Multi-directional search: A direct search algorithm for parallel machines
Torczon, V.J.
1989-01-01
In recent years there has been a great deal in the development of optimization algorithms which exploit the computational power of parallel computer architectures. The author has developed a new direct search algorithm, which he calls multi-directional search, that is ideally suited for parallel computation. His algorithm belongs to the class of direct search methods, a class of optimization algorithms which neither compute nor approximate any derivatives of the objective function. His work, in fact, was inspired by the simplex method of Spendley, Hext, and Himsworth, and the simplex method of Nelder and Mead. The multi-directional search algorithm is inherently parallel. The basic idea of the algorithm is to perform concurrent searches in multiple directions. These searches are free of any interdependencies, so the information required can be computed in parallel. A central result of his work is the convergence analysis for his algorithm. By requiring only that the function be continuously differentiable over a bounded level set, he can prove that a subsequence of the points generated by the multi-directional search algorithm converges to a stationary point of the objective function. This is of great interest since he knows of few convergence results for practical direct search algorithms. He also presents numerical results indicating that the multidirectional search algorithm is robust, even in the presence of noise. His results include comparisons with the Nelder-Mead simplex algorithm, the method of steepest descent, and a quasi-Newton method. One surprising conclusion of his numerical tests is that the Nelder-Mead simplex algorithm is not robust. He closes with some comments about future directions of research.
A two-level parallel direct search implementation for arbitrarily sized objective functions
Hutchinson, S.A.; Shadid, N.; Moffat, H.K.
1994-12-31
In the past, many optimization schemes for massively parallel computers have attempted to achieve parallel efficiency using one of two methods. In the case of large and expensive objective function calculations, the optimization itself may be run in serial and the objective function calculations parallelized. In contrast, if the objective function calculations are relatively inexpensive and can be performed on a single processor, then the actual optimization routine itself may be parallelized. In this paper, a scheme based upon the Parallel Direct Search (PDS) technique is presented which allows the objective function calculations to be done on an arbitrarily large number (p{sub 2}) of processors. If, p, the number of processors available, is greater than or equal to 2p{sub 2} then the optimization may be parallelized as well. This allows for efficient use of computational resources since the objective function calculations can be performed on the number of processors that allow for peak parallel efficiency and then further speedup may be achieved by parallelizing the optimization. Results are presented for an optimization problem which involves the solution of a PDE using a finite-element algorithm as part of the objective function calculation. The optimum number of processors for the finite-element calculations is less than p/2. Thus, the PDS method is also parallelized. Performance comparisons are given for a nCUBE 2 implementation.
Parallel Processing in Visual Search Asymmetry
ERIC Educational Resources Information Center
Dosher, Barbara Anne; Han, Songmei; Lu, Zhong-Lin
2004-01-01
The difficulty of visual search may depend on assignment of the same visual elements as targets and distractors-search asymmetry. Easy C-in-O searches and difficult O-in-C searches are often associated with parallel and serial search, respectively. Here, the time course of visual search was measured for both tasks with speed-accuracy methods. The…
Hybrid Optimization Parallel Search PACKage
Energy Science and Technology Software Center (ESTSC)
2009-11-10
HOPSPACK is open source software for solving optimization problems without derivatives. Application problems may have a fully nonlinear objective function, bound constraints, and linear and nonlinear constraints. Problem variables may be continuous, integer-valued, or a mixture of both. The software provides a framework that supports any derivative-free type of solver algorithm. Through the framework, solvers request parallel function evaluation, which may use MPI (multiple machines) or multithreading (multiple processors/cores on one machine). The framework providesmore » a Cache and Pending Cache of saved evaluations that reduces execution time and facilitates restarts. Solvers can dynamically create other algorithms to solve subproblems, a useful technique for handling multiple start points and integer-valued variables. HOPSPACK ships with the Generating Set Search (GSS) algorithm, developed at Sandia as part of the APPSPACK open source software project.« less
Efficiency of parallel direct optimization
NASA Technical Reports Server (NTRS)
Janies, D. A.; Wheeler, W. C.
2001-01-01
Tremendous progress has been made at the level of sequential computation in phylogenetics. However, little attention has been paid to parallel computation. Parallel computing is particularly suited to phylogenetics because of the many ways large computational problems can be broken into parts that can be analyzed concurrently. In this paper, we investigate the scaling factors and efficiency of random addition and tree refinement strategies using the direct optimization software, POY, on a small (10 slave processors) and a large (256 slave processors) cluster of networked PCs running LINUX. These algorithms were tested on several data sets composed of DNA and morphology ranging from 40 to 500 taxa. Various algorithms in POY show fundamentally different properties within and between clusters. All algorithms are efficient on the small cluster for the 40-taxon data set. On the large cluster, multibuilding exhibits excellent parallel efficiency, whereas parallel building is inefficient. These results are independent of data set size. Branch swapping in parallel shows excellent speed-up for 16 slave processors on the large cluster. However, there is no appreciable speed-up for branch swapping with the further addition of slave processors (>16). This result is independent of data set size. Ratcheting in parallel is efficient with the addition of up to 32 processors in the large cluster. This result is independent of data set size. c2001 The Willi Hennig Society.
Efficiency of parallel direct optimization.
Janies, D A; Wheeler, W C
2001-03-01
Tremendous progress has been made at the level of sequential computation in phylogenetics. However, little attention has been paid to parallel computation. Parallel computing is particularly suited to phylogenetics because of the many ways large computational problems can be broken into parts that can be analyzed concurrently. In this paper, we investigate the scaling factors and efficiency of random addition and tree refinement strategies using the direct optimization software, POY, on a small (10 slave processors) and a large (256 slave processors) cluster of networked PCs running LINUX. These algorithms were tested on several data sets composed of DNA and morphology ranging from 40 to 500 taxa. Various algorithms in POY show fundamentally different properties within and between clusters. All algorithms are efficient on the small cluster for the 40-taxon data set. On the large cluster, multibuilding exhibits excellent parallel efficiency, whereas parallel building is inefficient. These results are independent of data set size. Branch swapping in parallel shows excellent speed-up for 16 slave processors on the large cluster. However, there is no appreciable speed-up for branch swapping with the further addition of slave processors (>16). This result is independent of data set size. Ratcheting in parallel is efficient with the addition of up to 32 processors in the large cluster. This result is independent of data set size. PMID:12240679
Design and implementation of a massively parallel version of DIRECT
He, J.; Verstak, A.; Watson, L.; Sosonkina, M.
2007-10-24
This paper describes several massively parallel implementations for a global search algorithm DIRECT. Two parallel schemes take different approaches to address DIRECT's design challenges imposed by memory requirements and data dependency. Three design aspects in topology, data structures, and task allocation are compared in detail. The goal is to analytically investigate the strengths and weaknesses of these parallel schemes, identify several key sources of inefficiency, and experimentally evaluate a number of improvements in the latest parallel DIRECT implementation. The performance studies demonstrate improved data structure efficiency and load balancing on a 2200 processor cluster.
Single-agent parallel window search
NASA Technical Reports Server (NTRS)
Powley, Curt; Korf, Richard E.
1991-01-01
Parallel window search is applied to single-agent problems by having different processes simultaneously perform iterations of Iterative-Deepening-A(asterisk) (IDA-asterisk) on the same problem but with different cost thresholds. This approach is limited by the time to perform the goal iteration. To overcome this disadvantage, the authors consider node ordering. They discuss how global node ordering by minimum h among nodes with equal f = g + h values can reduce the time complexity of serial IDA-asterisk by reducing the time to perform the iterations prior to the goal iteration. Finally, the two ideas of parallel window search and node ordering are combined to eliminate the weaknesses of each approach while retaining the strengths. The resulting approach, called simply parallel window search, can be used to find a near-optimal solution quickly, improve the solution until it is optimal, and then finally guarantee optimality, depending on the amount of time available.
Asynchronous parallel pattern search for nonlinear optimization
P. D. Hough; T. G. Kolda; V. J. Torczon
2000-01-01
Parallel pattern search (PPS) can be quite useful for engineering optimization problems characterized by a small number of variables (say 10--50) and by expensive objective function evaluations such as complex simulations that take from minutes to hours to run. However, PPS, which was originally designed for execution on homogeneous and tightly-coupled parallel machine, is not well suited to the more heterogeneous, loosely-coupled, and even fault-prone parallel systems available today. Specifically, PPS is hindered by synchronization penalties and cannot recover in the event of a failure. The authors introduce a new asynchronous and fault tolerant parallel pattern search (AAPS) method and demonstrate its effectiveness on both simple test problems as well as some engineering optimization problems
HOPSPACK: Hybrid Optimization Parallel Search Package.
Gray, Genetha A.; Kolda, Tamara G.; Griffin, Joshua; Taddy, Matt; Martinez-Canales, Monica
2008-12-01
In this paper, we describe the technical details of HOPSPACK (Hybrid Optimization Parallel SearchPackage), a new software platform which facilitates combining multiple optimization routines into asingle, tightly-coupled, hybrid algorithm that supports parallel function evaluations. The frameworkis designed such that existing optimization source code can be easily incorporated with minimalcode modification. By maintaining the integrity of each individual solver, the strengths and codesophistication of the original optimization package are retained and exploited.4
A parallel algorithm for random searches
NASA Astrophysics Data System (ADS)
Wosniack, M. E.; Raposo, E. P.; Viswanathan, G. M.; da Luz, M. G. E.
2015-11-01
We discuss a parallelization procedure for a two-dimensional random search of a single individual, a typical sequential process. To assure the same features of the sequential random search in the parallel version, we analyze the former spatial patterns of the encountered targets for different search strategies and densities of homogeneously distributed targets. We identify a lognormal tendency for the distribution of distances between consecutively detected targets. Then, by assigning the distinct mean and standard deviation of this distribution for each corresponding configuration in the parallel simulations (constituted by parallel random walkers), we are able to recover important statistical properties, e.g., the target detection efficiency, of the original problem. The proposed parallel approach presents a speedup of nearly one order of magnitude compared with the sequential implementation. This algorithm can be easily adapted to different instances, as searches in three dimensions. Its possible range of applicability covers problems in areas as diverse as automated computer searchers in high-capacity databases and animal foraging.
Parallelized direct execution simulation of message-passing parallel programs
NASA Technical Reports Server (NTRS)
Dickens, Phillip M.; Heidelberger, Philip; Nicol, David M.
1994-01-01
As massively parallel computers proliferate, there is growing interest in findings ways by which performance of massively parallel codes can be efficiently predicted. This problem arises in diverse contexts such as parallelizing computers, parallel performance monitoring, and parallel algorithm development. In this paper we describe one solution where one directly executes the application code, but uses a discrete-event simulator to model details of the presumed parallel machine such as operating system and communication network behavior. Because this approach is computationally expensive, we are interested in its own parallelization specifically the parallelization of the discrete-event simulator. We describe methods suitable for parallelized direct execution simulation of message-passing parallel programs, and report on the performance of such a system, Large Application Parallel Simulation Environment (LAPSE), we have built on the Intel Paragon. On all codes measured to date, LAPSE predicts performance well typically within 10 percent relative error. Depending on the nature of the application code, we have observed low slowdowns (relative to natively executing code) and high relative speedups using up to 64 processors.
