Science.gov

Sample records for parallel clonal microcultures

  1. Clonal origins and parallel evolution of regionally synchronous colorectal adenoma and carcinoma.

    PubMed

    Kim, Tae-Min; An, Chang Hyeok; Rhee, Je-Keun; Jung, Seung-Hyun; Lee, Sung Hak; Baek, In-Pyo; Kim, Min Sung; Lee, Sug Hyung; Chung, Yeun-Jun

    2015-09-29

    Although the colorectal adenoma-to-carcinoma sequence represents a classical cancer progression model, the evolution of the mutational landscape underlying this model is not fully understood. In this study, we analyzed eight synchronous pairs of colorectal high-grade adenomas and carcinomas, four microsatellite-unstable (MSU) and four-stable (MSS) pairs, using whole-exome sequencing. In the MSU adenoma-carcinoma pairs, we observed no subclonal mutations in adenomas that became fixed in paired carcinomas, suggesting a 'parallel' evolution of synchronous adenoma-to-carcinoma, rather than a 'stepwise' evolution. The abundance of indel (in MSU and MSS pairs) and microsatellite instability (in MSU pairs) was noted in the later adenoma- or carcinoma-specific mutations, indicating that the mutational processes and functional constraints operative in early and late colorectal carcinogenesis are different. All MSU cases exhibited clonal, truncating mutations in ACVR2A, TGFBR2, and DNA mismatch repair genes, but none were present in APC or KRAS. In three MSS pairs, both APC and KRAS mutations were identified as both early and clonal events, often accompanying clonal copy number changes. An MSS case uniquely exhibited clonal ERBB2 amplification, followed by APC and TP53 mutations as carcinoma-specific events. Along with the previously unrecognized clonal origins of synchronous colorectal adenoma-carcinoma pairs, our study revealed that the preferred sequence of mutational events during colorectal carcinogenesis can be context-dependent. PMID:26336987

  2. Massively Parallel Sequencing-Based Clonality Analysis of Synchronous Endometrioid Endometrial and Ovarian Carcinomas.

    PubMed

    Schultheis, Anne M; Ng, Charlotte K Y; De Filippo, Maria R; Piscuoglio, Salvatore; Macedo, Gabriel S; Gatius, Sonia; Perez Mies, Belen; Soslow, Robert A; Lim, Raymond S; Viale, Agnes; Huberman, Kety H; Palacios, Jose C; Reis-Filho, Jorge S; Matias-Guiu, Xavier; Weigelt, Britta

    2016-06-01

    Synchronous early-stage endometrioid endometrial carcinomas (EECs) and endometrioid ovarian carcinomas (EOCs) are associated with a favorable prognosis and have been suggested to represent independent primary tumors rather than metastatic disease. We subjected sporadic synchronous EECs/EOCs from five patients to whole-exome massively parallel sequencing, which revealed that the EEC and EOC of each case displayed strikingly similar repertoires of somatic mutations and gene copy number alterations. Despite the presence of mutations restricted to the EEC or EOC in each case, we observed that the mutational processes that shaped their respective genomes were consistent. High-depth targeted massively parallel sequencing of sporadic synchronous EECs/EOCs from 17 additional patients confirmed that these lesions are clonally related. In an additional Lynch Syndrome case, however, the EEC and EOC were found to constitute independent cancers lacking somatic mutations in common. Taken together, sporadic synchronous EECs/EOCs are clonally related and likely constitute dissemination from one site to the other. PMID:26832770

  3. Clonal origins and parallel evolution of regionally synchronous colorectal adenoma and carcinoma

    PubMed Central

    Rhee, Je-Keun; Jung, Seung-Hyun; Lee, Sung Hak; Baek, In-Pyo; Kim, Min Sung; Lee, Sug Hyung; Chung, Yeun-Jun

    2015-01-01

    Although the colorectal adenoma-to-carcinoma sequence represents a classical cancer progression model, the evolution of the mutational landscape underlying this model is not fully understood. In this study, we analyzed eight synchronous pairs of colorectal high-grade adenomas and carcinomas, four microsatellite-unstable (MSU) and four -stable (MSS) pairs, using whole-exome sequencing. In the MSU adenoma-carcinoma pairs, we observed no subclonal mutations in adenomas that became fixed in paired carcinomas, suggesting a ‘parallel’ evolution of synchronous adenoma-to-carcinoma, rather than a ‘stepwise’ evolution. The abundance of indel (in MSU and MSS pairs) and microsatellite instability (in MSU pairs) was noted in the later adenoma- or carcinoma-specific mutations, indicating that the mutational processes and functional constraints operative in early and late colorectal carcinogenesis are different. All MSU cases exhibited clonal, truncating mutations in ACVR2A, TGFBR2, and DNA mismatch repair genes, but none were present in APC or KRAS. In three MSS pairs, both APC and KRAS mutations were identified as both early and clonal events, often accompanying clonal copy number changes. An MSS case uniquely exhibited clonal ERBB2 amplification, followed by APC and TP53 mutations as carcinoma-specific events. Along with the previously unrecognized clonal origins of synchronous colorectal adenoma-carcinoma pairs, our study revealed that the preferred sequence of mutational events during colorectal carcinogenesis can be context-dependent. PMID:26336987

  4. Political Microcultures: Linking Civic Life and Democratic Discourse

    ERIC Educational Resources Information Center

    Perrin, Andrew J.

    2005-01-01

    At the core of democratic citizenship is deliberation: citizens' tendency and capacity for debating issues of common importance. This study considers civic organizations--often found to be political mobilizers--as political microcultures: environments for political discourse that structure participants' understanding of the practice of…

  5. Evaluation of a Microculture Method for Isolation of Leishmania Parasites from Cutaneous Lesions of Patients in Peru▿

    PubMed Central

    Boggild, Andrea K.; Miranda-Verastegui, Cesar; Espinosa, Diego; Arevalo, Jorge; Adaui, Vanessa; Tulliano, Gianfranco; Llanos-Cuentas, Alejandro; Low, Donald E.

    2007-01-01

    Traditional culture of Leishmania spp. is labor intensive and has poor sensitivity. We evaluated a microculture method for the diagnosis of cutaneous leishmaniasis in consecutive patients presenting to the Leishmaniasis Clinic at the Instituto de Medicina Tropical Alexander von Humboldt, Peru, for evaluation of skin lesions. Lesion aspirates were cultured in duplicate and parallel in traditional culture tubes containing modified Novy-MacNeal-Nicolle (NNN) medium or Roswell Park Memorial Institute medium 1640 with 10% fetal bovine serum (10% RPMI) and in 70-μl capillary tubes containing a mixture of lesion aspirate and 10% RPMI. For sensitivity analysis, the consensus standard was considered to be a positive result in any two of the following four tests: Giemsa-stained lesion smear, culture, kinetoplast DNA PCR, or leishmanin skin test. The outcome measures were sensitivity and time to culture positivity. Forty-five patients with 62 skin lesions were enrolled in the study, of which 53 lesions fulfilled the consensus criteria for a final diagnosis of cutaneous leishmaniasis. Of these 53 lesions, 39 were culture positive: 38 in capillary tubes, 29 in traditional culture tubes with modified NNN medium, and 19 in traditional culture tubes with 10% RPMI medium. The sensitivity of microculture was 71.7%, versus 54.7% for traditional culture with NNN (P, 0.038) and 35.8% with 10% RPMI (P, <0.001). The mean times to culture positivity were 4.2 days by microculture, 5.2 days in NNN, and 6 days in 10% RPMI (P, 0.009). We have demonstrated that microculture is a more sensitive and time-efficient means of isolating Leishmania parasites from cutaneous lesions than traditional culture. PMID:17881557

  6. An enzyme-linked immunosorbent assay for bromodeoxyuridine incorporation using fixed microcultures

    SciTech Connect

    Muir, D.; Varon, S.; Manthorpe, M. )

    1990-03-01

    We report a quantitative method by which a single microculture can be examined for cell morphology; cell number; DNA synthesis; and expression of cell antigens. This method first involves measuring by enzyme-linked immunosorbent assay (ELISA) the total bromodeoxyuridine (BrdU) incorporation into DNA by monolayer microcultures. The BrdU-ELISA measurement was followed by simultaneous immunostaining for BrdU-positive nuclei and for a cytoplasmic antigen. The method was applied to the measurement of mitogen-induced proliferation of rat sciatic nerve Schwann cell and cerebral astroglia microcultures. The ELISA measurement of BrdU incorporation compares favorably with measurements of tritiated thymidine incorporation and offers the additional advantages that the same microculture can subsequently be examined for cell number, for cell morphology, and for the percentage of cells having BrdU-labeled nuclei and other antigens.

  7. Microcultures and Informal Learning: A Heuristic Guiding Analysis of Conditions for Informal Learning in Local Higher Education Workplaces

    ERIC Educational Resources Information Center

    Roxå, Torgny; Mårtensson, Katarina

    2015-01-01

    This article contributes to knowledge about learning in workgroups, so called "microcultures" in higher education. It argues that socially constructed and institutionalised traditions, recurrent practices, and tacit assumptions in the various microcultures influence academic teachers towards certain behaviour. In line with this…

  8. A Simple Method for Human Whole Blood Microcultures and Its Application in Radiation Biodosimetry.

    PubMed

    Yan, Guo; Wen, Zhang; Chaoxian, Gao; Changye, Hui; Xueqin, Yang; Xinyue, Yang; Zhimin, Li

    2015-10-01

    The scoring of the cytokinesis-block micronucleus and dicentric chromosomes in human peripheral blood lymphocytes is used as a dosimeter of radiation exposure. A detailed methodology is presented for human whole blood microculture for cytogenetic analysis. The technique described yields more than sufficient numbers of mitotic lymphocytes for analyzing micronuclei and chromosome aberrations following exposure to radiation. PMID:26313591

  9. Description of a urease-based microELISA for the analysis of limiting dilution microcultures.

    PubMed

    Cerrone, M C; Kuhn, R E

    1991-04-01

    Limiting dilution analysis has been a valuable approach for both determining the frequency of cell subpopulations elicited during immune responses, as well as for the analysis of immunoregulatory circuits. We describe a simple, visually scored spot test for evaluating the response of Mishell-Dutton microcultures used in limiting dilution analysis. This spot test is based on a microELISA using immunoreagents conjugated to the enzyme, urease, as an alternative to the hemolytic spot test. The assay as performed in Terasaki trays requires minute quantities (less than 10 microliters) of culture supernatant, yet the ELISA yields a distinct color difference between tray wells containing culture supernatants derived from responding (purple) and nonresponding (yellow) microcultures. Although designed to be scored rapidly by visual inspection, the assay can be quantified by manual alignment of the Terasaki tray wells on commercially available ELISA plate readers with an accuracy and reproducibility comparable to assays performed in 96-well ELISA plates. Determination of anti-sheep RBC responses in limiting dilution Mishell-Dutton microcultures with both the hemolytic spot test and the urease-microELISA spot test showed a very close correlation between the results of the two assays. However, the urease-microELISA should be amenable for use with antigens not readily conjugated to an indicator RBC, and should be useful in those situations where determination of the antibody subclass(es) produced by responding microcultures is desired. PMID:2019748

  10. The Transmission and Evolution of Experimental Microcultures in Groups of Young Children

    ERIC Educational Resources Information Center

    Whiten, Andrew; Flynn, Emma

    2010-01-01

    A new experimental microculture approach was developed to investigate the creation and transmission of differing traditions in small communities of young children. Four playgroups, with a total of 88 children, participated. In each of 2 playgroups, a single child was shown how to use 1 of 2 alternative methods of tool use, "lift" or "poke," to…

  11. APPLICATION OF A NEW MICROCULTURING TECHNIQUE TO ASSESS THE EFFECTS OF TEMPERATURE AND SALINITY ON SPECIFIC GROWTH RATES OF SIX SYMBIODINIUM ISOLATES

    EPA Science Inventory

    A simple micro-culturing technique is described for determining specific growth rates of cultured Symbiodinium spp. Micro-cultures were prepared by transferring 200 L fresh test medium containing 2–10 Symbiodinium cells to wells of a flat bottom 96-well plate. Cultures were incub...

  12. A simple micro-culture method for the study of group B arboviruses*

    PubMed Central

    de Madrid, Ana Teresa; Porterfield, James S.

    1969-01-01

    Thirty-nine group B arboviruses have been titrated by a simple micro-culture method. The technique uses a stable line of pig kidney cells (PS cells) in which plaques develop when cells are first infected in suspension in the wells of haemagglutination trays and are then incubated for from 3 to 10 days under an overlay containing carboxymethyl-cellulose. This method can be adapted to measure neutralizing antibodies, and the principle underlying the test is applicable to other cells and other viruses. ImagesFIG. 1FIG. 2FIG. 3FIG. 4 PMID:4183812

  13. Defining Clonal Color in Fluorescent Multi-Clonal Tracking

    PubMed Central

    Wu, Juwell W.; Turcotte, Raphaël; Alt, Clemens; Runnels, Judith M.; Tsao, Hensin; Lin, Charles P.

    2016-01-01

    Clonal heterogeneity and selection underpin many biological processes including development and tumor progression. Combinatorial fluorescent protein expression in germline cells has proven its utility for tracking the formation and regeneration of different organ systems. Such cell populations encoded by combinatorial fluorescent proteins are also attractive tools for understanding clonal expansion and clonal competition in cancer. However, the assignment of clonal identity requires an analytical framework in which clonal markings can be parameterized and validated. Here we present a systematic and quantitative method for RGB analysis of fluorescent melanoma cancer clones. We then demonstrate refined clonal trackability of melanoma cells using this scheme. PMID:27073117

  14. Clonal reproduction in fungi

    PubMed Central

    Taylor, John W.; Hann-Soden, Christopher; Branco, Sara; Sylvain, Iman; Ellison, Christopher E.

    2015-01-01

    Research over the past two decades shows that both recombination and clonality are likely to contribute to the reproduction of all fungi. This view of fungi is different from the historical and still commonly held view that a large fraction of fungi are exclusively clonal and that some fungi have been exclusively clonal for hundreds of millions of years. Here, we first will consider how these two historical views have changed. Then we will examine the impact on fungal research of the concept of restrained recombination [Tibayrenc M, Ayala FJ (2012) Proc Natl Acad Sci USA 109 (48):E3305–E3313]. Using animal and human pathogenic fungi, we examine extrinsic restraints on recombination associated with bottlenecks in genetic variation caused by geographic dispersal and extrinsic restraints caused by shifts in reproductive mode associated with either disease transmission or hybridization. Using species of the model yeast Saccharomyces and the model filamentous fungus Neurospora, we examine intrinsic restraints on recombination associated with mating systems that range from strictly clonal at one extreme to fully outbreeding at the other and those that lie between, including selfing and inbreeding. We also consider the effect of nomenclature on perception of reproductive mode and a means of comparing the relative impact of clonality and recombination on fungal populations. Last, we consider a recent hypothesis suggesting that fungi thought to have the most severe intrinsic constraints on recombination actually may have the fewest. PMID:26195774

  15. Programming Mechanical and Physicochemical Properties of 3D Hydrogel Cellular Microcultures via Direct Ink Writing.

    PubMed

    McCracken, Joselle M; Badea, Adina; Kandel, Mikhail E; Gladman, A Sydney; Wetzel, David J; Popescu, Gabriel; Lewis, Jennifer A; Nuzzo, Ralph G

    2016-05-01

    3D hydrogel scaffolds are widely used in cellular microcultures and tissue engineering. Using direct ink writing, microperiodic poly(2-hydroxyethyl-methacrylate) (pHEMA) scaffolds are created that are then printed, cured, and modified by absorbing 30 kDa protein poly-l-lysine (PLL) to render them biocompliant in model NIH/3T3 fibroblast and MC3T3-E1 preosteoblast cell cultures. Spatial light interference microscopy (SLIM) live cell imaging studies are carried out to quantify cellular motilities for each cell type, substrate, and surface treatment of interest. 3D scaffold mechanics is investigated using atomic force microscopy (AFM), while their absorption kinetics are determined by confocal fluorescence microscopy (CFM) for a series of hydrated hydrogel films prepared from prepolymers with different homopolymer-to-monomer (Mr ) ratios. The observations reveal that the inks with higher Mr values yield relatively more open-mesh gels due to a lower degree of entanglement. The biocompatibility of printed hydrogel scaffolds can be controlled by both PLL content and hydrogel mesh properties. PMID:26924676

  16. A high throughput system for the preparation of single stranded templates grown in microculture.

    PubMed

    Kolner, D E; Guilfoyle, R A; Smith, L M

    1994-01-01

    A high throughput system for the preparation of single stranded M13 sequencing templates is described. Supernatants from clones grown in 48-well plates are treated with a chaotropic agent to dissociate the phage coat protein. Using a semi-automated cell harvester, the free nucleic acid is bound to a glass fiber filter in the presence of chaotrope and then washed with ethanol by aspiration. Individual glass fiber discs are punched out on the cell harvester and dried briefly. The DNA samples are then eluted in water by centrifugation. The processing time from 96 microcultures to sequence quality templates is approximately 1 hr. Assuming the ability to sequence 400 bases per clone, a 0.5 megabase per day genome sequencing facility will require 6250 purified templates a week. Toward accomplishing this goal we have developed a procedure which is a modification of a method that uses a chaotropic agent and glass fiber filter (Kristensen et al., 1987). By exploiting the ability of a cell harvester to uniformly aspirate and wash 96 samples, a rapid system for high quality template preparation has been developed. Other semi-automated systems for template preparation have been developed using commercially available robotic workstations like the Biomek (Mardis and Roe, 1989). Although minimal human intervention is required, processing time is at least twice as long. Custom systems based on paramagnetic beads (Hawkins et al., 1992) produce DNA in insufficient quantity for direct sequencing and therefore require cycle sequencing. These systems require custom programing, have a fairly high initial cost and have not proven to be as fast as the method reported here. PMID:7987011

  17. A novel microculture kinetic assay (MiCK assay) for malignant cell growth and chemosensitivity.

    PubMed

    Kravtsov, V D

    1994-01-01

    The THERMOmax microplate reader was adapted for monitoring the growth kinetics of human leukaemic OCI/AML-2 and mouse tumour J-774.1 cell lines in continuous culture. Fluid evaporation from wells, CO2 escape and contamination were prevented by hermetic sealing of the microcultures in wells of a 96-well microplate, thus enabling the cells to grow exponentially for 72 h under the conditions of the incubated microplate reader. For both OCI/AML-2 cells, which grow in suspension, and adherent J-774.1 cells, a linear correlation was demonstrated between the number of unstained cells seeded in a given microplate well and the optical density (OD) of that well. Therefore, the OD/time curve of the culture could be deemed to be its growth curve. By the use of the linear fit equation, the actual number of the cells in the wells was computable at any time point of the assay. In the chemosensitivity test, an inhibitory effect of ARA-C on the growth of the cells could be estimated by viewing of the growth curves plotted on the screen. The maximum kinetic rates (Vmax) of the curves in the control and the ARA-C-treated wells were compared, yielding a growth inhibition index (GII). Comparison of results of the kinetic chemosensitivity assay with those of a [3H]thymidine incorporation assay revealed that the novel assay is suitable for precise quantitation of the cell chemosensitivity, is more informative and has the added technical advantage of performance without recourse to radioactive or chemically hazardous substances. PMID:7833120

  18. The population genetics of clonal and partially clonal diploids.

    PubMed Central

    Balloux, François; Lehmann, Laurent; de Meeûs, Thierry

    2003-01-01

    The consequences of variable rates of clonal reproduction on the population genetics of neutral markers are explored in diploid organisms within a subdivided population (island model). We use both analytical and stochastic simulation approaches. High rates of clonal reproduction will positively affect heterozygosity. As a consequence, nearly twice as many alleles per locus can be maintained and population differentiation estimated as F(ST) value is strongly decreased in purely clonal populations as compared to purely sexual ones. With increasing clonal reproduction, effective population size first slowly increases and then points toward extreme values when the reproductive system tends toward strict clonality. This reflects the fact that polymorphism is protected within individuals due to fixed heterozygosity. Contrarily, genotypic diversity smoothly decreases with increasing rates of clonal reproduction. Asexual populations thus maintain higher genetic diversity at each single locus but a lower number of different genotypes. Mixed clonal/sexual reproduction is nearly indistinguishable from strict sexual reproduction as long as the proportion of clonal reproduction is not strongly predominant for all quantities investigated, except for genotypic diversities (both at individual loci and over multiple loci). PMID:12930767

  19. Is Bordetella pertussis clonal?

    PubMed Central

    Khattak, M. N.; Matthews, R. C.; Burnie, J. P.

    1992-01-01

    OBJECTIVE--To establish whether Bordetella pertussis is essentially clonal. DESIGN--Analysis of restriction fragments of XbaI digests of DNA from clinical and control isolates of B pertussis by pulse field gel electrophoresis. MATERIALS--105 isolates of B pertussis: 67 clinical isolates from throughout the United Kingdom and 23 from Germany (collected during the previous 18 months); vaccine strains 2991 and 3700; and 13 control isolates from Manchester University's culture collection. MAIN OUTCOME MEASURES--Frequency of DNA types according to country of origin and classical serotyping. RESULTS--17 DNA types were identified on the basis of the variation in 11 fragments, banding at 200-412 kilobases; 15 types were found in the clinical and control isolates from the United Kingdom and seven in those from Germany. There was no correlation with serotype. DNA type 1 was the commonest overall (22/105 strains, 22%), predominating in serotypes 1,2 and 1,2,3 and including the vaccine strains but not the isolates from Germany. CONCLUSIONS--Current infections due to B pertussis are not caused by a clonal pathogen as multiple strains are circulating in a given population at one time. There is also considerable epidemiological variation in the pathogen population between countries. These findings may have implications for the design of acellular vaccines. Images FIG 1 FIG 2 FIG 3 PMID:1392709

  20. Expression of human immunodeficiency virus (HIV) in naturally infected peripheral blood mononuclear cells: comparison of a standard co-culture technique with a newly developed microculture method.

    PubMed

    Eberlein, B; Baur, A; Neundorfer, M; Jahn, G

    1991-05-01

    Peripheral blood mononuclear cells (PBMCs) from 29 patients infected with human immunodeficiency virus (HIV) were cultured by two different methods. One was the standard co-culture technique, the other a newly developed microculture method. In this assay 10(6) PBMCs were cultivated in 250 microliters medium, no activating agents or allogeneic cells were present. P24 antigen production measured by this method was found in 7 out of 11 PBMC cultures of patients in the Walter Reed (WR) stage 1 or 2, whereas only 4 samples were positive by the co-culture procedure. Cultures from patients in the later stages of the disease (WR 5/6) showed a higher p24 production by the co-culture method than by the microculture assay. It is assumed that rapidly growing HIV strains can be better assessed by the co-culture method which may select for these strains. P24 expression can be more easily obtained by the microculture technique even in cases where slowly replicating strains may be present. In conclusion, results from the microculture procedure described may be a useful supplementation to findings observed by the co-culture method. PMID:1909827

  1. The clonal origin and clonal evolution of epithelial tumours

    PubMed Central

    Garcia, Sergio Britto; Novelli, Marco; Wright, Nicholas A

    2000-01-01

    While the origin of tumours, whether from one cell or many, has been a source of fascination for experimental oncologists for some time, in recent years there has been a veritable explosion of information about the clonal architecture of tumours and their antecedents, stimulated, in the main, by the ready accessibility of new molecular techniques. While most of these new results have apparently confirmed the monoclonal origin of human epithelial (and other) tumours, there are a significant number of studies in which this conclusion just cannot be made. Moreover, analysis of many articles show that the potential impact of such considerations as patch size and clonal evolution on determinations of clonality have largely been ignored, with the result that a number of these studies are confounded. However, the clonal architecture of preneoplastic lesions provide some interesting insights — many lesions which might have been hitherto regarded as hyperplasias are apparently clonal in derivation. If this is indeed true, it calls into some question our hopeful corollary that a monoclonal origin presages a neoplastic habitus. Finally, it is clear, for many reasons, that methods of analysis which involve the disaggregation of tissues, albeit microdissected, are far from ideal and we should be putting more effort into techniques where the clonal architecture of normal tissues, preneoplastic and preinvasive lesions and their derivative tumours can be directly visualized in situ. PMID:10762440

  2. PCR techniques for clonality assays.

    PubMed

    Diaz-Cano, S J; Blanes, A; Wolfe, H J

    2001-03-01

    Clonal overgrowths represent the hallmark of neoplastic proliferations, and their demonstration has been proved useful clinically for the diagnosis of malignant lymphomas based on the detection of specific and dominant immunoglobulin and/or T-cell receptor gene rearrangements. Nonrandom genetic alterations can also be used to test clonal expansions and the clonal evolution of neoplasms, especially analyzing hypervariable deoxyribonucleic acid (DNA) regions from patients heterozygous for a given marker. These tests rely basically on the demonstration of loss of heterozygosity (LOH) resulting from either hemizygosity (nonrandom interstitial DNA deletions) or homozygosity of mutant alleles observed in neoplasms. LOH analyses identify clonal expansions of a tumor cell population, and point to monoclonal proliferation when multiple and consistent LOH are demonstrated. Based on the methylation-related inactivation of one X chromosome in female subjects, X-linked markers (e.g., androgen receptor gene) will provide clonality information using LOH analyses after DNA digestion with methylation-sensitive restriction endonucleases. Therefore, both non-X-linked and X-linked analyses give complementary information, related and not related to the malignant transformation pathway respectively. Applied appropriately, these tools can establish the clonal evolution of tumor cell populations (tumor heterogeneity), identify early relapses, distinguish recurrent tumors from other metachronic neoplasms, and differentiate field transformation from metastatic tumor growths in synchronic and histologically identical neoplasms. PMID:11277392

  3. Synthetic clonal reproduction through seeds.

    PubMed

    Marimuthu, Mohan P A; Jolivet, Sylvie; Ravi, Maruthachalam; Pereira, Lucie; Davda, Jayeshkumar N; Cromer, Laurence; Wang, Lili; Nogué, Fabien; Chan, Simon W L; Siddiqi, Imran; Mercier, Raphaël

    2011-02-18

    Cloning through seeds has potential revolutionary applications in agriculture, because it would allow vigorous hybrids to be propagated indefinitely. However, asexual seed formation or apomixis, avoiding meiosis and fertilization, is not found in the major food crops. To develop de novo synthesis of apomixis, we crossed Arabidopsis MiMe and dyad mutants that produce diploid clonal gametes to a strain whose chromosomes are engineered to be eliminated after fertilization. Up to 34% of the progeny were clones of their parent, demonstrating the conversion of clonal female or male gametes into seeds. We also show that first-generation cloned plants can be cloned again. Clonal reproduction through seeds can therefore be achieved in a sexual plant by manipulating two to four conserved genes. PMID:21330535

  4. Evidence for clonal origin of neoplastic neuronal and glial cells in gangliogliomas.

    PubMed Central

    Zhu, J. J.; Leon, S. P.; Folkerth, R. D.; Guo, S. Z.; Wu, J. K.; Black, P. M.

    1997-01-01

    Gangliogliomas are rare tumors of the central nervous system that account for approximately 1% of all brain tumors. Histologically, gangliogliomas are composed of intimately admixed glial and neuronal components, the pathological origins of which remain to be characterized. Clonal analysis through examination of the pattern of the X chromosome inactivation allows one to distinguish monoclonal differentiation of a genetically abnormal progenitor cell from parallel, but independent, clonal expansion of two different cell types during tumorigenesis in biphasic neoplasms, such as gangliogliomas. In the present study, we investigated the clonality of eight gangliogliomas from female patients using both methylation- and transcription-based clonality assays at the androgen receptor locus (HUMARA) on the X chromosome. Among tumors from seven patients who were heterozygous at the HUMARA locus, five were identified as monoclonal with the methylation-based clonality assay, and the results were confirmed by the transcription-based method, whereas two were shown to be polyclonal by the methylation-based clonality assay but monoclonal by transcription-based clonality analysis. We conclude that the predominant cell types in most gangliogliomas are monoclonal in origin and derive from a common precursor cell that subsequently differentiates to form neoplastic glial and neuronal elements. Images Figure 2 Figure 3 PMID:9250169

  5. Utility of the Microculture Method in Non-Invasive Samples Obtained from an Experimental Murine Model with Asymptomatic Leishmaniasis

    PubMed Central

    Allahverdiyev, Adil M.; Bagirova, Malahat; Cakir-Koc, Rabia; Elcicek, Serhat; Oztel, Olga Nehir; Canim-Ates, Sezen; Abamor, Emrah Sefik; Yesilkir-Baydar, Serap

    2012-01-01

    The sensitivity of diagnostic methods for visceral leishmaniasis (VL) decreases because of the low number of parasites and antibody amounts in asymptomatic healthy donors who are not suitable for invasive sample acquisition procedures. Therefore, new studies are urgently needed to improve the sensitivity and specificity of the diagnostic approaches in non-invasive samples. In this study, the sensitivity of the microculture method (MCM) was compared with polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and immunofluorescent antibody test (IFAT) methods in an experimental murine model with asymptomatic leishmaniasis. Results showed that the percent of positive samples in ELISA, IFAT, and peripheral blood (PB) -PCR tests were 17.64%, 8.82%, and 5.88%, respectively, whereas 100% positive results were obtained with MCM and MCM-PCR methods. Thus, this study, for the first time, showed that MCM is more sensitive, specific, and economic than other methods, and the sensitivity of PCR that was performed to samples obtained from MCM was higher than sensitivity of the PCR method sampled by PB. PMID:22764296

  6. The value of a new microculture method for diagnosis of visceral leishmaniasis by using bone marrow and peripheral blood.

    PubMed

    Allahverdiyev, Adil M; Bagirova, Malahat; Uzun, Soner; Alabaz, Derya; Aksaray, Necmi; Kocabas, Emine; Koksal, Fatih

    2005-08-01

    We have demonstrated that the microculture method (MCM) enables the diagnosis of visceral leishmaniasis (VL) with samples from both the bone marrow (BM) and peripheral blood (PB). The MCM is superior to the traditional culture method (TCM) as determined by its higher sensitivity in the detection of promastigotes and the more rapid time for emergence of promastigotes. The sensitivity of MCM (100% in BMs and 77.8-100% in PB) was considerably higher than that of the TCM (37.5-100% in BMs and 0-100% in PB) according to decreasing parasite density (P < 0.05). The concentration of parasites in buffy coats has increased the sensitivity of both methods, especially that of the MCM. Detection of promastigotes by MCM requires lower amounts of culture media (25-50 microL) and shorter incubation periods (2-7 days) than TCM (2.5-3.5 mL and 15-35 days, respectively). MCM was found to be valuable with the advantages of simplicity and sensitivity, in addition to being cost-effective in the routine diagnosis for VL in Adana Turkey. PMID:16103589

  7. Utility of the microculture method in non-invasive samples obtained from an experimental murine model with asymptomatic leishmaniasis.

    PubMed

    Allahverdiyev, Adil M; Bagirova, Malahat; Cakir-Koc, Rabia; Elcicek, Serhat; Oztel, Olga Nehir; Canim-Ates, Sezen; Abamor, Emrah Sefik; Yesilkir-Baydar, Serap

    2012-07-01

    The sensitivity of diagnostic methods for visceral leishmaniasis (VL) decreases because of the low number of parasites and antibody amounts in asymptomatic healthy donors who are not suitable for invasive sample acquisition procedures. Therefore, new studies are urgently needed to improve the sensitivity and specificity of the diagnostic approaches in non-invasive samples. In this study, the sensitivity of the microculture method (MCM) was compared with polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and immunofluorescent antibody test (IFAT) methods in an experimental murine model with asymptomatic leishmaniasis. Results showed that the percent of positive samples in ELISA, IFAT, and peripheral blood (PB) -PCR tests were 17.64%, 8.82%, and 5.88%, respectively, whereas 100% positive results were obtained with MCM and MCM-PCR methods. Thus, this study, for the first time, showed that MCM is more sensitive, specific, and economic than other methods, and the sensitivity of PCR that was performed to samples obtained from MCM was higher than sensitivity of the PCR method sampled by PB. PMID:22764296

  8. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia

    PubMed Central

    Park, Eugene; Papaemmanuil, Elli; Ford, Anthony; Kweon, Soo-Mi; Trageser, Daniel; Hasselfeld, Brian; Henke, Nadine; Mooster, Jana; Geng, Huimin; Schwarz, Klaus; Kogan, Scott C.; Casellas, Rafael; Schatz, David G.; Lieber, Michael R; Greaves, Mel F.; Müschen, Markus

    2015-01-01

    Childhood acute lymphoblastic leukemia can often be retraced to a pre-leukemic clone carrying a prenatal genetic lesion. Postnatally acquired mutations then drive clonal evolution towards overt leukemia. RAG1-RAG2 and AID enzymes, the diversifiers of immunoglobulin genes, are strictly segregated to early and late stages of B-lymphopoiesis, respectively. Here, we identified small pre-BII cells as a natural subset of increased genetic vulnerability owing to concurrent activation of these enzymes. Consistent with epidemiological findings on childhood ALL etiology, susceptibility to genetic lesions during B-lymphopoiesis at the large to small pre-BII transition is exacerbated by abnormal cytokine signaling and repetitive inflammatory stimuli. We demonstrate that AID and RAG1-RAG2 drive leukemic clonal evolution with repeated exposure to inflammatory stimuli, paralleling chronic infections in childhood. PMID:25985233

  9. How clonal are bacteria over time?

    PubMed

    Shapiro, B Jesse

    2016-06-01

    Bacteria and archaea reproduce clonally (vertical descent), but exchange genes by recombination (horizontal transfer). Recombination allows adaptive mutations or genes to spread rapidly within (or even between) species, and reduces the burden of deleterious mutations. Clonality-defined here as the balance between vertical and horizontal inheritance-is therefore a key microbial trait, determining how quickly a population can adapt and the size of its gene pool. Here, I discuss whether clonality varies over time and if it can be considered a stable trait of a given population. I show that, in some cases, clonality is clearly not static. For example, non-clonal (highly recombining) populations can give rise to clonal expansions, often of pathogens. However, an analysis of time-course metagenomic data from a lake suggests that a bacterial population's past clonality (as measured by its genetic diversity) is a good predictor of its future clonality. Clonality therefore appears to be relatively-but not completely-stable over evolutionary time. PMID:27057964

  10. Influences of clonality on plant sexual reproduction

    PubMed Central

    Barrett, Spencer C. H.

