect

    Steele, H.L.; Wen, L.

    1981-01-01

    The cost of storage systems which can compete with the use of fuel in hybrid parabolic dish solar power plants is identified for one set of specific assumptions. The hybrid plants burn fuel to increase the hours of usage each day. The cost and performance characteristics of concentrators, receivers and power conversion units are based on estimates by the contractors developing this hardware under the direction of the Department of Energy and the Jet Propulsion Laboratory (JPL). Thermal storage systems are not yet designed and only the cost goal which would make them competitive is known. 12 refs.

  8. Experiments with an Induction Cooker

    ERIC Educational Resources Information Center

    Zilavy, Peter

    2009-01-01

    The induction cooker is a common appliance nowadays. How does it work? Why is it not possible to use aluminium utensils with it? What experiments can be carried out with it (at different levels) and not only in physics lessons? Searching for the answers to these and other questions is the purpose of this article. (Contains 5 figures.)

  9. Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM)

    SciTech Connect

    Turchi, C.

    2010-07-01

    This report describes a component-based cost model developed for parabolic trough solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), assisted by WorleyParsons Group Inc., for use with NREL's Solar Advisor Model (SAM). This report includes an overview and explanation of the model, two summary contract reports from WorleyParsons, and an Excel spreadsheet for use with SAM. The cost study uses a reference plant with a 100-MWe capacity and six hours of thermal energy storage. Wet-cooling and dry-cooling configurations are considered. The spreadsheet includes capital and operating cost by component to allow users to estimate the impact of changes in component costs.

  10. Summary assessment of solar thermal parabolic dish technology for electrical power generation

    SciTech Connect

    Panda, P.L.; Fujita, T.; Lucas, J.W.

    1985-09-15

    An assessment is provided of solar thermal parabolic dish technology for electrical power generation. The assessment is based on the development program undertaken by the Jet Propulsion Laboratory for the US Department of Energy and covers the period from the initiation of the program in 1976 through mid-1984. The program was founded on developing components and subsystems that are integrated into parabolic dish power modules for test and evaluation. The status of the project is summarized in terms of results obtained through testing of modules, and the implications of these findings are assessed in terms of techno-economic projections and market potential. The techno-economic projections are based on continuation of an evolutionary technological development program and are anchored to the accomplishments of the program as of mid-1984. The accomplishments of the development effort are summarized for each major subsystem including concentrators, receivers, and engines. The ramifications of these accomplishments are assessed in the context of developmental objectives and strategies.

  11. Summary assessment of solar thermal parabolic dish technology for electrical power generation

    NASA Astrophysics Data System (ADS)

    Penda, P. L.; Fujita, T.; Lucas, J. W.

    1985-09-01

    An assessment is provided of solar thermal parabolic dish technology for electrical power generation. The assessment is based on the development program undertaken by the Jet Propulsion Laboratory for the U.S. Department of Energy and covers the period from the initiation of the program in 1976 through mid-1984. The program was founded on developing components and subsystems that are integrated into parabolic dish power modules for test and evaluation. The status of the project is summarized in terms of results obtained through testing of modules, and the implications of these findings are assessed in terms of techno-economic projections and market potential. The techno-economic projections are based on continuation of an evolutionary technological development program and are related to the accomplishments of the program as of mid-1984. The accomplishments of the development effort are summarized for each major subsystem including concentrators, receivers, and engines. The ramifications of these accomplishments are assessed in the context of developmental objectives and strategies.

  12. Summary assessment of solar thermal parabolic dish technology for electrical power generation

    NASA Technical Reports Server (NTRS)

    Penda, P. L.; Fujita, T.; Lucas, J. W.

    1985-01-01

    An assessment is provided of solar thermal parabolic dish technology for electrical power generation. The assessment is based on the development program undertaken by the Jet Propulsion Laboratory for the U.S. Department of Energy and covers the period from the initiation of the program in 1976 through mid-1984. The program was founded on developing components and subsystems that are integrated into parabolic dish power modules for test and evaluation. The status of the project is summarized in terms of results obtained through testing of modules, and the implications of these findings are assessed in terms of techno-economic projections and market potential. The techno-economic projections are based on continuation of an evolutionary technological development program and are related to the accomplishments of the program as of mid-1984. The accomplishments of the development effort are summarized for each major subsystem including concentrators, receivers, and engines. The ramifications of these accomplishments are assessed in the context of developmental objectives and strategies.

  13. Thermal Modeling of a Hybrid Thermoelectric Solar Collector with a Compound Parabolic Concentrator

    NASA Astrophysics Data System (ADS)

    Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.

    2013-07-01

    In this study radiant light from the sun is used by a hybrid thermoelectric (TE) solar collector and a compound parabolic concentrator (CPC) to generate electricity and thermal energy. The hybrid TE solar collector system described in this report is composed of transparent glass, an air gap, an absorber plate, TE modules, a heat sink to cool the water, and a storage tank. Incident solar radiation falls on the CPC, which directs and reflects the radiation to heat up the absorber plate, creating a temperature difference across the TE modules. The water, which absorbs heat from the hot TE modules, flows through the heat sink to release its heat. The results show that the electrical power output and the conversion efficiency depend on the temperature difference between the hot and cold sides of the TE modules. A maximum power output of 1.03 W and a conversion efficiency of 0.6% were obtained when the temperature difference was 12°C. The thermal efficiency increased as the water flow rate increased. The maximum thermal efficiency achieved was 43.3%, corresponding to a water flow rate of 0.24 kg/s. These experimental results verify that using a TE solar collector with a CPC to produce both electrical power and thermal energy seems to be feasible. The thermal model and calculation method can be applied for performance prediction.

  14. An overview of the value of parabolic dish solar thermal systems in industrial cogeneration applications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The essential elements of the cogeneration system configuration to be captured were the displacement of thermal energy by collection and use of the Brayton exhaust stream, and the sale back to the utility of any electricity production in excess of on-site requirements. In contrast to simply dumping these energy flows, their use or sale obviously serves, by itself, to increase gross value of the solar thermal energy system. Net allowable cost of the parabolic dish modules may or may not be increased, however. A consideration is that the waste heat capture and delivery subsystems are not free. This study does not address the incremental cost of adding waste heat capture, transport, and conversion (to steam, if necessary). It does compute a value for the thermal energy thereby displaced. This value can serve as a first-round input to any detailed economic evaluation of waste heat recovery.

  15. Comparison of electrochemical and thermal storage for hybrid parabolic dish solar power plants

    NASA Technical Reports Server (NTRS)

    Steele, H. L.; Wen, L.

    1981-01-01

    The economic and operating performance of a parabolic point focus array of solar electricity generators combined with either battery or thermal energy storage are examined. Noting that low-cost, mass-producible power generating units are under development for the point focus of distributed dishes, that Zn-Cl battery tests will begin in 1981 and a 100 kWh Na-S battery in 1983, the state of thermal storage requires acceleration to reach the prototype status of the batteries. Under the assumptions of 10,000 units/yr with an expected 30 yr lifetime, cost comparisons are developed for 10 types of advanced batteries. A 5 MWe plant with full thermal or 80% battery storage discharge when demand occurs in conditions of no insolation is considered, specifically for Fe-Cr redox batteries. A necessity for the doubling of fuel prices from 1980 levels by 1990 is found in order to make the systems with batteries economically competitive.

  16. Utility-Scale Parabolic Trough Solar Systems: Performance Acceptance Test Guidelines, April 2009 - December 2010

    SciTech Connect

    Kearney, D.

    2011-05-01

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The Guidelines contained here are specifically written for parabolic trough collector systems with a heat-transport system using a high-temperature synthetic oil, but the basic principles are relevant to other CSP systems.

  17. Development of Performance Acceptance Test Guidelines for Large Commercial Parabolic Trough Solar Fields: Preprint

    SciTech Connect

    Kearney, D.; Mehos, M.

    2010-12-01

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the EPC contractor or owners. In lieu of the present absence of engineering code developed for this purpose, NREL has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The fundamental differences between acceptance of a solar power plant and a conventional fossil-fired plant are the transient nature of the energy source and the necessity to utilize an analytical performance model in the acceptance process. These factors bring into play the need to establish methods to measure steady state performance, potential impacts of transient processes, comparison to performance model results, and the possible requirement to test, or model, multi-day performance within the scope of the acceptance test procedure. The power block and BOP are not within the boundaries of this guideline. The current guideline is restricted to the solar thermal performance of parabolic trough systems and has been critiqued by a broad range of stakeholders in CSP development and technology.

  18. Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat-parabolic mirror system.

    PubMed

    Almeida, J; Liang, D; Vistas, C R; Guillot, E

    2015-03-10

    We report a large improvement in the collection and slope efficiency of an Nd:YAG solar laser pumped by a heliostat-parabolic mirror system. A conical fused silica lens was used to further concentrate the solar radiation from the focal zone of a 2 m diameter primary concentrator to a Nd:YAG single-crystal rod within a conical pump cavity, which enabled multipass pumping to the active medium. A 56 W cw laser power was measured, corresponding to 21.1  W/m2 record-high solar laser collection efficiency with the heliostat-parabolic mirror system. 4.9% slope efficiency was calculated, corresponding to 175% enhancement over our previous result. PMID:25968373

  19. Vanguard I solar parabolic dish-Stirling engine module. Final report, May 28, 1982-September 30, 1984

    SciTech Connect

    Washom, B.J.

    1984-09-30

    Advanco Corporation and the US Department of Energy entered into a cooperative agreement in May 1982 for the design, manufacture, and test of a 25-kWe solar parabolic dish module utilizing a Stirling engine power conversion unit. The product of the cooperative agreement is the Vanguard solar parabolic dish-Stirling engine module. It was designed, fabricated, and shop assembled in Los Angeles, California, and Malmoe, Sweden, and was then installed and tested at Rancho Mirage, California, in accordance with the agreement's specifications. The design features simple fabrication and assembly techniques, low cost, and high operating efficiency. The cover displays the Vanguard module operating on-sun. The concept combines the United Stirling AB (USAB) 4-95 Solar II Stirling engine, the Jet Propulsion Laboratory (JPL) developed mirror facets, the Rockwell/Advanco exocentric gimbal mechanism (EGM), the advanced USAB receiver, and a dry, integrated heat rejection system.

  20. An Optical Characterization Technique for Parabolic Trough Solar Collectors Using Images of the Absorber Reflection

    NASA Astrophysics Data System (ADS)

    Owkes, Jeanmarie Kathleen

    As the concentrating solar power industry competes to develop a less-expensive parabolic trough collector, assurance is needed that new parabolic trough collectors maintain accurate optical alignment. Previous optical characterization techniques are either too slow, ill-suited for field testing, or do not allow the collector to be tested in realistic orientations. The Observer method presented here enables the rapid optical characterization of parabolic trough collectors in any orientation in the field. The Observer method directly measures the combined optical angular errors in the reflector surface shape and the absorber position, which can be separated into its two components: reflector surface slope and absorber misalignment. The data acquisition requires the placement of photogrammetry targets on and around the collector. Multiple photographs of the absorber and its reflection are taken with a digital camera from different angles with respect to the collector. The images are processed to determine the camera location of each image using photogrammetry bundle analysis. The absorber and its reflection are found in the photographs using image-processing techniques. A Monte Carlo uncertainty model was developed to determine the uncertainty in the Observer measurements. The uncertainty was estimated for a wide array of measurement test scenarios to demonstrate the user's control over the measurement uncertainty. To validate the Observer method, the absorber alignment technique was compared to traditional photogrammetry; the absorber position measured with the two methods compared with a root-mean-square difference of 1.5 mm in the transverse direction and 0.86 mm along the optical axis. The reflector surface slope error measurement was compared to both VSHOT and SOFAST, two well-established optical characterization tools, by measuring a single reflector panel in the laboratory. The VSHOT and SOFAST measurements agreed with the Observer with a root-mean-square difference of 1.6 mrad and 2.1 mrad, respectively. In the field, the Observer method's capability to test collectors in any orientation was demonstrated by mounting the camera on a radio-controlled helicopter and measuring a collector oriented at 90° above the horizon. The absorber measurement capability was demonstrated in the field for a collector facing both horizontally and vertically.

  1. Side-by-side comparisons of evacuated compound parabolic concentrator and flat plate solar collector systems

    SciTech Connect

    McGarity, A.E.; Allen, J.W.; Schertz, W.W.

    1983-10-01

    Three liquid-based solar heating systems employing different types of solar collectors were tested side by side near Chicago, Illinois for one year. The three different types of collectors were: a flat plate collector with a black-chrome coated absorber plate and one low-iron glass cover; an evacuated-tube compound parabolic concentrator (CPC) with a concentration ratio of 1.1, oriented with tubes and troughs along a north-south axis; and an evacuated-tube CPC collector with a concentration ratio of 1.3 and one low-iron glass cover, with tubes and troughs oriented along an east-west axis. Results indicate that the flat plate collector system was the most efficient during warm weather, but the CPC systems were more efficient during cold weather, but the CPC systems were more efficient during cold weather, and the CPC systems operated under conditions too adverse for the flat plate collector. The computer simulation model ANSIM was validated by means of the side-by-side tests. The model uses analytical solutions to the storage energy balance. ANSIM is compared with the general simulation TRNSYS. (LEW)

  2. Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector

    SciTech Connect

    Headley, O.StC.; Kothdiwala, A.F.; McDoom, I.A. )

    1994-08-01

    A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m[sup 2] was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube receiver of the CPC was packed with 2.5 kg of imported adsorbent 207E3, which was only utilized when the performance of activated charcoal (ACJ1, produced from local coconut shells) was found to be inferior to the imported adsorbent. Up to 1 kg of ice at an evaporator temperature of [minus]6[degrees]C was produced, with the net solar coefficient of performance (COP) being of the order of 0.02. Maximum receiver/adsorbent temperature recorded was 154[degrees]C on a day when the insolation was 26.8 MJ/m[sup [minus]2]. Temperatures in excess of 150[degrees]C are undesirable since they favour the conversion of methanol to dimethyl ether, a noncondensable gas which inhibits both condensation and adsorption. The major advantage of this system is its ability to produce ice even on overcast days (insolation [approximately] 10 MJ/m[sup [minus]2]).

  3. The small community solar thermal power experiment. Parabolic dish technology for industrial process heat application

    NASA Technical Reports Server (NTRS)

    Polzien, R. E.; Rodriguez, D.

    1981-01-01

    Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.

  4. Numerical Modeling of Year-Round Performance of a Solar Parabolic Dish Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Muthu, G.; Shanmugam, S.; Veerappan, AR.

    2015-08-01

    This paper presents the year-round performance of a solar parabolic dish thermoelectric generator under different values of operating parameters such as ambient temperature, wind velocity, direct normal irradiation, and water inlet temperature to the heat sink. The solar thermoelectric generator (TEG) is examined for an Indian location of Tiruchirappalli. The electrical power output and TEG efficiency are maximum during the months of April and August, while they are minimum during the month of December. It is found that the monthly average hot-side temperature of the TEG varies from 556.53 K to 592.68 K and the cold-side temperature of the TEG varies from 413.21 K to 438.91 K. When the hot-side temperature reaches the optimum value, the conversion efficiency is reduced, although the power increases. A TEG model is useful to find the temperature of the junctions for different operating parameter values and predict the performance of the TEG at any time. A small standalone power-generating system using this technology is a promising option.

  5. A 40 W cw Nd:YAG solar laser pumped through a heliostat: a parabolic mirror system

    NASA Astrophysics Data System (ADS)

    Almeida, J.; Liang, D.; Guillot, E.; Abdel-Hadi, Y.

    2013-06-01

    Solar-pumped solid-state lasers are promising for renewable extreme-temperature material processing. Here, we report a significant improvement in solar laser collection efficiency by pumping the most widely used Nd:YAG single-crystal rod through a heliostat-parabolic mirror system. A conical-shaped fused silica light guide with 3D-CPC output end is used to both transmit and compress the concentrated solar radiation from the focal zone of a 2 m diameter parabolic mirror to a 5 mm diameter Nd:YAG rod within a conical pump cavity, which enables multi-pass pumping through the laser rod. 40 W cw laser power is measured, corresponding to 13.9 W m-2 record-high collection efficiency for the solar laser pumped through a heliostat-parabolic mirror system. 2.9% slope efficiency is fitted, corresponding to 132% enhancement over that of our previous pumping scheme. A 209% reduction in threshold pump power is also registered.

  6. Secondary and compound concentrators for parabolic dish solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Poon, P. T.

    1981-01-01

    A secondary optical element may be added to a parabolic dish solar concentrator to increase the geometric concentration ratio attainable at a given intercept factor. This secondary may be a Fresnel lens or a mirror, such as a compound elliptic concentrator or a hyperbolic trumpet. At a fixed intercept factor, higher overall geometric concentration may be obtainable with a long focal length primary and a suitable secondary matched to it. Use of a secondary to increase the geometric concentration ratio is more likely to e worthwhile if the receiver temperature is high and if errors in the primary are large. Folding the optical path with a secondary may reduce cost by locating the receiver and power conversion equipment closer to the ground and by eliminating the heavy structure needed to support this equipment at the primary focus. Promising folded-path configurations include the Ritchey-Chretien and perhaps some three element geometries. Folding the optical path may be most useful in systems that provide process heat.

  7. Two-stage solar concentrators based on parabolic troughs: asymmetric versus symmetric designs.

    PubMed

    Schmitz, Max; Cooper, Thomas; Ambrosetti, Gianluca; Steinfeld, Aldo

    2015-11-20

    While nonimaging concentrators can approach the thermodynamic limit of concentration, they generally suffer from poor compactness when designed for small acceptance angles, e.g., to capture direct solar irradiation. Symmetric two-stage systems utilizing an image-forming primary parabolic concentrator in tandem with a nonimaging secondary concentrator partially overcome this compactness problem, but their achievable concentration ratio is ultimately limited by the central obstruction caused by the secondary. Significant improvements can be realized by two-stage systems having asymmetric cross-sections, particularly for 2D line-focus trough designs. We therefore present a detailed analysis of two-stage line-focus asymmetric concentrators for flat receiver geometries and compare them to their symmetric counterparts. Exemplary designs are examined in terms of the key optical performance metrics, namely, geometric concentration ratio, acceptance angle, concentration-acceptance product, aspect ratio, active area fraction, and average number of reflections. Notably, we show that asymmetric designs can achieve significantly higher overall concentrations and are always more compact than symmetric systems designed for the same concentration ratio. Using this analysis as a basis, we develop novel asymmetric designs, including two-wing and nested configurations, which surpass the optical performance of two-mirror aplanats and are comparable with the best reported 2D simultaneous multiple surface designs for both hollow and dielectric-filled secondaries. PMID:26836527

  8. Software used with the flux mapper at the solar parabolic dish test site

    NASA Technical Reports Server (NTRS)

    Miyazono, C.

    1984-01-01

    Software for data archiving and data display was developed for use on a Digital Equipment Corporation (DEC) PDP-11/34A minicomputer for use with the JPL-designed flux mapper. The flux mapper is a two-dimensional, high radiant energy scanning device designed to measure radiant flux energies expected at the focal point of solar parabolic dish concentrators. Interfacing to the DEC equipment was accomplished by standard RS-232C serial lines. The design of the software was dicated by design constraints of the flux-mapper controller. Early attemps at data acquisition from the flux-mapper controller were not without difficulty. Time and personnel limitations result in an alternative method of data recording at the test site with subsequent analysis accomplished at a data evaluation location at some later time. Software for plotting was also written to better visualize the flux patterns. Recommendations for future alternative development are discussed. A listing of the programs used in the anaysis is included in an appendix.

  9. Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.

    1982-01-01

    Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.

  10. Development, fabrication, and testing of a new design for the integral compound parabolic evacuated solar collector

    SciTech Connect

    Duff, W.S.; Duquette, R.; Winston, R.; O`Gallagher, J.J.

    1997-12-31

    A new integral compound parabolic evacuated solar collector (ICPC) design was devised at the University of Chicago in 1995 by application of non imaging optics principles to a different target geometry. This new ICPC promises low manufacturing cost combined with excellent performance and reliability. Beginning in mid February 1996, 1.6 meter (5.25 ft.) versions of this ICPC, called mini tubes, have been designed, fabricated, and tested by Colorado State University. The development effort focused on, manufactureability, performance, and reliability. The development process consisted of about twenty iterations of a three step process: (1) design revision, (2) fabrication, and (3) testing and evaluation of short versions of the mini-tubes. Testing was conducted in a variety of ways and performance achievements were judged numerically. All goals were exceeded, matched, or came within a few percent. This paper presents the mini-tube development /work for this new ICPC, provide details on the testing and evaluation, and presents the performance of the final mini tube.

  11. Solar cooking in China

    SciTech Connect

    Wang Xiping

    1992-12-31

    In the past 20 years, solar cooking has developed rapidly in China. Its popularity is easy to understand since China is a nation with a rural population of 800 million, 30% to 40% of which lack firewood. In recent years a number of scientists and engineers have researched solar cooking and tested solar cookers. The Solar Energy Laboratory has worked on the application of solar energy, especially solar cookers, and has made a number of significant achievements in the following areas: solar cooker theory; methods of designing solar cookers, testing characteristics of thermal efficiency; materials for cooker construction, and technological processes for producing cookers. This paper discusses their achievements and plans for future research.

  12. 7 CFR 58.709 - Cookers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... temperature recording device. The recording thermometer stem may be placed in the cooker if satisfactory time charts are obtained, if not, the stem shall be placed in the hotwell or filler hopper. Steam check...

  13. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50¢/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12¢/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

  14. High concentration two-stage optics for parabolic trough solar collectors with tubular absorber and large rim angle

    SciTech Connect

    Collares-Pereira, M. ); Gordon, J.M. ); Rabl, A. ); Winston, R. )

    1991-01-01

    A new two-stage optical design is proposed for parabolic trough solar collectors with tubular absorbers. It can boost the concentration ratio by a factor of 2.5 relative to the conventional design, while maintaining the large rim angles (i.e., low nominal f-numbers) that are desirable for practical and economical reasons. The second state involves asymmetric nonimaging concentrators of the CPC type, facing segments of the parabolic first stage. The second stage can be accommodated inside an evacuated receiver, allowing the use of first-surface silvered reflectors. The low heat loss of this design opens the possibility of producing steam at temperatures and pressures of conventional power plants, using only one-axis tracking. The improvement in conversion efficiency would be substantial.

  15. Comparison of Fresnel lenses and parabolic mirrors as solar energy concentrators

    SciTech Connect

    Lorenzo, E.; Luque, A.

    1982-05-15

    This paper compares the gain that can be achieved with a one- or two-stage concentrator, when the first stage is a Fresnel lens or a parabolic mirror, as a function of the luminosity of the concentrator. The results show that the achievable gain using a parabolic mirror is greater than that obtained using a flat or roof lens but is lower than that obtained using a curved lens.

  16. Comparison of Fresnel lenses and parabolic mirrors as solar energy concentrators.

    PubMed

    Lorenzo, E; Luque, A

    1982-05-15

    This paper compares the gain that can be achieved with a one- or two-stage concentrator, when the first stage is a Fresnel lens or a parabolic mirror, as a function of the luminosity of the concentrator. The results show that the achievable gain using a parabolic mirror is greater than that obtained using a flat or roof lens but is lower than that obtained using a curved lens. PMID:20389950

  17. 3X compound parabolic concentrating (CPC) solar energy collector. Final technical report

    SciTech Connect

    Ballheim, R.W.

    1980-04-25

    Chamberlain engineers designed a 3X compound parabolic concentrating (CPC) collector for the subject contract. The collector is a completely housed, 105.75 x 44.75 x 10.23-inch, 240-pound unit with six each evacuated receiver assemblies, a center manifold and a one-piece glass cover. A truncated version of a CPC trough reflector system and the General Electric Company tubular evacuated receiver have been integrated with a mass producible collector design suitable for operation at 250 to 450/sup 0/F. The key criterion for optimization of the design was minimization of the cost per Btu collected annually at an operating temperature of 400/sup 0/F. The reflector is a 4.1X design truncated to a total height of 8.0 inches with a resulting actual concentration ratio of 2.6 to 1. The manifold is an insulated area housing the fluid lines which connect the six receivers in series with inlet and outlet tubes extending from one side of the collector at the center. The reflectors are polished, anodized aluminum which are shaped by the roll form process. The housing is painted, galvanized steel, and the cover glass is 3/16-inch thick tempered, low iron glass. The collector requires four slope adjustments per year for optimum effectiveness. Chamberlain produced ten 3X CPC collectors for the subject contract. Two collectors were used to evaluate assembly procedures, six were sent to the project officer in Albuquerque, New Mexico, one was sent to Argonne National Laboratory for performance testing and one remained with the Company. A manufacturing cost study was conducted to estimate limited mass production costs, explore cost reduction ideas and define tooling requirements. The final effort discussed shows the preliminary design for application of a 3X CPC solar collector system for use in the Iowa State Capitol complex.

  18. Flexible a-Si:H Solar Cells with Spontaneously Formed Parabolic Nanostructures on a Hexagonal-Pyramid Reflector.

    PubMed

    Dong, Wan Jae; Yoo, Chul Jong; Cho, Hyoung Won; Kim, Kyoung-Bo; Kim, Moojin; Lee, Jong-Lam

    2015-04-24

    Flexible amorphous silicon (a-Si:H) solar cells with high photoconversion efficiency (PCE) are demonstrated by embedding hexagonal pyramid nanostructures below a Ag/indium tin oxide (ITO) reflector. The nanostructures constructed by nanoimprint lithography using soft materials allow the top ITO electrode to spontaneously form parabolic nanostructures. Nanoimprint lithography using soft materials is simple, and is conducted at low temperature. The resulting structure has excellent durability under repeated bending, and thus, flexible nanostructures are successfully constructed on flexible a-Si:H solar cells on plastic film. The nanoimprinted pyramid back reflector provides a high angular light scattering with haze reflectance >98% throughout the visible spectrum. The spontaneously formed parabolic nanostructure on the top surface of the a-Si:H solar cells both reduces reflection and scatters incident light into the absorber layer, thereby elongating the optical path length. As a result, the nanopatterned a-Si:H solar cells, fabricated on polyethersulfone (PES) film, exhibit excellent mechanical flexibility and PCE increased by 48% compared with devices on a flat substrate. PMID:25504619

  19. Development, solar test, and evaluation of a high-temperature air receiver for point-focusing parabolic dish applications

    NASA Technical Reports Server (NTRS)

    Hanseth, E. J.

    1981-01-01

    A high temperature solar receiver was fabricated and tested in excess of 1370 C on an 11-meter-diameter test bed concentrator at the Jet Propulsion Laboratory Parabolic Dish Test Site, Edwards, California. The 60-kilowatt thermal receiver design utilizes state-of-the-art silicon carbide honeycomb matrix panels to receive and transfer the solar energy and mullite elements for thermal buffer storage. Solar tests were conducted with indicated air exit temperatures ranging from 885 C (1625 F) to 1427 C (2600 F), mass flow rates of 75 to 105 g/sec (0.16 to 0.23 lbm/sec), and pressures up to 265 kPa absolute (38.4 psia). Estimates of efficiency are 59.7% at 1120 C (2048 F) to 80.6% at 885 C (1625 F) when aperture spillage losses are considered separately. Results are presented which demonstrate the feasibility of this innovative receiver concept for point-focusing parabolic dish applications over a wide temperature range.

  20. Solar Cooking. What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    This module is designed to help students: (1) describe a way of tapping solar energy; (2) identify the main parts of a box type solar cooker; (3) describe how each part contributes to the trapping of heat energy in the cooker; (4) cook some food in a solar cooker; and (5) recognize that food cooked in a solar cooker is safe to eat. It includes: an

  1. Solar Cooking. What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    This module is designed to help students: (1) describe a way of tapping solar energy; (2) identify the main parts of a box type solar cooker; (3) describe how each part contributes to the trapping of heat energy in the cooker; (4) cook some food in a solar cooker; and (5) recognize that food cooked in a solar cooker is safe to eat. It includes: an…

  2. Experimental Performance of a Solar Thermoelectric Cogenerator Comprising Thermoelectric Modules and Parabolic Trough Concentrator without Evacuated Tube

    NASA Astrophysics Data System (ADS)

    Miao, L.; Kang, Y. P.; Li, C.; Tanemura, S.; Wan, C. L.; Iwamoto, Y.; Shen, Y.; Lin, H.

    2015-06-01

    A prototype practical solar-thermoelectric cogenerator composed of (1) a primary component of a pile of solar-selective absorber (SSA) slab, thermoelectric (TE) modules, and a depressed water flow tube (multichannel cooling heat sink, MCS), and (2) a parabolic trough concentrator with aperture area of 2m × 2m and east-west focal axis was constructed. Its cogeneration performance under the best climatic and solar insolation conditions in Guangzhou, China was tested. For simplicity, the evacuated glass tube to cover the primary component was eliminated from the system. Six Bi2Te3 TE modules were arranged in series, directly bonded to the rear surface of the solar absorber slab. The hot-side temperature of the TE module reached up to 152°C. The experimentally obtained instantaneous results for the solar to electrical conversion efficiency, heat exchange coefficient of the MCS, and overall system efficiency under the best environmental and solar insolation conditions were about 1.14%, 56.1%, and 49.5%, respectively. To justify these values, an equivalent thermal network diagram based on a single-temperature-node heat transfer model representing the respective system components was used to analyze the thermal transfer and losses of the system. Finally, electrical power of 18° W was generated, with 2 L/min of hot water at 37°C being produced and stored in the insulated container.

  3. Advances in solar energy technology. Volume 3. Heating, agricultural and photovoltaic applications of solar energy

    SciTech Connect

    Garg, H.P.

    1987-01-01

    This volume discusses the heating, agricultural and photovoltaic applications of solar energy, and contains the following chapters, solar cookers, solar desalination, solar food drying, solar-powered water pumps, solar greenhouses, solar cells.

  4. Design and fabrication of a low-specific-weight parabolic dish solar concentrator

    NASA Technical Reports Server (NTRS)

    Richter, C. W.; Birchenough, A. G.; Marquis, G. A.; Mroz, T. S.

    1978-01-01

    A segmented design and fabrication and assembly techniques were developed for a 1.8 m (6 ft) diameter parabolic concentrator for space application. This design and these techniques were adaptable to a low cost, mass-produced concentrator. Minimal machining was required. Concentrator segments of formed magnesium were used. The concentrator weighed only 1.6 kg sq m (0.32 lbm/sq ft).

  5. Simulation of a photo-solar generator for an optimal output by a parabolic photovoltaic concentrator of Stirling engine type

    NASA Astrophysics Data System (ADS)

    Kaddour, A.; Benyoucef, B.

    Solar energy is the source of the most promising energy and the powerful one among renewable energies. Photovoltaic electricity (statement) is obtained by direct transformation of the sunlight into electricity, by means of cells statement. Then, we study the operation of cells statement by the digital simulation with an aim of optimizing the output of the parabolic concentrator of Stirling engine type. The Greenius software makes it possible to carry out the digital simulation in 2D and 3D and to study the influence of the various parameters on the characteristic voltage under illumination of the cell. The results obtained enabled us to determine the extrinsic factors which depend on the environment and the intrinsic factors which result from the properties of materials used.

  6. Conceptual design of a parabolic dish solar collector using simulation techniques

    NASA Technical Reports Server (NTRS)

    Gupta, B. P.; Buchholz, R. L.

    1976-01-01

    The development of solar concentrators in recent years have produced a wide variety of collectors for the utilization of solar energy. This paper presents the simulation techniques used to predict the optical and thermal performance of a paraboloid of revolution type solar collector. Conceptual design of a dish concentrator with a fixed receiver size is obtained by parametrically examining the significant variables.

  7. Conceptual design of a self-deployable, high performance parabolic concentrator for advanced solar-dynamic power systems

    NASA Technical Reports Server (NTRS)

    Dehne, Hans J.

    1991-01-01

    NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.

  8. Effects of pointing errors on receiver performance for parabolic dish solar concentrators

    NASA Technical Reports Server (NTRS)

    Hughes, R. O.

    1978-01-01

    The effects of dynamic (moving) pointing errors on the performance of solar thermal receivers is investigated. Only point focusing types of solar collectors are considered. The key element in the study is the analytical derivation of the intercept factor that relates pointing errors to captured energy at the receiver. A detailed example using typical parameter values is modeled on the digital computer and demonstrates the theory and the dynamic nature of the problem.

  9. Commercialization of parabolic dish systems

    NASA Astrophysics Data System (ADS)

    Washom, B.

    1982-07-01

    The impact of recent federal tax and regulatory legislation on the commercialization of parabolic solar reflector technology is assessed. Specific areas in need of technical or economic improvement are noted.

  10. Commercialization of parabolic dish systems

    NASA Technical Reports Server (NTRS)

    Washom, B.

    1982-01-01

    The impact of recent federal tax and regulatory legislation on the commercialization of parabolic solar reflector technology is assessed. Specific areas in need of technical or economic improvement are noted.

  11. Solar cooking in India--Promotion aspects

    SciTech Connect

    Devadas, R.P.; Rajagopal, L.S.

    1992-12-31

    The author describes efforts to promote the use of solar cookers in India. The advantages of the cookers are presented followed by a description of solar cooking research, education activities, and government programs to promote use of solar energy. Major constraints to solar use are discussed and these include a range of situations: adapting cookers for various types of food preparation; safety factors in leaving cookers outside; weather problems; and expense of equipment. The author concludes with a list of recommendations to promote more efficient use of non-conventional energy sources.

  12. Testing Parabolic-Dish Concentrators

    NASA Technical Reports Server (NTRS)

    Selcuk, M. Kudret

    1988-01-01

    Report describes test equipment and tests at Parabolic Dish Test Site at Edwards Air Force Base in California. Site established in 1978 for testing point-focusing solar concentrators operating at temperatures above 600 degree F. Used for six years to evaluate parabolic-dish concentrators, receivers, power-conversion units, and solar/fossil-fuel hybrid units. Report describes evolution of test program at site, lists experiments conducted there in chronological order, and summarizes experimental data.

  13. Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 1: Preferred Plant Size, 20 January 2005 - 31 December 2005

    SciTech Connect

    Kelly, B.

    2006-07-01

    The Rankine cycles for commercial parabolic trough solar projects range in capacity from 13.5 MWe at the Solar Electric Generating Station I (SEGS I) plant, to a maximum of 89 MWe at the SEGS VIII/IX plants. The series of SEGS projects showed a consistent reduction in the levelized energy cost due to a combination of improvements in collector field technology and economies of scale in both the Rankine cycle and the operation and maintenance costs. Nonetheless, the question of the optimum Rankine cycle capacity remains an open issue. The capacities of the SEGS VIII/IX plants were limited by Federal Energy Regulatory Commission and Public Utility Regulatory Policy Act requirements to a maximum net output of 80 MWe. Further improvements in the Rankine cycle efficiency, and economies of scale in both the capital and the operating cost, should be available at larger plant sizes. An analysis was conducted to determine the effect of Rankine cycle capacities greater than 80 MWe on the levelized energy cost. The study was conducted through the following steps: (1) Three gross cycle capacities of 88 MWe, 165 MWe, and 220 MWe were selected. (2) Three Rankine cycle models were developed using the GateCycle program. The models were based on single reheat turbine cycles, with main steam conditions of 1,450 lb{sub f}/in{sup 2} and 703 F, and reheat steam conditions of 239 lb{sub f}/in{sup 2} and 703 F. The feedwater heater system consisted of 5 closed heaters and 1 open deaerating heater. The design condenser pressure was 2.5 in. HgA. (3) The optimization function within Excelergy was used to determine the preferred solar multiple for each plant. Two cases were considered for each plant: (a) a solar-only project without thermal storage, and (b) a solar-fossil hybrid project, with 3 hours of thermal storage and a heat transport fluid heater fired by natural gas. (4) For each of the 6 cases, collector field geometries, heat transport fluid pressure losses, and heat transport pump power requirements were calculated with a field piping optimization model. (5) Annual electric energy outputs, capital costs, and annual operating costs were calculated for each case using the default methods within Excelergy, from which estimates of the levelized energy costs were developed. The plant with the lowest energy cost was considered the optimum.

  14. Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives.

    PubMed

    Burkhardt, John J; Heath, Garvin A; Turchi, Craig S

    2011-03-15

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, CA, along four sustainability metrics: life cycle (LC) greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrates salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically derived nitrate salt are evaluated. During its LC, the reference CSP plant is estimated to emit 26 g of CO(2eq) per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJ(eq)/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce LC water consumption by 77% but increase LC GHG emissions and CED by 8%. Synthetic nitrate salts may increase LC GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces LC GHG emissions, most significantly for plants using synthetically derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption. PMID:21391722

  15. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  16. Cleaning strategies for parabolic-trough solar-collector fields; guidelines for decisions

    NASA Astrophysics Data System (ADS)

    Bergeron, K. D.; Freese, J. M.

    1981-06-01

    The guidelines are based on information obtained in past research studies, as well as interviews with vendors and users of cleaning and water treatment equipment. The basic procedure recommended utilizes high pressure portable washing equipment. However, since the cleaning problem is so site-specific, no single, detailed approach can be specified. A systematic procedure for evaluating the particular requirements of a site is therefore given. This will allow the solar energy system operator to develop a cleaning strategy which is cost effective because it is suited to local conditions.

  17. Wind effects on convective heat loss from a cavity receiver for a parabolic concentrating solar collector

    SciTech Connect

    Ma, R.Y.

    1993-09-01

    Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.

  18. Comparison of advanced engines for parabolic dish solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Bowyer, J. M.; Gajanana, B. C.

    1980-01-01

    A paraboloidal dish solar thermal power plant produces electrical energy by a two-step conversion process. The collector subsystem is composed of a two-axis tracking paraboloidal concentrator and a cavity receiver. The concentrator focuses intercepted sunlight (direct, normal insolation) into a cavity receiver whose aperture encircles the focal point of the concentrator. At the internal wall of the receiver the electromagnetic radiation is converted to thermal energy. A heat engine/generator assembly then converts the thermal energy captured by the receiver to electricity. Developmental activity has been concentrated on small power modules which employ 11- to 12-meter diameter dishes to generate nominal power levels of approximately 20 kWe. A comparison of advanced heat engines for the dish power module is presented in terms of the performance potential of each engine with its requirements for advanced technology development. Three advanced engine possibilities are the Brayton (gas turbine), Brayton/Rankine combined cycle, and Stirling engines.

  19. The CAESAR project: Experimental and modeling investigations of methane reforming in a CAtalytically Enhanced Solar Absorption Receiver on a parabolic dish

    SciTech Connect

    Muir, J.F.; Hogan, R.E. Jr.; Skocypec, R.D.; Buck, R.

    1993-07-01

    A joint US/Federal Republic of Germany (FRG) project has successfully tested a unique solar-driven chemical reactor in the CAtalytically Enhanced Solar Absorption Receiver (CAESAR) experiment. The CAESAR test was a {open_quotes}proof-of-concept{close_quotes} demonstration of carbon-dioxide reforming of methane in a commercial-scale, solar, volumetric receiver/reactor on a parabolic dish concentrator. The CAESAR design; test facility and instrumentation; thermal and chemical tests; and analysis of test results are presented in detail. Numerical models for the absorber and the receiver are developed and predicted performance is compared with test data. Post test analyses to assess the structural condition of the absorber and the effectiveness of the rhodium catalyst are presented. Unresolved technical issues are identified and future development efforts are recommended.

  20. Manufacturing cost analysis of a parabolic dish concentrator (General Electric design) for solar thermal electric power systems in selected production volumes

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The manufacturing cost of a General Electric 12 meter diameter concentrator was estimated. This parabolic dish concentrator for solar thermal system was costed in annual production volumes of 100 - 1,000 - 5,000 - 10,000 - 50,000 100,000 - 400,000 and 1,000,000 units. Presented for each volume are the costs of direct labor, material, burden, tooling, capital equipment and buildings. Also presented is the direct labor personnel and factory space requirements. All costs are based on early 1981 economics.

  1. Optical design of two-axes parabolic trough collector and two-section Fresnel lens for line-to-spot solar concentration.

    PubMed

    Ramírez, Carlos; León, Noel; García, Héctor; Aguayo, Humberto

    2015-06-01

    Solar tracking concentrators are optical systems that collect the solar energy flux either in a line or spot using reflective or refractive surfaces. The main problem with these surfaces is their manufacturing complexity, especially at large scales. In this paper, a line-to-spot solar tracking concentrator is proposed. Its configuration allows for a low-cost solar concentrator system. It consists of a parabolic trough collector (PTC) and a two-section PMMA Fresnel lens (FL), both mounted on a two-axis solar tracker. The function of the PTC is to reflect the incoming solar radiation toward a line. Then, the FL, which is placed near the focus, transforms this line into a spot by refraction. It was found that the system can achieve a concentration ratio of 100x and concentrate an average solar irradiance of 518.857W/m2 with an average transmittance of 0.855, taking into account the effect of the chromatic aberration. PMID:26072873

  2. Solar cooking experiments with different foods

    SciTech Connect

    Devadas, R.P.; Jagadeesan, G.