Parallelizing alternating direction implicit solver on GPUs
Technology Transfer Automated Retrieval System (TEKTRAN)
We present a parallel Alternating Direction Implicit (ADI) solver on GPUs. Our implementation significantly improves existing implementations in two aspects. First, we address the scalability issue of existing Parallel Cyclic Reduction (PCR) implementations by eliminating their hardware resource con...
Theory and practice of parallel direct optimization.
Janies, Daniel A; Wheeler, Ward C
2002-01-01
Our ability to collect and distribute genomic and other biological data is growing at a staggering rate (Pagel, 1999). However, the synthesis of these data into knowledge of evolution is incomplete. Phylogenetic systematics provides a unifying intellectual approach to understanding evolution but presents formidable computational challenges. A fundamental goal of systematics, the generation of evolutionary trees, is typically approached as two distinct NP-complete problems: multiple sequence alignment and phylogenetic tree search. The number of cells in a multiple alignment matrix are exponentially related to sequence length. In addition, the number of evolutionary trees expands combinatorially with respect to the number of organisms or sequences to be examined. Biologically interesting datasets are currently comprised of hundreds of taxa and thousands of nucleotides and morphological characters. This standard will continue to grow with the advent of highly automated sequencing and development of character databases. Three areas of innovation are changing how evolutionary computation can be addressed: (1) novel concepts for determination of sequence homology, (2) heuristics and shortcuts in tree-search algorithms, and (3) parallel computing. In this paper and the online software documentation we describe the basic usage of parallel direct optimization as implemented in the software POY (ftp://ftp.amnh.org/pub/molecular/poy). PMID:11924490
Parallel Mechanisms for Visual Search in Zebrafish
Proulx, Michael J.; Parker, Matthew O.; Tahir, Yasser; Brennan, Caroline H.
2014-01-01
Parallel visual search mechanisms have been reported previously only in mammals and birds, and not animals lacking an expanded telencephalon such as bees. Here we report the first evidence for parallel visual search in fish using a choice task where the fish had to find a target amongst an increasing number of distractors. Following two-choice discrimination training, zebrafish were presented with the original stimulus within an increasing array of distractor stimuli. We found that zebrafish exhibit no significant change in accuracy and approach latency as the number of distractors increased, providing evidence of parallel processing. This evidence challenges theories of vertebrate neural architecture and the importance of an expanded telencephalon for the evolution of executive function. PMID:25353168
Parallel search of strongly ordered game trees
Marsland, T.A.; Campbell, M.
1982-12-01
The alpha-beta algorithm forms the basis of many programs that search game trees. A number of methods have been designed to improve the utility of the sequential version of this algorithm, especially for use in game-playing programs. These enhancements are based on the observation that alpha beta is most effective when the best move in each position is considered early in the search. Trees that have this so-called strong ordering property are not only of practical importance but possess characteristics that can be exploited in both sequential and parallel environments. This paper draws upon experiences gained during the development of programs which search chess game trees. Over the past decade major enhancements of the alpha beta algorithm have been developed by people building game-playing programs, and many of these methods will be surveyed and compared here. The balance of the paper contains a study of contemporary methods for searching chess game trees in parallel, using an arbitrary number of independent processors. To make efficient use of these processors, one must have a clear understanding of the basic properties of the trees actually traversed when alpha-beta cutoffs occur. This paper provides such insights and concludes with a brief description of a refinement to a standard parallel search algorithm for this problem. 33 references.
A Parallel VLSI Direction Finding Algorithm
NASA Astrophysics Data System (ADS)
van der Veen, Alle-Jan; Deprettere, Ed F.
1988-02-01
In this paper, we present a parallel VLSI architecture that is matched to a class of direction (frequency, pole) finding algorithms of type ESPRIT. The problem is modeled in such a way that it allows an easy to partition full parallel VLSI implementation, using unitary transformations only. The hard problem, the generalized Schur decomposition of a matrix pencil, is tackled using a modified Stewart Jacobi approach that improves convergence and simplifies parameter computations. The proposed architecture is a fixed size, 2-layer Jacobi iteration array that is matched to all sub-problems of the main problem: 2 QR-factorizations, 2 SVD's and a single GSD-problem. The arithmetic used is (pipelined) Cordic.
Massively Parallel Direct Simulation of Multiphase Flow
COOK,BENJAMIN K.; PREECE,DALE S.; WILLIAMS,J.R.
2000-08-10
The authors understanding of multiphase physics and the associated predictive capability for multi-phase systems are severely limited by current continuum modeling methods and experimental approaches. This research will deliver an unprecedented modeling capability to directly simulate three-dimensional multi-phase systems at the particle-scale. The model solves the fully coupled equations of motion governing the fluid phase and the individual particles comprising the solid phase using a newly discovered, highly efficient coupled numerical method based on the discrete-element method and the Lattice-Boltzmann method. A massively parallel implementation will enable the solution of large, physically realistic systems.
Parallel and Serial Processes in Visual Search
ERIC Educational Resources Information Center
Thornton, Thomas L.; Gilden, David L.
2007-01-01
A long-standing issue in the study of how people acquire visual information centers around the scheduling and deployment of attentional resources: Is the process serial, or is it parallel? A substantial empirical effort has been dedicated to resolving this issue. However, the results remain largely inconclusive because the methodologies that have…
Learning and Parallelization Boost Constraint Search
ERIC Educational Resources Information Center
Yun, Xi
2013-01-01
Constraint satisfaction problems are a powerful way to abstract and represent academic and real-world problems from both artificial intelligence and operations research. A constraint satisfaction problem is typically addressed by a sequential constraint solver running on a single processor. Rather than construct a new, parallel solver, this work…
Yoo, Jonghee; /Fermilab
2009-12-01
Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.
ERIC Educational Resources Information Center
Couvreur, T. R.; And Others
1994-01-01
Discusses the results of modeling the performance of searching large text databases via various parallel hardware architectures and search algorithms. The performance under load and the cost of each configuration are compared, and a common search workload used in the modeling is described. (Contains 26 references.) (LRW)
Multi-directional local search
Tricoire, Fabien
2012-01-01
This paper introduces multi-directional local search, a metaheuristic for multi-objective optimization. We first motivate the method and present an algorithmic framework for it. We then apply it to several known multi-objective problems such as the multi-objective multi-dimensional knapsack problem, the bi-objective set packing problem and the bi-objective orienteering problem. Experimental results show that our method systematically provides solution sets of comparable quality with state-of-the-art methods applied to benchmark instances of these problems, within reasonable CPU effort. We conclude that the proposed algorithmic framework is a viable option when solving multi-objective optimization problems. PMID:25140071
A parallelization of the row-searching algorithm
NASA Astrophysics Data System (ADS)
Yaici, Malika; Khaled, Hayet; Khaled, Zakia; Bentahar, Athmane
2012-11-01
The problem dealt in this paper concerns the parallelization of the row-searching algorithm which allows the search for linearly dependant rows on a given matrix and its implementation on MPI (Message Passing Interface) environment. This algorithm is largely used in control theory and more specifically in solving the famous diophantine equation. An introduction to the diophantine equation is presented, then two parallelization approaches of the algorithm are detailed. The first distributes a set of rows on processes (processors) and the second makes a distribution per blocks. The sequential algorithm and its two parallel forms are implemented using MPI routines, then modelled using UML (Unified Modelling Language) and finally evaluated using algorithmic complexity.
Self-Directed Job Search: An Introduction.
ERIC Educational Resources Information Center
Employment and Training Administration (DOL), Washington, DC.
This document provides an introduction to a job search training activity--self-directed job search--which can be implemented by Private Industry Councils (PICs) or Comprehensive Employment and Training Act (CETA) Prime Sponsors. The first section introduces self-directed job search for the economically disadvantaged. The next section describes…
Automatic Generation of Directive-Based Parallel Programs for Shared Memory Parallel Systems
NASA Technical Reports Server (NTRS)
Jin, Hao-Qiang; Yan, Jerry; Frumkin, Michael
2000-01-01
The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. Due to its ease of programming and its good performance, the technique has become very popular. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate directive-based, OpenMP, parallel programs. We outline techniques used in the implementation of the tool and present test results on the NAS parallel benchmarks and ARC3D, a CFD application. This work demonstrates the great potential of using computer-aided tools to quickly port parallel programs and also achieve good performance.
PLAST: parallel local alignment search tool for database comparison
Nguyen, Van Hoa; Lavenier, Dominique
2009-01-01
Background Sequence similarity searching is an important and challenging task in molecular biology and next-generation sequencing should further strengthen the need for faster algorithms to process such vast amounts of data. At the same time, the internal architecture of current microprocessors is tending towards more parallelism, leading to the use of chips with two, four and more cores integrated on the same die. The main purpose of this work was to design an effective algorithm to fit with the parallel capabilities of modern microprocessors. Results A parallel algorithm for comparing large genomic banks and targeting middle-range computers has been developed and implemented in PLAST software. The algorithm exploits two key parallel features of existing and future microprocessors: the SIMD programming model (SSE instruction set) and the multithreading concept (multicore). Compared to multithreaded BLAST software, tests performed on an 8-processor server have shown speedup ranging from 3 to 6 with a similar level of accuracy. Conclusion A parallel algorithmic approach driven by the knowledge of the internal microprocessor architecture allows significant speedup to be obtained while preserving standard sensitivity for similarity search problems. PMID:19821978
Parallel Harmony Search Based Distributed Energy Resource Optimization
Ceylan, Oguzhan; Liu, Guodong; Tomsovic, Kevin
2015-01-01
This paper presents a harmony search based parallel optimization algorithm to minimize voltage deviations in three phase unbalanced electrical distribution systems and to maximize active power outputs of distributed energy resources (DR). The main contribution is to reduce the adverse impacts on voltage profile during a day as photovoltaics (PVs) output or electrical vehicles (EVs) charging changes throughout a day. The IEEE 123- bus distribution test system is modified by adding DRs and EVs under different load profiles. The simulation results show that by using parallel computing techniques, heuristic methods may be used as an alternative optimization tool in electrical power distribution systems operation.
Optimised fine and coarse parallelism for sequence homology search.