    2015-01-01

    Flowering plants possess an unrivaled diversity of mechanisms for achieving sexual and asexual reproduction, often simultaneously. The commonest type of asexual reproduction is clonal growth (vegetative propagation) in which parental genotypes (genets) produce vegetative modules (ramets) that are capable of independent growth, reproduction, and often dispersal. Clonal growth leads to an expansion in the size of genets and increased fitness because large floral displays increase fertility and opportunities for outcrossing. Moreover, the clonal dispersal of vegetative propagules can assist “mate finding,” particularly in aquatic plants. However, there are ecological circumstances in which functional antagonism between sexual and asexual reproductive modes can negatively affect the fitness of clonal plants. Populations of heterostylous and dioecious species have a small number of mating groups (two or three), which should occur at equal frequency in equilibrium populations. Extensive clonal growth and vegetative dispersal can disrupt the functioning of these sexual polymorphisms, resulting in biased morph ratios and populations with a single mating group, with consequences for fertility and mating. In populations in which clonal propagation predominates, mutations reducing fertility may lead to sexual dysfunction and even the loss of sex. Recent evidence suggests that somatic mutations can play a significant role in influencing fitness in clonal plants and may also help explain the occurrence of genetic diversity in sterile clonal populations. Highly polymorphic genetic markers offer outstanding opportunities for gaining novel insights into functional interactions between sexual and clonal reproduction in flowering plants. PMID:26195747

  11. Utility of the microculture method for Leishmania detection in non-invasive samples obtained from a blood bank.

    PubMed

    Ates, Sezen Canim; Bagirova, Malahat; Allahverdiyev, Adil M; Kocazeybek, Bekir; Kosan, Erdogan

    2013-10-01

    In recent years, the role of donor blood has taken an important place in epidemiology of Leishmaniasis. According to the WHO, the numbers of patients considered as symptomatic are only 5-20% of individuals with asymptomatic leishmaniasis. In this study for detection of Leishmania infection in donor blood samples, 343 samples from the Capa Red Crescent Blood Center were obtained and primarily analyzed by microscopic and serological methods. Subsequently, the traditional culture (NNN), Immuno-chromatographic test (ICT) and Polymerase Chain Reaction (PCR) methods were applied to 21 samples which of them were found positive with at least one method. Buffy coat (BC) samples from 343 blood donors were analyzed: 15 (4.3%) were positive by a microculture method (MCM); and 4 (1.1%) by smear. The sera of these 343 samples included 9 (2.6%) determined positive by ELISA and 7 (2%) positive by IFAT. Thus, 21 of (6.1%) the 343 subjects studied by smear, MCM, IFAT and ELISA techniques were identified as positive for leishmaniasis at least one of the techniques and the sensitivity assessed. According to our data, the sensitivity of the methods are identified as MCM (71%), smear (19%), IFAT (33%), ELISA (42%), NNN (4%), PCR (14%) and ICT (4%). Thus, with this study for the first time, the sensitivity of a MCM was examined in blood donors by comparing MCM with the methods used in the diagnosis of leishmaniasis. As a result, MCM was found the most sensitive method for detection of Leishmania parasites in samples obtained from a blood bank. In addition, the presence of Leishmania parasites was detected in donor bloods in Istanbul, a non-endemic region of Turkey, and these results is a vital importance for the health of blood recipients. PMID:23806567

  12. Ecological Consequences of Clonal Integration in Plants

    PubMed Central

    Liu, Fenghong; Liu, Jian; Dong, Ming

    2016-01-01

    Clonal plants are widespread throughout the plant kingdom and dominate in diverse habitats. Spatiotemporal heterogeneity of environment is pervasive at multiple scales, even at scales relevant to individual plants. Clonal integration refers to resource translocation and information communication among the ramets of clonal plants. Due to clonal integration, clonal plant species possess a series of peculiar attributes: plasticity in response to local and non-local conditions, labor division with organ specialization for acquiring locally abundant resources, foraging behavior by selective placement of ramets in resource-rich microhabitats, and avoidance of intraclonal competition. Clonal integration has very profound ecological consequences for clonal plants. It allows them to efficiently cope with environmental heterogeneity, by alleviating local resource shortages, buffering environmental stresses and disturbances, influencing competitive ability, increasing invasiveness, and altering species composition and invasibility at the community level. In this paper, we present a comprehensive review of research on the ecological consequences of plant clonal integration based on a large body of literature. We also attempt to propose perspectives for future research. PMID:27446093

  13. Clonal Integration Enhances the Performance of a Clonal Plant Species under Soil Alkalinity Stress

    PubMed Central

    Sun, Juanjuan; Chen, Jishan; Zhang, Yingjun

    2015-01-01

    Clonal plants have been shown to successfully survive in stressful environments, including salinity stress, drought and depleted nutrients through clonal integration between original and subsequent ramets. However, relatively little is known about whether clonal integration can enhance the performance of clonal plants under alkalinity stress. We investigated the effect of clonal integration on the performance of a typical rhizomatous clonal plant, Leymus chinensis, using a factorial experimental design with four levels of alkalinity and two levels of rhizome connection treatments, connected (allowing integration) and severed (preventing integration). Clonal integration was estimated by comparing physiological and biomass features between the rhizome-connected and rhizome-severed treatments. We found that rhizome-connected treatment increased the biomass, height and leaf water potential of subsequent ramets at highly alkalinity treatments but did not affect them at low alkalinity treatments. However, rhizome-connected treatment decreased the root biomass of subsequent ramets and did not influence the photosynthetic rates of subsequent ramets. The biomass of original ramets was reduced by rhizome-connected treatment at the highest alkalinity level. These results suggest that clonal integration can increase the performance of clonal plants under alkalinity stress. Rhizome-connected plants showed dramatically increased survival of buds with negative effects on root weight, indicating that clonal integration influenced the resource allocation pattern of clonal plants. A cost-benefit analysis based on biomass measures showed that original and subsequent ramets significantly benefited from clonal integration in highly alkalinity stress, indicating that clonal integration is an important adaptive strategy by which clonal plants could survive in local alkalinity soil. PMID:25790352

  14. Clonal growth and plant species abundance

    PubMed Central

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-01-01

    Background and Aims Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden. Methods Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. Key Results After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Conclusions Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially

  15. Clonal Evolution in Multiple Myeloma.

    PubMed

    Fakhri, Bita; Vij, Ravi

    2016-08-01

    Multiple myeloma (MM) is the second most common hematologic malignancy encountered among patients in the United States. The last decade has seen incremental improvements in the survival of patients with MM. These advances are, to a large extent, attributable to the addition of proteasome inhibitors and immunomodulatory drugs to the armamentarium of treatment options. The adoption of these drug classes was the result of an empiric research paradigm. However, with the application of next generation sequencing technologies, we are now starting to unravel the genomic landscape of MM. It is hoped that this will allow us to better disentangle the biology of the disease and allow for identification of new therapeutic targets. In this article, we review what we have learned to date about the mutational profile, clonal architecture, and evolution of the disease, and discuss the potential clinical implications of these findings. PMID:27521309

  16. Enforced Clonality Confers a Fitness Advantage

    PubMed Central

    Martínková, Jana; Klimešová, Jitka

    2016-01-01

    In largely clonal plants, splitting of a maternal plant into potentially independent plants (ramets) is usually spontaneous; however, such fragmentation also occurs in otherwise non-clonal species due to application of external force. This process might play an important yet largely overlooked role for otherwise non-clonal plants by providing a mechanism to regenerate after disturbance. Here, in a 5-year garden experiment on two short-lived, otherwise non-clonal species, Barbarea vulgaris and Barbarea stricta, we compared the fitness of plants fragmented by simulated disturbance (“enforced ramets”) both with plants that contemporaneously originate in seed and with individuals unscathed by the disturbance event. Because the ability to regrow from fragments is related to plant age and stored reserves, we compared the effects of disturbance applied during three different ontogenetic stages of the plants. In B. vulgaris, enforced ramet fitness was higher than the measured fitness values of both uninjured plants and plants established from seed after the disturbance. This advantage decreased with increasing plant age at the time of fragmentation. In B. stricta, enforced ramet fitness was lower than or similar to fitness of uninjured plants and plants grown from seed. Our results likely reflect the habitat preferences of the study species, as B. vulgaris occurs in anthropogenic, disturbed habitats where body fragmentation is more probable and enforced clonality thus more advantageous than in the more natural habitats preferred by B. stricta. Generalizing from our results, we see that increased fitness yielded by enforced clonality would confer an evolutionary advantage in the face of disturbance, especially in habitats where a seed bank has not been formed, e.g., during invasion or colonization. Our results thus imply that enforced clonality should be taken into account when studying population dynamics and life strategies of otherwise non-clonal species in disturbed

  17. Inhibition of growth of microcultured Hancornia speciosa shoots by 3beta-hydroxylated gibberellins and one of their C-3 deoxy precursors.

    PubMed

    Pereira-Netto, A B; McCown, B H; Pharis, R P

    2003-01-01

    Gibberellins (GAs) A(1), A(3), A(4) and A(7), all 3beta-hydroxylated, growth-active GAs, significantly inhibited shoot elongation and the formation of nodes in in vitro-grown Hancornia speciosa, as did GA(20), a 3-deoxy precursor of GA(1). Ancymidol, an early-stage inhibitor of GA biosynthesis, significantly retarded shoot elongation without affecting the formation of nodes. Co-application of ancymidol and GA(1 )did not overcome the ancymidol-induced growth retardation. Trinexapac-ethyl, which can inhibit 3beta-hydroxylation (GA activation) and 2beta-hydroxylation (GA inactivation), gave no significant response on either shoot elongation or node formation, while two isomers of 16,17-dihydro GA(5), also inhibitors of GA 3beta-hydroxylation, significantly inhibited both shoot growth and the formation of nodes. These unusual results may indicate a unique metabolism for GAs in microcultured shoots of H. speciosa. PMID:12789453

  18. Single cell genotyping of exome sequencing-identified mutations to characterize the clonal composition and evolution of inv(16) AML in a CBL mutated clonal hematopoiesis.

    PubMed

    Niemöller, Christoph; Renz, Nathalie; Bleul, Sabine; Blagitko-Dorfs, Nadja; Greil, Christine; Yoshida, Kenichi; Pfeifer, Dietmar; Follo, Marie; Duyster, Justus; Claus, Rainer; Ogawa, Seishi; Lübbert, Michael; Becker, Heiko

    2016-08-01

    We recently described the development of an inv(16) acute myeloid leukemia (AML) in a CBL mutated clonal hematopoiesis. Here, we further characterized the clonal composition and evolution of the AML based on the genetic information from the bulk specimen and analyses of individual bone marrow cells for mutations in CAND1, PTPRT, and DOCK6. To control for allele dropout, heterozygous polymorphisms located close to the respective mutation loci were assessed in parallel. The clonal composition concluded from exome sequencing suggested a proliferation advantage associated with the acquisition of mutations in CAND1, PTPRT, and DOCK6. Out of 102 single cell sequencing reactions on these mutations and the respective polymorphisms, analyses yielded conclusive results for at least 2 mutation sites in 12 cells. The single cell genotyping not only confirmed the co-occurrence of the PTPRT, CAND1 and DOCK6 mutations in the same AML clone but also revealed a clonal hierarchy, as the PTPRT mutation was likely acquired after the CAND1 and DOCK6 mutations. This insight had not been possible based solely on the exome sequencing data and suggests that the mutation in PTPRT, which encodes a STAT3-inhibiting protein tyrosine phosphatase, contributed to the AML development at a later stage by enhancing proliferation. PMID:27244256

  19. Enhancing cancer clonality analysis with integrative genomics

    PubMed Central

    2015-01-01

    Introduction It is understood that cancer is a clonal disease initiated by a single cell, and that metastasis, which is the spread of cancer from the primary site, is also initiated by a single cell. The seemingly natural capability of cancer to adapt dynamically in a Darwinian manner is a primary reason for therapeutic failures. Survival advantages may be induced by cancer therapies and also occur as a result of inherent cell and microenvironmental factors. The selected "more fit" clones outmatch their competition and then become dominant in the tumor via propagation of progeny. This clonal expansion leads to relapse, therapeutic resistance and eventually death. The goal of this study is to develop and demonstrate a more detailed clonality approach by utilizing integrative genomics. Methods Patient tumor samples were profiled by Whole Exome Sequencing (WES) and RNA-seq on an Illumina HiSeq 2500 and methylation profiling was performed on the Illumina Infinium 450K array. STAR and the Haplotype Caller were used for RNA-seq processing. Custom approaches were used for the integration of the multi-omic datasets. Results Reported are major enhancements to CloneViz, which now provides capabilities enabling a formal tumor multi-dimensional clonality analysis by integrating: i) DNA mutations, ii) RNA expressed mutations, and iii) DNA methylation data. RNA and DNA methylation integration were not previously possible, by CloneViz (previous version) or any other clonality method to date. This new approach, named iCloneViz (integrated CloneViz) employs visualization and quantitative methods, revealing an integrative genomic mutational dissection and traceability (DNA, RNA, epigenetics) thru the different layers of molecular structures. Conclusion The iCloneViz approach can be used for analysis of clonal evolution and mutational dynamics of multi-omic data sets. Revealing tumor clonal complexity in an integrative and quantitative manner facilitates improved mutational

  20. Evolutionary perspectives on clonal reproduction in vertebrate animals

    PubMed Central

    Avise, John C.

    2015-01-01

    A synopsis is provided of different expressions of whole-animal vertebrate clonality (asexual organismal-level reproduction), both in the laboratory and in nature. For vertebrate taxa, such clonal phenomena include the following: human-mediated cloning via artificial nuclear transfer; intergenerational clonality in nature via parthenogenesis and gynogenesis; intergenerational hemiclonality via hybridogenesis and kleptogenesis; intragenerational clonality via polyembryony; and what in effect qualifies as clonal replication via self-fertilization and intense inbreeding by simultaneous hermaphrodites. Each of these clonal or quasi-clonal mechanisms is described, and its evolutionary genetic ramifications are addressed. By affording an atypical vantage on standard vertebrate reproduction, clonality offers fresh perspectives on the evolutionary and ecological significance of recombination-derived genetic variety. PMID:26195735

  1. Clonal deletion and clonal anergy in the thymus induced by cellular elements with different radiation sensitivities

    SciTech Connect

    Roberts, J.L.; Sharrow, S.O.; Singer, A. )

    1990-03-01

    The present study demonstrates that immune tolerance can be achieved in the thymus both by clonal deletion and by clonal inactivation, but that the two tolerant states are induced by cellular elements with different radiation sensitivities. TCR engagement of self antigens on bone marrow-derived, radiation-sensitive (presumably dendritic) cells induces clonal deletion of developing thymocytes, whereas TCR engagement of self antigens on radiation-resistant cellular elements, such as thymic epithelium, induces clonal anergy. The nondeleted, anergic thymocytes can express IL-2-Rs but are unable to proliferate in response to either specific antigen or anti-TCR antibodies, and do develop into phenotypically mature cells that emigrate out of the thymus and into the periphery.

  2. Quality improvement in Vignoles through clonal selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our goal is to select an improved, loose-clustered clone of Vignoles that will contribute to an integrated approach to disease control. Clonal selection has historically proven useful in reducing cluster compactness through a variety of mechanisms, including decreased berry size, lengthening of the ...

  3. Plant Diseases Impact USDA Clonal Vaccinium Genebank

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Agricultural Research Service maintains a diverse collection of Vaccinium genotypes at the National Clonal Germplasm Repository, a temperate fruit and nut genebank in Corvallis, Oregon. Vaccinium species are hosts for two emerging diseases in the U.S. Pacific Northwest that impact the colle...

  4. 'Sharpe', a clonal plum rootstock for peach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sharpe clonal rootstock for peach is jointly released for grower trial by the U.S. Department of Agriculture, Agricultural Research Service (Byron, GA), and Florida Agricultural Experiment Station. Sharpe, previously tested as FLA1-1, was discovered in the wild and appears to be a hybrid of Chickas...

  5. HIV genetic information and clonal growth

    Cancer.gov

    Based on an analysis of blood cells from five HIV-infected individuals, NCI researchers have identified more than 2,400 HIV DNA insertion sites. Analysis of these sites showed that there is extensive clonal expansion (growth) of HIV infected cells.

  6. Clonal hematopoiesis in acquired aplastic anemia.

    PubMed

    Ogawa, Seishi

    2016-07-21

    Clonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of CH in AA has been clarified by comprehensive detection of somatic mutations that drive clonal evolution. Genetic abnormalities are found in ∼50% of patients with AA and, except for PIGA mutations and copy-neutral loss-of-heterozygosity, or uniparental disomy (UPD) in 6p (6pUPD), are most frequently represented by mutations involving genes commonly mutated in myeloid malignancies, including DNMT3A, ASXL1, and BCOR/BCORL1 Mutations exhibit distinct chronological profiles and clinical impacts. BCOR/BCORL1 and PIGA mutations tend to disappear or show stable clone size and predict a better response to IST and a significantly better clinical outcome compared with mutations in DNMT3A, ASXL1, and other genes, which are likely to increase their clone size, are associated with a faster progression to MDS/AML, and predict an unfavorable survival. High frequency of 6pUPD and overrepresentation of PIGA and BCOR/BCORL1 mutations are unique to AA, suggesting the role of autoimmunity in clonal selection. By contrast, DNMT3A and ASXL1 mutations, also commonly seen in CH in the general population, indicate a close link to CH in the aged bone marrow, in terms of the mechanism for selection. Detection and close monitoring of somatic mutations/evolution may help with prediction and diagnosis of clonal evolution of MDS/AML and better management of patients with AA. PMID:27121470

  7. Consequences of clonality for sexual fitness: Clonal expansion enhances fitness under spatially restricted dispersal

    PubMed Central

    Van Drunen, Wendy E.; van Kleunen, Mark; Dorken, Marcel E.

    2015-01-01

    Clonality is a pervasive feature of sessile organisms, but this form of asexual reproduction is thought to interfere with sexual fitness via the movement of gametes among the modules that comprise the clone. This within-clone movement of gametes is expected to reduce sexual fitness via mate limitation of male reproductive success and, in some cases, via the production of highly inbred (i.e., self-fertilized) offspring. However, clonality also results in the spatial expansion of the genetic individual (i.e., genet), and this should decrease distances gametes and sexually produced offspring must travel to avoid competing with other gametes and offspring from the same clone. The extent to which any negative effects of clonality on mating success might be offset by the positive effects of spatial expansion is poorly understood. Here, we develop spatially explicit models in which fitness was determined by the success of genets through their male and female sex functions. Our results indicate that clonality serves to increase sexual fitness when it is associated with the outward expansion of the genet. Our models further reveal that the main fitness benefit of clonal expansion might occur through the dispersal of offspring over a wider area compared with nonclonal phenotypes. We conclude that, instead of interfering with sexual reproduction, clonal expansion should often serve to enhance sexual fitness. PMID:26195748

  8. Evaluating Clonal Expansion of HIV-Infected Cells: Optimization of PCR Strategies to Predict Clonality

    PubMed Central

    Laskey, Sarah B.; Pohlmeyer, Christopher W.; Bruner, Katherine M.; Siliciano, Robert F.

    2016-01-01

    In HIV-infected individuals receiving suppressive antiretroviral therapy, the virus persists indefinitely in a reservoir of latently infected cells. The proliferation of these cells may contribute to the stability of the reservoir and thus to the lifelong persistence of HIV-1 in infected individuals. Because the HIV-1 replication process is highly error-prone, the detection of identical viral genomes in distinct host cells provides evidence for the clonal expansion of infected cells. We evaluated alignments of unique, near-full-length HIV-1 sequences to determine the relationship between clonality in a short region and clonality in the full genome. Although it is common to amplify and sequence short, subgenomic regions of the viral genome for phylogenetic analysis, we show that sequence identity of these amplicons does not guarantee clonality across the full viral genome. We show that although longer amplicons capture more diversity, no subgenomic region can recapitulate the diversity of full viral genomes. Consequently, some identical subgenomic amplicons should be expected even from the analysis of completely unique viral genomes, and the presence of identical amplicons alone is not proof of clonally expanded HIV-1. We present a method for evaluating evidence of clonal expansion in the context of these findings. PMID:27494508

  9. Evaluating Clonal Expansion of HIV-Infected Cells: Optimization of PCR Strategies to Predict Clonality.

    PubMed

    Laskey, Sarah B; Pohlmeyer, Christopher W; Bruner, Katherine M; Siliciano, Robert F

    2016-08-01

    In HIV-infected individuals receiving suppressive antiretroviral therapy, the virus persists indefinitely in a reservoir of latently infected cells. The proliferation of these cells may contribute to the stability of the reservoir and thus to the lifelong persistence of HIV-1 in infected individuals. Because the HIV-1 replication process is highly error-prone, the detection of identical viral genomes in distinct host cells provides evidence for the clonal expansion of infected cells. We evaluated alignments of unique, near-full-length HIV-1 sequences to determine the relationship between clonality in a short region and clonality in the full genome. Although it is common to amplify and sequence short, subgenomic regions of the viral genome for phylogenetic analysis, we show that sequence identity of these amplicons does not guarantee clonality across the full viral genome. We show that although longer amplicons capture more diversity, no subgenomic region can recapitulate the diversity of full viral genomes. Consequently, some identical subgenomic amplicons should be expected even from the analysis of completely unique viral genomes, and the presence of identical amplicons alone is not proof of clonally expanded HIV-1. We present a method for evaluating evidence of clonal expansion in the context of these findings. PMID:27494508

  10. Detectable Clonal Mosaicism in the Human Genome

    PubMed Central

    Machiela, Mitchell J.; Chanock, Stephen J.

    2013-01-01

    Human genetic mosaicism is the presence of two or more cellular populations with distinct genotypes in an individual who developed from a single fertilized ovum. While initially observed across a spectrum of rare genetic disorders, detailed assessment of data from genome-wide association studies now reveal that detectable clonal mosaicism involving large structural alterations (> 2 Mb) can also be seen in populations of apparently healthy individuals. The first generation of descriptive studies have generated new interest in understanding the molecular basis of the affected genomic regions, percent of the cellular subpopulation involved, and developmental timing of the underlying mutational event, which could reveal new insights into the initiation, clonal expansion and phenotypic manifestations of mosaic events. Early evidence indicates detectable clonal mosaicism increases in frequency with age and could preferentially occur in males. The observed pattern of recurrent events affecting specific chromosomal regions indicates some regions are more susceptible to these events, which could reflect inter-individual differences in genomic stability. Moreover, it is also plausible that the presence of large structural events could be associated with cancer risk. The characterization of detectable genetic mosaicism reveals that there could be important dynamic changes in the human genome associated with the aging process, which could be associated with risk for common disorders, such as cancer, cardiovascular disease, diabetes, and neurological disorders. PMID:24246702

  11. A novel artificial immune clonal selection classification and rule mining with swarm learning model

    NASA Astrophysics Data System (ADS)

    Al-Sheshtawi, Khaled A.; Abdul-Kader, Hatem M.; Elsisi, Ashraf B.

    2013-06-01

    Metaheuristic optimisation algorithms have become popular choice for solving complex problems. By integrating Artificial Immune clonal selection algorithm (CSA) and particle swarm optimisation (PSO) algorithm, a novel hybrid Clonal Selection Classification and Rule Mining with Swarm Learning Algorithm (CS2) is proposed. The main goal of the approach is to exploit and explore the parallel computation merit of Clonal Selection and the speed and self-organisation merits of Particle Swarm by sharing information between clonal selection population and particle swarm. Hence, we employed the advantages of PSO to improve the mutation mechanism of the artificial immune CSA and to mine classification rules within datasets. Consequently, our proposed algorithm required less training time and memory cells in comparison to other AIS algorithms. In this paper, classification rule mining has been modelled as a miltiobjective optimisation problem with predictive accuracy. The multiobjective approach is intended to allow the PSO algorithm to return an approximation to the accuracy and comprehensibility border, containing solutions that are spread across the border. We compared our proposed algorithm classification accuracy CS2 with five commonly used CSAs, namely: AIRS1, AIRS2, AIRS-Parallel, CLONALG, and CSCA using eight benchmark datasets. We also compared our proposed algorithm classification accuracy CS2 with other five methods, namely: Naïve Bayes, SVM, MLP, CART, and RFB. The results show that the proposed algorithm is comparable to the 10 studied algorithms. As a result, the hybridisation, built of CSA and PSO, can develop respective merit, compensate opponent defect, and make search-optimal effect and speed better.

  12. Parallel rendering

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1995-01-01

    This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.

  13. Clonality Testing in Veterinary Medicine: A Review With Diagnostic Guidelines.

    PubMed

    Keller, S M; Vernau, W; Moore, P F

    2016-07-01

    The accurate distinction of reactive and neoplastic lymphoid proliferations can present challenges. Given the different prognoses and treatment strategies, a correct diagnosis is crucial. Molecular clonality assays assess rearranged lymphocyte antigen receptor gene diversity and can help differentiate reactive from neoplastic lymphoid proliferations. Molecular clonality assays are commonly used to assess atypical, mixed, or mature lymphoid proliferations; small tissue fragments that lack architecture; and fluid samples. In addition, clonality testing can be utilized to track neoplastic clones over time or across anatomic sites. Molecular clonality assays are not stand-alone tests but useful adjuncts that follow clinical, morphologic, and immunophenotypic assessment. Even though clonality testing provides valuable information in a variety of situations, the complexities and pitfalls of this method, as well as its dependency on the experience of the interpreter, are often understated. In addition, a lack of standardized terminology, laboratory practices, and interpretational guidelines hinders the reproducibility of clonality testing across laboratories in veterinary medicine. The objectives of this review are twofold. First, the review is intended to familiarize the diagnostic pathologist or interested clinician with the concepts, potential pitfalls, and limitations of clonality testing. Second, the review strives to provide a basis for future harmonization of clonality testing in veterinary medicine by providing diagnostic guidelines. PMID:26933096

  14. Inferring Clonal Composition from Multiple Sections of a Breast Cancer

    PubMed Central

    Hu, Alex; Weber, Kris; Smith, Josh; Nickerson, Debbie; Song, ChaoZhong; Witten, Daniela; Blau, C. Anthony; Noble, William Stafford

    2014-01-01

    Cancers arise from successive rounds of mutation and selection, generating clonal populations that vary in size, mutational content and drug responsiveness. Ascertaining the clonal composition of a tumor is therefore important both for prognosis and therapy. Mutation counts and frequencies resulting from next-generation sequencing (NGS) potentially reflect a tumor's clonal composition; however, deconvolving NGS data to infer a tumor's clonal structure presents a major challenge. We propose a generative model for NGS data derived from multiple subsections of a single tumor, and we describe an expectation-maximization procedure for estimating the clonal genotypes and relative frequencies using this model. We demonstrate, via simulation, the validity of the approach, and then use our algorithm to assess the clonal composition of a primary breast cancer and associated metastatic lymph node. After dividing the tumor into subsections, we perform exome sequencing for each subsection to assess mutational content, followed by deep sequencing to precisely count normal and variant alleles within each subsection. By quantifying the frequencies of 17 somatic variants, we demonstrate that our algorithm predicts clonal relationships that are both phylogenetically and spatially plausible. Applying this method to larger numbers of tumors should cast light on the clonal evolution of cancers in space and time. PMID:25010360

  15. Kin Recognition in a Clonal Fish, Poecilia formosa

    PubMed Central

    Makowicz, Amber M.; Tiedemann, Ralph; Schlupp, Ingo

    2016-01-01

    Relatedness strongly influences social behaviors in a wide variety of species. For most species, the highest typical degree of relatedness is between full siblings with 50% shared genes. However, this is poorly understood in species with unusually high relatedness between individuals: clonal organisms. Although there has been some investigation into clonal invertebrates and yeast, nothing is known about kin selection in clonal vertebrates. We show that a clonal fish, the Amazon molly (Poecilia formosa), can distinguish between different clonal lineages, associating with genetically identical, sister clones, and use multiple sensory modalities. Also, they scale their aggressive behaviors according to the relatedness to other females: they are more aggressive to non-related clones. Our results demonstrate that even in species with very small genetic differences between individuals, kin recognition can be adaptive. Their discriminatory abilities and regulation of costly behaviors provides a powerful example of natural selection in species with limited genetic diversity. PMID:27483372

  16. Kin Recognition in a Clonal Fish, Poecilia formosa.

    PubMed

    Makowicz, Amber M; Tiedemann, Ralph; Steele, Rachel N; Schlupp, Ingo

    2016-01-01

    Relatedness strongly influences social behaviors in a wide variety of species. For most species, the highest typical degree of relatedness is between full siblings with 50% shared genes. However, this is poorly understood in species with unusually high relatedness between individuals: clonal organisms. Although there has been some investigation into clonal invertebrates and yeast, nothing is known about kin selection in clonal vertebrates. We show that a clonal fish, the Amazon molly (Poecilia formosa), can distinguish between different clonal lineages, associating with genetically identical, sister clones, and use multiple sensory modalities. Also, they scale their aggressive behaviors according to the relatedness to other females: they are more aggressive to non-related clones. Our results demonstrate that even in species with very small genetic differences between individuals, kin recognition can be adaptive. Their discriminatory abilities and regulation of costly behaviors provides a powerful example of natural selection in species with limited genetic diversity. PMID:27483372

  17. Massively parallel visualization: Parallel rendering

    SciTech Connect

    Hansen, C.D.; Krogh, M.; White, W.

    1995-12-01

    This paper presents rendering algorithms, developed for massively parallel processors (MPPs), for polygonal, spheres, and volumetric data. The polygon algorithm uses a data parallel approach whereas the sphere and volume renderer use a MIMD approach. Implementations for these algorithms are presented for the Thinking Machines Corporation CM-5 MPP.

  18. Antioxidant activities from different rosemary clonal lines.

    PubMed

    Ban, Lan; Narasimhamoorthy, Brindha; Zhao, Liuqing; Greaves, John A; Schroeder, William D

    2016-06-15

    Rosemary extract is widely used in food industry and carnosic acid is reported to be the major component that is responsible for its antioxidant activities. However, it is unclear how the numerous plant metabolites interact and contribute to the overall antioxidant activity. In this study, with poultry fat as the model food system, rosemary extract from six clonal lines were evaluated that each represented a different genetic variant. As expected, rosemary extract with higher carnosic acid content had higher antioxidant activity. However, rosemary extract which had carnosic acid removed retained a significant amount of activity. Furthermore, when the individual contributions of carnosic acid and the portion without carnosic acid were evaluated separately, neither was shown to be responsible for the overall level of its stabilization effect from rosemary extract as a whole entity. The interactions among different plant metabolites have a major impact on the overall antioxidant capabilities of rosemary extract. PMID:26868574

  19. Parallel machines: Parallel machine languages

    SciTech Connect

    Iannucci, R.A. )

    1990-01-01

    This book presents a framework for understanding the tradeoffs between the conventional view and the dataflow view with the objective of discovering the critical hardware structures which must be present in any scalable, general-purpose parallel computer to effectively tolerate latency and synchronization costs. The author presents an approach to scalable general purpose parallel computation. Linguistic Concerns, Compiling Issues, Intermediate Language Issues, and hardware/technological constraints are presented as a combined approach to architectural Develoement. This book presents the notion of a parallel machine language.

  20. Molecular Evolution of the Escherichia Coli Chromosome. III. Clonal Frames

    PubMed Central

    Milkman, R.; Bridges, M. M.

    1990-01-01

    PCR fragments, 1500-bp, from 15 previously sequenced regions in the Escherichia coli chromosome have been compared by restriction analysis in a large set of wild (ECOR) strains. Prior published observations of segmental clonality are confirmed: each of several sequence types is shared by a number of strains. The rate of recombinational replacement and the average size of the replacements are estimated in a set of closely related strains in which a clonal frame is dotted with occasional stretches of DNA belonging to other clones. A clonal hierarchy is described. Some new comparative sequencing data are presented. PMID:1979037

  1. Effects of clonal integration on the invasive clonal plant Alternanthera philoxeroides under heterogeneous and homogeneous water availability

    PubMed Central

    You, Wen-Hua; Han, Cui-Min; Liu, Chun-Hua; Yu, Dan

    2016-01-01

    Many notorious invasive plants are clonal, living in heterogeneous or homogeneous habitats. To understand how clonal integration affects the performance of these plants in different habitat conditions, an 8-week greenhouse experiment was conducted: ramet pairs of A. philoxeroides were grown in two habitats, either heterogeneous or homogeneous in water availability, with the stolon connections either severed or kept intact. Under heterogeneous water availability, compared with ramets in homogeneous habitats, clonal integration significantly promoted the growth and photosynthetic performance of water-stressed apical ramets, whereas it only increased the photosynthetic performance but did not affect the growth of water-stressed basal ramets. Moreover, clonal integration markedly increased the root/shoot ratios of ramets grown in habitats with high water supply but decreased it under low water availability. Under homogeneous water availability, stolon connection (clonal integration) did not influence the growth, photosynthetic performance and biomass allocation of water-stressed ramets, but it significantly promoted the growth of well-watered ramets in both apical and basal sections. These findings deepen our understanding of the bidirectional and differentiated (mainly acropetal) clonal integration of A. philoxeroides, suggesting that the invasive plant A. philoxeroides can benefit from clonal integration in both heterogeneous and homogeneous habitats. PMID:27416868

  2. Effects of clonal integration on the invasive clonal plant Alternanthera philoxeroides under heterogeneous and homogeneous water availability.

    PubMed

    You, Wen-Hua; Han, Cui-Min; Liu, Chun-Hua; Yu, Dan

    2016-01-01

    Many notorious invasive plants are clonal, living in heterogeneous or homogeneous habitats. To understand how clonal integration affects the performance of these plants in different habitat conditions, an 8-week greenhouse experiment was conducted: ramet pairs of A. philoxeroides were grown in two habitats, either heterogeneous or homogeneous in water availability, with the stolon connections either severed or kept intact. Under heterogeneous water availability, compared with ramets in homogeneous habitats, clonal integration significantly promoted the growth and photosynthetic performance of water-stressed apical ramets, whereas it only increased the photosynthetic performance but did not affect the growth of water-stressed basal ramets. Moreover, clonal integration markedly increased the root/shoot ratios of ramets grown in habitats with high water supply but decreased it under low water availability. Under homogeneous water availability, stolon connection (clonal integration) did not influence the growth, photosynthetic performance and biomass allocation of water-stressed ramets, but it significantly promoted the growth of well-watered ramets in both apical and basal sections. These findings deepen our understanding of the bidirectional and differentiated (mainly acropetal) clonal integration of A. philoxeroides, suggesting that the invasive plant A. philoxeroides can benefit from clonal integration in both heterogeneous and homogeneous habitats. PMID:27416868

  3. Parallel pipelining

    SciTech Connect

    Joseph, D.D.; Bai, R.; Liao, T.Y.; Huang, A.; Hu, H.H.

    1995-09-01

    In this paper the authors introduce the idea of parallel pipelining for water lubricated transportation of oil (or other viscous material). A parallel system can have major advantages over a single pipe with respect to the cost of maintenance and continuous operation of the system, to the pressure gradients required to restart a stopped system and to the reduction and even elimination of the fouling of pipe walls in continuous operation. The authors show that the action of capillarity in small pipes is more favorable for restart than in large pipes. In a parallel pipeline system, they estimate the number of small pipes needed to deliver the same oil flux as in one larger pipe as N = (R/r){sup {alpha}}, where r and R are the radii of the small and large pipes, respectively, and {alpha} = 4 or 19/7 when the lubricating water flow is laminar or turbulent.

  4. Data parallelism

    SciTech Connect

    Gorda, B.C.

    1992-09-01

    Data locality is fundamental to performance on distributed memory parallel architectures. Application programmers know this well and go to great pains to arrange data for optimal performance. Data Parallelism, a model from the Single Instruction Multiple Data (SIMD) architecture, is finding a new home on the Multiple Instruction Multiple Data (MIMD) architectures. This style of programming, distinguished by taking the computation to the data, is what programmers have been doing by hand for a long time. Recent work in this area holds the promise of making the programmer's task easier.

  5. Data parallelism

    SciTech Connect

    Gorda, B.C.

    1992-09-01

    Data locality is fundamental to performance on distributed memory parallel architectures. Application programmers know this well and go to great pains to arrange data for optimal performance. Data Parallelism, a model from the Single Instruction Multiple Data (SIMD) architecture, is finding a new home on the Multiple Instruction Multiple Data (MIMD) architectures. This style of programming, distinguished by taking the computation to the data, is what programmers have been doing by hand for a long time. Recent work in this area holds the promise of making the programmer`s task easier.

  6. NSAIDs modulate clonal evolution in Barrett's esophagus.

    PubMed

    Kostadinov, Rumen L; Kuhner, Mary K; Li, Xiaohong; Sanchez, Carissa A; Galipeau, Patricia C; Paulson, Thomas G; Sather, Cassandra L; Srivastava, Amitabh; Odze, Robert D; Blount, Patricia L; Vaughan, Thomas L; Reid, Brian J; Maley, Carlo C

    2013-06-01

    Cancer is considered an outcome of decades-long clonal evolution fueled by acquisition of somatic genomic abnormalities (SGAs). Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to reduce cancer risk, including risk of progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA). However, the cancer chemopreventive mechanisms of NSAIDs are not fully understood. We hypothesized that NSAIDs modulate clonal evolution by reducing SGA acquisition rate. We evaluated thirteen individuals with BE. Eleven had not used NSAIDs for 6.2±3.5 (mean±standard deviation) years and then began using NSAIDs for 5.6±2.7 years, whereas two had used NSAIDs for 3.3±1.4 years and then discontinued use for 7.9±0.7 years. 161 BE biopsies, collected at 5-8 time points over 6.4-19 years, were analyzed using 1Million-SNP arrays to detect SGAs. Even in the earliest biopsies there were many SGAs (284±246 in 10/13 and 1442±560 in 3/13 individuals) and in most individuals the number of SGAs changed little over time, with both increases and decreases in SGAs detected. The estimated SGA rate was 7.8 per genome per year (95% support interval [SI], 7.1-8.6) off-NSAIDs and 0.6 (95% SI 0.3-1.5) on-NSAIDs. Twelve individuals did not progress to EA. In ten we detected 279±86 SGAs affecting 53±30 Mb of the genome per biopsy per time point and in two we detected 1,463±375 SGAs affecting 180±100 Mb. In one individual who progressed to EA we detected a clone having 2,291±78 SGAs affecting 588±18 Mb of the genome at three time points in the last three of 11.4 years of follow-up. NSAIDs were associated with reduced rate of acquisition of SGAs in eleven of thirteen individuals. Barrett's cells maintained relative equilibrium level of SGAs over time with occasional punctuations by expansion of clones having massive amount of SGAs. PMID:23785299

  7. NSAIDs Modulate Clonal Evolution in Barrett's Esophagus

    PubMed Central

    Kostadinov, Rumen L.; Kuhner, Mary K.; Li, Xiaohong; Sanchez, Carissa A.; Galipeau, Patricia C.; Paulson, Thomas G.; Sather, Cassandra L.; Srivastava, Amitabh; Odze, Robert D.; Blount, Patricia L.; Vaughan, Thomas L.; Reid, Brian J.; Maley, Carlo C.