    1992-12-31

    This paper describes studies with a variety of solar cookers at Avinashilingam Deemed University, India. The objective of the studies was to determine the following: the time needed for cooking various foods; the amount of fuel conserved; and suitable menus for use with the cooker. It was concluded that, on bright sunny days, the solar cooker can be used satisfactorily for preparing cereals, legumes, vegetables, roots and tubers, bakery items, eggs and groundnuts. Inadequate and intermittent sunshine, fluctuation in wind velocity, clouds, rain and other environmental factors could affect the solar intensity which, in turn, would affect the cooking time. The palatability of solar cooked items was satisfactory when compared to items cooked using firewood, kerosene or gas. Among the various solar cooking devices, the box type cookers were found to have advantages over the basket type due to convenience in handling. However, it is not possible to prepare certain items commonly used in India using the box type cookers.

  3. Parabolic dish module experiment

    NASA Astrophysics Data System (ADS)

    1986-03-01

    A development test model of the 8-meter Solar Brayton Parabolic Dish Module has been designed, fabricated, and tested. The test model consists of five major subsystems: Sanders ceramic honeycomb solar receiver; LaJet LEC460 solar concentrator; AiRsearch SABC MKIIIA engine, Abacus 8 kW ac inverter; and a Sanders designed and built system controller. Goals of the tests were to integrate subsystem components into a working module, demonstrate the concept, and generate 5 kWe (hybrid) and 4.7 kWe (solar only) input. All subsystem integration goals were successfully achieved, but system performance efficiency was lower than expected. Contributing causes of the lower performance efficiencies have been identified. Modifications needed to restore performance to the required levels and improve the system life cycle cost have been addressed and are the subject of this final report.

  4. A Nomographic Methodology for Use in Performance Trade-Off Studies of Parabolic Dish Solar Power Modules

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.; Fujita, T.

    1984-01-01

    A simple graphical method was developed to undertake technical design trade-off studies for individual parabolic dish models comprising a two-axis tracking parabolic dish with a cavity receiver and power conversion assembly at the focal point. The results of these technical studies are then used in performing the techno-economic analyses required for determining appropriate subsystem sizing. Selected graphs that characterize the performance of subsystems within the module were arranged in the form of a nomogram that would enable an investigator to carry out several design trade-off studies. Key performance parameters encompassed in the nomogram include receiver losses, intercept factor, engine rating, and engine efficiency. Design and operation parameters such as concentrator size, receiver type (open or windowed aperture), receiver aperture size, operating temperature of the receiver and engine, engine partial load characteristics, concentrator slope error, and the type of reflector surface, are also included in the graphical solution. Cost considerations are not included.

  5. International Experience in Standards and Labeling Programs for Rice Cookers

    SciTech Connect

    Zhou, Nan; Zheng, Nina

    2008-05-01

    China has had an active program on energy efficiency standards for household appliances since the mid-1990s. Rice cooker is among the first to be subject to such mandatory regulation, since it is one of the most prevalent electric appliances in Chinese households. Since first introduced in 1989, the minimum energy efficiency standard for rice cookers has not been revised. Therefore, the potential for energy saving is considerable. Initial analysis from CNIS indicates that potential carbon savings is likely to reach 7.6 million tons of CO2 by the 10th year of the standard implementation. Since September 2007, CNIS has been working with various groups to develop the new standard for rice cookers. With The Energy Foundation's support, LBNL has assisted CNIS in the revision of the minimum energy efficiency standard for rice cookers that is expected to be effective in 2009. Specifically, work has been in the following areas: assistance in developing consumer survey on usage pattern of rice cookers, review of international standards, review of international test procedures, comparison of the international standards and test procedures, and assessment of technical options of reducing energy use. This report particularly summarizes the findings of reviewing international standards and technical options of reducing energy consumption. The report consists of an overview of rice cooker standards and labeling programs and testing procedures in Hong Kong, South Korea, Japan and Thailand, and Japan's case study in developing energy efficiency rice cooker technologies and rice cooker efficiency programs. The results from the analysis can be summarized as the follows: Hong Kong has a Voluntary Energy Efficiency Labeling scheme for electric rice cookers initiated in 2001, with revision implemented in 2007; South Korea has both MEPS and Mandatory Energy Efficiency Label targeting the same category of rice cookers as Hong Kong; Thailand's voluntary endorsement labeling program is similar to Hong Kong in program design but has 5 efficiency grades; Japan's program is distinct in its adoption of the 'Top Runner' approach, in which, the future efficiency standards is set based on the efficiency levels of the most efficient product in the current domestic market. Although the standards are voluntary, penalties can still be evoked if the average efficiency target is not met. Both Hong Kong and South Korea's tests involve pouring water into the inner pot equal to 80% of its rated volume; however, white rice is used as a load for its tests in Hong Kong whereas no rice is used for tests in South Korea. In Japan's case, water level specified by the manufactures is used and milled rice is used as a load only partially in the tests. Moreover, Japan does not conduct heat efficiency test but its energy consumption measurements tests are much more complex, with 4 different tests are conducted to determine the annual average energy consumption. Hong Kong and Thailand both set Minimum Allowable Heat Efficiency for different rated wattages. The energy efficiency requirements are identical except that the minimum heat efficiency in Thailand is 1 percentage point higher for all rated power categories. In South Korea, MEPS and label's energy efficiency grades are determined by the rice cooker's Rated Energy Efficiency for induction, non-induction, pressure, nonpressure rice cookers. Japan's target standard values are set for electromagnetic induction heating products and non-electromagnetic induction heating products by different size of rice cookers. Specific formulas are used by type and size depending on the mass of water evaporation of the rice cookers. Japan has been the leading country in technology development of various types of rice cookers, and developed concrete energy efficiency standards for rice cookers. However, as consumers in Japan emphasize the deliciousness of cooked rice over other factors, many types of models were developed to improve the taste of cooked rice. Nonetheless, the efficiency of electromagnetic induction heating (IH) rice cookers in warm mode has improved approximately 12 percent from 1993 to 2004 due to the 'low temperature warming method' developed by manufacturers. The Energy Conservation Center of Japan (IEEJ) releases energy saving products database on the web regularly, on which the energy saving performance of each product is listed and ranked. Energy saving in rice cookers mostly rest with insulation of the pot. Technology developed to improve the energy efficiency of the rice cookers includes providing vacuum layers on both side of the pot, using copper-plated materials, and double stainless layer lid that can be heated and steam can run in between the two layers to speed the heating process.

  6. A review of test results on parabolic dish solar thermal power modules with dish-mounted rankine engines and for production of process steam

    SciTech Connect

    Jaffe, L.D.

    1988-11-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  7. A review of test results on parabolic dish solar thermal power modules with dish-mounted Rankine engines and for production of process steam

    NASA Astrophysics Data System (ADS)

    Jaffe, Leonard D.

    1988-11-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  8. A review of test results on parabolic dish solar thermal power modules with dish-mounted Rankine engines and for production of process steam

    NASA Technical Reports Server (NTRS)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  9. Side-by-side comparisons of evacuated compound parabolic concentrator and flat plate solar collector systems at temperatures of 90 to 100/sup 0/C

    SciTech Connect

    Allen, J.W.; Schertz, W.W.; Wantroba, A.S.

    1987-03-01

    This collector system study is an extension of a previous system study in which Argonne National Laboratory (ANL) compared the performance of three solar energy systems operated side by side for over a year. In the present system study, four solar energy systems were operated side by side for part of a year. Two of the collector systems used commercially available compound parabolic concentrator (CPC) collectors, one used a commercially available flat plate collector, and one used an experimental CPC collector built by The University of Chicago. The collectors were mounted in fixed positions; they did not track the sun, and their tilt angles were not seasonally adjusted. All of the collector arrays faced south and were tilted at 42/sup 0/ with respect to the horizon (to match the 42/sup 0/N latitude at ANL). All four collector systems started each day with their storage temperatures at 90/sup 0/C. During the day, each system was operated by its own solar controller. At the end of the day, the tanks were mixed and the temperature changes in the tanks were measured. The change in storage energy was calculated from the temperature change, the heat capacity of the storage system, and the pump energy. 6 refs., 5 figs., 5 tabs.

  10. Dynamic coupling in Cooker's sloshing experiment with baffles

    NASA Astrophysics Data System (ADS)

    Turner, M. R.; Bridges, T. J.; Ardakani, H. Alemi

    2013-11-01

    This paper investigates the dynamic coupling between fluid sloshing and the motion of the vessel containing the fluid, for the case when the vessel is partitioned using non-porous baffles. The vessel is modelled using Cooker's sloshing configuration [M. J. Cooker, "Water waves in a suspended container," Wave Motion 20, 385-395 (1994)]. Cooker's configuration is extended to include n - 1 non-porous baffles which divide the vessel into n separate fluid compartments each with a characteristic length scale. The problem is analysed for arbitrary fill depth in each compartment, and it is found that a multitude of resonance situations can occur in the system, from 1 : 1 resonances to (n + 1)-fold 1 : 1: ⋯ : 1 resonances, as well as ℓ: m: ⋯ : n for natural numbers ℓ, m, n, depending upon the system parameter values. The conventional wisdom is that the principle role of baffles is to damp the fluid motion. Our results show that in fact without special consideration, the baffles can lead to enhancement of the fluid motion through resonance.

  11. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: 2, Modeling and analysis

    SciTech Connect

    Skocypec, R.D.; Hogan, R.E. Jr.; Muir, J.F.

    1991-01-01

    The CAtalytically Enhanced Solar Absorption Receiver (CAESAR) experiment was conducted to determine the thermal, chemical, and mechanical performance of a commercial-scale, dish-mounted, direct catalytic absorption receiver (DCAR) reactor over a range of steady state and transient (cloud) operating conditions. The focus of the experiment is on global performance such as receiver efficiencies and overall methane conversion; it was not intended to provide data for code validation. A numerical model was previously developed to provide guidance in the design of the absorber. The one-dimensional, planar and steady-state model incorporates, the following energy transfer mechanisms: solar and infrared radiation, heterogeneous chemical reaction, conduction in the solid phase, and convection between the fluid and solid phases. A number of upgrades to the model and improved property values are presented here. Model predictions are shown to bound the experimental axial thermocouple data when experimental uncertainties are included. Global predictions are made using a technique in which the incident solar flux distribution is subdivided into flux contour bands. Model predictions for each band are then spatially integrated to provide global predictions such as reactor efficiencies and methane conversions. Global predictions are shown to compare well with experimental data. Reactor predictions for anticipated operating conditions suggest a further decrease in optical density at the front of the absorber inner disk may be beneficial. The need to conduct code-validation experiments is identified as essential to improve the confidence in the capability to predict large-scale reactor operation.

  12. Degradation of pharmaceutical beta-blockers by electrochemical advanced oxidation processes using a flow plant with a solar compound parabolic collector.

    PubMed

    Isarain-Chávez, Eloy; Rodríguez, Rosa María; Cabot, Pere Lluís; Centellas, Francesc; Arias, Conchita; Garrido, José Antonio; Brillas, Enric

    2011-08-01

    The degradation of the beta-blockers atenolol, metoprolol tartrate and propranolol hydrochloride was studied by electro-Fenton (EF) and solar photoelectro-Fenton (SPEF). Solutions of 10 L of 100 mg L⁻¹ of total organic carbon of each drug in 0.1 M Na₂SO₄ with 0.5 mM Fe²⁺ of pH 3.0 were treated in a recirculation flow plant with an electrochemical reactor coupled with a solar compound parabolic collector. Single Pt/carbon felt (CF) and boron-doped diamond (BDD)/air-diffusion electrode (ADE) cells and combined Pt/ADE-Pt/CF and BDD/ADE-Pt/CF cells were used. SPEF treatments were more potent with the latter cell, yielding 95-97% mineralization with 100% of maximum current efficiency and energy consumptions of about 0.250 kWh g TOC⁻¹. However, the Pt/ADE-Pt/CF cell gave much lower energy consumptions of about 0.080 kWh g TOC⁻¹ with slightly lower mineralization of 88-93%, then being more useful for its possible application at industrial level. The EF method led to a poorer mineralization and was more potent using the combined cells by the additional production of hydroxyl radicals (•OH) from Fenton's reaction from the fast Fe²⁺ regeneration at the CF cathode. Organics were also more rapidly destroyed at BDD than at Pt anode. The decay kinetics of beta-blockers always followed a pseudo first-order reaction, although in SPEF, it was accelerated by the additional production of •OH from the action of UV light of solar irradiation. Aromatic intermediates were also destroyed by hydroxyl radicals. Ultimate carboxylic acids like oxalic and oxamic remained in the treated solutions by EF, but their Fe(III) complexes were photolyzed by solar irradiation in SPEF, thus explaining its higher oxidation power. NO₃⁻ was the predominant inorganic ion lost in EF, whereas the SPEF process favored the production of NH₄⁺ ion and volatile N-derivatives. PMID:21693380

  13. Solar-parabolic dish-Stirling-engine-system module. Task 1: Topical report, market assessment/conceptual design

    SciTech Connect

    Not Available

    1982-11-30

    The major activities reported are: a market study to identify an early market for a dish-Stirling module and assess its commercial potential; preparation of a conceptual system and subsystem design to address this market; and preparation of an early sales implementation plan. A study of the reliability of protection from the effects of walk-off, wherein the sun's image leaves the receiver if the dish is not tracking, is appended, along with an optical analysis and structural analysis. Also appended are the relationship between PURPA and solar thermal energy development and electric utility pricing rationale. (LEW)

  14. The French thermo-helio-electricity-KW parabolic dish program

    NASA Technical Reports Server (NTRS)

    Audibert, M.; Peri, G.

    1982-01-01

    The testing and development of parabolic dish solar thermal power plants to produce, thermal mechanical, or electrical energy are discussed. The design, construction, and experiments of prototype collectors to prove the feasibility of such collectors is described.

  15. Parabolic dish test site: History and operating experience

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Compiler)

    1985-01-01

    The parabolic dish test site (PDTS) was established for testing point-focusing solar concentrator systems operating at temperatures approaching 1650 C. Among tests run were evaluation and performance characterization of parabolic dish concentrators, receivers, power conversion units, and solar/fossil-fuel hybrid systems. The PDTS was fully operational until its closure in June, 1984. The evolution of the test program, a chronological listing of the experiments run, and data summaries for most of the tests conducted are presented.

  16. Parabolic Dish Concentrator (PDC-1)

    NASA Technical Reports Server (NTRS)

    Dennison, E. W.; Argoud, M. J.

    1984-01-01

    The design, construction, and installation of the Parabolic Dish Concentrator, Type 1 (PDC-1) has been one of the most significant JPL concentrator projects because of the knowledge gained about this type of concentrator and the development of design, testing, and analysis procedures which are applicable to all solar concentrator projects. The need for these procedures was more clearly understood during the testing period which started with the prototype panel evaluation and ended with the performance characterization of the completed concentrator. For each phase of the test program, practical test procedures were required and these procedures defined the mathematical analysis which was essential for successful concentrator development. The concentrator performance appears to be limited only by the distortions resulting from thermal gradients through the reflecting panels. Simple optical testing can be extremely effective, but comprehensive mechanical and optical analysis is essential for cost effective solar concentrator development.

  17. New prospects in solar cooking

    SciTech Connect

    Grupp, M.; Klingshirn, A.

    1992-12-31

    Two studies have been completed recently for Gesellschaft fur Technische Zusammenarbeit and German Appropriate Technology Exchange. The first of these studies contains the following: a classification scheme for solar cookers according to collector type, heat transfer mechanism, and type of use; an assessment of the potential interest of different cooker concepts; a catalogue of 160 different solar cookers that have been tested and/or used in the field. The second study highlights the potential advantages of multi-energy (solar plus back-up) cooking and analyzes its particular boundary conditions. A choice of possible concepts for use in institutions is presented. Particular attention is paid to the problem of efficient heat transfer into removable cooking vessels. Social and cultural factors concerning the acceptance of new technologies are also discussed.

  18. Parabolic Trough Organic Rankine Cycle Power Plant

    SciTech Connect

    Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

    2005-01-01

    Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

  19. Distributed neural signals on parabolic cylindrical shells

    NASA Astrophysics Data System (ADS)

    Hu, S. D.; Li, H.; Tzou, H. S.

    2013-06-01

    Parabolic cylindrical shells are commonly used as key components in communication antennas, space telescopes, solar collectors, etc. This study focuses on distributed modal neural sensing signals on a flexible simply-supported parabolic cylindrical shell panel. The parabolic cylindrical shell is fully laminated with a piezoelectric layer on its outer surface and the piezoelectric layer is segmented into infinitesimal elements (neurons) to investigate the microscopic distributed neural sensing signals. Since the dominant vibration component of the shell is usually the transverse oscillation, a new transverse mode shape function is defined. Two shell cases, i.e., the ratio of the meridian height to the half span distance of a parabola at 1:4 (shallow) and 1:1 (deep), are studied to reveal the curvature effect to the neural sensing signals. Studies suggest that the membrane signal component dominates for lower natural modes and the bending signal component dominates for higher natural modes. The meridional membrane and bending signal components are mostly concentrated on the high-curvature areas, while the longitudinal bending component is mostly concentrated on the relatively flat areas. The concentration behavior becomes more prominent as the parabolic cylindrical shell deepens, primarily resulting from the enhanced membrane effect due to the increased curvature.

  20. Modeling the photocatalytic mineralization in water of commercial formulation of estrogens 17-β estradiol (E2) and nomegestrol acetate in contraceptive pills in a solar powered compound parabolic collector.

    PubMed

    Colina-Márquez, José; Machuca-Martínez, Fiderman; Li Puma, Gianluca

    2015-01-01

    Endocrine disruptors in water are contaminants of emerging concern due to the potential risks they pose to the environment and to the aquatic ecosystems. In this study, a solar photocatalytic treatment process in a pilot-scale compound parabolic collector (CPC) was used to remove commercial estradiol formulations (17-β estradiol and nomegestrol acetate) from water. Photolysis alone degraded up to 50% of estradiol and removed 11% of the total organic carbon (TOC). In contrast, solar photocatalysis degraded up to 57% of estrogens and the TOC removal was 31%, with 0.6 g/L of catalyst load (TiO2 Aeroxide P-25) and 213.6 ppm of TOC as initial concentration of the commercial estradiols formulation. The adsorption of estrogens over the catalyst was insignificant and was modeled by the Langmuir isotherm. The TOC removal via photocatalysis in the photoreactor was modeled considering the reactor fluid-dynamics, the radiation field, the estrogens mass balance, and a modified Langmuir-Hinshelwood rate law, that was expressed in terms of the rate of photon adsorption. The optimum removal of the estrogens and TOC was achieved at a catalyst concentration of 0.4 g/L in 29 mm diameter tubular CPC reactors which approached the optimum catalyst concentration and optical thickness determined from the modeling of the absorption of solar radiation in the CPC, by the six-flux absorption-scattering model (SFM). PMID:26205059

  1. Session: Parabolic Troughs (Presentation)

    SciTech Connect

    Kutscher, C.

    2008-04-01

    The project description is R and D activities at NREL and Sandia aimed at lowering the delivered energy cost of parabolic trough collector systems and FOA awards to support industry in trought development. The primary objectives are: (1) support development of near-term parabolic trought technology for central station power generation; (2) support development of next-generation trought fields; and (3) support expansion of US trough industry. The major FY08 activities were: (1) improving reflector optics; (2) reducing receiver heat loss (including improved receiver coating and mitigating hydrogen accumulation); (3) measuring collector optical efficiency; (4) optimizing plant performance and reducing cost; (5) reducing plant water consumption; and (6) directly supporting industry needs, including FOA support.

  2. Parabolic dish module experiment. Final test report

    SciTech Connect

    Not Available

    1986-03-01

    A development test model of the 8-meter Solar Brayton Parabolic Dish Module has been designed, fabricated, and tested. The test model consists of five major subsystems: Sanders ceramic honeycomb solar receiver; LaJet LEC460 solar concentrator; AiRsearch SABC MKIIIA engine, Abacus 8 kW ac inverter; and a Sanders designed and built system controller. Goals of the tests were to integrate subsystem components into a working module, demonstrate the concept, and generate 5 kWe (hybrid) and 4.7 kWe (solar only) input. All subsystem integration goals were successfully achieved, but system performance efficiency was lower than expected. Contributing causes of the lower performance efficiencies have been identified. Modifications needed to restore performance to the required levels and improve the system life cycle cost have been addressed and are the subject of this final report.

  3. Understanding the Clausius-Clapeyron Equation by Employing an Easily Adaptable Pressure Cooker

    ERIC Educational Resources Information Center

    Galleano, Monica; Boveris, Alberto; Puntarulo, Susana

    2008-01-01

    This article describes a simple and inexpensive laboratory exercise developed to understand the effect of pressure on phase equilibrium as described by the Clausius-Clapeyron equation. The only piece of equipment required is a pressure cooker adapted with a pressure gauge and a thermometer in the lid, allowing the measurement of the pressure and…

  4. The Pressure Cooker: A Module on the Properties of Matter. Tech Physics Series.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Cambridge, MA.

    Experiments to provide an understanding of the principles related to the pressure cooker are presented. Objectives included are designed to provide the learner with the ability to calibrate a thermistor for measuring temperature; explain the meaning of latent and specific heat; calculate latent and specific heat; use a Bourdon tube pressure gauge…

  5. The Pressure Cooker: A Module on the Properties of Matter. Tech Physics Series.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Cambridge, MA.

    Experiments to provide an understanding of the principles related to the pressure cooker are presented. Objectives included are designed to provide the learner with the ability to calibrate a thermistor for measuring temperature; explain the meaning of latent and specific heat; calculate latent and specific heat; use a Bourdon tube pressure gauge

  6. Understanding the Clausius-Clapeyron Equation by Employing an Easily Adaptable Pressure Cooker

    ERIC Educational Resources Information Center

    Galleano, Monica; Boveris, Alberto; Puntarulo, Susana

    2008-01-01

    This article describes a simple and inexpensive laboratory exercise developed to understand the effect of pressure on phase equilibrium as described by the Clausius-Clapeyron equation. The only piece of equipment required is a pressure cooker adapted with a pressure gauge and a thermometer in the lid, allowing the measurement of the pressure and

  7. A Slice of Solar Cooking.

    ERIC Educational Resources Information Center

    Galus, Pamela

    2003-01-01

    Presents an inquiry activity in which students design a solar cooking apparatus. Students are also asked to write a paragraph that explains the ways in which science knowledge helped them in the design of their cooker. Includes a grading rubric. (SOE)

  8. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region.

    PubMed

    Ndounla, J; Pulgarin, C

    2015-11-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested. PMID:26122565

  9. Status of APS 1-Mwe Parabolic Trough Project

    SciTech Connect

    Canada, S.; Brosseau, D.; Kolb, G.; Moore, L.; Cable, R.; Price, H.

    2005-11-01

    Arizona Public Service (APS) is currently installing new power facilities to generate a portion of its electricity from solar resources that will satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). During FY04, APS began construction on a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. Site preparation and construction activities continued throughout much of FY05, and startup activities are planned for Fall 2005 (with completion early in FY06). The plant will be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory. The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than the conventional steam Rankine cycle plant and allows unattended operation of the facility.

  10. Numerical modeling and experimental testing of a solar grill

    SciTech Connect

    Olwi, I.; Khalifa, A. )

    1993-02-01

    The sun provides a free, nonpolluting and everlasting source of energy. Considerable research has been carried out to utilize solar energy for purposes such as water heating, high temperature ovens, and conversion to electrical energy. One of the interesting forms for utilizing solar energy is cooking. The main disadvantage of solar energy systems has been the low efficiency attained in most of its practical applications. It is expected, however, that due to continuing decreases in the availability of other energy sources such as oil and coal, along with the safety problems associated with nuclear energy, man's need for utilization of solar energy will increase, thus leading him to find the ways and means to develop adequate and efficient solar-powered systems. In camps, where tents are used to accommodate people, cooking is done via conventional gas stoves. This usually takes place in extremely crowded areas which become highly fireprone. Solar oven cookers seem to be a viable alternative considering both economy and safety. Among the various forms of solar cookers, the oven-type solar cooker is known to be the best in terms of efficiency. One of the most practical and efficient forms of solar oven cookers is the outdoor portable solar grill (Bar-B-Q), developed by Khalifa et al. The solar grill is a light and portable unit that utilizes solar energy to grill meat. One of the best types of grilling with this cooker is the well-known Shish Kebab or Bar-B-Q. A detailed description for the design of the solar grill is provided as follows. This paper is aimed at providing experimental results and formulating a numerical model for the solar grill. Results of the two approaches are then compared to verify the validity of the numerical simulation. An experimental and theoretical investigation was conducted on the solar grill in order to study the factors that affect its design and performance.

  11. Parabolic bursting revisited.

    PubMed

    Soto-Trevio, C; Kopell, N; Watson, D

    1996-11-01

    Many excitable membrane systems display bursting oscillations, in which the membrane potential switches periodically between an active phase of rapid spiking and a silent phase of slow, quasi steady-state behavior. A burster is called parabolic when the spike frequency is lower both at the beginning and end of the active phase. We show that classes of voltage-gated conductance equations can be reduced to the mathematical mechanism previously analyzed by Ermentrout and Kopell in [7]. The reduction uses a series of coordinate changes and shows that the mechanism in [7] applies more generally than previously believed. The key hypothesis for the more general theory is that a certain slow periodic orbit must stay close to a curve of degenerate homoclinic points for the fast system, at least during the active phase. We do not require that the slow system have a periodic orbit when the voltage is held constant. PMID:9002243

  12. A modified concentrating type solar oven for outdoor cooking

    SciTech Connect

    Khalifa, A.M.A.

    1983-12-01

    Solar cookers offer a partial solution to many problems for the poor developing areas of the world. In these regions energy used for cooking sometimes comprises four fifths of the total energy demand. Solar cookers are generally four catagories: direct focusing, oven, ovenfocusing and indirect types. The direct focusing types failed to boil water under windy conditions due to excessive convection losses from the bare cooking pot placed at the concentrator focus. The oven type cookers, such as Telkes oven, observe the rules of energy conservation and thus are more efficient and less affected by windy weather. However, this oven suffers from two major problems. First, tilting the oven could cause food spillage unless a hinged support is used for the pot. This adds complication to the design of Telkes oven. Second, the solar radiation is added to the pot from the top for high solar altitude angles. This leads to poor heat transfer to the food inside the pot. The advantages of concentrating and oven cookers can be obtained by widding of a point focus concentrator to a new oven type receiver. In this paper the concept and design details of such an oven are introduced. Theoretical and experimental analyses of the developed cooker are given.

  13. Solar Energy Education. Home economics: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  14. Changes in the contents and profiles of selected phenolics, soyasapogenols, tocopherols, and amino acids during soybean-rice mixture cooking: Electric rice cooker vs electric pressure rice cooker.

    PubMed

    Kim, Seung-Hyun; Yu, Bo-Ra; Chung, Ill-Min

    2015-06-01

    This study investigated the changes in the contents and profiles of 35 phenolics (including 12 isoflavones), four tocopherols, two soyasapogenols and 20 amino acids when soybean and rice were cooked together (soybean-rice mixture) using either an electric rice cooker (ERC) or an electric pressure rice cooker (EPRC). The contents of the 35 selected phenolics in soybean decreased by 12% and 8% upon cooking by ERC and EPRC, respectively, and their profiles were different from that prior to cooking (P<0.05). Total tocopherol content of soybeans decreased by 7% after cooking in an ERC, but increased by 3% in soybeans cooked by EPRC. Total soyasapogenol content in soybeans cooked by ERC and EPRC decreased by 15% and 6%, respectively. Lastly, the total amino acid content of soybeans increased by 41% and 10% after cooking by ERC and EPRC, respectively. This study extends our knowledge about the effects of heat and pressure on the contents and profiles of bioactive compounds during soybean-rice mixture cooking. These results may be useful for improving the quality of bioactive compounds in soybean and rice depending on cooking conditions. PMID:25624205

  15. Parabolized stability equations

    NASA Astrophysics Data System (ADS)

    Herbert, Thorwald

    1994-04-01

    The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.

  16. Parabolized stability equations

    NASA Technical Reports Server (NTRS)

    Herbert, Thorwald

    1994-01-01

    The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.

  17. Current displacement in parabolic cylinder

    NASA Astrophysics Data System (ADS)

    Birenbaum, Gerard

    The eddy current distribution in a conducting parabolic cylinder is determined by two different analytical processes, according to which the source free, z directed vector potential is split up into two independent boundary value problems of the stationary skin effect. In the first analytical processs, a perfectly conductive screen is introduced, which forces Fourier series in the orthogonal direction with still unknown complex coefficients. In the second analytical process, the screen is abandoned, and the potentials in nonconductive space are represented by Fourier integrals. The distribution of eddy currents in the parabolic cylinder at determined times and various frequencies is perfectly explained by the field configurations.

  18. A successful solar cooking introduction model

    SciTech Connect

    Lankford, W.F.

    1992-12-31

    The author reviews the process he has undertaken to introduce solar cooking in Central America. A slow but increasingly successful acceptance rate is attributed to the following factors: the adaptation of the physical design of the cooker to local conditions; the determination of essential accessories for successful cooking; preliminary assessment of the probability for successful solar cooking; the structure of the oven building workshops; the follow-up program for those who have built their solar ovens. The follow-up program is the emphasis of his current research. The program can be divided into two categories. One is physical maintenance, repair and upgrade needs. The second is education in solar cooking. Another is orientation in the physical use of the oven. While these measures are expected to increase utilization, subsidies will be needed if solar cookers are expected to compete with highly subsidized fuel alternatives such as natural gas and electricity.

  19. Composite isogrid structures for parabolic surfaces

    NASA Technical Reports Server (NTRS)

    Silverman, Edward M. (Inventor); Boyd, Jr., William E. (Inventor); Rhodes, Marvin D. (Inventor); Dyer, Jack E. (Inventor)

    2000-01-01

    The invention relates to high stiffness parabolic structures utilizing integral reinforced grids. The parabolic structures implement the use of isogrid structures which incorporate unique and efficient orthotropic patterns for efficient stiffness and structural stability.

  20. Configuration selection study for isolated loads using parabolic dish modules

    NASA Technical Reports Server (NTRS)

    Revere, W.; Bowyer, J.; Fujita, T.; Awaya, H.

    1982-01-01

    A configuration tradeoff study was conducted to determine optimum solar thermal parabolic dish power systems for isolated load applications. The specific application of an essentially constant power demand as required for MX missile shelters is treated. Supplying a continuous level of power with high reliability is shown to require a power system comprising modular parabolic dish power units where the heat engines of the modular power units can be driven by fossil fuels as well as solar-derived heat. Since constraints on reliability result in the provision of a power generating capability that exceeds the constant demand level, efficient utilization of the power system requires battery storage. Tradeoffs regarding the optimum size of storage are investigated as a function of the number of power modules and the cost of the fossil fuel.

  1. Parabolic tapers for overmoded waveguides

    DOEpatents

    Doane, J.L.

    1983-11-25

    A waveguide taper with a parabolic profile, in which the distance along the taper axis varies as the square of the tapered dimension, provides less mode conversion than equal length linear tapers and is easier to fabricate than other non-linear tapers.

  2. Transversal filter for parabolic phase equalization

    NASA Technical Reports Server (NTRS)

    Kelly, Larry R. (Inventor); Waugh, Geoffrey S. (Inventor)

    1993-01-01

    An equalizer (10) for removing parabolic phase distortion from an analog signal (3), utilizing a pair of series connected transversal filters. The parabolic phase distortion is cancelled by generating an inverse parabolic approximation using a sinusoidal phase control filter (18). The signal (3) is then passed through an amplitude control filter (21) to remove magnitude ripple components.

  3. Progress in solar thermal distributed receiver technology

    NASA Astrophysics Data System (ADS)

    Leonard, J. A.; Otts, J. V.

    A brief discussion is given on the fundamentals of parabolic dish collectors. Private and Department of Energy supported projects which employ parabolic dish collector systems are described. These projects include: the Distribution Receiver Test Facility, Shenandoah Solar Total Energy Project, Vangurd I, Solar Plant No. 1, the Dish/Stirling Solar Electric Generating System, the Organic Rankine Cycle, and the Solarized Automotive Gas Turbine.

  4. Criteria for evaluation of reflective surface for parabolic dish concentrators

    NASA Technical Reports Server (NTRS)

    Bouquet, F.

    1980-01-01

    Commercial, second surface glass mirror are emphasized, but aluminum and metallized polymeric films are also included. Criteria for sealing solar mirrors in order to prevent environmental degradation and criteria for bonding sagged or bent mirrors to substrate materials are described. An overview of the technical areas involved in evaluating small mirror samples, sections, and entire large gores is presented. A basis for mirror criteria was established that eventually may become part of inspection and evaluation techniques for three dimensional parabolic reflective surfaces.

  5. Solar thermal parabolic dish energy applications

    NASA Technical Reports Server (NTRS)

    Pijawka, W.

    1981-01-01

    Vu-graphs are presented that show that applications are a viable distributed renewable power generation option. Quality energy can be produced in the form of electricity and high temperature heat. Modular systems are described that can be distributed to new or existing plants and that are mass producible with the associated economies of production.

  6. Fuse Protects Parabolic-Dish Solar Collector

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1983-01-01

    Sliding barrel and shutter protect against overheating. Downward movement of shutter initiated by melting of fuse wire that suspends it. Shutter lowered or raised under operator's control by depressuring or pressurizing hydraulic cylinder.

  7. Pre- and post-natal exposure of children to EMF generated by domestic induction cookers

    NASA Astrophysics Data System (ADS)

    Kos, Bor; Valič, Blaž; Miklavčič, Damijan; Kotnik, Tadej; Gajšek, Peter

    2011-10-01

    Induction cookers are a type of cooking appliance that uses an intermediate-frequency magnetic field to heat the cooking vessel. The magnetic flux density produced by an induction cooker during operation was measured according to the EN 62233 standard, and the measured values were below the limits set in the standard. The measurements were used to validate a numerical model consisting of three vertically displaced coaxial current loops at 35 kHz. The numerical model was then used to compute the electric field (E) and induced current (J) in 26 and 30 weeks pregnant women and 6 and 11 year old children. Both E and J were found to be below the basic restrictions of the 2010 low-frequency and 1998 ICNRIP guidelines. The maximum computed E fields in the whole body were 0.11 and 0.66 V m-1 in the 26 and 30 weeks pregnant women and 0.28 and 2.28 V m-1 in the 6 and 11 year old children (ICNIRP basic restriction 4.25 V m-1). The maximum computed J fields in the whole body were 46 and 42 mA m-2 in the 26 and 30 weeks pregnant women and 27 and 16 mA m-2 in the 6 and 11 year old children (ICNIRP basic restriction 70 mA m-2).

  8. Solar thermal technology evaluation, fiscal year 1982. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Three primary solar concepts the central receiver, parabolic dish, and parabolic trough are investigated. To a lesser extent, the hemispherical bowl and salt-gradient solar pond are also being studied. Each technology is described.

  9. A COMPARISON OF VOLATILE COMPOUNDS AND PHYSICAL CHARACTERISTICS OF KOSHIHIKARI AND BASMATI RICE PREPARED IN DIFFERENT COOKERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Koshihikari and Basmati rices, two premium rices from Japan and Pakistan respectively, were evaluated for volatile compounds and textural characteristics using three different cooking methods. Three hundred grams of each rice were prepared in National and Hitachi rice cookers and a covered saucepan...

  10. The integrated compound parabolic concentrator: From development to demonstration

    SciTech Connect

    Winston, R.; O`Gallagher, J.J.; Duff, W.S.; Cavallaro, A.

    1997-12-31

    The authors describe the fabrication, testing and application of the Integrated Compound Parabolic Concentrator (ICPC) to solar cooling. The cooling technology is a double effect absorption cycle chiller operating at 165 C. The design parameters are optimized for this temperature range. The optical and mechanical design of the solar collector is chosen for compatibility with mass production. A project to employ approximately 350 of these collector tubes to drive a 20 ton commercial double effect chiller on an office building in Sacramento, CA has started. The authors expect the system to be operational this year.

  11. Non-Formal Environmental Education: The Utilization of Solar Energy for Cooking in a Rural Area in Sudan.

    ERIC Educational Resources Information Center

    El Zubeir, Z.

    1997-01-01

    In El Sururab in rural Sudan, solar energy is used for cooking instead of wood. This study explored the efficiency of a hot-box type of solar cooker for storing heat and its effectiveness for different methods of cooking various foods used daily in El Sururab. Forty local women served as a respondent group. (PVD)

  12. Parabolic Trouogh Optical Characterization at the National Renewable Energy Laboratory

    SciTech Connect

    Wendelin, T. J.

    2005-01-01

    Solar parabolic trough power plant projects are soon to be implemented in the United States and internationally. In addition to these new projects, parabolic trough power plants totaling approximately 350 MW already exist within the United States and have operated for close to 20 years. As such, the status of the technology exists within several different phases. Theses phases include R&D, manufacturing and installation, and operations and maintenance. One aspect of successful deployment of this technology is achieving and maintaining optical performance. Different optical tools are needed to assist in improving initial designs, provide quality control during manufacture and assembly, and help maintain performance during operation. This paper discusses several such tools developed at SunLab (a joint project of the National Renewable Laboratory and Sandia National Laboratories) for these purposes. Preliminary testing results are presented. Finally, plans for further tool development are discussed.

  13. Existence results for quasilinear parabolic hemivariational inequalities

    NASA Astrophysics Data System (ADS)

    Liu, Zhenhai

    This paper is devoted to the periodic problem for quasilinear parabolic hemivariational inequalities at resonance as well as at nonresonance. By use of the theory of multi-valued pseudomonotone operators, the notion of generalized gradient of Clarke and the property of the first eigenfunction, we build a Landesman-Lazer theory in the nonsmooth framework of quasilinear parabolic hemivariational inequalities.

  14. Solargenix Energy Advanced Parabolic Trough Development

    SciTech Connect

    Gee, R. C.; Hale, M. J.

    2005-11-01

    The Solargenix Advanced Trough Development Project was initiated in the Year 2000 with the support of the DOE CSP Program and, more recently, with the added support of the Nevada Southwest Energy Partnership. Parabolic trough plants are the most mature solar power technology, but no large-scale plants have been built in over a decade. Given this lengthy lull in deployment, our first Project objective was development of improved trough technology for near-term deployment, closely patterned after the best of the prior-generation troughs. The second objective is to develop further improvements in next-generation trough technology that will lead to even larger reductions in the cost of the delivered energy. To date, this Project has successfully developed an advanced trough, which is being deployed on a 1-MW plant in Arizona and will soon be deployed in a 64-MW plant in Nevada. This advanced trough offers a 10% increase in performance and over an 20% decrease in cost, relative to prior-generation troughs.

  15. Simulation of point light concentration with parabolic trough collector

    NASA Astrophysics Data System (ADS)

    Danylyuk, Andriy; Zettl, Marcus; Lynass, Mark

    2010-08-01

    As the amount of solar generated energy usage increases worldwide, researches are turning to more advanced methods to increase collection efficiencies and drive down system costs. In this paper, four different optical system designs for solar concentrator applications are discussed. Each of the designs studied utilizes a parabolic trough optical element. The use of the parabolic trough in conjunction with a secondary optical component eliminates the need for expensive complicated 2-axis tracking, whilst still allowing the precise point focus normally only possible with more complex paraboloid systems. The result is an optical system, which offers all the advantages of a linear focus geometry combined with the possibility to utilize point focus concentration. The results were obtained using photometric geometrical ray tracing methods. Ideal surface simulations were initially used to separate surface from geometrical loss contributions. Later, more realistic simulations, including surface and reflectivity data of typical manufacturing methods and materials, were used to compare optical output power densities and system losses. For the systems studied, the minimum and maximum optical efficiencies obtained were 76.73% and 81% respectively. The AM 1.5 solar spectrum power densities in the absorption plane ranged from 50 to 195.8Wm-2.

  16. Overview of software development at the parabolic dish test site

    NASA Technical Reports Server (NTRS)

    Miyazono, C. K.

    1985-01-01

    The development history of the data acquisition and data analysis software is discussed. The software development occurred between 1978 and 1984 in support of solar energy module testing at the Jet Propulsion Laboratory's Parabolic Dish Test Site, located within Edwards Test Station. The development went through incremental stages, starting with a simple single-user BASIC set of programs, and progressing to the relative complex multi-user FORTRAN system that was used until the termination of the project. Additional software in support of testing is discussed including software in support of a meteorological subsystem and the Test Bed Concentrator Control Console interface. Conclusions and recommendations for further development are discussed.