Meng, Xiandong; Chaudhary, Vipin
2006-01-01
New biological experimental techniques are continuing to generate large amounts of data using DNA, RNA, human genome and protein sequences. The quantity and quality of data from these experiments makes analyses of their results very time-consuming, expensive and impractical. Searching on DNA and protein databases using sequence comparison algorithms has become one of the most powerful techniques to better understand the functionality of particular DNA, RNA, genome, or protein sequence. This paper presents a technique to effectively combine fine and coarse grain parallelism using general-purpose processors for sequence homology database searches. The results show that the classic Smith-Waterman sequence alignment algorithm achieves super linear performance with proper scheduling and multi-level parallel computing at no additional cost. PMID:18048183
Parallel Breadth-First Search on Distributed Memory Systems
Computational Research Division; Buluc, Aydin; Madduri, Kamesh
2011-04-15
Data-intensive, graph-based computations are pervasive in several scientific applications, and are known to to be quite challenging to implement on distributed memory systems. In this work, we explore the design space of parallel algorithms for Breadth-First Search (BFS), a key subroutine in several graph algorithms. We present two highly-tuned par- allel approaches for BFS on large parallel systems: a level-synchronous strategy that relies on a simple vertex-based partitioning of the graph, and a two-dimensional sparse matrix- partitioning-based approach that mitigates parallel commu- nication overhead. For both approaches, we also present hybrid versions with intra-node multithreading. Our novel hybrid two-dimensional algorithm reduces communication times by up to a factor of 3.5, relative to a common vertex based approach. Our experimental study identifies execu- tion regimes in which these approaches will be competitive, and we demonstrate extremely high performance on lead- ing distributed-memory parallel systems. For instance, for a 40,000-core parallel execution on Hopper, an AMD Magny- Cours based system, we achieve a BFS performance rate of 17.8 billion edge visits per second on an undirected graph of 4.3 billion vertices and 68.7 billion edges with skewed degree distribution.
Asynchronous parallel generating set search for linearly-constrained optimization.
Lewis, Robert Michael; Griffin, Joshua D.; Kolda, Tamara Gibson
2006-08-01
Generating set search (GSS) is a family of direct search methods that encompasses generalized pattern search and related methods. We describe an algorithm for asynchronous linearly-constrained GSS, which has some complexities that make it different from both the asynchronous bound-constrained case as well as the synchronous linearly-constrained case. The algorithm has been implemented in the APPSPACK software framework and we present results from an extensive numerical study using CUTEr test problems. We discuss the results, both positive and negative, and conclude that GSS is a reliable method for solving small-to-medium sized linearly-constrained optimization problems without derivatives.
Parallel/distributed direct method for solving linear systems
NASA Technical Reports Server (NTRS)
Lin, Avi
1990-01-01
A new family of parallel schemes for directly solving linear systems is presented and analyzed. It is shown that these schemes exhibit a near optimal performance and enjoy several important features: (1) For large enough linear systems, the design of the appropriate paralleled algorithm is insensitive to the number of processors as its performance grows monotonically with them; (2) It is especially good for large matrices, with dimensions large relative to the number of processors in the system; (3) It can be used in both distributed parallel computing environments and tightly coupled parallel computing systems; and (4) This set of algorithms can be mapped onto any parallel architecture without any major programming difficulties or algorithmical changes.
Information-Limited Parallel Processing in Difficult Heterogeneous Covert Visual Search
ERIC Educational Resources Information Center
Dosher, Barbara Anne; Han, Songmei; Lu, Zhong-Lin
2010-01-01
Difficult visual search is often attributed to time-limited serial attention operations, although neural computations in the early visual system are parallel. Using probabilistic search models (Dosher, Han, & Lu, 2004) and a full time-course analysis of the dynamics of covert visual search, we distinguish unlimited capacity parallel versus serial…
Series-parallel method of direct solar array regulation
NASA Technical Reports Server (NTRS)
Gooder, S. T.
1976-01-01
A 40 watt experimental solar array was directly regulated by shorting out appropriate combinations of series and parallel segments of a solar array. Regulation switches were employed to control the array at various set-point voltages between 25 and 40 volts. Regulation to within + or - 0.5 volt was obtained over a range of solar array temperatures and illumination levels as an active load was varied from open circuit to maximum available power. A fourfold reduction in regulation switch power dissipation was achieved with series-parallel regulation as compared to the usual series-only switching for direct solar array regulation.
Parallel Performance Optimization of the Direct Simulation Monte Carlo Method
NASA Astrophysics Data System (ADS)
Gao, Da; Zhang, Chonglin; Schwartzentruber, Thomas
2009-11-01
Although the direct simulation Monte Carlo (DSMC) particle method is more computationally intensive compared to continuum methods, it is accurate for conditions ranging from continuum to free-molecular, accurate in highly non-equilibrium flow regions, and holds potential for incorporating advanced molecular-based models for gas-phase and gas-surface interactions. As available computer resources continue their rapid growth, the DSMC method is continually being applied to increasingly complex flow problems. Although processor clock speed continues to increase, a trend of increasing multi-core-per-node parallel architectures is emerging. To effectively utilize such current and future parallel computing systems, a combined shared/distributed memory parallel implementation (using both Open Multi-Processing (OpenMP) and Message Passing Interface (MPI)) of the DSMC method is under development. The parallel implementation of a new state-of-the-art 3D DSMC code employing an embedded 3-level Cartesian mesh will be outlined. The presentation will focus on performance optimization strategies for DSMC, which includes, but is not limited to, modified algorithm designs, practical code-tuning techniques, and parallel performance optimization. Specifically, key issues important to the DSMC shared memory (OpenMP) parallel performance are identified as (1) granularity (2) load balancing (3) locality and (4) synchronization. Challenges and solutions associated with these issues as they pertain to the DSMC method will be discussed.
Optimal directed searches for continuous gravitational waves
NASA Astrophysics Data System (ADS)
Ming, Jing; Krishnan, Badri; Papa, Maria Alessandra; Aulbert, Carsten; Fehrmann, Henning
2016-03-01
Wide parameter space searches for long-lived continuous gravitational wave signals are computationally limited. It is therefore critically important that the available computational resources are used rationally. In this paper we consider directed searches, i.e., targets for which the sky position is known accurately but the frequency and spin-down parameters are completely unknown. Given a list of such potential astrophysical targets, we therefore need to prioritize. On which target(s) should we spend scarce computing resources? What parameter space region in frequency and spin-down should we search through? Finally, what is the optimal search setup that we should use? In this paper we present a general framework that allows us to solve all three of these problems. This framework is based on maximizing the probability of making a detection subject to a constraint on the maximum available computational cost. We illustrate the method for a simplified problem.
Interpreting Ellenore Flood's Self-Directed Search.
ERIC Educational Resources Information Center
Rayman, Jack R.
1998-01-01
Presents and responds to questions the author would ask himself before meeting with a client whose Self-Directed Search he has reviewed. The client in the case is a 29-year-old female high school teacher faced with four occupational opportunities from which she is trying to make a choice. (MKA)
Renaut, R.; He, Q.
1994-12-31
In a new parallel iterative algorithm for unconstrained optimization by multisplitting is proposed. In this algorithm the original problem is split into a set of small optimization subproblems which are solved using well known sequential algorithms. These algorithms are iterative in nature, e.g. DFP variable metric method. Here the authors use sequential algorithms based on an inexact subspace search, which is an extension to the usual idea of an inexact fine search. Essentially the idea of the inexact line search for nonlinear minimization is that at each iteration the authors only find an approximate minimum in the line search direction. Hence by inexact subspace search, they mean that, instead of finding the minimum of the subproblem at each interation, they do an incomplete down hill search to give an approximate minimum. Some convergence and numerical results for this algorithm will be presented. Further, the original theory will be generalized to the situation with a singular Hessian. Applications for nonlinear least squares problems will be presented. Experimental results will be presented for implementations on an Intel iPSC/860 Hypercube with 64 nodes as well as on the Intel Paragon.
Blocksome, Michael A.; Mamidala, Amith R.
2013-09-03
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.
Blocksome, Michael A; Mamidala, Amith R
2014-02-11
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.
Panel on future directions in parallel computer architecture
VanTilborg, A.M. )
1989-06-01
One of the program highlights of the 15th Annual International Symposium on Computer Architecture, held May 30 - June 2, 1988 in Honolulu, was a panel session on future directions in parallel computer architecture. The panel was organized and chaired by the author, and was comprised of Prof. Jack Dennis (NASA Ames Research Institute for Advanced Computer Science), Prof. H.T. Kung (Carnegie Mellon), and Dr. Burton Smith (Tera Computer Company). The objective of the panel was to identify the likely trajectory of future parallel computer system progress, particularly from the sandpoint of marketplace acceptance. Approximately 250 attendees participated in the session, in which each panelist began with a ten minute viewgraph explanation of his views, followed by an open and sometimes lively exchange with the audience and fellow panelists. The session ran for ninety minutes.
The LUX direct dark matter search
NASA Astrophysics Data System (ADS)
Murphy, A. St. J.
2016-06-01
As evidenced by the numerous contributions on the topic at this meeting, the IX International Conference on Interconnections between Particle Physics and Cosmology (PPC2015), the direct detection of dark matter remains as one of the highest priorities in both particle physics and cosmology. In 2013 the LUX direct dark matter search collaboration reported the most stringent constraints to-date on the spin-independent WIMP-nucleon interaction cross section. Here we present a summary of that work, describe recent technical improvements, and results from new calibrations. Prospects for the future of the LUX scientific program are reported, together with the outlook for its successor project, LZ.
Armentum: a hybrid direct search optimization methodology
NASA Astrophysics Data System (ADS)
Briones, Francisco Zorrilla
2016-07-01
Design of experiments (DOE) offers a great deal of benefits to any manufacturing organization, such as characterization of variables and sets the path for the optimization of the levels of these variables (settings) trough the Response surface methodology, leading to process capability improvement, efficiency increase, cost reduction. Unfortunately, the use of these methodologies is very limited due to various situations. Some of these situations involve the investment on production time, materials, personnel, equipment; most of organizations are not willing to invest in these resources or are not capable because of production demands, besides the fact that they will produce non-conformant product (scrap) during the process of experimentation. Other methodologies, in the form of algorithms, may be used to optimize a process. Known as direct search methods, these algorithms search for an optimum on an unknown function, trough the search of the best combination of the levels on the variables considered in the analysis. These methods have a very different application strategy, they search on the best combination of parameters, during the normal production run, calculating the change in the input variables and evaluating the results in small steps until an optimum is reached. These algorithms are very sensible to internal noise (variation of the input variables), among other disadvantages. In this paper it is made a comparison between the classical experimental design and one of these direct search methods, developed by Nelder and Mead (1965), known as the Nelder Mead simplex (NMS), trying to overcome the disadvantages and maximize the advantages of both approaches, trough a proposed combination of the two methodologies.
Improving Data Transfer Throughput with Direct Search Optimization
Balaprakash, Prasanna; Morozov, Vitali; Kettimuthu, Rajkumar; Kumaran, Kalyan; Foster, Ian
2016-01-01
Improving data transfer throughput over high-speed long-distance networks has become increasingly difficult. Numerous factors such as nondeterministic congestion, dynamics of the transfer protocol, and multiuser and multitask source and destination endpoints, as well as interactions among these factors, contribute to this difficulty. A promising approach to improving throughput consists in using parallel streams at the application layer.We formulate and solve the problem of choosing the number of such streams from a mathematical optimization perspective. We propose the use of direct search methods, a class of easy-to-implement and light-weight mathematical optimization algorithms, to improve the performance of data transfers by dynamically adapting the number of parallel streams in a manner that does not require domain expertise, instrumentation, analytical models, or historic data. We apply our method to transfers performed with the GridFTP protocol, and illustrate the effectiveness of the proposed algorithm when used within Globus, a state-of-the-art data transfer tool, on productionWAN links and servers. We show that when compared to user default settings our direct search methods can achieve up to 10x performance improvement under certain conditions. We also show that our method can overcome performance degradation due to external compute and network load on source end points, a common scenario at high performance computing facilities.