    2013-01-01

    Cancer is considered an outcome of decades-long clonal evolution fueled by acquisition of somatic genomic abnormalities (SGAs). Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to reduce cancer risk, including risk of progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA). However, the cancer chemopreventive mechanisms of NSAIDs are not fully understood. We hypothesized that NSAIDs modulate clonal evolution by reducing SGA acquisition rate. We evaluated thirteen individuals with BE. Eleven had not used NSAIDs for 6.2±3.5 (mean±standard deviation) years and then began using NSAIDs for 5.6±2.7 years, whereas two had used NSAIDs for 3.3±1.4 years and then discontinued use for 7.9±0.7 years. 161 BE biopsies, collected at 5–8 time points over 6.4–19 years, were analyzed using 1Million-SNP arrays to detect SGAs. Even in the earliest biopsies there were many SGAs (284±246 in 10/13 and 1442±560 in 3/13 individuals) and in most individuals the number of SGAs changed little over time, with both increases and decreases in SGAs detected. The estimated SGA rate was 7.8 per genome per year (95% support interval [SI], 7.1–8.6) off-NSAIDs and 0.6 (95% SI 0.3–1.5) on-NSAIDs. Twelve individuals did not progress to EA. In ten we detected 279±86 SGAs affecting 53±30 Mb of the genome per biopsy per time point and in two we detected 1,463±375 SGAs affecting 180±100 Mb. In one individual who progressed to EA we detected a clone having 2,291±78 SGAs affecting 588±18 Mb of the genome at three time points in the last three of 11.4 years of follow-up. NSAIDs were associated with reduced rate of acquisition of SGAs in eleven of thirteen individuals. Barrett's cells maintained relative equilibrium level of SGAs over time with occasional punctuations by expansion of clones having massive amount of SGAs. PMID:23785299

  8. Molecular Mimicry and Clonal Deletion: A Fresh Look

    PubMed Central

    Rose, Noel R.

    2014-01-01

    In this article, I trace the historic background of clonal deletion and molecular mimicry, two major pillars underlying our present understanding of autoimmunity and autoimmune disease. Clonal deletion originated as a critical element of the clonal selection theory of antibody formation in order to explain tolerance of self. If we did have complete clonal deletion, there would be major voids, the infamous “black holes”, in our immune repertoire. For comprehensive, protective adaptive immunity, full deletion is necessarily a rare event. Molecular mimicry, the sharing of epitopes among self and non-self antigens, is extraordinary common and provides the evidence that complete deletion of self-reactive clones is rare. If molecular mimicry were not common, protective adaptive immunity could not be all-encompassing. By taking a fresh look at these two processes together we can envision their evolutionary basis and understand the need for regulatory devices to prevent molecular mimicry from progressing to autoimmune disease. PMID:25172771

  9. GENETIC VARIATION IN CLONAL VERTEBRATES DETECTED BY SIMPLE SEQUENCE FINGERPRINTING

    EPA Science Inventory

    Measurement of clonal heterogeneity is central to understanding evolutionary and population genetics of roughly 50 species of vertebrates lack effective genetic recombination. imple-sequence DNA fingerprinting with oligonucleotide probes (CAG)5 and (GACA)4 was used to detect hete...

  10. Clonal Expansion (CE) Models in Cancer Risk Assessment

    EPA Science Inventory

    Cancer arises when cells accumulate sufficient critical mutations. Carcinogens increase the probability of mutation during cell division or promote clonal expansion within stages. Multistage CE models recapitulate this process and provide a framework for incorporating relevant da...

  11. Molecular mimicry and clonal deletion: A fresh look.

    PubMed

    Rose, Noel R

    2015-06-21

    In this article, I trace the historic background of clonal deletion and molecular mimicry, two major pillars underlying our present understanding of autoimmunity and autoimmune disease. Clonal deletion originated as a critical element of the clonal selection theory of antibody formation in order to explain tolerance of self. If we did have complete clonal deletion, there would be major voids, the infamous "black holes", in our immune repertoire. For comprehensive, protective adaptive immunity, full deletion is necessarily a rare event. Molecular mimicry, the sharing of epitopes among self and non-self antigens, is extraordinary common and provides the evidence that complete deletion of self-reactive clones is rare. If molecular mimicry were not common, protective adaptive immunity could not be all-encompassing. By taking a fresh look at these two processes together we can envision their evolutionary basis and understand the need for regulatory devices to prevent molecular mimicry from progressing to autoimmune disease. PMID:25172771

  12. Clonal integration in Ludwigia hexapetala under different light regimes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological integration among ramets of invasive plant species may support their colonization and spread in novel aquatic environments where growth-limiting resources are spatially heterogeneous. Under contrasting light conditions, we investigated how clonal integration influences growth, biomass...

  13. Roles of Clonal Integration in both Heterogeneous and Homogeneous Habitats.

    PubMed

    Zhang, Haijie; Liu, Fenghong; Wang, Renqing; Liu, Jian

    2016-01-01

    Many studies have shown that clonal integration can promote the performance of clonal plants in heterogeneous habitats, but the roles of clonal integration in both heterogeneous and homogeneous habitats were rarely studied simultaneously. Ramet pairs of Alternanthera philoxeroides (Mart.) Griseb were placed in two habitats either heterogeneous or homogeneous in soil nutrient availability, with stolon connections left intact or severed. Total biomass, total length of stolons, and number of new ramets of distal (relatively young) ramets located in low-nutrient environments were significantly greater when the distal ramets were connected to than when they were disconnected from proximal (relatively old) ramets located in high-nutrient environments. Total length of stolons of proximal ramets growing in low-nutrient environments was significantly higher when the proximal ramets were connected to than when they were disconnected from the distal ramets growing in high-nutrient environments, but stolon connection did not affect total biomass or number of new ramets of the proximal ramets. Stolon severing also did not affect the growth of the whole ramet pairs in heterogeneous environments. In homogeneous high-nutrient environments stolon severing promoted the growth of the proximal ramets and the ramet pairs, but in homogeneous low-nutrient environments it did not affect the growth of the proximal or distal ramets. Hence, for A. philoxeroides, clonal fragmentation appears to be more advantageous than clonal integration in resource-rich homogeneous habitats, and clonal integration becomes beneficial in heterogeneous habitats. Our study contributes to revealing roles of clonal integration in both heterogeneous and homogeneous habitats and expansion patterns of invasive clonal plants such as A. philoxeroides in multifarious habitats. PMID:27200026

  14. Roles of Clonal Integration in both Heterogeneous and Homogeneous Habitats

    PubMed Central

    Zhang, Haijie; Liu, Fenghong; Wang, Renqing; Liu, Jian

    2016-01-01

    Many studies have shown that clonal integration can promote the performance of clonal plants in heterogeneous habitats, but the roles of clonal integration in both heterogeneous and homogeneous habitats were rarely studied simultaneously. Ramet pairs of Alternanthera philoxeroides (Mart.) Griseb were placed in two habitats either heterogeneous or homogeneous in soil nutrient availability, with stolon connections left intact or severed. Total biomass, total length of stolons, and number of new ramets of distal (relatively young) ramets located in low-nutrient environments were significantly greater when the distal ramets were connected to than when they were disconnected from proximal (relatively old) ramets located in high-nutrient environments. Total length of stolons of proximal ramets growing in low-nutrient environments was significantly higher when the proximal ramets were connected to than when they were disconnected from the distal ramets growing in high-nutrient environments, but stolon connection did not affect total biomass or number of new ramets of the proximal ramets. Stolon severing also did not affect the growth of the whole ramet pairs in heterogeneous environments. In homogeneous high-nutrient environments stolon severing promoted the growth of the proximal ramets and the ramet pairs, but in homogeneous low-nutrient environments it did not affect the growth of the proximal or distal ramets. Hence, for A. philoxeroides, clonal fragmentation appears to be more advantageous than clonal integration in resource-rich homogeneous habitats, and clonal integration becomes beneficial in heterogeneous habitats. Our study contributes to revealing roles of clonal integration in both heterogeneous and homogeneous habitats and expansion patterns of invasive clonal plants such as A. philoxeroides in multifarious habitats. PMID:27200026

  15. Divergent clonal selection dominates medulloblastoma at recurrence.

    PubMed

    Morrissy, A Sorana; Garzia, Livia; Shih, David J H; Zuyderduyn, Scott; Huang, Xi; Skowron, Patryk; Remke, Marc; Cavalli, Florence M G; Ramaswamy, Vijay; Lindsay, Patricia E; Jelveh, Salomeh; Donovan, Laura K; Wang, Xin; Luu, Betty; Zayne, Kory; Li, Yisu; Mayoh, Chelsea; Thiessen, Nina; Mercier, Eloi; Mungall, Karen L; Ma, Yusanne; Tse, Kane; Zeng, Thomas; Shumansky, Karey; Roth, Andrew J L; Shah, Sohrab; Farooq, Hamza; Kijima, Noriyuki; Holgado, Borja L; Lee, John J Y; Matan-Lithwick, Stuart; Liu, Jessica; Mack, Stephen C; Manno, Alex; Michealraj, K A; Nor, Carolina; Peacock, John; Qin, Lei; Reimand, Juri; Rolider, Adi; Thompson, Yuan Y; Wu, Xiaochong; Pugh, Trevor; Ally, Adrian; Bilenky, Mikhail; Butterfield, Yaron S N; Carlsen, Rebecca; Cheng, Young; Chuah, Eric; Corbett, Richard D; Dhalla, Noreen; He, An; Lee, Darlene; Li, Haiyan I; Long, William; Mayo, Michael; Plettner, Patrick; Qian, Jenny Q; Schein, Jacqueline E; Tam, Angela; Wong, Tina; Birol, Inanc; Zhao, Yongjun; Faria, Claudia C; Pimentel, José; Nunes, Sofia; Shalaby, Tarek; Grotzer, Michael; Pollack, Ian F; Hamilton, Ronald L; Li, Xiao-Nan; Bendel, Anne E; Fults, Daniel W; Walter, Andrew W; Kumabe, Toshihiro; Tominaga, Teiji; Collins, V Peter; Cho, Yoon-Jae; Hoffman, Caitlin; Lyden, David; Wisoff, Jeffrey H; Garvin, James H; Stearns, Duncan S; Massimi, Luca; Schüller, Ulrich; Sterba, Jaroslav; Zitterbart, Karel; Puget, Stephanie; Ayrault, Olivier; Dunn, Sandra E; Tirapelli, Daniela P C; Carlotti, Carlos G; Wheeler, Helen; Hallahan, Andrew R; Ingram, Wendy; MacDonald, Tobey J; Olson, Jeffrey J; Van Meir, Erwin G; Lee, Ji-Yeoun; Wang, Kyu-Chang; Kim, Seung-Ki; Cho, Byung-Kyu; Pietsch, Torsten; Fleischhack, Gudrun; Tippelt, Stephan; Ra, Young Shin; Bailey, Simon; Lindsey, Janet C; Clifford, Steven C; Eberhart, Charles G; Cooper, Michael K; Packer, Roger J; Massimino, Maura; Garre, Maria Luisa; Bartels, Ute; Tabori, Uri; Hawkins, Cynthia E; Dirks, Peter; Bouffet, Eric; Rutka, James T; Wechsler-Reya, Robert J; Weiss, William A; Collier, Lara S; Dupuy, Adam J; Korshunov, Andrey; Jones, David T W; Kool, Marcel; Northcott, Paul A; Pfister, Stefan M; Largaespada, David A; Mungall, Andrew J; Moore, Richard A; Jabado, Nada; Bader, Gary D; Jones, Steven J M; Malkin, David; Marra, Marco A; Taylor, Michael D

    2016-01-21

    The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon-driven, functional genomic mouse model of medulloblastoma with 'humanized' in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (<5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (<12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy. PMID:26760213

  16. Divergent clonal selection dominates medulloblastoma at recurrence

    PubMed Central

    Morrissy, A. Sorana; Garzia, Livia; Shih, David J. H.; Zuyderduyn, Scott; Huang, Xi; Skowron, Patryk; Remke, Marc; Cavalli, Florence M. G.; Ramaswamy, Vijay; Lindsay, Patricia E.; Jelveh, Salomeh; Donovan, Laura K.; Wang, Xin; Luu, Betty; Zayne, Kory; Li, Yisu; Mayoh, Chelsea; Thiessen, Nina; Mercier, Eloi; Mungall, Karen L.; Ma, Yusanne; Tse, Kane; Zeng, Thomas; Shumansky, Karey; Roth, Andrew J. L.; Shah, Sohrab; Farooq, Hamza; Kijima, Noriyuki; Holgado, Borja L.; Lee, John J. Y.; Matan-Lithwick, Stuart; Liu, Jessica; Mack, Stephen C.; Manno, Alex; Michealraj, K. A.; Nor, Carolina; Peacock, John; Qin, Lei; Reimand, Juri; Rolider, Adi; Thompson, Yuan Y.; Wu, Xiaochong; Pugh, Trevor; Ally, Adrian; Bilenky, Mikhail; Butterfield, Yaron S. N.; Carlsen, Rebecca; Cheng, Young; Chuah, Eric; Corbett, Richard D.; Dhalla, Noreen; He, An; Lee, Darlene; Li, Haiyan I.; Long, William; Mayo, Michael; Plettner, Patrick; Qian, Jenny Q.; Schein, Jacqueline E.; Tam, Angela; Wong, Tina; Birol, Inanc; Zhao, Yongjun; Faria, Claudia C.; Pimentel, José; Nunes, Sofia; Shalaby, Tarek; Grotzer, Michael; Pollack, Ian F.; Hamilton, Ronald L.; Li, Xiao-Nan; Bendel, Anne E.; Fults, Daniel W.; Walter, Andrew W.; Kumabe, Toshihiro; Tominaga, Teiji; Collins, V. Peter; Cho, Yoon-Jae; Hoffman, Caitlin; Lyden, David; Wisoff, Jeffrey H.; Garvin, James H.; Stearns, Duncan S.; Massimi, Luca; Schüller, Ulrich; Sterba, Jaroslav; Zitterbart, Karel; Puget, Stephanie; Ayrault, Olivier; Dunn, Sandra E.; Tirapelli, Daniela P. C.; Carlotti, Carlos G.; Wheeler, Helen; Hallahan, Andrew R.; Ingram, Wendy; MacDonald, Tobey J.; Olson, Jeffrey J.; Van Meir, Erwin G.; Lee, Ji-Yeoun; Wang, Kyu-Chang; Kim, Seung-Ki; Cho, Byung-Kyu; Pietsch, Torsten; Fleischhack, Gudrun; Tippelt, Stephan; Ra, Young Shin; Bailey, Simon; Lindsey, Janet C.; Clifford, Steven C.; Eberhart, Charles G.; Cooper, Michael K.; Packer, Roger J.; Massimino, Maura; Garre, Maria Luisa; Bartels, Ute; Tabori, Uri; Hawkins, Cynthia E.; Dirks, Peter; Bouffet, Eric; Rutka, James T.; Wechsler-Reya, Robert J.; Weiss, William A.; Collier, Lara S.; Dupuy, Adam J.; Korshunov, Andrey; Jones, David T. W.; Kool, Marcel; Northcott, Paul A.; Pfister, Stefan M.; Largaespada, David A.; Mungall, Andrew J.; Moore, Richard A.; Jabado, Nada; Bader, Gary D.; Jones, Steven J. M.; Malkin, David; Marra, Marco A.; Taylor, Michael D.

    2016-01-01

    The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon–driven, functional genomic mouse model of medulloblastoma with ‘humanized’ in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (<5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (<12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy. PMID:26760213

  17. Clonal complex Pseudomonas aeruginosa in horses.

    PubMed

    Kidd, Timothy J; Gibson, Justine S; Moss, Susan; Greer, Ristan M; Cobbold, Rowland N; Wright, John D; Ramsay, Kay A; Grimwood, Keith; Bell, Scott C

    2011-05-01

    Pseudomonas aeruginosa is associated with infectious endometritis in horses. Although infectious endometritis is often considered a venereal infection, there is relatively limited genotypic-based evidence to support this mode of transmission. The study sought to determine the relatedness between genital P. aeruginosa isolates collected from a limited geographical region using molecular strain typing. Enterobacterial repetitive intergenic consensus PCR typing was performed on 93 isolates collected between 2005 and 2009 from 2058 thoroughbred horses (including 18 stallions) at 66 studs. While P. aeruginosa was not detected in the stallions, 53/93 (57%) mares harbouring P. aeruginosa had clonally related strains, which included a single dominant genotype detected in 42 (45%) mares from 13 different studs. These novel findings suggest that most equine genital P. aeruginosa infections in this region may have been acquired from mechanisms other than direct horse to horse transmission. Instead, other potential acquisition pathways, as well as strain specific adaptation to the equine genital tract, should be investigated. PMID:21183294

  18. Lineage and clonal development of gastric glands.

    PubMed

    Nomura, S; Esumi, H; Job, C; Tan, S S

    1998-12-01

    Individual gastric glands of the stomach are composed of cells of different phenotypes. These are derived from multipotent progenitor stem cells located at the isthmus region of the gland. Previous cell lineage analyses suggest that gastric glands, as in the colon and small intestine, are invariably monoclonal by adult stages. However, little is known about the ontogenetic progression of glandular clonality in the stomach. To examine this issue, we employed an in situ cell lineage marker in female mice heterozygous for an X-linked transgene. We found that stomach glands commence development as polyclonal units, but by adulthood (6 weeks), the majority progressed to monoclonal units. Our analysis suggests that at least three progenitor cells are required to initiate the development of individual gastric glands if they are analyzed just after birth. Hence, unlike the colon and small intestine, stomachs showed a significant fraction (10-25%) of polyclonal glands at adult stages. We suggest that these glands persist from polyclonal glands present in the embryonic stomach and hypothesize that they represent a subpopulation of glands with larger numbers of self-renewing stem cells. PMID:9851847

  19. An invasive clonal plant benefits from clonal integration more than a co-occurring native plant in nutrient-patchy and competitive environments.

    PubMed

    You, Wenhua; Fan, Shufeng; Yu, Dan; Xie, Dong; Liu, Chunhua

    2014-01-01

    Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides's biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits

  20. An Invasive Clonal Plant Benefits from Clonal Integration More than a Co-Occurring Native Plant in Nutrient-Patchy and Competitive Environments

    PubMed Central

    You, Wenhua; Fan, Shufeng; Yu, Dan; Xie, Dong; Liu, Chunhua

    2014-01-01

    Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides's biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits

  1. Propagule Pressure, Habitat Conditions and Clonal Integration Influence the Establishment and Growth of an Invasive Clonal Plant, Alternanthera philoxeroides

    PubMed Central

    You, Wen-Hua; Han, Cui-Min; Fang, Long-Xiang; Du, Dao-Lin

    2016-01-01

    Many notorious invasive plants are clonal, spreading mainly by vegetative propagules. Propagule pressure (the number of propagules) may affect the establishment, growth, and thus invasion success of these clonal plants, and such effects may also depend on habitat conditions. To understand how propagule pressure, habitat conditions and clonal integration affect the establishment and growth of the invasive clonal plants, an 8-week greenhouse with an invasive clonal plant, Alternanthera philoxeroides was conducted. High (five fragments) or low (one fragment) propagule pressure was established either in bare soil (open habitat) or dense native vegetation of Jussiaea repens (vegetative habitat), with the stolon connections either severed from or connected to the relatively older ramets. High propagule pressure greatly increased the establishment and growth of A. philoxeroides, especially when it grew in vegetative habitats. Surprisingly, high propagule pressure significantly reduced the growth of individual plants of A. philoxeroides in open habitats, whereas it did not affect the individual growth in vegetative habitats. A shift in the intraspecific interaction on A. philoxeroides from competition in open habitats to facilitation in vegetative habitats may be the main reason. Moreover, clonal integration significantly improved the growth of A. philoxeroides only in open habitats, especially with low propagule pressure, whereas it had no effects on the growth and competitive ability of A. philoxeroides in vegetative habitats, suggesting that clonal integration may be of most important for A. philoxeroides to explore new open space and spread. These findings suggest that propagule pressure may be crucial for the invasion success of A. philoxeroides, and such an effect also depends on habitat conditions. PMID:27200041

  2. Propagule Pressure, Habitat Conditions and Clonal Integration Influence the Establishment and Growth of an Invasive Clonal Plant, Alternanthera philoxeroides.

    PubMed

    You, Wen-Hua; Han, Cui-Min; Fang, Long-Xiang; Du, Dao-Lin

    2016-01-01

    Many notorious invasive plants are clonal, spreading mainly by vegetative propagules. Propagule pressure (the number of propagules) may affect the establishment, growth, and thus invasion success of these clonal plants, and such effects may also depend on habitat conditions. To understand how propagule pressure, habitat conditions and clonal integration affect the establishment and growth of the invasive clonal plants, an 8-week greenhouse with an invasive clonal plant, Alternanthera philoxeroides was conducted. High (five fragments) or low (one fragment) propagule pressure was established either in bare soil (open habitat) or dense native vegetation of Jussiaea repens (vegetative habitat), with the stolon connections either severed from or connected to the relatively older ramets. High propagule pressure greatly increased the establishment and growth of A. philoxeroides, especially when it grew in vegetative habitats. Surprisingly, high propagule pressure significantly reduced the growth of individual plants of A. philoxeroides in open habitats, whereas it did not affect the individual growth in vegetative habitats. A shift in the intraspecific interaction on A. philoxeroides from competition in open habitats to facilitation in vegetative habitats may be the main reason. Moreover, clonal integration significantly improved the growth of A. philoxeroides only in open habitats, especially with low propagule pressure, whereas it had no effects on the growth and competitive ability of A. philoxeroides in vegetative habitats, suggesting that clonal integration may be of most important for A. philoxeroides to explore new open space and spread. These findings suggest that propagule pressure may be crucial for the invasion success of A. philoxeroides, and such an effect also depends on habitat conditions. PMID:27200041

  3. Multiple disturbances accelerate clonal growth in a potentially monodominant bamboo.

    PubMed

    Gagnon, Paul R; Platt, William J

    2008-03-01

    Organisms capable of rapid clonal growth sometimes monopolize newly freed space and resources. We hypothesize that sequential disturbances might change short-term clonal demography of these organisms in ways that promote formation of monotypic stands. We examined this hypothesis by studying the clonal response of Arundinaria gigantea (giant cane, a bamboo) to windstorm and fire. We studied giant cane growing in both a large tornado-blowdown gap and under forest canopy, in burned and unburned plots, using a split-block design. We measured density of giant cane ramets (culms) and calculated finite rates of increase (lamda) for populations of ramets over three years. Ramet density nearly doubled in stands subjected to both windstorm and fire; the high ramet densities that resulted could inhibit growth in other plants. In comparison, ramet density increased more slowly after windstorm alone, decreased after fire alone, and remained in stasis in controls. We predict that small, sparse stands of giant cane could spread and amalgamate to form dense, monotypic stands (called "canebrakes") that might influence fire return intervals and act as an alternative state to bottomland forest. Other clonal species may similarly form monotypic stands following successive disturbances via rapid clonal growth. PMID:18459325

  4. The Complex, Clonal, and Controversial Nature of Barrett's Esophagus.

    PubMed

    Evans, James A; McDonald, Stuart A C

    2016-01-01

    Barrett's esophagus (BO) is a preneoplastic condition described as the replacement of the stratified squamous epithelium of the distal esophagus with one that histologically presents as a diverse mixture of metaplastic glands resembling gastric or intestinal-type columnar epithelium. The clonal origins of BO are still unclear. More recently, we have begun to investigate the relationship between the various metaplastic gland phenotypes observed in BO, how they evolve, and the cancer risk they bestow. Studies have revealed that glands along the BO segment are clonal units containing a single stem cell clone that can give rise to all the differentiated epithelial cell types in glands. Clonal lineage tracing analysis has revealed that Barrett's glands are capable of bifurcation and this facilitates clonal expansion and competition. In fact, BO in some patients appears to consist of multiple, independently initiated clones that compete with each other for space and possibly resources. This chapter discusses the concepts of clonal competition and expansion in BO and sets out to query what we know about the role of gland diversity and phenotypic evolution within this complex columnar metaplasia. PMID:27573766

  5. Clonal integration in homogeneous environments increases performance of Alternanthera philoxeroides.

    PubMed

    Dong, Bi-Cheng; Alpert, Peter; Zhang, Qian; Yu, Fei-Hai

    2015-10-01

    Physiological integration between connected ramets can increase the performance of clonal plants when ramets experience contrasting levels of resource availabilities in heterogeneous environments. It has generally been shown or assumed that clonal integration has little effect on clonal performance in homogeneous environments. However, a conceptual model suggests that integration could increase performance in a homogeneous environment when connected ramets differ in uptake ability and external resource supply is high. We tested this hypothesis in a greenhouse experiment with the amphibious plant Alternanthera philoxeroides. Ramets in clonal fragments containing three rooted and two unrooted ramets were either left connected or divided into a basal part with two rooted ramets and an apical part with the other ramets. To simulate realistic, homogeneous environments of the species with different levels of resource supply, plants were grown at 0, 20, or 40 cm of water depth. Water depth had a positive effect on most measures of growth, indicating that resource supply increased with depth. Connection had negative to neutral effects on total growth of fragments at a water depth of 0 cm, and neutral to positive effects at 20- and 40-cm depths; effects on the apical part were generally positive and larger at greater depth; effects on the basal part were generally negative and smaller at greater depth. Results largely supported the hypothesis and further suggest that clonal integration of allocation and reproduction may modify benefits of resource sharing in homogeneous environments. PMID:26009243

  6. Molecular epidemiology of clonal diploids: a quick overview and a short DIY (do it yourself) notice.

    PubMed

    De Meeûs, Thierry; Lehmann, Laurent; Balloux, François

    2006-03-01

    In this short review we report the basic notions needed for understanding the population genetics of clonal diploids. We focus on the consequences of clonality on the distribution of genetic diversity within individuals, between individuals and between populations. We then summarise how to detect clonality in mainly sexual populations, conversely, how to detect sexuality in mainly clonal populations and also how genetic differentiation between populations is affected by clonality in diploids. This information is then used for building recipes on how to analyse and interpret genetic polymorphism data in molecular epidemiology studies of clonal diploids. PMID:16290062

  7. [Colonization-outbreak of two clonally different strains of Serratia marcescens in a neonatal intensive care unit].

    PubMed

    Schulz-Stübner, S; Zimmer, P; Leonards, P; Knipp, U; Michels, H; Kunitz, O; Thomas, W

    2015-02-01

    We describe an outbreak of two clonally different strains of Serratia marcescens in a neonatal intensive care unit. Three colonization cases in the first outbreak phase were related to contact transmission from an index patient during emergency respiratory treatment while eight colonizations in the second phase were caused by contaminated bathing lotion. All transmissions resulted in colonization only and no infections were recorded. Based on our experience and the literature review sufficient staffing levels, basic hygiene and a goal-directed investigation of the environment are the cornerstones of a rapid outbreak termination. The epidemiological search for parallels in cases should be assisted by sophisticated electronic records. PMID:25432455

  8. Dynamic clonal equilibrium and predetermined cancer risk in Barrett's oesophagus

    PubMed Central

    Martinez, Pierre; Timmer, Margriet R.; Lau, Chiu T.; Calpe, Silvia; Sancho-Serra, Maria del Carmen; Straub, Danielle; Baker, Ann-Marie; Meijer, Sybren L.; Kate, Fiebo J. W. ten; Mallant-Hent, Rosalie C.; Naber, Anton H. J.; van Oijen, Arnoud H. A. M.; Baak, Lubbertus C.; Scholten, Pieter; Böhmer, Clarisse J. M.; Fockens, Paul; Bergman, Jacques J. G. H. M.; Maley, Carlo C.; Graham, Trevor A.; Krishnadath, Kausilia K

    2016-01-01

    Surveillance of Barrett's oesophagus allows us to study the evolutionary dynamics of a human neoplasm over time. Here we use multicolour fluorescence in situ hybridization on brush cytology specimens, from two time points with a median interval of 37 months in 195 non-dysplastic Barrett's patients, and a third time point in a subset of 90 patients at a median interval of 36 months, to study clonal evolution at single-cell resolution. Baseline genetic diversity predicts progression and remains in a stable dynamic equilibrium over time. Clonal expansions are rare, being detected once every 36.8 patient years, and growing at an average rate of 1.58 cm2 (95% CI: 0.09–4.06) per year, often involving the p16 locus. This suggests a lack of strong clonal selection in Barrett's and that the malignant potential of ‘benign' Barrett's lesions is predetermined, with important implications for surveillance programs. PMID:27538785

  9. Dynamic clonal equilibrium and predetermined cancer risk in Barrett's oesophagus.

    PubMed

    Martinez, Pierre; Timmer, Margriet R; Lau, Chiu T; Calpe, Silvia; Sancho-Serra, Maria Del Carmen; Straub, Danielle; Baker, Ann-Marie; Meijer, Sybren L; Kate, Fiebo J W Ten; Mallant-Hent, Rosalie C; Naber, Anton H J; van Oijen, Arnoud H A M; Baak, Lubbertus C; Scholten, Pieter; Böhmer, Clarisse J M; Fockens, Paul; Bergman, Jacques J G H M; Maley, Carlo C; Graham, Trevor A; Krishnadath, Kausilia K

    2016-01-01

    Surveillance of Barrett's oesophagus allows us to study the evolutionary dynamics of a human neoplasm over time. Here we use multicolour fluorescence in situ hybridization on brush cytology specimens, from two time points with a median interval of 37 months in 195 non-dysplastic Barrett's patients, and a third time point in a subset of 90 patients at a median interval of 36 months, to study clonal evolution at single-cell resolution. Baseline genetic diversity predicts progression and remains in a stable dynamic equilibrium over time. Clonal expansions are rare, being detected once every 36.8 patient years, and growing at an average rate of 1.58 cm(2) (95% CI: 0.09-4.06) per year, often involving the p16 locus. This suggests a lack of strong clonal selection in Barrett's and that the malignant potential of 'benign' Barrett's lesions is predetermined, with important implications for surveillance programs. PMID:27538785

  10. Pretransplant cytotoxic conditioning produces effects consistent with clonal deletion mechanisms.

    PubMed

    Zheng, T L; Johnson, C P; Sutherland, D E

    1987-05-01

    A rat cardiac allograft model (ACl to Lewis) was used to investigate the clonal deletion theory. Twelve groups of Lewis recipients received various combinations of donor-specific blood transfusions (DSTs), immediate post-DST immunosuppression with azathioprine/prednisone, and low-dose cyclosporine (1 mg/kg/day) posttransplant. DSTs and cyclosporine together gave modest prolongation of graft survival (from 6.0 to 17 days). DSTs plus immediate post-DST immunosuppression followed by low-dose cyclosporine prolonged graft survival to an average of 45 days. Third-party transfusions alone and in combination with immunosuppression did not significantly prolong allograft survival. Postoperative cyclosporine was required for the expression of this effect suggesting that clonal depression rather than clonal deletion had occurred. Combining DSTs with brief but intense preoperative immunosuppression may be a more effective method of pretransplant conditioning than DSTs alone. PMID:3295388

  11. [Clonal eosinophilia revealed by recurrent Staphylococcus aureus infection].

    PubMed

    Vandenbos, F; Figueredo, M; Dumon-Gubeno, M-C; Nicolle, I; Tarhini, A; Medioni, L-D; Naman, H; Mouroux, J

    2011-06-01

    Acquired eosinophilia is currently classified into secondary (reactional to underlying diseases), clonal (presence of a bone marrow histological, cytogenetic or molecular marker of a myeloid malignancy) and idiopathic (neither secondary nor clonal) categories. We report the case of a 47-year-old male who was admitted to the hospital for Staphylococcus aureus recurring infections. An hypereosinophilia was discovered and led to molecular analysis. The identification of FIP1L1-PDGFRA fusion gene permitted the diagnostic of clonal eosinophilia. Treatment by imatinib mesylate induced an haematological remission, the control of the infection and thoracotomy cicatrization. This case is original because of its infectious presentation and the efficacy of imatinib mesylate to control the infectious process. PMID:21665081

  12. Female and male fitness consequences of clonal growth in a dwarf bamboo population with a high degree of clonal intermingling

    PubMed Central

    Matsuo, Ayumi; Tomimatsu, Hiroshi; Suzuki, Jun-Ichirou; Saitoh, Tomoyuki; Shibata, Shozo; Makita, Akifumi; Suyama, Yoshihisa

    2014-01-01

    Background and Aims Although many studies have reported that clonal growth interferes with sexual reproduction as a result of geitonogamous self-pollination and inbreeding depression, the mating costs of clonal growth are expected to be reduced when genets are spatially intermingled with others. This study examined how clonal growth affects both female and male reproductive success by studying a population of a mass-flowering plant, Sasa veitchii var. hirsuta, with a high degree of clonal intermingling. Methods In a 10 × 10 m plot, genets were discriminated based on the multilocus genotypes of 11 nuclear microsatellite loci. The relationships between genet size and the components of reproductive success were then investigated. Male siring success and female and male selfing rates were assessed using paternity analysis. Key Results A total of 111 genets were spatially well intermingled with others. In contrast to previous studies with species forming distinct monoclonal patches, seed production linearly increased with genet size. While male siring success was a decelerating function of genet size, selfing rates were relatively low and not related to genet size. Conclusions The results, in conjunction with previous studies, emphasize the role of the spatial arrangement of genets on both the quantity and quality of offpsring, and suggest that an intermingled distribution of genets can reduce the mating costs of clonal growth and enhance overall fitness, particularly female fitness. PMID:25228034

  13. Parallel Information Processing.

    ERIC Educational Resources Information Center

    Rasmussen, Edie M.

    1992-01-01

    Examines parallel computer architecture and the use of parallel processors for text. Topics discussed include parallel algorithms; performance evaluation; parallel information processing; parallel access methods for text; parallel and distributed information retrieval systems; parallel hardware for text; and network models for information…

  14. Intrafamilial cluster of pulmonary tuberculosis due to Mycobacterium bovis of the African 1 clonal complex.

    PubMed

    Godreuil, S; Jeziorski, E; Bañuls, A L; Fraisse, T; Van de Perre, P; Boschiroli, M L

    2010-12-01

    A new clonal complex of Mycobacterium bovis present at high frequency in cattle from west central African countries has been described as the African 1 (Af1) clonal complex. Here, the first intrafamilial cluster of human tuberculosis cases due to M. bovis Af1 clonal complex strains is reported. We discuss hypotheses regarding modes of transmission. PMID:20980573

  15. Genomic Aberrations Drive Clonal Evolution of Neuroendocrine Tumors.

    PubMed

    Kaushik, Akash Kumar; Sreekumar, Arun

    2016-05-01

    Molecular features of castration-resistant neuroendocrine prostate cancer (CRPC-NE) are not well characterized. A recent study that investigated genomic aberrations of CRPC-NE tumors suggests their clonal evolution from CRPC adenocarcinoma. Furthermore, the existence of a distinct DNA methylation profile in CRPC-NE implicates a critical role for epigenetic modification in the development of CRPC-NE. PMID:27037211

  16. Comparative organogenic responses of six clonal apple rootstock cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The organogenesis potential is different among cultivars and must be optimized for individual genotypes. Shoot organogenesis capacity from leaf explants and root organogenesis capacity of in vitro shoots in six clonal apple rootstock cultivars were compared. The shoot organogenesis capacity was hi...