  17. Parabolic curves in Lie groups

    SciTech Connect

    Pauley, Michael

    2010-05-15

    To interpolate a sequence of points in Euclidean space, parabolic splines can be used. These are curves which are piecewise quadratic. To interpolate between points in a (semi-)Riemannian manifold, we could look for curves such that the second covariant derivative of the velocity is zero. We call such curves Jupp and Kent quadratics or JK-quadratics because they are a special case of the cubic curves advocated by Jupp and Kent. When the manifold is a Lie group with bi-invariant metric, we can relate JK-quadratics to null Lie quadratics which arise from another interpolation problem. We solve JK-quadratics in the Lie groups SO(3) and SO(1,2) and in the sphere and hyperbolic plane, by relating them to the differential equation for a quantum harmonic oscillator00.

  18. Study on Pot Forming of Induction Heater Type Rice Cookers by Forging Cast Process

    NASA Astrophysics Data System (ADS)

    Ohnishi, Masayuki; Yamaguchi, Mitsugi; Ohashi, Osamu

    This paper describes a study result on pot fabrication by the forging cast process of stainless steel with aluminum. Rice cooked with the new bowl-shaped pot for the induction heater type rice cookers is better tasting than rice cooked with the conventional cylindrical one, due to the achievement of better heat conduction and convection. The conventional pot is made of the clad sheet, consisting of stainless steel and aluminum. However, it is rather difficult to form a bowl shape from the clad sheet, primarily due to the problem of a material spring back. The fabrication of a new type of a pot was made possible by means of the adoption of a forging cast process instead of the clad sheet. In this process, iron powder is inserted between stainless steel and aluminum in order to alleviate the large difference on the coefficient of expansion between each material. It was made clear that the application of two kinds of iron particle, namely 10 μm size powder on the stainless steel side and 44 μm on the aluminum side, enables the joints to become strong enough. The joint strength of the new pot by this fabrication process was confirmed by the tests of the shear strength and the fatigue tests together with the stress analysis.

  19. Renewable energy technologies for federal facilities: Solar water heating

    SciTech Connect

    1996-05-01

    This sheet presents information on solar water heaters (passive and active), solar collectors (flat plate, evacuated tube, parabolic trough), lists opportunities for use of solar water heating, and describes what is required and the costs. Important terms are defined.

  20. IMEX method convergence for a parabolic equation

    NASA Astrophysics Data System (ADS)

    Robinson, Michael

    Although implicit-explicit (IMEX) methods for approximating solutions to semilinear parabolic equations are relatively standard, most recent works examine the case of a fully discretized model. We show that by discretizing time only, one can obtain an elementary convergence result for an implicit-explicit method. This convergence result is strong enough to imply existence and uniqueness of solutions to a class of semilinear parabolic equations.

  1. Solar Total Energy Project construction cost history

    SciTech Connect

    Hunke, R.W.; Pappas, G.N.

    1983-03-01

    A solar energy project using parabolic dish collectors was designed, fabricated, and installed near Shenandoah, GA. A cost history of the construction of the Solar Total Energy Project is presented. Costs are broken down into the various project elements.

  2. Cost Effectiveness of Hybrid Solar Powerplants

    NASA Technical Reports Server (NTRS)

    Wen, L. C.; Steele, H. L.

    1983-01-01

    Report discusses cost effectiveness of high-temperature thermal storage system for representative parabolic dish solar powerplant. Economic viability of thermal storage system assesses; cost and performance projections made; cost of electricity generated by solar power plant also calculated.

  3. Progress in solar thermal distributed receiver technology

    SciTech Connect

    Leonard, J.A.; Otts, J.V.

    1985-01-01

    A brief discussion is given on the fundamentals of parabolic dish collectors. Private and Department of Energy supported projects which employ parabolic dish collector systems are described. These projects include: the Distributed Receiver Test Facility, Shenandoah Solar Total Energy Project, Vanguard I, Solar Plant No. 1, the Dish/Stirling Solar Electric Generating System, the Organic Rankine Cycle, and the Solarized Automotive Gas Turbine. Reference is also made towards future research and development. (BCS)

  4. Piecewise-Planar Parabolic Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Hodges, Richard; Zawadzki, Mark

    2009-01-01

    The figure shows a dual-beam, dualpolarization Ku-band antenna, the reflector of which comprises an assembly of small reflectarrays arranged in a piecewise- planar approximation of a parabolic reflector surface. The specific antenna design is intended to satisfy requirements for a wide-swath spaceborne radar altimeter, but the general principle of piecewise-planar reflectarray approximation of a parabolic reflector also offers advantages for other applications in which there are requirements for wideswath antennas that can be stowed compactly and that perform equally in both horizontal and vertical polarizations. The main advantages of using flat (e.g., reflectarray) antenna surfaces instead of paraboloidal or parabolic surfaces is that the flat ones can be fabricated at lower cost and can be stowed and deployed more easily. Heretofore, reflectarray antennas have typically been designed to reside on single planar surfaces and to emulate the focusing properties of, variously, paraboloidal (dish) or parabolic antennas. In the present case, one approximates the nominal parabolic shape by concatenating several flat pieces, while still exploiting the principles of the planar reflectarray for each piece. Prior to the conception of the present design, the use of a single large reflectarray was considered, but then abandoned when it was found that the directional and gain properties of the antenna would be noticeably different for the horizontal and vertical polarizations.

  5. Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis.

    PubMed

    Biler, Piotr; Corrias, Lucilla; Dolbeault, Jean

    2011-07-01

    In two space dimensions, the parabolic-parabolic Keller-Segel system shares many properties with the parabolic-elliptic Keller-Segel system. In particular, solutions globally exist in both cases as long as their mass is less than a critical threshold M(c). However, this threshold is not as clear in the parabolic-parabolic case as it is in the parabolic-elliptic case, in which solutions with mass above M(c) always blow up. Here we study forward self-similar solutions of the parabolic-parabolic Keller-Segel system and prove that, in some cases, such solutions globally exist even if their total mass is above M(c), which is forbidden in the parabolic-elliptic case. PMID:20730434

  6. Parabolic Ejecta Features on Titan? Probably Not

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Melosh, H. J.

    1996-03-01

    Radar mapping of Venus by Magellan indicated a number of dark parabolic features, associated with impact craters. A suggested mechanism for generating such features is that ejecta from the impact event is 'winnowed' by the zonal wind field, with smaller ejecta particles falling out of the atmosphere more slowly, and hence drifting further. What discriminates such features from simple wind streaks is the 'stingray' or parabolic shape. This is due to the ejecta's spatial distribution prior to being winnowed during fallout, and this distribution is generated by the explosion plume of the impact piercing the atmosphere, allowing the ejecta to disperse pseudoballistically before re-entering the atmosphere, decelerating to terminal velocity and then being winnowed. Here we apply this model to Titan, which has a zonal wind field similar to that of Venus. We find that Cassini will probably not find parabolic features, as the winds stretch the deposition so far that ejecta will form streaks or bands instead.

  7. Current and Future Economics of Parabolic Trough Technology

    SciTech Connect

    Price, H.; Mehos, M.; Kutscher, C.; Blair, N.

    2007-01-01

    Solar energy is the largest energy resource on the planet. Unfortunately, it is largely untapped at present, in part because sunlight is a very diffuse energy source. Concentrating solar power (CSP) systems use low cost reflectors to concentrate the sun's energy to allow it to be used more effectively. Concentrating solar power systems are also well suited for large solar power plants that can be connected into the existing utility infrastructure. These two facts mean that CSP systems can be used to make a meaningful difference in energy supply in a relatively short period. CSP plants are best suited for the arid climates in the Southwestern United States, Northern Mexico, and many desert regions around the globe. A recent Western Governors' Association siting study [1] found that the solar potential in the U.S. Southwest is at least 4 times the total U.S. electric demand even after eliminating urban areas, environmentally sensitive areas, and all regions with a ground slope greater than 1%.While it is currently not practical to power the whole county from the desert southwest, only a small portion of this area is needed to make a substantial contribution to future U.S. electric needs. Many of the best sites are near existing high-voltage transmission lines and close to major power load centers in the Southwest (Los Angeles, Las Vegas, and Phoenix). In addition, the power provided by CSP technologies has strong coincidence with peak electric demand, especially in the Southwest where peak demand corresponds in large part to air conditioning loads. Parabolic troughs currently represent the most cost-effective CSP technology for developing large utility-scale solar electric power systems. These systems are also one of the most mature solar technologies, with commercial utility-scale plants that have been operating for over 20 years. In addition, substantial improvements have been made to the technology in recent years including improved efficiency and the addition of thermal energy storage. The main issue for parabolic trough technology is that the cost of electricity is still higher than the cost of electricity from conventional natural gas-fired power plants. Although higher natural gas prices are helping to substantially reduce the difference between the cost of electricity from solar and natural gas plants, in the near-term increased incentives such as the 30% Investment Tax Credit (ITC) are needed to make CSP technology approach competitiveness with natural gas power on a financial basis. In the longer term, additional reductions in the cost of the technology will be necessary. This paper looks at the near-term potential for parabolic trough technology to compete with conventional fossil power resources in the firm, intermediate load power market and at the longer term potential to compete in the baseload power market. The paper will consider the potential impact of a reduced carbon emissions future.

  8. Development status of the PDC-1 Parabolic Dish Concentrator

    NASA Technical Reports Server (NTRS)

    Thostesen, T.; Soczak, I. F.; Pons, R. L.

    1982-01-01

    The status of development of the 12 m diameter parabolic dish concentrator which is planned for use with the Small Community Solar Thermal Power System. The PDC-1 unit features the use of plastic reflector film bonded to structural plastic gores supported by front-bracing steel ribs. An elevation-over-azimuth mount arrangement is employed, with a conventional wheel-and-track arrangement; outboard trunnions permit the dish to be stored in the face down position, with the added advantage of easy access to the power conversion assembly. The control system is comprised of a central computer (LSI 1123), a manual control panel, a concentrator control unit, two motor controllers, a Sun sensor, and two angular position resolvers. The system is designed for the simultaneous control of several concentrators. The optical testing of reflective panels is described.

  9. Development of sheet-metal parabolic-trough reflector panels

    NASA Astrophysics Data System (ADS)

    Biester, A. W.

    1982-06-01

    Efforts to develop accurate, durable, and mass producible sheet metal parabolic trough solar collectors and the associated support for the collectors are described. The design considered is similar to an automobile hood, a two-piece sheet metal structure consisting of a formed steel frame or stiffening panel and a smooth contoured skin. The two pieces may be bonded or welded to form a rigid structure, and a reflective surface applied such as a film, glass mirror, or any of the presently utilized materials. The work encompassed material selection, adhesive selection and testing, tool design and fabrication, prototype panel production, and design and development of torque tube assemblies on which the trough is inclined. Results of adhesive bonding studies are given. It is found that high volume technology can be used to produce accurate and structurally sound reflector panels, and one configuration was selected for fabrication in suitable quantities for performance testing.

  10. The energy spectrum of parabolic quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chin; Huang, Yung-Sheng

    2000-12-01

    We calculate the energy spectrum of hydrogen impurity located in the center of parabolic quantum dot. The energy levels under this model differ from the previous results for the case of spherical quantum dot. The degeneracy of the energy levels is quite different as well. However, compared with the spherical quantum dot, the energy plateau under this model is not obvious.

  11. The linear regulator problem for parabolic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Kunisch, K.

    1983-01-01

    An approximation framework is presented for computation (in finite imensional spaces) of Riccati operators that can be guaranteed to converge to the Riccati operator in feedback controls for abstract evolution systems in a Hilbert space. It is shown how these results may be used in the linear optimal regulator problem for a large class of parabolic systems.

  12. Prolonging Microgravity on Parabolic Airplane Flights

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2003-01-01

    Three techniques have been proposed to prolong the intervals of time available for microgravity experiments aboard airplanes flown along parabolic trajectories. Typically, a pilot strives to keep an airplane on such a trajectory during a nominal time interval as long as 25 seconds, and an experimental apparatus is released to float freely in the airplane cabin to take advantage of the microgravitational environment of the trajectory for as long as possible. It is usually not possible to maintain effective microgravity during the entire nominal time interval because random aerodynamic forces and fluctuations in pilot control inputs cause the airplane to deviate slightly from a perfect parabolic trajectory, such that the freely floating apparatus bumps into the ceiling, floor, or a wall of the airplane before the completion of the parabola.

  13. New Parabolic Flight Platform for Microgravity Experiments

    NASA Astrophysics Data System (ADS)

    Valdatta, M.; Brucas, D.; Tomkus, V.; Ragauskas, U.; Razgunas, M.

    2015-09-01

    Microgravity experiments are important in field of space development; they give the possibility to simulate near-space conditions to test new kind of systems and subsystems for space or to perform biological researches. The existing platforms, to perform reduced gravity experiments, allow achieving the targets of the researches. Otherwise these platforms are either very expensive or of a very short duration. Another important issue is the repeatability of the experiment for some platforms. Fast repeatability platform (ensuring fast turnaround time), can guarantee only few seconds of microgravity time. For these reason there is the need of platforms for microgravity experiments that will cover the needs of all the experiments that cannot fit into required time, cost and repeatability of any other experiment methodology. The paper explains the mission plan and first scientific data of new family of parabolic unmanned planes. Each of these planes can be used to achieve scientific parabolic flight.

  14. The second parabolic flight campaign for students.

    PubMed

    Ockels, W J

    1996-02-01

    In conjunction with the European Commission's 'European Week for Scientific and Technological Culture' in November, ESA organised the second parabolic flight campaign for students. Students selected through a competition, were again given the unique opportunity of experiencing weightlessness as they performed their own scientific experiment during a parabolic flight. The experiments covered a wide variety of disciplines. Some illustrated well the effect of microgravity while others may offer new and far-reaching scientific results. The primary goal, however, is to educate and motivate the students rather than to obtain new research. It is hoped that the campaign will stimulate the next generation to think about space and the potential of microgravity. It is in that way that an innovative future user community for the International Space Station Alpha can be built. The great enthusiasm shown by many students and the wide coverage provided by the media also demonstrate the interest in space and the promotional value of the campaign. PMID:15008198

  15. The parabolic concentrating collector: A tutorial

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1979-01-01

    A tutorial overview of point-focusing parabolic collectors is presented. Optical and thermal characteristics are discussed. Data representing typical achievable collector efficiencies are presented and the importance of balancing collector cost with concentrator quality is argued through the development of a figure of merit. Various types of two-axis tracking collectors are described. The Department of Energy program to develop these devices is briefly discussed, as are present and projected costs for these collectors.

  16. Low-cost and gram-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots in an electric pressure cooker

    NASA Astrophysics Data System (ADS)

    Chen, Yanyan; Li, Shenjie; Huang, Lijian; Pan, Daocheng

    2014-01-01

    We report an electric pressure cooker for large-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots. Low-cost thioglycolic acid and sodium citrate were used as the dual stabilizers. ~3 grams of quantum dots with a tunable emission from 545 to 610 nm and quantum yield up to 40% were obtained in a batch.We report an electric pressure cooker for large-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots. Low-cost thioglycolic acid and sodium citrate were used as the dual stabilizers. ~3 grams of quantum dots with a tunable emission from 545 to 610 nm and quantum yield up to 40% were obtained in a batch. Electronic supplementary information (ESI) available: Experimental details, PL decay curves, PL lifetimes, EDS spectra, chemical composition, cost analysis. See DOI: 10.1039/c3nr05014a

  17. Low-cost and gram-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots in an electric pressure cooker.

    PubMed

    Chen, Yanyan; Li, Shenjie; Huang, Lijian; Pan, Daocheng

    2014-01-01

    We report an electric pressure cooker for large-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots. Low-cost thioglycolic acid and sodium citrate were used as the dual stabilizers. ∼3 grams of quantum dots with a tunable emission from 545 to 610 nm and quantum yield up to 40% were obtained in a batch. PMID:24337019

  18. Engineering Area Investigation of Reliability Attributes and Accelerated Stress Factors on Terrestrial Solar Cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Prince, J. L.

    1979-01-01

    Results obtained include the definition of a simplified stress test schedule for terrestrial solar cells based on the work performed during the first program year, and the design and fabrication of improved jigs and fixtures for electrical measurement and stress testing. Implementation of these advanced techniques for accelerated stress testing is underway on three solar cell types. In addition, review of the literature on second quadrant phenomena was begun and some preliminary second-quadrant electrical measurements were performed. Results obtained at the first down time for 75 C B-T testing and biased and unbiased T-H pressure cooker testing of type F cells showed little or no degradation in electrical parameters. Significant physical effects (large solder bubbles) were noted for type F cells subjected to the pressure cooker stress test.

  19. Analysis of static and quasi-static cross compound parabolic concentrators

    SciTech Connect

    Molledo, A.G.; Luque, A.

    1984-06-15

    Static and quasi-static concentrators present interesting characteristics for obtaining photovoltaic solar energy. In this work we study the characteristics of the crossed compound parabolic concentrator, formed by the intersection of two cyclindrical compound parabolic concentrators (CPC). Bifacial cells are used in this concentrator as a requirement for obtaining higher concentrations. Static and quasi-static concentrators see the sun as an extended source, so a simplified source model of radiance for the sky of Madrid is used. The figures of merit of a lossless concentrator are studied and the most important parameters influencing its optical behavior are discussed. We conclude that these concentrators obtain results that lead to a decrease in the cost of photovoltaic energy.

  20. Near-term improvements in parabolic troughs: an economic and performance assessment

    SciTech Connect

    Gee, R.; Murphy, L.M.

    1981-08-01

    Improved parabolic-trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. This analysis qualifies the performance potential of various parabolic-trough component improvements from a systems viewpoint and uses these performance data to determine the worth of each improvement on an economic basis. The improvements considered are evacuated receivers, silvered-glass reflectors, improved receiver, selective coatings, higher optical accuracy concentrations, and higher transmittance receiver glazings. Upper-bound costs for each improvement are provided as well as estimates of the increased solar system rates of return that are made possible by these improvements. The performance and economic potential of some of these improvements are shown to be substantial, especially at higher collector operating temperatures.

  1. Solar Disinfection of MODS Mycobacterial Cultures in Resource-Poor Settings

    PubMed Central

    Nathavitharana, Ruvandhi; Coronel, Jorge; Moore, David A. J.

    2007-01-01

    Introduction Safe disposal of TB culture material in which the infectious burden of clinical samples has been greatly amplified is an important challenge in resource-limited settings. The bactericidal capacity of solar cookers has been demonstrated previously for conventional bacteria and contaminated clinical waste. We investigated the use of a simple solar cooker for the sterilization of mycobacterial broth cultures from the microscopic observation drug susceptibility assay (MODS). Methods Simulated TB culture materials were prepared by inoculating 24-well MODS plates with 500 µL of a known concentration of Mycobacterium bovis BCG. In a series of experiments, samples were simultaneously placed inside a box-type solar cooker and control box and removed at timepoints between 15 minutes and 6 hours. Quantitative cultures were performed using retrieved samples to determine sterilization effect. Results All cultures from the control box were positive at or within 1–4 logs of inoculation concentration. Simulated culture plates at concentrations from 103colony-forming-units (CFU)/ml to 107 CFU/ml were completely sterilized after only one hour of cooker exposure, at temperatures between 50–102°C. At 109 CFU/ml (far in excess of diagnostic cultures), it was only possible to recover mycobacterial growth in plates removed after 15 minutes. By 30 minutes all plates were effectively sterilized. Discussion Solar disinfection provides a very effective, safe and low-cost alternative to conventional equipment used for disposal of mycobacterial culture material. Effect of climatic conditions and optimal operating procedure remain to be defined. PMID:17971863

  2. Dense-array concentrator photovoltaic system using non-imaging dish concentrator and crossed compound parabolic concentrator

    NASA Astrophysics Data System (ADS)

    Chong, Kok-Keong; Yew, Tiong-Keat; Wong, Chee-Woon; Tan, Ming-Hui; Tan, Woei-Chong; Lai, An-Chow; Lim, Boon-Han; Lau, Sing-Liong; Rahman, Faidz Abdul

    2015-04-01

    Solar concentrating device plays an important role by making use of optical technology in the design, which can be either reflector or lens to deliver high flux of sunlight onto the Concentrator Photovoltaic (CPV) module receiver ranging from hundreds to thousand suns. To be more competitive compared with fossil fuel, the current CPV systems using Fresnel lens and Parabolic dish as solar concentrator that are widely deployed in United States, Australia and Europe are facing great challenge to produce uniformly focused sunlight on the solar cells as to reduce the cost of electrical power generation. The concept of non-imaging optics is not new, but it has not fully explored by the researchers over the world especially in solving the problem of high concentration solar energy, which application is only limited to be a secondary focusing device or low concentration device using Compound Parabolic Concentrator. With the current advancement in the computer processing power, we has successfully invented the non-imaging dish concentrator (NIDC) using numerical simulation method to replace the current parabolic dish as primary focusing device with high solar concentration ratio (more than 400 suns) and large collective area (from 25 to 125 m2). In this paper, we disclose our research and development on dense array CPV system based on non-imaging optics. The geometry of the NIDC is determined using a special computational method. In addition, an array of secondary concentrators, namely crossed compound parabolic concentrators, is also proposed to further focus the concentrated sunlight by the NIDC onto active area of solar cells of the concentrator photovoltaic receiver. The invention maximizes the absorption of concentrated sunlight for the electric power generation system.

  3. Bifurcation and stability for a nonlinear parabolic partial differential equation

    NASA Technical Reports Server (NTRS)

    Chafee, N.

    1973-01-01

    Theorems are developed to support bifurcation and stability of nonlinear parabolic partial differential equations in the solution of the asymptotic behavior of functions with certain specified properties.

  4. Parabolic Trough VSHOT Optical Characterization in 2005-2006 (Presentation)

    SciTech Connect

    Wendelin, T.

    2006-02-01

    This presentation regarding parabolic trough VSHOT optical characterization describes trough deployment and operation phases including: development, manufacture/installation, and maintenance/operation.

  5. Spectral methods in time for parabolic problems

    NASA Technical Reports Server (NTRS)

    Tal-Ezer, H.

    1985-01-01

    A pseudospectral explicit scheme for solving linear, periodic, parabolic problems is described which has infinite accuracy both in time and in space. The high accuracy is achieved while the time resolution parameter M ( = ) (1/delta t) for time marching algorithm) and the space resolution parameter N B = O(1/detla x) have to satisfy M = O(N sup/+epsilon) epsilon O, compared to the common stability condition M = O(N sup 2) which has to be satisfied in any explicit finite order time algorithm.

  6. A solar high temperature kiln

    NASA Astrophysics Data System (ADS)

    Huettenhoelscher, N.; Bergmann, K.

    1981-11-01

    The feasibility of using solar energy in developing countries for baking ceramic construction materials was investigated. The solar high temperature kiln is described. It uses two parabolic concentrators which direct available radiation into the baking chamber. The Sun tracker has only one axis. Preliminary test results with the prototype kiln were satisfactory.

  7. Parabolic Dish Solar Thermal Power Annual Program Review Proceedings

    NASA Technical Reports Server (NTRS)

    Holbeck, H. J.

    1981-01-01

    The development and testing of concentrators, receivers, and power conversion units are reported. System design and development for engineering experiments are described. Economic analysis and market assessments for advanced development activities are discussed. Technology development issues and application/user needs are highlighted.

  8. Solar energy concentrator design and operation. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-09-01

    Government funded research on the design and operation of various types of solar energy concentrators is discussed. Abstracts cover the efficiency and optimization of Fresnel lenses, V-through concentrators, flat plate and parabolic reflectors, compound parabolic concentrators used in solar photovoltaic conversion and heliostat systems. A few abstracts deal with heat loss and cost studies.

  9. Advances in solar cooking: Proceedings of the first world conference on solar cooking

    SciTech Connect

    Pejack, E.

    1992-12-31

    Population growth and resource depletion have led to a need for new sources of cooking fuel in developing countries. Many poor villagers spend half of their time, or half of their income obtaining cooking fuel. Solar cooking can meet the needs of many of these people. People from eighteen countries met at this world conference to share experiences with design and performance of cookers, food, nutrition and health issues, and information dissemination strategies. A total of 27 individual papers were indexed separately for the data base.

  10. The potential economic benefit of using parabolic trough collectors to supplement power cycle boilers

    NASA Astrophysics Data System (ADS)

    Schimmel, W. P., Jr.; Lukens, L. L.

    1981-11-01

    An economic analysis is presented for a combined parabolic trough solar/fossil fuel hybrid power plant. Applications are considered for investor-owned utilities and industries with stockholders and bond purchasers. Annual levelized revenues are calculated, based on the capital cost of equipment, annual operations and maintenance, and a rising cost of fossil fuel. The units of heat are considered as equal in value from each source, and project return on equity for an American Southwest user of the hybrid systems are calculated to show an annual project return on equity of 21% for a utility and 25% for an industry in 1985. Analysis of the total fuel replaced by a solar reheat system for a gas-fueled boiler system shows that a 20% reduction in fuel costs can be obtained by a 10% increase in the plant costs to include the solar reheat system furnishing low-temperature heat in 1985.

  11. On the structure of hyperbolic and near-parabolic dust streams

    NASA Astrophysics Data System (ADS)

    Pittich, E.; Solovaya, N.

    2015-01-01

    The only type of concentration of cometary dust with a reasonable probability of being detected by cosmic probes, are the dust tails emanating from passing comets. Essentially all the dust released from long-period comets leaves the solar system on hyperbolic orbits, because the radiation pressure limit is high. For short-period comets the dynamical conditions for retention of emitted particles within the solar system are much more favorable. But those which remain in circum-solar orbits tend to disperse rather rapidly. We present the results of an investigation of the evolution of dust streams produced by low-velocity emission from comets moving in near-parabolic and hyperbolic orbits. In order to get a clearer insight into the geometry and detectability of dust tails, some model computation have been performed.

  12. Existence and asymptotic behaviour for the parabolic-parabolic Keller-Segel system with singular data

    NASA Astrophysics Data System (ADS)

    Ferreira, Lucas C. F.; Precioso, Juliana C.

    2011-05-01

    This work considers the Keller-Segel system of parabolic-parabolic type in {R}^{n} for n >= 2. We prove existence results in a new framework and with initial data in N_{r,\\lambda,\\infty}^{-\\beta}\\times\\dot{B}_{\\infty,\\infty}^{0} . This initial data class is larger than the previous ones, e.g., Kozono-Sugiyama (2008 Indiana Univ. Math. J. 57 1467-500) and Biler (1998 Adv. Math. Sci. Appl. 8 715-43), and covers physical cases of initial aggregation at points (Diracs) and on filaments. Self-similar solutions are obtained for initial data with the correct homogeneity and a certain value of parameter γ. We also show an asymptotic behaviour result, which provides a basin of attraction around each self-similar solution.

  13. Analysis of the incidence angle of the beam radiation on CPC. [Compound Parabolic Concentrator

    SciTech Connect

    Pinazo, J.M.; Canada, J.; Arago, F. )

    1992-09-01

    Analytic expressions have been derived for the projected incidence angles {var theta}{sub 1} and {var theta}{sub 2} from a two-dimensional compound parabolic concentrator solar collector. For a CPC the fraction of the incident rays on the aperture at angle {var theta}, which reaches the absorber, depends only on the {var theta}{sub 1} angle. In this paper, a mathematical expression for {var theta}{sub 1} and {var theta}{sub t} has been calculated to determine the times at which acceptance of the sun's beam radiation begins and ceases for a CPC consisting of arbitrary orientation.

  14. Heat and electricity from the sun using parabolic dish collector systems

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.; Williams, A. N.

    1979-01-01

    The paper investigates point focus distributed receiver (PFDR) solar thermal technology for the production of electric power and of industrial process heat. Attention is given to a thermal systems project conducted by JPL under DOE sponsorship. It is reported that project emphasis is on the development of cost-effective systems which will accelerate the commercialization and industrialization of plants up to 10 MWe, using parabolic dish collectors. Also discussed are the characteristics of PFDR systems, the cost targets for major systems hardware, and markets for this technology. Finally, the present system status of the technology development effort is discussed.

  15. Parabolic flight - Loss of sense of orientation

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Graybiel, A.

    1979-01-01

    On the earth, or in level flight, a blindfolded subject being rotated at constant velocity about his recumbent long body axis experiences illusory orbital motion of his body in the opposite direction. By contrast, during comparable rotation in the free-fall phase of parabolic flight, no body motion is perceived and all sense of external orientation may be lost; when touch and pressure stimulation is applied to the body surface, a sense of orientation is reestablished immediately. The increased gravitoinertial force period of a parabola produces an exaggeration of the orbital motion experienced in level flight. These observations reveal an important influence of touch, pressure, and kinesthetic information on spatial orientation and provide a basis for understanding many of the postural illusions reported by astronauts in space flight.

  16. THE PARABOLIC JET STRUCTURE IN M87 AS A MAGNETOHYDRODYNAMIC NOZZLE

    SciTech Connect

    Nakamura, Masanori; Asada, Keiichi E-mail: asada@asiaa.sinica.edu.tw

    2013-10-01

    The structure and dynamics of the M87 jet from sub-milliarcsec to arcsecond scales are continuously examined. We analyzed the Very Long Baseline Array archival data taken at 43 and 86 GHz to measure the size of very long baseline interferometry (VLBI) cores. Millimeter/sub-millimeter VLBI cores are considered as innermost jet emissions, which has been originally suggested by Blandford and Königl. Those components fairly follow an extrapolated parabolic streamline in our previous study so that the jet has a single power-law structure with nearly 5 orders of magnitude in the distance starting from the vicinity of the supermassive black hole (SMBH), less than 10 Schwarzschild radius (r{sub s}). We further inspect the jet parabolic structure as a counterpart of the magnetohydrodynamic (MHD) nozzle in order to identify the property of a bulk acceleration. We interpret that the parabolic jet consists of Poynting-flux dominated flows, powered by large-amplitude, nonlinear torsional Alfvén waves. We examine the non-relativistic MHD nozzle equation in a parabolic shape. The nature of trans-fast magnetosonic flow is similar to the one of transonic solution of Parker's hydrodynamic solar wind; the jet becomes super-escape as well as super-fast magnetosonic at around ∼10{sup 3} r{sub s}, while the upstream trans-Alfvénic flow speed increases linearly as a function of the distance at ∼10{sup 2}-10{sup 3} r{sub s}. We here point out that this is the first evidence to identify these features in astrophysical jets. We propose that the M87 jet is magnetically accelerated, but thermally confined by the stratified interstellar medium inside the sphere of gravitational influence of the SMBH potential, which may be a norm in active galactic nucleus jets.

  17. The Parabolic Jet Structure in M87 as a Magnetohydrodynamic Nozzle

    NASA Astrophysics Data System (ADS)

    Nakamura, Masanori; Asada, Keiichi

    2013-10-01

    The structure and dynamics of the M87 jet from sub-milliarcsec to arcsecond scales are continuously examined. We analyzed the Very Long Baseline Array archival data taken at 43 and 86 GHz to measure the size of very long baseline interferometry (VLBI) cores. Millimeter/sub-millimeter VLBI cores are considered as innermost jet emissions, which has been originally suggested by Blandford & Königl. Those components fairly follow an extrapolated parabolic streamline in our previous study so that the jet has a single power-law structure with nearly 5 orders of magnitude in the distance starting from the vicinity of the supermassive black hole (SMBH), less than 10 Schwarzschild radius (r s). We further inspect the jet parabolic structure as a counterpart of the magnetohydrodynamic (MHD) nozzle in order to identify the property of a bulk acceleration. We interpret that the parabolic jet consists of Poynting-flux dominated flows, powered by large-amplitude, nonlinear torsional Alfvén waves. We examine the non-relativistic MHD nozzle equation in a parabolic shape. The nature of trans-fast magnetosonic flow is similar to the one of transonic solution of Parker's hydrodynamic solar wind; the jet becomes super-escape as well as super-fast magnetosonic at around ~103 r s, while the upstream trans-Alfvénic flow speed increases linearly as a function of the distance at ~102-103 r s. We here point out that this is the first evidence to identify these features in astrophysical jets. We propose that the M87 jet is magnetically accelerated, but thermally confined by the stratified interstellar medium inside the sphere of gravitational influence of the SMBH potential, which may be a norm in active galactic nucleus jets.

  18. Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data

    NASA Astrophysics Data System (ADS)

    Ishida, Sachiko; Yokota, Tomomi

    This paper deals with the quasilinear degenerate Keller-Segel system (KS) of "parabolic-parabolic" type. The global existence of weak solutions to (KS) with small initial data is established when q⩾m+2/N ( m denotes the intensity of diffusion and q denotes the nonlinearity). In the system of "parabolic-elliptic" type, Sugiyama and Kunii (2006) [13, Theorem 3] and Sugiyama (2007) [12, Theorem 2] state the similar result; note that q=m+2/N corresponds to generalized Fujita's critical exponent. However, the super-critical case where q⩾m+2/N has been unsolved for "parabolic-parabolic" type. Therefore this paper gives an answer to the unsolved problem.

  19. Graviresponses of Paramecium biaurelia during parabolic flights.

    PubMed

    Krause, Martin; Brucker, Richard; Hemmersbach, Ruth

    2006-12-01

    The thresholds of graviorientation and gravikinesis in Paramecium biaurelia were investigated during the 5th DLR (German Aerospace Center) parabolic-flight campaign at Bordeaux in June 2003. Parabolic flights are a useful tool for the investigation of swimming behaviour in protists at different accelerations. At normal gravity (1 g) and hypergravity (1 g to 1.8 g), precision of orientation and locomotion rates depend linearly on the applied acceleration as seen in earlier centrifuge experiments. After transition from hypergravity to decreased gravity (minimal residual acceleration of <10(-2) g), graviorientation as well as gravikinesis show a full relaxation with different kinetics. The use of twelve independent cell samples per flight guarantees high data numbers and secures the statistical significance of the obtained data. The relatively slow change of acceleration between periods of microgravity and hypergravity (0.4 g/s) enabled us to determine the thresholds of graviorientation at 0.6 g and of gravikinesis at 0.4 g. The gravity-unrelated propulsion rate of the sample was found to be 874 microm/s, exceeding the locomotion rate of horizontally swimming cells (855 microm/s). The measured thresholds of graviresponses were compared with data obtained from earlier centrifuge experiments on the sounding rocket Maxus-2. Measured thresholds of gravireactions indicate that small energies, close to the thermal noise level, are sufficient for the gravitransduction process. Data from earlier hypergravity experiments demonstrate that mechanosensitive ion channels are functioning over a relative wide range of acceleration. From this, we may speculate that gravireceptor channels derive from mechanoreceptor channels. PMID:17180491

  20. Sea shell solar collector

    DOEpatents

    Rabl, Ari

    1976-01-01

    A device is provided for the collection and concentration of solar radiant energy including a longitudinally extending structure having a wall for directing radiant energy. The wall is parabolic with its focus along a line parallel to an extreme ray of the sun at one solstice and with its axis along a line parallel to an extreme ray of the sun at the other solstice. An energy absorber is positioned to receive the solar energy thereby collected.

  1. Comparison of Non-Parabolic Hydrodynamic Simulations for Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Smith, A. W.; Brennan, K. F.

    1996-01-01

    Parabolic drift-diffusion simulators are common engineering level design tools for semiconductor devices. Hydrodynamic simulators, based on the parabolic band approximation, are becoming more prevalent as device dimensions shrink and energy transport effects begin to dominate device characteristic. However, band structure effects present in state-of-the-art devices necessitate relaxing the parabolic band approximation. This paper presents simulations of ballistic diodes, a benchmark device, of Si and GaAs using two different non-parabolic hydrodynamic formulations. The first formulation uses the Kane dispersion relationship in the derivation of the conservation equations. The second model uses a power law dispersion relation {(hk)(exp 2)/2m = xW(exp Y)}. Current-voltage relations show that for the ballistic diodes considered. the non-parabolic formulations predict less current than the parabolic case. Explanations of this will be provided by examination of velocity and energy profiles. At low bias, the simulations based on the Kane formulation predict greater current flow than the power law formulation. As the bias is increased this trend changes and the power law predicts greater current than the Kane formulation. It will be shown that the non-parabolicity and energy range of the hydrodynamic model based on the Kane dispersion relation are limited due to the binomial approximation which was utilized in the derivation.

  2. SOLERAS - Solar Energy Water Desalination Project. Solar Energy Study, Yanbu, Saudi Arabia

    SciTech Connect

    Not Available

    1985-01-01

    Measurements of global and normal incident radiation at the Yanbu, Saudi Arabia solar powered desalination plant site are documented. The use of parabolic, two axis tracking, point focusing solar collectors necessitates the measurement and analysis of the normal incident data. The accuracy of the measuring instruments and the results of analysis of one year solar radiation are briefly discussed. (BCS)

  3. Solar Generator

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Vanguard I dish-Stirling module program, initiated in 1982, produced the Vanguard I module, a commercial prototype erected by the Advanco Corporation. The module, which automatically tracks the sun, combines JPL mirrored concentrator technology, an advanced Stirling Solar II engine/generator, a low cost microprocessor-controlled parabolic dish. Vanguard I has a 28% sunlight to electricity conversion efficiency. If tests continue to prove the system effective, Advanco will construct a generating plant to sell electricity to local utilities. An agreement has also been signed with McDonnell Douglas to manufacture a similar module.

  4. Transparent boundary conditions for iterative high-order parabolic equations

    NASA Astrophysics Data System (ADS)

    Petrov, P. S.; Ehrhardt, M.

    2016-05-01

    Recently a new approach to the construction of high-order parabolic approximations for the Helmholtz equation was developed. These approximations have the form of the system of iterative parabolic equations, where the solution of the n-th equation is used as an input term for the (n + 1)-th equation. In this study the transparent boundary conditions for such systems of coupled parabolic equations are derived. The existence and uniqueness of the solution of the initial boundary value problem for the system of iterative parabolic equations with the derived boundary conditions are proved. The well-posedness of this problem is also established and an unconditionally stable finite difference scheme for its solution is proposed.

  5. Antenna cab interior showing waveguide from external parabolic antenna (later ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Antenna cab interior showing waveguide from external parabolic antenna (later addition), looking north. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  6. Detail, external parabolic antenna (later addition). Note how waveguide was ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, external parabolic antenna (later addition). Note how waveguide was cut to remove active portion of antenna. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  7. FASTRACK (TM): Parabolic and Suborbital Experiment Support Facility

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Romero, V.

    2016-01-01

    FASTRACK was developed by NASA Kennedy Space Center and Space Florida to provide capabilities to conduct frequent, affordable, and responsive flight opportunities for reduced gravity experiments, technology development, and hardware testing on suborbital vehicles and parabolic flights.

  8. Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses

    SciTech Connect

    Turchi, C. S.; Wagner, M. J.; Kutscher, C. F.

    2010-12-01

    The National Renewable Energy Laboratory (NREL) contracted with WorleyParsons Group, Inc. to examine the effect of switching from evaporative cooling to alternative cooling systems on a nominal 100-MW parabolic trough concentrating solar power (CSP) plant. WorleyParsons analyzed 13 different cases spanning three different geographic locations (Daggett, California; Las Vegas, Nevada; and Alamosa, Colorado) to assess the performance, cost, and water use impacts of switching from wet to dry or hybrid cooling systems. NREL developed matching cases in its Solar Advisor Model (SAM) for each scenario to allow for hourly modeling and provide a comparison to the WorleyParsons results.Our findings indicate that switching from 100% wet to 100% dry cooling will result in levelized cost of electricity (LCOE) increases of approximately 3% to 8% for parabolic trough plants throughout most of the southwestern United States. In cooler, high-altitude areas like Colorado's San Luis Valley, WorleyParsons estimated the increase at only 2.5%, while SAM predicted a 4.4% difference. In all cases, the transition to dry cooling will reduce water consumption by over 90%. Utility time-of-delivery (TOD) schedules had similar impacts for wet- and dry-cooled plants, suggesting that TOD schedules have a relatively minor effect on the dry-cooling penalty.

  9. Visually-induced tilt during parabolic flights.

    PubMed

    Cheung, B S; Howard, I P; Money, K E

    1990-01-01

    A helmet-mounted visual display system was used to study visually induced sensations of self-motion (vection) about the roll, pitch and yaw axes under normal gravity condition (1g) and during the microgravity and hypergravity phases of parabolic flights aboard the NASA KC-135 aircraft. Under each gravity condition, the following parameters were investigated: (1) the subject's perceived body vertical with eyes closed and with eyes open gazing at a stationary random dot display; (2) the magnitude of sensations of body tilt with respect to the subjective vertical, while the subject viewed displays rotating about the roll, pitch and yaw axes; (3) the magnitude of vection; (4) latency of vection. All eleven subjects perceived a definite "up and down" orientation throughout the course of the flight. During the microgravity phase, the average magnitudes of perceived body tilt and self-motion increased significantly, and there was no significant difference in vection latency. These results show that there is a rapid onset of increased dependence on visual inputs for perception of self-orientation and self-motion in weightlessness, and a decreased dependence on otolithic and somatosensory graviceptive information. Anti-motion sickness drugs appear not to affect the parameters measured. PMID:2397764

  10. Parabolic Trough Receiver Heat Loss Testing (Poster)

    SciTech Connect

    Price, H.; Netter, J.; Bingham, C.; Kutscher, C.; Burkholder, F.; Brandemuehl, M.