Direct drive digital servo press with high parallel control
NASA Astrophysics Data System (ADS)
Murata, Chikara; Yabe, Jun; Endou, Junichi; Hasegawa, Kiyoshi
2013-12-01
Direct drive digital servo press has been developed as the university-industry joint research and development since 1998. On the basis of this result, 4-axes direct drive digital servo press has been developed and in the market on April of 2002. This servo press is composed of 1 slide supported by 4 ball screws and each axis has linearscale measuring the position of each axis with high accuracy less than μm order level. Each axis is controlled independently by servo motor and feedback system. This system can keep high level parallelism and high accuracy even with high eccentric load. Furthermore the 'full stroke full power' is obtained by using ball screws. Using these features, new various types of press forming and stamping have been obtained by development and production. The new stamping and forming methods are introduced and 'manufacturing' need strategy of press forming with high added value and also the future direction of press forming are also introduced.
Nonlinearly-constrained optimization using asynchronous parallel generating set search.
Griffin, Joshua D.; Kolda, Tamara Gibson
2007-05-01
Many optimization problems in computational science and engineering (CS&E) are characterized by expensive objective and/or constraint function evaluations paired with a lack of derivative information. Direct search methods such as generating set search (GSS) are well understood and efficient for derivative-free optimization of unconstrained and linearly-constrained problems. This paper addresses the more difficult problem of general nonlinear programming where derivatives for objective or constraint functions are unavailable, which is the case for many CS&E applications. We focus on penalty methods that use GSS to solve the linearly-constrained problems, comparing different penalty functions. A classical choice for penalizing constraint violations is {ell}{sub 2}{sup 2}, the squared {ell}{sub 2} norm, which has advantages for derivative-based optimization methods. In our numerical tests, however, we show that exact penalty functions based on the {ell}{sub 1}, {ell}{sub 2}, and {ell}{sub {infinity}} norms converge to good approximate solutions more quickly and thus are attractive alternatives. Unfortunately, exact penalty functions are discontinuous and consequently introduce theoretical problems that degrade the final solution accuracy, so we also consider smoothed variants. Smoothed-exact penalty functions are theoretically attractive because they retain the differentiability of the original problem. Numerically, they are a compromise between exact and {ell}{sub 2}{sup 2}, i.e., they converge to a good solution somewhat quickly without sacrificing much solution accuracy. Moreover, the smoothing is parameterized and can potentially be adjusted to balance the two considerations. Since many CS&E optimization problems are characterized by expensive function evaluations, reducing the number of function evaluations is paramount, and the results of this paper show that exact and smoothed-exact penalty functions are well-suited to this task.
Indirect and direct search for dark matter
NASA Astrophysics Data System (ADS)
Klasen, M.; Pohl, M.; Sigl, G.
2015-11-01
The majority of the matter in the universe is still unidentified and under investigation by both direct and indirect means. Many experiments searching for the recoil of dark-matter particles off target nuclei in underground laboratories have established increasingly strong constraints on the mass and scattering cross sections of weakly interacting particles, and some have even seen hints at a possible signal. Other experiments search for a possible mixing of photons with light scalar or pseudo-scalar particles that could also constitute dark matter. Furthermore, annihilation or decay of dark matter can contribute to charged cosmic rays, photons at all energies, and neutrinos. Many existing and future ground-based and satellite experiments are sensitive to such signals. Finally, data from the Large Hadron Collider at CERN are scrutinized for missing energy as a signature of new weakly interacting particles that may be related to dark matter. In this review article we summarize the status of the field with an emphasis on the complementarity between direct detection in dedicated laboratory experiments, indirect detection in the cosmic radiation, and searches at particle accelerators.
Dark matter: an overview of direct searches.
NASA Astrophysics Data System (ADS)
Gerbier, G.
1991-11-01
The purpose of this paper is to give a flavour of the experimental challenges raised by the detection of dark matter. It summarizes the detection methods of the MACHO's, celestial bodies candidate for the baryonic dark matter and of the WIMP's, particles candidate for the non-baryonic dark matter. Current status and hopes are given. Two side aspects not directly related to the experimental search will be evoked to illustrate that the dark matter puzzle is indeed at the common frontier of various fields of physics.
EDELWEISS experiment: Direct search for dark matter
Lubashevskiy, A. V. Yakushev, E. A.
2008-07-15
The EDELWEISS experiment is aimed at direct searches for nonbaryonic cold dark matter by means of cryogenic germanium detectors. It is deployed at the LSM underground laboratory in the Frejus tunnel, which connects France and Italy. The results of the experimentmade it possible to set a limit on the spin-independent cross section for the scattering of weak-interacting massive particles (WIMP) at a level of 10{sup -6} pb. Data from 21 detectors of total mass about 7 kg are being accumulated at the present time.
Dark Matter: Collider vs. direct searches
NASA Astrophysics Data System (ADS)
Jacques, T.
2016-07-01
Effective Field Theories (EFTs) are a useful tool across a wide range of DM searches, including LHC searches and direct detection. Given the current lack of indications about the nature of the DM particle and its interactions, a model independent interpretation of the collider bounds appears mandatory, especially in complementarity with the reinterpretation of the exclusion limits within a choice of simplified models, which cannot exhaust the set of possible completions of an effective Lagrangian. However EFTs must be used with caution at LHC energies, where the energy scale of the interaction is at a scale where the EFT approximation can no longer be assumed to be valid. Here we introduce some tools that allow the validity of the EFT approximation to be quantified, and provide case studies for two operators. We also show a technique that allows EFT constraints from collider searches to be made substantially more robust, even at large center-of-mass energies. This allows EFT constraints from different classes of experiment to be compared in a much more robust manner.
A directed search for extraterrestrial laser signals
NASA Technical Reports Server (NTRS)
Betz, A.
1991-01-01
The focus of NASA's Search for Extraterrestrial Intelligence (SETI) Program is on microwave frequencies, where receivers have the best sensitivities for the detection of narrowband signals. Such receivers, when coupled to existing radio telescopes, form an optimal system for broad area searches over the sky. For a directed search, however, such as toward specific stars, calculations show that infrared wavelengths can be equally as effective as radio wavelengths for establishing an interstellar communication link. This is true because infrared telescopes have higher directivities (gains) that effectively compensate for the lower sensitivities of infrared receivers. The result is that, for a given level of transmitted power, the signal to noise ratio for communications is equally as good at infrared and radio wavelengths. It should also be noted that the overall sensitivities of both receiver systems are quite close to their respective fundamental limits: background thermal noise for the radio frequency system and quantum noise for the infrared receiver. Consequently, the choice of an optimum communication frequency may well be determined more by the achievable power levels of transmitters rather than the ultimate sensitivities of receivers at any specific frequency. In the infrared, CO2 laser transmitters with power levels greater than 1 MW can already be built on Earth. For a slightly more advanced civilization, a similar but enormously more powerful laser may be possible using a planetary atmosphere rich in CO2. Because of these possibilities and our own ignorance of what is really the optimum search frequency, a search for narrowband signals at infrared frequencies should be a part of a balanced SETI Program. Detection of narrowband infrared signals is best done with a heterodyne receiver functionally identical to a microwave spectral line receiver. We have built such a receiver for the detection of CO2 laser radiation at wavelengths near 10 microns. The
NASA Technical Reports Server (NTRS)
Hanebutte, Ulf R.; Joslin, Ronald D.; Zubair, Mohammad
1994-01-01
The implementation and the performance of a parallel spatial direct numerical simulation (PSDNS) code are reported for the IBM SP1 supercomputer. The spatially evolving disturbances that are associated with laminar-to-turbulent in three-dimensional boundary-layer flows are computed with the PS-DNS code. By remapping the distributed data structure during the course of the calculation, optimized serial library routines can be utilized that substantially increase the computational performance. Although the remapping incurs a high communication penalty, the parallel efficiency of the code remains above 40% for all performed calculations. By using appropriate compile options and optimized library routines, the serial code achieves 52-56 Mflops on a single node of the SP1 (45% of theoretical peak performance). The actual performance of the PSDNS code on the SP1 is evaluated with a 'real world' simulation that consists of 1.7 million grid points. One time step of this simulation is calculated on eight nodes of the SP1 in the same time as required by a Cray Y/MP for the same simulation. The scalability information provides estimated computational costs that match the actual costs relative to changes in the number of grid points.
ERIC Educational Resources Information Center
Sung, Kyongje
2008-01-01
Participants searched a visual display for a target among distractors. Each of 3 experiments tested a condition proposed to require attention and for which certain models propose a serial search. Serial versus parallel processing was tested by examining effects on response time means and cumulative distribution functions. In 2 conditions, the…
Direct Dark Matter search with XENON100
NASA Astrophysics Data System (ADS)
Orrigo, S. E. A.
2016-07-01
The XENON100 experiment is the second phase of the XENON program for the direct detection of the dark matter in the universe. The XENON100 detector is a two-phase Time Projection Chamber filled with 161 kg of ultra pure liquid xenon. The results from 224.6 live days of dark matter search with XENON100 are presented. No evidence for dark matter in the form of WIMPs is found, excluding spin-independent WIMP-nucleon scattering cross sections above 2 × 10-45 cm2 for a 55 GeV/c2 WIMP at 90% confidence level (C.L.). The most stringent limit is established on the spin-dependent WIMP-neutron interaction for WIMP masses above 6 GeV/c2, with a minimum cross section of 3.5 × 10-40 cm2 (90% C.L.) for a 45 GeV/c2 WIMP. The same dataset is used to search for axions and axion-like-particles. The best limits to date are set on the axion-electron coupling constant for solar axions, gAe < 7.7 × 10-12 (90% C.L.), and for axion-like-particles, gAe < 1 × 10-12 (90% C.L.) for masses between 5 and 10 keV/c2.
GRAPES: A Software for Parallel Searching on Biological Graphs Targeting Multi-Core Architectures
Bombieri, Nicola; Pulvirenti, Alfredo; Ferro, Alfredo; Shasha, Dennis
2013-01-01
Biological applications, from genomics to ecology, deal with graphs that represents the structure of interactions. Analyzing such data requires searching for subgraphs in collections of graphs. This task is computationally expensive. Even though multicore architectures, from commodity computers to more advanced symmetric multiprocessing (SMP), offer scalable computing power, currently published software implementations for indexing and graph matching are fundamentally sequential. As a consequence, such software implementations (i) do not fully exploit available parallel computing power and (ii) they do not scale with respect to the size of graphs in the database. We present GRAPES, software for parallel searching on databases of large biological graphs. GRAPES implements a parallel version of well-established graph searching algorithms, and introduces new strategies which naturally lead to a faster parallel searching system especially for large graphs. GRAPES decomposes graphs into subcomponents that can be efficiently searched in parallel. We show the performance of GRAPES on representative biological datasets containing antiviral chemical compounds, DNA, RNA, proteins, protein contact maps and protein interactions networks. PMID:24167551
GRAPES: a software for parallel searching on biological graphs targeting multi-core architectures.