  17. Quantification of Clonal Circulating Plasma cells in Relapsed Multiple Myeloma

    PubMed Central

    Gonsalves, Wilson I; Morice, William G; Rajkumar, S. Vincent; Gupta, Vinay; Timm, Michael M; Dispenzieri, Angela; Buadi, Francis K; Lacy, Martha Q; Singh, Preet P; Kapoor, Prashant; Gertz, Morie A; Kumar, Shaji K

    2014-01-01

    The presence of clonal circulating plasma cells (cPCs) remains a marker of high-risk disease in newly diagnosed multiple myeloma (MM) patients. However, its prognostic utility in MM patients with previously treated disease is unknown. We studied 647 consecutive patients with previously treated MM seen at the Mayo Clinic, Rochester who had their peripheral blood evaluated for cPCs by multi-parameter flow cytometry. Of these patients, 145 had actively relapsing disease while the remaining 502 had disease that was in a plateau and included 68 patients in complete remission (CR) and 434 patients with stable disease. Patients with actively relapsing disease were more likely to have clonal cPCs than those in a plateau (P < 0.001). None of the patients in CR had any clonal cPCs detected. Among patients whose disease was in a plateau, the presence of clonal cPCs predicted for a worse median survival (22 months vs. not reached; P=0.004). Among actively relapsing patients, the presence of ≥100 cPCs predicted for a worse survival after flow cytometry analysis (12 months vs. 33 months; P<0.001). Future studies are needed to determine the role of these findings in developing a risk-adapted treatment approach in MM patients with actively relapsing disease. PMID:25113422

  18. Clonal Outbreak of Plasmodium falciparum Infection in Eastern Panama

    PubMed Central

    Obaldia, Nicanor; Baro, Nicholas K.; Calzada, Jose E.; Santamaria, Ana M.; Daniels, Rachel; Wong, Wesley; Chang, Hsiao-Han; Hamilton, Elizabeth J.; Arevalo-Herrera, Myriam; Herrera, Socrates; Wirth, Dyann F.; Hartl, Daniel L.; Marti, Matthias; Volkman, Sarah K.

    2015-01-01

    Identifying the source of resurgent parasites is paramount to a strategic, successful intervention for malaria elimination. Although the malaria incidence in Panama is low, a recent outbreak resulted in a 6-fold increase in reported cases. We hypothesized that parasites sampled from this epidemic might be related and exhibit a clonal population structure. We tested the genetic relatedness of parasites, using informative single-nucleotide polymorphisms and drug resistance loci. We found that parasites were clustered into 3 clonal subpopulations and were related to parasites from Colombia. Two clusters of Panamanian parasites shared identical drug resistance haplotypes, and all clusters shared a chloroquine-resistance genotype matching the pfcrt haplotype of Colombian origin. Our findings suggest these resurgent parasite populations are highly clonal and that the high clonality likely resulted from epidemic expansion of imported or vestigial cases. Malaria outbreak investigations that use genetic tools can illuminate potential sources of epidemic malaria and guide strategies to prevent further resurgence in areas where malaria has been eliminated. PMID:25336725

  19. The role of plant propagation at clonal genebanks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clonal genebanks utilize both seed and vegetative propagation techniques. Seed propagation is important for the introduction of new genotypes (accessions), especially crop wild relatives. Additionally, seed may be produced by breeding or to otherwise support research. Temperate tree fruit and nut c...

  20. Generation of clonal zebrafish line by androgenesis without egg irradiation.

    PubMed

    Hou, Jilun; Fujimoto, Takafumi; Saito, Taiju; Yamaha, Etsuro; Arai, Katsutoshi

    2015-01-01

    Generation of clonal zebrafish will facilitate large-scale genetic screening and help us to overcome other biological and biotechnological challenges due to their isogenecity. However, protocols for the development of clonal lines have not been optimized. Here, we sought to develop a novel method for generation of clonal zebrafish by androgenesis induced by cold shock. Androgenetic zebrafish doubled haploids (DHs) were induced by cold shock of just-fertilized eggs, and the eggs were then heat shocked to double the chromosome set. The yield rate of putative DHs relative to the total number of eggs used was 1.10% ± 0.19%. Microsatellite genotyping of the putative DHs using 30 loci that covered all 25 linkage groups detected no heterozygous loci, confirming the homozygosity of the DHs. Thus, a clonal line was established from sperm of a DH through a second cycle of cold-shock androgenesis and heat-shock chromosome doubling, followed by genetic verification of the isogenic rate confirming the presence of identical DNA fingerprints by using amplified fragment length polymorphism markers. In addition, our data provided important insights into the cytological mechanisms of cold-shock-induced androgenesis. PMID:26289165

  1. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes

    PubMed Central

    Walter, MJ; Shen, D; Shao, J; Ding, L; White, BS; Kandoth, C; Miller, CA; Niu, B; McLellan, MD; Dees, ND; Fulton, R; Elliot, K; Heath, S; Grillot, M; Westervelt, P; Link, DC; DiPersio, JF; Mardis, E; Ley, TJ; Wilson, RK; Graubert, TA

    2013-01-01

    Recent studies suggest that most cases of myelodysplastic syndrome (MDS) are clonally heterogeneous, with a founding clone and multiple subclones. It is not known whether specific gene mutations typically occur in founding clones or subclones. We screened a panel of 94 candidate genes in a cohort of 157 patients with MDS or secondary acute myeloid leukemia (sAML). This included 150 cases with samples obtained at MDS diagnosis and 15 cases with samples obtained at sAML transformation (8 were also analyzed at the MDS stage). We performed whole-genome sequencing (WGS) to define the clonal architecture in eight sAML genomes and identified the range of variant allele frequencies (VAFs) for founding clone mutations. At least one mutation or cytogenetic abnormality was detected in 83% of the 150 MDS patients and 17 genes were significantly mutated (false discovery rate ≤0.05). Individual genes and patient samples displayed a wide range of VAFs for recurrently mutated genes, indicating that no single gene is exclusively mutated in the founding clone. The VAFs of recurrently mutated genes did not fully recapitulate the clonal architecture defined by WGS, suggesting that comprehensive sequencing may be required to accurately assess the clonal status of recurrently mutated genes in MDS. PMID:23443460

  2. Phenotypic differences among three clonal lineages of Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are three major clonal lineages of Phytophthora ramorum present in North America and Europe named NA1, NA2, and EU1. Twenty-three isolates representing all three lineages were evaluated for phenotype including (i) aggressiveness on detached Rhododendron leaves and (ii) growth rate at minimum, ...

  3. Generation of clonal zebrafish line by androgenesis without egg irradiation

    PubMed Central

    Hou, Jilun; Fujimoto, Takafumi; Saito, Taiju; Yamaha, Etsuro; Arai, Katsutoshi

    2015-01-01

    Generation of clonal zebrafish will facilitate large-scale genetic screening and help us to overcome other biological and biotechnological challenges due to their isogenecity. However, protocols for the development of clonal lines have not been optimized. Here, we sought to develop a novel method for generation of clonal zebrafish by androgenesis induced by cold shock. Androgenetic zebrafish doubled haploids (DHs) were induced by cold shock of just-fertilized eggs, and the eggs were then heat shocked to double the chromosome set. The yield rate of putative DHs relative to the total number of eggs used was 1.10% ± 0.19%. Microsatellite genotyping of the putative DHs using 30 loci that covered all 25 linkage groups detected no heterozygous loci, confirming the homozygosity of the DHs. Thus, a clonal line was established from sperm of a DH through a second cycle of cold-shock androgenesis and heat-shock chromosome doubling, followed by genetic verification of the isogenic rate confirming the presence of identical DNA fingerprints by using amplified fragment length polymorphism markers. In addition, our data provided important insights into the cytological mechanisms of cold-shock–induced androgenesis. PMID:26289165

  4. Clonal Origin of Hepatocellular Carcinoma and Recurrence After Liver Transplantation.

    PubMed

    Wang, Zhenglu; Gong, Weihua; Shou, Dawei; Zhang, Luzhou; Gu, Xiangqian; Wang, Yuliang; Teng, Dahong; Zheng, Hong

    2016-01-01

    BACKGROUND This study aimed to determine whether patterns of tumor clonal origin in pluri-nodular hepatocellular carcinoma (PNHC) could serve as an indicator of tumor recurrence following liver transplantation. MATERIAL AND METHODS Tumor tissue samples from 60 PNHC patients who underwent liver transplantation were examined. The diagnosis of patients conformed to the University of California San Francisco (UCSF) standards for pluri-nodular hepatocellular carcinoma. We performed loss of heterozygosity tests at multiple microsatellite sites to determine the clonal origins of the tumors. Clinical information, pathological data, preoperative serum alpha-feto protein (AFP) and postoperative follow-ups were obtained and correlations between the clonal origin of the tumor, tumor-free survival, pathological characteristics, and AFP levels in serum were studied. RESULTS A total of 165 tumor nodules were collected. Tumor clonal origins were identified as intrahepatic metastasis (IM; 41.67%), multicentric occurrence (MO; 55%) or unidentified (3.33%). Three-year tumor-free survival for the IM group was 48% compared to 75.76% in the MO group (p<0.05), while the occurrence of microscopic tumor thrombus was 100% and 3.03% (p<0.05) for these groups, respectively. The degree of tumor differentiation was 80% for the IM group and 18.18% for the MO group (p<0.05), while the mean AFP concentration for these groups was 226.80 μg/L (2.78-3000 μg/L) and 24.59 μg/L (1.16-531. 30 μg/L; p<0.05), respectively. CONCLUSIONS Clonal origin patterns can serve as important indicators to predict the recurrence of PNHC following liver transplantation. Taken together with pathological characteristics and preoperative serum AFP levels, the risk of recurrence can be established in advance. PMID:27487734

  5. Complex Antigens Drive Permissive Clonal Selection in Germinal Centers.

    PubMed

    Kuraoka, Masayuki; Schmidt, Aaron G; Nojima, Takuya; Feng, Feng; Watanabe, Akiko; Kitamura, Daisuke; Harrison, Stephen C; Kepler, Thomas B; Kelsoe, Garnett

    2016-03-15

    Germinal center (GC) B cells evolve toward increased affinity by a Darwinian process that has been studied primarily in genetically restricted, hapten-specific responses. We explored the population dynamics of genetically diverse GC responses to two complex antigens-Bacillus anthracis protective antigen and influenza hemagglutinin-in which B cells competed both intra- and interclonally for distinct epitopes. Preferred VH rearrangements among antigen-binding, naive B cells were similarly abundant in early GCs but, unlike responses to haptens, clonal diversity increased in GC B cells as early "winners" were replaced by rarer, high-affinity clones. Despite affinity maturation, inter- and intraclonal avidities varied greatly, and half of GC B cells did not bind the immunogen but nonetheless exhibited biased VH use, V(D)J mutation, and clonal expansion comparable to antigen-binding cells. GC reactions to complex antigens permit a range of specificities and affinities, with potential advantages for broad protection. PMID:26948373

  6. Wide Dispersion and Diversity of Clonally Related Inhibitory Interneurons

    PubMed Central

    Harwell, Corey C.; Fuentealba, Luis C.; Gonzalez-Cerrillo, Adrian; Parker, Phillip R.L.; Gertz, Caitlyn C.; Mazzola, Emanuele; Turrero Garcia, Miguel; Alvarez-Buylla, Arturo; Cepko, Constance L.; Kriegstein, Arnold

    2015-01-01

    The mammalian neocortex is composed of two major neuronal cell types with distinct origins: excitatory pyramidal neurons and inhibitory interneurons, generated in dorsal and ventral progenitor zones of the embryonic telencephalon respectively. Thus, inhibitory neurons migrate relatively long distances to reach their destination in the developing forebrain. The role of lineage in the organization and circuitry of interneurons is still not well understood. Utilizing a combination of genetics, retroviral fate mapping and lineage-specific retroviral barcode labeling, we find that clonally related interneurons can be widely dispersed while unrelated interneurons can be closely clustered. These data suggest that migratory mechanisms related to the clustering of interneurons occur largely independent of their clonal origin. PMID:26299474

  7. Improved Clonal Selection Algorithm Combined with Ant Colony Optimization

    NASA Astrophysics Data System (ADS)

    Gao, Shangce; Wang, Wei; Dai, Hongwei; Li, Fangjia; Tang, Zheng

    Both the clonal selection algorithm (CSA) and the ant colony optimization (ACO) are inspired by natural phenomena and are effective tools for solving complex problems. CSA can exploit and explore the solution space parallely and effectively. However, it can not use enough environment feedback information and thus has to do a large redundancy repeat during search. On the other hand, ACO is based on the concept of indirect cooperative foraging process via secreting pheromones. Its positive feedback ability is nice but its convergence speed is slow because of the little initial pheromones. In this paper, we propose a pheromone-linker to combine these two algorithms. The proposed hybrid clonal selection and ant colony optimization (CSA-ACO) reasonably utilizes the superiorities of both algorithms and also overcomes their inherent disadvantages. Simulation results based on the traveling salesman problems have demonstrated the merit of the proposed algorithm over some traditional techniques.

  8. Clonal forestry, heterosis and advanced-generation breeding

    SciTech Connect

    Tuskan, G.A.

    1997-08-01

    This report discusses the clonal planting stock offers many advantages to the forest products industry. Advanced-generation breeding strategies should be designed to maximize within-family variance and at the same time allow the capture of heterosis. Certainly there may be a conflict in the choice of breeding strategy based on the trait of interest. It may be that the majority of the traits express heterosis due to overdominance. Alternatively, disease resistance is expressed as the lack of a specific metabolite or infection court then the homozygous recessive genotype may be the most desirable. Nonetheless, as the forest products industry begins to utilize the economic advantages of clonal forestry, breeding strategies will have to be optimized for these commercial plant materials. Here, molecular markers can be used to characterize the nature of heterosis and therefore define the appropriate breeding strategy.

  9. Distinguishing clonal apple rootstocks by isozymes banding patterns.

    PubMed

    Kaushal, K; Modgil, M; Sharma, D R

    2001-11-01

    Molecular characterisation of clonal apple rootstocks using isozymes was carried out to identify isozyme polymorphism in seven clonal apple rootstocks and to identify the most characteristic and stable enzyme markers for each individual rootstock. Five enzyme systems were studied out of which polyphenol oxidase, malate dehydrogenase, acid phosphatase and peroxidase were useful in discriminating among the rootstocks. The peroxidase enzyme system showed maximum variation and esterase showed the least variation among the rootstocks. Out of seven rootstocks, three were distinguished on the basis of one enzyme system only (M.3 with MDH or PER, M.7 with PPO or PER and MM. 111 with MDH). Out of the sixteen loci studied seven were found to be polymorphic. Genetic variation among the rootstocks was explained on the basis of various parameters. The percentage of polymorphic loci varied from 13.33 to 35.71 per cent. PMID:11906109

  10. Wide Dispersion and Diversity of Clonally Related Inhibitory Interneurons.

    PubMed

    Harwell, Corey C; Fuentealba, Luis C; Gonzalez-Cerrillo, Adrian; Parker, Phillip R L; Gertz, Caitlyn C; Mazzola, Emanuele; Garcia, Miguel Turrero; Alvarez-Buylla, Arturo; Cepko, Constance L; Kriegstein, Arnold R

    2015-09-01

    The mammalian neocortex is composed of two major neuronal cell types with distinct origins: excitatory pyramidal neurons and inhibitory interneurons, generated in dorsal and ventral progenitor zones of the embryonic telencephalon, respectively. Thus, inhibitory neurons migrate relatively long distances to reach their destination in the developing forebrain. The role of lineage in the organization and circuitry of interneurons is still not well understood. Utilizing a combination of genetics, retroviral fate mapping, and lineage-specific retroviral barcode labeling, we find that clonally related interneurons can be widely dispersed while unrelated interneurons can be closely clustered. These data suggest that migratory mechanisms related to the clustering of interneurons occur largely independent of their clonal origin. PMID:26299474

  11. Clonal development and organization of the adult Drosophila central brain

    PubMed Central

    Yu, Hung-Hsiang; Awasaki, Takeshi; Schroeder, Mark David; Long, Fuhui; Yang, Jacob S.; He, Yisheng; Ding, Peng; Kao, Jui-Chun; Wu, Gloria Yueh-Yi; Peng, Hanchuan; Myers, Gene; Lee, Tzumin

    2013-01-01

    Summary Background The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. Results By determining individual NB clones and pursuing their projections into specific neuropils we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often co-innervate the same local neuropil(s) and further target a restricted set of distant neuropils. Conclusions These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain. PMID:23541733

  12. Local genetic structure in a clonal dioecious angiosperm.

    PubMed

    Ruggiero, M V; Reusch, T B H; Procaccini, G

    2005-04-01

    We used seven microsatellite loci to characterize genetic structure and clonal architecture at three different spatial scales (from meters to centimetres) of a Cymodocea nodosa population. C. nodosa exhibits both sexual reproduction and vegetative propagation by rhizome elongation. Seeds remain buried in the sediment nearby the mother plant in a dormant stage until germination. Seed dispersal potential is therefore expected to be extremely restricted. High clonal diversity (up to 67% of distinct genotypes) and a highly intermingled configuration of genets at different spatial scales were found. No significant differences in genetic structure were found among the three spatial scales, indicating that genetic diversity is evenly distributed along the meadow. Autocorrelation analyses of kinship estimates confirmed the absence of spatial clumping of genets at small spatial scale and the expectations of a very restricted seed dispersal (observed dispersal range 1-21 m) in this species. PMID:15773928

  13. Clonal analysis of limbal epithelial stem cell populations.

    PubMed

    Schlötzer-Schrehardt, Ursula

    2013-01-01

    While convincing data clearly suggest the presence of stem cells in the basal limbal epithelium in vivo, testing the proliferation, self-renewal, and differentiation capacity of stem cells relies on the development of methodologies that allow for their isolation and extensive propagation in vitro. Clonal analysis involving differentiation between short-lived transient cell clones and long-lived stem cell clones is an invaluable technique to identify stem cells in vitro, and allows cells to be expanded over multiple passages. This chapter describes a protocol for the isolation, expansion, and clonal analysis of limbal epithelial stem cells. The cultivation method described may be essential for long-term restoration of the damaged ocular surface in patients with limbal stem cell deficiency. PMID:23690004

  14. Defining the clonal dynamics leading to mouse skin tumour initiation.

    PubMed

    Sánchez-Danés, Adriana; Hannezo, Edouard; Larsimont, Jean-Christophe; Liagre, Mélanie; Youssef, Khalil Kass; Simons, Benjamin D; Blanpain, Cédric

    2016-08-18

    The changes in cell dynamics after oncogenic mutation that lead to the development of tumours are currently unknown. Here, using skin epidermis as a model, we assessed the effect of oncogenic hedgehog signalling in distinct cell populations and their capacity to induce basal cell carcinoma, the most frequent cancer in humans. We found that only stem cells, and not progenitors, initiated tumour formation upon oncogenic hedgehog signalling. This difference was due to the hierarchical organization of tumour growth in oncogene-targeted stem cells, characterized by an increase in symmetric self-renewing divisions and a higher p53-dependent resistance to apoptosis, leading to rapid clonal expansion and progression into invasive tumours. Our work reveals that the capacity of oncogene-targeted cells to induce tumour formation is dependent not only on their long-term survival and expansion, but also on the specific clonal dynamics of the cancer cell of origin. PMID:27459053

  15. Molecular Markers Reveal Exclusively Clonal Reproduction in Trichophyton rubrum

    PubMed Central

    Gräser, Y.; Kühnisch, J.; Presber, W.

    1999-01-01

    Genotypic variability among 96 Trichophyton rubrum strains which displayed different colony morphologies and were collected from four continents was investigated. Twelve markers representing 57 loci were analyzed by PCR fingerprinting, amplified fragment length polymorphism, and random amplified monomorphic DNA markers. Interestingly, none of the methods used revealed any DNA polymorphism, indicating a strictly clonal mode of reproduction and a strong adaptation to human skin. PMID:10523582

  16. Special parallel processing workshop

    SciTech Connect

    1994-12-01

    This report contains viewgraphs from the Special Parallel Processing Workshop. These viewgraphs deal with topics such as parallel processing performance, message passing, queue structure, and other basic concept detailing with parallel processing.

  17. Gene expression variability in clonal populations: Causes and consequences.

    PubMed

    Roberfroid, Stefanie; Vanderleyden, Jos; Steenackers, Hans

    2016-11-01

    During the last decade it has been shown that among cell variation in gene expression plays an important role within clonal populations. Here, we provide an overview of the different mechanisms contributing to gene expression variability in clonal populations. These are ranging from inherent variations in the biochemical process of gene expression itself, such as intrinsic noise, extrinsic noise and bistability to individual responses to variations in the local micro-environment, a phenomenon called phenotypic plasticity. Also genotypic variations caused by clonal evolution and phase variation can contribute to gene expression variability. Consequently, gene expression studies need to take these fluctuations in expression into account. However, frequently used techniques for expression quantification, such as microarrays, RNA sequencing, quantitative PCR and gene reporter fusions classically determine the population average of gene expression. Here, we discuss how these techniques can be adapted towards single cell analysis by integration with single cell isolation, RNA amplification and microscopy. Alternatively more qualitative selection-based techniques, such as mutant screenings, in vivo expression technology (IVET) and recombination-based IVET (RIVET) can be applied for detection of genes expressed only within a subpopulation. Finally, differential fluorescence induction (DFI), a protocol specially designed for single cell expression is discussed. PMID:26731119

  18. Ubiquitylation of CD98 limits cell proliferation and clonal expansion.

    PubMed

    Ablack, Jailal N G; Metz, Patrick J; Chang, John T; Cantor, Joseph M; Ginsberg, Mark H

    2015-12-01

    CD98 heavy chain (SLC3A2) facilitates lymphocyte clonal expansion that enables adaptive immunity; however, increased expression of CD98 is also a feature of both lymphomas and leukemias and represents a potential therapeutic target in these diseases. CD98 is transcriptionally regulated and ectopic expression of the membrane-associated RING-CH (MARCH) E3 ubiquitin ligases MARCH1 or MARCH8 leads to ubiquitylation and lysosomal degradation of CD98. Here, we examined the potential role of ubiquitylation in regulating CD98 expression and cell proliferation. We report that blocking ubiquitylation by use of a catalytically inactive MARCH or by creating a ubiquitylation-resistant CD98 mutant, prevents MARCH-induced CD98 downregulation in HeLa cells. March1-null T cells display increased CD98 expression. Similarly, T cells expressing ubiquitylation-resistant CD98 manifest increased proliferation in vitro and clonal expansion in vivo. Thus, ubiquitylation and the resulting downregulation of CD98 can limit cell proliferation and clonal expansion. PMID:26493331

  19. Stem Cell Hierarchy and Clonal Evolution in Acute Lymphoblastic Leukemia

    PubMed Central

    Lang, Fabian; Wojcik, Bartosch; Rieger, Michael A.

    2015-01-01

    Cancer is characterized by a remarkable intertumoral, intratumoral, and cellular heterogeneity that might be explained by the cancer stem cell (CSC) and/or the clonal evolution models. CSCs have the ability to generate all different cells of a tumor and to reinitiate the disease after remission. In the clonal evolution model, a consecutive accumulation of mutations starting in a single cell results in competitive growth of subclones with divergent fitness in either a linear or a branching succession. Acute lymphoblastic leukemia (ALL) is a highly malignant cancer of the lymphoid system in the bone marrow with a dismal prognosis after relapse. However, stabile phenotypes and functional data of CSCs in ALL, the so-called leukemia-initiating cells (LICs), are highly controversial and the question remains whether there is evidence for their existence. This review discusses the concepts of CSCs and clonal evolution in respect to LICs mainly in B-ALL and sheds light onto the technical controversies in LIC isolation and evaluation. These aspects are important for the development of strategies to eradicate cells with LIC capacity. Common properties of LICs within different subclones need to be defined for future ALL diagnostics, treatment, and disease monitoring to improve the patients' outcome in ALL. PMID:26236346

  20. A Computational Clonal Analysis of the Developing Mouse Limb Bud

    PubMed Central

    Marcon, Luciano; Arqués, Carlos G.; Torres, Miguel S.; Sharpe, James

    2011-01-01

    A comprehensive spatio-temporal description of the tissue movements underlying organogenesis would be an extremely useful resource to developmental biology. Clonal analysis and fate mappings are popular experiments to study tissue movement during morphogenesis. Such experiments allow cell populations to be labeled at an early stage of development and to follow their spatial evolution over time. However, disentangling the cumulative effects of the multiple events responsible for the expansion of the labeled cell population is not always straightforward. To overcome this problem, we develop a novel computational method that combines accurate quantification of 2D limb bud morphologies and growth modeling to analyze mouse clonal data of early limb development. Firstly, we explore various tissue movements that match experimental limb bud shape changes. Secondly, by comparing computational clones with newly generated mouse clonal data we are able to choose and characterize the tissue movement map that better matches experimental data. Our computational analysis produces for the first time a two dimensional model of limb growth based on experimental data that can be used to better characterize limb tissue movement in space and time. The model shows that the distribution and shapes of clones can be described as a combination of anisotropic growth with isotropic cell mixing, without the need for lineage compartmentalization along the AP and PD axis. Lastly, we show that this comprehensive description can be used to reassess spatio-temporal gene regulations taking tissue movement into account and to investigate PD patterning hypothesis. PMID:21347315

  1. Multiplexing clonality: combining RGB marking and genetic barcoding.

    PubMed

    Cornils, Kerstin; Thielecke, Lars; Hüser, Svenja; Forgber, Michael; Thomaschewski, Michael; Kleist, Nadja; Hussein, Kais; Riecken, Kristoffer; Volz, Tassilo; Gerdes, Sebastian; Glauche, Ingmar; Dahl, Andreas; Dandri, Maura; Roeder, Ingo; Fehse, Boris

    2014-04-01

    RGB marking and DNA barcoding are two cutting-edge technologies in the field of clonal cell marking. To combine the virtues of both approaches, we equipped LeGO vectors encoding red, green or blue fluorescent proteins with complex DNA barcodes carrying color-specific signatures. For these vectors, we generated highly complex plasmid libraries that were used for the production of barcoded lentiviral vector particles. In proof-of-principle experiments, we used barcoded vectors for RGB marking of cell lines and primary murine hepatocytes. We applied single-cell polymerase chain reaction to decipher barcode signatures of individual RGB-marked cells expressing defined color hues. This enabled us to prove clonal identity of cells with one and the same RGB color. Also, we made use of barcoded vectors to investigate clonal development of leukemia induced by ectopic oncogene expression in murine hematopoietic cells. In conclusion, by combining RGB marking and DNA barcoding, we have established a novel technique for the unambiguous genetic marking of individual cells in the context of normal regeneration as well as malignant outgrowth. Moreover, the introduction of color-specific signatures in barcodes will facilitate studies on the impact of different variables (e.g. vector type, transgenes, culture conditions) in the context of competitive repopulation studies. PMID:24476916

  2. Multiplexing clonality: combining RGB marking and genetic barcoding

    PubMed Central

    Cornils, Kerstin; Thielecke, Lars; Hüser, Svenja; Forgber, Michael; Thomaschewski, Michael; Kleist, Nadja; Hussein, Kais; Riecken, Kristoffer; Volz, Tassilo; Gerdes, Sebastian; Glauche, Ingmar; Dahl, Andreas; Dandri, Maura; Roeder, Ingo; Fehse, Boris

    2014-01-01

    RGB marking and DNA barcoding are two cutting-edge technologies in the field of clonal cell marking. To combine the virtues of both approaches, we equipped LeGO vectors encoding red, green or blue fluorescent proteins with complex DNA barcodes carrying color-specific signatures. For these vectors, we generated highly complex plasmid libraries that were used for the production of barcoded lentiviral vector particles. In proof-of-principle experiments, we used barcoded vectors for RGB marking of cell lines and primary murine hepatocytes. We applied single-cell polymerase chain reaction to decipher barcode signatures of individual RGB-marked cells expressing defined color hues. This enabled us to prove clonal identity of cells with one and the same RGB color. Also, we made use of barcoded vectors to investigate clonal development of leukemia induced by ectopic oncogene expression in murine hematopoietic cells. In conclusion, by combining RGB marking and DNA barcoding, we have established a novel technique for the unambiguous genetic marking of individual cells in the context of normal regeneration as well as malignant outgrowth. Moreover, the introduction of color-specific signatures in barcodes will facilitate studies on the impact of different variables (e.g. vector type, transgenes, culture conditions) in the context of competitive repopulation studies. PMID:24476916

  3. Parallel rendering techniques for massively parallel visualization

    SciTech Connect

    Hansen, C.; Krogh, M.; Painter, J.

    1995-07-01

    As the resolution of simulation models increases, scientific visualization algorithms which take advantage of the large memory. and parallelism of Massively Parallel Processors (MPPs) are becoming increasingly important. For large applications rendering on the MPP tends to be preferable to rendering on a graphics workstation due to the MPP`s abundant resources: memory, disk, and numerous processors. The challenge becomes developing algorithms that can exploit these resources while minimizing overhead, typically communication costs. This paper will describe recent efforts in parallel rendering for polygonal primitives as well as parallel volumetric techniques. This paper presents rendering algorithms, developed for massively parallel processors (MPPs), for polygonal, spheres, and volumetric data. The polygon algorithm uses a data parallel approach whereas the sphere and volume render use a MIMD approach. Implementations for these algorithms are presented for the Thinking Ma.chines Corporation CM-5 MPP.

  4. Clonal Integration of Fragaria orientalis in Reciprocal and Coincident Patchiness Resources: Cost-Benefit Analysis

    PubMed Central

    Zhang, Yunchun; Zhang, Qiaoying

    2013-01-01

    Clonal growth allows plants to spread horizontally and to experience different levels of resources. If ramets remain physiologically integrated, clonal plants can reciprocally translocate resources between ramets in heterogeneous environments. But little is known about the interaction between benefits of clonal integration and patterns of resource heterogeneity in different patches, i.e., coincident patchiness or reciprocal patchiness. We hypothesized that clonal integration will show different effects on ramets in different patches and more benefit to ramets under reciprocal patchiness than to those under coincident patchiness, as well as that the benefit from clonal integration is affected by the position of proximal and distal ramets under reciprocal or coincident patchiness. A pot experiment was conducted with clonal fragments consisting of two interconnected ramets (proximal and distal ramet) of Fragaria orientalis. In the experiment, proximal and distal ramets were grown in high or low availability of resources, i.e., light and water. Resource limitation was applied either simultaneously to both ramets of a clonal fragment (coincident resource limitation) or separately to different ramets of the same clonal fragment (reciprocal resource limitation). Half of the clonal fragments were connected while the other half were severed. From the experiment, clonal fragments growing under coincident resource limitation accumulated more biomass than those under reciprocal resource limitation. Based on a cost-benefit analysis, the support from proximal ramets to distal ramets was stronger than that from distal ramets to proximal ramets. Through division of labour, clonal fragments of F. orientalis benefited more in reciprocal patchiness than in coincident patchiness. While considering biomass accumulation and ramets production, coincident patchiness were more favourable to clonal plant F. orientalis. PMID:24265832

  5. Parallel algorithms and architectures

    SciTech Connect

    Albrecht, A.; Jung, H.; Mehlhorn, K.

    1987-01-01

    Contents of this book are the following: Preparata: Deterministic simulation of idealized parallel computers on more realistic ones; Convex hull of randomly chosen points from a polytope; Dataflow computing; Parallel in sequence; Towards the architecture of an elementary cortical processor; Parallel algorithms and static analysis of parallel programs; Parallel processing of combinatorial search; Communications; An O(nlogn) cost parallel algorithms for the single function coarsest partition problem; Systolic algorithms for computing the visibility polygon and triangulation of a polygonal region; and RELACS - A recursive layout computing system. Parallel linear conflict-free subtree access.

  6. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    PubMed

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants. PMID:24352844

  7. Antigen-specific CD4{sup +} effector T cells: Analysis of factors regulating clonal expansion and cytokine production

    SciTech Connect

    Ohnuki, Kazunobu; Watanabe, Yuri; Takahashi, Yusuke; Kobayashi, Sakiko; Watanabe, Shiho; Ogawa, Shuhei; Kotani, Motoko; Kozono, Haruo; Tanabe, Kazunari; Abe, Ryo

    2009-03-20

    In order to fully understand T cell-mediated immunity, the mechanisms that regulate clonal expansion and cytokine production by CD4{sup +} antigen-specific effector T cells in response to a wide range of antigenic stimulation needs clarification. For this purpose, panels of antigen-specific CD4{sup +} T cell clones with different thresholds for antigen-induced proliferation were generated by repeated stimulation with high- or low-dose antigen. Differences in antigen sensitivities did not correlate with expression of TCR, CD4, adhesion or costimulatory molecules. There was no significant difference in antigen-dependent cytokine production by TG40 cells transfected with TCR obtained from either high- or low-dose-responding T cell clones, suggesting that the affinity of TCRs for their ligands is not primary determinant of T cell antigen reactivity. The proliferative responses of all T cell clones to both peptide stimulation and to TCR{beta} crosslinking revealed parallel dose-response curves. These results suggest that the TCR signal strength of effector T cells and threshold of antigen reactivity is determined by an intrinsic property, such as the TCR signalosome and/or intracellular signaling machinery. Finally, the antigen responses of high- and low-peptide-responding T cell clones reveal that clonal expansion and cytokine production of effector T cells occur independently of antigen concentration. Based on these results, the mechanisms underlying selection of high 'avidity' effector and memory T cells in response to pathogen are discussed.

  8. Variegated clonality and rapid emergence of new molecular lesions in xenografts of acute lymphoblastic leukemia are associated with drug resistance.