    2007-03-01

    Parabolic trough receivers, or heat collection elements (HCEs), absorb sunlight focused by the mirrors and transfer that thermal energy to a fluid flowing within them. Thje absorbing tube of these receivers typically operates around 400 C (752 F). HCE manufacturers prevent thermal loss from the absorbing tube to the environment by using sputtered selective Cermet coatings on the absorber and by surrounding the absorber with a glass-enclosed evacuated annulus. This work quantifies the heat loss of the Solel UVAC2 and Schott PTR70 HCEs. At 400 C, the HCEs perform similarly, losing about 400 W/m of HCE length. To put this in perspective, the incident beam radiation on a 5 m mirror aperture is about 4500 W/m, with about 75% of that energy ({approx} 3400 W/m) reaching the absorber surface. Of the 3400 W/m on the absorber, about 3000 W/m is absorbed into the working fluid while 400 W/m is lost to the environment.

  11. Beryllium parabolic refractive x-ray lenses

    NASA Astrophysics Data System (ADS)

    Lengeler, B.; Schroer, C. G.; Kuhlmann, M.; Benner, B.; Günzler, T. F.; Kurapova, O.; Somogyi, A.; Snigirev, A.; Snigireva, I.

    2004-05-01

    Parabolic refractive x-ray lenses are novel optical components for the hard x-ray range from about 5 keV to about 120 keV. They focus in both directions. They are compact, robust, and easy to align and to operate. They can be used like glass lenses are used for visible light, the main difference being that the numerical aperture N.A. is much smaller than 1 (of order 10-4 to 10-3). Their main applications are in micro- and nanofocusing, in imaging by absorption and phase contrast and in fluorescence mode. In combination with tomography they allow for 3-dimensional imaging of opaque media with submicrometer resolution. Finally, they can be used in speckle spectroscopy by means of coherent x-ray scattering. Beryllium as lens material strongly enhances the transmission and the field of view as compared to aluminium. With increased N.A. the lateral resolution is also considerably improved with Be lenses. References to a number of applications are given.

  12. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)

    SciTech Connect

    Kurup, Parthiv; Turchi, Craig S.

    2015-11-01

    This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at https://sam.nrel.gov/, is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry. SAM is the primary tool used by NREL and the U.S. Department of Energy (DOE) for estimating the performance and cost of concentrating solar power (CSP) technologies and projects. The study performed a bottom-up build and cost estimate for two state-of-the-art parabolic trough designs -- the SkyTrough and the Ultimate Trough. The SkyTrough analysis estimated the potential installed cost for a solar field of 1500 SCAs as $170/m2 +/- $6/m2. The investigation found that SkyTrough installed costs were sensitive to factors such as raw aluminum alloy cost and production volume. For example, in the case of the SkyTrough, the installed cost would rise to nearly $210/m2 if the aluminum alloy cost was $1.70/lb instead of $1.03/lb. Accordingly, one must be aware of fluctuations in the relevant commodities markets to track system cost over time. The estimated installed cost for the Ultimate Trough was only slightly higher at $178/m2, which includes an assembly facility of $11.6 million amortized over the required production volume. Considering the size and overall cost of a 700 SCA Ultimate Trough solar field, two parallel production lines in a fully covered assembly facility, each with the specific torque box, module and mirror jigs, would be justified for a full CSP plant.

  13. Midtemperature solar systems test faclity predictions for thermal performance based on test data: Solar Kinetics T-700 solar collector with glass reflector surface

    SciTech Connect

    Harrison, T.D.

    1981-03-01

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics solar line-focusing parabolic trough collector for five cities in the US are presented. (WHK)

  14. Solar energy modulator

    NASA Technical Reports Server (NTRS)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  15. OUT Success Stories: Solar Trough Power Plants

    DOE R&D Accomplishments Database

    Jones, J.

    2000-08-01

    The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

  16. Energy 101: Concentrating Solar Power

    SciTech Connect

    2010-01-01

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  17. Energy 101: Concentrating Solar Power

    ScienceCinema

    None

    2013-05-29

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  18. Inactivation of Escherichia coli O157:H7 in Beef Roasts Cooked in Conventional or Convection Ovens or in a Slow Cooker under Selected Conditions.

    PubMed

    Gill, C O; Devos, J; Badoni, M; Yang, X

    2016-02-01

    Inactivation of Escherichia coli O157:H7 in beef roasts cooked under selected cooking conditions was evaluated. Eye of round roasts were each inoculated at five sites in the central plane with a five-strain cocktail of E. coli O157:H7 at ca. 6.3 log CFU per site and cooked to center temperatures of 56 to 71°C in a convection oven set at 120, 140, 180, or 200°C, in a conventional oven set at 120 or 210°C, and in a slow cooker set on high or low. Prime rib roasts were each inoculated at 10 sites throughout the roast with the same E. coli O157:H7 cocktail at ca. 6.6 log CFU per site and cooked in the conventional oven set at 140 or 180°C to center temperatures of 58 to 71°C. The number of sites yielding E. coli O157:H7 after cooking decreased with increasing roast center temperature for the eye of round roasts cooked in the convection oven or in the slow cooker at a given setting, but this trend was not apparent for roasts of either type cooked in the conventional oven. Reductions of E. coli O157 in both types of roasts were generally less at the center than at other locations, particularly locations closer to the surface of the meat. When eye of round roasts were cooked to the same center temperature in the convection oven, the reduction of E. coli O157:H7 increased with increasing oven temperature up to 180°C and decreased after that. The reduction of E. coli O157:H7 in replicate roasts cooked under conditions in which the organism was not eliminated during cooking mostly differed by >1 log CFU per site. However, E. coli O157:H7 was not recovered from any of the inoculation sites when eye of round roasts were cooked to 65, 60, 60, or 63°C in the convection oven set at 120, 140, 180, and 200°C, respectively; cooked to 63 or 71°C in the conventional oven set at 120 and 210°C, respectively; or cooked to 63°C in the slow cooker set at high or low. For prime rib roasts, E. coli O157:H7 was not recovered from any of the inoculation sites in roasts cooked to 71 or 58°C in the conventional oven set at 140 and 180°C, respectively. PMID:26818980

  19. Localized spin wave modes in parabolic field wells

    NASA Astrophysics Data System (ADS)

    McMichael, Robert; Tartakovskaya, Elena; Pardavi-Horvath, Martha

    We describe spin wave modes trapped in parabolic-profile field wells. Trapped spin waves can be used as local probes of magnetic properties with resolution down to 100 nm in ferromagnetic resonance force microscopy. Localized modes have been shown to form around field minima from a number of sources, including stray fields from magnetic probe tips and inhomogeneous magnetostatic fields near film edges. Here, we address the most basic trap, which is a parabolic minimum in the applied field. The magnetic eigenmodes in this trap are tractable enough to serve as approximations in more realistic situations. For a parabolic field, we select basis mode profiles proportional to Hermite functions because they are eigenfuctions of the applied field and exchange parts of the equations of motion. Additionally, we find that these Hermite modes are approximate eigenfunctions of magnetostatic interactions, showing good agreement with micromagnetic calculations. More precise agreement is achieved by diagonalizing the equations of motion using only a few modes.

  20. Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model

    SciTech Connect

    Blair, N.; Mehos, M.; Christensen, C.

    2008-03-01

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

  1. Wind loads on heliostats and parabolic dish collectors: Final subcontractor report

    SciTech Connect

    Peterka, J.A.; Tan, Z.; Bienkiewicz, B.; Cermak, J.E.

    1988-11-01

    A major intent of this study was to define wind load reduction factors for parabolic dish solar collectors within a field protected by upwind collectors, wind protective fences, or other blockages. This information will help researchers improve the economy of parabolic collector support structures and drive mechanisms. The method used in the study was to generalize wind load data obtained during tests on model collectors placed in a modeled atmospheric wind in a boundary-layer wind tunnel. A second objective of the study was to confirm and document a sensitivity in load to level of turbulence, or gustiness, in the approaching wind. A key finding was that wind-load reduction factors for forces (horizontal and vertical) were roughly similar to those for flat heliostats, with some forces significantly less than those for flat shapes. However, load reductions for moments showed a smaller load reduction, particularly for the azimuth moment. The lack of load reduction could be attributed to collector shape, but specific flow features responsible for and methods to induce a load reduction were not explored. 62 figs., 13 tabs.

  2. A roadmap for parabolic trough progress in large-scale power generation

    SciTech Connect

    Kearney, D.W.; Price, H.W.

    1999-07-01

    In 1998 the US DOE/Sun{sm_bullet}Lab sponsored a workshop to discuss and outline a pathway for sustained deployment of commercial parabolic trough power technology. Including both industry and institutional interests, a plan emerged to move to the next step in trough installations. Backed by over ten years operating experience of 354 MW of trough steam plants in the California Mojave Desert, the plan explored future markets, technology advancements, and improvements in cost-effectiveness. This paper highlights the key conclusions and findings that were subsequently documented in the DOE parabolic trough technology roadmap report. Initially, the cost of trough solar power is expected to be 10--12{cents} kWh, depending on plant configuration. After initial market subsidies by GEF buy-down grants or other special green/renewable financing options, and with the next level of technology development, the cost of trough power should reduce to 6--8{cents} kWh. With further reduction of electricity costs below 6{cents} kWh, projections suggest that achievement of up to 1 gigawatt (GW) installed capacity by 2005 and 5 GW by 2010 are possible.

  3. Solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  4. The Pressure Group Cooker.

    ERIC Educational Resources Information Center

    Graves, Bill

    1992-01-01

    Administrators across the nation have encountered vigorous challenges against textbooks, practices, and procedures that critics find laden with occult and New Age values. Attacks are becoming more aggressive, better organized, and well financed. This article and accompanying sidebars discuss pressure group tactics and ways to counter them. The…

  5. Status of the solar-thermal industry: an assessment

    SciTech Connect

    LaPorta, C.; Markov, N.

    1982-12-01

    Thirty-five interviews were conducted with representatives from sixteen solar thermal and five utility companies. The solar thermal industry is defined as that involved in developing parabolic dish, parabolic trough, and central receiver systems. In most cases, two persons from each company were contacted, one involved in marketing, and the other working directly with the technology. Questions covered industry-government relations, technological and commercial readiness, barriers and needs, and the status of relations with the utility sector. Appended are discussions of private sector investment in centralized solar thermal energy technologies and the solar thermal industry opinion on the business energy tax credit. (LEW)

  6. Parabolic approximation method for fast magnetosonic wave propagation in tokamaks

    SciTech Connect

    Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.

    1985-07-01

    Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters.

  7. Focusing of Intense Laser via Parabolic Plasma Concave Surface

    NASA Astrophysics Data System (ADS)

    Zhou, Weimin; Gu, Yuqiu; Wu, Fengjuan; Zhang, Zhimeng; Shan, Lianqiang; Cao, Leifeng; Zhang, Baohan

    2015-12-01

    Since laser intensity plays an important role in laser plasma interactions, a method of increasing laser intensity - focusing of an intense laser via a parabolic plasma concave surface - is proposed and investigated by three-dimensional particle-in-cell simulations. The geometric focusing via a parabolic concave surface and the temporal compression of high harmonics increased the peak intensity of the laser pulse by about two orders of magnitude. Compared with the improvement via laser optics approaches, this scheme is much more economic and appropriate for most femtosecond laser facilities. supported by National Natural Science Foundation of China (Nos. 11174259, 11175165), and the Dual Hundred Foundation of China Academy of Engineering Physics

  8. Microgravity research during aircraft parabolic flights: the 20 ESA campaigns.

    PubMed

    Pletser, V

    1995-05-01

    Aircraft parabolic flights provide repeated periods of up to 20 seconds of reduced gravity during ballistic flight manoeuvres, preceded and followed by 20 seconds of 1.8 g. Such flights are used to conduct short microgravity investigations in physical and life sciences, to test instrumentation and to train astronauts before a spaceflight. Since 1984, ESA's Microgravity Projects Division has organised 20 parabolic flight campaigns using three different types of aircraft. More than 1700 parabolas have been flown, representing nine and half hours of microgravity in slices of 20 seconds, or equivalently, six low Earth orbits. A total of 235 experiments have been performed using this unique microgravity tool. PMID:14971370

  9. Shenandoah solar collector

    SciTech Connect

    Not Available

    1980-09-01

    The study was designed to meet the following objectives: 1) develop a cost estimate for manufacturing 124 Seven-Meter Parabolic Dish Solar Collectors to be installed at Shenandoah, Georgia; 2) make recommendations to lower the expenses of collector fabrications and overall project cost; 3) identify alternate sources for materials and sub-contracted services; and 4) provide detailed backup data to support all estimates. Results are presented. (WHK)

  10. Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type

    NASA Astrophysics Data System (ADS)

    Ishida, Sachiko; Yokota, Tomomi

    This paper deals with the quasilinear degenerate Keller-Segel system (KS) of parabolic-parabolic type. The global existence of weak solutions to (KS) is established when q

  11. Lightweight, low-cost solar energy collector

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Costen, Michael K. (Inventor)

    2006-01-01

    A lightweight solar concentrator of the reflecting parabolic or trough type is realized via a thin reflecting film, an inflatable structural housing and tensioned fibers. The reflector element itself is a thin, flexible, specularly-reflecting sheet or film. The film is maintained in the parabolic trough shape by means of a plurality of identical tensioned fibers arranged to be parallel to the longitudinal axis of the parabola. Fiber ends are terminated in two identical spaced anchorplates, each containing a plurality of holes which lie on the desired parabolic contour. In a preferred embodiment, these fibers are arrayed in pairs with one fiber contacting the front side of the reflecting film and the other contacting the back side of the reflecting film. The reflective surface is thereby slidably captured between arrays of fibers which control the shape and position of the reflective film. Gas pressure in the inflatable housing generates fiber tension to achieve a truer parabolic shape.

  12. Current and Future Costs for Parabolic Trough and Power Tower Systems in the US Market: Preprint

    SciTech Connect

    Turchi, C.; Mehos, M.; Ho, C. K.; Kolb, G. J.

    2010-10-01

    NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

  13. Application and Operations Concepts of Large Transmit Phased Array of Parabolic Reflectors

    NASA Technical Reports Server (NTRS)

    Amoozegar, Farid

    2006-01-01

    The primary motive for large transmit array of parabolic reflectors, also known as Uplink Array, was to explore alternate methods in order to replace the large 70m antennas of Deep Space Network (DSN) such that the core capability for emergency support to a troubled spacecraft in deep space is preserved. Given that the Uplink Array is a new technology, the focus has always been on its feasibility and phase calibration techniques, which by itself is quite a challenge. It would be interesting to examine, however, what else could be accomplished by the Uplink Array capability other than the emergency support to a troubled spacecraft in deep space. ... The objective of this paper is to discuss a few application scenarios and the corresponding operation concepts, such as lunar positioning system, high EIRP uplink and the synergies with solar radar, and high power RF beams.

  14. Anisotropic uniqueness classes for a degenerate parabolic equation

    SciTech Connect

    Vil'danova, V F; Mukminov, F Kh

    2013-11-30

    Anisotropic uniqueness classes of Tacklind type are identified for a degenerate linear parabolic equation of the second order in an unbounded domain. The Cauchy problem and mixed problems with boundary conditions of the first and third type are considered. Bibliography: 18 titles.

  15. Measurements of parabolic mirrors aberrations in hyperspectral microscope

    NASA Astrophysics Data System (ADS)

    Lylova, Anna; Kalenkov, Georgy; Sheldakova, Julia; Kalenkov, Sergey; Kudryashov, Alexis; Shtanko, Alexander

    2015-10-01

    It is suggested to measure non-axis parabolic mirrors aberrations and try to compensate for them. For the aberration prediction the computer modeling is used. For the aberration measurement Shack-Hartmann wavefront sensor is applied. For the aberrations compensation a digital algorithm is used.

  16. Two severely ill-posed linear parabolic problems

    NASA Astrophysics Data System (ADS)

    Lorenzi, Alfredo

    2011-02-01

    Via Carleman's estimates we prove uniqueness and continuous dependence results for solutions to two overdetermined parabolic ill-posed problems, the first being integro-differential, the latter with deviating arguments. The overdetermination is prescribed in an open subset of the (geometric) domain.

  17. Orthostatic intolerance and motion sickness after parabolic flight

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Brown, T. E.; Wood, S. J.; Benavides, E. W.; Bondar, R. L.; Stein, F.; Moradshahi, P.; Harm, D. L.; Fritsch-Yelle, J. M.; Low, P. A.

    2001-01-01

    Because it is not clear that the induction of orthostatic intolerance in returning astronauts always requires prolonged exposure to microgravity, we investigated orthostatic tolerance and autonomic cardiovascular function in 16 healthy subjects before and after the brief micro- and hypergravity of parabolic flight. Concomitantly, we investigated the effect of parabolic flight-induced vomiting on orthostatic tolerance, R-wave-R-wave interval and arterial pressure power spectra, and carotid-cardiac baroreflex and Valsalva responses. After parabolic flight 1) 8 of 16 subjects could not tolerate 30 min of upright tilt (compared to 2 of 16 before flight); 2) 6 of 16 subjects vomited; 3) new intolerance to upright tilt was associated with exaggerated falls in total peripheral resistance, whereas vomiting was associated with increased R-wave-R-wave interval variability and carotid-cardiac baroreflex responsiveness; and 4) the proximate mode of new orthostatic failure differed in subjects who did and did not vomit, with vomiters experiencing comparatively isolated upright hypocapnia and cerebral vasoconstriction and nonvomiters experiencing signs and symptoms reminiscent of the clinical postural tachycardia syndrome. Results suggest, first, that syndromes of orthostatic intolerance resembling those developing after space flight can develop after a brief (i.e., 2-h) parabolic flight and, second, that recent vomiting can influence the results of tests of autonomic cardiovascular function commonly utilized in returning astronauts.

  18. Orthostatic Intolerance and Motion Sickness After Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Brown, Troy E.; Wood, Scott J.; Benavides, Edgar W.; Bondar, Roberta L.; Stein, Flo; Moradshahi, Peyman; Harm, Deborah L.; Low, Phillip A.

    1999-01-01

    Orthostatic intolerance is common in astronauts after prolonged space flight. However, the "push-pull effect" in military aviators suggests that brief exposures to transitions between hypo- and hypergravity are sufficient to induce untoward autonomic cardiovascular physiology in susceptible individuals. We therefore investigated orthostatic tolerance and autonomic cardiovascular function in 16 healthy test subjects before and after a seated 2-hr parabolic flight. At the same time, we also investigated relationships between parabolic flight-induced vomiting and changes in orthostatic and autonomic cardiovascular function. After parabolic flight, 8 of 16 subjects could not tolerate a 30-min upright tilt test, compared to 2 of 16 before flight. Whereas new intolerance in non-Vomiters resembled the clinical postural tachycardia syndrome (POTS), new intolerance in Vomiters was characterized by comparatively isolated upright hypocapnia and cerebral vasoconstriction. As a group, Vomiters also had evidence for increased postflight fluctuations in efferent vagal-cardiac nerve traffic occurring independently of any superimposed change in respiration. Results suggest that syndromes of orthostatic intolerance resembling those occurring after space flight can occur after a brief (i.e., 2-hr) parabolic flight.

  19. The dynamics of parabolic flight: flight characteristics and passenger percepts.

    PubMed

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments. PMID:19727328

  20. Finite-difference methods for solving loaded parabolic equations

    NASA Astrophysics Data System (ADS)

    Abdullayev, V. M.; Aida-zade, K. R.

    2016-01-01

    Loaded partial differential equations are solved numerically. For illustrative purposes, a boundary value problem for a parabolic equation with various point loads is considered. By applying difference approximations, the problems are reduced to systems of algebraic equations of special structure, which are solved using a parametric representation involving solutions of auxiliary linear systems with tridiagonal matrices. Numerical results are presented and analyzed.

  1. Compound parabolic concentrator with cavity for tubular absorbers

    DOEpatents

    Winston, Roland

    1983-01-01

    A compond parabolic concentrator with a V-shaped cavity is provided in which an optical receiver is emplaced. The cavity redirects all energy entering between the receiver and the cavity structure onto the receiver, if the optical receiver is emplaced a distance from the cavity not greater than 0.27 r (where r is the radius of the receiver).

  2. Single-particle dynamics of the parabolic field model

    SciTech Connect

    Zuo-Ding Wang

    1994-04-01

    The author studies dynamics of single particles in the magnetotail using both numerical and analytic techniques. He uses a parabolic field model to describe the magnetotail. The author uses the method of the Poincare surface of section to develop his results.

  3. An Application of Calculus: Optimum Parabolic Path Problem

    ERIC Educational Resources Information Center

    Atasever, Merve; Pakdemirli, Mehmet; Yurtsever, Hasan Ali

    2009-01-01

    A practical and technological application of calculus problem is posed to motivate freshman students or junior high school students. A variable coefficient of friction is used in modelling air friction. The case in which the coefficient of friction is a decreasing function of altitude is considered. The optimum parabolic path for a flying object

  4. An Application of Calculus: Optimum Parabolic Path Problem

    ERIC Educational Resources Information Center

    Atasever, Merve; Pakdemirli, Mehmet; Yurtsever, Hasan Ali

    2009-01-01

    A practical and technological application of calculus problem is posed to motivate freshman students or junior high school students. A variable coefficient of friction is used in modelling air friction. The case in which the coefficient of friction is a decreasing function of altitude is considered. The optimum parabolic path for a flying object…

  5. The ellipse in parabolic motion: An undergraduate experiment

    NASA Astrophysics Data System (ADS)

    Carrillo-Bernal, M. A.; Mancera-Piña, P. E.; Cerecedo-Núñez, H. H.; Padilla-Sosa, P.; Núñez-Yépez, H. N.; Salas-Brito, A. L.

    2014-04-01

    We present a simple method of experimentally studying the elliptic shape of the joined apices of parabolic projectile trajectories in the undergraduate laboratory. The experimental data agrees well with theoretical results, and we find that this experiment provides an interesting twist to the venerable undergraduate experiment on projectile motion.

  6. The dynamics of parabolic flight: flight characteristics and passenger percepts

    PubMed Central

    Karmali, Faisal; Shelhamer, Mark

    2008-01-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30–60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments. PMID:19727328

  7. Nonlinear parabolic flows with dynamic flux on the boundary

    NASA Astrophysics Data System (ADS)

    Barbu, Viorel; Favini, Angelo; Marinoschi, Gabriela

    2015-03-01

    A nonlinear divergence parabolic equation with dynamic boundary conditions of Wentzell type is studied. The existence and uniqueness of a strong solution is obtained as the limit of a finite difference scheme, in the time dependent case and via a semigroup approach in the time-invariant case.

  8. A Parabolic Problem with a Fractional Time Derivative

    NASA Astrophysics Data System (ADS)

    Allen, Mark; Caffarelli, Luis; Vasseur, Alexis

    2016-02-01

    We study regularity for a parabolic problem with fractional diffusion in space and a fractional time derivative. Our main result is a De Giorgi-Nash-Moser Hölder regularity theorem for solutions in a divergence form equation. We also prove results regarding existence, uniqueness, and higher regularity in time.

  9. Modular solar food dryers for farm use

    SciTech Connect

    Wagner, C.J. Jr.; Coleman, R.L.; Berry, R.E.

    1981-01-01

    Several solar food dryer modules have been constructed. Their design has been based on a low-cost, small-scale solar dryer using a unique parabolic reflector construction to increase radiation on the drying surface. Each module has a drying surface of 1.1 M/sup 2/ and a parabolic reflector area of 3.3 M/sup 2/. Some modules are being used to dry mango slices (a potential new food product) for market testing, while others are used for experiments to improve drying efficiency. A description is given of the operating conditions of the modules drying mango slices and the most effective modifications.

  10. Progress in solar thermal distributed receiver technology

    SciTech Connect

    Leonard, J.A.; Otts, J.V.

    1985-08-01

    The author reports the status of research on distributed receivers, which are solar thermal collectors which concentrate sunlight on an absorber and do not employ the central receiver concept. Point-focusing collectors such as the parabolic dish, line-focusing collectors such as the parabolic trough, and the fixed-mirror distributed-focus of hemispheric bowl collectors are the most common receivers. Following an overview of fundamental principals, there is a description of several installations and of the organic Rankine Cycle engine and the Solarized Automotive Gas Turbine projects. Future development will explore other types of power cycles, new materials, and other components and designs. 5 references, 6 figures.

  11. IR Spectrometer Using 90-degree Off-axis Parabolic Mirrors

    SciTech Connect

    Robert M. Malone, Richard, G. Hacking, Ian J. McKenna, and Daniel H. Dolan

    2008-09-02

    A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light ource at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output IR recording camera. With an initial wavelength range of 1500–4500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolic mirror, any spectral region of interest within the InSb camera array’s sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement singlepoint pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.

  12. IR Spectrometer Using 90-Degree Off-Axis Parabolic Mirrors

    SciTech Connect

    Robert M. Malone, Ian J. McKenna

    2008-03-01

    A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light Source at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output recording camera. With an initial wavelength range of 1500–4500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolic mirror, any spectral region of interest within the InSb camera array’s sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement single-point pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.

  13. Solar energy collector

    SciTech Connect

    Penney, R.J.

    1980-09-02

    A sun tracking solar energy collector assembly having both a longitudinally extending flat plate absorber and a tube absorber spaced from and extending longitudinally generally parallel to the flat plate absorber. In one form a parabolic reflector focuses direct rays of solar radiation on the tube absorber and directs diffused rays of solar radiation onto the plate absorber. In another form a fresnel lens plate focuses direct rays of solar radiation on the tube absorber and flat reflector surfaces direct diffused solar radiation passing through the lens plate onto the plate absorber. In both forms a fluid is first heated as it circulates through passages in the flat plate absorber and then is further heated to a higher temperature as it passes through the tube absorber.

  14. High capability parabolic equations for elastic media propagation

    NASA Astrophysics Data System (ADS)

    Metzler, Adam Michael

    Parabolic equation techniques are very efficient and can provide accurate solutions for range-dependent problems, which involve environments that change in the direction of wave propagation. A traditional approach used to handle range dependence is to approximate the medium as a series of range-independent segments in which the factorization leading to the parabolic equation is exact. At the vertical interfaces between these range-independent regions, specific conditions must be applied to accurately march the solution from one region into the next. For elastic media a single-scattering correction [E. T. Kusel et al., J. Acoust. Soc. Am. 121, 808 (2007)] accurately treats solid-solid interfaces, unlike other techniques that have proven successful for fluid media. This thesis is concerned with investigating and improving the accuracy of the single-scattering correction, extending the technique to elastic environments that contain anisotropy, and obtaining new parabolic equation formulations for poro-elastic media. The parabolic equation method with a single-scattering correction allows for accurate modeling of range-dependent environments in elastic layered media. For problems with large contrasts, accuracy and efficiency are gained by subdividing vertical interfaces into a series of two or more single-scattering problems. This approach generates several computational parameters, such as the number of interface slices, an iteration convergence parameter tau, and the number of iterations n for convergence. Using a narrow-angle approximation, the choices of n = 1 and tau = 2 give accurate solutions. Analogous results from the narrow-angle approximation extend to environments with larger variations when slices are used as needed at vertical interfaces. The approach is applied to a generic ocean waveguide that includes the generation of a Rayleigh interface wave. This example is presented in both the frequency and time domains. A parabolic equation for calculating propagation in range-dependent, heterogeneous anisotropic media is developed and benchmarked. Recent progress in elastic parabolic equation development, specifically in the treatment of range dependence and heterogeneous layers, is extended to transversely isotropic (TI) elastic media. Range dependence is incorporated by the single-scattering correction. Depth dependence is treated through appropriate heterogeneous operators in the TI equations of motion. Local relationships for elastic moduli are obtained from the p and s wave speeds at specific angles [A. J. Fredricks et al., Wave Motion 31, 139 (2000)]. The approach is applied to example media consisting of TI and isotropic layers. Results show that isotropic approximations to TI layers break down when shear effects are strong. In addition, homogeneous approximations to heterogeneous layers are shown to be applicable only when the layer is too thin or when heterogeneous gradients are sufficiently small. Otherwise, the depth heterogeneity must be returned for accurate calculations. Improvements of parabolic equations for uid and elastic media are extended to formulate new versions for poro-elastic media, including models for shallow-water sediments. A previous parabolic equation solution for poro-elastic media [M. D. Collins, et al., J. Acoust. Soc. Am. 98, 1645 (1995)] does not produce accurate solutions for environments with two or more poro-elastic layers. One variable formulation developed for elastic media is generalized for a more accurate and capable poro-elastic parabolic equation. Another variable formulation is introduced with horizontal interface conditions that contain no depth derivatives higher than first-order. This characteristic should aid in treating range dependence, since discretized first-order derivatives allow convenient matching across vertical interfaces, in contrast to second-order depth derivatives which do not. Considering range-independent problems, both new formulations are superior to the original for environments containing layered poro-elastic media.

  15. Solar cooking trends--A preliminary report

    SciTech Connect

    Blum, B.L.

    1992-12-31

    This report discusses early results of research on trends in solar cooking worldwide and the key factors in those trends. It is based on household interviews in Belize, Honduras and Nicaragua and mail surveys from scattered individuals and promotion projects worldwide. Household interviews from six more countries will be included in future reports. Early data indicate that where solar cooking has been introduced an immediate, rapid increase in awareness and interest in solar cooking is followed by slow, sustained growth in actual solar cooking two or three years later, after an incubation period. Access to information and affordable materials for the cookers are important. Individual users and promoters both identify similar key elements for effective promotion projects, but in current projects many are often missing. Even so, successes of these small-scale efforts verify the benefits and acceptability of solar cooking to families in many regions, and should encourage much broader promotion efforts. Future reports will explore various economic, technical, cultural and environmental factors in solar cooking use as guides for larger efforts.

  16. Do-it-yourself guideline for constructing a solar alcohol distillation system

    SciTech Connect

    Kennedy, B.W.

    1982-07-27

    The development and testing of a solar powered distillation system are described. The system consists of a parabolic dish collector, a two axis sun tracking stand, sun tracking solar cell system, condenser, fermentation tanks, and continuous distillation still. The assembly instructions for the parabolic dish are included as well as the basic steps to follow in mashing and fermenting of corn meal. 15 figures. (DMC)

  17. 76 FR 28064 - Notice of Availability of the Final Environmental Impact Statement for Palen Solar I, LLC's Palen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... ``solar field'' comprised of rows of parabolic mirrors focusing solar energy on collector tubes. The tubes... identify the project area as suitable for solar energy production. In addition to the proposed action, the... Plan to: (1) Designate the project area as available to future solar energy power generation...

  18. Operational experience from solar thermal energy projects

    SciTech Connect

    Cameron, C.P.

    1984-03-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  19. Operational Experience from Solar Thermal Energy Projects

    NASA Technical Reports Server (NTRS)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  20. Electron trapping and acceleration across a parabolic plasma density profile.

    PubMed

    Kim, J U; Hafz, N; Suk, H

    2004-02-01

    It is known that as a laser wakefield passes through a downward density transition in a plasma some portion of the background electrons are trapped in the laser wakefield and the trapped electrons are accelerated to relativistic high energies over a very short distance. In this study, by using a two-dimensional (2D) particle-in-cell (PIC) simulation, we suggest an experimental scheme that can manipulate electron trapping and acceleration across a parabolic plasma density channel, which is easier to produce and more feasible to apply to the laser wakefield acceleration experiments. In this study, 2D PIC simulation results for the physical characteristics of the electron bunches that are emitted from the parabolic density plasma channel are reported in great detail. PMID:14995568

  1. Development and testing of Parabolic Dish Concentrator No. 1

    NASA Technical Reports Server (NTRS)

    Dennison, E. W.; Thostesen, T. O.

    1984-01-01

    Parabolic Dish Concentrator No. 1 (PDC-1) is a 12-m-diameter prototype concentrator with low life-cycle costs for use with thermal-to-electric energy conversion devices. The concentrator assembly features panels made of a resin transfer molded balsa core/fiberglass sandwich with plastic reflective film as the reflective surface and a ribbed framework to hold the panels in place. The concentrator assembly tracks in azimuth and elevation on a base frame riding on a circular track. It is shown that the panels do not exhibit the proper parabolic contour. However, thermal gradients were discovered in the panels with daily temperature changes. The PDC-1 has sufficient optical quality to operate satisfactorily in a dish-electric system. The PDC-1 development provides the impetus for creating innovative optical testing methods and valuable information for use in designing and fabricating concentrators of future dish-electric systems.

  2. Propagation equation for tight-focusing by a parabolic mirror.

    PubMed

    Couairon, A; Kosareva, O G; Panov, N A; Shipilo, D E; Andreeva, V A; Jukna, V; Nesa, F

    2015-11-30

    Part of the chain in petawatt laser systems may involve extreme focusing conditions for which nonparaxial and vectorial effects have high impact on the propagation of radiation. We investigate the possibility of using propagation equations to simulate numerically the focal spot under these conditions. We derive a unidirectional propagation equation for the Hertz vector, describing linear and nonlinear propagation under situations where nonparaxial diffraction and vectorial effects become significant. By comparing our simulations to the results of vector diffraction integrals in the case of linear tight-focusing by a parabolic mirror, we establish a practical criterion for the critical f -number below which initializing a propagation equation with a parabolic input phase becomes inaccurate. We propose a method to find suitable input conditions for propagation equations beyond this limit. Extreme focusing conditions are shown to be modeled accurately by means of numerical simulations of the unidirectional Hertz-vector propagation equation initialized with suitable input conditions. PMID:26698752

  3. Treatment of motion sickness in parabolic flight with buccal scopolamine.

    PubMed

    Norfleet, W T; Degioanni, J J; Calkins, D S; Reschke, M F; Bungo, M W; Kutyna, F A; Homick, J L

    1992-01-01

    Treatment of acute motion sickness induced by parabolic flight with a preparation of scopolamine placed in the buccal pouch was investigated. Twenty-one subjects flew aboard a KC-135 aircraft operated by the National Aeronautics and Space Administration (NASA) which performed parabolic maneuvers resulting in periods of 0-g, 1-g, and 1.8-g. Each subject flew once with a tablet containing scopolamine and once with a placebo in a random order, crossover design. Signs and symptoms of motion sickness were systematically recorded during each parabola by an investigator who was blind to the content of the tablet. Compared with flights using placebo, flights with buccal scopolamine resulted in significantly lower scores for nausea (31%-35% reduction) and vomiting (50% reduction in number of parabolas with vomiting). Side effects of the drug during flight were negligible. We conclude that buccal scopolamine is more effective than a placebo in treating ongoing motion sickness. PMID:1550533

  4. Shock wave convergence in water with parabolic wall boundaries

    SciTech Connect

    Yanuka, D.; Shafer, D.; Krasik, Ya.

    2015-04-28

    The convergence of shock waves in water, where the cross section of the boundaries between which the shock wave propagates is either straight or parabolic, was studied. The shock wave was generated by underwater electrical explosions of planar Cu wire arrays using a high-current generator with a peak output current of ∼45 kA and rise time of ∼80 ns. The boundaries of the walls between which the shock wave propagates were symmetric along the z axis, which is defined by the direction of the exploding wires. It was shown that with walls having a parabolic cross section, the shock waves converge faster and the pressure in the vicinity of the line of convergence, calculated by two-dimensional hydrodynamic simulations coupled with the equations of state of water and copper, is also larger.

  5. All-fiber ring Raman laser generating parabolic pulses

    SciTech Connect

    Kruglov, V. I.; Mechin, D.; Harvey, J. D.

    2010-02-15

    We present theoretical and numerical results for an all-fiber laser using self-similar parabolic pulses ('similaritons') designed to operate using self-similar propagation regimes. The similariton laser features a frequency filter and a Sagnac loop which operate together to generate an integrated all-fiber mode-locked laser. Numerical studies show that this laser generates parabolic pulses with linear chirp in good agreement with analytical predictions. The period for propagating similariton pulses in stable regimes can vary from one to two round trips for different laser parameters. Two-round-trip-period operation in the mode-locked laser appears at bifurcation points for certain cavity parameters. The stability of the similariton regimes has been confirmed by numerical simulations for large numbers of round trips.

  6. A Review of Psycho-Physiological Responses to Parabolic Flight

    NASA Astrophysics Data System (ADS)

    Brummer, Vera; Schneider, Stefan; Guardiera, Simon; Struder, Heiko K.

    2008-06-01

    This review combines and correlates data of several studies conducted in the recent years where we were able to show an increase in stress hormone concentrations, EEG activity and a decrease in mood during parabolic flights. The aim of these studies was to consider whether previous results showing a decrease in mental and perceptual motor performance during weightlessness were solely due to the changes in gravity itself or were also, at least partly, explainable by an increase of stress and/or arousal during parabolic flights. A correlation between stress hormones and mood but not between EEG activity and mood nor between stress hormones and EEG activity could be found. We propose two different stressors: First an activation of the adrenomedullary system, secondly a general increase of cortical arousal. Whereas the first one is perceived by subjects, this is not the case for the second one.

  7. Treatment of motion sickness in parabolic flight with buccal scopolamine

    NASA Technical Reports Server (NTRS)

    Norfleet, William T.; Degioanni, Joseph J.; Reschke, Millard F.; Bungo, Michael W.; Kutyna, Frank A.; Homick, Jerry L.; Calkins, D. S.

    1992-01-01

    Treatment of acute motion sickness induced by parabolic flight with a preparation of scopolamine placed in the buccal pouch was investigated. Twenty-one subjects flew aboard a KC-135 aircraft operated by NASA which performed parabolic maneuvers resulting in periods of 0-g, 1-g, and 1.8-g. Each subject flew once with a tablet containing scopolamine and once with a placebo in a random order, crossover design. Signs and symptoms of motion sickness were systematically recorded during each parabola by an investigator who was blind to the content of the tablet. Compared with flights using placebo, flights with buccal scopolamine resulted in significantly lower scores for nausea (31-35 percent reduction) and vomiting (50 percent reduction in number of parabolas with vomiting). Side effects of the drug during flight were negligible. It is concluded that buccal scopolamine is more effective than a placebo in treating ongoing motion sickness.

  8. Galerkin/Runge-Kutta discretizations for parabolic partial differential equations

    SciTech Connect

    Keeling, S.L.

    1986-01-01

    Efficient, high-order Galerkin/Runge-Kutta methods are constructed and analyzed for certain classes of parabolic initial boundary-value problems. In particular, the partial differential equations considered are (1) semilinear, (2) linear with time dependent coefficients, and (3) quasilinear. Optimal-order error estimates are established for each case. Also, for the problems in which the time-stepping equations involve coefficient matrices changing at each time step, a preconditioned iterative technique is used to solve the linear systems only approximately. Nevertheless, the resulting algorithm is shown to preserve the optimal-order convergence rate while using only the order of work required by the base scheme applied to a linear parabolic problem with time-independent coefficients. Furthermore, it is noted that special Runge-Kutta methods allow computations to be performed in parallel so that the final execution time can be reduced to that of a low-order method.

  9. Eigenstate symmetries and information transfer in parabolic quantum reflectors

    NASA Astrophysics Data System (ADS)

    Trallero-Giner, C.; Lopez-Richard, V.; Ulloa, S. E.; Marques, G. E.

    2009-04-01

    We study the quantum mechanical properties of one of the simplest geometrical elements: a parabolic reflector. We study the quantum propagation problem in a two-dimensional mirror, appropriate for electrons on the surface of metals, providing explicit closed solutions for the particle wave functions and the corresponding energy dispersion. Knowledge of nodal lines and distributions highlights the importance of “silent” and “loud” regions where quantum amplitude would be small or large. We further analyze the effects of quantum focusing and reflection for an initial pulse originating at the focus of the parabolic reflector. We find two propagation fronts that persist at long times and away from the focus of the parabola; the reflected front has higher amplitude and exhibits a nearly flat distribution moving at constant speed along the focal axis, reminiscent of a typical optical mirror wave front.

  10. Physiologic Pressure and Flow Changes During Parabolic Flight (Pilot Study)

    NASA Technical Reports Server (NTRS)

    Pantalos, George; Sharp, M. Keith; Mathias, John R.; Hargens, Alan R.; Watenpaugh, Donald E.; Buckey, Jay C.