Giugno, Rosalba; Bonnici, Vincenzo; Bombieri, Nicola; Pulvirenti, Alfredo; Ferro, Alfredo; Shasha, Dennis
2013-01-01
Biological applications, from genomics to ecology, deal with graphs that represents the structure of interactions. Analyzing such data requires searching for subgraphs in collections of graphs. This task is computationally expensive. Even though multicore architectures, from commodity computers to more advanced symmetric multiprocessing (SMP), offer scalable computing power, currently published software implementations for indexing and graph matching are fundamentally sequential. As a consequence, such software implementations (i) do not fully exploit available parallel computing power and (ii) they do not scale with respect to the size of graphs in the database. We present GRAPES, software for parallel searching on databases of large biological graphs. GRAPES implements a parallel version of well-established graph searching algorithms, and introduces new strategies which naturally lead to a faster parallel searching system especially for large graphs. GRAPES decomposes graphs into subcomponents that can be efficiently searched in parallel. We show the performance of GRAPES on representative biological datasets containing antiviral chemical compounds, DNA, RNA, proteins, protein contact maps and protein interactions networks. PMID:24167551
Directions in parallel programming: HPF, shared virtual memory and object parallelism in pC++
NASA Technical Reports Server (NTRS)
Bodin, Francois; Priol, Thierry; Mehrotra, Piyush; Gannon, Dennis
1994-01-01
Fortran and C++ are the dominant programming languages used in scientific computation. Consequently, extensions to these languages are the most popular for programming massively parallel computers. We discuss two such approaches to parallel Fortran and one approach to C++. The High Performance Fortran Forum has designed HPF with the intent of supporting data parallelism on Fortran 90 applications. HPF works by asking the user to help the compiler distribute and align the data structures with the distributed memory modules in the system. Fortran-S takes a different approach in which the data distribution is managed by the operating system and the user provides annotations to indicate parallel control regions. In the case of C++, we look at pC++ which is based on a concurrent aggregate parallel model.
A proposed experimental search for chameleons using asymmetric parallel plates
NASA Astrophysics Data System (ADS)
Burrage, Clare; Copeland, Edmund J.; Stevenson, James A.
2016-08-01
Light scalar fields coupled to matter are a common consequence of theories of dark energy and attempts to solve the cosmological constant problem. The chameleon screening mechanism is commonly invoked in order to suppress the fifth forces mediated by these scalars, sufficiently to avoid current experimental constraints, without fine tuning. The force is suppressed dynamically by allowing the mass of the scalar to vary with the local density. Recently it has been shown that near future cold atoms experiments using atom-interferometry have the ability to access a large proportion of the chameleon parameter space. In this work we demonstrate how experiments utilising asymmetric parallel plates can push deeper into the remaining parameter space available to the chameleon.
Lü, Qiang; Xia, Xiao-Yan; Chen, Rong; Miao, Da-Jun; Chen, Sha-Sha; Quan, Li-Jun; Li, Hai-Ou
2012-01-01
Background Protein structure prediction (PSP), which is usually modeled as a computational optimization problem, remains one of the biggest challenges in computational biology. PSP encounters two difficult obstacles: the inaccurate energy function problem and the searching problem. Even if the lowest energy has been luckily found by the searching procedure, the correct protein structures are not guaranteed to obtain. Results A general parallel metaheuristic approach is presented to tackle the above two problems. Multi-energy functions are employed to simultaneously guide the parallel searching threads. Searching trajectories are in fact controlled by the parameters of heuristic algorithms. The parallel approach allows the parameters to be perturbed during the searching threads are running in parallel, while each thread is searching the lowest energy value determined by an individual energy function. By hybridizing the intelligences of parallel ant colonies and Monte Carlo Metropolis search, this paper demonstrates an implementation of our parallel approach for PSP. 16 classical instances were tested to show that the parallel approach is competitive for solving PSP problem. Conclusions This parallel approach combines various sources of both searching intelligences and energy functions, and thus predicts protein conformations with good quality jointly determined by all the parallel searching threads and energy functions. It provides a framework to combine different searching intelligence embedded in heuristic algorithms. It also constructs a container to hybridize different not-so-accurate objective functions which are usually derived from the domain expertise. PMID:23028708
Parallel graph search: application to intraretinal layer segmentation of 3D macular OCT scans
NASA Astrophysics Data System (ADS)
Lee, Kyungmoo; Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan
2012-02-01
Image segmentation is of paramount importance for quantitative analysis of medical image data. Recently, a 3-D graph search method which can detect globally optimal interacting surfaces with respect to the cost function of volumetric images has been introduced, and its utility demonstrated in several application areas. Although the method provides excellent segmentation accuracy, its limitation is a slow processing speed when many surfaces are simultaneously segmented in large volumetric datasets. Here, we propose a novel method of parallel graph search, which overcomes the limitation and allows the quick detection of multiple surfaces. To demonstrate the obtained performance with respect to segmentation accuracy and processing speedup, the new approach was applied to retinal optical coherence tomography (OCT) image data and compared with the performance of the former non-parallel method. Our parallel graph search methods for single and double surface detection are approximately 267 and 181 times faster than the original graph search approach in 5 macular OCT volumes (200 x 5 x 1024 voxels) acquired from the right eyes of 5 normal subjects. The resulting segmentation differences were small as demonstrated by the mean unsigned differences between the non-parallel and parallel methods of 0.0 +/- 0.0 voxels (0.0 +/- 0.0 μm) and 0.27 +/- 0.34 voxels (0.53 +/- 0.66 μm) for the single- and dual-surface approaches, respectively.
Parallel simulations of Grover's algorithm for closest match search in neutron monitor data
NASA Astrophysics Data System (ADS)
Kussainov, Arman; White, Yelena
We are studying the parallel implementations of Grover's closest match search algorithm for neutron monitor data analysis. This includes data formatting, and matching quantum parameters to a conventional structure of a chosen programming language and selected experimental data type. We have employed several workload distribution models based on acquired data and search parameters. As a result of these simulations, we have an understanding of potential problems that may arise during configuration of real quantum computational devices and the way they could run tasks in parallel. The work was supported by the Science Committee of the Ministry of Science and Education of the Republic of Kazakhstan Grant #2532/GF3.
Parallel state-space search for a first solution with consistent linear speedups
Kale, L.V.; Saletore, V.A. )
1989-01-01
Consider the problem of exploring a large state-space for a goal state. Although many such states may exist in the state-space, finding any one state satisfying the requirements is sufficient. All the methods known until now for conducting such search in parallel using multiprocessors fail to provide consistent linear speedups over sequential execution. The speedups vary between sub-linear speedups over sequential execution. The speedup, giving rise to speedup anomalies reported in literature. The authors present a prioritizing strategy which yields consistent speedups that are close to P with P processors, and that monotonically increase with the addition of processors. It achieves this by keeping the total number of nodes expanded during parallel search very close to that in a sequential search. In addition, the strategy requires substantially smaller memory over other methods. The performance of this strategy is demonstrated on a multiprocessor with several state-space search problems.
Parallel direct numerical simulation of three-dimensional spray formation
NASA Astrophysics Data System (ADS)
Chergui, Jalel; Juric, Damir; Shin, Seungwon; Kahouadji, Lyes; Matar, Omar
2015-11-01
We present numerical results for the breakup mechanism of a liquid jet surrounded by a fast coaxial flow of air with density ratio (water/air) ~ 1000 and kinematic viscosity ratio ~ 60. We use code BLUE, a three-dimensional, two-phase, high performance, parallel numerical code based on a hybrid Front-Tracking/Level Set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces and a precise treatment of surface tension forces. The parallelization of the code is based on the technique of domain decomposition where the velocity field is solved by a parallel GMRes method for the viscous terms and the pressure by a parallel multigrid/GMRes method. Communication is handled by MPI message passing procedures. The interface method is also parallelized and defines the interface both by a discontinuous density field as well as by a triangular Lagrangian mesh and allows the interface to undergo large deformations including the rupture and/or coalescence of interfaces. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Attentional Control via Parallel Target-Templates in Dual-Target Search
Barrett, Doug J. K.; Zobay, Oliver
2014-01-01
Simultaneous search for two targets has been shown to be slower and less accurate than independent searches for the same two targets. Recent research suggests this ‘dual-target cost’ may be attributable to a limit in the number of target-templates than can guide search at any one time. The current study investigated this possibility by comparing behavioural responses during single- and dual-target searches for targets defined by their orientation. The results revealed an increase in reaction times for dual- compared to single-target searches that was largely independent of the number of items in the display. Response accuracy also decreased on dual- compared to single-target searches: dual-target accuracy was higher than predicted by a model restricting search guidance to a single target-template and lower than predicted by a model simulating two independent single-target searches. These results are consistent with a parallel model of dual-target search in which attentional control is exerted by more than one target-template at a time. The requirement to maintain two target-templates simultaneously, however, appears to impose a reduction in the specificity of the memory representation that guides search for each target. PMID:24489793
Performance analysis of parallel branch and bound search with the hypercube architecture
NASA Technical Reports Server (NTRS)
Mraz, Richard T.
1987-01-01
With the availability of commercial parallel computers, researchers are examining new classes of problems which might benefit from parallel computing. This paper presents results of an investigation of the class of search intensive problems. The specific problem discussed is the Least-Cost Branch and Bound search method of deadline job scheduling. The object-oriented design methodology was used to map the problem into a parallel solution. While the initial design was good for a prototype, the best performance resulted from fine-tuning the algorithm for a specific computer. The experiments analyze the computation time, the speed up over a VAX 11/785, and the load balance of the problem when using loosely coupled multiprocessor system based on the hypercube architecture.
NASA Astrophysics Data System (ADS)
Poghosyan, G.; Matta, S.; Streit, A.; Bejger, M.; Królak, A.
2015-03-01
The parallelization, design and scalability of the PolGrawAllSky code to search for periodic gravitational waves from rotating neutron stars is discussed. The code is based on an efficient implementation of the F-statistic using the Fast Fourier Transform algorithm. To perform an analysis of data from the advanced LIGO and Virgo gravitational wave detectors' network, which will start operating in 2015, hundreds of millions of CPU hours will be required-the code utilizing the potential of massively parallel supercomputers is therefore mandatory. We have parallelized the code using the Message Passing Interface standard, implemented a mechanism for combining the searches at different sky-positions and frequency bands into one extremely scalable program. The parallel I/O interface is used to escape bottlenecks, when writing the generated data into file system. This allowed to develop a highly scalable computation code, which would enable the data analysis at large scales on acceptable time scales. Benchmarking of the code on a Cray XE6 system was performed to show efficiency of our parallelization concept and to demonstrate scaling up to 50 thousand cores in parallel.
Target intersection probabilities for parallel-line and continuous-grid types of search
McCammon, R.B.