    PubMed

    Nowak, Daniel; Liem, Natalia L M; Mossner, Maximilian; Klaumünzer, Marion; Papa, Rachael A; Nowak, Verena; Jann, Johann C; Akagi, Tadayuki; Kawamata, Norihiko; Okamoto, Ryoko; Thoennissen, Nils H; Kato, Motohiro; Sanada, Masashi; Hofmann, Wolf-Karsten; Ogawa, Seishi; Marshall, Glenn M; Lock, Richard B; Koeffler, H Phillip

    2015-01-01

    The use of genome-wide copy-number analysis and massive parallel sequencing has revolutionized the understanding of the clonal architecture of pediatric acute lymphoblastic leukemia (ALL) by demonstrating that this disease is composed of highly variable clonal ancestries following the rules of Darwinian selection. The current study aimed to analyze the molecular composition of childhood ALL biopsies and patient-derived xenografts with particular emphasis on mechanisms associated with acquired chemoresistance. Genomic DNA from seven primary pediatric ALL patient samples, 29 serially passaged xenografts, and six in vivo selected chemoresistant xenografts were analyzed with 250K single-nucleotide polymorphism arrays. Copy-number analysis of non-drug-selected xenografts confirmed a highly variable molecular pattern of variegated subclones. Whereas primary patient samples from initial diagnosis displayed a mean of 5.7 copy-number alterations per sample, serially passaged xenografts contained a mean of 8.2 and chemoresistant xenografts a mean of 10.5 copy-number alterations per sample, respectively. Resistance to cytarabine was explained by a new homozygous deletion of the DCK gene, whereas methotrexate resistance was associated with monoallelic deletion of FPGS and mutation of the remaining allele. This study demonstrates that selecting for chemoresistance in xenografted human ALL cells can reveal novel mechanisms associated with drug resistance. PMID:25450514

  9. Clonal relationships in recurrent B-cell lymphomas

    PubMed Central

    Lee, Seung Eun; Kang, So Young; Yoo, Hae Yong; Kim, Seok Jin; Kim, Won Seog; Ko, Young Hyeh

    2016-01-01

    Immunoglobulin (Ig) gene rearrangements remain largely unmodified during the clonal expansion of neoplastic cells. We investigated the clonal relationships between lymphoma components at diagnosis and at relapse by analyzing Ig gene rearrangements. A BIOMED-2 multiplex polymerase chain reaction (PCR) assay was performed in 27 patients using formalin-fixed paraffin embedded tissues, with subsequent cloning and sequencing of the amplified Ig genes in 17 patients. All 27 cases of primary and corresponding relapsed tumors showed monoclonal rearrangements of the Ig genes by BIOMED-2 PCR. Whereas IgVH or IgVK fragment lengths were identical in 8/27 pairs (30%), fragment lengths differed in 19/27 pairs (70%). In 17 cases analyzed by sequencing, an identical VDJ gene rearrangement was confirmed in 4/4 pairs (100%) with the same fragment lengths and in 10/13 pairs (77%) with different fragment lengths. Four of 17 primary lymphomas had multiple VDJ rearrangements, and three of them showed an unrelated relapse. Unrelated relapse was observed in 1/8 mantle cell lymphomas, 1/5 diffuse large B-cell lymphomas, and a large B cell lymphoma developed in a patient with a small lymphocytic lymphoma. Unrelated relapses developed after a longer disease-free interval and tended to show poorer outcome compared with related relapse. In summary, relapse of a lymphoma from an unrelated clone is uncommon, but can occur in B-cell lymphomas. Clonal relationships should be determined by sequencing of the Ig genes, and not just by comparing the PCR product size. PMID:26848863

  10. Emergence of Clonal Complex 17 Enterococcus faecium in The Netherlands▿

    PubMed Central

    Top, Janetta; Willems, Rob; van der Velden, Saskia; Asbroek, Miranda; Bonten, Marc

    2008-01-01

    The global emergence of vancomycin-resistant Enterococcus faecium has been characterized as the clonal spread of clonal complex 17 (CC17) E. faecium. CC17 was defined upon multilocus sequence typing and is characterized by resistance to quinolones and ampicillin and the presence of the enterococcal surface protein (Esp) in the majority of isolates. The recently noticed increased incidence of vancomycin-susceptible CC17 E. faecium infections in our hospital initiated a nationwide study to determine ecological changes among enterococcal infections. The data and strain collections were obtained from 26 (38%) and 9 (14%) of 66 microbiology laboratories in The Netherlands. E. faecium and E. faecalis were distinguished by multiplex PCR; all E. faecium isolates were genotyped by multiple-locus variable-number tandem-repeat analysis (MLVA), and the presence of esp was identified by PCR. Average numbers of ampicillin-resistant enterococcal isolates from normally sterile body sites per hospital increased from 5 ± 1 in 1994 to 25 ± 21 in 2005. Among all enterococcal bloodstream infections, the proportions of ampicillin-resistant E. faecium (AREF) increased from 4% in 1994 to 20% in 2005 (P < 0.001). All E. faecalis isolates were susceptible to ampicillin, whereas 78% of the E. faecium isolates were resistant (49% of these contained esp). Genotyping revealed that 86% of AREF isolates belonged to CC17, including four dominant MLVA types found in ≥3 hospitals, accounting for 64% of the AREF isolates. Infections caused by CC17 E. faecium has increased nationwide, especially in university hospitals due to the clonal spread of four MLVA types, and seems associated with acquisition of the esp gene. PMID:17977983

  11. Clonal relationships in recurrent B-cell lymphomas.

    PubMed

    Lee, Seung Eun; Kang, So Young; Yoo, Hae Yong; Kim, Seok Jin; Kim, Won Seog; Ko, Young Hyeh

    2016-03-15

    Immunoglobulin (Ig) gene rearrangements remain largely unmodified during the clonal expansion of neoplastic cells. We investigated the clonal relationships between lymphoma components at diagnosis and at relapse by analyzing Ig gene rearrangements. A BIOMED-2 multiplex polymerase chain reaction (PCR) assay was performed in 27 patients using formalin-fixed paraffin embedded tissues, with subsequent cloning and sequencing of the amplified Ig genes in 17 patients. All 27 cases of primary and corresponding relapsed tumors showed monoclonal rearrangements of the Ig genes by BIOMED-2 PCR. Whereas IgVH or IgVK fragment lengths were identical in 8/27 pairs (30%), fragment lengths differed in 19/27 pairs (70%). In 17 cases analyzed by sequencing, an identical VDJ gene rearrangement was confirmed in 4/4 pairs (100%) with the same fragment lengths and in 10/13 pairs (77%) with different fragment lengths. Four of 17 primary lymphomas had multiple VDJ rearrangements, and three of them showed an unrelated relapse. Unrelated relapse was observed in 1/8 mantle cell lymphomas, 1/5 diffuse large B-cell lymphomas, and a large B cell lymphoma developed in a patient with a small lymphocytic lymphoma. Unrelated relapses developed after a longer disease-free interval and tended to show poorer outcome compared with related relapse. In summary, relapse of a lymphoma from an unrelated clone is uncommon, but can occur in B-cell lymphomas. Clonal relationships should be determined by sequencing of the Ig genes, and not just by comparing the PCR product size. PMID:26848863

  12. Clonal architectures and driver mutations in metastatic melanomas.

    PubMed

    Ding, Li; Kim, Minjung; Kanchi, Krishna L; Dees, Nathan D; Lu, Charles; Griffith, Malachi; Fenstermacher, David; Sung, Hyeran; Miller, Christopher A; Goetz, Brian; Wendl, Michael C; Griffith, Obi; Cornelius, Lynn A; Linette, Gerald P; McMichael, Joshua F; Sondak, Vernon K; Fields, Ryan C; Ley, Timothy J; Mulé, James J; Wilson, Richard K; Weber, Jeffrey S

    2014-01-01

    To reveal the clonal architecture of melanoma and associated driver mutations, whole genome sequencing (WGS) and targeted extension sequencing were used to characterize 124 melanoma cases. Significantly mutated gene analysis using 13 WGS cases and 15 additional paired extension cases identified known melanoma genes such as BRAF, NRAS, and CDKN2A, as well as a novel gene EPHA3, previously implicated in other cancer types. Extension studies using tumors from another 96 patients discovered a large number of truncation mutations in tumor suppressors (TP53 and RB1), protein phosphatases (e.g., PTEN, PTPRB, PTPRD, and PTPRT), as well as chromatin remodeling genes (e.g., ASXL3, MLL2, and ARID2). Deep sequencing of mutations revealed subclones in the majority of metastatic tumors from 13 WGS cases. Validated mutations from 12 out of 13 WGS patients exhibited a predominant UV signature characterized by a high frequency of C->T transitions occurring at the 3' base of dipyrimidine sequences while one patient (MEL9) with a hypermutator phenotype lacked this signature. Strikingly, a subclonal mutation signature analysis revealed that the founding clone in MEL9 exhibited UV signature but the secondary clone did not, suggesting different mutational mechanisms for two clonal populations from the same tumor. Further analysis of four metastases from different geographic locations in 2 melanoma cases revealed phylogenetic relationships and highlighted the genetic alterations responsible for differential drug resistance among metastatic tumors. Our study suggests that clonal evaluation is crucial for understanding tumor etiology and drug resistance in melanoma. PMID:25393105

  13. Clonal Architectures and Driver Mutations in Metastatic Melanomas

    PubMed Central

    Dees, Nathan D.; Lu, Charles; Griffith, Malachi; Fenstermacher, David; Sung, Hyeran; Miller, Christopher A.; Goetz, Brian; Wendl, Michael C.; Griffith, Obi; Cornelius, Lynn A.; Linette, Gerald P.; McMichael, Joshua F.; Sondak, Vernon K.; Fields, Ryan C.; Ley, Timothy J.; Mulé, James J.; Wilson, Richard K.; Weber, Jeffrey S.

    2014-01-01

    To reveal the clonal architecture of melanoma and associated driver mutations, whole genome sequencing (WGS) and targeted extension sequencing were used to characterize 124 melanoma cases. Significantly mutated gene analysis using 13 WGS cases and 15 additional paired extension cases identified known melanoma genes such as BRAF, NRAS, and CDKN2A, as well as a novel gene EPHA3, previously implicated in other cancer types. Extension studies using tumors from another 96 patients discovered a large number of truncation mutations in tumor suppressors (TP53 and RB1), protein phosphatases (e.g., PTEN, PTPRB, PTPRD, and PTPRT), as well as chromatin remodeling genes (e.g., ASXL3, MLL2, and ARID2). Deep sequencing of mutations revealed subclones in the majority of metastatic tumors from 13 WGS cases. Validated mutations from 12 out of 13 WGS patients exhibited a predominant UV signature characterized by a high frequency of C->T transitions occurring at the 3′ base of dipyrimidine sequences while one patient (MEL9) with a hypermutator phenotype lacked this signature. Strikingly, a subclonal mutation signature analysis revealed that the founding clone in MEL9 exhibited UV signature but the secondary clone did not, suggesting different mutational mechanisms for two clonal populations from the same tumor. Further analysis of four metastases from different geographic locations in 2 melanoma cases revealed phylogenetic relationships and highlighted the genetic alterations responsible for differential drug resistance among metastatic tumors. Our study suggests that clonal evaluation is crucial for understanding tumor etiology and drug resistance in melanoma. PMID:25393105

  14. Fluoroquinolone Resistance among Clonal Complex 1 Group B Streptococcus Strains.

    PubMed

    Neemuchwala, Alefiya; Teatero, Sarah; Patel, Samir N; Fittipaldi, Nahuel

    2016-01-01

    Fluoroquinolone resistance in group B Streptococcus is increasingly being reported worldwide. Here, we correlated fluoroquinolone resistance with mutations in gyrA, gyrB, parC, and parE genes, identified by mining whole-genome sequencing (WGS) data of 190 clonal complex 1 group B Streptococcus strains recovered from patients with invasive diseases in North America. We report a high prevalence of fluoroquinolone resistance (12%) among GBS strains in our collection. Our approach is the first step towards accurate prediction of fluoroquinolone resistance from WGS data in this opportunistic pathogen. PMID:27559344

  15. Inflammation as a Driver of Clonal Evolution in Myeloproliferative Neoplasm

    PubMed Central

    Fleischman, Angela G.

    2015-01-01

    Our understanding of inflammation's role in the pathogenesis of myeloproliferative neoplasm (MPN) is evolving. The impact of chronic inflammation, a characteristic feature of MPN, likely goes far beyond its role as a driver of constitutional symptoms. An inflammatory response to the neoplastic clone may be responsible for some pathologic aspects of MPN. Moreover, JAK2V617F mutated hematopoietic stem and progenitor cells are resistant to inflammation, and this gives the neoplastic clone a selective advantage allowing for its clonal expansion. Because inflammation plays a central role in MPN inflammation is a logical therapeutic target in MPN. PMID:26538830

  16. Fluoroquinolone Resistance among Clonal Complex 1 Group B Streptococcus Strains

    PubMed Central

    Teatero, Sarah; Patel, Samir N.

    2016-01-01

    Fluoroquinolone resistance in group B Streptococcus is increasingly being reported worldwide. Here, we correlated fluoroquinolone resistance with mutations in gyrA, gyrB, parC, and parE genes, identified by mining whole-genome sequencing (WGS) data of 190 clonal complex 1 group B Streptococcus strains recovered from patients with invasive diseases in North America. We report a high prevalence of fluoroquinolone resistance (12%) among GBS strains in our collection. Our approach is the first step towards accurate prediction of fluoroquinolone resistance from WGS data in this opportunistic pathogen. PMID:27559344

  17. Plant traits and ecosystem effects of clonality: a new research agenda

    PubMed Central

    Cornelissen, Johannes H. C.; Song, Yao-Bin; Yu, Fei-Hai; Dong, Ming

    2014-01-01

    Background Clonal plants spread laterally by spacers between their ramets (shoot–root units); these spacers can transport and store resources. While much is known about how clonality promotes plant fitness, we know little about how different clonal plants influence ecosystem functions related to carbon, nutrient and water cycling. Approach The response–effect trait framework is used to formulate hypotheses about the impact of clonality on ecosystems. Central to this framework is the degree of correspondence between interspecific variation in clonal ‘response traits’ that promote plant fitness and interspecific variation in ‘effect traits’, which define a plant's potential effect on ecosystem functions. The main example presented to illustrate this concept concerns clonal traits of vascular plant species that determine their lateral extension patterns. In combination with the different degrees of decomposability of litter derived from their spacers, leaves, roots and stems, these clonal traits should determine associated spatial and temporal patterns in soil organic matter accumulation, nutrient availability and water retention. Conclusions This review gives some concrete pointers as to how to implement this new research agenda through a combination of (1) standardized screening of predominant species in ecosystems for clonal response traits and for effect traits related to carbon, nutrient and water cycling; (2) analysing the overlap between variation in these response traits and effect traits across species; (3) linking spatial and temporal patterns of clonal species in the field to those for soil properties related to carbon, nutrient and water stocks and dynamics; and (4) studying the effects of biotic interactions and feedbacks between resource heterogeneity and clonality. Linking these to environmental changes may help us to better understand and predict the role of clonal plants in modulating impacts of climate change and human activities on

  18. Role of chromosomal aberrations in clonal diversity and progression of acute myeloid leukemia.

    PubMed

    Bochtler, T; Fröhling, S; Krämer, A

    2015-06-01

    Genetic abnormalities are a hallmark of cancer. Hereby, cytogenetic aberrations and small-scale abnormalities, such as single-nucleotide variations and insertion/deletion mutations, have emerged as two alternative modes of genetic diversification. Both mechanisms are at work in acute myeloid leukemia (AML), in which conventional karyotyping and molecular studies demonstrate that gene mutations occur predominantly in cytogenetically normal AML, whereas chromosomal changes are a driving force of development and progression of disease in aberrant karyotype AML. All steps of disease evolution in AML, ranging from the transformation of preleukemic clones into overt leukemia to the expansion and recurrence of malignant clones, are paralleled by clonal evolution at either the gene mutation or chromosome aberration level. Preleukemic conditions, such as Fanconi anemia and Bloom syndrome, demonstrate that the acquisition of chromosomal aberrations can contribute to leukemic transformation. Similar to what has been shown at the mutational level, expansion and recurrence of AML clones goes along with increasing genetic diversification. Hereby, cytogenetically more evolved subclones are at a proliferative advantage and outgrow ancestor clones or have evolved toward a more aggressive behavior with additional newly acquired aberrations as compared with the initial leukemic clone, respectively. PMID:25673237

  19. MPP parallel forth

    NASA Technical Reports Server (NTRS)

    Dorband, John E.

    1987-01-01

    Massively Parallel Processor (MPP) Parallel FORTH is a derivative of FORTH-83 and Unified Software Systems' Uni-FORTH. The extension of FORTH into the realm of parallel processing on the MPP is described. With few exceptions, Parallel FORTH was made to follow the description of Uni-FORTH as closely as possible. Likewise, the parallel FORTH extensions were designed as philosophically similar to serial FORTH as possible. The MPP hardware characteristics, as viewed by the FORTH programmer, is discussed. Then a description is presented of how parallel FORTH is implemented on the MPP.

  20. Clonality of Bacterial Pathogens Causing Hospital-Acquired Pneumonia.

    PubMed

    Pudová, V; Htoutou Sedláková, M; Kolář, M

    2016-09-01

    Hospital-acquired pneumonia (HAP) is one of the most serious complications in patients staying in intensive care units. This multicenter study of Czech patients with HAP aimed at assessing the clonality of bacterial pathogens causing the condition. Bacterial isolates were compared using pulsed-field gel electrophoresis. Included in this study were 330 patients hospitalized between May 1, 2013 and December 31, 2014 at departments of anesthesiology and intensive care medicine of four big hospitals in the Czech Republic. A total of 531 bacterial isolates were obtained, of which 267 were classified as etiological agents causing HAP. Similarity or identity was assessed in 231 bacterial isolates most frequently obtained from HAP patients. Over the study period, no significant clonal spread was noted. Most isolates were unique strains, and the included HAP cases may therefore be characterized as mostly endogenous. Yet there were differences in species and potential identical isolates between the participating centers. In three hospitals, Gram-negative bacteria (Enterobacteriaceae and Pseudomonas aeruginosa) prevailed as etiological agents, and Staphylococcus aureus was most prevalent in the fourth center. PMID:27170306

  1. Escherichia coli ST131, an Intriguing Clonal Group

    PubMed Central

    Bertrand, Xavier; Madec, Jean-Yves

    2014-01-01

    SUMMARY In 2008, a previously unknown Escherichia coli clonal group, sequence type 131 (ST131), was identified on three continents. Today, ST131 is the predominant E. coli lineage among extraintestinal pathogenic E. coli (ExPEC) isolates worldwide. Retrospective studies have suggested that it may originally have risen to prominence as early as 2003. Unlike other classical group B2 ExPEC isolates, ST131 isolates are commonly reported to produce extended-spectrum β-lactamases, such as CTX-M-15, and almost all are resistant to fluoroquinolones. Moreover, ST131 E. coli isolates are considered to be truly pathogenic, due to the spectrum of infections they cause in both community and hospital settings and the large number of virulence-associated genes they contain. ST131 isolates therefore seem to contradict the widely held view that high levels of antimicrobial resistance are necessarily associated with a fitness cost leading to a decrease in pathogenesis. Six years after the first description of E. coli ST131, this review outlines the principal traits of ST131 clonal group isolates, based on the growing body of published data, and highlights what is currently known and what we need to find out to provide public health authorities with better information to help combat ST131. PMID:24982321

  2. Divergent clonal evolution of castration resistant neuroendocrine prostate cancer

    PubMed Central

    Beltran, Himisha; Prandi, Davide; Mosquera, Juan Miguel; Benelli, Matteo; Puca, Loredana; Cyrta, Joanna; Marotz, Clarisse; Giannopoulou, Eugenia; Chakravarthi, Balabhadrapatruni V.S.K.; Varambally, Sooryanarayana; Tomlins, Scott A.; Nanus, David M.; Tagawa, Scott T.; Van Allen, Eliezer M.; Elemento, Olivier; Sboner, Andrea; Garraway, Levi A.; Rubin, Mark A.; Demichelis, Francesca

    2016-01-01

    An increasingly recognized resistance mechanism to androgen receptor (AR)-directed therapy in prostate cancer involves epithelial plasticity, wherein tumor cells demonstrate low to absent AR expression and often neuroendocrine features. The etiology and molecular basis for these “alternative” treatment-resistant cell states remain incompletely understood. Here, by analyzing whole exome sequencing data of metastatic biopsies from patients, we observed significant genomic overlap between castration resistant adenocarcinoma (CRPC-Adeno) and neuroendocrine histologies (CRPC-NE); analysis of serial progression samples points to a model most consistent with divergent clonal evolution. Genome-wide DNA methylation revealed marked epigenetic differences between CRPC-NE and CRPC-Adeno that also designated cases of CRPC-Adeno with clinical features of AR-independence as CRPC-NE, suggesting that epigenetic modifiers may play a role in the induction and/or maintenance of this treatment-resistant state. This study supports the emergence of an alternative, “AR-indifferent” cell state through divergent clonal evolution as a mechanism of treatment resistance in advanced prostate cancer. PMID:26855148

  3. Preventing clonal evolutionary processes in cancer: Insights from mathematical models

    PubMed Central

    Rodriguez-Brenes, Ignacio A.; Wodarz, Dominik

    2015-01-01

    Clonal evolutionary processes can drive pathogenesis in human diseases, with cancer being a prominent example. To prevent or treat cancer, mechanisms that can potentially interfere with clonal evolutionary processes need to be understood better. Mathematical modeling is an important research tool that plays an ever-increasing role in cancer research. This paper discusses how mathematical models can be useful to gain insights into mechanisms that can prevent disease initiation, help analyze treatment responses, and aid in the design of treatment strategies to combat the emergence of drug-resistant cells. The discussion will be done in the context of specific examples. Among defense mechanisms, we explore how replicative limits and cellular senescence induced by telomere shortening can influence the emergence and evolution of tumors. Among treatment approaches, we consider the targeted treatment of chronic lymphocytic leukemia (CLL) with tyrosine kinase inhibitors. We illustrate how basic evolutionary mathematical models have the potential to make patient-specific predictions about disease and treatment outcome, and argue that evolutionary models could become important clinical tools in the field of personalized medicine. PMID:26195751

  4. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer.

    PubMed

    Beltran, Himisha; Prandi, Davide; Mosquera, Juan Miguel; Benelli, Matteo; Puca, Loredana; Cyrta, Joanna; Marotz, Clarisse; Giannopoulou, Eugenia; Chakravarthi, Balabhadrapatruni V S K; Varambally, Sooryanarayana; Tomlins, Scott A; Nanus, David M; Tagawa, Scott T; Van Allen, Eliezer M; Elemento, Olivier; Sboner, Andrea; Garraway, Levi A; Rubin, Mark A; Demichelis, Francesca

    2016-03-01

    An increasingly recognized resistance mechanism to androgen receptor (AR)-directed therapy in prostate cancer involves epithelial plasticity, in which tumor cells demonstrate low to absent AR expression and often have neuroendocrine features. The etiology and molecular basis for this 'alternative' treatment-resistant cell state remain incompletely understood. Here, by analyzing whole-exome sequencing data of metastatic biopsies from patients, we observed substantial genomic overlap between castration-resistant tumors that were histologically characterized as prostate adenocarcinomas (CRPC-Adeno) and neuroendocrine prostate cancer (CRPC-NE); analysis of biopsy samples from the same individuals over time points to a model most consistent with divergent clonal evolution. Genome-wide DNA methylation analysis revealed marked epigenetic differences between CRPC-NE tumors and CRPC-Adeno, and also designated samples of CRPC-Adeno with clinical features of AR independence as CRPC-NE, suggesting that epigenetic modifiers may play a role in the induction and/or maintenance of this treatment-resistant state. This study supports the emergence of an alternative, 'AR-indifferent' cell state through divergent clonal evolution as a mechanism of treatment resistance in advanced prostate cancer. PMID:26855148

  5. Synchronous Endometrial and Ovarian Carcinomas: Evidence of Clonality.

    PubMed

    Anglesio, Michael S; Wang, Yi Kan; Maassen, Madlen; Horlings, Hugo M; Bashashati, Ali; Senz, Janine; Mackenzie, Robertson; Grewal, Diljot S; Li-Chang, Hector; Karnezis, Anthony N; Sheffield, Brandon S; McConechy, Melissa K; Kommoss, Friedrich; Taran, Florin A; Staebler, Annette; Shah, Sohrab P; Wallwiener, Diethelm; Brucker, Sara; Gilks, C Blake; Kommoss, Stefan; Huntsman, David G

    2016-06-01

    Many women with ovarian endometrioid carcinoma present with concurrent endometrial carcinoma. Organ-confined and low-grade synchronous endometrial and ovarian tumors (SEOs) clinically behave as independent primary tumors rather than a single advanced-stage carcinoma. We used 18 SEOs to investigate the ancestral relationship between the endometrial and ovarian components. Based on both targeted and exome sequencing, 17 of 18 patient cases of simultaneous cancer of the endometrium and ovary from our series showed evidence of a clonal relationship, ie, primary tumor and metastasis. Eleven patient cases fulfilled clinicopathological criteria that would lead to classification as independent endometrial and ovarian primary carcinomas, including being of FIGO stage T1a/1A, with organ-restricted growth and without surface involvement; 10 of 11 of these cases showed evidence of clonality. Our observations suggest that the disseminating cells amongst SEOs are restricted to physically accessible and microenvironment-compatible sites yet remain indolent, without the capacity for further dissemination. PMID:26832771

  6. Clonality and intracellular polyploidy in virus evolution and pathogenesis.

    PubMed

    Perales, Celia; Moreno, Elena; Domingo, Esteban

    2015-07-21

    In the present article we examine clonality in virus evolution. Most viruses retain an active recombination machinery as a potential means to initiate new levels of genetic exploration that go beyond those attainable solely by point mutations. However, despite abundant recombination that may be linked to molecular events essential for genome replication, herein we provide evidence that generation of recombinants with altered biological properties is not essential for the completion of the replication cycles of viruses, and that viral lineages (near-clades) can be defined. We distinguish mechanistically active but inconsequential recombination from evolutionarily relevant recombination, illustrated by episodes in the field and during experimental evolution. In the field, recombination has been at the origin of new viral pathogens, and has conferred fitness advantages to some viruses once the parental viruses have attained a sufficient degree of diversification by point mutations. In the laboratory, recombination mediated a salient genome segmentation of foot-and-mouth disease virus, an important animal pathogen whose genome in nature has always been characterized as unsegmented. We propose a model of continuous mutation and recombination, with punctuated, biologically relevant recombination events for the survival of viruses, both as disease agents and as promoters of cellular evolution. Thus, clonality is the standard evolutionary mode for viruses because recombination is largely inconsequential, since the decisive events for virus replication and survival are not dependent on the exchange of genetic material and formation of recombinant (mosaic) genomes. PMID:26195777

  7. Clonal Characteristics of Circulating B Lymphocyte Repertoire in Primary Biliary Cholangitis.

    PubMed

    Tan, Yan-Guo; Wang, Yu-Qi; Zhang, Ming; Han, Ying-Xin; Huang, Chun-Yang; Zhang, Hai-Ping; Li, Zhuo-Min; Wu, Xiao-Lei; Wang, Xiao-Feng; Dong, Yan; Zhu, Hong-Mei; Zhu, Shi-da; Li, Hong-Mei; Li, Ning; Yan, Hui-Ping; Gao, Zu-Hua

    2016-09-01

    Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by elevated serum anti-mitochondrial Ab and lymphocyte-mediated bile duct damage. This study was designed to reveal the clonal characteristics of B lymphocyte repertoire in patients with PBC to facilitate better understanding of its pathogenesis and better management of these patients. Using high-throughput sequencing of Ig genes, we analyzed the repertoire of circulating B lymphocytes in 43 patients with PBC, and 34 age- and gender-matched healthy controls. Compared with healthy controls, PBC patients showed 1) a gain of 14 new clones and a loss of 8 clones; 2) a significant clonal expansion and increased relative IgM abundance, which corresponded with the elevated serum IgM level; 3) a significant reduction of clonal diversity and somatic hypermutations in class-switched sequences, which suggested a general immunocompromised status; 4) the reduction of clonal diversity and enhancement of clonal expansion were more obvious at the cirrhotic stage; and 5) treatment with ursodeoxycholic acid could increase the clonal diversity and reduce clonal expansion of the IgM repertoire, with no obvious effect on the somatic hypermutation level. Our data suggest that PBC is a complex autoimmune disease process with evidence of B lymphocyte clonal gains and losses, Ag-dependent ogligoclonal expansion, and a generally compromised immune reserve. This new insight into the pathogenesis of PBC opens up the prospect of studying disease-relevant B cells to better diagnose and treat this devastating disease. PMID:27430717

  8. Virulence, sporulation, and elicitin production in three clonal lineages of Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora ramorum populations are clonal and consist of three lineages. Recent studies have shown that the clonal lineages may have varying degrees of aggressiveness on some host species, such as Quercus rubra. In this study, we examined virulence, sporulation and elicitin production of five P. ...

  9. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To gain a detailed understanding of how plant microbes evolve and adapt to hosts, pesticides, and other factors, knowledge of the population dynamics and evolutionary history of populations is crucial. Plant pathogen populations are often clonal or partially clonal which requires different analytica...

  10. Alternative end joining, clonal evolution, and escape from a telomere-driven crisis

    PubMed Central

    Hendrickson, Eric A; Baird, Duncan M

    2015-01-01

    Telomere dysfunction and fusion play key roles in driving genomic instability and clonal evolution in many tumor types. We have recently described a role for DNA ligase III (LIG3) in facilitating the escape of cells from crisis induced by telomere dysfunction. Our data indicate that LIG3-mediated telomere fusion is important in facilitating clonal evolution. PMID:27308409

  11. Standardizing the Nomenclature for Clonal Lineages of the Sudden Oak Death Pathogen, Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora ramorum, the causal agent of sudden oak death and ramorum blight, is known to exist as three distinct clonal lineages based on a range of molecular marker systems. However, in the recent literature there exists no consensus on naming of lineages. Here we name clonal lineages of P. ramor...

  12. CYTOTOXICITY OF CHEMICAL CARCINOGENS TOWARDS HUMAN BRONCHIAL EPITHELIAL CELLS EVALUATED IN A CLONAL ASSAY

    EPA Science Inventory

    Survival of human bronchial epithelial cells after administration of four chemical carcinogens was measured in a clonal assay. Human bronchial epithelial cells were obtained from outgrowths of explanted tissue pieces. Serum-free medium was used for both explant culture and clonal...

  13. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  14. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  15. SNP-based differentiation of Phytophthora infestans clonal lineages using locked nucleic acid probes and high resolution melt analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora infestans, the cause of the devastating late blight disease of potato and tomato, exhibits a clonal reproductive lifestyle in North America. Phenotypes such as fungicide sensitivity and host preference are conserved among individuals within clonal lineages, while substantial phenotypic ...

  16. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade.

    PubMed

    McGranahan, Nicholas; Furness, Andrew J S; Rosenthal, Rachel; Ramskov, Sofie; Lyngaa, Rikke; Saini, Sunil Kumar; Jamal-Hanjani, Mariam; Wilson, Gareth A; Birkbak, Nicolai J; Hiley, Crispin T; Watkins, Thomas B K; Shafi, Seema; Murugaesu, Nirupa; Mitter, Richard; Akarca, Ayse U; Linares, Joseph; Marafioti, Teresa; Henry, Jake Y; Van Allen, Eliezer M; Miao, Diana; Schilling, Bastian; Schadendorf, Dirk; Garraway, Levi A; Makarov, Vladimir; Rizvi, Naiyer A; Snyder, Alexandra; Hellmann, Matthew D; Merghoub, Taha; Wolchok, Jedd D; Shukla, Sachet A; Wu, Catherine J; Peggs, Karl S; Chan, Timothy A; Hadrup, Sine R; Quezada, Sergio A; Swanton, Charles

    2016-03-25

    As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8(+)tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non-small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy-induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens. PMID:26940869

  17. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade

    PubMed Central

    McGranahan, Nicholas; Furness, Andrew J. S.; Rosenthal, Rachel; Ramskov, Sofie; Lyngaa, Rikke; Saini, Sunil Kumar; Jamal-Hanjani, Mariam; Wilson, Gareth A.; Birkbak, Nicolai J.; Hiley, Crispin T.; Watkins, Thomas B. K.; Shafi, Seema; Murugaesu, Nirupa; Mitter, Richard; Akarca, Ayse U.; Linares, Joseph; Marafioti, Teresa; Henry, Jake Y.; Van Allen, Eliezer M.; Miao, Diana; Schilling, Bastian; Schadendorf, Dirk; Garraway, Levi A.; Makarov, Vladimir; Rizvi, Naiyer A.; Snyder, Alexandra; Hellmann, Matthew D.; Merghoub, Taha; Wolchok, Jedd D.; Shukla, Sachet A.; Wu, Catherine J.; Peggs, Karl S.; Chan, Timothy A.; Hadrup, Sine R.; Quezada, Sergio A.; Swanton, Charles

    2016-01-01

    As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8+ tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non–small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy–induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens. PMID:26940869

  18. Uncovering the Number and Clonal Dynamics of Mesp1 Progenitors during Heart Morphogenesis

    PubMed Central

    Chabab, Samira; Lescroart, Fabienne; Rulands, Steffen; Mathiah, Navrita; Simons, Benjamin D.; Blanpain, Cédric

    2015-01-01

    Summary The heart arises from distinct sources of cardiac progenitors that independently express Mesp1 during gastrulation. The precise number of Mesp1 progenitors that are specified during the early stage of gastrulation, and their clonal behavior during heart morphogenesis, is currently unknown. Here, we used clonal and mosaic tracing of Mesp1-expressing cells combined with quantitative biophysical analysis of the clonal data to define the number of cardiac progenitors and their mode of growth during heart development. Our data indicate that the myocardial layer of the heart derive from ∼250 Mesp1-expressing cardiac progenitors born during gastrulation. Despite arising at different time points and contributing to different heart regions, the temporally distinct cardiac progenitors present very similar clonal dynamics. These results provide insights into the number of cardiac progenitors and their mode of growth and open up avenues to decipher the clonal dynamics of progenitors in other organs and tissues. PMID:26725109

  19. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer.

    PubMed

    McPherson, Andrew; Roth, Andrew; Laks, Emma; Masud, Tehmina; Bashashati, Ali; Zhang, Allen W; Ha, Gavin; Biele, Justina; Yap, Damian; Wan, Adrian; Prentice, Leah M; Khattra, Jaswinder; Smith, Maia A; Nielsen, Cydney B; Mullaly, Sarah C; Kalloger, Steve; Karnezis, Anthony; Shumansky, Karey; Siu, Celia; Rosner, Jamie; Chan, Hector Li; Ho, Julie; Melnyk, Nataliya; Senz, Janine; Yang, Winnie; Moore, Richard; Mungall, Andrew J; Marra, Marco A; Bouchard-Côté, Alexandre; Gilks, C Blake; Huntsman, David G; McAlpine, Jessica N; Aparicio, Samuel; Shah, Sohrab P

    2016-07-01

    We performed phylogenetic analysis of high-grade serous ovarian cancers (68 samples from seven patients), identifying constituent clones and quantifying their relative abundances at multiple intraperitoneal sites. Through whole-genome and single-nucleus sequencing, we identified evolutionary features including mutation loss, convergence of the structural genome and temporal activation of mutational processes that patterned clonal progression. We then determined the precise clonal mixtures comprising each tumor sample. The majority of sites were clonally pure or composed of clones from a single phylogenetic clade. However, each patient contained at least one site composed of polyphyletic clones. Five patients exhibited monoclonal and unidirectional seeding from the ovary to intraperitoneal sites, and two patients demonstrated polyclonal spread and reseeding. Our findings indicate that at least two distinct modes of intraperitoneal spread operate in clonal dissemination and highlight the distribution of migratory potential over clonal populations comprising high-grade serous ovarian cancers. PMID:27182968

  20. Parallel simulation today

    NASA Technical Reports Server (NTRS)

    Nicol, David; Fujimoto, Richard

    1992-01-01

    This paper surveys topics that presently define the state of the art in parallel simulation. Included in the tutorial are discussions on new protocols, mathematical performance analysis, time parallelism, hardware support for parallel simulation, load balancing algorithms, and dynamic memory management for optimistic synchronization.

  1. Scaling of processes shaping the clonal dynamics and genetic mosaic of seagrasses through temporal genetic monitoring.