    1999-01-01

    The objective of this study was to obtain measurement of cutaneous tissue perfusion central and peripheral venous pressure, and esophageal and abdominal pressure in human test subjects during parabolic flight. Hemodynamic data recorded during SLS-I and SLS-2 missions have resulted in the paradoxical finding of increased cardiac stroke volume in the presence of a decreased central venous pressure (CVP) following entry in weightlessness. The investigators have proposed that in the absence of gravity, acceleration-induced peripheral vascular compression is relieved, increasing peripheral vascular capacity and flow while reducing central and peripheral venous pressure, This pilot study seeks to measure blood pressure and flow in human test subjects during parabolic flight for different postures.

  11. Wide Range Detector Using Parabolic Cylindrical Mirror for THz Applications

    NASA Astrophysics Data System (ADS)

    Yasui, Takanari; Ohtsuka, Takeshi; Suzuki, Tetsu; Okajima, Shigeki; Nakayama, Kazuya; Tomioka, Mitsuru; Kamimura, Katsuhiro; Namekata, Takeo; Minamide, Hiroaki; Ito, Hiromasa

    2006-02-01

    A new, wide-band, high-speed and high-sensitivity THz detector has been developed. The prototype detector consists of a parabolic cylindrical mirror, a long wire antenna and a Schottky barrier diode. Direct detection measurements have shown a stable sensitivity of 150 ± 50 V/W for 1 2 THz without any adjustments. The long wire antenna was fixed at the focus of parabolic cylindrical mirror then it has been realized less operation steps, easy coupling to the external THz signals and a dramatic enhancement in the practicality of this system. The optically polished mirror and frosted surface one showed comparable sensitivities, thus easy polishing and less cost mirror fabrication can be applied for this system. The radiation pattern showed a maximum radiation angle of approximately 23° with its dominant main lobe, which was attributed to the wire antenna character and confirmed good agreements with classical antenna theory.

  12. Discontinuous Galerkin Finite Element Method for Parabolic Problems

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki; Bey, Kim S.; Hou, Gene J. W.

    2004-01-01

    In this paper, we develop a time and its corresponding spatial discretization scheme, based upon the assumption of a certain weak singularity of parallel ut(t) parallel Lz(omega) = parallel ut parallel2, for the discontinuous Galerkin finite element method for one-dimensional parabolic problems. Optimal convergence rates in both time and spatial variables are obtained. A discussion of automatic time-step control method is also included.

  13. Sea urchin fertilization during a KC-135 parabolic flight.

    PubMed

    Schatten, H; Zoran, S; Levine, H G; Anderson, K; Chakrabarti, A

    1999-07-01

    For long-term exposure to space it is crucial to understand the underlying mechanisms for altered physiological functions. We have chosen the sea urchin system to study the effects of microgravity on various cellular processes visible during fertilization and subsequent development. We report here on experiments performed on NASA's KC-135 during parabolic flight trajectories to validate procedures to be implemented as part of the first Aquatic Research Facility Space Shuttle experiment on STS-77. PMID:11543042

  14. Radiative Heat Transfer During Atmosphere Entry at Parabolic Velocity

    NASA Technical Reports Server (NTRS)

    Yoshikawa, Kenneth K.; Wick, Bradford H.

    1961-01-01

    Stagnation point radiative heating rates for manned vehicles entering the earth's atmosphere at parabolic velocity are presented and compared with corresponding laminar convective heating rates. The calculations were made for both nonlifting and lifting entry trajectories for vehicles of varying nose radius, weight-to-area ratio, and drag. It is concluded from the results presented that radiative heating will be important for the entry conditions considered.

  15. Performance of a blood chemistry analyzer during parabolic flight

    NASA Technical Reports Server (NTRS)

    Spooner, Brian S.; Claassen, Dale E.; Guikema, James A.

    1990-01-01

    The performance of the Vision System Blood Analyzer during parabolic flight on a KC-135 aircraft (NASA 930) has been tested. This fully automated instrument performed flawlessly in these trials, demonstrating its potential for efficient, reliable use in a microgravity environment. In addition to instrument capability, it is demonstrated that investigators could readily fill specially modified test packs with fluid during zero gravity, and that filled test packs could be easily loaded into VISION during an episode of microgravity.

  16. PARABOLIC EQUATIONS OVER THE FIELD OF p-ADIC NUMBERS

    NASA Astrophysics Data System (ADS)

    Kochubeĭ, A. N.

    1992-06-01

    The author constructs and investigates a fundamental solution of Cauchy's problem for a parabolic equation with a p-adic space variable and a real time variable. The question of existence and uniqueness of solutions to Cauchy's problem in classes of bounded and increasing functions is considered, and conditions for nonnegativity of the fundamental solution are found. The problem of determining if the solution stabilizes as t \\to \\infty is solved for a model equation with constant coefficients.

  17. Galerkin/Runge-Kutta discretizations for semilinear parabolic equations

    NASA Technical Reports Server (NTRS)

    Keeling, Stephen L.

    1987-01-01

    A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and analyzed for semilinear parabolic initial boundary value problems. Unlike any classical counterpart, this class offers arbitrarily high, optimal order convergence. In support of this claim, error estimates are proved, and computational results are presented. Furthermore, it is noted that special Runge-Kutta methods allow computations to be performed in parallel so that the final execution time can be reduced to that of a low order method.

  18. Improving the convergence rate of parabolic ADI methods

    NASA Technical Reports Server (NTRS)

    Abarbanel, S. S.; Gottlieb, D.; Dwoyer, D. L.

    1983-01-01

    The rate of convergence to steady state of parabolic Alternating Direction Implicit (ADI) solvers is analyzed in terms of the L(2)-norms of the residuals. The analysis allows one to predict the number of iterations necessary for convergence as function of the Courant number, Lambda. A simple modification of existing ADI codes is devised. It improves the convergence rate substantially and is insensitive to the Courant number in a large range of Lambda.

  19. Synergies between optical and physical variables in intercepting parabolic targets.

    PubMed

    Gómez, José; López-Moliner, Joan

    2013-01-01

    Interception requires precise estimation of time-to-contact (TTC) information. A long-standing view posits that all relevant information for extracting TTC is available in the angular variables, which result from the projection of distal objects onto the retina. The different timing models rooted in this tradition have consequently relied on combining visual angle and its rate of expansion in different ways with tau being the most well-known solution for TTC. The generalization of these models to timing parabolic trajectories is not straightforward. For example, these different combinations rely on isotropic expansion and usually assume first-order information only, neglecting acceleration. As a consequence no optical formulations have been put forward so far to specify TTC of parabolic targets with enough accuracy. It is only recently that context-dependent physical variables have been shown to play an important role in TTC estimation. Known physical size and gravity can adequately explain observed data of linear and free-falling trajectories, respectively. Yet, a full timing model for specifying parabolic TTC has remained elusive. We here derive two formulations that specify TTC for parabolic ball trajectories. The first specification extends previous models in which known size is combined with thresholding visual angle or its rate of expansion to the case of fly balls. To efficiently use this model, observers need to recover the 3D radial velocity component of the trajectory which conveys the isotropic expansion. The second one uses knowledge of size and gravity combined with ball visual angle and elevation angle. Taking into account the noise due to sensory measurements, we simulate the expected performance of these models in terms of accuracy and precision. While the model that combines expansion information and size knowledge is more efficient during the late trajectory, the second one is shown to be efficient along all the flight. PMID:23720614

  20. Synergies between optical and physical variables in intercepting parabolic targets

    PubMed Central

    Gómez, José; López-Moliner, Joan

    2013-01-01

    Interception requires precise estimation of time-to-contact (TTC) information. A long-standing view posits that all relevant information for extracting TTC is available in the angular variables, which result from the projection of distal objects onto the retina. The different timing models rooted in this tradition have consequently relied on combining visual angle and its rate of expansion in different ways with tau being the most well-known solution for TTC. The generalization of these models to timing parabolic trajectories is not straightforward. For example, these different combinations rely on isotropic expansion and usually assume first-order information only, neglecting acceleration. As a consequence no optical formulations have been put forward so far to specify TTC of parabolic targets with enough accuracy. It is only recently that context-dependent physical variables have been shown to play an important role in TTC estimation. Known physical size and gravity can adequately explain observed data of linear and free-falling trajectories, respectively. Yet, a full timing model for specifying parabolic TTC has remained elusive. We here derive two formulations that specify TTC for parabolic ball trajectories. The first specification extends previous models in which known size is combined with thresholding visual angle or its rate of expansion to the case of fly balls. To efficiently use this model, observers need to recover the 3D radial velocity component of the trajectory which conveys the isotropic expansion. The second one uses knowledge of size and gravity combined with ball visual angle and elevation angle. Taking into account the noise due to sensory measurements, we simulate the expected performance of these models in terms of accuracy and precision. While the model that combines expansion information and size knowledge is more efficient during the late trajectory, the second one is shown to be efficient along all the flight. PMID:23720614

  1. Optimal feedback control infinite dimensional parabolic evolution systems: Approximation techniques

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Wang, C.

    1989-01-01

    A general approximation framework is discussed for computation of optimal feedback controls in linear quadratic regular problems for nonautonomous parabolic distributed parameter systems. This is done in the context of a theoretical framework using general evolution systems in infinite dimensional Hilbert spaces. Conditions are discussed for preservation under approximation of stabilizability and detectability hypotheses on the infinite dimensional system. The special case of periodic systems is also treated.

  2. Real-time optical laboratory solution of parabolic differential equations

    NASA Technical Reports Server (NTRS)

    Casasent, David; Jackson, James

    1988-01-01

    An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

  3. Phase retrieval in situ measurement for large aperture parabolic mirror

    NASA Astrophysics Data System (ADS)

    Ding, Lingyan; Wu, Yulie; Li, Shengyi; Liao, Yang; Shu, Yong

    2010-10-01

    Phase retrieval is a promising method for in-situ metrology and has been applied to spherical mirror surface metrology successfully. To meet the requirement of in-situ measurement in manufacturing large aperture parabolic mirror, a new method using phase retrieval technology is developed. In this method, an approximately parallel beam is used to illuminate the large parabolic mirror. The beam is produced by a point light source far away from the tested mirror. Then, intensity of diffraction patterns near the focus is measured by CCD. The experiment of testing a parabolic mirror with aperture 400mm and radius of curvature at vertex 2789.7mm is described. And some advices of improving the setup are presented. Errors brought by the approximately parallel beam are compensated by an algorithm derived from GS iterative algorithm. Phase retrieval result is consistent with that measured by interferometer sub-aperture stitching in error distribution, PV value and RMS value. The experiment shows that this method features simple optical path, good anti-vibration ability and acceptable accuracy.

  4. Local density of states in parabolic quantum corrals

    NASA Astrophysics Data System (ADS)

    Trallero-Giner, C.; Ulloa, S. E.; López-Richard, V.

    2004-03-01

    Atomic manipulation and scanning tunnel microscope experiments on metal surfaces have shown that electronic states in a “quantum corral” can be locally monitored and used to analyze the nonlocal effects of perturbations. We study new corral geometries defined by families of confocal parabolas. General solutions of the Schrödinger equation for the interior problem with Dirichlet (hard wall) boundary conditions are found exactly in terms of zeroes of hypergeometric functions. We show that the Hilbert space of solutions is separated in subspaces with odd and even symmetry. We perform numerical evaluation of the zeroes and study the effects of the parabolic curvatures on the eigenvalues and eigenfunctions of the parabolic quantum corral. The evolution of the local density of states with energy as a function of parabolic corral geometry is also analyzed. We find that under suitable conditions, the distribution of state antinodes can be described as directed intensity beams, which could be used as “quantum beacons” in future generations of “quantum mirage” experiments or optical and acoustic analogs of quantum corrals for the state node distribution.

  5. Circulatory filling pressures during transient microgravity induced by parabolic flight

    NASA Technical Reports Server (NTRS)

    Latham, Ricky D.; Fanton, John W.; White, C. D.; Vernalis, Mariana N.; Crisman, R. P.; Koenig, S. C.

    1993-01-01

    Theoretical concepts hold that blood in the gravity dependent portion of the body would relocate to more cephalad compartments under microgravity. The result is an increase in blood volume in the thoraic and cardiac chambers. However, experimental data has been somewhat contradictory and nonconclusive. Early studies of peripheral venous pressure and estimates of central venous pressure (CVP) from these data did not show an increase in CVP under microgravity. However, CVP recorded in human volunteers during a parabolic flight revealed an increase in CVP during the microgravity state. On the STS 40 shuttle mission, a payload specialist wore a fluid line that recorded CVP during the first few hours of orbital insertion. These data revealed decreased CVP. When this CVP catheter was tested during parabolic flight in four subjects, two had increased CVP recordings and two had decreased CVP measurements. In 1991, our laboratory performed parabolic flight studies in several chronic-instrumented baboons. It was again noted that centrally recorded right atrial pressure varied with exposure to microgravity, some animals having an increase, and others a decrease.

  6. Circulatory filling pressures during transient microgravity induced by parabolic flight.

    PubMed

    Latham, R D; Fanton, J W; White, C D; Vernalis, M N; Crisman, R P; Koenig, S C

    1993-01-01

    Theoretical concepts hold that blood in the gravity-dependent portion of the body would relocate to more cephalad compartments under microgravity conditions. The result is an increase in blood volume in the thoracic and cardiac chambers. This increase in central volume shift should result in an increase in central atrial filling pressures. However, experimental data has been somewhat contradictory and nonconclusive to date. Early investigations of peripheral venous pressure and estimates of central venous pressure (CVP) from these data did not show an increase in CVP in the microgravity condition. However, CVP recorded in human volunteers during the parabolic flight by Norsk revealed an increase in CVP during the microgravity state. On the June 1991 STS 40 shuttle mission, a payload specialist wore a fluid line that recorded CVP during the first few hours of orbital insertion. These data revealed decreased CVP. When this CVP catheter was tested during parabolic flight in four subjects, two subjects had increased CVP recordings and two other subjects had decreased CVP measurements. In April 1991, our laboratory performed parabolic flight studies in several chronic-instrumented baboon subjects. It was again noted that centrally recorded right atrial pressure varied with exposure to microgravity, some animals having an increase and others having a decrease. Thus, data presently available has demonstrated a variable response in the mechanism not clearly defined. In April 1992, we determined a test hypothesis relating the possible mechanism of these variable pressure responses to venous pressure-volume relationships. PMID:11537424

  7. Generalized Second Law of Thermodynamics in Parabolic LTB Inhomogeneous Cosmology

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Moradpour, H.; K. Rezazadeh, Sarab; B., Wang

    2015-11-01

    We study thermodynamics of the parabolic Lemaitre-Tolman-Bondi (LTB) cosmology supported by a perfect fluid source. This model is the natural generalization of the flat Friedmann-Robertson-Walker (FRW) universe, and describes an inhomogeneous universe with spherical symmetry. After reviewing some basic equations in the parabolic LTB cosmology, we obtain a relation for the deceleration parameter in this model. We also obtain a condition for which the universe undergoes an accelerating phase at the present time. We use the first law of thermodynamics on the apparent horizon together with the Einstein field equations to get a relation for the apparent horizon entropy in LTB cosmology. We find out that in LTB model of cosmology, the apparent horizon's entropy could be feeded by a term, which incorporates the effects of the inhomogeneity. We consider this result and get a relation for the total entropy evolution, which is used to examine the generalized second law of thermodynamics for an accelerating universe. We also verify the validity of the second law and the generalized second law of thermodynamics for a universe filled with some kinds of matters bounded by the event horizon in the framework of the parabolic LTB model. Supported financially by Research Institute for Astronomy & Astrophysics of Maragha (RIAAM), Iran

  8. Performance Study of the Solar Box type Stove using Two Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Bahal, Beni Madhaw

    Solar cooker has not gained the popularity it deserves both in rural and urban India despite its obvious benefits and availability of plenty of sunny days. Some of the major limitations being: longer cooking time and non availability of the cooking facility during early morning and night hours. These drawbacks have been addressed in the present solar cooker by using a combination of two phase change materials (PCM) having melting temperatures in the range of 80-100°C and 120-140°C for efficient and sufficient storage of heat energy for extended cooking during night or early morning. The choice of PCM is decided by considering several factors which include melting temperature, latent heat capacity, and risk exposure to humans, water hazard and cost of the material. The right selection of PCM hence is very crucial in determining the performance and safety of operation. The optimization of increased solar flux with multiple reflectors, heat retention ability and utilization of heat conducting fins further reduces the cooking time considerably. An attempt has also been made to design tailor made cooking containers for good heat absorption from sun as well as good conduction of heat from PCM to containers during night cooking.

  9. On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities

    NASA Astrophysics Data System (ADS)

    Manafian, Jalil

    2015-12-01

    We apply the Exp-function method (EFM) to the Biswas-Milovic equation and derive the exact solutions. This paper studies the Biswas-Milovic equation with power law, parabolic law and dual parabolic law nonlinearities by the aid of the Exp-function method. The obtained solutions not only constitute a novel analytical viewpoint in nonlinear complex phenomena, but they also form a new stand alone basis from which physical applications in this arena can be comprehended further, and, moreover, investigated. Furthermore, to concretely enrich this research production, we explain all cases, namely m=1 and m≥ 2. This method is developed for searching exact travelling-wave solutions of nonlinear partial differential equations. It is shown that this methods, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving nonlinear partial differential equations in mathematical physics.

  10. On uniqueness theorem on weak solutions to the parabolic-parabolic Keller-Segel system of degenerate and singular types

    NASA Astrophysics Data System (ADS)

    Miura, Masanari; Sugiyama, Yoshie

    2014-12-01

    The uniqueness of weak solutions to the parabolic-parabolic Keller-Segel systems (KS)m below with m>max⁡{1/2 >-1n,0} is proved in the class of Hölder continuous functions for any space dimension n. Since Hölder continuity is an optimal regularity for weak solutions of the porous medium equation, it seems to be reasonable to investigate its uniqueness in such a class of solutions. Our proof is based on the standard duality argument coupled with vanishing viscosity method which recovers degeneracy for m>1, and which removes singularities for 0

  11. Shenandoah Solar Total-Energy Project

    NASA Astrophysics Data System (ADS)

    Leonard, J. A.; Hunke, R. W.

    1982-12-01

    The design and construction of the world's first solar total energy plant in the private sector was completed and checkout is underway. During its operational phase, the solar plant will furnish electrical power, process steam, and other thermal energy to a nearby knitwear factory. The solar system consists of a collector field containing 114 parabolic dish collectors which supply thermal energy at 4000 C to drive a 400 kW multistage Rankine cycle turbine generator. Some steam is extracted from the turbine and supplied to the knitwear manufacturing processes. The system will be grid connected. Presented are a description of the system and components being installed; a summary of performance testing of the extraction turbine and of four prototype parabolic dish collectors; and a discussion of design considerations and insights which have general applicability to solar thermal system designs.

  12. Shenandoah Solar Total-Energy Project

    SciTech Connect

    Leonard, J.A.; Hunke, R.W.

    1982-12-01

    The design and construction of the world's first solar total-energy plant in the private sector has been completed and checkout is underway. During its operational phase, the solar plant will furnish electrical power, process steam, and other thermal energy to a nearby knitwear factory. The solar system consists of a collector field containing 114 parabolic-dish collectors which supply thermal energy at 400/sup 0/C to drive a 400 kW multi-stage Rankine-cycle turbine generator. Some steam is extracted from the turbine and supplied to the knitwear manufacturing processes. The system will be grid-connected. Presented are: (1) a description of the system and components being installed; (2) a summary of performance testing of the extraction turbine and of four prototype parabolic-dish collectors; and (3) a discussion of design considerations and insights which have general applicability to solar-thermal-system designs.

  13. Financing Solar Thermal Power Plants

    SciTech Connect

    Price, H. W.; Kistner, R.

    1999-11-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised i n debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  14. Line-focus solar thermal energy technology development. FY 79 annual report for Department 4720

    SciTech Connect

    Bergeron, K D; Champion, R L; Hunke, R W

    1980-04-01

    The primary role of the Solar Energy Projects Department II (4720) is the development, evaluation, and testing of line-focus solar thermal technology. This report of FY 79 progress and accomplishments is divided into two parts: (1) Component and Subsystem Development including the design and analysis of collector modules, their components, and associated materials and processes, and (2) Systems and Applications Development, involving larger configurations of solar thermal line-focus systems. The emphasis is on parabolic troughs, but significant efforts on hemispherical bowls, compound parabolic collectors, and dishes for the Solar Total Energy Project are also described.

  15. The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities

    NASA Astrophysics Data System (ADS)

    Dupraz, K.; Cassou, K.; Martens, A.; Zomer, F.

    2015-10-01

    The ABCD matrix for parabolic reflectors is derived for any incident angles. It is used in numerical studies of four-mirror cavities composed of two flat and two parabolic mirrors. Constraints related to laser beam injection efficiency, optical stability, cavity-mode, beam-waist size and high stacking power are satisfied. A dedicated alignment procedure leading to stigmatic cavity-modes is employed to overcome issues related to the optical alignment of parabolic reflectors.

  16. Environmental responses of solar reflective surfaces

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1983-01-01

    An assessment is undertaken of the environmental responses of solar reflective surfaces, with emphasis on dish-type concentrator surfaces exposed to the conditions of Southern California. A generalized mathematical model for specific solar reflective surfaces can be formulated on the basis of either experimental or assumed site degradation/corrosion data. In addition, the fabrication parameters of a parabolic reflecting surface and its substrate can be used to model combined reflective characteristics for the postulated environmental conditions.

  17. Air Brayton Solar Receiver, phase 1

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. K.

    1979-01-01

    A six month analysis and conceptual design study of an open cycle Air Brayton Solar Receiver (ABSR) for use on a tracking, parabolic solar concentrator are discussed. The ABSR, which includes a buffer storage system, is designed to provide inlet air to a power conversion unit. Parametric analyses, conceptual design, interface requirements, and production cost estimates are described. The design features were optimized to yield a zero maintenance, low cost, high efficiency concept that will provide a 30 year operational life.

  18. Midtemperature solar systems test facility predictions for thermal performance based on test data: solar kinetics T-600 solar collector with FEK 244 reflector surface

    SciTech Connect

    Harrison, T.D.

    1981-04-01

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics T-600 solar line-focusing parabolic trough collector are presented for three output temperatures at five cities in the US. (WHK)

  19. Dexterous Manipulation in Microgravity in Parabolic Flights and on ISS

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Sundblad, P.; Thonnard, J.-L.; Lefevre, P.; McIntyre, J.; Kassel, R.; Derkinderen, W.; Penta, M.; Andre, T.

    It has been shown that during exposure to microgravity in parabolic flights the control of interaction forces when manipulating an object adapts partially to the lack of gravity, yet evidence indicates that anticipation of gravity's effects persists in the short term. The motivation for these experiments to be performed in long-duration space flight is to understand how the central nervous system adapts to an environment without gravity and what will be the consequences of long-term adaptation when an individual returns to a normal (Earth) or partial (Moon or Mars) gravitational field. The experiment “Dexterous Manipulation in Microgravity” (DEX) will target specific questions about the effects of gravity on dexterous manipulation, questions that cannot be addressed in the normal terrestrial environment. Some of the scientific questions have already been studied since nearly ten years and will continue to be addressed in experiments conducted in parabolic flights, during which it will be examined how the nervous system copes with repeated transitions between different gravitational environments. Results from these experiments provide initial data about short-term adaptation to 0g. The experiments proposed for ISS draw from these short-term precursor experiments, but will emphasize long-term adaptation of sensorimotor processes to 0g and re-adaptation to 1g. A first conceptual definition phase of a DEX instrument has been completed under an ESA contract and is now ready to enter into the design and development phase in view of a launch on ISS in the 2013-2014 timeframe. In this paper, the science background will be recalled and several experiments performed during parabolic flights will be presented, showing how these early breadboards testing in microgravity have helped to refine the DEX conceptual design and how it could be used on ISS.

  20. Error Analysis for Discontinuous Galerkin Method for Parabolic Problems

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki

    2004-01-01

    In the proposal, the following three objectives are stated: (1) A p-version of the discontinuous Galerkin method for a one dimensional parabolic problem will be established. It should be recalled that the h-version in space was used for the discontinuous Galerkin method. An a priori error estimate as well as a posteriori estimate of this p-finite element discontinuous Galerkin method will be given. (2) The parameter alpha that describes the behavior double vertical line u(sub t)(t) double vertical line 2 was computed exactly. This was made feasible because of the explicitly specified initial condition. For practical heat transfer problems, the initial condition may have to be approximated. Also, if the parabolic problem is proposed on a multi-dimensional region, the parameter alpha, for most cases, would be difficult to compute exactly even in the case that the initial condition is known exactly. The second objective of this proposed research is to establish a method to estimate this parameter. This will be done by computing two discontinuous Galerkin approximate solutions at two different time steps starting from the initial time and use them to derive alpha. (3) The third objective is to consider the heat transfer problem over a two dimensional thin plate. The technique developed by Vogelius and Babuska will be used to establish a discontinuous Galerkin method in which the p-element will be used for through thickness approximation. This h-p finite element approach, that results in a dimensional reduction method, was used for elliptic problems, but the application appears new for the parabolic problem. The dimension reduction method will be discussed together with the time discretization method.

  1. Processing of data from innovative parabolic strip telescope.

    NASA Astrophysics Data System (ADS)

    Kosejk, Vladislav; Novy, J.; Chadzitaskos, Goce

    2015-12-01

    This paper presents an innovative telescope design based on the usage of a parabolic strip fulfilling the function of an objective. Isaac Newton was the first to solve the problem of chromatic aberration, which is caused by a difference in the refractive index of lenses. This problem was solved by a new kind of telescope with a mirror used as an objective. There are many different kinds of telescopes. The most basic one is the lens telescope. This type of a telescope uses a set of lenses. Another type is the mirror telescope, which employs the concave mirror, spherical parabolic mirror or hyperbolically shaped mirror as its objective. The lens speed depends directly on the surface of a mirror. Both types can be combined to form a telescope composed of at least two mirrors and a set of lenses. The light is reflected from the primary mirror to the secondary one and then to the lens system. This type is smaller-sized, with a respectively reduced lens speed. The telescope design presented in this paper uses a parabolic strip fulfilling the function of an objective. Observed objects are projected as lines in a picture plane. Each of the lines of a size equal to the size of the strip corresponds to the sum of intensities of the light coming perpendicular to the objective from an observed object. A series of pictures taken with a different rotation and processed by a special reconstruction algorithm is needed to get 2D pictures. The telescope can also be used for fast detection of objects. In this mode, the rotation and multiple pictures are not needed, just one picture in the focus of a mirror is required to be taken.

  2. Impurity binding energies in quantum dots with parabolic confinement

    NASA Astrophysics Data System (ADS)

    Abramov, Arnold

    2015-03-01

    We present an effective numerical procedure to calculate the binding energies and wave functions of the hydrogen-like impurity states in a quantum dot (QD) with parabolic confinement. The unknown wave function was expressed as an expansion over one-dimensional harmonic oscillator states, which describes the electron's movement along the defined z-axis. Green's function technique used to obtain the solution of Schredinger equation for electronic states in a transverse plane. Binding energy of impurity states is defined as poles of the wave function. The dependences of the binding energy on the position of an impurity, the size of the QD and the magnetic field strength are presented and discussed.

  3. Fuzzy control of parabolic antenna with backlash compensation

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammed; Noor, Samsul Bahari B. Mohd

    2015-05-01

    A fuzzy logic based controller (FLC) was proposed for position control of a parabolic dish antenna system with the major aim of eradicating the effect backlash disturbance which may be present in the system. The disturbance is nonlinear and is capable of generating steady state positional errors. Simulation results obtained using SIMULINK/MATLAB 2012a were compared with those obtained when the controller was proportional-derivative controller (PDC). The fuzzy controller portrays that it has the capability of reducing the noise due to backlash and possibly others more than the proportional-derivative controller.

  4. Piecewise-parabolic methods for astrophysical fluid dynamics

    SciTech Connect

    Woodward, P.R.

    1983-11-01

    A general description of some modern numerical techniques for the simulation of astrophysical fluid flow is presented. The methods are introduced with a thorough discussion of the especially simple case of advection. Attention is focused on the piecewise-parabolic method (PPM). A description of the SLIC method for treating multifluid problems is also given. The discussion is illustrated by a number of advection and hydrodynamics test problems. Finally, a study of Kelvin-Helmholtz instability of supersonic jets using PPM with SLIC fluid interfaces is presented.

  5. Cauchy problems of pseudo-parabolic equations with inhomogeneous terms

    NASA Astrophysics Data System (ADS)

    Li, Zhongping; Du, Wanjuan

    2015-12-01

    This paper deals with Cauchy problems of pseudo-parabolic equations with inhomogeneous terms. The aim of the paper is to study the influence of the inhomogeneous term on the asymptotic behavior of solutions. We at first determine the critical Fujita exponent and then give the secondary critical exponent on the decay asymptotic behavior of an initial value at infinity. Furthermore, the precise estimate of life span for the blow-up solution is obtained. Our results show that the asymptotic behavior of solutions is seriously affected by the inhomogeneous term.

  6. Solar-pumped solid-state lasers

    SciTech Connect

    Weksler, M.; Shwartz, J.

    1988-06-01

    Results are presented for direct solar pumping of a ND:YAG rod laser. Stable CW output of more than 60 W was obtained with a slope efficiency exceeding 2 percent. A compound parabolic concentrator, designed to increase the solar radiation coupled into the laser rod, was used in these experiments. The results are consistent with predictions based on a simple solar-pumped laser model, which is also presented. Using this model, it is shown that existing laser materials with broad-band absorption characteristics (e.g., alexandrite and Nd:Cr:GSGG) have a potential for better than 10 percent overall conversion efficiency when solar pumped.

  7. Build an oven, cook a meal: How solar energy empowered women in Costa Rica

    SciTech Connect

    Blankenship, J. )

    1990-12-01

    A pilot solar cooking project in the hot, northern province of Guanacaste promises to serve as a model for community groups wanting to build their own solar ovens. An $8,000 (US) grant has been awarded by the Canadian Embassy in Costa Rica to take the Guanacaste project into a second stage in 1990-91. Two construction workshops, with twelve participants in each, are planned in communities near Oriente. Three women from the Oriente group will have paid jobs as organizational facilitators and workshop supervisors. In popular education this is called the multiplier effect - the users of solar cookers construct the ovens themselves, and then instruct others to do the same. 3 refs.

  8. Well-posedness results for triply nonlinear degenerate parabolic equations

    NASA Astrophysics Data System (ADS)

    Andreianov, B.; Bendahmane, M.; Karlsen, K. H.; Ouaro, S.

    We study well-posedness of triply nonlinear degenerate elliptic-parabolic-hyperbolic problems of the kind b(-diva(u,??(u))+?(u)=f, u|=u in a bounded domain with homogeneous Dirichlet boundary conditions. The nonlinearities b,? and ? are supposed to be continuous non-decreasing, and the nonlinearity a falls within the Leray-Lions framework. Some restrictions are imposed on the dependence of a(u,??(u)) on u and also on the set where ? degenerates. A model case is a(u,??(u))=f(b(u),?(u),?(u))+k(u)a(??(u)), with a nonlinearity ? which is strictly increasing except on a locally finite number of segments, and the nonlinearity a which is of the Leray-Lions kind. We are interested in existence, uniqueness and stability of L entropy solutions. For the parabolic-hyperbolic equation ( b=Id), we obtain a general continuous dependence result on data u,f and nonlinearities b,?,?,a. Similar result is shown for the degenerate elliptic problem, which corresponds to the case of b?0 and general non-decreasing surjective ?. Existence, uniqueness and continuous dependence on data u,f are shown in more generality. For instance, the assumptions [b+?](R)=R and the continuity of ??[ permit to achieve the well-posedness result for bounded entropy solutions of this triply nonlinear evolution problem.

  9. Using Parabolic Equation for Calculation of Beam Impedance

    SciTech Connect

    Stupakov, Gennady; /SLAC

    2006-04-07

    In this paper we develop a new method of parabolic equation (PE) for calculation of both high-frequency and small-angle taper (or collimator) impedances. The applicability of PE in the high-frequency limit is based on the observation that in this case the contribution to impedance comes from the waves that catch up the beam far from the obstacle and propagate at small-angles to the axis of the pipe. One of the most important advantages of PE is that it eliminates the spatial scale of the small wavelength from the problem. As a result, the numerical solution of PE requires coarser spatial meshes. In the paper we focus on the longitudinal impedance for an axisymmetric geometry and assume a perfect conductivity of the walls. We show how the known analytical results which include a small-angle collimator, step-in and step-out transitions, and a pillbox cavity, can be derived within the framework of the parabolic equation.

  10. The Piecewise Parabolic Method for Multidimensional Relativistic Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Mignone, A.; Plewa, T.; Bodo, G.

    2005-09-01

    We present an extension of the piecewise parabolic method to special relativistic fluid dynamics in multidimensions. The scheme is conservative, dimensionally unsplit, and suitable for a general equation of state. Temporal evolution is second-order accurate and employs characteristic projection operators; spatial interpolation is piecewise parabolic making the scheme third-order accurate in smooth regions of the flow away from discontinuities. The algorithm is written for a general system of orthogonal curvilinear coordinates and can be used for computations in non-Cartesian geometries. A nonlinear iterative Riemann solver based on the two-shock approximation is used in flux calculation. In this approximation, an initial discontinuity decays into a set of discontinuous waves only implying that, in particular, rarefaction waves are treated as flow discontinuities. We also present a new and simple equation of state that approximates the exact result for the relativistic perfect gas with high accuracy. The strength of the new method is demonstrated in a series of numerical tests and more complex simulations in one, two, and three dimensions.

  11. Altered osteoblast structure and function in parabolic flight

    NASA Astrophysics Data System (ADS)

    Zhong-Quan, Dai; Ying-Hui, Li; Fen, Yang; Bai, Ding; Ying-Jun, Tan

    Introduction Bone loss has a significant impact on astronauts during spaceflight being one of the main obstacles preventing interplanetary missions However the exact mechanism is not well understood In the present study we investigated the effects of acute gravitational changes generated by parabolic flight on the structure and function of osteoblasts ROS17 2 8 carried by airbus A300 Methods The alteration of microfilament cytoskeleton was observed by the Texas red conjugated Phalloidin and Alexa Fluor 488 conjugated DNase I immunofluorescence stain ALP activity and expression COL1A1 expression osteocalcin secrete which presenting the osteoblast function were detected by modified calcium and cobalt method RT-PCR and radioimmunity methods respectively Results The changed gravity induced the reorganization of microfilament cytoskeleton of osteoblast After 3 hours parabolic flight F-actin of osteoblast cytoskeleton became more thickness and directivity whereas G-actin reduced and relatively concentrated at the edge of nucleus observed by confocal fluorescence microscopy This phenomenon is identical with structure alternation observed in hypergravity but the osteoblast function decrease The excretion of osteocalcin the activity and mRNA expression of ALP decrease but the COL1A1 expression has no changes These results were similar to the changes in simulated or real microgravity Conclusion Above results suggest that short time gravity alternative change induce osteoblast structure and function

  12. Control system for Parabolic Dish Concentrator No. 1

    SciTech Connect

    Stallkamp, J.A.

    1985-03-15

    This report is a description and discussion of the control system for Parabolic Dish Concentrator No. 1 (PDC-1) as used at the JPL Parabolic Dish Test Site (PDTS). The tracking action is a discontinuous, start/stop motion with sun sensors for primary control and a computed sun ephemeris for a simultaneous check and cloud passage. Project background, functional requirements, and hardware description are presented in brief form. System operation is described in considerable detail and includes the precise message exchange protocol between the module and remote control station, the initialization process, the command list, and the basic control logic used in the local microprocessor. System installation and performance items are given; the unit operated very satisfactorily for the brief period of time before it was moved to Sandia National Laboratories at Albuquerque, New Mexico. It was operated at a 0.05-deg deadband for optical characterization of the reflecting surfaces and mirror geometry. The last section includes significant presentations and discussions of (1) protection against burn by the sun in the case of failure to continue to track and (2) other equipment and personnel safety items. Operation of PDC-1 at the test site was man-attended; for extension to man-unattended operation a number of additional requirements and constraints must be identified and a full implementation of the capabilities of the design performed.

  13. Shenandoah Solar Total Energy Project

    SciTech Connect

    Leonard, J.A.; Hunke, R.W.

    1981-01-01

    The design of the world's first solar total energy plant in the private sector has been completed and construction is underway. The project, a major element of the Department of Energy's Solar Thermal Program, is the Solar Total Energy Project at Shenandoah, Georgia. When operational in early 1982, the solar plant will furnish electrical power, process steam, and other thermal energy to a nearby knitwear factory. The solar system consists of a collector field containing 114 parabolic dish collectors which supply thermal energy at 400/sup 0/C to drive a 400 kW multi-stage Rankine cycle turbine generator. Some steam is extracted from the turbine and supplied to the knitwear manufacturing processes. The system will be grid-connected, and the Georgia Power Company, through a cooperative agreement with DOE, is a participant in the project. Included are: (1) a description of the system and components being installed; (2) a summary of performance testing of the extraction turbine and of four prototype parabolic dish collectors; and (3) a discussion of design considerations and insights which have general applicability to solar thermal system designs.

  14. The solvability of the first initial-boundary problem for parabolic and degenerate parabolic equations in domains with a conical point

    SciTech Connect

    Degtyarev, Sergey P

    2010-09-02

    The first initial-boundary problem for second-order parabolic and degenerate parabolic equations is investigated in a domain with a conical or angular point. The means of attack is already known and uses weighted classes of smooth or integrable functions. Sufficient conditions for a unique solution to exist and for coercive estimates for the solution to be obtained are formulated in terms of the angular measure of the solid angle and the exponent of the weight. It is also shown that if these conditions fail to hold, then the parabolic problem has elliptic properties, that is, it can have a nonzero kernel or can be nonsolvable, and, in the latter case, it is not even a Fredholm problem. A parabolic equation and an equation with some degeneracy or a singularity at a conical point are considered. Bibliography: 49 titles.

  15. Non-parabolic hydrodynamic formulations for the simulation of inhomogeneous semiconductor devices

    NASA Technical Reports Server (NTRS)

    Smith, Arlynn W.; Brennan, Kevin F.

    1995-01-01

    Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models can not fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations of the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship (hk)(exp 2)/2m = W(1 + alpha(W)). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(sup y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships: parabolic, Kane dispersion, and power low dispersion.

  16. Non-Parabolic Hydrodynamic Formulations for the Simulation of Inhomogeneous Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Smith, A. W.; Brennan, K. F.

    1996-01-01

    Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models cannot fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations or the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship ((hk)(exp 2)/2m = W(1 + alphaW). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(exp y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships; parabolic, Kane dispersion and power law dispersion.

  17. Solar economy and technology update

    SciTech Connect

    Brotherton, T.K.

    1983-06-01

    The industry, national, and consumer perspectives on solar power are reviewed. With a 30% increase in dealer/installers, and a 30% attrition rate, about 60% of the participants in the market are ''new kids on the block.'' The installed value of the market was $750 million in 1981. There was a 30% decline in volumes, due to the recession, in 1982. As for the national perspective, solar is labor intensive, and generated a billion dollars worth of jobs. As the DOE has abandoned all but high risk ''core technology'' RandD has faltered some. But desiccant heat pumps, polymer collectors, and parabolic collectors are discussed.

  18. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    SciTech Connect

    Turchi, Craig; Kurup, Parthiv; Akar, Sertac; Flores, Francisco

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  19. Hybrid photovoltaic/thermal (PV/T) collector coupled with a compound parabolic concentrator (CPC)

    SciTech Connect

    Garg, H.P.; Adhikari, R.S.

    1998-07-01

    Hybrid Photovoltaic/Thermal (PV/T) conversion is a relatively new and promising technology for the production of both electrical and thermal energy simultaneously. A number of theoretical and experimental studies have been reported in the past on PV/T systems with air and liquid as heat transfer fluid. Studies on PV/T collectors are being made at Indian Institute of Technology in collaboration with All India Council of Technical Education (AICTE), New Delhi. Earlier, present authors have carried out detailed simulation studies on PV/T air heating collectors and have shown that hybrid PV/T systems have great potential in terms of their system efficiencies. It is further envisaged that the efficiency of a hybrid PV/T collector can be enhanced by its effective coupling with a compound parabolic concentrator (CPC). In the present investigation a theoretical analysis has been presented to study the performance of a hybrid PV/T collector coupled with a CPC. In the design, several CPC troughs are combined in a single collector panel. The absorber of the hybrid PV/T collector under investigation consists of an array of solar cells for generation of electricity, while collector fluid circulating past the absorber provides useful thermal energy as in a conventional flat plate collector. In the analysis, it is assumed that solar cell efficiency can be represented by a linear decreasing function of its temperature. Energy balance equations have been developed for various components of the system. Based on the developed analysis both thermal and electrical performance of the system as a function of system design parameters are presented and discussed. Results have been presented to compare the performance of hybrid PV/T collector coupled with and without CPC.

  20. Application of solar thermal energy to buildings and industry

    SciTech Connect

    Kutscher, C. F.