1977-01-01
The expressions for calculating the probability of intersection of hidden targets of different sizes and shapes for parallel-line and continuous-grid types of search can be formulated by vsing the concept of conditional probability. When the prior probability of the orientation of a widden target is represented by a uniform distribution, the calculated posterior probabilities are identical with the results obtained by the classic methods of probability. For hidden targets of different sizes and shapes, the following generalizations about the probability of intersection can be made: (1) to a first approximation, the probability of intersection of a hidden target is proportional to the ratio of the greatest dimension of the target (viewed in plane projection) to the minimum line spacing of the search pattern; (2) the shape of the hidden target does not greatly affect the probability of the intersection when the largest dimension of the target is small relative to the minimum spacing of the search pattern, (3) the probability of intersecting a target twice for a particular type of search can be used as a lower bound if there is an element of uncertainty of detection for a particular type of tool; (4) the geometry of the search pattern becomes more critical when the largest dimension of the target equals or exceeds the minimum spacing of the search pattern; (5) for elongate targets, the probability of intersection is greater for parallel-line search than for an equivalent continuous square-grid search when the largest dimension of the target is less than the minimum spacing of the search pattern, whereas the opposite is true when the largest dimension exceeds the minimum spacing; (6) the probability of intersection for nonorthogonal continuous-grid search patterns is not greatly different from the probability of intersection for the equivalent orthogonal continuous-grid pattern when the orientation of the target is unknown. The probability of intersection for an
Parallel database search and prime factorization with magnonic holographic memory devices
Khitun, Alexander
2015-12-28
In this work, we describe the capabilities of Magnonic Holographic Memory (MHM) for parallel database search and prime factorization. MHM is a type of holographic device, which utilizes spin waves for data transfer and processing. Its operation is based on the correlation between the phases and the amplitudes of the input spin waves and the output inductive voltage. The input of MHM is provided by the phased array of spin wave generating elements allowing the producing of phase patterns of an arbitrary form. The latter makes it possible to code logic states into the phases of propagating waves and exploit wave superposition for parallel data processing. We present the results of numerical modeling illustrating parallel database search and prime factorization. The results of numerical simulations on the database search are in agreement with the available experimental data. The use of classical wave interference may results in a significant speedup over the conventional digital logic circuits in special task data processing (e.g., √n in database search). Potentially, magnonic holographic devices can be implemented as complementary logic units to digital processors. Physical limitations and technological constrains of the spin wave approach are also discussed.
Parallel database search and prime factorization with magnonic holographic memory devices
NASA Astrophysics Data System (ADS)
Khitun, Alexander
2015-12-01
In this work, we describe the capabilities of Magnonic Holographic Memory (MHM) for parallel database search and prime factorization. MHM is a type of holographic device, which utilizes spin waves for data transfer and processing. Its operation is based on the correlation between the phases and the amplitudes of the input spin waves and the output inductive voltage. The input of MHM is provided by the phased array of spin wave generating elements allowing the producing of phase patterns of an arbitrary form. The latter makes it possible to code logic states into the phases of propagating waves and exploit wave superposition for parallel data processing. We present the results of numerical modeling illustrating parallel database search and prime factorization. The results of numerical simulations on the database search are in agreement with the available experimental data. The use of classical wave interference may results in a significant speedup over the conventional digital logic circuits in special task data processing (e.g., √n in database search). Potentially, magnonic holographic devices can be implemented as complementary logic units to digital processors. Physical limitations and technological constrains of the spin wave approach are also discussed.
Directional dark matter searches with carbon nanotubes
NASA Astrophysics Data System (ADS)
Capparelli, L. M.; Cavoto, G.; Mazzilli, D.; Polosa, A. D.
2015-09-01
A new solution to the problem of dark matter directional detection might come from the use of large arrays of aligned carbon nanotubes. We calculate the expected rate of carbon ions channeled in single-wall nanotubes once extracted by the scattering with a massive dark matter particle. Depending on its initial kinematic conditions, the ejected carbon ion may be channeled in the nanotube array or stop in the bulk. The orientation of the array with respect to the direction of motion of the Sun has an appreciable effect on the channeling probability. This provides the required anisotropic response for a directional detector.
Tan, Lu; Geppert, Hanna; Sisay, Mihiret T; Gütschow, Michael; Bajorath, Jürgen
2008-10-01
Similarity searching is often used to preselect compounds for docking, thereby decreasing the size of screening databases. However, integrated structure- and ligand-based screening schemes are rare at present. Docking and similarity search calculations using 2D fingerprints were carried out in a comparative manner on nine target enzymes, for which significant numbers of diverse inhibitors could be obtained. In the absence of knowledge-based docking constraints and target-directed parameter optimisation, fingerprint searching displayed a clear preference over docking calculations. Alternative combinations of docking and similarity search results were investigated and found to further increase compound recall of individual methods in a number of instances. When the results of similarity searching and docking were combined, parallel selection of candidate compounds from individual rankings was generally superior to rank fusion. We suggest that complementary results from docking and similarity searching can be captured by integrated compound selection schemes. PMID:18651695
A Direct Search for Dirac Magnetic Monopoles
Mulhearn, Michael James
2004-10-01
Magnetic monopoles are highly ionizing and curve in the direction of the magnetic field. A new dedicated magnetic monopole trigger at CDF, which requires large light pulses in the scintillators of the time-of-flight system, remains highly efficient to monopoles while consuming a tiny fraction of the available trigger bandwidth. A specialized offline reconstruction checks the central drift chamber for large dE/dx tracks which do not curve in the plane perpendicular to the magnetic field. We observed zero monopole candidate events in 35.7 pb{sup -1} of proton-antiproton collisions at {radical}s = 1.96 TeV. This implies a monopole production cross section limit {sigma} < 0.2 pb for monopoles with mass between 100 and 700 GeV, and, for a Drell-Yan like pair production mechanism, a mass limit m > 360 GeV.
Blocksome, Michael A.; Mamidala, Amith R.
2015-07-07
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to a deterministic data communications network through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and the deterministic data communications network; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.
Blocksome, Michael A.; Mamidala, Amith R.
2015-07-14
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to a deterministic data communications network through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and the deterministic data communications network; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.
Simulating a Direction-Finder Search for an ELT
NASA Technical Reports Server (NTRS)
Bream, Bruce
2005-01-01
A computer program simulates the operation of direction-finding equipment engaged in a search for an emergency locator transmitter (ELT) aboard an aircraft that has crashed. The simulated equipment is patterned after the equipment used by the Civil Air Patrol to search for missing aircraft. The program is designed to be used for training in radio direction-finding and/or searching for missing aircraft without incurring the expense and risk of using real aircraft and ground search resources. The program places a hidden ELT on a map and enables the user to search for the location of the ELT by moving a 14 NASA Tech Briefs, March 2005 small aircraft image around the map while observing signal-strength and direction readings on a simulated direction- finding locator instrument. As the simulated aircraft is turned and moved on the map, the program updates the readings on the direction-finding instrument to reflect the current position and heading of the aircraft relative to the location of the ELT. The software is distributed in a zip file that contains an installation program. The software runs on the Microsoft Windows 9x, NT, and XP operating systems.
Direct Search for Low Mass Dark Matter Particles with CCDs
Barreto, J.; Cease, H.; Diehl, H. T.; Estrada, J.; Flaugher, B.; Harrison, N.; Jones, J.; Kilminster, B.; Molina, J.; Smith, J.; et al
2012-05-15
A direct dark matter search is performed using fully-depleted high-resistivity CCD detectors. Due to their low electronic readout noise (RMS ~7 eV) these devices operate with a very low detection threshold of 40 eV, making the search for dark matter particles with low masses (~5 GeV) possible. The results of an engineering run performed in a shallow underground site are presented, demonstrating the potential of this technology in the low mass region.
NASA Astrophysics Data System (ADS)
Wang, Mingfeng; Ceccarelli, Marco
2015-07-01
Three-degree of freedom(3-DOF) translational parallel manipulators(TPMs) have been widely studied both in industry and academia in the past decades. However, most architectures of 3-DOF TPMs are created mainly on designers' intuition, empirical knowledge, or associative reasoning and the topology synthesis researches of 3-DOF TPMs are still limited. In order to find out the atlas of designs for 3-DOF TPMs, a topology search is presented for enumeration of 3-DOF TPMs whose limbs can be modeled as 5-DOF serial chains. The proposed topology search of 3-DOF TPMs is aimed to overcome the sensitivities of the design solution of a 3-DOF TPM for a LARM leg mechanism in a biped robot. The topology search, which is based on the concept of generation and specialization in graph theory, is reported as a step-by-step procedure with desired specifications, principle and rules of generalization, design requirements and constraints, and algorithm of number synthesis. In order to obtain new feasible designs for a chosen example and to limit the search domain under general considerations, one topological generalized kinematic chain is chosen to be specialized. An atlas of new feasible designs is obtained and analyzed for a specific solution as leg mechanisms. The proposed methodology provides a topology search for 3-DOF TPMs for leg mechanisms, but it can be also expanded for other applications and tasks.
The JCSG MR Pipeline: Optimized Alignments, Multiple Models And Parallel Searches
Schwarzenbacher, R.; Godzik, A.; Jaroszewski, L.
2009-05-27
The success rate of molecular replacement (MR) falls considerably when search models share less than 35% sequence identity with their templates, but can be improved significantly by using fold-recognition methods combined with exhaustive MR searches. Models based on alignments calculated with fold-recognition algorithms are more accurate than models based on conventional alignment methods such as FASTA or BLAST, which are still widely used for MR. In addition, by designing MR pipelines that integrate phasing and automated refinement and allow parallel processing of such calculations, one can effectively increase the success rate of MR. Here, updated results from the JCSG MR pipeline are presented, which to date has solved 33 MR structures with less than 35% sequence identity to the closest homologue of known structure. By using difficult MR problems as examples, it is demonstrated that successful MR phasing is possible even in cases where the similarity between the model and the template can only be detected with fold-recognition algorithms. In the first step, several search models are built based on all homologues found in the PDB by fold-recognition algorithms. The models resulting from this process are used in parallel MR searches with different combinations of input parameters of the MR phasing algorithm. The putative solutions are subjected to rigid-body and restrained crystallographic refinement and ranked based on the final values of free R factor, figure of merit and deviations from ideal geometry. Finally, crystal packing and electron-density maps are checked to identify the correct solution. If this procedure does not yield a solution with interpretable electron-density maps, then even more alternative models are prepared. The structurally variable regions of a protein family are identified based on alignments of sequences and known structures from that family and appropriate trimmings of the models are proposed. All combinations of these trimmings are
A hybrid dynamic harmony search algorithm for identical parallel machines scheduling
NASA Astrophysics Data System (ADS)
Chen, Jing; Pan, Quan-Ke; Wang, Ling; Li, Jun-Qing
2012-02-01
In this article, a dynamic harmony search (DHS) algorithm is proposed for the identical parallel machines scheduling problem with the objective to minimize makespan. First, an encoding scheme based on a list scheduling rule is developed to convert the continuous harmony vectors to discrete job assignments. Second, the whole harmony memory (HM) is divided into multiple small-sized sub-HMs, and each sub-HM performs evolution independently and exchanges information with others periodically by using a regrouping schedule. Third, a novel improvisation process is applied to generate a new harmony by making use of the information of harmony vectors in each sub-HM. Moreover, a local search strategy is presented and incorporated into the DHS algorithm to find promising solutions. Simulation results show that the hybrid DHS (DHS_LS) is very competitive in comparison to its competitors in terms of mean performance and average computational time.