    PubMed

    Becheler, R; Benkara, E; Moalic, Y; Hily, C; Arnaud-Haond, S

    2014-02-01

    Theoretically, the dynamics of clonal and genetic diversities of clonal plant populations are strongly influenced by the competition among clones and rate of seedling recruitment, but little empirical assessment has been made of such dynamics through temporal genetic surveys. We aimed to quantify 3 years of evolution in the clonal and genetic composition of Zostera marina meadows, comparing parameters describing clonal architecture and genetic diversity at nine microsatellite markers. Variations in clonal structure revealed a decrease in the evenness of ramet distribution among genets. This illustrates the increasing dominance of some clonal lineages (multilocus lineages, MLLs) in populations. Despite the persistence of these MLLs over time, genetic differentiation was much stronger in time than in space, at the local scale. Contrastingly with the short-term evolution of clonal architecture, the patterns of genetic structure and genetic diversity sensu stricto (that is, heterozygosity and allelic richness) were stable in time. These results suggest the coexistence of (i) a fine grained (at the scale of a 20 × 30 m quadrat) stable core of persistent genets originating from an initial seedling recruitment and developing spatial dominance through clonal elongation; and (ii) a local (at the scale of the meadow) pool of transient genets subjected to annual turnover. This simultaneous occurrence of initial and repeated recruitment strategies highlights the different spatial scales at which distinct evolutionary drivers and mating systems (clonal competition, clonal growth, propagule dispersal and so on) operate to shape the dynamics of populations and the evolution of polymorphism in space and time. PMID:24022498

  2. Demographic consequences of greater clonal than sexual reproduction in Dicentra canadensis.

    PubMed

    Lin, Chia-Hua; Miriti, Maria N; Goodell, Karen

    2016-06-01

    Clonality is a widespread life history trait in flowering plants that may be essential for population persistence, especially in environments where sexual reproduction is unpredictable. Frequent clonal reproduction, however, could hinder sexual reproduction by spatially aggregating ramets that compete with seedlings and reduce inter-genet pollination. Nevertheless, the role of clonality in relation to variable sexual reproduction in population dynamics is often overlooked. We combined population matrix models and pollination experiments to compare the demographic contributions of clonal and sexual reproduction in three Dicentra canadensis populations, one in a well-forested landscape and two in isolated forest remnants. We constructed stage-based transition matrices from 3 years of census data to evaluate annual population growth rates, λ. We used loop analysis to evaluate the relative contribution of different reproductive pathways to λ. Despite strong temporal and spatial variation in seed set, populations generally showed stable growth rates. Although we detected some pollen limitation of seed set, manipulative pollination treatments did not affect population growth rates. Clonal reproduction contributed significantly more than sexual reproduction to population growth in the forest remnants. Only at the well-forested site did sexual reproduction contribute as much as clonal reproduction to population growth. Flowering plants were more likely to transition to a smaller size class with reduced reproductive potential in the following year than similarly sized nonflowering plants, suggesting energy trade-offs between sexual and clonal reproduction at the individual level. Seed production had negligible effects on growth and tuber production of individual plants. Our results demonstrate that clonal reproduction is vital for population persistence in a system where sexual reproduction is unpredictable. The bias toward clonality may be driven by low fitness returns

  3. Scaling of processes shaping the clonal dynamics and genetic mosaic of seagrasses through temporal genetic monitoring

    PubMed Central

    Becheler, R; Benkara, E; Moalic, Y; Hily, C; Arnaud-Haond, S

    2014-01-01

    Theoretically, the dynamics of clonal and genetic diversities of clonal plant populations are strongly influenced by the competition among clones and rate of seedling recruitment, but little empirical assessment has been made of such dynamics through temporal genetic surveys. We aimed to quantify 3 years of evolution in the clonal and genetic composition of Zostera marina meadows, comparing parameters describing clonal architecture and genetic diversity at nine microsatellite markers. Variations in clonal structure revealed a decrease in the evenness of ramet distribution among genets. This illustrates the increasing dominance of some clonal lineages (multilocus lineages, MLLs) in populations. Despite the persistence of these MLLs over time, genetic differentiation was much stronger in time than in space, at the local scale. Contrastingly with the short-term evolution of clonal architecture, the patterns of genetic structure and genetic diversity sensu stricto (that is, heterozygosity and allelic richness) were stable in time. These results suggest the coexistence of (i) a fine grained (at the scale of a 20 × 30 m quadrat) stable core of persistent genets originating from an initial seedling recruitment and developing spatial dominance through clonal elongation; and (ii) a local (at the scale of the meadow) pool of transient genets subjected to annual turnover. This simultaneous occurrence of initial and repeated recruitment strategies highlights the different spatial scales at which distinct evolutionary drivers and mating systems (clonal competition, clonal growth, propagule dispersal and so on) operate to shape the dynamics of populations and the evolution of polymorphism in space and time. PMID:24022498

  4. Eclipse Parallel Tools Platform

    SciTech Connect

    Watson, Gregory; DeBardeleben, Nathan; Rasmussen, Craig

    2005-02-18

    Designing and developing parallel programs is an inherently complex task. Developers must choose from the many parallel architectures and programming paradigms that are available, and face a plethora of tools that are required to execute, debug, and analyze parallel programs i these environments. Few, if any, of these tools provide any degree of integration, or indeed any commonality in their user interfaces at all. This further complicates the parallel developer's task, hampering software engineering practices, and ultimately reducing productivity. One consequence of this complexity is that best practice in parallel application development has not advanced to the same degree as more traditional programming methodologies. The result is that there is currently no open-source, industry-strength platform that provides a highly integrated environment specifically designed for parallel application development. Eclipse is a universal tool-hosting platform that is designed to providing a robust, full-featured, commercial-quality, industry platform for the development of highly integrated tools. It provides a wide range of core services for tool integration that allow tool producers to concentrate on their tool technology rather than on platform specific issues. The Eclipse Integrated Development Environment is an open-source project that is supported by over 70 organizations, including IBM, Intel and HP. The Eclipse Parallel Tools Platform (PTP) plug-in extends the Eclipse framwork by providing support for a rich set of parallel programming languages and paradigms, and a core infrastructure for the integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration, support for a small number of parallel architectures, and basis

  5. Effects of clonality on the genetic variability of rare, insular species: the case of Ruta microcarpa from the Canary Islands

    PubMed Central

    Meloni, M; Reid, A; Caujapé-Castells, J; Marrero, Á; Fernández-Palacios, J M; Mesa-Coelo, R A; Conti, E

    2013-01-01

    Many plant species combine sexual and clonal reproduction. Clonal propagation has ecological costs mainly related to inbreeding depression and pollen discounting; at the same time, species able to reproduce clonally have ecological and evolutionary advantages being able to persist when conditions are not favorable for sexual reproduction. The presence of clonality has profound consequences on the genetic structure of populations, especially when it represents the predominant reproductive strategy in a population. Theoretical studies suggest that high rate of clonal propagation should increase the effective number of alleles and heterozygosity in a population, while an opposite effect is expected on genetic differentiation among populations and on genotypic diversity. In this study, we ask how clonal propagation affects the genetic diversity of rare insular species, which are often characterized by low levels of genetic diversity, hence at risk of extinction. We used eight polymorphic microsatellite markers to study the genetic structure of the critically endangered insular endemic Ruta microcarpa. We found that clonality appears to positively affect the genetic diversity of R. microcarpa by increasing allelic diversity, polymorphism, and heterozygosity. Moreover, clonal propagation seems to be a more successful reproductive strategy in small, isolated population subjected to environmental stress. Our results suggest that clonal propagation may benefit rare species. However, the advantage of clonal growth may be only short-lived for prolonged clonal growth could ultimately lead to monoclonal populations. Some degree of sexual reproduction may be needed in a predominantly clonal species to ensure long-term viability. PMID:23789068

  6. Parallel Atomistic Simulations

    SciTech Connect

    HEFFELFINGER,GRANT S.

    2000-01-18

    Algorithms developed to enable the use of atomistic molecular simulation methods with parallel computers are reviewed. Methods appropriate for bonded as well as non-bonded (and charged) interactions are included. While strategies for obtaining parallel molecular simulations have been developed for the full variety of atomistic simulation methods, molecular dynamics and Monte Carlo have received the most attention. Three main types of parallel molecular dynamics simulations have been developed, the replicated data decomposition, the spatial decomposition, and the force decomposition. For Monte Carlo simulations, parallel algorithms have been developed which can be divided into two categories, those which require a modified Markov chain and those which do not. Parallel algorithms developed for other simulation methods such as Gibbs ensemble Monte Carlo, grand canonical molecular dynamics, and Monte Carlo methods for protein structure determination are also reviewed and issues such as how to measure parallel efficiency, especially in the case of parallel Monte Carlo algorithms with modified Markov chains are discussed.

  7. Environmental gradients structure Daphnia pulex × pulicaria clonal distribution.

    PubMed

    Pantel, J H; Juenger, T E; Leibold, M A

    2011-04-01

    The rarity of eukaryotic asexual reproduction is frequently attributed to the disadvantage of reduced genetic variation relative to sexual reproduction. However, parthenogenetic lineages that evolved repeatedly from sexual ancestors can generate regional pools of phenotypically diverse clones. Various theories to explain the maintenance of this genetic diversity as a result of environmental and spatial heterogeneity [frozen niche variation (FNV), general-purpose genotype] are conceptually similar to community ecological explanations for the maintenance of regional species diversity. We employed multivariate statistics common in community ecological research to study population genetic structure in the freshwater crustacean, Daphnia pulex × pulicaria. This parthenogenetic hybrid arose repeatedly from sexual ancestors. Daphnia pulex × pulicaria populations harboured substantial genetic variation among populations and the clonal composition at each pond corresponded to nutrient levels and invertebrate predator densities. The interclonal selection process described by the FNV hypothesis likely structured our D. pulex × pulicaria populations. PMID:21288271

  8. [Molecular Mechanism and Malignant Clonal Evolution of Multiple Myeloma].

    PubMed

    Ding, Fei; Zhu, Ping; Wu, Xue-Qiang

    2015-10-01

    Almost all patients with multiple myeloma (MM) have chromosomal translocation which can result in genetic variation. There are mainly five types of chromosomal translocations, involving the IGH gene translocation to 11q13 (CCND1), 4p16 (FGFR/MMSET), 16q23 (MAF), 6p21 (CCND3) and 20q11 (MAFB). It is possible that all IGH translocations converge on a common cell cycle signal pathway. Some MM develops through a multistep transformation from monoclonal gammopathy of undetermined significance (MGUS) to smoldering MM (SMM) and eventually to MM and plasma cell leukemia (PCL). Similarly to what Darwin proposed in the mid-19th century-random genetic variation and natural selection in the context of limited resources, MM clonal evolution follow branching and nonlinear mode. The failure of MM treatment is usually related with the minimal subclone which is hardly found at newlydiagnosed. PMID:26524068

  9. Clonal mixtures of Salix - a control measure for rust

    SciTech Connect

    McCracken, A.R.; Dawson, W.M.; Allen C.Y.

    1996-12-31

    Willow grown in short rotation coppice can be used as a renewable energy source. However, disease caused by Melampsora epitea var. epitea can be a severely limiting factor on its productivity. Populations of this pathogen in N. Ireland have been shown to be composed of at least fourteen pathotypes. Pathotype composition was influenced by time, age and clone. Fungicides were unacceptable to control disease, therefore the use of clonal mixtures was employed as an alternative strategy. When grown in mixtures the onset of disease was delayed, its build up slowed and final levels reduced. This was reflected in increased yield. Current work investigating the effect of planting density and increasing mixture diversity indicates that neither have a major impact on disease.

  10. Clonal Evolution of Stem Cells in the Gastrointestinal Tract.

    PubMed

    Fink, Juergen; Koo, Bon-Kyoung

    2016-01-01

    The field of gastrointestinal epithelial stem cells is a rapidly developing area of adult stem cell research. The discovery of Lgr5(+) intestinal stem cells has enabled us to study many hidden aspects of the biology of gastrointestinal adult stem cells. Marked by Lgr5 and Troy, several novel endodermal stem cells have been identified in the gastrointestinal tract. A precise working model of stem cell propagation, dynamics, and plasticity has been revealed by a genetic labeling method, termed lineage tracing. This chapter introduces the reidentification of crypt base columnar cells as Lgr5(+) stem cells in the intestine. Subsequently, it will discuss dynamic clonal evolution and cellular plasticity in the intestinal stem cell zone, as well as in stem cell zones of stomach glands. PMID:27573765

  11. A clonal selection algorithm model for daily rainfall data prediction.

    PubMed

    Noor Rodi, N S; Malek, M A; Ismail, Amelia Ritahani; Ting, Sie Chun; Tang, Chao-Wei

    2014-01-01

    This study applies the clonal selection algorithm (CSA) in an artificial immune system (AIS) as an alternative method to predicting future rainfall data. The stochastic and the artificial neural network techniques are commonly used in hydrology. However, in this study a novel technique for forecasting rainfall was established. Results from this study have proven that the theory of biological immune systems could be technically applied to time series data. Biological immune systems are nonlinear and chaotic in nature similar to the daily rainfall data. This study discovered that the proposed CSA was able to predict the daily rainfall data with an accuracy of 90% during the model training stage. In the testing stage, the results showed that an accuracy between the actual and the generated data was within the range of 75 to 92%. Thus, the CSA approach shows a new method in rainfall data prediction. PMID:25429452

  12. FTO influences adipogenesis by regulating mitotic clonal expansion

    PubMed Central

    Merkestein, Myrte; Laber, Samantha; McMurray, Fiona; Andrew, Daniel; Sachse, Gregor; Sanderson, Jeremy; Li, Mengdi; Usher, Samuel; Sellayah, Dyan; Ashcroft, Frances M.; Cox, Roger D.

    2015-01-01

    The fat mass and obesity-associated (FTO) gene plays a pivotal role in regulating body weight and fat mass; however, the underlying mechanisms are poorly understood. Here we show that primary adipocytes and mouse embryonic fibroblasts (MEFs) derived from FTO overexpression (FTO-4) mice exhibit increased potential for adipogenic differentiation, while MEFs derived from FTO knockout (FTO-KO) mice show reduced adipogenesis. As predicted from these findings, fat pads from FTO-4 mice fed a high-fat diet show more numerous adipocytes. FTO influences adipogenesis by regulating events early in adipogenesis, during the process of mitotic clonal expansion. The effect of FTO on adipogenesis appears to be mediated via enhanced expression of the pro-adipogenic short isoform of RUNX1T1, which enhanced adipocyte proliferation, and is increased in FTO-4 MEFs and reduced in FTO-KO MEFs. Our findings provide novel mechanistic insight into how upregulation of FTO leads to obesity. PMID:25881961

  13. Aging, Clonality, and Rejuvenation of Hematopoietic Stem Cells.

    PubMed

    Akunuru, Shailaja; Geiger, Hartmut

    2016-08-01

    Aging is associated with reduced organ function and increased disease incidence. Hematopoietic stem cell (HSC) aging driven by both cell intrinsic and extrinsic factors is linked to impaired HSC self-renewal and regeneration, aging-associated immune remodeling, and increased leukemia incidence. Compromised DNA damage responses and the increased production of reactive oxygen species (ROS) have been previously causatively attributed to HSC aging. However, recent paradigm-shifting concepts, such as global epigenetic and cytoskeletal polarity shifts, cellular senescence, as well as the clonal selection of HSCs upon aging, provide new insights into HSC aging mechanisms. Rejuvenating agents that can reprogram the epigenetic status of aged HSCs or senolytic drugs that selectively deplete senescent cells provide promising translational avenues for attenuating hematopoietic aging and, potentially, alleviating aging-associated immune remodeling and myeloid malignancies. PMID:27380967

  14. Comparing nonparametric Bayesian tree priors for clonal reconstruction of tumors.

    PubMed

    Deshwar, Amit G; Vembu, Shankar; Morris, Quaid

    2015-01-01

    Statistical machine learning methods, especially nonparametric Bayesian methods, have become increasingly popular to infer clonal population structure of tumors. Here we describe the treeCRP, an extension of the Chinese restaurant process (CRP), a popular construction used in nonparametric mixture models, to infer the phylogeny and genotype of major subclonal lineages represented in the population of cancer cells. We also propose new split-merge updates tailored to the subclonal reconstruction problem that improve the mixing time of Markov chains. In comparisons with the tree-structured stick breaking prior used in PhyloSub, we demonstrate superior mixing and running time using the treeCRP with our new split-merge procedures. We also show that given the same number of samples, TSSB and treeCRP have similar ability to recover the subclonal structure of a tumor… PMID:25592565

  15. Genotypic richness predicts phenotypic variation in an endangered clonal plant.

    PubMed

    Evans, Suzanna M; Sinclair, Elizabeth A; Poore, Alistair G B; Bain, Keryn F; Vergés, Adriana

    2016-01-01

    Declines in genetic diversity within a species can affect the stability and functioning of populations. The conservation of genetic diversity is thus a priority, especially for threatened or endangered species. The importance of genetic variation, however, is dependent on the degree to which it translates into phenotypic variation for traits that affect individual performance and ecological processes. This is especially important for predominantly clonal species, as no single clone is likely to maximise all aspects of performance. Here we show that intraspecific genotypic diversity as measured using microsatellites is a strong predictor of phenotypic variation in morphological traits and shoot productivity of the threatened, predominantly clonal seagrass Posidonia australis, on the east coast of Australia. Biomass and surface area variation was most strongly predicted by genotypic richness, while variation in leaf chemistry (phenolics and nitrogen) was unrelated to genotypic richness. Genotypic richness did not predict tissue loss to herbivores or epiphyte load, however we did find that increased herbivore damage was positively correlated with allelic richness. Although there was no clear relationship between higher primary productivity and genotypic richness, variation in shoot productivity within a meadow was significantly greater in more genotypically diverse meadows. The proportion of phenotypic variation explained by environmental conditions varied among different genotypes, and there was generally no variation in phenotypic traits among genotypes present in the same meadows. Our results show that genotypic richness as measured through the use of presumably neutral DNA markers does covary with phenotypic variation in functionally relevant traits such as leaf morphology and shoot productivity. The remarkably long lifespan of individual Posidonia plants suggests that plasticity within genotypes has played an important role in the longevity of the species

  16. Genetic Structure in Aquatic Bladderworts: Clonal Propagation and Hybrid Perpetuation

    PubMed Central

    KAMEYAMA, YOSHIAKI; OHARA, MASASHI

    2006-01-01

    • Background and Aims The free-floating aquatic bladderwort Utricularia australis f. australis is a sterile F1 hybrid of U. australis f. tenuicaulis and U. macrorhiza. However, co-existence of the hybrids and parental species has not been observed. In the present study, the following questions are addressed. (a) Does the capacity of the two parental species to reproduce sexually contribute to higher genotypic diversity than that of sterile F1 hybrid? (b) Are there any populations where two parental species and their hybrid co-exist? (c) If not, where and how do hybrids originate? • Methods The presence and absence of Utricularia was thoroughly investigated in two regions in Japan. An amplified fragment length polymorphism (AFLP) analysis was conducted for 397 individuals collected from all populations (33 in total) where Utricularia was observed. • Key Results The mean number of genotypes per population (G) and genotypic diversity (D) were extremely low irrespective of the capacity to reproduce sexually: G was 1·1–1·2 and D was 0·02–0·04. The hybrid rarely co-existed with either parental species, and the co-existence of two parental species was not observed. Several AFLP bands observed in the hybrid are absent in both parental genotypes, and parent and hybrid genotypes in the same region do not show greater genetic similarity than those in distant regions. • Conclusions The capacity to reproduce sexually in parental species plays no role in increasing genotypic diversity within populations. The observed genotypes of the hybrid could not have originated from hybridization between the extant parental genotypes within the study regions. Considering the distribution ranges of three investigated taxa, it is clear that the hybrid originated in the past, and hybrid populations have been maintained exclusively by clonal propagation, which may be ensured by both hybrid vigor and long-distance dispersal of clonal offspring. PMID:16926229

  17. Genotypic richness predicts phenotypic variation in an endangered clonal plant

    PubMed Central

    Sinclair, Elizabeth A.; Poore, Alistair G.B.; Bain, Keryn F.; Vergés, Adriana

    2016-01-01

    Declines in genetic diversity within a species can affect the stability and functioning of populations. The conservation of genetic diversity is thus a priority, especially for threatened or endangered species. The importance of genetic variation, however, is dependent on the degree to which it translates into phenotypic variation for traits that affect individual performance and ecological processes. This is especially important for predominantly clonal species, as no single clone is likely to maximise all aspects of performance. Here we show that intraspecific genotypic diversity as measured using microsatellites is a strong predictor of phenotypic variation in morphological traits and shoot productivity of the threatened, predominantly clonal seagrass Posidonia australis, on the east coast of Australia. Biomass and surface area variation was most strongly predicted by genotypic richness, while variation in leaf chemistry (phenolics and nitrogen) was unrelated to genotypic richness. Genotypic richness did not predict tissue loss to herbivores or epiphyte load, however we did find that increased herbivore damage was positively correlated with allelic richness. Although there was no clear relationship between higher primary productivity and genotypic richness, variation in shoot productivity within a meadow was significantly greater in more genotypically diverse meadows. The proportion of phenotypic variation explained by environmental conditions varied among different genotypes, and there was generally no variation in phenotypic traits among genotypes present in the same meadows. Our results show that genotypic richness as measured through the use of presumably neutral DNA markers does covary with phenotypic variation in functionally relevant traits such as leaf morphology and shoot productivity. The remarkably long lifespan of individual Posidonia plants suggests that plasticity within genotypes has played an important role in the longevity of the species

  18. African 2, a Clonal Complex of Mycobacterium bovis Epidemiologically Important in East Africa▿ †

    PubMed Central

    Berg, Stefan; Garcia-Pelayo, M. Carmen; Müller, Borna; Hailu, Elena; Asiimwe, Benon; Kremer, Kristin; Dale, James; Boniotti, M. Beatrice; Rodriguez, Sabrina; Hilty, Markus; Rigouts, Leen; Firdessa, Rebuma; Machado, Adelina; Mucavele, Custodia; Ngandolo, Bongo Nare Richard; Bruchfeld, Judith; Boschiroli, Laura; Müller, Annélle; Sahraoui, Naima; Pacciarini, Maria; Cadmus, Simeon; Joloba, Moses; van Soolingen, Dick; Michel, Anita L.; Djønne, Berit; Aranaz, Alicia; Zinsstag, Jakob; van Helden, Paul; Portaels, Françoise; Kazwala, Rudovick; Källenius, Gunilla; Hewinson, R. Glyn; Aseffa, Abraham; Gordon, Stephen V.; Smith, Noel H.

    2011-01-01

    We have identified a clonal complex of Mycobacterium bovis isolated at high frequency from cattle in Uganda, Burundi, Tanzania, and Ethiopia. We have named this related group of M. bovis strains the African 2 (Af2) clonal complex of M. bovis. Af2 strains are defined by a specific chromosomal deletion (RDAf2) and can be identified by the absence of spacers 3 to 7 in their spoligotype patterns. Deletion analysis of M. bovis isolates from Algeria, Mali, Chad, Nigeria, Cameroon, South Africa, and Mozambique did not identify any strains of the Af2 clonal complex, suggesting that this clonal complex of M. bovis is localized in East Africa. The specific spoligotype pattern of the Af2 clonal complex was rarely identified among isolates from outside Africa, and the few isolates that were found and tested were intact at the RDAf2 locus. We conclude that the Af2 clonal complex is localized to cattle in East Africa. We found that strains of the Af2 clonal complex of M. bovis have, in general, four or more copies of the insertion sequence IS6110, in contrast to the majority of M. bovis strains isolated from cattle, which are thought to carry only one or a few copies. PMID:21097608

  19. Clonal reproduction shapes evolution in the lizard malaria parasite Plasmodium floridense.

    PubMed

    Falk, Bryan G; Glor, Richard E; Perkins, Susan L

    2015-06-01

    The preponderant clonal evolution hypothesis (PCE) predicts that frequent clonal reproduction (sex between two clones) in many pathogens capable of sexual recombination results in strong linkage disequilibrium and the presence of discrete genetic subdivisions characterized by occasional gene flow. We expand on the PCE and predict that higher rates of clonal reproduction will result in: (1) morphologically cryptic species that exhibit (2) low within-species variation and (3) recent between-species divergence. We tested these predictions in the Caribbean lizard malaria parasite Plasmodium floridense using 63 single-infection samples in lizards collected from across the parasite's range, and sequenced them at two mitochondrial, one apicoplast, and five nuclear genes. We identified 11 provisionally cryptic species within P. floridense, each of which exhibits low intraspecific variation and recent divergence times between species (some diverged approximately 110,000 years ago). Our results are consistent with the hypothesis that clonal reproduction can profoundly affect diversification of species capable of sexual recombination, and suggest that clonal reproduction may have led to a large number of unrecognized pathogen species. The factors that may influence the rates of clonal reproduction among pathogens are unclear, and we discuss how prevalence and virulence may relate to clonal reproduction. PMID:25959003

  20. Strong but diverging clonality - climate relationships of different plant clades explain weak overall pattern across China

    PubMed Central

    Ye, Duo; Liu, Guofang; Song, Yao-Bin; Cornwell, William K.; Dong, Ming; Cornelissen, Johannes H. C.

    2016-01-01

    The clonal strategy should be relatively important in stressful environments (i.e. of low resource availability or harsh climate), e.g. in cold habitats. However, our understanding of the distribution pattern of clonality along environmental gradients is still far from universal. The weakness and inconsistency of overall clonality-climate relationships across taxa, as reported in previous studies, may be due to different phylogenetic lineages having fundamental differences in functional traits other than clonality determining their climate response. Thus, in this study we compared the clonality-climate relationships along a latitudinal gradient within and between different lineages at several taxonomic levels, including four major angiosperm lineages (Magnoliidae, Monocotyledoneae, Superrosidae and Superasteridae), orders and families. To this aim we used a species clonality dataset for 4015 vascular plant species in 545 terrestrial communities across China. Our results revealed clear predictive patterns of clonality proportion in relation to environmental gradients for the predominant representatives of each of the taxonomic levels above, but the relationships differed in shape and strength between the 4 major angiosperm lineages, between the 12 orders and between the 12 families. These different relationships canceled out one another when all lineages at a certain taxonomic level were pooled. Our findings highlight the importance of explicitly accounting for the functional or taxonomic scale for studying variation in plant ecological strategy across environmental gradients. PMID:27246203

  1. Strong but diverging clonality - climate relationships of different plant clades explain weak overall pattern across China

    NASA Astrophysics Data System (ADS)

    Ye, Duo; Liu, Guofang; Song, Yao-Bin; Cornwell, William K.; Dong, Ming; Cornelissen, Johannes H. C.

    2016-06-01

    The clonal strategy should be relatively important in stressful environments (i.e. of low resource availability or harsh climate), e.g. in cold habitats. However, our understanding of the distribution pattern of clonality along environmental gradients is still far from universal. The weakness and inconsistency of overall clonality-climate relationships across taxa, as reported in previous studies, may be due to different phylogenetic lineages having fundamental differences in functional traits other than clonality determining their climate response. Thus, in this study we compared the clonality-climate relationships along a latitudinal gradient within and between different lineages at several taxonomic levels, including four major angiosperm lineages (Magnoliidae, Monocotyledoneae, Superrosidae and Superasteridae), orders and families. To this aim we used a species clonality dataset for 4015 vascular plant species in 545 terrestrial communities across China. Our results revealed clear predictive patterns of clonality proportion in relation to environmental gradients for the predominant representatives of each of the taxonomic levels above, but the relationships differed in shape and strength between the 4 major angiosperm lineages, between the 12 orders and between the 12 families. These different relationships canceled out one another when all lineages at a certain taxonomic level were pooled. Our findings highlight the importance of explicitly accounting for the functional or taxonomic scale for studying variation in plant ecological strategy across environmental gradients.

  2. Clonally related uterine leiomyomas are common and display branched tumor evolution.

    PubMed

    Mehine, Miika; Heinonen, Hanna-Riikka; Sarvilinna, Nanna; Pitkänen, Esa; Mäkinen, Netta; Katainen, Riku; Tuupanen, Sari; Bützow, Ralf; Sjöberg, Jari; Aaltonen, Lauri A

    2015-08-01

    Uterine leiomyomas are extremely frequent benign smooth muscle tumors often presenting as multiple concurrent lesions and causing symptoms such as abnormal menstrual bleeding, abdominal pain and infertility. While most leiomyomas are believed to arise independently, a few studies have encountered separate lesions harboring identical genetic changes, suggesting a common clonal origin. To investigate the frequency of clonally related leiomyomas, genome-wide tools need to be utilized, and thus little is known about this phenomenon. Using MED12 sequencing and SNP arrays, we searched for clonally related uterine leiomyomas in a set of 103 tumors from 14 consecutive patients who entered hysterectomy owing to symptomatic lesions. Whole-genome sequencing was also utilized to study the genomic architecture of clonally related tumors. This revealed four patients to have two or more tumors that were clonally related, all of which lacked MED12 mutations. Furthermore, some tumors were composed of genetically distinct subclones, indicating a nonlinear, branched model of tumor evolution. DEPDC5 was discovered as a novel tumor suppressor gene playing a role in the progression of uterine leiomyomas. Perhaps counterintuitively—considering Knudson's two-hit hypothesis—a large shared deletion was followed by different truncating DEPDC5 mutations in four clonally related leiomyomas. This study provides insight into the intratumor heterogeneity of these tumors and suggests that a shared clonal origin is a common feature of leiomyomas that do not carry an MED12 mutation. These observations also offer one explanation to the common occurrence of multiple concurrent lesions. PMID:25964426

  3. Clonal diversity and estimation of relative clone age: application to agrobiodiversity of yam (Dioscorea rotundata)

    PubMed Central

    2013-01-01

    Background Clonal propagation is a particular reproductive system found in both the plant and animal kingdoms, from human parasites to clonally propagated crops. Clonal diversity provides information about plant and animal evolutionary history, i.e. how clones spread, or the age of a particular clone. In plants, this could provide valuable information about agrobiodiversity dynamics and more broadly about the evolutionary history of a particular crop. We studied the evolutionary history of yam, Dioscorea rotundata. In Africa, Yam is cultivated by tuber clonal propagation. Results We used 12 microsatellite markers to identify intra-clonal diversity in yam varieties. We then used this diversity to assess the relative ages of clones. Using simulations, we assessed how Approximate Bayesian Computation could use clonal diversity to estimate the age of a clone depending on the size of the sample, the number of independent samples and the number of markers. We then applied this approach to our particular dataset and showed that the relative ages of varieties could be estimated, and that each variety could be ranked by age. Conclusions We give a first estimation of clone age in an approximate Bayesian framework. However the precise estimation of clone age depends on the precision of the mutation rate. We provide useful information on agrobiodiversity dynamics and suggest recurrent creation of varietal diversity in a clonally propagated crop. PMID:24219837

  4. Strong but diverging clonality - climate relationships of different plant clades explain weak overall pattern across China.

    PubMed

    Ye, Duo; Liu, Guofang; Song, Yao-Bin; Cornwell, William K; Dong, Ming; Cornelissen, Johannes H C

    2016-01-01

    The clonal strategy should be relatively important in stressful environments (i.e. of low resource availability or harsh climate), e.g. in cold habitats. However, our understanding of the distribution pattern of clonality along environmental gradients is still far from universal. The weakness and inconsistency of overall clonality-climate relationships across taxa, as reported in previous studies, may be due to different phylogenetic lineages having fundamental differences in functional traits other than clonality determining their climate response. Thus, in this study we compared the clonality-climate relationships along a latitudinal gradient within and between different lineages at several taxonomic levels, including four major angiosperm lineages (Magnoliidae, Monocotyledoneae, Superrosidae and Superasteridae), orders and families. To this aim we used a species clonality dataset for 4015 vascular plant species in 545 terrestrial communities across China. Our results revealed clear predictive patterns of clonality proportion in relation to environmental gradients for the predominant representatives of each of the taxonomic levels above, but the relationships differed in shape and strength between the 4 major angiosperm lineages, between the 12 orders and between the 12 families. These different relationships canceled out one another when all lineages at a certain taxonomic level were pooled. Our findings highlight the importance of explicitly accounting for the functional or taxonomic scale for studying variation in plant ecological strategy across environmental gradients. PMID:27246203

  5. Clonal Plasticity of Aquatic Plant Species Submitted to Mechanical Stress: Escape versus Resistance Strategy

    PubMed Central

    Puijalon, Sara; Bouma, Tjeerd J.; Van Groenendael, Jan; Bornette, Gudrun

    2008-01-01

    Background and Aims The plastic alterations of clonal architecture are likely to have functional consequences, as they affect the spatial distribution of ramets over patchy environments. However, little is known about the effect of mechanical stresses on the clonal growth. The aim of the present study was to investigate the clonal plasticity induced by mechanical stress consisting of continuous water current encountered by aquatic plants. More particularly, the aim was to test the capacity of the plants to escape this stress through clonal plastic responses. Methods The transplantation of ramets of the same clone in two contrasting flow velocity conditions was carried out for two species (Potamogeton coloratus and Mentha aquatica) which have contrasting clonal growth forms. Relative allocation to clonal growth, to creeping stems in the clonal biomass, number and total length of creeping stems, spacer length and main creeping stem direction were measured. Key Results For P. coloratus, plants exposed to water current displayed increased total length of creeping stems, increased relative allocation to creeping stems within the clonal dry mass and increased spacer length. For M. aquatica, plants exposed to current displayed increased number and total length of creeping stems. Exposure to current induced for both species a significant increase of the proportion of creeping stems in the downstream direction to the detriment of creeping stems perpendicular to flow. Conclusions This study demonstrates that mechanical stress from current flow induced plastic variation in clonal traits for both species. The responses of P. coloratus could lead to an escape strategy, with low benefits with respect to sheltering and anchorage. The responses of M. aquatica that may result in a denser canopy and enhancement of anchorage efficiency could lead to a resistance strategy. PMID:18854376

  6. Parallel digital forensics infrastructure.

    SciTech Connect

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexico Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.

  7. Cytomegalovirus infection associated with clonal proliferation of T-cell large granular lymphocytes: causal or casual?

    PubMed

    Wong, K F; Yip, S F; So, C C; Lau, G T C; Yeung, Y M

    2003-04-01

    Clonal proliferation of T-cell large granular lymphocytes (LGL) is an indolent disorder characterized by splenomegaly, lymphocytosis and frequent manifestations of immune disturbances. The LGL are CD3(+) CD4(-) CD8(+) CD56(-). The clonality of the tumor cell population is often only demonstrable by T-cell receptor (TCR) gene rearrangement study because chromosomal abnormality is distinctly rare. We describe a case of T-cell LGL leukemia that presented initially as cytomegalovirus infection. The leukemic LGL are shown to be clonal by both TCR gene rearrangement and chromosomal studies. They persist after subsidence of the cytomegalovirus infection. PMID:12660039

  8. PCLIPS: Parallel CLIPS

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.; Bennett, Bonnie H.; Tello, Ivan

    1994-01-01

    A parallel version of CLIPS 5.1 has been developed to run on Intel Hypercubes. The user interface is the same as that for CLIPS with some added commands to allow for parallel calls. A complete version of CLIPS runs on each node of the hypercube. The system has been instrumented to display the time spent in the match, recognize, and act cycles on each node. Only rule-level parallelism is supported. Parallel commands enable the assertion and retraction of facts to/from remote nodes working memory. Parallel CLIPS was used to implement a knowledge-based command, control, communications, and intelligence (C(sup 3)I) system to demonstrate the fusion of high-level, disparate sources. We discuss the nature of the information fusion problem, our approach, and implementation. Parallel CLIPS has also be used to run several benchmark parallel knowledge bases such as one to set up a cafeteria. Results show from running Parallel CLIPS with parallel knowledge base partitions indicate that significant speed increases, including superlinear in some cases, are possible.

  9. Parallel MR Imaging

    PubMed Central

    Deshmane, Anagha; Gulani, Vikas; Griswold, Mark A.; Seiberlich, Nicole

    2015-01-01

    Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the under-sampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed. PMID:22696125

  10. Eclipse Parallel Tools Platform

    Energy Science and Technology Software Center (ESTSC)

    2005-02-18

    Designing and developing parallel programs is an inherently complex task. Developers must choose from the many parallel architectures and programming paradigms that are available, and face a plethora of tools that are required to execute, debug, and analyze parallel programs i these environments. Few, if any, of these tools provide any degree of integration, or indeed any commonality in their user interfaces at all. This further complicates the parallel developer's task, hampering software engineering practices,more » and ultimately reducing productivity. One consequence of this complexity is that best practice in parallel application development has not advanced to the same degree as more traditional programming methodologies. The result is that there is currently no open-source, industry-strength platform that provides a highly integrated environment specifically designed for parallel application development. Eclipse is a universal tool-hosting platform that is designed to providing a robust, full-featured, commercial-quality, industry platform for the development of highly integrated tools. It provides a wide range of core services for tool integration that allow tool producers to concentrate on their tool technology rather than on platform specific issues. The Eclipse Integrated Development Environment is an open-source project that is supported by over 70 organizations, including IBM, Intel and HP. The Eclipse Parallel Tools Platform (PTP) plug-in extends the Eclipse framwork by providing support for a rich set of parallel programming languages and paradigms, and a core infrastructure for the integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration, support for a small number of parallel architectures

  11. Parallel scheduling algorithms

    SciTech Connect

    Dekel, E.; Sahni, S.

    1983-01-01

    Parallel algorithms are given for scheduling problems such as scheduling to minimize the number of tardy jobs, job sequencing with deadlines, scheduling to minimize earliness and tardiness penalties, channel assignment, and minimizing the mean finish time. The shared memory model of parallel computers is used to obtain fast algorithms. 26 references.