    1981-05-01

    Flat plate collectors and evacuated tube collectors are described, as are parabolic troughs, Fresnel lenses, and compound parabolic concentrators. Use of solar energy for domestic hot water and for space heating and cooling are discussed. Some useful references and methods of system design and sizing are given. This includes mention of the importance of economic analysis. The suitability of solar energy for industrial use is discussed, and solar ponds, point-focus receivers and central receivers are briefly described. The use of solar energy for process hot water, drying and dehydration, and process steam are examined, industrial process heat field tests by the Department of Energy are discussed, and a solar total energy system in Shenandoah, GA is briefly described. (LEW)

  1. Generic parabolic points are isolated in positive characteristic

    NASA Astrophysics Data System (ADS)

    Lindahl, Karl-Olof; Rivera-Letelier, Juan

    2016-05-01

    We study analytic germs in one variable with a parabolic fixed point at the origin, over an ultrametric ground field of positive characteristic. It is conjectured that for such a germ the origin is isolated as a periodic point. Our main result is an affirmative solution of this conjecture in the case of a generic germ with a prescribed multiplier. The genericity condition is explicit: the power series is minimally ramified, i.e. the degree of the first nonlinear term of each of its iterates is as small as possible. Our main technical result is a computation of the first significant terms of a minimally ramified power series. From this we obtain a lower bound for the norm of nonzero periodic points, from which we deduce our main result. As a by-product we give a new and self-contained proof of a characterization of minimally ramified power series in terms of the iterative residue.

  2. Motor skills under varied gravitoinertial force in parabolic flight

    NASA Astrophysics Data System (ADS)

    Ross, Helen E.

    Parabolic flight produces brief alternating periods of high and low gravitoinertial force. Subjects were tested on various paper-and-pencil aiming and tapping tasks during both normal and varied gravity in flight. It was found that changes in g level caused directional errors in the z body axis (the gravity axis), the arm aiming too high under 0g and too low under 2g. The standard deviation also increased for both vertical and lateral movements in the mid-frontal plane. Both variable and directional errors were greater under 0g than 2g. In an unpaced reciprocal tapping task subjects tended to increase their error rate rather than their movement time, but showed a non-significant trend towards slower speeds under 0g for all movement orientations. Larger variable errors or slower speeds were probably due to the difficulty of re-organising a motor skill in an unfamiliar force environment, combined with anchorage difficulties under 0g.

  3. Close encounters of nearly parabolic comets and planets

    NASA Astrophysics Data System (ADS)

    Tomanov, V. P.

    2016-03-01

    An overview is given of close encounters of nearly parabolic comets (NPCs; with periods of P > 200 years and perihelion distances of q > 0.1 AU; the number of the comets is N = 1041) with planets. The minimum distances Δmin between the cometary and planetary orbits are calculated to select comets whose Δmin are less than the radius of the planet's sphere of influence. Close encounters of these comets with planets are identified by numerical integration of the comets' equations of motion over an interval of ±50 years from the time of passing the perihelion. Close encounters of NPCs with Jupiter in 1663-2011 are reported for seven comets. An encounter with Saturn is reported for comet 2004 F2 (in 2001).

  4. Parabolic dish Stirling module development and test results

    SciTech Connect

    Washom, B.

    1984-08-01

    Private industry and the U.S. Department of Energy are presently cost sharing the design, manufacture and test of a 25 Kwe parabolic dish Stirling module, known as Vanguard. The Vanguard module achieved a world's record sunlight to electric conversion efficiency of 31.6% in February 1984 at the Rancho Mirage, California test site. The module is presently operating daily in sunrise to sunset tests to determine the long term performance and O and M requirements of this distributed receiver system. Each module can be easily integrated into a larger field of modules to provide power generation opportunities from a single 25 Kwe unit for isolated loads to 30 Mwe systems for integrated utility power generation.

  5. Higher order parabolic approximations of the reduced wave equation

    NASA Technical Reports Server (NTRS)

    Mcaninch, G. L.

    1986-01-01

    Asymptotic solutions of order k to the nth are developed for the reduced wave equation. Here k is a dimensionless wave number and n is the arbitrary order of the approximation. These approximations are an extension of geometric acoustics theory, and provide corrections to that theory in the form of multiplicative functions which satisfy parabolic partial differential equations. These corrections account for the diffraction effects caused by variation of the field normal to the ray path and the interaction of these transverse variations with the variation of the field along the ray. The theory is applied to the example of radiation from a piston, and it is demonstrated that the higher order approximations are more accurate for decreasing values of k.

  6. Large Phased Array Radar Using Networked Small Parabolic Reflectors

    NASA Technical Reports Server (NTRS)

    Amoozegar, Farid

    2006-01-01

    Multifunction phased array systems with radar, telecom, and imaging applications have already been established for flat plate phased arrays of dipoles, or waveguides. In this paper the design trades and candidate options for combining the radar and telecom functions of the Deep Space Network (DSN) into a single large transmit array of small parabolic reflectors will be discussed. In particular the effect of combing the radar and telecom functions on the sizes of individual antenna apertures and the corresponding spacing between the antenna elements of the array will be analyzed. A heterogeneous architecture for the DSN large transmit array is proposed to meet the radar and telecom requirements while considering the budget, scheduling, and strategic planning constrains.

  7. A semilinear parabolic system with a free boundary

    NASA Astrophysics Data System (ADS)

    Wang, Mingxin; Zhao, Yonggang

    2015-12-01

    This paper deals with a semilinear parabolic system with reaction terms {v^p, u^q} and a free boundary {x = s(t)} in one space dimension, where {s(t)} evolves according to the free boundary condition {s'(t) = -μ(u_x + ρ v_x)}. The main aim of this paper was to study the existence, uniqueness, regularity and long-time behavior of positive solution (maximal positive solution). Firstly, we prove that this problem has a unique positive solution when {p, q ≥ 1}, and a (unique) maximal positive solution when {p < 1} or {q < 1}. Then, we study the regularity of {(u,v)} and {s}. At last, we discuss the global existence, finite-time blowup of the unique positive solution (maximal positive solution) and long-time behavior of bounded global solution.

  8. NASTRAN solutions of problems described by simultaneous parabolic differential equations

    NASA Technical Reports Server (NTRS)

    Mason, J. B.; Walston, W. H., Jr.

    1975-01-01

    NASTRAN solution techniques are shown for a numerical analysis of a class of coupled vector flow processes described by simultaneous parabolic differential equations. To define one physical problem type where equations of this form arise, the differential equations describing the coupled transfers of heat and mass in mechanical equilibrium with negligible mass average velocity are presented and discussed. Also shown are the equations describing seepage when both electrokinetic and hydrodynamic forces occur. Based on a variational statement of the general problem type, the concepts of scalar transfer elements and parallel element systems are introduced. It is shown that adoptation of these concepts allows the direct use of NASTRAN's existing Laplace type elements for uncoupled flow (the heat transfer elements) for treating multicomponent coupled transfer. Sample problems are included which demonstrate the application of these techniques for both steady-state and transient problems.

  9. Context-specific adaptation of saccade gain in parabolic flight

    NASA Technical Reports Server (NTRS)

    Shelhamer, Mark; Clendaniel, Richard A.; Roberts, Dale C.

    2002-01-01

    Previous studies established that vestibular reflexes can have two adapted states (e.g., gains) simultaneously, and that a context cue (e.g., vertical eye position) can switch between the two states. Our earlier work demonstrated this phenomenon of context-specific adaptation for saccadic eye movements: we asked for gain decrease in one context state and gain increase in another context state, and then determined if a change in the context state would invoke switching between the adapted states. Horizontal and vertical eye position and head orientation could serve, to varying degrees, as cues for switching between two different saccade gains. In the present study, we asked whether gravity magnitude could serve as a context cue: saccade adaptation was performed during parabolic flight, which provides alternating levels of gravitoinertial force (0 g and 1.8 g). Results were less robust than those from ground experiments, but established that different saccade magnitudes could be associated with different gravity levels.

  10. Ground-state description for polarons in parabolic quantum wells

    NASA Astrophysics Data System (ADS)

    Yuhang, Ren; Qinghu, Chen; Yabin, Yu; Zhengkuan, Jiao; Shaolong, Wang

    1998-07-01

    Within the framework of Feynman-Haken variational path integral theory, for the first time, we calculate the ground-state energy of the electron and longitudinal-optical phonon system in parabolic quantum wells with respect to a general potential. We propose a simple expression for the Feynman energy, and compare it with those obtained by the second-order Rayleigh-Schrödinger perturbation theory and Landau-Pekar strong-coupling theory. It is shown both analytically and numerically that the results obtained from Feynman-Haken variational path integral theory can be better than those from the other two theories. We also find in numerical calculations that the binding energy of polarons becomes monotonically stronger as the effective well depth decreases in the whole coupling regime. More interestingly, the localization, which is caused by the effective potential, also can be perceived in the strong-coupling regime.

  11. Flight Analysis of a Parabolic Lightcraft-Ground-based Launch

    SciTech Connect

    Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter

    2008-04-28

    An experimental environment has been developed for free flight experiments with a parabolic lightcraft in a laboratory scale. An electron beam sustained CO{sub 2} laser is employed as source for energy beaming with 10.6 {mu}m wavelength, {approx}10 {mu}s pulse duration, pulse energies up to 200 J and repetition rates up to 40 Hz. The free flight range of 1.7 meters enables to monitor several subsequent pulses in one flight as well as, in the case of Delrin (POM) as a propellant, a single pulse with a large momentum transfer. The impulse coupling is derived from flight trajectories and analyzed with respect to the temporal course of the flight. The influence of beam-related parameters like pulse energy and repetition rate are discussed regarding the flight performance. Finally, an insight is given into actual work on the transformation of the testbed for flights in vacuum.

  12. The third ESA Student Parabolic-Flight Campaign.

    PubMed

    Ockels, W J; Jagger-Meziere, L

    2001-02-01

    Today's students will become tomorrow's workforce and hence they should be involved in the global space programme as early as possible so that they will be motivated to follow space careers and create a space-educated next generation for working within the space domain. Getting students involved in today's space programmes is important not only for the space industry in terms of providing a talented workforce for the future, but also for the general public who will be the future voters and potential political supporters of future European space activities. With this in mind, ESA's Office for Education and Outreach organises and runs many space-related activities for young people in order to stimulate their interest in space in particular and in science in general. One of these activities is the 'Student Parabolic-Flight Campaign'. PMID:15008203

  13. Streamwise computation of three-dimensional parabolic flows

    NASA Astrophysics Data System (ADS)

    Greywall, M. S.

    1983-01-01

    A new approach to calculate three-dimensional parabolic flows is presented. The flow field is computed by calculating velocity along a set of streamlines. The dependent variables commonly used in the computation of three-dimensional flows are the three velocity components. In contrast, the dependent variables in the present approach are the streamwise velocity and the two coordinates, in the cross-stream plane, of the chosen streamlines. The streamwise velocity is calculated from the finite difference equations obtained by applying Euler's momentum theorem to streamtubes constructed around the chosen streamlines; the streamline coordinates are calculated from the conservation of mass. Results of the calculations, based on the present approach, are compared with the experimental data for flow through rectangular ducts; the agreement is satisfactory.

  14. Parabolic tapered structure for an ultracompact multimode interference coupler.

    PubMed

    Sahu, P P

    2009-01-10

    A parabolic tapered structure based on general interference has been proposed and studied theoretically with silica waveguides of silicon oxinitride (SiON) core by using a mathematical model based on sinusoidal modes for the reduction of coupling length of a 2x2 multimode interference (MMI) coupler. The coupling behaviors of the proposed structure are compared with those of other MMI structures. It is seen that the beat length for the proposed tapered MMI coupler is approximately half of that of a conventional MMI coupler. The effect of power imbalance on the fabrication tolerance of a 3 dB coupler using the proposed tapered structure is also studied and compared with that of other MMI structures. PMID:19137030

  15. Cardiovascular changes in parabolic flights assessed by ballistocardiography.

    PubMed

    Delière, Q; Migeotte, P-F; Neyt, X; Funtova, I; Baevsky, R M; Tank, J; Pattyn, N

    2013-01-01

    This paper presents a comparison of the cardiovascular changes observed in microgravity as compared to ground based measurements. The ballistocardiogram (BCG), the electrocardiogram (ECG) and the transthoracic impedance cardiogram (ICG) were recorded on five healthy subjects during the 57th-European Space Agency (ESA) parabolic flight campaign. BCG is analyzed though its most characteristic wave, the IJ wave complex that can be identified along the longitudinal component of BCG and which has been demonstrated to be linked to cardiac ejection. The timings between the contraction of the heart and the ejection of blood in the aorta are analyzed via the time delay between the R-wave of the ECG and the I and J-waves of BCG (RI and RJ intervals respectively). Our results show that the IJ complex presents a larger amplitude in weightlessness and suggest that stroke volume (SV) increases in microgravity. We assume that ballistocardiography is an efficient method to assess the ventricular performance. PMID:24110559

  16. Nonlocal operators, parabolic-type equations, and ultrametric random walks

    NASA Astrophysics Data System (ADS)

    Chacón-Cortes, L. F.; Zúñiga-Galindo, W. A.

    2013-11-01

    In this article, we introduce a new type of nonlocal operators and study the Cauchy problem for certain parabolic-type pseudodifferential equations naturally associated to these operators. Some of these equations are the p-adic master equations of certain models of complex systems introduced by Avetisov, V. A. and Bikulov, A. Kh., "On the ultrametricity of the fluctuation dynamicmobility of protein molecules," Proc. Steklov Inst. Math. 265(1), 75-81 (2009) [Tr. Mat. Inst. Steklova 265, 82-89 (2009) (Izbrannye Voprosy Matematicheskoy Fiziki i p-adicheskogo Analiza) (in Russian)]; Avetisov, V. A., Bikulov, A. Kh., and Zubarev, A. P., "First passage time distribution and the number of returns for ultrametric random walks," J. Phys. A 42(8), 085003 (2009); Avetisov, V. A., Bikulov, A. Kh., and Osipov, V. A., "p-adic models of ultrametric diffusion in the conformational dynamics of macromolecules," Proc. Steklov Inst. Math. 245(2), 48-57 (2004) [Tr. Mat. Inst. Steklova 245, 55-64 (2004) (Izbrannye Voprosy Matematicheskoy Fiziki i p-adicheskogo Analiza) (in Russian)]; Avetisov, V. A., Bikulov, A. Kh., and Osipov, V. A., "p-adic description of characteristic relaxation in complex systems," J. Phys. A 36(15), 4239-4246 (2003); Avetisov, V. A., Bikulov, A. H., Kozyrev, S. V., and Osipov, V. A., "p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes," J. Phys. A 35(2), 177-189 (2002); Avetisov, V. A., Bikulov, A. Kh., and Kozyrev, S. V., "Description of logarithmic relaxation by a model of a hierarchical random walk," Dokl. Akad. Nauk 368(2), 164-167 (1999) (in Russian). The fundamental solutions of these parabolic-type equations are transition functions of random walks on the n-dimensional vector space over the field of p-adic numbers. We study some properties of these random walks, including the first passage time.

  17. Cerebral vasoconstriction precedes orthostatic intolerance after parabolic flight

    NASA Technical Reports Server (NTRS)

    Serrador, J. M.; Shoemaker, J. K.; Brown, T. E.; Kassam, M. S.; Bondar, R. L.; Schlegel, T. T.

    2000-01-01

    The effects of brief but repeated bouts of micro- and hypergravity on cerebrovascular responses to head-up tilt (HUT) were examined in 13 individuals after (compared to before) parabolic flight. Middle cerebral artery mean flow velocity (MCA MFV; transcranial Doppler ultrasound), eye level blood pressure (BP) and end tidal CO(2) (P(ET)CO(2)) were measured while supine and during 80 degrees HUT for 30 min or until presyncope. In the postflight tests subjects were classified as being orthostatically tolerant (OT) (n = 7) or intolerant (OI) (n = 6). BP was diminished with HUT in the OT group in both tests (p < 0.05) whereas postflight BP was not different from supine in the OI group. Postflight compared to preflight, the reduction in P(ET)CO(2) with HUT (p < 0.05) increased in both groups, although significantly so only in the OI group (p < 0.05). The OI group also had a significant decrease in supine MCA MFV postflight (p < 0.05) that was unaccompanied by a change in supine P(ET)CO(2). The decrease in MCA MFV that occurred during HUT in both groups preflight (p < 0.05) was accentuated only in the OI group postflight, particularly during the final 30 s of HUT (p < 0.05). However, this accentuated decrease in MCA MFV was not correlated to the greater decrease in P(ET)CO(2) during the same period (R = 0.20, p = 0.42). Although cerebral vascular resistance (CVR) also increased in the OI group during the last 30 s of HUT postflight (p < 0.05), the dynamic autoregulatory gain was not simultaneously changed. Therefore, we conclude that in the OI individuals, parabolic flight was associated with cerebral hypoperfusion following a paradoxical augmentation of CVR by a mechanism that was not related to changes in autoregulation nor strictly to changes in P(ET)CO(2).

  18. Warsaw Catalogue of cometary orbits: 119 near-parabolic comets

    NASA Astrophysics Data System (ADS)

    Królikowska, Małgorzata

    2014-07-01

    Context. The dynamical evolution of near-parabolic comets strongly depends on the starting values of the orbital elements derived from the positional observations. In addition, when drawing conclusions about the origin of these objects, it is crucial to control the uncertainties of orbital elements at each stage of the dynamical evolution. Aims: I apply a completely homogeneous approach to determine the cometary orbits and their uncertainties. The resulting catalogue is suitable for the investigation of the origin and future of near-parabolic comets. Methods: First, osculating orbits were determined on the basis of positional data. Second, the dynamical calculations were performed backwards and forwards up to 250 au from the Sun to derive original and future barycentric orbits for each comet. In the present investigation of dynamical evolution, the numerical calculations for a given object start from the swarm of virtual comets constructed using the previously determined osculating (nominal) orbit. In this way, the uncertainties of orbital elements were derived at the end of numerical calculations. Results: Homogeneous sets of orbital elements for osculating, original and future orbits are given. The catalogue of 119 cometary orbits constitutes about 70 per cent of all the first class so-called Oort spike comets discovered during the period 1801-2010 and about 90 per cent of those discovered in 1951-2010, for which observations were completed at the end of 2013. Non-gravitational (NG) orbits are derived for 45 comets, including asymmetric NG solution for six of them. Additionally, the new method for cometary orbit-quality assessment is applied for all these objects. The catalogue is available at http://ssdp.cbk.waw.pl/LPCs and also at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/567/A126

  19. A polynomial based iterative method for linear parabolic equations

    SciTech Connect

    Schaefer, M.J.

    1987-05-01

    A new polynomial based method (PBM) is developed to integrate multi-dimensional linear parabolic initial-boundary-value problems. It is based on L/sub 2/-approximations to f(z) = (1 - exp(-z))/z, f(0) = 1, over ellipses in the complex plane using expansions of f in Chebychev polynomials. The calculation of the Fourier coefficients requires numerical integration over only a single line segment in the complex plane whose length and orientation depend on the step size and the parabolic operator itself. The simplicity with which these coefficients are obtained rests on special properties of the Chebychev polynomials. Most of the work in PBM consists of matrix-vector multiplications, involving a matrix L which arises from the spatial discretization of the differential operator. To be specific, PBM integrates the semi-discrete problem u/sub t/ = L(t)u + b(t), u,b in R/sup n/ and L in R/sup n x n/, and requires only a modest amount of storage (a few vectors of order n). Due to the analyticity of f it has good convergence properties and compares favorably to other standard methods from the classes of Hopscotch, Alternating Direction Implicit (ADI) and Locally One-Dimensional (LOD) schemes, as measured by the CPU-times required on a single CPU of a CRAY X-MP/24. It is also competitive with Crank-Nicolson which we couple with two proven iterative solvers. I recommend PBM on problems which require fourth order spatial accuracy, problems whose solutions contain significant high-frequency components, and problems whose operators cannot be split conveniently in an ADI or LOD fashion (for example, problems with mixed derivatives). 30 refs., 11 figs., 12 tabs.

  20. Effects of band non-parabolicity on cavity modes in photonic crystals

    NASA Astrophysics Data System (ADS)

    Lue, N.-Y.; Chen, Y.-S.; Wei, H.-S.; Wu, G. Y.

    2013-02-01

    We include the effect of band non-parabolicity on photonic defect states within the Wannier theory, which improves the quadratic approximation adopted by Painter et al. [Phys. Rev. B 68, 035214 (2003)] for large-size defects, as well as extends the theory to a wider range of defect size. A 2D hexagonal photonic crystal is considered, and analyzed for the origin and degree of non-parabolicity in the 1st TE band around J-point, and for the effect of non-parabolicity on acceptor type cavity modes. The non-parabolicity is shown to derive primarily from the inherent anisotropy of band dispersion around the point. Overall, with the inclusion of non-parabolicity, (i) mode degeneracy is lowered, (ii) the "binding energy" of a cavity mode is increased, and (iii) the cut-off of defect size for a given cavity mode is reduced, by as much as 35% in certain cases, in comparison with that calculated without the non-parabolicity. A simple "overall effective mass" picture is provided for the understanding of non-parabolicity effects.

  1. Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana.

    PubMed

    Paul, Anna-Lisa; Manak, Michael S; Mayfield, John D; Reyes, Matthew F; Gurley, William B; Ferl, Robert J

    2011-10-01

    Our primary objective was to evaluate gene expression changes in Arabidopsis thaliana in response to parabolic flight as part of a comprehensive approach to the molecular biology of spaceflight-related adaptations. In addition, we wished to establish parabolic flight as a tractable operations platform for molecular biology studies. In a succession of experiments on NASA's KC-135 and C-9 parabolic aircraft, Arabidopsis plants were presented with replicated exposure to parabolic flight. Transcriptome profiling revealed that parabolic flight caused changes in gene expression patterns that stood the statistical tests of replication on three different flight days. The earliest response, after 20 parabolas, was characterized by a prominence of genes associated with signal transduction. After 40 parabolas, this prominence was largely replaced by genes associated with biotic and abiotic stimuli and stress. Among these responses, three metabolic processes stand out in particular: the induction of auxin metabolism and signaling, the differential expression of genes associated with calcium-mediated signaling, and the repression of genes associated with disease resistance and cell wall biochemistry. Many, but not all, of these responses are known to be involved in gravity sensing in plants. Changes in auxin-related gene expression were also recorded by reporter genes tuned to auxin signal pathways. These data demonstrate that the parabolic flight environment is appropriate for molecular biology research involving the transition to microgravity, in that with replication, proper controls, and analyses, gene expression changes can be observed in the time frames of typical parabolic flight experiments. PMID:21970703

  2. Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source

    NASA Astrophysics Data System (ADS)

    Xiang, Tian

    2015-06-01

    In this paper, we are concerned with a general class of quasilinear parabolic-parabolic chemotaxis systems with/without growth source, under homogeneous Neumann boundary conditions in a smooth bounded domain Ω ⊂Rn with n ≥ 2. It is recently known that blowup is possible even in the presence of superlinear growth restrictions. Here, we derive new and interesting characterizations on the growth versus the boundedness. We show that the hard task of proving the L∞-boundedness of the cell density can be reduced to proving its Lr-boundedness. In other words, we show that the Lr-boundedness of the cell density can successfully guarantee its L∞-boundedness and hence its global boundedness, where r = n + ɛ or n/2 + ɛ depending on whether the growth restriction is essentially linear (including no growth) or superlinear. Hence, a blowup solution also blows up in Lp-norm for any suitably large p. More detailed information on how the growth source affects the boundedness of the solution is derived. These results reveal deep understandings of blowup mechanism for chemotaxis models. Then we use these criteria to establish uniform boundedness and hence global existence of the underlying models: logistic source in 2-D, cubic source as initially proposed by Mimura and Tsujikawa in 3-D, [ (n - 1) + ɛ ]st source in n-D with n ≥ 4. As a consequence, in a chemotaxis-growth model, blowup is impossible if the growth effect is suitably strong. Finally, we underline that our results remove the commonly assumed convexity on the domain Ω.

  3. Invariant differential operators for non-compact Lie algebras parabolically related to conformal Lie algebras

    NASA Astrophysics Data System (ADS)

    Dobrev, V. K.

    2013-02-01

    In the present paper we continue the project of systematic construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we call 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduce the new notion of parabolic relation between two non-compact semisimple Lie algebras G and G ' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E 7(7) which is parabolically related to the CLA E 7(-25) , the parabolic subalgebras including E 6(6) and E 6(-26). Other interesting examples are the orthogonal algebras so(p, q) all of which are parabolically related to the conformal algebra so( n, 2) with p + q = n + 2, the parabolic subalgebras including the Lorentz subalgebra so( n - 1, 1) and its analogs so( p - 1, q - 1). We consider also E6(6) and E6(2) which are parabolically related to the hermitian symmetric case E6(-14) , the parabolic subalgebras including real forms of sl(6). We also give a formula for the number of representations in the main multiplets valid for CLAs and all algebras that are parabolically related to them. In all considered cases we give the main multiplets of indecomposable elementary representations including the necessary data for all relevant invariant differential operators. In the case of so( p, q) we give also the reduced multiplets. We should stress that the multiplets are given in the most economic way in pairs of shadow fields. Furthermore we should stress that the classification of all invariant differential operators includes as special cases all possible conservation laws and conserved currents, unitary or not.

  4. A compact representation of drawing movements with sequences of parabolic primitives.

    PubMed

    Polyakov, Felix; Drori, Rotem; Ben-Shaul, Yoram; Abeles, Moshe; Flash, Tamar

    2009-07-01

    Some studies suggest that complex arm movements in humans and monkeys may optimize several objective functions, while others claim that arm movements satisfy geometric constraints and are composed of elementary components. However, the ability to unify different constraints has remained an open question. The criterion for a maximally smooth (minimizing jerk) motion is satisfied for parabolic trajectories having constant equi-affine speed, which thus comply with the geometric constraint known as the two-thirds power law. Here we empirically test the hypothesis that parabolic segments provide a compact representation of spontaneous drawing movements. Monkey scribblings performed during a period of practice were recorded. Practiced hand paths could be approximated well by relatively long parabolic segments. Following practice, the orientations and spatial locations of the fitted parabolic segments could be drawn from only 2-4 clusters, and there was less discrepancy between the fitted parabolic segments and the executed paths. This enabled us to show that well-practiced spontaneous scribbling movements can be represented as sequences ("words") of a small number of elementary parabolic primitives ("letters"). A movement primitive can be defined as a movement entity that cannot be intentionally stopped before its completion. We found that in a well-trained monkey a movement was usually decelerated after receiving a reward, but it stopped only after the completion of a sequence composed of several parabolic segments. Piece-wise parabolic segments can be generated by applying affine geometric transformations to a single parabolic template. Thus, complex movements might be constructed by applying sequences of suitable geometric transformations to a few templates. Our findings therefore suggest that the motor system aims at achieving more parsimonious internal representations through practice, that parabolas serve as geometric primitives and that non-Euclidean variables are employed in internal movement representations (due to the special role of parabolas in equi-affine geometry). PMID:19578429

  5. Effect of the charges of impurity on the refractive index changes in parabolic quantum dot

    NASA Astrophysics Data System (ADS)

    Huang, Jinsheng

    2013-01-01

    The linear and nonlinear refractive index changes (RICs) in a disc-like parabolic quantum dot (QD) with impurity between the ground (L=0) and the first excited state (L=1) have been examined based on the computed energies and wave functions. The parabolic QD without impurity was taken into account for comparison. We found that the linear and total RIC of impurity QD decrease as the charge of the impurity is increased and increase with characteristic dot radius decreasing. The maximum of linear RIC of parabolic QD without impurity remains constant for different confinement strengths.

  6. Solar power water distillation unit

    NASA Astrophysics Data System (ADS)

    Hameed, Kamran; Muzammil Khan, Muhammad; Shahrukh Ateeq, Ijlal; Omair, Syed Muhammad; Ahmer, Muhammad; Wajid, Abdul

    2013-06-01

    Clean drinking water is the basic necessity for every human being, but about 1.1 billion people in the world lacked proper drinking water. There are many different types of water purification processes such as filtration, reverse osmosis, ultraviolet radiation, carbon absorption, but the most reliable processes are distillation and boiling. Water purification, such as distillation, is especially important in regions where water resources or tap water is not suitable for ingesting without boiling or chemical treatment. In design project It treats the water by combining different methods such as Filtration, Distillation and a technique called concentrated solar power (CSP). Distillation is literally the method seen in nature, whereby: the sun heats the water on the earth's surface, the water is turned into a vapor (evaporation) and rises, leaving contaminants behind, to form clouds. As the upper atmosphere drops in temperature the vapors cool and convert back to water to form water. In this project distillation is achieved by using a parabolic mirror which boils water at high temperature. Filtration is done by sand filter and carbon filter. First sand filter catches the sand particles and the carbon filter which has granules of active carbon is used to remove odor dissolved gases from water. This is the Pre-treatment of water. The filtered water is then collected in a water container at a focus of parabolic mirror where distillation process is done. Another important feature of designed project is the solar tracking of a parabolic mirror which increases the efficiency of a parabolic mirror [1],[2].

  7. Biosignal alterations generated by parabolic flights of small aerobatic aircrafts

    NASA Astrophysics Data System (ADS)

    Simon, M. Jose; Perez-Poch, Antoni; Ruiz, Xavier; Gavalda, Fina; Saez, Nuria

    Since the pioneering works of Prof. Strughold in 1948, the aerospace medicine aimed to characterize the modifications induced in the human body by changes in the gravity level. In this respect, it is nowadays well known that one of the most serious problems of these kind of environments is the fluid shift. If this effect is enough severe and persistent, serious changes in the hemodynamic of the brain (cerebral blood flow and blood oxigenation level) appear which could be detected as alterations in the electroencephalogram, EEG [1]. Also, this fluid redistribution, together with the relocation of the heart in the thorax, induces detectable changes in the electrocardiogram, ECG [2]. Other kind of important problems are related with vestibular instability, kinetosis and illusory sensations. In particular since the seventies [3,4] it is known that in parabolic flights and due to eye movements triggered by the changing input from the otholith system, fixed real targets appeared to have moved downward while visual afterimages appeared to have moved upward (oculogravic illusions). In order to cover all the above-mentioned potential alterations, the present work, together with the gravity level, continuously monitors the electroencephalogram, EEG, the electrocardiogram, ECG and the electrooculogram, EOG of a normal subject trying to detect correlations between the different alterations observed in these signals and the changes of gravity during parabolic flights. The small aerobatic aircraft used is a CAP10B and during the flight the subject is located near the pilot. To properly cover all the range of accelerations we have used two sensitive triaxial accelerometers covering the high and low ranges of acceleration. Biosignals have been gathered using a Biopac data unit together with the Acknowledge software package (from BionicÔ). It is important to finally remark that, due to the obvious difference between the power of the different engines, the accelerometric characteristics of the aerobatic parabolic flights are different from the ones corresponding to the big Airbus-300 of Novespace-CNES-ESA aircraft. In this case, the two episodes of hypergravity reach 1.8g for 3 seconds with 20-25 seconds of low gravity in between whereas the small aerobatic plane reaches 3g level during roughly 2.5 seconds and 8 seconds period of low gravity. This means that the present potential alterations of the human body are more aggressive but also faster. [1] Y. Kawai, M. Doi, A. Setogawa, R. Shimoyama, K. Ueda, Y. Asai, K. Tatebayashi, Effects of Microgravity on Cerebral Hemodynamics, Yonago Acta Medica, 46 (2003) 1-8. [2] E.A.I. Aidu, V.G. Trunov, L.I. Titomir, A. Capderou, P. Vaïda, Transformation of Vectorcardiogram Due to Gravitation Alteration, Measurement, Science Review, 3 (2003) 29-32. [3] R.J. Von Baumgarten, G. Baldrighi, G.L. Schillinger, O. Harth, R. Thuemler, Vestibular function in the space environment, Acta Astronautica, 2 (1975) 49-58. [4] http://reversiblefigures.blogspot.com.es/p/outreach.html

  8. Nonlocal operators, parabolic-type equations, and ultrametric random walks

    SciTech Connect

    Chacón-Cortes, L. F. Zúñiga-Galindo, W. A.

    2013-11-15

    In this article, we introduce a new type of nonlocal operators and study the Cauchy problem for certain parabolic-type pseudodifferential equations naturally associated to these operators. Some of these equations are the p-adic master equations of certain models of complex systems introduced by Avetisov, V. A. and Bikulov, A. Kh., “On the ultrametricity of the fluctuation dynamicmobility of protein molecules,” Proc. Steklov Inst. Math. 265(1), 75–81 (2009) [Tr. Mat. Inst. Steklova 265, 82–89 (2009) (Izbrannye Voprosy Matematicheskoy Fiziki i p-adicheskogo Analiza) (in Russian)]; Avetisov, V. A., Bikulov, A. Kh., and Zubarev, A. P., “First passage time distribution and the number of returns for ultrametric random walks,” J. Phys. A 42(8), 085003 (2009); Avetisov, V. A., Bikulov, A. Kh., and Osipov, V. A., “p-adic models of ultrametric diffusion in the conformational dynamics of macromolecules,” Proc. Steklov Inst. Math. 245(2), 48–57 (2004) [Tr. Mat. Inst. Steklova 245, 55–64 (2004) (Izbrannye Voprosy Matematicheskoy Fiziki i p-adicheskogo Analiza) (in Russian)]; Avetisov, V. A., Bikulov, A. Kh., and Osipov, V. A., “p-adic description of characteristic relaxation in complex systems,” J. Phys. A 36(15), 4239–4246 (2003); Avetisov, V. A., Bikulov, A. H., Kozyrev, S. V., and Osipov, V. A., “p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes,” J. Phys. A 35(2), 177–189 (2002); Avetisov, V. A., Bikulov, A. Kh., and Kozyrev, S. V., “Description of logarithmic relaxation by a model of a hierarchical random walk,” Dokl. Akad. Nauk 368(2), 164–167 (1999) (in Russian). The fundamental solutions of these parabolic-type equations are transition functions of random walks on the n-dimensional vector space over the field of p-adic numbers. We study some properties of these random walks, including the first passage time.

  9. Midtemperature solar systems test facility predictions for thermal performance based on test data: Sun-Heet nontracking solar collector

    SciTech Connect

    Harrison, T.D.

    1981-03-01

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Sun-Heet nontracking, line-focusing parabolic trough collector at five cities in the US are presented. (WHK)

  10. 76 FR 54454 - Issuance of Loan Guarantee to Genesis Solar, LLC, for the Genesis Solar Energy Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... satisfied and adopted the Final EIS. (75 FR 78993; December 17, 2010) ADDRESSES: Copies of this Record of... concentrating solar electrical generating facility using parabolic trough technology with a dry-cooling system... Possible Land Use Plan Amendment'' in the Federal Register (74 FR 61167), with a 30-day scoping period...

  11. Generalized Directional Gradients, Backward Stochastic Differential Equations and Mild Solutions of Semilinear Parabolic Equations

    SciTech Connect

    Fuhrman, Marco Tessitore, Gianmario

    2005-05-15

    We study a forward-backward system of stochastic differential equations in an infinite-dimensional framework and its relationships with a semilinear parabolic differential equation on a Hilbert space, in the spirit of the approach of Pardoux-Peng. We prove that the stochastic system allows us to construct a unique solution of the parabolic equation in a suitable class of locally Lipschitz real functions. The parabolic equation is understood in a mild sense which requires the notion of a generalized directional gradient, that we introduce by a probabilistic approach and prove to exist for locally Lipschitz functions.The use of the generalized directional gradient allows us to cover various applications to option pricing problems and to optimal stochastic control problems (including control of delay equations and reaction-diffusion equations),where the lack of differentiability of the coefficients precludes differentiability of solutions to the associated parabolic equations of Black-Scholes or Hamilton-Jacobi-Bellman type.

  12. On the Approximate Controllability of Some Semilinear Parabolic Boundary-Value Problems

    SciTech Connect

    Diaz, J. I.; Henry, J.; Ramos, A. M.

    1998-01-15

    We prove the approximate controllability of several nonlinear parabolic boundary-value problems by means of two different methods: the first one can be called a Cancellation method and the second one uses the Kakutani fixed-point theorem.

  13. Hormonal responses of metoclopramide-treated subjects experiencing nausea or emesis during parabolic flight

    NASA Technical Reports Server (NTRS)

    Kohl, Randall L.

    1987-01-01

    The concentrations of adrenocorticotropic hormone (ACTH), vasopressin (AVP), epinephrine (EPI), and norepinephrine (NE) in 22 subjects administered 10 to 20 mg of metoclopramide prior to parabolic flight are measured. The effect of metoclopramide on motion sickness is examined. It is observed that metoclopramide is ineffective in the modulation of motion sickness due to stressful linear and angular acceleration and orbital flight, and it does not affect serum hormones prior to parabolic flight. It is detected that the serum level of AVP declines following emesis induced by parabolic flight and stressful angular acceleration; the serum levels of ACTH and EPI are elevated by parabolic flight and stressful angular acceleration; and serum NE is significantly elevated immediately following emesis. The possible roles of these hormones in the etiology of space motion sickness are discussed.

  14. A Class of Nonlocal Coupled Semilinear Parabolic System with Nonlocal Boundaries

    PubMed Central

    Liu, Hong; Lu, Haihua

    2014-01-01

    We investigate the positive solutions of the semilinear parabolic system with coupled nonlinear nonlocal sources subject to weighted nonlocal Dirichlet boundary conditions. The blow-up and global existence criteria are obtained. PMID:24696665

  15. General theme report: Working session 2, Solar thermal systems

    SciTech Connect

    Alpert, D.J.; Kolb, G.J.

    1991-01-01

    Currently, over 90% of the world's large-scale solar electric energy is generated with concentrating solar thermal power plants. Such plants have the potential to meet many of the world's future energy needs. Research efforts are generally focused on generating electricity, though a variety of other applications are being pursued. Today, the technology for using solar thermal energy is well developed, cost competitive, and in many cases, ready for widespread application. The current state of each of the solar thermal technologies and their applications is reviewed, and recommendations for increasing their use are presented. The technologies reviewed in detail are: parabolic trough systems, central tower systems, and parabolic dish systems. 20 refs., 1 fig., 1 tab.

  16. Air Brayton Solar Receiver, phase 2

    NASA Technical Reports Server (NTRS)

    Deanda, L. E.

    1981-01-01

    An air Brayton solar receiver (ABSR) is discussed. The ABSR consists of a cylindrical, insulated, offset plate fin heat exchanger which is mounted at the focal plane of a fully tracking parabolic solar collector. The receiver transfer heat from the concentrated solar radiation (which impinges on the inside walls of the heat exchanger) to the working fluid i.e., air. The hot air would then e used to drive a small Brayton cycle heat engine. The engine in turn drives a generator which produces electrical energy. Symmetrical and asymmetrical solar power input into the ABSR are analyzed. The symmetrical cases involve the baseline incident flux and the axially shifted incident fluxes. The asymmetrical cases correspond to the solar fluxes that are obtained by reduced solar input from one half of the concentrator or by receiver offset of plus or minus 1 inch from the concentrator optical axis.

  17. Global strong solution to the semi-linear Keller-Segel system of parabolic-parabolic type with small data in scale invariant spaces

    NASA Astrophysics Data System (ADS)

    Kozono, Hideo; Sugiyama, Yoshie

    We shall show existence of global strong solution to the semi-linear Keller-Segel system in R, n⩾3, of parabolic-parabolic type with small initial data u∈H(R) and v∈H(R) for max{1,n/4}

  18. Norwich Technologies' Advanced Low-Cost Receivers for Parabolic Troughs

    SciTech Connect

    Stettenheim, Joel; McBride, Troy O.; Brambles, Oliver J.; Cashin, Emil A.

    2013-12-31

    This report summarizes the successful results of our SunShot project, Advanced Low-Cost Receivers for Parabolic Troughs. With a limited budget of $252K and in only 12 months, we have (1) developed validated optical and thermal models and completed rigorous optimization analysis to identify key performance characteristics as part of developing first-generation laboratory prototype designs, (2) built optical and thermal laboratory prototypes and test systems with associated innovative testing protocols, and (3) performed extensive statistically relevant testing. We have produced fully functioning optical and thermal prototypes and accurate, validated models shown to capture important underlying physical mechanisms. The test results from the first-generation prototype establish performance exceeding the FOA requirement of thermal efficiency >90% for a CSP receiver while delivering an exit fluid temperature of > 650 °C and a cost < $150/kWth. Our vacuum-free SunTrap receiver design provides improvements over conventional vacuum-tube collectors, allowing dramatic reductions in thermal losses at high operating temperature.