Parallel implementation of 3D protein structure similarity searches using a GPU and the CUDA.
Mrozek, Dariusz; Brożek, Miłosz; Małysiak-Mrozek, Bożena
2014-02-01
Searching for similar 3D protein structures is one of the primary processes employed in the field of structural bioinformatics. However, the computational complexity of this process means that it is constantly necessary to search for new methods that can perform such a process faster and more efficiently. Finding molecular substructures that complex protein structures have in common is still a challenging task, especially when entire databases containing tens or even hundreds of thousands of protein structures must be scanned. Graphics processing units (GPUs) and general purpose graphics processing units (GPGPUs) can perform many time-consuming and computationally demanding processes much more quickly than a classical CPU can. In this paper, we describe the GPU-based implementation of the CASSERT algorithm for 3D protein structure similarity searching. This algorithm is based on the two-phase alignment of protein structures when matching fragments of the compared proteins. The GPU (GeForce GTX 560Ti: 384 cores, 2GB RAM) implementation of CASSERT ("GPU-CASSERT") parallelizes both alignment phases and yields an average 180-fold increase in speed over its CPU-based, single-core implementation on an Intel Xeon E5620 (2.40GHz, 4 cores). In this paper, we show that massive parallelization of the 3D structure similarity search process on many-core GPU devices can reduce the execution time of the process, allowing it to be performed in real time. GPU-CASSERT is available at: http://zti.polsl.pl/dmrozek/science/gpucassert/cassert.htm. PMID:24481593
Xu, Rongda; Wang, Tao; Isbell, John; Cai, Zhe; Sykes, Christopher; Brailsford, Andrew; Kassel, Daniel B
2002-07-01
We report on the development of a parallel HPLC/MS purification system incorporating an indexed (i.e., multiplexed) ion source. In the method described, each of the flow streams from a parallel array of HPLC columns is directed toward the multiplexed (MUX) ion source and sampled in a time-dependent, parallel manner. A visual basic application has been developed and monitors in real-time the extracted ion current from each sprayer channel. Mass-directed fraction collection is initiated into a parallel array of fraction collectors specific for each of the spray channels. In the first embodiment of this technique, we report on a four-column semipreparative parallel LC/MS system incorporating MUX detection. In this parallel LC/MS application (in which sample loads between 1 and 10 mg on-column are typically made), no cross talk was observed. Ion signals from each of the channels were found reproducible over 192 injections, with interchannel signal variations between 11 and 17%. The visual basic fraction collection application permits preset individual start collection and end collection thresholds for each channel, thereby compensating for the slight variation in signal between sprayers. By incorporating postfraction collector UV detection, we have been able to optimize the valve-triggering delay time with precut transfer tubing between the mass spectrometer and fraction collectors and achieve recoveries greater than 80%. Examples of the MUX-guided, mass-directed fraction purification of both standards and real library reaction mixtures are presented within. PMID:12141664
Direct searches for dark matter: Recent results
Rosenberg, Leslie J.
1998-01-01
There is abundant evidence for large amounts of unseen matter in the universe. This dark matter, by its very nature, couples feebly to ordinary matter and is correspondingly difficult to detect. Nonetheless, several experiments are now underway with the sensitivity required to detect directly galactic halo dark matter through their interactions with matter and radiation. These experiments divide into two broad classes: searches for weakly interacting massive particles (WIMPs) and searches for axions. There exists a very strong theoretical bias for supposing that supersymmetry (SUSY) is a correct description of nature. WIMPs are predicted by this SUSY theory and have the required properties to be dark matter. These WIMPs are detected from the byproducts of their occasional recoil against nucleons. There are efforts around the world to detect these rare recoils. The WIMP part of this overview focuses on the cryogenic dark matter search (CDMS) underway in California. Axions, another favored dark matter candidate, are predicted to arise from a minimal extension of the standard model that explains the absence of the expected large CP violating effects in strong interactions. Axions can, in the presence of a large magnetic field, turn into microwave photons. It is the slight excess of photons above noise that signals the axion. Axion searches are underway in California and Japan. The axion part of this overview focuses on the California effort. Brevity does not allow me to discuss other WIMP and axion searches, likewise for accelerator and satellite based searches; I apologize for their omission. PMID:9419325
Internal bremsstrahlung signatures in light of direct dark matter searches
Garny, Mathias; Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan E-mail: ibarra@tum.de E-mail: stefan.vogl@tum.de
2013-12-01
Although proposed long ago, the search for internal bremsstrahlung signatures has only recently been made possible by the excellent energy resolution of ground-based and satellite-borne gamma-ray instruments. Here, we investigate thoroughly the current status of internal bremsstrahlung searches in light of the results of direct dark matter searches and in the framework of a minimal mass-degenerate scenario consisting of a Majorana dark matter particle that couples to a fermion and a scalar via a Yukawa coupling. The upper limits on the annihilation cross section set by Fermi-LAT and H.E.S.S. extend uninterrupted from tens of GeV up to tens of TeV and are rather insensitive to the mass degeneracy in the particle physics model. In contrast, direct searches are best in the moderate to low mass splitting regime, where XENON100 limits overshadow Fermi-LAT and H.E.S.S. up to TeV masses if dark matter couples to one of the light quarks. In our minimal scenario we examine carefully the prospects for GAMMA-400, CTA and XENON1T, all planned to come online in the near future, and find that: (a) CTA and XENON1T are fully complementary, with CTA most sensitive to multi-TeV masses and mass splittings around 10%, and XENON1T probing best small mass splittings up to TeV masses; and (b) current constraints from XENON100 already preclude the observation of any spectral feature with GAMMA-400 in spite of its impressive energy resolution, unless dark matter does not couple predominantly to light quarks. Finally, we point out that, unlike for direct searches, the possibility of detecting thermal relics in upcoming internal bremsstrahlung searches requires, depending on the concrete scenario, boost factors larger than 5–10.
NASA Astrophysics Data System (ADS)
Makino, Junichiro
2002-10-01
We present a novel, highly efficient algorithm to parallelize O( N2) direct summation method for N-body problems with individual timesteps on distributed-memory parallel machines such as Beowulf clusters. Previously known algorithms, in which all processors have complete copies of the N-body system, has the serious problem that the communication-computation ratio increases as we increase the number of processors, since the communication cost is independent of the number of processors. In the new algorithm, p processors are organized as a p×p two-dimensional array. Each processor has N/ p particles, but the data are distributed in such a way that complete system is presented if we look at any row or column consisting of p processors. In this algorithm, the communication cost scales as N/ p, while the calculation cost scales as N2/ p. Thus, we can use a much larger number of processors without losing efficiency compared to what was practical with previously known algorithms.
Directed search for continuous gravitational waves from the Galactic center
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.
2013-11-01
We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic center region, performed on two years of data from LIGO’s fifth science run from two LIGO detectors. The search uses a semicoherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first-order spindown values down to -7.86×10-8Hz/s at the highest frequency. No gravitational waves were detected. The 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic center are ˜3.35×10-25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals.
Retrieval comparison of EndNote to search MEDLINE (Ovid and PubMed) versus searching them directly.
Gall, Carole; Brahmi, Frances A
2004-01-01
Using EndNote version 7.0, the authors tested the search capabilities of the EndNote search engine for retrieving citations from MEDLINE for importation into EndNote, a citation management software package. Ovid MEDLINE and PubMed were selected for the comparison. Several searches were performed on Ovid MEDLINE and PubMed using EndNote as the search engine, and the same searches were run on both Ovid and PubMed directly. Findings indicate that it is preferable to search MEDLINE directly rather than using EndNote. The publishers of EndNote do warn its users about the limitations of their product as a search engine when searching external databases. In this article, the limitations of EndNote as a search engine for searching MEDLINE were explored as related to MeSH, non-MeSH, citation verification, and author searching. PMID:15364649
Future directions in searching for eta-mesic nuclei
NASA Astrophysics Data System (ADS)
Haider, Quamrul; Liu, Lon-Chang
2016-03-01
Future directions in searching for eta-mesic nuclei: Q. Haider, Department of Physics and Engineering Physics, Fordham University, Bronx, N.Y. 10458, U.S.A. and L.C. Liu, Theoretical Division, Los Alamos National Laboratory, Los Alamos, N.M 87545, U.S.A. Eta-mesic nucleus or the quasibound nuclear state of an eta (η) meson in a nucleus is caused by strong-interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. In experimental search for η-mesic nucleus, transfer reactions have been frequently employed. One such reaction has led to the observation of the η-mesic nucleus 25Mg η . However, searching quasibound η-nucleus states in lighter nuclei such as 3He, 4He, and 11B has not yet yielded positive results. Searching η-mesic nuclei in medium-mass nuclear systems other than 25Mg is highly valuable. In view of the aforementioned experimental results, we suggest searching for more η-mesic nuclei in target nuclei having a mass number A >= 12 . Bronx, N.Y. 10458.
NASA Technical Reports Server (NTRS)
Astone, Pia; Weinstein, Alan; Agathos, Michalis; Bejger, Michal; Christensen, Nelson; Dent, Thomas; Graff, Philip; Klimenko, Sergey; Mazzolo, Giulio; Nishizawa, Atsushi
2015-01-01
The Amaldi 10 Parallel Session C2 on gravitational wave(GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.
Scalable simulations for directed self-assembly patterning with the use of GPU parallel computing
NASA Astrophysics Data System (ADS)
Yoshimoto, Kenji; Peters, Brandon L.; Khaira, Gurdaman S.; de Pablo, Juan J.
2012-03-01
Directed self-assembly (DSA) patterning has been increasingly investigated as an alternative lithographic process for future technology nodes. One of the critical specs for DSA patterning is defects generated through annealing process or by roughness of pre-patterned structure. Due to their high sensitivity to the process and wafer conditions, however, characterization of those defects still remain challenging. DSA simulations can be a powerful tool to predict the formation of the DSA defects. In this work, we propose a new method to perform parallel computing of DSA Monte Carlo (MC) simulations. A consumer graphics card was used to access its hundreds of processing units for parallel computing. By partitioning the simulation system into non-interacting domains, we were able to run MC trial moves in parallel on multiple graphics-processing units (GPUs). Our results show a significant improvement in computational performance.
Versatile directional searches for gravitational waves with Pulsar Timing Arrays
NASA Astrophysics Data System (ADS)
Madison, D. R.; Zhu, X.-J.; Hobbs, G.; Coles, W.; Shannon, R. M.; Wang, J. B.; Tiburzi, C.; Manchester, R. N.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Dai, S.; Dempsey, J.; Keith, M.; Kerr, M.; Lasky, P.; Levin, Y.; Osłowski, S.; Ravi, V.; Reardon, D.; Rosado, P.; Spiewak, R.; van Straten, W.; Toomey, L.; Wen, L.; You, X.