  12. Clonal relationships among bloodstream isolates of Escherichia coli.

    PubMed Central

    Maslow, J N; Whittam, T S; Gilks, C F; Wilson, R A; Mulligan, M E; Adams, K S; Arbeit, R D

    1995-01-01

    The clonal relationships among 187 bloodstream isolates of Escherichia coli from 179 patients at Boston, Mass., Long Beach, Calif., and Nairobi, Kenya, were determined by multilocus enzyme electrophoresis (MLEE), analysis of polymorphisms associated with the ribosomal operon (ribotyping), and serotyping. MLEE based on 20 enzymes resolved 101 electrophoretic types (ETs), forming five clusters; ribotyping resolved 56 distinct patterns concordant with the analysis by MLEE. The isolates at each study site formed a genetically diverse group and demonstrated similar clonal structures, with the same small subset of lineages accounting for the majority of isolates at each site. Moreover, two ribotypes accounted for approximately 30% of the isolates at each study site. One cluster contained the majority (65%) of isolates and, by direct comparison of the ETs and ribotypes of individual isolates, was genetically indistinguishable from the largest cluster for each of two other collections of E. coli causing pyelonephritis and neonatal meningitis (R. K. Selander, T. K. Korhonen, V. Väisänen-Rhen, P. H. Williams, P. E. Pattison, and D. A. Caugent, Infect. Immun. 52:213-222, 1986; M. Arthur, C. E. Johnson, R. H. Rubin, R. D. Arbeit, C. Campanelli, C. Kim, S. Steinbach, M. Agarwal, R. Wilkinson, and R. Goldstein, Infect. Immun. 57:303-313, 1989), thus defining a virulent set of lineages. The isolates within these virulent lineages typically carried DNA homologous to the adhesin operon pap or sfa and the hemolysin operon hly and expressed O1, O2, O4, O6, O18, O25, or O75 antigens. DNA homologous to pap was distributed among isolates of each major cluster, whereas hly was restricted to isolates of two clusters, typically detected in pap-positive strains, and sfa was restricted to isolates of one cluster, typically detected in pap- and hly-positive strains. The occurrence of pap-positive isolates in the same geographically and genetically divergent lineages suggests that this

  13. Clonality in myeloproliferative disorders: Analysis by means of polymerase chain reaction

    SciTech Connect

    Gilliland, D.G.; Blanchard, K.L.; Levy, J.; Perrin, S.; Bunn, H.F. )

    1991-08-01

    The myeloproliferative syndromes are acquired disorders of hematopoiesis that provide insights into the transition from somatic cell mutation to neoplasia. The clonal origin of specific blood cells can be assessed in patients with X chromosome-linked polymorphisms, taking advantage of random inactivation of the X chromosome. The authors have adapted the PCR for determination of clonality on as few as 100 cells, including individual colonies grown in culture. Amplifying a polymorphic portion of the X chromosome-linked phosphoglycerate kinase (PGK) gene after selective digestion of the active X chromosome with a methylation-sensitive restriction enzyme gave results fully concordant with standard Southern blotting of DNA samples form normal (polyclonal) polymorphonuclear cells (PMN) as well as clonal PMN from patients with myelodysplastic syndrome and polycythemia vera (PCV). They have used this technique to demonstrate heterogeneity of lineage involvement in patients with PCV. The same clinical phenotype may arise from clonal proliferation of different hematopoietic progenitors.

  14. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality

    PubMed Central

    Kamvar, Zhian N.; Brooks, Jonah C.; Grünwald, Niklaus J.

    2015-01-01

    To gain a detailed understanding of how plant microbes evolve and adapt to hosts, pesticides, and other factors, knowledge of the population dynamics and evolutionary history of populations is crucial. Plant pathogen populations are often clonal or partially clonal which requires different analytical tools. With the advent of high throughput sequencing technologies, obtaining genome-wide population genetic data has become easier than ever before. We previously contributed the R package poppr specifically addressing issues with analysis of clonal populations. In this paper we provide several significant extensions to poppr with a focus on large, genome-wide SNP data. Specifically, we provide several new functionalities including the new function mlg.filter to define clone boundaries allowing for inspection and definition of what is a clonal lineage, minimum spanning networks with reticulation, a sliding-window analysis of the index of association, modular bootstrapping of any genetic distance, and analyses across any level of hierarchies. PMID:26113860

  15. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer

    PubMed Central

    Murtaza, Muhammed; Dawson, Sarah-Jane; Pogrebniak, Katherine; Rueda, Oscar M.; Provenzano, Elena; Grant, John; Chin, Suet-Feung; Tsui, Dana W. Y.; Marass, Francesco; Gale, Davina; Ali, H. Raza; Shah, Pankti; Contente-Cuomo, Tania; Farahani, Hossein; Shumansky, Karey; Kingsbury, Zoya; Humphray, Sean; Bentley, David; Shah, Sohrab P.; Wallis, Matthew; Rosenfeld, Nitzan; Caldas, Carlos

    2015-01-01

    Circulating tumour DNA analysis can be used to track tumour burden and analyse cancer genomes non-invasively but the extent to which it represents metastatic heterogeneity is unknown. Here we follow a patient with metastatic ER-positive and HER2-positive breast cancer receiving two lines of targeted therapy over 3 years. We characterize genomic architecture and infer clonal evolution in eight tumour biopsies and nine plasma samples collected over 1,193 days of clinical follow-up using exome and targeted amplicon sequencing. Mutation levels in the plasma samples reflect the clonal hierarchy inferred from sequencing of tumour biopsies. Serial changes in circulating levels of sub-clonal private mutations correlate with different treatment responses between metastatic sites. This comparison of biopsy and plasma samples in a single patient with metastatic breast cancer shows that circulating tumour DNA can allow real-time sampling of multifocal clonal evolution. PMID:26530965

  16. Epigenetic Memory as a Basis for Intelligent Behavior in Clonal Plants

    PubMed Central

    Latzel, Vít; Rendina González, Alejandra P.; Rosenthal, Jonathan

    2016-01-01

    Environmentally induced epigenetic change enables plants to remember past environmental interactions. If this memory capability is exploited to prepare plants for future challenges, it can provide a basis for highly sophisticated behavior, considered intelligent by some. Against the backdrop of an overview of plant intelligence, we hypothesize: (1) that the capability of plants to engage in such intelligent behavior increases with the additional level of complexity afforded by clonality, and; (2) that more faithful inheritance of epigenetic information in clonal plants, in conjunction with information exchange and coordination between connected ramets, is likely to enable especially advanced intelligent behavior in this group. We therefore further hypothesize that this behavior provides ecological and evolutionary advantages to clonal plants, possibly explaining, at least in part, their widespread success. Finally, we suggest avenues of inquiry to enable assessing intelligent behavior and the role of epigenetic memory in clonal species.

  17. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer.

    PubMed

    Murtaza, Muhammed; Dawson, Sarah-Jane; Pogrebniak, Katherine; Rueda, Oscar M; Provenzano, Elena; Grant, John; Chin, Suet-Feung; Tsui, Dana W Y; Marass, Francesco; Gale, Davina; Ali, H Raza; Shah, Pankti; Contente-Cuomo, Tania; Farahani, Hossein; Shumansky, Karey; Kingsbury, Zoya; Humphray, Sean; Bentley, David; Shah, Sohrab P; Wallis, Matthew; Rosenfeld, Nitzan; Caldas, Carlos

    2015-01-01

    Circulating tumour DNA analysis can be used to track tumour burden and analyse cancer genomes non-invasively but the extent to which it represents metastatic heterogeneity is unknown. Here we follow a patient with metastatic ER-positive and HER2-positive breast cancer receiving two lines of targeted therapy over 3 years. We characterize genomic architecture and infer clonal evolution in eight tumour biopsies and nine plasma samples collected over 1,193 days of clinical follow-up using exome and targeted amplicon sequencing. Mutation levels in the plasma samples reflect the clonal hierarchy inferred from sequencing of tumour biopsies. Serial changes in circulating levels of sub-clonal private mutations correlate with different treatment responses between metastatic sites. This comparison of biopsy and plasma samples in a single patient with metastatic breast cancer shows that circulating tumour DNA can allow real-time sampling of multifocal clonal evolution. PMID:26530965

  18. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality.

    PubMed

    Kamvar, Zhian N; Brooks, Jonah C; Grünwald, Niklaus J

    2015-01-01

    To gain a detailed understanding of how plant microbes evolve and adapt to hosts, pesticides, and other factors, knowledge of the population dynamics and evolutionary history of populations is crucial. Plant pathogen populations are often clonal or partially clonal which requires different analytical tools. With the advent of high throughput sequencing technologies, obtaining genome-wide population genetic data has become easier than ever before. We previously contributed the R package poppr specifically addressing issues with analysis of clonal populations. In this paper we provide several significant extensions to poppr with a focus on large, genome-wide SNP data. Specifically, we provide several new functionalities including the new function mlg.filter to define clone boundaries allowing for inspection and definition of what is a clonal lineage, minimum spanning networks with reticulation, a sliding-window analysis of the index of association, modular bootstrapping of any genetic distance, and analyses across any level of hierarchies. PMID:26113860

  19. Massively parallel mathematical sieves

    SciTech Connect

    Montry, G.R.

    1989-01-01

    The Sieve of Eratosthenes is a well-known algorithm for finding all prime numbers in a given subset of integers. A parallel version of the Sieve is described that produces computational speedups over 800 on a hypercube with 1,024 processing elements for problems of fixed size. Computational speedups as high as 980 are achieved when the problem size per processor is fixed. The method of parallelization generalizes to other sieves and will be efficient on any ensemble architecture. We investigate two highly parallel sieves using scattered decomposition and compare their performance on a hypercube multiprocessor. A comparison of different parallelization techniques for the sieve illustrates the trade-offs necessary in the design and implementation of massively parallel algorithms for large ensemble computers.

  20. Parallel computing works

    SciTech Connect

    Not Available

    1991-10-23

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of many computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.

  1. 'Clonal pluralization of the self': a new form of delusional misidentification syndrome.

    PubMed

    Vörös, Viktor; Tényi, Tamás; Simon, Mária; Trixler, Mátyás

    2003-01-01

    The authors present a patient with paranoid schizophrenia, who has the delusion that he exists in plural numbers. The patient declares these doubles to be both psychologically and physically completely identical to him, and he believes 'them' to be in fact women. In connection with the case, the authors discuss the phenomena of reduplicative paramnesia and clonal pluralization, and they suggest introducing the psychopathological term 'clonal pluralization of the self' for the reported phenomenon. PMID:12679592

  2. Differential Influence of Clonal Integration on Morphological and Growth Responses to Light in Two Invasive Herbs

    PubMed Central

    Xu, Cheng-Yuan; Schooler, Shon S.; Van Klinken, Rieks D.

    2012-01-01

    Background and aims In contrast to seeds, high sensitivity of vegetative fragments to unfavourable environments may limit the expansion of clonal invasive plants. However, clonal integration promotes the establishment of propagules in less suitable habitats and may facilitate the expansion of clonal invaders into intact native communities. Here, we examine the influence of clonal integration on the morphology and growth of ramets in two invasive plants, Alternanthera philoxeroides and Phyla canescens, under varying light conditions. Methods In a greenhouse experiment, branches, connected ramets and severed ramets of the same mother plant were exposed under full sun and 85% shade and their morphological and growth responses were assessed. Key results The influence of clonal integration on the light reaction norm (connection×light interaction) of daughter ramets was species-specific. For A. philoxeroides, clonal integration evened out the light response (total biomass, leaf mass per area, and stem number, diameter and length) displayed in severed ramets, but these connection×light interactions were largely absent for P. canescens. Nevertheless, for both species, clonal integration overwhelmed light effect in promoting the growth of juvenile ramets during early development. Also, vertical growth, as an apparent shade acclimation response, was more prevalent in severed ramets than in connected ramets. Finally, unrooted branches displayed smaller organ size and slower growth than connected ramets, but the pattern of light reaction was similar, suggesting mother plants invest in daughter ramets prior to their own branches. Conclusions Clonal integration modifies light reaction norms of morphological and growth traits in a species-specific manner for A. philoxeroides and P. canescens, but it improves the establishment of juvenile ramets of both species in light-limiting environments by promoting their growth during early development. This factor may be partially

  3. Longevity of clonal plants: why it matters and how to measure it

    PubMed Central

    de Witte, Lucienne C.; Stöcklin, Jürg

    2010-01-01

    Background Species' life-history and population dynamics are strongly shaped by the longevity of individuals, but life span is one of the least accessible demographic traits, particularly in clonal plants. Continuous vegetative reproduction of genets enables persistence despite low or no sexual reproduction, affecting genet turnover rates and population stability. Therefore, the longevity of clonal plants is of considerable biological interest, but remains relatively poorly known. Scope Here, we critically review the present knowledge on the longevity of clonal plants and discuss its importance for population persistence. Direct life-span measurements such as growth-ring analysis in woody plants are relatively easy to take, although, for many clonal plants, these methods are not adequate due to the variable growth pattern of ramets and difficult genet identification. Recently, indirect methods have been introduced in which genet size and annual shoot increments are used to estimate genet age. These methods, often based on molecular techniques, allow the investigation of genet size and age structure of whole populations, a crucial issue for understanding their viability and persistence. However, indirect estimates of clonal longevity are impeded because the process of ageing in clonal plants is still poorly understood and because their size and age are not always well correlated. Alternative estimators for genet life span such as somatic mutations have recently been suggested. Conclusions Empirical knowledge on the longevity of clonal species has increased considerably in the last few years. Maximum age estimates are an indicator of population persistence, but are not sufficient to evaluate turnover rates and the ability of long-lived clonal plants to enhance community stability and ecosystem resilience. In order to understand the dynamics of populations it will be necessary to measure genet size and age structure, not only life spans of single individuals, and to

  4. PyClone: Statistical inference of clonal population structure in cancer

    PubMed Central

    Roth, Andrew; Khattra, Jaswinder; Yap, Damian; Wan, Adrian; Laks, Emma; Biele, Justina; Ha, Gavin; Aparicio, Samuel; Bouchard-Côté, Alexandre; Shah, Sohrab P.

    2016-01-01

    We introduce a novel statistical method, PyClone, for inference of clonal population structures in cancers. PyClone is a Bayesian clustering method for grouping sets of deeply sequenced somatic mutations into putative clonal clusters while estimating their cellular prevalences and accounting for allelic imbalances introduced by segmental copy number changes and normal cell contamination. Single cell sequencing validation demonstrates that PyClone infers accurate clustering of mutations that co-occur in individual cells. PMID:24633410

  5. Massive parallel IGHV gene sequencing reveals a germinal center pathway in origins of human multiple myeloma

    PubMed Central

    Bryant, Dean; Seckinger, Anja; Hose, Dirk; Zojer, Niklas; Sahota, Surinder S.

    2015-01-01

    Human multiple myeloma (MM) is characterized by accumulation of malignant terminally differentiated plasma cells (PCs) in the bone marrow (BM), raising the question when during maturation neoplastic transformation begins. Immunoglobulin IGHV genes carry imprints of clonal tumor history, delineating somatic hypermutation (SHM) events that generally occur in the germinal center (GC). Here, we examine MM-derived IGHV genes using massive parallel deep sequencing, comparing them with profiles in normal BM PCs. In 4/4 presentation IgG MM, monoclonal tumor-derived IGHV sequences revealed significant evidence for intraclonal variation (ICV) in mutation patterns. IGHV sequences of 2/2 normal PC IgG populations revealed dominant oligoclonal expansions, each expansion also displaying mutational ICV. Clonal expansions in MM and in normal BM PCs reveal common IGHV features. In such MM, the data fit a model of tumor origins in which neoplastic transformation is initiated in a GC B-cell committed to terminal differentiation but still targeted by on-going SHM. Strikingly, the data parallel IGHV clonal sequences in some monoclonal gammopathy of undetermined significance (MGUS) known to display on-going SHM imprints. Since MGUS generally precedes MM, these data suggest origins of MGUS and MM with IGHV gene mutational ICV from the same GC B-cell, arising via a distinctive pathway. PMID:25929340

  6. [Fitness analysis of seed- and vegetative reproduction of clonal tree Symplocos laurina].

    PubMed

    Zhang, Yunchun; Du, Xiaojun; Zhang, Qiaoying; Gao, Xianming; Su, Zhixian

    2005-09-01

    There are two ways in Symplocos laurina propagation, clonal and sexual reproduction. The study showed that under different habitat conditions, Symplocos laurina could adopt different ways to propagate and occupy space. In conditions with abundant water and nutrient resources, such as in evergreen broad-leaved forests or bamboo forests, the survival rate and space-occupying ability of both ramets and sexual seedlings were relatively high, with clonal ramets took advantage in terms of number and space, suggesting that clonal propagation was the dominant way in such environments. Oppositely, in habitats lack of sufficient nutrition, the survival rate and space-occupying ability of seedlings were low, and grown-up plantlets would preempt in number and space occupation. Bottleneck in sexual propagation appeared in the stage from seed to seedling, while clonal propagation appeared during the period from seedling to ramet. The way of Symplocos laurina invasion was to settle a plantlet, and then occupied the space rapidly by clonal growth, with clonal seedlings dominated in initial stage and lost the advantage after 15 ages. PMID:16355784

  7. B-cell clonality and infection with Helicobacter pylori: implications for development of gastric lymphoma.

    PubMed Central

    Sorrentino, D; Ferraccioli, G F; DeVita, S; Avellini, C; Beltrami, C A; Labombarda, A; Bernardis, V; De Biase, F; Trevisi, A; Pivetta, B; Boiocchi, M; Bartoli, E

    1996-01-01

    BACKGROUND: Although Helicobacter pylori has been implicated in the pathogenesis of gastric mucosa associated lymphoid tissue (MALT) and MALT lymphoma, it is not known how it may trigger these lesions and whether there is an identifiable pre-neoplastic stage. AIMS: To investigate the relation between MALT, H pylori infection, and B-cell clonality (a potential marker of pre-neoplastic lesions). PATIENTS: 141 subjects with simple dyspepsia. METHODS: Gastric biopsy specimens from all patients were examined for MALT and H pylori. Of these, 25 consecutive MALT positive specimens were scored for features of MALT lymphoma and VDJ clonality studied by polymerase chain reaction. RESULTS: Overall, prevalence was 62% for H pylori and 46% for MALT. VDJ clonality was frequent in the sub-group studied (nine of 25), mostly associated with lymphoid follicles (eight of nine or 89%), and with a high scoring for MALT lymphoma. VDJ clonality was equally frequent in patients with and without H pylori (seven of 20 and two of five or 35% and 40% respectively). CONCLUSIONS: B-cell clonality is unexpectedly common in subjects with simple dyspepsia and MALT raising clinical management questions. These findings also suggest that the cascade MALT formation--B-cell clonality--MALT lymphoma may not be uniquely associated with H pylori infection. PMID:8984020

  8. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants

    PubMed Central

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [15N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes. PMID:26904051

  9. Chromosome aberrations of clonal origin are present in astronauts' blood lymphocytes

    NASA Technical Reports Server (NTRS)

    George, K.; Durante, M.; Willingham, V.; Cucinotta, F. A.

    2004-01-01

    Radiation-induced chromosome translocations remain in peripheral blood cells over many years, and can potentially be used to measure retrospective doses or prolonged low-dose rate exposures. However, several recent studies have indicated that some individuals possess clones of cells with balanced chromosome abnormalities, which can result in an overestimation of damage and, therefore, influence the accuracy of dose calculations. We carefully examined the patterns of chromosome damage found in the blood lymphocytes of twelve astronauts, and also applied statistical methods to screen for the presence of potential clones. Cells with clonal aberrations were identified in three of the twelve individuals. These clonal cells were present in samples collected both before and after space flight, and yields are higher than previously reported for healthy individuals in this age range (40-52 years of age). The frequency of clonal damage appears to be even greater in chromosomes prematurely condensed in interphase, when compared with equivalent analysis in metaphase cells. The individuals with clonal aberrations were followed-up over several months and the yields of all clones decreased during this period. Since clonal aberrations may be associated with increased risk of tumorigenesis, it is important to accurately identify cells containing clonal rearrangements for risk assessment as well as biodosimetry. Copyright 2003 S. Karger AG, Basel.

  10. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes

    PubMed Central

    Bejar, Rafael; Jaiswal, Siddhartha; Lindsley, R. Coleman; Sekeres, Mikkael A.; Hasserjian, Robert P.; Ebert, Benjamin L.

    2015-01-01

    Recent genetic analyses of large populations have revealed that somatic mutations in hematopoietic cells leading to clonal expansion are commonly acquired during human aging. Clonally restricted hematopoiesis is associated with an increased risk of subsequent diagnosis of myeloid or lymphoid neoplasia and increased all-cause mortality. Although myelodysplastic syndromes (MDS) are defined by cytopenias, dysplastic morphology of blood and marrow cells, and clonal hematopoiesis, most individuals who acquire clonal hematopoiesis during aging will never develop MDS. Therefore, acquisition of somatic mutations that drive clonal expansion in the absence of cytopenias and dysplastic hematopoiesis can be considered clonal hematopoiesis of indeterminate potential (CHIP), analogous to monoclonal gammopathy of undetermined significance and monoclonal B-cell lymphocytosis, which are precursor states for hematologic neoplasms but are usually benign and do not progress. Because mutations are frequently observed in healthy older persons, detection of an MDS-associated somatic mutation in a cytopenic patient without other evidence of MDS may cause diagnostic uncertainty. Here we discuss the nature and prevalence of CHIP, distinction of this state from MDS, and current areas of uncertainty regarding diagnostic criteria for myeloid malignancies. PMID:25931582

  11. Clonal competition with alternating dominance in multiple myeloma

    PubMed Central

    Keats, Jonathan J.; Chesi, Marta; Egan, Jan B.; Garbitt, Victoria M.; Palmer, Stephen E.; Braggio, Esteban; Van Wier, Scott; Blackburn, Patrick R.; Baker, Angela S.; Dispenzieri, Angela; Kumar, Shaji; Rajkumar, S. Vincent; Carpten, John D.; Barrett, Michael; Fonseca, Rafael; Stewart, A. Keith

    2012-01-01

    Emerging evidence indicates that tumors can follow several evolutionary paths over a patient's disease course. With the use of serial genomic analysis of samples collected at different points during the disease course of 28 patients with multiple myeloma, we found that the genomes of standard-risk patients show few changes over time, whereas those of cytogenetically high-risk patients show significantly more changes over time. The results indicate the existence of 3 temporal tumor types, which can either be genetically stable, linearly evolving, or heterogeneous clonal mixtures with shifting predominant clones. A detailed analysis of one high-risk patient sampled at 7 time points over the entire disease course identified 2 competing subclones that alternate in a back and forth manner for dominance with therapy until one clone underwent a dramatic linear evolution. With the use of the Vk*MYC genetically engineered mouse model of myeloma we modeled this competition between subclones for predominance occurring spontaneously and with therapeutic selection. PMID:22498740

  12. Adapting populations in space: clonal interference and genetic diversity

    NASA Astrophysics Data System (ADS)

    Weissman, Daniel; Barton, Nick

    Most species inhabit ranges much larger than the scales over which individuals interact. How does this spatial structure interact with adaptive evolution? We consider a simple model of a spatially-extended, adapting population and show that, while clonal interference severely limits the adaptation of purely asexual populations, even rare recombination is enough to allow adaptation at rates approaching those of well-mixed populations. We also find that the genetic hitchhiking produced by the adaptive alleles sweeping through the population has strange effects on the patterns of genetic diversity. In large spatial ranges, even low rates of adaptation cause all individuals in the population to rapidly trace their ancestry back to individuals living in a small region in the center of the range. The probability of fixation of an allele is thus strongly dependent on the allele's spatial location, with alleles from the center favored. Surprisingly, these effects are seen genome-wide (instead of being localized to the regions of the genome undergoing the sweeps). The spatial concentration of ancestry produces a power-law dependence of relatedness on distance, so that even individuals sampled far apart are likely to be fairly closely related, masking the underlying spatial structure.

  13. Is cancer really a 'local' cellular clonal disease?

    PubMed

    Bronchud, M H

    2002-11-01

    Cancer is not simply the result of specific genetic alterations in key regulatory genes, but rather a complex multistep process involving selection of a clonal population of cells. To accumulate three, or often as many as seven, specific mutations in a single cell without incurring a significant number of additional mutations that might lead to cell lethality requires a large number of target cells, some mutagenic activity acting on those target cells for a variable period of time, and efficient selection strategies, which may be to some extent tissue-specific. A number of 'protective' intracellular regulatory circuits might be present in proliferating cells deliberately to protect against carcinogenesis. If it does require some seven sequential carcinogenic 'genetic hits' in a single cellular clone for a malignant tumor to develop, it is mathematically more likely to occur in a tissue with a high background of genetic alterations in neighboring cellular clones, than in a tissue with a low background of such alterations, or with no detectable carcinogenic mutations at all. In this context, the old 'field cancerization' theory by Slaughter and the more recent 'multistep carcinogenesis' model by Fearon and Vogelstein can come together in a single model: 'multistep field cancerization'. This simple conclusion, and our ability to measure 'background carcinogenesis' in different parts of the body, might allow early detection of cancer risk, and eventually help us to develop suitable therapeutic strategies to delay or suppress the carcinogenic process. Molecular technologies are just beginning to be sufficiently sensitive to start testing the hypothesis. PMID:12376079

  14. Detectable clonal mosaicism and its relationship to aging and cancer

    PubMed Central

    Jacobs, Kevin B; Yeager, Meredith; Zhou, Weiyin; Wacholder, Sholom; Wang, Zhaoming; Rodriguez-Santiago, Benjamin; Hutchinson, Amy; Deng, Xiang; Liu, Chenwei; Horner, Marie-Josephe; Cullen, Michael; Epstein, Caroline G; Burdett, Laurie; Dean, Michael C; Chatterjee, Nilanjan; Sampson, Joshua; Chung, Charles C; Kovaks, Joseph; Gapstur, Susan M; Stevens, Victoria L; Teras, Lauren T; Gaudet, Mia M; Albanes, Demetrius; Weinstein, Stephanie J; Virtamo, Jarmo; Taylor, Philip R; Freedman, Neal D; Abnet, Christian C; Goldstein, Alisa M; Hu, Nan; Yu, Kai; Yuan, Jian-Min; Liao, Linda; Ding, Ti; Qiao, You-Lin; Gao, Yu-Tang; Koh, Woon-Puay; Xiang, Yong-Bing; Tang, Ze-Zhong; Fan, Jin-Hu; Aldrich, Melinda C; Amos, Christopher; Blot, William J; Bock, Cathryn H; Gillanders, Elizabeth M; Harris, Curtis C; Haiman, Christopher A; Henderson, Brian E; Kolonel, Laurence N; Le Marchand, Loic; McNeill, Lorna H; Rybicki, Benjamin A; Schwartz, Ann G; Signorello, Lisa B; Spitz, Margaret R; Wiencke, John K; Wrensch, Margaret; Wu, Xifeng; Zanetti, Krista A; Ziegler, Regina G; Figueroa, Jonine D; Garcia-Closas, Montserrat; Malats, Nuria; Marenne, Gaelle; Prokunina-Olsson, Ludmila; Baris, Dalsu; Schwenn, Molly; Johnson, Alison; Landi, Maria Teresa; Goldin, Lynn; Consonni, Dario; Bertazzi, Pier Alberto; Rotunno, Melissa; Rajaraman, Preetha; Andersson, Ulrika; Freeman, Laura E Beane; Berg, Christine D; Buring, Julie E; Butler, Mary A; Carreon, Tania; Feychting, Maria; Ahlbom, Anders; Gaziano, J Michael; Giles, Graham G; Hallmans, Goran; Hankinson, Susan E; Hartge, Patricia; Henriksson, Roger; Inskip, Peter D; Johansen, Christoffer; Landgren, Annelie; McKean-Cowdin, Roberta; Michaud, Dominique S; Melin, Beatrice S; Peters, Ulrike; Ruder, Avima M; Sesso, Howard D; Severi, Gianluca; Shu, Xiao-Ou; Visvanathan, Kala; White, Emily; Wolk, Alicja; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Silverman, Debra T; Kogevinas, Manolis; Gonzalez, Juan R; Villa, Olaya; Li, Donghui; Duell, Eric J; Risch, Harvey A; Olson, Sara H; Kooperberg, Charles; Wolpin, Brian M; Jiao, Li; Hassan, Manal; Wheeler, William; Arslan, Alan A; Bas Bueno-de-Mesquita, H; Fuchs, Charles S; Gallinger, Steven; Gross, Myron D; Holly, Elizabeth A; Klein, Alison P; LaCroix, Andrea; Mandelson, Margaret T; Petersen, Gloria; Boutron-Ruault, Marie-Christine; Bracci, Paige M; Canzian, Federico; Chang, Kenneth; Cotterchio, Michelle; Giovannucci, Edward L; Goggins, Michael; Bolton, Judith A Hoffman; Jenab, Mazda; Khaw, Kay-Tee; Krogh, Vittorio; Kurtz, Robert C; McWilliams, Robert R; Mendelsohn, Julie B; Rabe, Kari G; Riboli, Elio; Tjønneland, Anne; Tobias, Geoffrey S; Trichopoulos, Dimitrios; Elena, Joanne W; Yu, Herbert; Amundadottir, Laufey; Stolzenberg-Solomon, Rachael Z; Kraft, Peter; Schumacher, Fredrick; Stram, Daniel; Savage, Sharon A; Mirabello, Lisa; Andrulis, Irene L; Wunder, Jay S; García, Ana Patiño; Sierrasesúmaga, Luis; Barkauskas, Donald A; Gorlick, Richard G; Purdue, Mark; Chow, Wong-Ho; Moore, Lee E; Schwartz, Kendra L; Davis, Faith G; Hsing, Ann W; Berndt, Sonja I; Black, Amanda; Wentzensen, Nicolas; Brinton, Louise A; Lissowska, Jolanta; Peplonska, Beata; McGlynn, Katherine A; Cook, Michael B; Graubard, Barry I; Kratz, Christian P; Greene, Mark H; Erickson, Ralph L; Hunter, David J; Thomas, Gilles; Hoover, Robert N; Real, Francisco X; Fraumeni, Joseph F; Caporaso, Neil E; Tucker, Margaret; Rothman, Nathaniel; Pérez-Jurado, Luis A; Chanock, Stephen J

    2012-01-01

    In an analysis of 31,717 cancer cases and 26,136 cancer-free controls drawn from 13 genome-wide association studies (GWAS), we observed large chromosomal abnormalities in a subset of clones from DNA obtained from blood or buccal samples. Mosaic chromosomal abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of size >2 Mb were observed in autosomes of 517 individuals (0.89%) with abnormal cell proportions between 7% and 95%. In cancer-free individuals, the frequency increased with age; 0.23% under 50 and 1.91% between 75 and 79 (p=4.8×10−8). Mosaic abnormalities were more frequent in individuals with solid-tumors (0.97% versus 0.74% in cancer-free individuals, OR=1.25, p=0.016), with a stronger association for cases who had DNA collected prior to diagnosis or treatment (OR=1.45, p=0.0005). Detectable clonal mosaicism was common in individuals for whom DNA was collected at least one year prior to diagnosis of leukemia compared to cancer-free individuals (OR=35.4, p=3.8×10−11). These findings underscore the importance of the role and time-dependent nature of somatic events in the etiology of cancer and other late-onset diseases. PMID:22561519

  15. Timing of induced resistance in a clonal plant network.

    PubMed

    Gómez, Sara; van Dijk, William; Stuefer, Josef F

    2010-05-01

    After local herbivory, plants can activate defense traits both at the damaged site and in undamaged plant parts such as in connected ramets of clonal plants. Since defense induction has costs, a mismatch in time and space between defense activation and herbivore feeding might result in negative consequences for plant fitness. A short time lag between attack and defense activation is important to ensure efficient protection of the plant. Additionally, the duration of induced defense production once the attack has stopped is also relevant in assessing the cost-benefit balance of inducible defenses, which will depend on the absence or presence of subsequent attacks. In this study we quantified the timing of induced responses in ramet networks of the stoloniferous herb Trifolium repens after local damage by Mamestra brassicae larvae. We studied the activation time of systemic defense induction in undamaged ramets and the decay time of the response after local attack. Undamaged ramets became defense-induced 38-51 h after the initial attack. Defense induction was measured as a reduction in leaf palatability. Defense induction lasted at least 28 days, and there was strong genotypic variation in the duration of this response. Ramets formed after the initial attack were also defense-induced, implying that induced defense can extend to new ramet generations, thereby contributing to protection of plant tissue that is both very vulnerable to herbivores and most valuable in terms of future plant growth and fitness. PMID:20522188

  16. Clonal cell populations unresponsive to radiosensitization induced by telomerase inhibition

    SciTech Connect

    Ju, Yeun-Jin; Shin, Hyun-Jin; Park, Jeong-Eun; Juhn, Kyoung-Mi; Woo, Seon Rang; Kim, Hee-Young; Han, Young-Hoon; Hwang, Sang-Gu; Hong, Sung-Hee; Kang, Chang-Mo; Yoo, Young-Do; Park, Won-Bong; Cho, Myung-Haing; Park, Gil Hong; Lee, Kee-Ho

    2010-11-12

    Research highlights: {yields} In our present manuscript, we have clearly showed an interesting but problematic obstacle of a radiosensitization strategy based on telomerase inhibition by showing that: Clonal population unresponsive to this radiosensitization occasionally arise. {yields} The telomere length of unsensitized clones was reduced, as was that of most sensitized clones. {yields} The unsensitized clones did not show chromosome end fusion which was noted in all sensitized clones. {yields} P53 status is not associated with the occurrence of unsensitized clone. {yields} Telomere end capping in unsensitized clone is operative even under telomerase deficiency. -- Abstract: A combination of a radiotherapeutic regimen with telomerase inhibition is valuable when tumor cells are to be sensitized to radiation. Here, we describe cell clones unresponsive to radiosensitization after telomere shortening. After extensive division of individual transformed clones of mTERC{sup -/-} cells, about 22% of clones were unresponsive to radiosensitization even though telomerase action was inhibited. The telomere lengths of unsensitized mTERC{sup -/-} clones were reduced, as were those of most sensitized clones. However, the unsensitized clones did not exhibit chromosomal end-to-end fusion to the extent noted in all sensitized clones. Thus, a defense mechanism preventing telomere erosion is operative even when telomeres become shorter under conditions of telomerase deficiency, and results in unresponsiveness to the radiosensitization generally mediated by telomere shortening.

  17. Clonal selection drives genetic divergence of metastatic medulloblastoma.

    PubMed

    Wu, Xiaochong; Northcott, Paul A; Dubuc, Adrian; Dupuy, Adam J; Shih, David J H; Witt, Hendrik; Croul, Sidney; Bouffet, Eric; Fults, Daniel W; Eberhart, Charles G; Garzia, Livia; Van Meter, Timothy; Zagzag, David; Jabado, Nada; Schwartzentruber, Jeremy; Majewski, Jacek; Scheetz, Todd E; Pfister, Stefan M; Korshunov, Andrey; Li, Xiao-Nan; Scherer, Stephen W; Cho, Yoon-Jae; Akagi, Keiko; MacDonald, Tobey J; Koster, Jan; McCabe, Martin G; Sarver, Aaron L; Collins, V Peter; Weiss, William A; Largaespada, David A; Collier, Lara S; Taylor, Michael D

    2012-02-23

    Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies. PMID:22343890

  18. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages.

    PubMed

    Zarrilli, Raffaele; Pournaras, Spyros; Giannouli, Maria; Tsakris, Athanassios

    2013-01-01

    The rapid expansion of Acinetobacter baumannii clinical isolates exhibiting resistance to carbapenems and most or all available antibiotics during the last decade is a worrying evolution. The apparent predominance of a few successful multidrug-resistant lineages worldwide underlines the importance of elucidating the mode of spread and the epidemiology of A. baumannii isolates in single hospitals, at a country-wide level and on a global scale. The evolutionary advantage of the dominant clonal lineages relies on the capability of the A. baumannii pangenome to incorporate resistance determinants. In particular, the simultaneous presence of divergent strains of the international clone II and their increasing prevalence in international hospitals further support the ongoing adaptation of this lineage to the hospital environment. Indeed, genomic and genetic studies have elucidated the role of mobile genetic elements in the transfer of antibiotic resistance genes and substantiate the rate of genetic alterations associated with acquisition in A. baumannii of various resistance genes, including OXA- and metallo-β-lactamase-type carbapenemase genes. The significance of single nucleotide polymorphisms and transposon mutagenesis in the evolution of A. baumannii has been also documented. Establishment of a network of reference laboratories in different countries would generate a more complete picture and a fuller understanding of the importance of high-risk A. baumannii clones in the international dissemination of antibiotic resistance. PMID:23127486

  19. Emerging sporotrichosis is driven by clonal and recombinant Sporothrix species.

    PubMed

    Rodrigues, Anderson Messias; de Hoog, GSybren; Zhang, Yu; de Camargo, Zoilo Pires

    2014-05-01

    Sporotrichosis, caused by agents of the fungal genus Sporothrix, occurs worldwide, but the infectious species are not evenly distributed. Sporothrix propagules usually gain entry into the warm-blooded host through minor trauma to the skin from contaminated plant debris or through scratches or bites from felines carrying the disease, generally in the form of outbreaks. Over the last decade, sporotrichosis has changed from a relatively obscure endemic infection to an epidemic zoonotic health problem. We evaluated the impact of the feline host on the epidemiology, spatial distribution, prevalence and genetic diversity of human sporotrichosis. Nuclear and mitochondrial markers revealed large structural genetic differences between S. brasiliensis and S. schenckii populations, suggesting that the interplay of host, pathogen and environment has a structuring effect on the diversity, frequency and distribution of Sporothrix species. Phylogenetic data support a recent habitat shift within S. brasiliensis from plant to cat that seems to have occurred in southeastern Brazil and is responsible for its emergence. A clonal structure was found in the early expansionary phase of the cat-human epidemic. However, the prevalent recombination structure in the plant-associated pathogen S. schenckii generates a diversity of genotypes that did not show any significant increase in frequency as etiological agents of human infection over time. These results suggest that closely related pathogens can follow different strategies in epidemics. Thus, species-specific types of transmission may require distinct public health strategies for disease control. PMID:26038739

  20. Clonal dominance among T-lymphocyte infiltrates in arthritis

    SciTech Connect

    Stamenkovic, I.; Stegagno, M.; Wright, K.A.; Krane, S.M.; Amento, E.P.; Colvin, R.B.; Duquesnoy, R.J.; Kurnick, J.T.