  19. Using the parabolic equation for calculation of beam impedance

    NASA Astrophysics Data System (ADS)

    Stupakov, Gennady

    2006-11-01

    In this paper we develop a new method, using the parabolic equation (PE), for the calculation of both high-frequency and small-angle taper (or collimator) impedances. The applicability of the PE in the high-frequency limit is based on the observation that in this case the contribution to impedance comes from the electromagnetic waves that catch up with the beam far from the obstacle and propagate at small angles to the axis of the pipe. One of the most important advantages of the PE is that it eliminates the spatial scale of the small wavelength from the problem. As a result, the numerical solution of the PE requires coarser spatial meshes. In this paper we focus on the longitudinal impedance for an axisymmetric geometry and assume a perfect conductivity of the walls. We show how the known analytical results which include a small-angle collimator, step-in and step-out transitions, and a pillbox cavity, can be derived within the framework of the PE.

  20. Piracetam and fish orientation during parabolic aircraft flight

    NASA Technical Reports Server (NTRS)

    Hoffman, R. B.; Salinas, G. A.; Homick, J. L.

    1980-01-01

    Goldfish were flown in parabolic Keplerian trajectories in a KC-135 aircraft to assay both the effectiveness of piracetam as an antimotion sickness drug and the effectiveness of state-dependent training during periods of oscillating gravity levels. Single-frame analyses of infrared films were performed for two classes of responses - role rates in hypogravity or hypogravity orienting responses (LGR) and climbing responses in hypergravity or hypergravity orienting responses (HGR). In Experiment I, preflight training with the vestibular stressor facilitated suppression of LGR by the 10th parabola. An inverse correlation was found between the magnitudes of LGR and HGR. Piracetam was not effective in a state-dependent design, but the drug did significantly increase HGR when injected into trained fish shortly before flight. In Experiment II, injections of saline, piracetam, and modifiers of gamma-aminobutyric acid - aminooxyacetic acid (AOAA) and isonicotinic acid did not modify LGR. AOAA did significantly increase HGR. Thus, the preflight training has a beneficial effect in reducing disorientation in the fish in weightlessness, but the drugs employed were ineffective.

  1. Three-dimensional parabolic equation modeling of mesoscale eddy deflection.

    PubMed

    Heaney, Kevin D; Campbell, Richard L

    2016-02-01

    The impact of mesoscale oceanography, including ocean fronts and eddies, on global scale low-frequency acoustics is examined using a fully three-dimensional parabolic equation model. The narrowband acoustic signal, for frequencies from 2 to 16 Hz, is simulated from a seismic event on the Kerguellen Plateau in the South Indian Ocean to an array of receivers south of Ascension Island in the South Atlantic, a distance of 9100 km. The path was chosen for its relevance to seismic detections from the HA10 Ascension Island station of the International Monitoring System, for its lack of bathymetric interaction, and for the dynamic oceanography encountered as the sound passes the Cape of Good Hope. The acoustic field was propagated through two years (1992 and 1993) of the eddy-permitting ocean state estimation ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) system. The range of deflection of the back-azimuth was 1.8° with a root-mean-square of 0.34°. The refraction due to mesoscale oceanography could therefore have significant impacts upon localization of distant low-frequency sources, such as seismic or nuclear test events. PMID:26936572

  2. Motion sickness susceptibility in parabolic flight and velocity storage activity.

    PubMed

    DiZio, P; Lackner, J R

    1991-04-01

    In parabolic flight experiments, we have found post-rotary nystagmus to be differentially suppressed in free fall (OG) and in a high gravitoinertial force (1.8G) background relative to 1G. In addition, the influence of postrotary head movements on nystagmus suppression was found to be contingent on G level. The nature of this pattern indicated a G-dependency of the velocity storage and dumping mechanisms. Here, we have rank-correlated susceptibility to motion sickness during head movements in OG and 1.8G with the following: a) the decay time constant of the slow phase velocity of post-rotary nystagmus under 1G, no head movement, baseline conditions, b) the extent of time constant reduction elicited in OG and 1.8G; c) the extent of time constant reduction elicited by head tilts in 1G; and d) changes in the extent of time constant reduction in OG and 1.8G over repeated tests. Susceptibility was significantly correlated with the extent to which a head movement reduced the time constant in 1G, was weakly correlated with the baseline time constant, but was not correlated with the extent of reduction in OG or 1.8G. This pattern suggests a link between mechanisms evoking symptoms of space motion sickness and the mechanisms of velocity storage and dumping. Experimental means of evaluating this link are described. PMID:2031630

  3. Motion sickness susceptibility in parabolic flight and velocity storage activity

    NASA Technical Reports Server (NTRS)

    Dizio, Paul; Lackner, James R.

    1991-01-01

    In parabolic flight experiments, postrotary nystagmus is as found to be differentially suppressed in free fall (G) and in a high gravitoinertial force (1.8 G) background relative to 1 G. In addition, the influence of postrotary head movements on nystagmus suppression was found to be contingent on G-dependency of the velocity storage and dumping mechanisms. Here, susceptibility to motion sickness during head movements in 0 G and 1.8 G was rank-correlated with the following: (1) the decay time constant of the slow phase velocity of postrotary nystagmus under 1 G, no head movement, baseline conditions, (2) the extent of time constant reduction elicited in 0 G and 1.8 G; (3) the extent of time constant reduction elicited by head tilts in 1 G; and (4) changes in the extent of time constants reduction in 0 G and 1.8 G over repeated tests. Susceptibility was significantly correlated with the extent to which a head movement reduced the time constant in 1 G, was weakly correlated with the baseline time constant, but was not correlated with the extent of reduction in 0 G or 1.8 G. This pattern suggests a link between mechanisms evoking symptoms of space motion sickness and the mechanisms of velocity storage and dumping. Experimental means of evaluating this link are described.

  4. High Speed Analysis Of Free Flights With A Parabolic Thruster

    SciTech Connect

    Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter

    2010-05-06

    A laser-based rangefinder with high temporal resolution, synchronized with a laser burst, is employed for fast on-site analysis of pulsed free flights. Additional high speed recordings from two different angles of view allow for full 3D-reconstruction of the trajectory and calibration of the rangefinder data. This reveals the whole dynamics of the flyer including the lateral and angular impulse coupling components as well as information on the detonation process. The employment of an ignition pin enhances the reproducibility of the momentum coupling due to a more reliable plasma ignition during the flight. The impact of initial lateral offset is studied and shows beam-riding properties of the parabolic craft within a small range. Back-driving forces are derived and compared with the theoretical model. The flight stability is evaluated with respect to the minimization and compensation of the lateral and angular momentum in a hovering experiment. Stable laser acceleration ranges up to 3 m altitude. Ballistic free flights close to the laboratory ceiling at 7.8 m are reported.

  5. Efficient solution of parabolic equations by Krylov approximation methods

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Y.

    1990-01-01

    Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.

  6. Evaluation of aerosolized medications during parabolic flight maneuvers

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.; Martin, William J.; Gosbee, John

    1991-01-01

    The goal was to visually evaluate the effect gravity has on delivery of medications by the use of various aerosol devices. During parabolic flight the same four aerosols were retested as performed in studio ground tests. It appears that the Cetacaine spray and the Ventolin inhaler function without failure during all test. The pump spray (Nostril) appeared to function normally when the container was full, however it appeared to begin to fail to deliver a full mist with larger droplet size when the container was nearly empty. The simple hand spray bottle appeared to work when the container was full and performed progressively worse as the container was emptied. During Apollo flights, it was reported that standard spray bottles did not work well, however, they did not indicate why. It appears that we would also conclude that standard spray bottles do not function as well in zero gravity by failing to produce a normal mist spray. The standard spray bottle allowed the fluid to come out in a narrow fluid stream when held with the nozzle either level or slightly tilted upward.

  7. Stability in terms of two measures for a class of semilinear impulsive parabolic equations

    SciTech Connect

    Dvirnyj, Aleksandr I; Slyn'ko, Vitalij I

    2013-04-30

    The problem of stability in terms of two measures is considered for semilinear impulsive parabolic equations. A new version of the comparison method is proposed, and sufficient conditions for stability in terms of two measures are obtained on this basis. An example of a hybrid impulsive system formed by a system of ordinary differential equations coupled with a partial differential equation of parabolic type is given. The efficiency of the described approaches is demonstrated. Bibliography: 24 titles.

  8. Homogeneous Dirichlet problems for quasilinear anisotropic degenerate parabolic-hyperbolic equations

    NASA Astrophysics Data System (ADS)

    Li, Yachun; Wang, Qin

    The aim of this paper is to prove the well-posedness (existence and uniqueness) of entropy solutions to the general anisotropic degenerate parabolic-hyperbolic equations with L initial data and homogeneous Dirichlet boundary condition. We use the doubling variables device to prove a comparison theorem, which implies the uniqueness. The existence of entropy solutions can be obtained by finding the limit of solutions for the regularized equation of strictly parabolic type.

  9. Stability of undercompressive viscous shock profiles of hyperbolic-parabolic systems

    NASA Astrophysics Data System (ADS)

    Raoofi, Mohammadreza; Zumbrun, Kevin

    Extending to systems of hyperbolic-parabolic conservation laws results of Howard and Zumbrun for strictly parabolic systems, we show for viscous shock profiles of arbitrary amplitude and type that necessary spectral (Evans function) conditions for linearized stability established by Mascia and Zumbrun are also sufficient for linearized and nonlinear phase-asymptotic stability, yielding detailed pointwise estimates and sharp rates of convergence in L, 1?p??.

  10. What happens to the human heart in space? - Parabolic flights provide some answers

    NASA Astrophysics Data System (ADS)

    Aubert, André E.; Beckers, Frank; Verheyden, Bart; Plester, Vladimir

    2004-08-01

    Aircraft parabolic flights provide up to 20 seconds of reduced gravity repeatedly during ballistic flight manoeuvres. They are used to conduct short microgravity investigations in the physical- and life-sciences, to test instrumentation and to train astronauts for forthcoming space flights. The real value of parabolic flights lies, however, in the verification tests that can be conducted prior to taking experiments into space, in order to improve their quality and success rate.

  11. A parabolic function to modify Thornthwaite estimates of potential evapotranspiration for the eastern United States

    USGS Publications Warehouse

    McCabe, G.J., Jr.

    1989-01-01

    Errors of the Thornthwaite model can be analyzed using adjusted pan evaporation as an index of potential evapotranspiration. An examination of ratios of adjusted pan evaporation to Thornthwaite potential evapotranspiration indicates that the ratios are highest in the winter and lowest during summer months. This trend suggests a parabolic pattern. In this study a parabolic function is used to adjust Thornthwaite estimates of potential evapotranspiration. Forty locations east of the Rocky Mountains are analyzed. -from Author

  12. Iterative Methods for Solving Nonlinear Parabolic Problem in Pension Saving Management

    NASA Astrophysics Data System (ADS)

    Koleva, M. N.

    2011-11-01

    In this work we consider a nonlinear parabolic equation, obtained from Riccati like transformation of the Hamilton-Jacobi-Bellman equation, arising in pension saving management. We discuss two numerical iterative methods for solving the model problem—fully implicit Picard method and mixed Picard-Newton method, which preserves the parabolic characteristics of the differential problem. Numerical experiments for comparison the accuracy and effectiveness of the algorithms are discussed. Finally, observations are given.

  13. Explicit Nonlinear Finite Element Geometric Analysis of Parabolic Leaf Springs under Various Loads

    PubMed Central

    Kong, Y. S.; Omar, M. Z.; Chua, L. B.; Abdullah, S.

    2013-01-01

    This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability. PMID:24298209

  14. On the coupling of hyperbolic and parabolic systems: Analytical and numerical approach

    NASA Technical Reports Server (NTRS)

    Gastaldi, Fabio; Quarteroni, Alfio

    1988-01-01

    The coupling of hyperbolic and parabolic systems is discussed in a domain Omega divided into two distinct subdomains omega(+) and omega(-). The main concern is to find the proper interface conditions to be fulfilled at the surface separating the two domains. Next, they are used in the numerical approximation of the problem. The justification of the interface conditions is based on a singular perturbation analysis, i.e., the hyperbolic system is rendered parabolic by adding a small artifical viscosity. As this goes to zero, the coupled parabolic-parabolic problem degenerates into the original one, yielding some conditions at the interface. These are taken as interface conditions for the hyperbolic-parabolic problem. Actually, two alternative sets of interface conditions are discussed according to whether the regularization procedure is variational or nonvariational. It is shown how these conditions can be used in the frame of a numerical approximation to the given problem. Furthermore, a method of resolution is discussed which alternates the resolution of the hyperbolic problem within omega(-) and of the parabolic one within omega(+). The spectral collocation method is proposed, as an example of space discretization (different methods could be used as well); both explicit and implicit time-advancing schemes are considered. The present study is a preliminary step toward the analysis of the coupling between Euler and Navier-Stokes equations for compressible flows.

  15. Comparison of parabolic filtration methods for 3D filtered back projection in pulsed EPR imaging

    NASA Astrophysics Data System (ADS)

    Qiao, Zhiwei; Redler, Gage; Epel, Boris; Halpern, Howard J.

    2014-11-01

    Pulse electron paramagnetic resonance imaging (Pulse EPRI) is a robust method for noninvasively measuring local oxygen concentrations in vivo. For 3D tomographic EPRI, the most commonly used reconstruction algorithm is filtered back projection (FBP), in which the parabolic filtration process strongly influences image quality. In this work, we designed and compared 7 parabolic filtration methods to reconstruct both simulated and real phantoms. To evaluate these methods, we designed 3 error criteria and 1 spatial resolution criterion. It was determined that the 2 point derivative filtration method and the two-ramp-filter method have unavoidable negative effects resulting in diminished spatial resolution and increased artifacts respectively. For the noiseless phantom the rectangular-window parabolic filtration method and sinc-window parabolic filtration method were found to be optimal, providing high spatial resolution and small errors. In the presence of noise, the 3 point derivative method and Hamming-window parabolic filtration method resulted in the best compromise between low image noise and high spatial resolution. The 3 point derivative method is faster than Hamming-window parabolic filtration method, so we conclude that the 3 point derivative method is optimal for 3D FBP.

  16. Comparison of Parabolic Filtration Methods for 3D Filtered Back Projection in Pulsed EPR Imaging

    PubMed Central

    Qiao, Zhiwei; Redler, Gage; Epel, Boris; Halpern, Howard J

    2015-01-01

    Pulse electron paramagnetic resonance imaging (Pulse EPRI) is a robust method for noninvasively measuring local oxygen concentrations in vivo. For 3D tomographic EPRI, the most commonly used reconstruction algorithm is filtered back projection (FBP), in which the parabolic filtration process strongly influences image quality. In this work, we designed and compared 7 parabolic filtration methods to reconstruct both simulated and real phantoms. To evaluate these methods, we designed 3 error criteria and 1 spatial resolution criterion. It was determined that the 2 point derivative filtration method and the two-ramp-filter method have unavoidable negative effects resulting in diminished spatial resolution and increased artifacts respectively. For the noiseless phantom the rectangular-window parabolic filtration method and sinc-window parabolic filtration method were found to be optimal, providing high spatial resolution and small errors. In the presence of noise, the 3 point derivative method and Hamming-window parabolic filtration method resulted in the best compromise between low image noise and high spatial resolution. The 3 point derivative method is faster than Hamming-window parabolic filtration method, so we conclude that the 3 point derivative method is optimal for 3D FBP. PMID:25314081

  17. Exact analytic flux distributions for two-dimensional solar concentrators.

    PubMed

    Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M

    2013-07-01

    A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers. PMID:23842256

  18. The Pressure-Cooker Presidency

    ERIC Educational Resources Information Center

    McLaughlin, Judith Block

    2006-01-01

    When the AGB task force on the state of the Presidency in American Higher Education was meeting last fall in Washington, D.C., to deliberate about the role of the academic presidency, the Secretary of Education's Commission on the Future of Higher Education convened across town to examine issues ranging from access to affordability to…

  19. Parabolic Anderson Model in a Dynamic Random Environment: Random Conductances

    NASA Astrophysics Data System (ADS)

    Erhard, D.; den Hollander, F.; Maillard, G.

    2016-06-01

    The parabolic Anderson model is defined as the partial differential equation ∂ u( x, t)/ ∂ t = κ Δ u( x, t) + ξ( x, t) u( x, t), x ∈ ℤ d , t ≥ 0, where κ ∈ [0, ∞) is the diffusion constant, Δ is the discrete Laplacian, and ξ is a dynamic random environment that drives the equation. The initial condition u( x, 0) = u 0( x), x ∈ ℤ d , is typically taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2 d κ, split into two at rate ξ ∨ 0, and die at rate (- ξ) ∨ 0. In earlier work we looked at the Lyapunov exponents λ p(κ ) = limlimits _{tto ∞} {1}/{t} log E ([u(0,t)]p)^{1/p}, quad p in N, qquad λ 0(κ ) = limlimits _{tto ∞} {1}/{t}log u(0,t). For the former we derived quantitative results on the κ-dependence for four choices of ξ : space-time white noise, independent simple random walks, the exclusion process and the voter model. For the latter we obtained qualitative results under certain space-time mixing conditions on ξ. In the present paper we investigate what happens when κΔ is replaced by Δ𝓚, where 𝓚 = {𝓚( x, y) : x, y ∈ ℤ d , x ˜ y} is a collection of random conductances between neighbouring sites replacing the constant conductances κ in the homogeneous model. We show that the associated annealed Lyapunov exponents λ p (𝓚), p ∈ ℕ, are given by the formula λ p(K ) = {sup} {λ p(κ ) : κ in {Supp} (K )}, where, for a fixed realisation of 𝓚, Supp(𝓚) is the set of values taken by the 𝓚-field. We also show that for the associated quenched Lyapunov exponent λ 0(𝓚) this formula only provides a lower bound, and we conjecture that an upper bound holds when Supp(𝓚) is replaced by its convex hull. Our proof is valid for three classes of reversible ξ, and for all 𝓚 satisfying a certain clustering property, namely, there are arbitrarily large balls where 𝓚 is almost constant and close to any value in Supp(𝓚). What our result says is that the annealed Lyapunov exponents are controlled by those pockets of 𝓚 where the conductances are close to the value that maximises the growth in the homogeneous setting. In contrast our conjecture says that the quenched Lyapunov exponent is controlled by a mixture of pockets of 𝓚 where the conductances are nearly constant. Our proof is based on variational representations and confinement arguments.

  20. Cluster eye camera using microlenses on parabolic surface

    NASA Astrophysics Data System (ADS)

    Shen, Hui-Kai; Su, Guo-Dung J.

    2013-10-01

    There are two main types of imaging systems that exist in nature: the single aperture eye and the compound eye. Usually, cameras and most of artificial imaging systems are similar to the single aperture eye. But compound lenses can be more compact than single lenses. Our design is based on insect compound eyes, which also have a wide field of view (FOV). With the rise of micro-optical techniques, fabricating compound lenses has become easier. The simplest form of a curved microlens array is a parabolic surface. In this paper, we proposed a multi-channel imaging system, which combines the principles of the insect compound eye and the human eye. The optical system enables the reduction of track length of the imaging optics to achieve miniaturization. With the aid of optical engineering software ZEMAX, the multi-channel structure is simulated by a curved microlens array, and we use a Hypergon lens as the main lens to simulate the human eye, which can achieve the purpose of the wide FOV. With this architecture, each microlens of a microlens array transmits a segment of the overall FOV. The partial images that are separately recorded in different channels are stitched together to form the final image of the whole FOV by software processing. A 2.74 mm thin imaging system with 59 channels and 90° FOV is optimized using ZEMAX sequential ray tracing software on a 6.16 mm × 4.62 mm image plane. Finally, we will discuss the simulation results of this system and compare it with the optical cluster eye system and a mobile phone patent.

  1. Parabolized Navier-Stokes Investigations of Hypersonic Intake Flows

    NASA Astrophysics Data System (ADS)

    Prince, S. A.; Williams, M. J.

    It is widely acknowledged that Parabolized Navier-Stokes (PNS) space marching is more efficient than time marching NS for the solution of supersonic and hypersonic viscous flow problems. The method, however, cannot deal with cases of strong upstream influence and subsequent streamwise flow separation without special treatment. This paper examines the applicabil- ity of the PNS equations to the prediction of flows associated with hypersonic propulsion and assesses the suitability of a multiple sweep algorithm to deal with the prediction of the flow in regions of strong streamwise adverse pressure gradient. Four experimental test cases of increasing complexity in terms of flow physics were chosen, each of which provided validation data for the type of flows which develop in the intakes of hypersonic propulsion systems such as the scramjet. A PNS solver has been shown to accurately predict these hypersonic flow fields including the complex shock-shock and shock-boundary layer interactions and associated flow separations and the resulting vortices which affect propulsion efficiency. A multiple sweep algorithm, applied to a manually defined region ahead of a compression ramp, has also been shown to deal with the accurate prediction of shock induced streamwise flow separation. The PNS space marching technique has been demonstrated to be significantly more efficient than a time marching solver, using the same computational grid, whilst providing results of comparable accuracy, even with the application of multiple sweeping. In addition the PNS solutions to these standard test cases have been shown to resolve small secondary flow features not seen in other studies such as corner vortices and embedded vortex shocks. This is because the PNS space marching approach, which stores only two or three 2-D grid planes at any one time, is able to employ computational grids of such a large size that memory requirements would be prohibitive for use with a 3D time marching code.

  2. Universal solar energy desalination system

    NASA Astrophysics Data System (ADS)

    Fusco, V. S.

    Design considerations to allow site-dependent flexibility in the choice of solar/wind powered desalinization plant configurations are discussed. A prototype design was developed for construction of 6300 cu m per day brackish water treatment in Brownsville, TX. The water is treated to reduce the amount of suspended solids and prevent scaling. A reverse osmosis unit processes the treated liquid to recover water at a ratio of 90%. The power system comprises a parabolic trough solar thermal system with an organic Rankine cycle generator, rock-oil thermal storage, and 200 kW wind turbines. Analysis of the complementarity of the solar and wind subsystems indicates that at any site one system will supplement the other. Energy storage, e.g., battery banks, would increase system costs to unacceptable levels. Climatic conditions will significantly influence the sizing of each segment of the total power system.

  3. Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect

    Not Available

    2010-12-01

    Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.

  4. Solar thermal electricity generation

    NASA Astrophysics Data System (ADS)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish with stirling engine conversion and redox advanced battery storage (PFDR/S-RAB); and (8) parabolic trough with oil/rock storage (LFDR/R-HT-45). Key annual efficiency and economic results of the study are highlighted in tabular format for plant sizes and capacity factor that resulted in the lowest LEC over the analysis range.

  5. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    SciTech Connect

    Gawlik, Keith

    2013-06-25

    Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

  6. Influence of adhesive shear deformation on laminate structural behavior with application to parabolic trough solar collectors

    NASA Astrophysics Data System (ADS)

    Clauss, D. B.; Reuter, R. C., Jr.

    1983-02-01

    A simplified theory for the bending behavior of a thin flat bilamina panel was developed which includes the effects of shear deformation in the central adhesive layer. Static equilibrium equations for elastic thermomechanical cylindrical bending of a thin plate are used. A solution form is proposed which greatly facilitates application of this theory to structural panels with numerous discrete property changes in the variable direction. The influence of adhesive shear stiffness parameters upon overall laminate behavior is characterized through numerical examples typifying various thermal and mechanical loading conditions.

  7. Solar water disinfection

    SciTech Connect

    Anderson, R.; Collier, R.

    1996-11-01

    Non-potable drinking water is a major problem for much of the world`s population. It has been estimated that from 15 to 20 million children under the age of 5 die from diarrheal conditions brought on by infected drinking water every year. This is equivalent to a fully-loaded DC-10 crashing every ten minutes of every day, 365 days a year. Heat is one of the most effective methods of disinfecting drinking water. Using conventional means of heating water (heating on an open-flamed stove) results in an extremely energy-intensive process. The main obstacle is that for areas of the world where potable water is a problem, fuel supplies are either too expensive, not available, or the source of devastating environmental problems (deforestation). The apparatus described is a solar-powered water disinfection device that can overcome most if not all of the barriers that presently limit technological solutions to drinking water problems. It uses a parabolic trough solar concentrator with a receiver tube that is also a counterflow heat exchanger. The system is totally self-contained utilizing a photovoltaic-powered water pump, and a standard automotive thermostat for water flow control. The system is designed for simplicity, reliability and the incorporation of technology readily accessible in most areas of the world. Experiments at the Florida Solar Energy Center have demonstrated up to 2,500 liters of safe drinking water per day with 28 square meters of solar concentrator.

  8. Curvilinear parabolic approximation for surface wave transformation with wave-current interaction

    SciTech Connect

    Shi Fengyan . E-mail: fyshi@coastal.udel.edu; Kirby, James T.

    2005-04-10

    The direct coordinate transformation method, which only transforms independent variables and retains Cartesian dependent variables, may not be an appropriate method for the purpose of simplifying the curvilinear parabolic approximation of the vector form of the wave-current equation given by Kirby [Higher-order approximations in the parabolic equation method for water waves, J. Geophys. Res. 91 (1986) 933-952]. In this paper, the covariant-contravariant tensor method is used for the curvilinear parabolic approximation. We use the covariant components of the wave number vector and contravariant components of the current velocity vector so that the derivation of the curvilinear equation closely follows the higher-order approximation in rectangular Cartesian coordinates in Kirby [Higher-order approximations in the parabolic equation method for water waves, J. Geophys. Res. 91 (1986) 933-952]. The resulting curvilinear equation can be easily implemented using the existing model structure and numerical schemes adopted in the Cartesian parabolic wave model [J.T. Kirby, R.A. Dalrymple, F. Shi, Combined Refraction/Diffraction Model REF/DIF 1, Version 2.6. Documentation and User's Manual, Research Report, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware, Newark, 2004]. Several examples of wave simulations in curvilinear coordinate systems, including a case with wave-current interaction, are shown with comparisons to theoretical solutions or measurement data.

  9. Interband magneto-spectroscopy in InSb square and parabolic quantum wells

    SciTech Connect

    Kasturiarachchi, T.; Edirisooriya, M.; Mishima, T. D.; Doezema, R. E.; Santos, M. B.; Saha, D.; Pan, X.; Sanders, G. D.; Stanton, C. J.

    2015-06-07

    We measure the magneto-optical absorption due to intersubband optical transitions between conduction and valence subband Landau levels in InSb square and parabolic quantum wells. InSb has the narrowest band gap (0.24 eV at low temperature) of the III–V semiconductors leading to a small effective mass (0.014 m{sub 0}) and a large g–factor (−51). As a result, the Landau level spacing is large at relatively small magnetic fields (<8 T), and one can observe spin-splitting of the Landau levels. We examine two structures: (i) a multiple-square-well structure and (ii) a structure containing multiple parabolic wells. The energies and intensities of the strongest features are well explained by a modified Pidgeon-Brown model based on an 8-band k•p model that explicitly incorporates pseudomorphic strain. The strain is essential for obtaining agreement between theory and experiment. While modeling the square well is relatively straight-forward, the parabolic well consists of 43 different layers of various thickness to approximate a parabolic potential. Agreement between theory and experiment for the parabolic well validates the applicability of the model to complicated structures, which demonstrates the robustness of our model and confirms its relevance for developing electronic and spintronic devices that seek to exploit the properties of the InSb band structure.

  10. Protective telescoping shield for solar concentrator

    NASA Technical Reports Server (NTRS)

    Argoud, M. J.; Walker, W. L.; Butler, L. V. (inventors)

    1986-01-01

    An apparatus is described for use with a solar concentrator such as a parabolic dish which concentrates sunlight onto a small opening of a solar receiver, for protecting the receiver in the event of a system failure that could cause concentrated sunlight to damage the receiver. The protective apparatus includes a structure which can be moved to a stowed position where it does not block sunlight, to a deployed position. In this position, the structure forms a tube which substantially completely surrounds an axis connecting the receiver opening to the center of the concentrator at locations between the receiver and the concentrator.

  11. Solar photovoltaic reflective trough collection structure

    SciTech Connect

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  12. Environmental Controls and Eco-geomorphic Interactions of the Barchan-to-parabolic Dune Stabilisation and the Parabolic-to-barchan Dune Reactivation

    NASA Astrophysics Data System (ADS)

    Yan, Na; Baas, Andreas

    2015-04-01

    Parabolic dunes are one of a few common aeolian landforms which are highly controlled by eco-geomorphic interactions. Parabolic dunes, on the one hand, can be developed from highly mobile dune landforms, barchans for instance, in an ameliorated vegetation condition; or on the other hand, they can be reactivated and transformed back into mobile dunes due to vegetation deterioration. The fundamental mechanisms and eco-geomorphic interactions controlling both dune transformations remain poorly understood. To bridge the gap between complex processes involved in dune transformations on a relatively long temporal scale and real world monitoring records on a very limited temporal scale, this research has extended the DECAL model to incorporate 'dynamic' growth functions and the different 'growth' of perennial shrubs between growing and non-growing seasons, informed by field measurements and remote sensing analysis, to explore environmental controls and eco-geomorphic interactions of both types of dune transformation. A non-dimensional 'dune stabilising index' is proposed to capture the interactions between environmental controls (i.e. the capabilities of vegetation to withstand wind erosion and sand burial, the sandy substratum thickness, the height of the initial dune, and the sand transport potential), and establish the linkage between these controls and the geometry of a stabilising dune. An example demonstrates how to use the power-law relationship between the dune stabilising index and the normalised migration distance to assist in extrapolating the historical trajectories of transforming dunes. The modelling results also show that a slight increase in vegetation cover of an initial parabolic dune can significantly increase the reactivation threshold of climatic impact (both drought stress and wind strength) required to reactivate a stabilising parabolic dune into a barchan. Four eco-geomorphic interaction zones that govern a barchan-to-parabolic dune transformation and a parabolic-to-barchan dune transformation have been identified. These zones exhibit different characteristics and dynamics that are sensitive to changes in environmental forces, and can be potentially used as a proxy to monitor the mobility of a dune system.

  13. Pasteurization of naturally contaminated water with solar energy

    SciTech Connect

    Ciochetti, D.A.; Metcalf, R.H.

    1984-02-01

    A solar box cooker (SBC) was constructed with a cooking area deep enough to hold several 3.7-liter jugs of water, and this was used to investigate the potential of using solar energy to pasteurize naturally contaminated water. When river water was heated either in the SBC or on a hot plate, coliform bacteria were inactivated at temperatures of 60/sup 0/C or greater. Heating water in an SBC to at least 65/sup 0/C ensures that the water will be above the milk pasteurization temperature of 62.8/sup 0/C for at least an hour, which appears sufficient to pasteurize contaminated water. On clear or partly cloudy days, with the SBC facing magnetic south in Sacramento, bottom water temperatures of at least 65/sup 0/C could be obtained in 11.1 liters of water during the 6 weeks on either side of the summer solstice, in 7.4 liters of water from mid-March through mid-September, and in 3.7 liters of water an additional 2 to 3 weeks at the beginning and end of the solar season. Periodic repositioning of the SBC towards the sun, adjusting the back reflective lid, and preheating water in a simple reflective device increased final water temperatures. Simultaneous cooking and heating water to pasteurizing temperatures was possible. Additional uses of the SBC to pasteurize soil and to decontaminate hospital materials before disposal in remote areas are suggested. 14 references.

  14. Pasteurization of naturally contaminated water with solar energy.

    PubMed Central

    Ciochetti, D A; Metcalf, R H

    1984-01-01

    A solar box cooker (SBC) was constructed with a cooking area deep enough to hold several 3.7-liter jugs of water, and this was used to investigate the potential of using solar energy to pasteurize naturally contaminated water. When river water was heated either in the SBC or on a hot plate, coliform bacteria were inactivated at temperatures of 60 degrees C or greater. Heating water in an SBC to at least 65 degrees C ensures that the water will be above the milk pasteurization temperature of 62.8 degrees C for at least an hour, which appears sufficient to pasteurize contaminated water. On clear or partly cloudy days, with the SBC facing magnetic south in Sacramento, bottom water temperatures of at least 65 degrees C could be obtained in 11.1 liters of water during the 6 weeks on either side of the summer solstice, in 7.4 liters of water from mid-March through mid-September, and in 3.7 liters of water an additional 2 to 3 weeks at the beginning and end of the solar season. Periodic repositioning of the SBC towards the sun, adjusting the back reflective lid, and preheating water in a simple reflective device increased final water temperatures. Simultaneous cooking and heating water to pasteurizing temperatures was possible. Additional uses of the SBC to pasteurize soil and to decontaminate hospital materials before disposal in remote areas are suggested. PMID:6712206

  15. Investigation of reliability attributes and accelerated stress factors on terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1982-01-01

    The accelerated stress test results obtained on all terrestrial solar cells since the inception of the program are summarized. Tested cells were grouped according to the method used to form the conductive metallization layer: solder dipped, vacuum deposited, screen printed, and copper plated. Although metallization systems within each group were quite similar, they differed in numerous details according to the procedures employed by each manufacturer. Test results were summarized for all cells according to both electrical degradation and catastrophic mechanical changes. These results indicated a variability within each metallization category which was dependent on the manufacturer. Only one manufacturer was represented in the copper plated category and, although these showed no signs of detrimental copper diffusion during high temperature testing, their metallization was removed easily during high humidity pressure cooker testing. Preliminary testing of encapsulated cells showed no major differences between encapsulated and unencapsulated cells when subjected to accelerated testing.

  16. Wind load design methods for ground-based heliostats and parabolic dish collectors

    SciTech Connect

    Peterka, J A; Derickson, R G

    1992-09-01

    The purpose of this design method is to define wind loads on flat heliostat and parabolic dish collectors in a simplified form. Wind loads are defined for both mean and peak loads accounting for the protective influence of upwind collectors, wind protective fences, or other wind-blockage elements. The method used to define wind loads was to generalize wind load data obtained during tests on model collectors, heliostats or parabolic dishes, placed in a modeled atmospheric wind in a boundary-layer wind-tunnel at Colorado State University. For both heliostats and parabolic dishes, loads are reported for solitary collectors and for collectors as elements of a field. All collectors were solid with negligible porosity; thus the effects of porosity in the collectors is not addressed.

  17. The heat-balance integral: 1. How to calibrate the parabolic profile?

    NASA Astrophysics Data System (ADS)

    Hristov, Jordan

    The Heat-Balance Integral Method (HBIM) of Goodman under classic prescribed temperature boundary conditions has been studied towards it optimization. Because the parabolic profile satisfies both the boundary conditions and the heat-balance integral at any value of the exponent the calibration is of a primary importance in generation of the approximate solution. The simple 1-D heat conduction problem, enabling one to demonstrate the HBIM performance with the entropy generation minimization (EGM) concept in calibration of a parabolic temperature profile with unspecified exponents, has been developed. The EGM concept provides constraints that impose addition boundary conditions at the approximate parabolic profile. Additionally, entire domain optimizations based on the mean-squared error concept has been performed in two versions - the method Myers and through a similarity transformed diffusion equation.

  18. Dynamic parabolic pulse generation using temporal shaping of wavelength to time mapped pulses.

    PubMed

    Nguyen, Dat; Piracha, Mohammad Umar; Mandridis, Dimitrios; Delfyett, Peter J

    2011-06-20

    Self-phase modulation in fiber amplifiers can significantly degrade the quality of compressed pulses in chirped pulse amplification systems. Parabolic pulses with linear frequency chirp are suitable for suppressing nonlinearities, and to achieve high peak power pulses after compression. In this paper, we present an active time domain technique to generate parabolic pulses for chirped pulse amplification applications. Pulses from a mode-locked laser are temporally stretched and launched into an amplitude modulator, where the drive voltage is designed using the spectral shape of the input pulse and the transfer function of the modulator, resulting in the generation of parabolic pulses. Experimental results of pulse shaping with a pulse train from a mode-locked laser are presented, with a residual error of less than 5%. Moreover, an extinction ratio of 27 dB is achieved, which is ideal for chirped pulse amplification applications. PMID:21716467

  19. Quantum crystal growing: adiabatic preparation of a bosonic antiferromagnet in the presence of a parabolic inhomogeneity

    NASA Astrophysics Data System (ADS)

    Gammelmark, Søren; Eckardt, André

    2013-03-01

    We theoretically study the adiabatic preparation of an antiferromagnetic phase in a mixed Mott insulator of two bosonic atom species in a one-dimensional optical lattice. In such a system one can engineer a tunable parabolic inhomogeneity by controlling the difference of the trapping potentials felt by the two species. Using numerical simulations we predict that a finite parabolic potential can assist the adiabatic preparation of the antiferromagnet. The optimal strength of the parabolic inhomogeneity depends sensitively on the number imbalance between the two species. We also find that during the preparation finite size effects will play a crucial role for a system of realistic size. The experiment that we propose can be realized, for example, using atomic mixtures of rubidium 87 with potassium 41, or ytterbium 168 with ytterbium 174.

  20. A parabolic analogue of the higher-order comparison theorem of De Silva and Savin

    NASA Astrophysics Data System (ADS)

    Banerjee, Agnid; Garofalo, Nicola

    2016-01-01

    We show that the quotient of two caloric functions which vanish on a portion of the lateral boundary of a H k + α domain is H k + α up to the boundary for k ≥ 2. In the case k = 1, we show that the quotient is in H 1 + α if the domain is assumed to be space-time C 1, α regular. This can be thought of as a parabolic analogue of a recent important result in [8], and we closely follow the ideas in that paper. We also give counterexamples to the fact that analogous results are not true at points on the parabolic boundary which are not on the lateral boundary, i.e., points which are at the corner and base of the parabolic boundary.

  1. Solar cell arrangement

    SciTech Connect

    Dahlberg, R.

    1981-09-22

    A solar cell arrangement comprises a first plate or disc of light transmissive material, one side of the first plate or disc having a structure of light transmissive elevations tapering parabolically and cut off parallel to the surface of the plate or disc at the level of their focal points or lines, the structure having a layer of at least partially light transmissive electrically conductive material on the surface of the elevations and a second plate or disc of semiconductor or metallically conducting material, the plate or discs being assembled together to provide photo voltaic and electical contacts between the said cut off surfaces, of one plate or disc and the surface of the other plate or disc such that light passing through the first plate is concentrated at the contacts.

  2. UPC BarcelonaTech Platform. Innovative aerobatic parabolic flights for life sciences experiments.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni; Gonzalez, Daniel

    We present an innovative method of performing parabolic flights with aerobatic single-engine planes. A parabolic platform has been established in Sabadell Airport (Barcelona, Spain) to provide an infraestructure ready to allow Life Sciences reduced gravity experiments to be conducted in parabolic flights. Test flights have demonstrated that up to 8 seconds of reduced gravity can be achieved by using a two-seat CAP10B aircraft, with a gravity range between 0.1 and 0.01g in the three axis. A parabolic flight campaign may be implemented with a significant reduction in budget compared to conventional parabolic flight campaigns, and with a very short time-to-access to the platform. Operational skills and proficiency of the pilot controling the aircraft during the maneuvre, sensitivity to wind gusts, and aircraft balance are the key issues that make a parabola successful. Efforts are focused on improving the total “zero-g” time and the quality of reduced gravity achieved, as well as providing more space for experiments. We report results of test flights that have been conducted in order to optimize the quality and total microgravity time. A computer sofware has been developed and implemented to help the pilot optimize his or her performance. Finally, we summarize the life science experiments that have been conducted in this platform. Specific focus is given to the very successful 'Barcelona ZeroG Challenge', this year in its third edition. This educational contest gives undergraduate and graduate students worldwide the opportunity to design their research within our platform and test it on flight, thus becoming real researchers. We conclude that aerobatic parabolic flights have proven to be a safe, unexpensive and reliable way to conduct life sciences reduced gravity experiments.

  3. Research and Development of a Low Cost Solar Collector

    SciTech Connect

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01

    This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the industry benchmark reference was approximately 16.5% against the industry benchmark. The new BPFC design showed a weight savings of almost 36% compared to the optimized parabolic trough and a 50% reduction in field assembly labor and a 13% reduction in shipping volume. The BPFC design showed only a marginal improvement of 16% over the fully projected installed cost of the optimized parabolic trough benchmark developed as Concept One. During the course of the investigation numerous sensitivity analyses and other analytical studies were conducted to assess potential improvement opportunities, and further optimizations that could lead to cost reductions and performance improvements. Factors that could have a significant impact on high-volume costs were related to production and further improvements in design for manufacturability, automation, assembly jigs, and fixtures, and robotic welding etc. The wind modeling analysis showed that the Fresnel design concept did not reduce the wind load in a significant manner. The stress analysis showed that the design concept with almost a 36% lower weight than the parabolic trough and it was strong enough to withstand the expected wind loads and maintain targeting accuracy. The Initial on-sun optical testing showed that the Fresnel Trough was capable of concentrating sunlight effectively to the desired target and yielding an optical efficiency slightly lower than a parabolic trough.