    1988-02-01

    Synovial membranes in patients with rheumatoid arthritis as well as other types of chronic destructive inflammatory arthritis contain infiltrates of activated T lymphocytes that probably contribute to the pathogenesis of the disease. In an effort to elucidate the nature of these infiltrates, interleukin 2 (IL-2)-responsive T lymphocytes were grown out of synovial fragments from 14 patients undergoing surgery for advanced destructive inflammatory joint disease. Eleven of the samples examined were from patients with classical rheumatoid arthritis, while three others were obtained from individuals with clinical osteoarthritis. Southern blot analysis of T-cell receptor (TCR) ..beta..-chain genes in 13 of 14 cultures showed distinct rearrangements, indicating that each culture was characterized by the predominance of a limited number of clones. T-cell populations from peripheral blood stimulated with a variety of activators and expanded with IL-2 did not demonstrate evidence of similar clonality in long-term culture. These results suggest that a limited number of activated T-cell clones predominate at the site of tissue injury in rheumatoid synovial membranes as well as in other types of destructive inflammatory joint disease. Further characterization of these T-cell clones may aid our understanding of the pathogenesis of these rheumatic disorders.

  1. Quantifying Clonal and Subclonal Passenger Mutations in Cancer Evolution

    PubMed Central

    Bozic, Ivana; Gerold, Jeffrey M.; Nowak, Martin A.

    2016-01-01

    The vast majority of mutations in the exome of cancer cells are passengers, which do not affect the reproductive rate of the cell. Passengers can provide important information about the evolutionary history of an individual cancer, and serve as a molecular clock. Passengers can also become targets for immunotherapy or confer resistance to treatment. We study the stochastic expansion of a population of cancer cells describing the growth of primary tumors or metastatic lesions. We first analyze the process by looking forward in time and calculate the fixation probabilities and frequencies of successive passenger mutations ordered by their time of appearance. We compute the likelihood of specific evolutionary trees, thereby informing the phylogenetic reconstruction of cancer evolution in individual patients. Next, we derive results looking backward in time: for a given subclonal mutation we estimate the number of cancer cells that were present at the time when that mutation arose. We derive exact formulas for the expected numbers of subclonal mutations of any frequency. Fitting this formula to cancer sequencing data leads to an estimate for the ratio of birth and death rates of cancer cells during the early stages of clonal expansion. PMID:26828429

  2. Genetic variegation of clonal architecture and propagating cells in leukaemia.

    PubMed

    Anderson, Kristina; Lutz, Christoph; van Delft, Frederik W; Bateman, Caroline M; Guo, Yanping; Colman, Susan M; Kempski, Helena; Moorman, Anthony V; Titley, Ian; Swansbury, John; Kearney, Lyndal; Enver, Tariq; Greaves, Mel

    2011-01-20

    Little is known of the genetic architecture of cancer at the subclonal and single-cell level or in the cells responsible for cancer clone maintenance and propagation. Here we have examined this issue in childhood acute lymphoblastic leukaemia in which the ETV6-RUNX1 gene fusion is an early or initiating genetic lesion followed by a modest number of recurrent or 'driver' copy number alterations. By multiplexing fluorescence in situ hybridization probes for these mutations, up to eight genetic abnormalities can be detected in single cells, a genetic signature of subclones identified and a composite picture of subclonal architecture and putative ancestral trees assembled. Subclones in acute lymphoblastic leukaemia have variegated genetics and complex, nonlinear or branching evolutionary histories. Copy number alterations are independently and reiteratively acquired in subclones of individual patients, and in no preferential order. Clonal architecture is dynamic and is subject to change in the lead-up to a diagnosis and in relapse. Leukaemia propagating cells, assayed by serial transplantation in NOD/SCID IL2Rγ(null) mice, are also genetically variegated, mirroring subclonal patterns, and vary in competitive regenerative capacity in vivo. These data have implications for cancer genomics and for the targeted therapy of cancer. PMID:21160474

  3. Clonal propagation of Cyclamen persicum via somatic embryogenesis.

    PubMed

    Winkelmann, Traud

    2010-01-01

    Cyclamen (Cyclamen persicum) is an economically important ornamental pot plant with local use as cut flower as well. Traditionally, it is propagated via seeds, but interest is given in vegetative propagation of parental lines as well as superior single plants. Somatic embryogenesis is an efficient in vitro propagation method for many cyclamen cultivars. Starting from ovules of unpollinated flowers, callus is induced and propagated in a medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-(gamma,gamma-dimethylallylamino)purine (2iP). Transfer to hormone-free medium results in the differentiation of somatic embryos, which afterwards germinate on the same medium. These first culture stages take about 6-7 months and are carried out in complete darkness. Two to four months after the transfer to light, plantlets develop which can be acclimatized in the greenhouse. The regenerated plants are characterized by low percentages of somaclonal variation. This protocol has proven useful not only for clonal propagation, but also for artificial seed preparation, cryopreservation, genetic transformation and protoplast regeneration. PMID:20099110

  4. Clonal groups of Salmonella typhimurium in New York State.

    PubMed Central

    McDonough, P L; Timoney, J F; Jacobson, R H; Khakhria, R

    1989-01-01

    The epidemiology of 278 strains of Salmonella typhimurium isolated from 1973 to 1981 from animals in New York State was studied by using four "fingerprinting" techniques, bacteriophage type (B.R. Callow, J. Hyg. 57:346-359, 1959), biotype (J. P. Duguid, E. S. Anderson, G. A. Alfredsson, R. Barker, and D. C. Old, J. Med. Microbiol. 8:149-166, 1975), plasmid profile, and antibiogram. Phage type with biotype was the most useful marker for distinguishing clonal groups of S. typhimurium. Four clones of S. typhimurium predominated, i.e., phage type/biotypes U275/26, 49/26, 10/3, and 2/3. U275/26 and 49/26 were commonly found until 1976, but clones 10/3 and 2/3 were predominant after 1976. Comparison of results with data from Canada suggested a dissemination of strains of S. typhimurium between Canada and New York. Cattle were a common source of phage type 49, as has been observed in other countries. PMID:2656740

  5. Exploiting Temporal Collateral Sensitivity in Tumor Clonal Evolution.

    PubMed

    Zhao, Boyang; Sedlak, Joseph C; Srinivas, Raja; Creixell, Pau; Pritchard, Justin R; Tidor, Bruce; Lauffenburger, Douglas A; Hemann, Michael T

    2016-03-24

    The prevailing approach to addressing secondary drug resistance in cancer focuses on treating the resistance mechanisms at relapse. However, the dynamic nature of clonal evolution, along with potential fitness costs and cost compensations, may present exploitable vulnerabilities-a notion that we term "temporal collateral sensitivity." Using a combined pharmacological screen and drug resistance selection approach in a murine model of Ph(+) acute lymphoblastic leukemia, we indeed find that temporal and/or persistent collateral sensitivity to non-classical BCR-ABL1 drugs arises in emergent tumor subpopulations during the evolution of resistance toward initial treatment with BCR-ABL1-targeted inhibitors. We determined the sensitization mechanism via genotypic, phenotypic, signaling, and binding measurements in combination with computational models and demonstrated significant overall survival extension in mice. Additional stochastic mathematical models and small-molecule screens extended our insights, indicating the value of focusing on evolutionary trajectories and pharmacological profiles to identify new strategies to treat dynamic tumor vulnerabilities. PMID:26924578

  6. Decoding astrocyte heterogeneity: New tools for clonal analysis.

    PubMed

    Bribián, A; Figueres-Oñate, M; Martín-López, E; López-Mascaraque, L

    2016-05-26

    The importance of astrocyte heterogeneity came out as a hot topic in neurosciences especially over the last decades, when the development of new methodologies allowed demonstrating the existence of big differences in morphological, neurochemical and physiological features between astrocytes. However, although the knowledge about the biology of astrocytes is increasing rapidly, an important characteristic that remained unexplored, until the last years, has been the relationship between astrocyte lineages and cell heterogeneity. To fill this gap, a new method called StarTrack was recently developed, a powerful genetic tool that allows tracking astrocyte lineages forming cell clones. Using StarTrack, a single astrocyte progenitor and its progeny can be specifically labeled from its generation, during embryonic development, to its final fate in the adult brain. Because of this specific labeling, astrocyte clones, exhibiting heterogeneous morphologies and features, can be easily analyzed in relation to their ontogenetic origin. This review summarizes how astrocyte heterogeneity can be decoded studying the embryonic development of astrocyte lineages and their clonal relationship. Finally, we discuss about some of the challenges and opportunities emerging in this exciting area of investigation. PMID:25917835

  7. Affected chromosome homeostasis and genomic instability of clonal yeast cultures.

    PubMed

    Adamczyk, Jagoda; Deregowska, Anna; Panek, Anita; Golec, Ewelina; Lewinska, Anna; Wnuk, Maciej

    2016-05-01

    Yeast cells originating from one single colony are considered genotypically and phenotypically identical. However, taking into account the cellular heterogeneity, it seems also important to monitor cell-to-cell variations within a clone population. In the present study, a comprehensive yeast karyotype screening was conducted using single chromosome comet assay. Chromosome-dependent and mutation-dependent changes in DNA (DNA with breaks or with abnormal replication intermediates) were studied using both single-gene deletion haploid mutants (bub1, bub2, mad1, tel1, rad1 and tor1) and diploid cells lacking one active gene of interest, namely BUB1/bub1, BUB2/bub2, MAD1/mad1, TEL1/tel1, RAD1/rad1 and TOR1/tor1 involved in the control of cell cycle progression, DNA repair and the regulation of longevity. Increased chromosome fragility and replication stress-mediated chromosome abnormalities were correlated with elevated incidence of genomic instability, namely aneuploid events-disomies, monosomies and to a lesser extent trisomies as judged by in situ comparative genomic hybridization (CGH). The tor1 longevity mutant with relatively balanced chromosome homeostasis was found the most genomically stable among analyzed mutants. During clonal yeast culture, spontaneously formed abnormal chromosome structures may stimulate changes in the ploidy state and, in turn, promote genomic heterogeneity. These alterations may be more accented in selected mutated genetic backgrounds, namely in yeast cells deficient in proper cell cycle regulation and DNA repair. PMID:26581629

  8. Emerging sporotrichosis is driven by clonal and recombinant Sporothrix species

    PubMed Central

    Rodrigues, Anderson Messias; de Hoog, GSybren; Zhang, Yu; de Camargo, Zoilo Pires

    2014-01-01

    Sporotrichosis, caused by agents of the fungal genus Sporothrix, occurs worldwide, but the infectious species are not evenly distributed. Sporothrix propagules usually gain entry into the warm-blooded host through minor trauma to the skin from contaminated plant debris or through scratches or bites from felines carrying the disease, generally in the form of outbreaks. Over the last decade, sporotrichosis has changed from a relatively obscure endemic infection to an epidemic zoonotic health problem. We evaluated the impact of the feline host on the epidemiology, spatial distribution, prevalence and genetic diversity of human sporotrichosis. Nuclear and mitochondrial markers revealed large structural genetic differences between S. brasiliensis and S. schenckii populations, suggesting that the interplay of host, pathogen and environment has a structuring effect on the diversity, frequency and distribution of Sporothrix species. Phylogenetic data support a recent habitat shift within S. brasiliensis from plant to cat that seems to have occurred in southeastern Brazil and is responsible for its emergence. A clonal structure was found in the early expansionary phase of the cat–human epidemic. However, the prevalent recombination structure in the plant-associated pathogen S. schenckii generates a diversity of genotypes that did not show any significant increase in frequency as etiological agents of human infection over time. These results suggest that closely related pathogens can follow different strategies in epidemics. Thus, species-specific types of transmission may require distinct public health strategies for disease control. PMID:26038739

  9. Parallel nearest neighbor calculations

    NASA Astrophysics Data System (ADS)

    Trease, Harold

    We are just starting to parallelize the nearest neighbor portion of our free-Lagrange code. Our implementation of the nearest neighbor reconnection algorithm has not been parallelizable (i.e., we just flip one connection at a time). In this paper we consider what sort of nearest neighbor algorithms lend themselves to being parallelized. For example, the construction of the Voronoi mesh can be parallelized, but the construction of the Delaunay mesh (dual to the Voronoi mesh) cannot because of degenerate connections. We will show our most recent attempt to tessellate space with triangles or tetrahedrons with a new nearest neighbor construction algorithm called DAM (Dial-A-Mesh). This method has the characteristics of a parallel algorithm and produces a better tessellation of space than the Delaunay mesh. Parallel processing is becoming an everyday reality for us at Los Alamos. Our current production machines are Cray YMPs with 8 processors that can run independently or combined to work on one job. We are also exploring massive parallelism through the use of two 64K processor Connection Machines (CM2), where all the processors run in lock step mode. The effective application of 3-D computer models requires the use of parallel processing to achieve reasonable "turn around" times for our calculations.

  10. Bilingual parallel programming

    SciTech Connect

    Foster, I.; Overbeek, R.

    1990-01-01

    Numerous experiments have demonstrated that computationally intensive algorithms support adequate parallelism to exploit the potential of large parallel machines. Yet successful parallel implementations of serious applications are rare. The limiting factor is clearly programming technology. None of the approaches to parallel programming that have been proposed to date -- whether parallelizing compilers, language extensions, or new concurrent languages -- seem to adequately address the central problems of portability, expressiveness, efficiency, and compatibility with existing software. In this paper, we advocate an alternative approach to parallel programming based on what we call bilingual programming. We present evidence that this approach provides and effective solution to parallel programming problems. The key idea in bilingual programming is to construct the upper levels of applications in a high-level language while coding selected low-level components in low-level languages. This approach permits the advantages of a high-level notation (expressiveness, elegance, conciseness) to be obtained without the cost in performance normally associated with high-level approaches. In addition, it provides a natural framework for reusing existing code.

  11. Parallel system simulation

    SciTech Connect

    Tai, H.M.; Saeks, R.

    1984-03-01

    A relaxation algorithm for solving large-scale system simulation problems in parallel is proposed. The algorithm, which is composed of both a time-step parallel algorithm and a component-wise parallel algorithm, is described. The interconnected nature of the system, which is characterized by the component connection model, is fully exploited by this approach. A technique for finding an optimal number of the time steps is also described. Finally, this algorithm is illustrated via several examples in which the possible trade-offs between the speed-up ratio, efficiency, and waiting time are analyzed.

  12. The NAS parallel benchmarks

    NASA Technical Reports Server (NTRS)

    Bailey, David (Editor); Barton, John (Editor); Lasinski, Thomas (Editor); Simon, Horst (Editor)

    1993-01-01

    A new set of benchmarks was developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of a set of kernels, the 'Parallel Kernels,' and a simulated application benchmark. Together they mimic the computation and data movement characteristics of large scale computational fluid dynamics (CFD) applications. The principal distinguishing feature of these benchmarks is their 'pencil and paper' specification - all details of these benchmarks are specified only algorithmically. In this way many of the difficulties associated with conventional benchmarking approaches on highly parallel systems are avoided.

  13. Parallels with nature

    NASA Astrophysics Data System (ADS)

    2014-10-01

    Adam Nelson and Stuart Warriner, from the University of Leeds, talk with Nature Chemistry about their work to develop viable synthetic strategies for preparing new chemical structures in parallel with the identification of desirable biological activity.

  14. The Parallel Axiom

    ERIC Educational Resources Information Center

    Rogers, Pat

    1972-01-01

    Criteria for a reasonable axiomatic system are discussed. A discussion of the historical attempts to prove the independence of Euclids parallel postulate introduces non-Euclidean geometries. Poincare's model for a non-Euclidean geometry is defined and analyzed. (LS)

  15. Parallel programming with PCN

    SciTech Connect

    Foster, I.; Tuecke, S.

    1991-12-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, tools for developing and debugging programs in this language, and interfaces to Fortran and C that allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. In includes both tutorial and reference material. It also presents the basic concepts that underly PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous FTP from Argonne National Laboratory in the directory pub/pcn at info.mcs.anl.gov (c.f. Appendix A).

  16. Partitioning and parallel radiosity

    NASA Astrophysics Data System (ADS)

    Merzouk, S.; Winkler, C.; Paul, J. C.

    1996-03-01

    This paper proposes a theoretical framework, based on domain subdivision for parallel radiosity. Moreover, three various implementation approaches, taking advantage of partitioning algorithms and global shared memory architecture, are presented.

  17. Simplified Parallel Domain Traversal

    SciTech Connect

    Erickson III, David J

    2011-01-01

    Many data-intensive scientific analysis techniques require global domain traversal, which over the years has been a bottleneck for efficient parallelization across distributed-memory architectures. Inspired by MapReduce and other simplified parallel programming approaches, we have designed DStep, a flexible system that greatly simplifies efficient parallelization of domain traversal techniques at scale. In order to deliver both simplicity to users as well as scalability on HPC platforms, we introduce a novel two-tiered communication architecture for managing and exploiting asynchronous communication loads. We also integrate our design with advanced parallel I/O techniques that operate directly on native simulation output. We demonstrate DStep by performing teleconnection analysis across ensemble runs of terascale atmospheric CO{sub 2} and climate data, and we show scalability results on up to 65,536 IBM BlueGene/P cores.

  18. Scalable parallel communications

    NASA Technical Reports Server (NTRS)

    Maly, K.; Khanna, S.; Overstreet, C. M.; Mukkamala, R.; Zubair, M.; Sekhar, Y. S.; Foudriat, E. C.

    1992-01-01

    Coarse-grain parallelism in networking (that is, the use of multiple protocol processors running replicated software sending over several physical channels) can be used to provide gigabit communications for a single application. Since parallel network performance is highly dependent on real issues such as hardware properties (e.g., memory speeds and cache hit rates), operating system overhead (e.g., interrupt handling), and protocol performance (e.g., effect of timeouts), we have performed detailed simulations studies of both a bus-based multiprocessor workstation node (based on the Sun Galaxy MP multiprocessor) and a distributed-memory parallel computer node (based on the Touchstone DELTA) to evaluate the behavior of coarse-grain parallelism. Our results indicate: (1) coarse-grain parallelism can deliver multiple 100 Mbps with currently available hardware platforms and existing networking protocols (such as Transmission Control Protocol/Internet Protocol (TCP/IP) and parallel Fiber Distributed Data Interface (FDDI) rings); (2) scale-up is near linear in n, the number of protocol processors, and channels (for small n and up to a few hundred Mbps); and (3) since these results are based on existing hardware without specialized devices (except perhaps for some simple modifications of the FDDI boards), this is a low cost solution to providing multiple 100 Mbps on current machines. In addition, from both the performance analysis and the properties of these architectures, we conclude: (1) multiple processors providing identical services and the use of space division multiplexing for the physical channels can provide better reliability than monolithic approaches (it also provides graceful degradation and low-cost load balancing); (2) coarse-grain parallelism supports running several transport protocols in parallel to provide different types of service (for example, one TCP handles small messages for many users, other TCP's running in parallel provide high bandwidth

  19. Parallel image compression

    NASA Technical Reports Server (NTRS)

    Reif, John H.

    1987-01-01

    A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.

  20. Continuous parallel coordinates.

    PubMed

    Heinrich, Julian; Weiskopf, Daniel

    2009-01-01

    Typical scientific data is represented on a grid with appropriate interpolation or approximation schemes,defined on a continuous domain. The visualization of such data in parallel coordinates may reveal patterns latently contained in the data and thus can improve the understanding of multidimensional relations. In this paper, we adopt the concept of continuous scatterplots for the visualization of spatially continuous input data to derive a density model for parallel coordinates. Based on the point-line duality between scatterplots and parallel coordinates, we propose a mathematical model that maps density from a continuous scatterplot to parallel coordinates and present different algorithms for both numerical and analytical computation of the resulting density field. In addition, we show how the 2-D model can be used to successively construct continuous parallel coordinates with an arbitrary number of dimensions. Since continuous parallel coordinates interpolate data values within grid cells, a scalable and dense visualization is achieved, which will be demonstrated for typical multi-variate scientific data. PMID:19834230

  1. Clinical Clostridium difficile: clonality and pathogenicity locus diversity.

    PubMed

    Dingle, Kate E; Griffiths, David; Didelot, Xavier; Evans, Jessica; Vaughan, Alison; Kachrimanidou, Melina; Stoesser, Nicole; Jolley, Keith A; Golubchik, Tanya; Harding, Rosalind M; Peto, Tim E; Fawley, Warren; Walker, A Sarah; Wilcox, Mark; Crook, Derrick W

    2011-01-01

    Clostridium difficile infection (CDI) is an important cause of mortality and morbidity in healthcare settings. The major virulence determinants are large clostridial toxins, toxin A (tcdA) and toxin B (tcdB), encoded within the pathogenicity locus (PaLoc). Isolates vary in pathogenicity from hypervirulent PCR-ribotypes 027 and 078 with high mortality, to benign non-toxigenic strains carried asymptomatically. The relative pathogenicity of most toxigenic genotypes is still unclear, but may be influenced by PaLoc genetic variant. This is the largest study of C. difficile molecular epidemiology performed to date, in which a representative collection of recent isolates (n = 1290) from patients with CDI in Oxfordshire, UK, was genotyped by multilocus sequence typing. The population structure was described using NeighborNet and ClonalFrame. Sequence variation within toxin B (tcdB) and its negative regulator (tcdC), was mapped onto the population structure. The 69 Sequence Types (ST) showed evidence for homologous recombination with an effect on genetic diversification four times lower than mutation. Five previously recognised genetic groups or clades persisted, designated 1 to 5, each having a strikingly congruent association with tcdB and tcdC variants. Hypervirulent ST-11 (078) was the only member of clade 5, which was divergent from the other four clades within the MLST loci. However, it was closely related to the other clades within the tcdB and tcdC loci. ST-11 (078) may represent a divergent formerly non-toxigenic strain that acquired the PaLoc (at least) by genetic recombination. This study focused on human clinical isolates collected from a single geographic location, to achieve a uniquely high density of sampling. It sets a baseline of MLST data for future comparative studies investigating genotype virulence potential (using clinical severity data for these isolates), possible reservoirs of human CDI, and the evolutionary origins of hypervirulent strains

  2. Clonal analysis and virulent traits of pathogenic extraintestinal Escherichia coli isolates from swine in China

    PubMed Central

    2012-01-01

    Background Extraintestinal pathogenic Escherichia coli (ExPEC) can cause a variety of infections outside the gastrointestinal tract in humans and animals. Infections due to swine ExPECs have been occurring with increasing frequency in China. These ExPECs may now be considered a new food-borne pathogen that causes cross-infections between humans and pigs. Knowledge of the clonal structure and virulence genes is needed as a framework to improve the understanding of phylogenetic traits of porcine ExPECs. Results Multilocus sequence typing (MLST) data showed that the isolates investigated in this study could be placed into four main clonal complexes, designated as CC10, CC1687, CC88 and CC58. Strains within CC10 were classified as phylogroup A, and these accounted for most of our porcine ExPEC isolates. Isolates in the CC1687 clonal complex, formed by new sequence types (STs), was classified as phylogroup D, with CC88 isolates considered as B2 and CC58 isolates as B1. Porcine ExPECs in these four clonal complexes demonstrated significantly different virulence gene patterns. A few porcine ExPECs were indentified in phylogroup B2, the phylogroup in which human ExPECs mainly exist. However some STs in the four clonal groups of porcine ExPECs were reported to cause extraintestinal infections in human, based on data in the MLST database. Conclusion Porcine ExPECs have different virulence gene patterns for different clonal complexes. However, these strains are mostly fell in phylogenentic phylogroup A, B1 and D, which is different from human ExPECs that concentrate in phylogroup B2. Our findings provide a better understanding relating to the clonal structure of ExPECs in diseased pigs and indicate a need to re-evaluate their contribution to human ExPEC diseases. PMID:22909380

  3. Analysis of non-clonal chromosome abnormalities observed in hematologic malignancies among Southwest Oncology Group patients

    SciTech Connect

    McConnell, T.S.; Dobin, S.M.

    1994-09-01

    From 1987-1994, the Southwest Oncology Group Cytogenetics Committee reviewed 1571 studies in 590 adult patient cases with ALL, AML, CML or CLL. These were analyzed for the presence of clinically important non-clonal abnormalities (NCA). Abnormalities were defined as non-clonal if one metaphase had a structural abnormality or an extra chromosome. Chromosome loss was not analyzed due to the possibility of random loss. In 72 cases (12%) comprising 136 studies, at least one NCA was observed. In 21 of these cases (29%), NCAs consisted of obvious clonal evolution or instability, and thus were not included in the analysis. At least one structural NCA was observed in which the abnormality differed from the mainline in 36 (50%) patients. Seventeen of the 36 cases had a normal mode. Nineteen of the 36 patients had an abnormal or normal/abnormal mode. At least one numerical NCA was found in 15 cases (21%). Fifteen cases (21%) contained at least one marker chromosome. Several cases involved NCA in more than one of the above divisions. NCAs could be classified into several categories: (1){open_quotes}the clone to come{close_quotes}, (2) evolving clones which then disappeared, (3) NCAs with putative clinical importance that never became clonal, (4) NCAs during remission identical to the preceding clonal abnormality, (5) NCAs which indicated clonal evolution or instability. Examples include one metaphase with t(9;22) or del(20q) or inv(16) or +8 which either preceded or followed clonal findings of the same aberration. Such findings should be communicated to the clinician.

  4. Phylogenetic Meta-Analysis of the Functional Traits of Clonal Plants Foraging in Changing Environments

    PubMed Central

    Xie, Xiu-Fang; Song, Yao-Bin; Zhang, Ya-Lin; Pan, Xu; Dong, Ming

    2014-01-01

    Foraging behavior, one of the adaptive strategies of clonal plants, has stimulated a tremendous amount of research. However, it is a matter of debate whether there is any general pattern in the foraging traits (functional traits related to foraging behavior) of clonal plants in response to diverse environments. We collected data from 97 published papers concerning the relationships between foraging traits (e.g., spacer length, specific spacer length, branch intensity and branch angle) of clonal plants and essential resources (e.g., light, nutrients and water) for plant growth and reproduction. We incorporated the phylogenetic information of 85 plant species to examine the universality of foraging hypotheses using phylogenetic meta-analysis. The trends toward forming longer spacers and fewer branches in shaded environments were detected in clonal plants, but no evidence for a relation between foraging traits and nutrient availability was detected, except that there was a positive correlation between branch intensity and nutrient availability in stoloniferous plants. The response of the foraging traits of clonal plants to water availability was also not obvious. Additionally, our results indicated that the foraging traits of stoloniferous plants were more sensitive to resource availability than those of rhizomatous plants. In consideration of plant phylogeny, these results implied that the foraging traits of clonal plants (notably stoloniferous plants) only responded to light intensity in a general pattern but did not respond to nutrient or water availability. In conclusion, our findings on the effects of the environment on the foraging traits of clonal plants avoided the confounding effects of phylogeny because we incorporated phylogeny into the meta-analysis. PMID:25216101

  5. Revealing hidden clonal complexity in Mycobacterium tuberculosis infection by qualitative and quantitative improvement of sampling.

    PubMed

    Pérez-Lago, L; Palacios, J J; Herranz, M; Ruiz Serrano, M J; Bouza, E; García-de-Viedma, D

    2015-02-01

    The analysis of microevolution events, its functional relevance and impact on molecular epidemiology strategies, constitutes one of the most challenging aspects of the study of clonal complexity in infection by Mycobacterium tuberculosis. In this study, we retrospectively evaluated whether two improved sampling schemes could provide access to the clonal complexity that is undetected by the current standards (analysis of one isolate from one sputum). We evaluated in 48 patients the analysis by mycobacterial interspersed repetitive unit-variable number tandem repeat of M. tuberculosis isolates cultured from bronchial aspirate (BAS) or bronchoalveolar lavage (BAL) and, in another 16 cases, the analysis of a higher number of isolates from independent sputum samples. Analysis of the isolates from BAS/BAL specimens revealed clonal complexity in a very high proportion of cases (5/48); in most of these cases, complexity was not detected when the isolates from sputum samples were analysed. Systematic analysis of isolates from multiple sputum samples also improved the detection of clonal complexity. We found coexisting clonal variants in two of 16 cases that would have gone undetected in the analysis of the isolate from a single sputum specimen. Our results suggest that analysis of isolates from BAS/BAL specimens is highly efficient for recording the true clonal composition of M. tuberculosis in the lungs. When these samples are not available, we recommend increasing the number of isolates from independent sputum specimens, because they might not harbour the same pool of bacteria. Our data suggest that the degree of clonal complexity in tuberculosis has been underestimated because of the deficiencies inherent in a simplified procedure. PMID:25658553

  6. Clonal Patch Size and Ramet Position of Leymus chinensis Affected Reproductive Allocation

    PubMed Central

    Zhang, Zhuo; Yang, Yunfei

    2015-01-01

    Reproductive allocation is critically important for population maintenance and usually varies with not only environmental factors but also biotic ones. As a typical rhizome clonal plant in China's northern grasslands, Leymus chinensis usually dominates the steppe communities and grows in clonal patches. In order to clarify the sexual reproductive allocation of L. chinensis in the process of the growth and expansion, we selected L. chinensis clonal patches of a range of sizes to examine the reproductive allocation and allometric growth of the plants. Moreover, the effects of position of L. chinensis ramets within the patch on their reproductive allocation were also examined. Clonal patch size and position both significantly affected spike biomass, reproductive tiller biomass and SPIKE/TILLER biomass ratio. From the central to the marginal zone, both the spike biomass and reproductive tiller biomass displayed an increasing trend in all the five patch size categories except for reproductive tiller biomass in 15–40m2 category. L. chinensis had significantly larger SPIKE/TILLER biomass ratio in marginal zone than in central zone of clonal patches that are larger than 15 m2 in area. Regression analysis showed that the spike biomass and SPIKE/TILLER biomass ratio were negatively correlated with clonal patch size while patch size showed significantly positive effect on SEED/SPIKE biomass ratio, but the reproductive tiller biomass and SEED/TILLER biomass ratio were not dependent on clonal patch size. The relationships between biomass of spike and reproductive tiller, between mature seed biomass and spike biomass and between mature seed biomass and reproductive tiller biomass were significant allometric for all or some of patch size categories, respectively. The slopes of all these allometric relationships were significantly different from 1. The allometric growth of L. chinensis is patch size-dependent. This finding will be helpful for developing appropriate practices for

  7. Diagnostic Utility of a Clonality Test for Lymphoproliferative Diseases in Koreans Using the BIOMED-2 PCR Assay

    PubMed Central

    Kim, Young; Choi, Yoo Duk; Choi, Chan

    2013-01-01

    Background A clonality test for immunoglobulin (IG) and T cell receptor (TCR) is a useful adjunctive method for the diagnosis of lymphoproliferative diseases (LPDs). Recently, the BIOMED-2 multiplex polymerase chain reaction (PCR) assay has been established as a standard method for assessing the clonality of LPDs. We tested clonality in LPDs in Koreans using the BIOMED-2 multiplex PCR and compared the results with those obtained in European, Taiwanese, and Thai participants. We also evaluated the usefulness of the test as an ancillary method for diagnosing LPDs. Methods Two hundred and nineteen specimens embedded in paraffin, including 78 B cell lymphomas, 80 T cell lymphomas and 61 cases of reactive lymphadenitis, were used for the clonality test. Results Mature B cell malignancies showed 95.7% clonality for IG, 2.9% co-existing clonality, and 4.3% polyclonality. Mature T cell malignancies exhibited 83.8% clonality for TCR, 8.1% co-existing clonality, and 16.2% polyclonality. Reactive lymphadenitis showed 93.4% polyclonality for IG and TCR. The majority of our results were similar to those obtained in Europeans. However, the clonality for IGK of B cell malignancies and TCRG of T cell malignancies was lower in Koreans than Europeans. Conclusions The BIOMED-2 multiplex PCR assay was a useful adjunctive method for diagnosing LPDs. PMID:24255634

  8. Traceable clonal culture and chemodrug assay of heterogeneous prostate carcinoma PC3 cells in microfluidic single cell array chips

    PubMed Central

    Chung, Jaehoon; Ingram, Patrick N.; Bersano-Begey, Tom; Yoon, Euisik

    2014-01-01

    Cancer heterogeneity has received considerable attention for its role in tumor initiation and progression, and its implication for diagnostics and therapeutics in the clinic. To facilitate a cellular heterogeneity study in a low cost and highly efficient manner, we present a microfluidic platform that allows traceable clonal culture and characterization. The platform captures single cells into a microwell array and cultures them for clonal expansion, subsequently allowing on-chip characterization of clonal phenotype and response against drug treatments. Using a heterogeneous prostate cancer model, the PC3 cell line, we verified our prototype, identifying three different sub-phenotypes and correlating their clonal drug responsiveness to cell phenotype. PMID:25553180

  9. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality

    PubMed Central

    Bárcena, Paloma; Jara-Acevedo, María; Tabernero, María Dolores; López, Antonio; Sánchez, María Luz; García-Montero, Andrés C.; Muñoz-García, Noemí; Vidriales, María Belén; Paiva, Artur; Lecrevisse, Quentin; Lima, Margarida; Langerak, Anton W.; Böttcher, Sebastian; van Dongen, Jacques J.M.

    2015-01-01

    Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56low NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56low NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94hi/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality. PMID:26556869

  10. Mutational Profiling Can Establish Clonal or Independent Origin in Synchronous Bilateral Breast and Other Tumors

    PubMed Central

    Schwab, Richard; Harismendy, Olivier; Pu, Minya; Crain, Brian; Yost, Shawn; Frazer, Kelly A.; Rana, Brinda; Hasteh, Farnaz; Wallace, Anne; Parker, Barbara A.

    2015-01-01

    Background Synchronous tumors can be independent primary tumors or a primary-metastatic (clonal) pair, which may have clinical implications. Mutational profiling of tumor DNA is increasingly common in the clinic. We investigated whether mutational profiling can distinguish independent from clonal tumors in breast and other cancers, using a carefully defined test based on the Clonal Likelihood Score (CLS = 100 x # shared high confidence (HC) mutations/ # total HC mutations). Methods Statistical properties of a formal test using the CLS were investigated. A high CLS is evidence in favor of clonality; the test is implemented as a one-sided binomial test of proportions. Test parameters were empirically determined using 16,422 independent breast tumor pairs and 15 primary-metastatic tumor pairs from 10 cancer types using The Cancer Genome Atlas. Results We validated performance of the test with its established parameters, using five published data sets comprising 15,758 known independent tumor pairs (maximum CLS = 4.1%, minimum p-value = 0.48) and 283 known tumor clonal pairs (minimum CLS 13%, maximum p-value <0.01), across renal cell, testicular, and colorectal cancer. The CLS test correctly classified all validation samples but one, which it appears may have been incorrectly classified in the published data. As proof-of-concept we then applied the CLS test to two new cases of invasive synchronous bilateral breast cancer at our institution, each with one hormone receptor positive (ER+/PR+/HER2-) lobular and one triple negative ductal carcinoma. High confidence mutations were identified by exome sequencing and results were validated using deep targeted sequencing. The first tumor pair had CLS of 81% (p-value < 10–15), supporting clonality. In the second pair, no common mutations of 184 variants were validated (p-value >0.99), supporting independence. A plausible molecular mechanism for the shift from hormone receptor positive to triple negative was identified in the