  4. Geometry Optimization of 3D Micro Gas Thrust Bearing with Partial Parabolic Grooves Texturing

    NASA Astrophysics Data System (ADS)

    Zhang, Yongfang; Chao, Huanhuan; Zhang, Xingwang; Liu, Cheng

    In order to maximize the load-carrying capacity of micro gas thrust bearing with parabolic texture grooves for different convergence ratios, a multi-objective optimization approach, combining CFD code and particle swarm optimization (PSO) algorithm, was employed to implement geometry parametric optimization of textured gas thrust bearing based on Pareto dominance. The optimization results showed that the load-carrying capacity is greatly improved for the bearing with optimized parameters. Based on the optimization results, a set of formulas was proposed to guide the design of micro gas thrust bearing with partial parabolic grooves texturing.

  5. Numerical solution of the stochastic parabolic equation with the dependent operator coefficient

    SciTech Connect

    Ashyralyev, Allaberen; Okur, Ulker

    2015-09-18

    In the present paper, a single step implicit difference scheme for the numerical solution of the stochastic parabolic equation with the dependent operator coefficient is presented. Theorem on convergence estimates for the solution of this difference scheme is established. In applications, this abstract result permits us to obtain the convergence estimates for the solution of difference schemes for the numerical solution of initial boundary value problems for parabolic equations. The theoretical statements for the solution of this difference scheme are supported by the results of numerical experiments.

  6. Parabolic replicator dynamics and the principle of minimum Tsallis information gain

    PubMed Central

    2013-01-01

    Background Non-linear, parabolic (sub-exponential) and hyperbolic (super-exponential) models of prebiological evolution of molecular replicators have been proposed and extensively studied. The parabolic models appear to be the most realistic approximations of real-life replicator systems due primarily to product inhibition. Unlike the more traditional exponential models, the distribution of individual frequencies in an evolving parabolic population is not described by the Maximum Entropy (MaxEnt) Principle in its traditional form, whereby the distribution with the maximum Shannon entropy is chosen among all the distributions that are possible under the given constraints. We sought to identify a more general form of the MaxEnt principle that would be applicable to parabolic growth. Results We consider a model of a population that reproduces according to the parabolic growth law and show that the frequencies of individuals in the population minimize the Tsallis relative entropy (non-additive information gain) at each time moment. Next, we consider a model of a parabolically growing population that maintains a constant total size and provide an “implicit” solution for this system. We show that in this case, the frequencies of the individuals in the population also minimize the Tsallis information gain at each moment of the ‘internal time” of the population. Conclusions The results of this analysis show that the general MaxEnt principle is the underlying law for the evolution of a broad class of replicator systems including not only exponential but also parabolic and hyperbolic systems. The choice of the appropriate entropy (information) function depends on the growth dynamics of a particular class of systems. The Tsallis entropy is non-additive for independent subsystems, i.e. the information on the subsystems is insufficient to describe the system as a whole. In the context of prebiotic evolution, this “non-reductionist” nature of parabolic replicator systems might reflect the importance of group selection and competition between ensembles of cooperating replicators. Reviewers This article was reviewed by Viswanadham Sridhara (nominated by Claus Wilke), Puushottam Dixit (nominated by Sergei Maslov), and Nick Grishin. For the complete reviews, see the Reviewers’ Reports section. PMID:23937956

  7. Generation and tooth contact analysis of spiral bevel gears with predesigned parabolic functions of transmission errors

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Lee, Hong-Tao

    1989-01-01

    A new approach for determination of machine-tool settings for spiral bevel gears is proposed. The proposed settings provide a predesigned parabolic function of transmission errors and the desired location and orientation of the bearing contact. The predesigned parabolic function of transmission errors is able to absorb piece-wise linear functions of transmission errors that are caused by the gear misalignment and reduce gear noise. The gears are face-milled by head cutters with conical surfaces or surfaces of revolution. A computer program for simulation of meshing, bearing contact and determination of transmission errors for misaligned gear has been developed.

  8. Transesophageal echocardiographic evaluation of baboons during microgravity induced by parabolic flight

    NASA Technical Reports Server (NTRS)

    Vernalis, Marina N.; Latham, Ricky D.; Fanton, John W.; Geffney, F. Andrew

    1993-01-01

    Transthoracic echocardiography (TTE) is a feasible method to noninvasively examine cardiac anatomy during parabolic flight. However, transducer placement on the chest wall is very difficult to maintain during transition to microgravity. In addition, TTE requires the use of low frequency transponders which limit resolution. Transesophical echocardiography (TEE) is an established imaging technique which obtains echocardiographic information from the esophagus. It is a safe procedure and provides higher quality images of cardiac structure than obtained with TTE. This study is designed to determine whether TEE was feasible to perform during parabolic flight and to determine whether acute central volume responses occur in acute transition to zero gravity by direct visualization of the cardiac chambers.

  9. Focusing hard x-ray FEL beams with parabolic refractive lenses

    NASA Astrophysics Data System (ADS)

    Schroer, Christian G.; Benner, Boris; Kuhlmann, Marion; Kurapova, Olga; Lengeler, Bruno; Zontone, Federico; Snigirev, Anatoly A.; Snigireva, Irina; Schulte-Schrepping, Horst

    2004-11-01

    Parabolic refractive x-ray lenses are high quality imaging optics for hard x-rays. They are well suited for full field and scanning microscopy with hard x-rays. They are robust and can withstand the heat load of the white beam of an ESRF undulator source. The microbeam properties expected for focusing the XFEL beam with refractive lenses are estimated. The stability of the optic in the X-FEL beam is considered. Beryllium parabolic refractive lenses have been installed at the SPPS at SLAC. First results of the commissioning of these optics are reported.

  10. Small community solar thermal power experiment

    SciTech Connect

    Marriott, A.T.; Kiceniuk, T.

    1980-01-01

    The first solar thermal power plant specifically designed as an alternate source of electric energy for small communities in this country is now in its second phase of development. As a result of Phase I concept definition studies, a decision was made to pursue a parabolic dish system using distributed generation. Both the design approach and the site selection status are described. The concentrator is a parabolic dish developed by the General Electric Company under the Low Cost Concentrator activity within the Module Development element of the JPL Solar Thermal Power Systems Project. It is a first generation concentrator using a reflective film bonded to a reinforced plastic substrate. The receiver is designed to heat an intermediary heat transfer fluid and is a new approach being developed by Ford. The power conversion subsystem will employ a Rankine engine. The Phase II effort will include design, development, and verification testing. This is a two-year activity that will provide a system design including the plant control system and other balance of plant considerations. The verification testing will be at the JPL Edwards AFB Parabolic Dish Test Site. Testing will be conducted at the module level; that is, a complete concentrator, receiver, and engine assembly test is planned. Phase II will follow with fabrication, installation, and operation of the power plant in the selected community to occur in 1983.

  11. Offset truss hex solar concentrator

    NASA Technical Reports Server (NTRS)

    White, John E. (Inventor); Sturgis, James D. (Inventor); Erikson, Raymond J. (Inventor); Waligroski, Gregg A. (Inventor); Scott, Michael A. (Inventor)

    1991-01-01

    A solar energy concentrator system comprises an offset reflector structure made up of a plurality of solar energy reflector panel sections interconnected with one another to form a piecewise approximation of a portion of a (parabolic) surface of revolution rotated about a prescribed focal axis. Each panel section is comprised of a plurality of reflector facets whose reflective surfaces effectively focus reflected light to preselected surface portions of the interior sidewall of a cylindrically shaped solar energy receiver. The longitudinal axis of the receiver is tilted at an acute angle with respect to the optical axis such that the distribution of focussed solar energy over the interior surface of the solar engine is optimized for dynamic solar energy conversion. Each reflector panel section comprises a flat, hexagonally shaped truss support framework and a plurality of beam members interconnecting diametrically opposed corners of the hexagonal framework recessed within which a plurality of (spherically) contoured reflector facets is disposed. The depth of the framework and the beam members is greater than the thickness of a reflector facet such that a reflector facet may be tilted (for controlling the effective focus of its reflected light through the receiver aperture) without protruding from the panel section.

  12. Nonparabolic solar concentrators matching the parabola.

    PubMed

    Cooper, Thomas; Schmitz, Max; Good, Philipp; Ambrosetti, Gianluca; Pedretti, Andrea; Steinfeld, Aldo

    2014-08-01

    We consider the limit of geometric concentration for a focusing concave mirror, e.g., a parabolic trough or dish, designed to collect all radiation within a finite acceptance angle and direct it to a receiver with a flat or circular cross-section. While a concentrator with a parabolic cross-section indeed achieves this limit, it is not the only geometry capable of doing so. We demonstrate that there are infinitely many solutions. The significance of this finding is that geometries which can be more easily constructed than the parabola can be utilized without loss of concentration, thus presenting new avenues for reducing the cost of solar collectors. In particular, we investigate a low-cost trough mirror profile which can be constructed by inflating a stack of thin polymer membranes and show how it can always be designed to match the geometric concentration of a parabola of similar form. PMID:25078162

  13. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    NASA Technical Reports Server (NTRS)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.

    1979-01-01

    This paper presents the performance and cost of four 10-MWe advanced solar thermal electric power plants sited in various regions of the continental United States. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs, and energy costs. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrator (CPC) comprise the advanced concepts studied. This paper contains a discussion of the regional insolation data base, a description of the solar systems' performances and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades.

  14. Heat engine development for solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Pham, H. Q.; Jaffe, L. D.

    1981-01-01

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  15. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  16. Cassegrainian concentrator solar array exploratory development module

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.; Crabtree, W. L.

    1982-01-01

    A miniaturized Cassegrainian concentrator solar array concept is under development to reduce the cost of multi-kW spacecraft solar arrays. A primary parabolic reflector directs incoming solar energy to a secondary, centrally mounted inverted hyperbolic reflector and down onto a solar cell mounted on an Mo heat spreader on a 0.25 mm thick Al heat fin. Each unit is 12.7 mm thick, which makes the concentrator assembly roughly as thick as a conventional panel. The output is 100 W/sq and 20 W/kg, considering 20% efficient Si cells at 100 suns. A tertiary light catcher is mounted around the cell to ameliorate optic errors. The primary reflector is electroformed Ni with protective and reflective coatings. The cells have back surface reflectors and a SiO antireflective coating. An optical efficiency of 80% is projected, and GaAs cells are being considered in an attempt to raise cell efficiencies to over 30%.

  17. MHD flow past a parabolic flow past an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction

    NASA Astrophysics Data System (ADS)

    Muthucumaraswamy, R.; Sivakumar, P.

    2016-02-01

    The problem of MHD free convection flow with a parabolic starting motion of an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction has been examined in detail in this paper. The fluid considered here is a gray, absorbing emitting radiation but a non-scattering medium. The dimensionless governing coupled linear partial differential equations are solved using the Laplace transform technique. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time on the velocity, temperature, concentration. The results are discussed graphically and qualitatively. The numerical results reveal that the radiation induces a rise in both the velocity and temperature, and a decrease in the concentration. The model finds applications in solar energy collection systems, geophysics and astrophysics, aerospace and also in the design of high temperature chemical process systems.

  18. High performance solar Stirling system

    SciTech Connect

    Stearns, J.W.; Haglund, R.

    1981-01-01

    A full-scale Dish-Stirling system experiment, at a power level of 25 kWe, has been tested during 1981 on the Test Bed Concentrator No. 2 at the Parabolic Dish Test Site, Edwards, CA. Test components, designed and developed primarily by industrial contractors for the Department of Energy, include an advanced Stirling engine driving an induction alternator, a directly-coupled solar receiver with a natural gas combustor for hybrid operation and a breadboard control system based on a programmable controller and standard utility substation components. The experiment demonstrated practicality of the solar Stirling application and high system performance into a utility grid. This paper describes the design and its functions, and the test results obtained.

  19. Boundary value problem for a first-order linear parabolic system

    NASA Astrophysics Data System (ADS)

    Gaidomak, S. V.

    2014-04-01

    A boundary value problem for a linear parabolic system is considered. Sufficient conditions for the well-posedness of the problem are found. The spline collocation method on a uniform grid is used to construct a high-order accurate implicit difference scheme, and its absolute stability is proved.

  20. Estimation of discontinuous coefficients in parabolic systems: Applications to reservoir simulation

    NASA Technical Reports Server (NTRS)

    Lamm, P. D.

    1984-01-01

    Spline based techniques for estimating spatially varying parameters that appear in parabolic distributed systems (typical of those found in reservoir simulation problems) are presented. The problem of determining discontinuous coefficients, estimating both the functional shape and points of discontinuity for such parameters is discussed. Convergence results and a summary of numerical performance of the resulting algorithms are given.

  1. The asymptotics of a solution of a parabolic equation as time increases without bound

    SciTech Connect

    Degtyarev, Denis O; Il'in, Arlen M

    2012-11-30

    A boundary-value problem for a second order parabolic equation on a half-line is considered. A uniform asymptotic approximation to a solution to within any power of t{sup -1} is constructed and substantiated. Bibliography: 8 titles.

  2. Solution blow-up for a class of parabolic equations with double nonlinearity

    SciTech Connect

    Korpusov, Maxim O

    2013-03-31

    We consider a class of parabolic-type equations with double nonlinearity and derive sufficient conditions for finite time blow-up of its solutions in a bounded domain under the homogeneous Dirichlet condition. To prove the solution blow-up we use a modification of Levine's method. Bibliography: 13 titles.

  3. Simple Verification of the Parabolic Shape of a Rotating Liquid and a Boat on Its Surface

    ERIC Educational Resources Information Center

    Sabatka, Z.; Dvorak, L.

    2010-01-01

    This article describes a simple and inexpensive way to create and to verify the parabolic surface of a rotating liquid. The liquid is water. The second part of the article deals with the problem of a boat on the surface of a rotating liquid. (Contains 1 table, 10 figures and 5 footnotes.)

  4. Parabolic flight experience is related to increased release of stress hormones.

    PubMed

    Schneider, Stefan; Brümmer, Vera; Göbel, Simon; Carnahan, Heather; Dubrowski, Adam; Strüder, Heiko K

    2007-06-01

    Numerous studies have shown significant effects of weightlessness on adaptational processes of the CNS, cardiovascular and/or muscular system. Most of these studies have been carried out during parabolic flights, using the recurring 20 s of weightlessness at each parabola. Although some of these studies reported on potential influences not only of weightlessness but also of the stressful situation within a parabolic flight, especially provoked by the ongoing changes between 1.8, 1 and 0 G, so far there seems to be only marginal information about objective parameters of stress evoked by parabolic flights. By collecting blood samples from a permanent venous catheter several times during parabolic flights, we were able to show an increase of prolactin, cortisol and ACTH in the course of a 120 min flight. We conclude, therefore, that previous reported effects of weightlessness on adaptational processes may be affected not only by weightlessness but also by the exposure to other stressors experienced within the environment of a Zero-G airbus. PMID:17351784

  5. Application of the Parabolic Approximation to Predict Acoustical Propagation in the Ocean.

    ERIC Educational Resources Information Center

    McDaniel, Suzanne T.

    1979-01-01

    A simplified derivation of the parabolic approximation to the acoustical wave equation is presented. Exact solutions to this approximate equation are compared with solutions to the wave equation to demonstrate the applicability of this method to the study of underwater sound propagation. (Author/BB)

  6. Monaural sound-source-direction estimation using the acoustic transfer function of a parabolic reflection board.

    PubMed

    Takashima, Ryoichi; Takiguchi, Tetsuya; Ariki, Yasuo

    2010-02-01

    This paper presents a sound-source-direction estimation method using only a single microphone with a parabolic reflection board. A simple signal-power-based method using a parabolic antenna has been proposed in the radar field. But the signal-power-based method is not effective for finding the direction of a talking person due to the varying power of the uttered speech signals. In this paper, the sound-source-direction estimation method focuses on the acoustic transfer function instead of the signal power. The use of the parabolic reflection board leads to a difference in the acoustic transfer functions of the target direction and the non-target directions, where the parabolic reflector and its associated microphone rotate together and observe the speech at each angle. The acoustic transfer function is estimated from the observed speech using the statistics of clean speech signals. Its effectiveness has been confirmed by monaural sound-source-direction estimation experiments in a room environment. PMID:20136213

  7. Second order estimates for Hessian equations of parabolic type on Riemannian manifolds

    NASA Astrophysics Data System (ADS)

    Jiao, Heming

    2015-12-01

    In this paper, we establish the second order estimates for solutions of the first initial-boundary value problem for general Hessian type fully nonlinear parabolic equations on Riemannian manifolds. The techniques used in this article can work for a wide range of fully nonlinear PDEs under very general conditions.

  8. Fast Time and Space Parallel Algorithms for Solution of Parabolic Partial Differential Equations

    NASA Technical Reports Server (NTRS)

    Fijany, Amir

    1993-01-01

    In this paper, fast time- and Space -Parallel agorithms for solution of linear parabolic PDEs are developed. It is shown that the seemingly strictly serial iterations of the time-stepping procedure for solution of the problem can be completed decoupled.

  9. Stability of shock waves for multi-dimensional hyperbolic-parabolic conservation laws

    NASA Astrophysics Data System (ADS)

    Li, Dening

    1988-01-01

    The uniform linear stability of shock waves is considerd for quasilinear hyperbolic-parabolic coupled conservation laws in multi-dimensional space. As an example, the stability condition and its dynamic meaning for isothermal shock wave in radiative hydrodynamics are analyzed.

  10. Near-parabolic comets observed in 2006-2010. The individualized approach to 1/a-determination and the new distribution of original and future orbits

    NASA Astrophysics Data System (ADS)

    Królikowska, Małgorzata; Dybczyński, Piotr A.

    2013-10-01

    Dynamics of a complete sample of small perihelion distance near-parabolic comets discovered in the years 2006-2010 are studied (i.e. of 22 comets of qosc < 3.1 au). First, osculating orbits are obtained after a very careful positional data inspection and processing, including where appropriate, the method of data partitioning for determination of pre- and post-perihelion orbit for tracking then its dynamical evolution. The non-gravitational acceleration in the motion is detected for 50 per cent of investigated comets, in a few cases for the first time. Different sets of non-gravitational parameters are determined from pre- and post-perihelion data for some of them. The influence of the positional data structure on the possibility of the detection of non-gravitational effects and the overall precision of orbit determination is widely discussed. Secondly, both original and future orbits were derived by means of numerical integration of swarms of virtual comets obtained using a Monte Carlo cloning method. This method allows us to follow the uncertainties of orbital elements at each step of dynamical evolution. The complete statistics of original and future orbits that includes significantly different uncertainties of 1/a-values is presented, also in the light of our results obtained earlier. Basing on 108 comets examined by us so far, we conclude that only one of them, C/2007 W1 Boattini, seems to be a serious candidate for an interstellar comet. We also found that 53 per cent of 108 near-parabolic comets escaping in the future from the Solar system, and the number of comets leaving the Solar system as so called Oort spike comets (i.e. comets suffering very small planetary perturbations) is 14 per cent. A new method for cometary orbit quality assessment is also proposed by means of modifying the original method, introduced by Marsden, Sekanina & Everhart. This new method leads to a better diversification of orbit quality classes for contemporary comets.

  11. Influence of refractive index and solar concentration on optical power absorption in slabs

    NASA Technical Reports Server (NTRS)

    Williams, M. D.

    1988-01-01

    The optical power absorbed by a slab at the focus of a parabolic dish concentrator is calculated. The calculations are plotted versus maximum angle of incidence of irradiation (which corresponds to solar concentration) with absorption coefficient as a parameter for several different indices of refraction that represent real materials.

  12. Design of a Thermal Imaging Diagnostic Using 90-Degree, Off-Axis, Parabolic Mirrors

    SciTech Connect

    Malone, Robert M.; Becker, Steven A.; Dolan, Daniel H.; Hacking, Richard G.; Hickman, Randy J.; Kaufman, Morris I.; Stevens, Gerald D.; Turley, William D.

    2006-09-01

    Thermal imaging is an important, though challenging, diagnostic for shockwave experiments. Shock-compressed materials undergo transient temperature changes that cannot be recorded with standard (greater than ms response time) infrared detectors. A further complication arises when optical elements near the experiment are destroyed. We have designed a thermal-imaging system for studying shock temperatures produced inside a gas gun at Sandia National Laboratories. Inexpensive, diamond-turned, parabolic mirrors relay an image of the shocked target to the exterior of the gas gun chamber through a sapphire vacuum port. The 3000–5000-nm portion of this image is directed to an infrared camera which acquires a snapshot of the target with a minimum exposure time of 150 ns. A special mask is inserted at the last intermediate image plane, to provide dynamic thermal background recording during the event. Other wavelength bands of this image are split into high-speed detectors operating at 900–1700 nm, and at 1700–3000 nm for timeresolved pyrometry measurements. This system incorporates 90-degree, off-axis parabolic mirrors, which can collect low f/# light over a broad spectral range, for high-speed imaging. Matched mirror pairs must be used so that aberrations cancel. To eliminate image plane tilt, proper tip-to-tip orientation of the parabolic mirrors is required. If one parabolic mirror is rotated 180 degrees about the optical axis connecting the pair of parabolic mirrors, the resulting image is tilted by 60 degrees. Different focal-length mirrors cannot be used to magnify the image without substantially sacrificing image quality. This paper analyzes performance and aberrations of this imaging diagnostic.

  13. Design of a thermal imaging diagnostic using 90-degree off-axis parabolic mirrors

    NASA Astrophysics Data System (ADS)

    Malone, Robert M.; Becker, Steven A.; Dolan, Daniel H.; Hacking, Richard G.; Hickman, Randy J.; Kaufman, Morris I.; Stevens, Gerald D.; Turley, William D.

    2006-08-01

    Thermal imaging is an important, though challenging, diagnostic for shockwave experiments. Shock-compressed materials undergo transient temperature changes that cannot be recorded with standard (greater than ms response time) infrared detectors. A further complication arises when optical elements near the experiment are destroyed. We have designed a thermal-imaging system for studying shock temperatures produced inside a gas gun at Sandia National Laboratories. Inexpensive, diamond-turned, parabolic mirrors relay an image of the shocked target to the exterior of the gas gun chamber through a sapphire vacuum port. The 3000-5000-nm portion of this image is directed to an infrared camera which acquires a snapshot of the target with a minimum exposure time of 150 ns. A special mask is inserted at the last intermediate image plane, to provide dynamic thermal background recording during the event. Other wavelength bands of this image are split into high-speed detectors operating at 900-1700 nm and at 1700-3000 nm, for time-resolved pyrometry measurements. This system incorporates 90-degree, off-axis parabolic mirrors, which can collect low f/# light over a broad spectral range, for high-speed imaging. Matched mirror pairs must be used so that aberrations cancel. To eliminate image plane tilt, proper tip-to-tip orientation of the parabolic mirrors is required. If one parabolic mirror is rotated 180 degrees about the optical axis connecting the pair of parabolic mirrors, the resulting image is tilted by 60 degrees. Different focal-length mirrors cannot be used to magnify the image without substantially sacrificing image quality. This paper analyzes performance and aberrations of this imaging diagnostic.

  14. Solar Thermal Electricity Generating System

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at Earth¥s surface. The higher the concentration, the higher the temperatures we can achieve when converting solar radiation into thermal energy

  15. TEM00 mode Nd:YAG solar laser by side-pumping a grooved rod

    NASA Astrophysics Data System (ADS)

    Vistas, Cláudia R.; Liang, Dawei; Almeida, Joana; Guillot, Emmanuel

    2016-05-01

    A simple TEM00 mode solar laser system with a grooved Nd:YAG rod pumped through a heliostat-parabolic mirror system is reported here. The radiation coupling capacity of a fused silica tube lens was combined with the multipass pumping ability of a 2 V-shaped cavity to provide efficient side-pumping along a 4.0 mm diameter grooved Nd:YAG single-crystal rod. TEM00 mode solar laser power of 3.4 W was measured by adopting an asymmetric large-mode laser resonant cavity. Record TEM00 mode solar laser collection efficiency of 3.4 W/m2and slope efficiency of 1.9% was achieved, which corresponds to 1.8 and 2.4 times more than the previous TEM00 mode Nd:YAG solar laser using the PROMES-CNRS heliostat-parabolic mirror system, respectively.

  16. Aerodynamic loading characteristics of a hemispherical solar concentrator: The Crosbyton Solar Power Project, Task 5

    SciTech Connect

    Dunn, J.R.

    1986-09-01

    An experimental study was performed in the Texas Tech University Department of Mechanical Engineering subsonic wind tunnel to determine the aerodynamic loading characteristics of a hemispherical solar concentrator. Measurements were made to determine drag, lift and yaw force coefficients as a function of Reynolds number, concentrator - wind geometry and orientation for a hemispherical solar concentrator submerged varying amounts in a turbulent bounary layer flow. Results were compared to prior measurements for a uniform flow field for a hemispherical concentrator and for both parabolic dish and trough collectors. Measurements were also made to predict vortex shedding frequencies for a hemispherical concentrator as a function of Reynolds number and orientation. Results of the drag coefficient measurements indicated that the effect of submersion in the boundary layer was to reduce the drag coefficient with increasing model depth in the boundary layer. Similar results were obtained for yaw and lift coefficients. Measured coefficients were also generally lower than those found in the literature for either parabolic dish or parabolic trough systems under similar conditions. Measured vortex shedding frequencies, as expected, were not dependent on approach Reynolds number for the bluff body geometry tested in this effort.

  17. Development of 2.8-GHz Solar Flux Receivers

    NASA Astrophysics Data System (ADS)

    Yun, Youngjoo; Park, Yong-Sun; Kim, Chang-Hee; Lee, Bangwon; Kim, Jung-Hoon; Yoo, Saeho; Lee, Chul-Hwan; Han, Jinwook; Kim, Young Yun

    2014-12-01

    We report the development of solar flux receivers operating at 2.8 GHz to monitor solar radio activity. Radio waves from the sun are amplified, filtered, and then transmitted to a power meter sensor without frequency down-conversion. To measure solar flux, a calibration scheme is designed with a noise source, an ambient load, and a hot load at 100° C. The receiver is attached to a 1.8 m parabolic antenna in Icheon, owned by National Radio Research Agency, and observation is being conducted during day time on a daily basis. We compare the solar fluxes measured for last seven months with solar fluxes obtained by DRAO in Penticton, Canada, and by the Hiraiso solar observatory in Japan, and finally establish equations to convert observed flux to the so-called Penticton flux with an accuracy better than 3.2 sfu.

  18. Rankline-Brayton engine powered solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  19. Rankine-Brayton engine powered solar thermal aircraft

    SciTech Connect

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  20. Effect of stratospheric aerosols on direct sunlight and implications for concentrating solar power.

    PubMed

    Murphy, Daniel M

    2009-04-15

    Light scattering calculations and data show that stratospheric aerosols reduce direct sunlight by about 4 W for every watt reflected to outer space. The balance becomes diffuse sunlight. One consequence of deliberate enhancement of the stratospheric aerosol layer would be a significant reduction in the efficiency of solar power generation systems using parabolic or other concentrating optics. There also would be a reduction in the effectiveness of passive solar design. PMID:19475950

  1. Thermal effects testing at the National Solar Thermal Test Facility

    NASA Astrophysics Data System (ADS)

    Ralph, M. E.; Cameron, C. P.; Ghanbari, C. M.

    1992-11-01

    The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm(sup 2) that is uniform over a 15-cm diameter with a total beam power of over 5 MW(sub t). The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m (times) 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm(sup 2) over and delivers a 6-mm diameter and total power of 16 kW(sub t). A second furnace produces flux levels up to 1000 W/cm(sup 2) over a 4 cm diameter and total power of 60 kW(sub t). Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm(sup 2) over a 2.5 cm diameter and total power of 75 kW(sub t). High-speed shutters have been used to produce square pulses.

  2. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  3. Projected techno-economic improvements for advanced solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.

    1979-01-01

    The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.

  4. Solutions to higher-order anisotropic parabolic equations in unbounded domains

    SciTech Connect

    Kozhevnikova, L M; Leont'ev, A A

    2014-01-31

    The paper is devoted to a certain class of doubly nonlinear higher-order anisotropic parabolic equations. Using Galerkin approximations it is proved that the first mixed problem with homogeneous Dirichlet boundary condition has a strong solution in the cylinder D=(0,∞)×Ω, where Ω⊂R{sup n}, n≥3, is an unbounded domain. When the initial function has compact support the highest possible rate of decay of this solution as t→∞ is found. An upper estimate characterizing the decay of the solution is established, which is close to the lower estimate if the domain is sufficiently 'narrow'. The same authors have previously obtained results of this type for second order anisotropic parabolic equations. Bibliography: 29 titles.

  5. Quantitative measurement of Φ140mm F/2 parabolic surface with Ronchi grating test method

    NASA Astrophysics Data System (ADS)

    Lei, Bai-ping; Wu, Fan; Zhou, Chen-bo

    2009-05-01

    Ronchi grating test has been used widely to test optical surfaces in a qualitative way since it was contrived, while rarely to test the parabolic surface in a quantitative way. This paper discusses the application of Ronchi grating test to optical aspheric surfaces in a quantitative way on the base of self-made software which includes Ronchi null grating design, collection of Ronchi graph, data procession and so on. The whole system has been used to test a concave parabolic mirror with diameter 140mm and F number 2, and the result is approximately the same as that of the outcome of interferometer. The analysis software and test method establish a good foundation for the coming of quantitative measurement of big error of large-aperture aspheric surfaces.

  6. Oscillation of electron mobility in parabolic double quantum well structure due to applied electric field

    SciTech Connect

    Sahoo, Narayan; Sahu, Trinath

    2014-12-15

    We show that oscillation of low temperature electron mobility μ can be obtained by applying an electric field F along the growth direction of the asymmetrically barrier delta doped Al{sub x}Ga{sub 1-x}As parabolic double quantum well structure. The drastic changes in the subband Fermi energies and distributions of subband wave functions as a function of F yield nonmonotonic intra- and intersubband scattering rate matrix elements mediated by intersubband effects. The oscillatory enhancement of μ, which is attributed to the subband mobilities governed by the ionized impurity scattering, magnifies with increase in well width and decrease in height of the parabolic structure potential. The results can be utilized for nanoscale low temperature device applications.

  7. Parabolic transformation cloaks for unbounded and bounded cloaking of matter waves

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Hsuan; Lin, De-Hone

    2014-01-01

    Parabolic quantum cloaks with unbounded and bounded invisible regions are presented with the method of transformation design. The mass parameters of particles for perfect cloaking are shown to be constant along the parabolic coordinate axes of the cloaking shells. The invisibility performance of the cloaks is inspected from the viewpoints of waves and probability currents. The latter shows the controllable characteristic of a probability current by a quantum cloak. It also provides us with a simpler and more efficient way of exhibiting the performance of a quantum cloak without the solutions of the transformed wave equation. Through quantitative analysis of streamline structures in the cloaking shell, one defines the efficiency of the presented quantum cloak in the situation of oblique incidence. The cloaking models presented here give us more choices for testing and applying quantum cloaking.

  8. Non-parabolicity and band gap re-normalisation in Si doped ZnO

    NASA Astrophysics Data System (ADS)

    Treharne, R. E.; Phillips, L. J.; Durose, K.; Weerakkody, A.; Mitrovic, I. Z.; Hall, S.

    2014-02-01

    A combinatorial methodology, developed for the rapid optimisation of sputtered transparent conducting oxides, was applied to Si doped ZnO. A wide range of compositions have been explored over a single sample to determine an optimum composition, with respect to the minimisation of resistivity, of x = 0.65% wt. SiO2. A fundamental investigation of the conduction band non-parabolicity yields values of me0=0.35m0 and C = 0.3 eV-1 for the conduction band minimum effective mass and the non-parabolicity factor, respectively. The variation of extracted band gap values with respect to dopant concentration provided an estimate of the magnitude of re-normalization effects. A model is proposed to describe the carrier transport behaviour for a degenerate polycrystalline semiconductor by accounting for the tunnelling of carriers through grain boundaries.

  9. A parabolic model of drag coefficient for storm surge simulation in the South China Sea.

    PubMed

    Peng, Shiqiu; Li, Yineng

    2015-01-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262

  10. Galerkin/Runge-Kutta discretizations for parabolic equations with time dependent coefficients

    NASA Technical Reports Server (NTRS)

    Keeling, Stephen L.

    1987-01-01

    A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and analyzed for linear parabolic initial boundary value problems with time dependent coefficients. Unlike any classical counterpart, this class offers arbitrarily high order convergence while significantly avoiding what has been called order reduction. In support of this claim, error estimates are proved, and computational results are presented. Additionally, since the time stepping equations involve coefficient matrices changing at each time step, a preconditioned iterative technique is used to solve the linear systems only approximately. Nevertheless, the resulting algorithm is shown to preserve the original convergence rate while using only the order of work required by the base scheme applied to a linear parabolic problem with time independent coefficients. Furthermore, it is noted that special Runge-Kutta methods allow computations to be performed in parallel so that the final execution time can be reduced to that of a low order method.

  11. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    PubMed Central

    Peng, Shiqiu; Li, Yineng

    2015-01-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262

  12. Low-frequency sound propagation modeling over a locally-reacting boundary using the parabolic approximation

    NASA Technical Reports Server (NTRS)

    Robertson, J. S.; Siegman, W. L.; Jacobson, M. J.

    1989-01-01

    There is substantial interest in the analytical and numerical modeling of low-frequency, long-range atmospheric acoustic propagation. Ray-based models, because of frequency limitations, do not always give an adequate prediction of quantities such as sound pressure or intensity levels. However, the parabolic approximation method, widely used in ocean acoustics, and often more accurate than ray models for lower frequencies of interest, can be applied to acoustic propagation in the atmosphere. Modifications of an existing implicit finite-difference implementation for computing solutions to the parabolic approximation are discussed. A locally-reacting boundary is used together with a one-parameter impedance model. Intensity calculations are performed for a number of flow resistivity values in both quiescent and windy atmospheres. Variations in the value of this parameter are shown to have substantial effects on the spatial variation of the acoustic signal.

  13. Parabolic single-crystal diamond lenses for coherent x-ray imaging

    NASA Astrophysics Data System (ADS)

    Terentyev, Sergey; Blank, Vladimir; Polyakov, Sergey; Zholudev, Sergey; Snigirev, Anatoly; Polikarpov, Maxim; Kolodziej, Tomasz; Qian, Jun; Zhou, Hua; Shvyd'ko, Yuri

    2015-09-01

    We demonstrate parabolic single-crystal diamond compound refractive lenses designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic shapes with a ? 1 ? m precision and surface roughness. A compound refractive lens comprised of six lenses with a radius of curvature R = 200 ? m at the vertex of the parabola and a geometrical aperture A = 900 ? m focuses 10 keV x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of ? 20 90 ? m 2 with a gain factor of ? 50 - 100 .

  14. Automatic Fourier transform and self-Fourier beams due to parabolic potential

    NASA Astrophysics Data System (ADS)

    Zhang, Yiqi; Liu, Xing; Belić, Milivoj R.; Zhong, Weiping; Petrović, Milan S.; Zhang, Yanpeng

    2015-12-01

    We investigate the propagation of light beams including Hermite-Gauss, Bessel-Gauss and finite energy Airy beams in a linear medium with parabolic potential. Expectedly, the beams undergo oscillation during propagation, but quite unexpectedly they also perform automatic Fourier transform, that is, periodic change from the beam to its Fourier transform and back. In addition to oscillation, the finite-energy Airy beams exhibit periodic inversion during propagation. The oscillating period of parity-asymmetric beams is twice that of the parity-symmetric beams. Based on the propagation in parabolic potential, we introduce a class of optically-interesting beams that are self-Fourier beams-that is, the beams whose Fourier transforms are the beams themselves.

  15. Strong coupling and stimulated emission in single parabolic quantum well microcavity for terahertz cascade

    SciTech Connect

    Tzimis, A.; Savvidis, P. G.; Trifonov, A. V.; Ignatiev, I. V.; Christmann, G.; Tsintzos, S. I.; Hatzopoulos, Z.; Kavokin, A. V.

    2015-09-07

    We report observation of strong light-matter coupling in an AlGaAs microcavity (MC) with an embedded single parabolic quantum well. The parabolic potential is achieved by varying aluminum concentration along the growth direction providing equally spaced energy levels, as confirmed by Brewster angle reflectivity from a reference sample without MC. It acts as an active region of the structure which potentially allows cascaded emission of terahertz (THz) light. Spectrally and time resolved pump-probe spectroscopy reveals characteristic quantum beats whose frequencies range from 0.9 to 4.5 THz, corresponding to energy separation between relevant excitonic levels. The structure exhibits strong stimulated nonlinear emission with simultaneous transition to weak coupling regime. The present study highlights the potential of such devices for creating cascaded relaxation of bosons, which could be utilized for THz emission.

  16. Role of secondary instability theory and parabolized stability equations in transition modeling

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.; Dinavahi, Surya P.; Chang, Chau-Lyan; Zang, Thomas A.

    1993-01-01

    In modeling the laminar-turbulent transition region, the designer depends largely on benchmark data from experiments and/or direct numerical simulations that are usually extremely expensive. An understanding of the evolution of the Reynolds stresses, turbulent kinetic energy, and quantifies in the transport equations like the dissipation and production is essential in the modeling process. The secondary instability theory and the parabolized stability equations method are used to calculate these quantities, which are then compared with corresponding quantities calculated from available direct numerical simulation data for the incompressible boundary-layer flow of laminar-turbulent transition conditions. The potential of the secondary instability theory and the parabolized stability equations approach in predicting these quantities is discussed; results indicate that inexpensive data that are useful for transition modeling in the early stages of the transition region can be provided by these tools.

  17. Dynamic analysis of ocular torsion in parabolic flight using video-oculography.

    PubMed

    Teiwes, W; Clarke, A H; Scherer, H

    1993-08-01

    Dynamic ocular torsion was investigated in a group of healthy subjects during the course of parabolic flight by means of our video-based eye movement recording method-video-oculography. This technique enables a non-invasive dynamic measurement of all three dimensions of eye movement in a harsh experimental environment such as parabolic flight. The test subjects were positioned so that the changing resultant gravito-inertial field in the aircraft was aligned with their interaural (y) axis, primarily stimulating the utricular organs. The analysis of the torsional component of eye movement during the change of gravity between 1.8-0 and 0-1.8 g demonstrated a static component--well known as the ocular counter roll--and a dynamic component, which leads to a slight overshoot in the torsional response. These static and dynamic component of ocular torsion correlate with previous neurophysiological findings. PMID:11541641

  18. Galerkin/Runge-Kutta discretizations for parabolic equations with time-dependent coefficients

    NASA Technical Reports Server (NTRS)

    Keeling, Stephen L.

    1989-01-01

    A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and analyzed for linear parabolic initial boundary value problems with time dependent coefficients. Unlike any classical counterpart, this class offers arbitrarily high order convergence while significantly avoiding what has been called order reduction. In support of this claim, error estimates are proved, and computational results are presented. Additionally, since the time stepping equations involve coefficient matrices changing at each time step, a preconditioned iterative technique is used to solve the linear systems only approximately. Nevertheless, the resulting algorithm is shown to preserve the original convergence rate while using only the order of work required by the base scheme applied to a linear parabolic problem with time independent coefficients. Furthermore, it is noted that special Runge-Kutta methods allow computations to be performed in parallel so that the final execution time can be reduced to that of a low order method.

  19. Time regularity and long-time behavior of parabolic p-Laplace equations on infinite graphs

    NASA Astrophysics Data System (ADS)

    Hua, Bobo; Mugnolo, Delio

    2015-12-01

    We consider the so-called discrete p-Laplacian, a nonlinear difference operator that acts on functions defined on the nodes of a possibly infinite graph. We study the corresponding Cauchy problem and identify the generator of the associated nonlinear semigroups. We prove higher order time regularity of the solutions. We investigate the long-time behavior of the solutions and discuss in particular finite extinction time and conservation of mass. Namely, on one hand, for small p if an infinite graph satisfies some isoperimetric inequality, then the solution to the parabolic p-Laplace equation vanishes in finite time; on the other hand, for large p, these parabolic p-Laplace equations always enjoy conservation of mass.

  20. Optical and electronic properties of anisotropic parabolic quantum disks in the presence of tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Khordad, R.; Tafaroji, S.; Katebi, R.; Ghanbari, A.

    2012-02-01

    In the present work, the electronic and optical properties of anisotropic parabolic quantum disks are studied in the presence of an applied magnetic field. For this goal, we first obtain the electron energy levels of an anisotropic parabolic quantum disk under axial, tilted, and in-plane magnetic fields. According to the results obtained for the energy levels reveal that there is no degeneracy at zero magnetic field due to symmetry breaking. With increasing the anisotropy, the energy level spacing increases. At a constant anisotropy, the energy levels splitting decreases with increasing tilt angle of magnetic field. The total refractive index changes decrease when the tilt angle of magnetic field and the anisotropy increase. Also, the total absorption coefficients increase as the tilt angle of magnetic field and anisotropy increase.