2016-02-01
By regularly monitoring the most stable millisecond pulsars over many years, pulsar timing arrays (PTAs) are positioned to detect and study correlations in the timing behaviour of those pulsars. Gravitational waves (GWs) from supermassive black hole binaries (SMBHBs) are an exciting potentially detectable source of such correlations. We describe a straightforward technique by which a PTA can be `phased-up' to form time series of the two polarization modes of GWs coming from a particular direction of the sky. Our technique requires no assumptions regarding the time-domain behaviour of a GW signal. This method has already been used to place stringent bounds on GWs from individual SMBHBs in circular orbits. Here, we describe the methodology and demonstrate the versatility of the technique in searches for a wide variety of GW signals including bursts with unmodelled waveforms. Using the first six years of data from the Parkes Pulsar Timing Array, we conduct an all-sky search for a detectable excess of GW power from any direction. For the lines of sight to several nearby massive galaxy clusters, we carry out a more detailed search for GW bursts with memory, which are distinct signatures of SMBHB mergers. In all cases, we find that the data are consistent with noise.
A direct search algorithm for optimization with noisy function evaluations
Anderson, E.; Ferris, M.
1994-12-31
In this paper we describe a new direct search algorithm, reminiscent of the Nelder-Mead method, and related to a more recent pattern search algorithm proposed by Torczon. We believe that this method has applications in situations in which each function evaluation is noisy, but in which repeated function evaluations at the same point can be used to progressively reduce the error. For example, this will occur if the objective function value is given as a result of a simulation experiment. We investigate the convergence behaviour of the new algorithm for problems in which each function evaluation returns the true value of the function plus a random error drawn from a Normal distribution.
Study of genetic direct search algorithms for function optimization
NASA Technical Reports Server (NTRS)
Zeigler, B. P.
1974-01-01
The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.
NASA Astrophysics Data System (ADS)
Liu, Xiaofeng; Siddle-Mitchell, Seth
2015-11-01
This paper presents a novel pressure reconstruction method featuring rotating parallel ray omni-directional integration, as an improvement over the circular virtual boundary integration method introduced by Liu and Katz (2003, 2006, 2008 and 2013) for non-intrusive instantaneous pressure measurement in incompressible flow field. Unlike the virtual boundary omni-directional integration, where the integration path is originated from a virtual circular boundary at a finite distance from the real boundary of the integration domain, the new method utilizes parallel rays, which can be viewed as being originated from a distance of infinity, as guidance for integration paths. By rotating the parallel rays, omni-directional paths with equal weights coming from all directions toward the point of interest at any location within the computation domain will be generated. In this way, the location dependence of the integration weight inherent in the old algorithm will be eliminated. By implementing this new algorithm, the accuracy of the reconstructed pressure for a synthetic rotational flow in terms of r.m.s. error from theoretical values is reduced from 1.03% to 0.30%. Improvement is further demonstrated from the comparison of the reconstructed pressure with that from the Johns Hopkins University isotropic turbulence database (JHTDB). This project is funded by the San Diego State University.
Parallel Directionally Split Solver Based on Reformulation of Pipelined Thomas Algorithm
NASA Technical Reports Server (NTRS)
Povitsky, A.
1998-01-01
In this research an efficient parallel algorithm for 3-D directionally split problems is developed. The proposed algorithm is based on a reformulated version of the pipelined Thomas algorithm that starts the backward step computations immediately after the completion of the forward step computations for the first portion of lines This algorithm has data available for other computational tasks while processors are idle from the Thomas algorithm. The proposed 3-D directionally split solver is based on the static scheduling of processors where local and non-local, data-dependent and data-independent computations are scheduled while processors are idle. A theoretical model of parallelization efficiency is used to define optimal parameters of the algorithm, to show an asymptotic parallelization penalty and to obtain an optimal cover of a global domain with subdomains. It is shown by computational experiments and by the theoretical model that the proposed algorithm reduces the parallelization penalty about two times over the basic algorithm for the range of the number of processors (subdomains) considered and the number of grid nodes per subdomain.
A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL)
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Owen, Jeffrey E.
1988-01-01
A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL) is presented which overcomes the traditional disadvantages of simulations executed on a digital computer. The incorporation of parallel processing allows the mapping of simulations into a digital computer to be done in the same inherently parallel manner as they are currently mapped onto an analog computer. The direct-execution format maximizes the efficiency of the executed code since the need for a high level language compiler is eliminated. Resolution is greatly increased over that which is available with an analog computer without the sacrifice in execution speed normally expected with digitial computer simulations. Although this report covers all aspects of the new architecture, key emphasis is placed on the processing element configuration and the microprogramming of the ACLS constructs. The execution times for all ACLS constructs are computed using a model of a processing element based on the AMD 29000 CPU and the AMD 29027 FPU. The increase in execution speed provided by parallel processing is exemplified by comparing the derived execution times of two ACSL programs with the execution times for the same programs executed on a similar sequential architecture.
Direct search implications for a custodially-embedded composite top
NASA Astrophysics Data System (ADS)
Chivukula, R. Sekhar; Foadi, Roshan; Foren, Dennis; Simmons, Elizabeth H.
2016-07-01
We assess current experimental constraints on the bidoublet+singlet model of top compositeness previously proposed in the literature. This model extends the Standard Model's spectrum by adding a custodially embedded vectorlike electroweak bidoublet of quarks and a vectorlike electroweak singlet quark. While either of those states alone would produce a model in tension with constraints from precision electroweak data, in combination they can produce a viable model. We show that current precision electroweak data, in the wake of the Higgs discovery, accommodate the model and we explore the impact of direct collider searches for the partners of the top quark.
NASA Technical Reports Server (NTRS)
Lee, J.; Kim, K.
1991-01-01
A Very Large Scale Integration (VLSI) architecture for robot direct kinematic computation suitable for industrial robot manipulators was investigated. The Denavit-Hartenberg transformations are reviewed to exploit a proper processing element, namely an augmented CORDIC. Specifically, two distinct implementations are elaborated on, such as the bit-serial and parallel. Performance of each scheme is analyzed with respect to the time to compute one location of the end-effector of a 6-links manipulator, and the number of transistors required.
NASA Astrophysics Data System (ADS)
Lee, J.; Kim, K.
A Very Large Scale Integration (VLSI) architecture for robot direct kinematic computation suitable for industrial robot manipulators was investigated. The Denavit-Hartenberg transformations are reviewed to exploit a proper processing element, namely an augmented CORDIC. Specifically, two distinct implementations are elaborated on, such as the bit-serial and parallel. Performance of each scheme is analyzed with respect to the time to compute one location of the end-effector of a 6-links manipulator, and the number of transistors required.
NASA Astrophysics Data System (ADS)
Guo, Peng; Cheng, Wenming; Wang, Yi
2015-11-01
This article considers the parallel machine scheduling problem with step-deteriorating jobs and sequence-dependent setup times. The objective is to minimize the total tardiness by determining the allocation and sequence of jobs on identical parallel machines. In this problem, the processing time of each job is a step function dependent upon its starting time. An individual extended time is penalized when the starting time of a job is later than a specific deterioration date. The possibility of deterioration of a job makes the parallel machine scheduling problem more challenging than ordinary ones. A mixed integer programming model for the optimal solution is derived. Due to its NP-hard nature, a hybrid discrete cuckoo search algorithm is proposed to solve this problem. In order to generate a good initial swarm, a modified Biskup-Hermann-Gupta (BHG) heuristic called MBHG is incorporated into the population initialization. Several discrete operators are proposed in the random walk of Lévy flights and the crossover search. Moreover, a local search procedure based on variable neighbourhood descent is integrated into the algorithm as a hybrid strategy in order to improve the quality of elite solutions. Computational experiments are executed on two sets of randomly generated test instances. The results show that the proposed hybrid algorithm can yield better solutions in comparison with the commercial solver CPLEX® with a one hour time limit, the discrete cuckoo search algorithm and the existing variable neighbourhood search algorithm.
Parallel spatial direct numerical simulations on the Intel iPSC/860 hypercube
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.; Zubair, Mohammad
1993-01-01
The implementation and performance of a parallel spatial direct numerical simulation (PSDNS) approach on the Intel iPSC/860 hypercube is documented. The direct numerical simulation approach is used to compute spatially evolving disturbances associated with the laminar-to-turbulent transition in boundary-layer flows. The feasibility of using the PSDNS on the hypercube to perform transition studies is examined. The results indicate that the direct numerical simulation approach can effectively be parallelized on a distributed-memory parallel machine. By increasing the number of processors nearly ideal linear speedups are achieved with nonoptimized routines; slower than linear speedups are achieved with optimized (machine dependent library) routines. This slower than linear speedup results because the Fast Fourier Transform (FFT) routine dominates the computational cost and because the routine indicates less than ideal speedups. However with the machine-dependent routines the total computational cost decreases by a factor of 4 to 5 compared with standard FORTRAN routines. The computational cost increases linearly with spanwise wall-normal and streamwise grid refinements. The hypercube with 32 processors was estimated to require approximately twice the amount of Cray supercomputer single processor time to complete a comparable simulation; however it is estimated that a subgrid-scale model which reduces the required number of grid points and becomes a large-eddy simulation (PSLES) would reduce the computational cost and memory requirements by a factor of 10 over the PSDNS. This PSLES implementation would enable transition simulations on the hypercube at a reasonable computational cost.
Bi-directional series-parallel elastic actuator and overlap of the actuation layers.
Furnémont, Raphaël; Mathijssen, Glenn; Verstraten, Tom; Lefeber, Dirk; Vanderborght, Bram
2016-02-01
Several robotics applications require high torque-to-weight ratio and energy efficient actuators. Progress in that direction was made by introducing compliant elements into the actuation. A large variety of actuators were developed such as series elastic actuators (SEAs), variable stiffness actuators and parallel elastic actuators (PEAs). SEAs can reduce the peak power while PEAs can reduce the torque requirement on the motor. Nonetheless, these actuators still cannot meet performances close to humans. To combine both advantages, the series parallel elastic actuator (SPEA) was developed. The principle is inspired from biological muscles. Muscles are composed of motor units, placed in parallel, which are variably recruited as the required effort increases. This biological principle is exploited in the SPEA, where springs (layers), placed in parallel, can be recruited one by one. This recruitment is performed by an intermittent mechanism. This paper presents the development of a SPEA using the MACCEPA principle with a self-closing mechanism. This actuator can deliver a bi-directional output torque, variable stiffness and reduced friction. The load on the motor can also be reduced, leading to a lower power consumption. The variable recruitment of the parallel springs can also be tuned in order to further decrease the consumption of the actuator for a given task. First, an explanation of the concept and a brief description of the prior work done will be given. Next, the design and the model of one of the layers will be presented. The working principle of the full actuator will then be given. At the end of this paper, experiments showing the electric consumption of the actuator will display the advantage of the SPEA over an equivalent stiff actuator. PMID:26813145
An Automated Directed Spectral Search Methodology for Small Target Detection
NASA Astrophysics Data System (ADS)
Grossman, Stanley I.
Much of the current efforts in remote sensing tackle macro-level problems such as determining the extent of wheat in a field, the general health of vegetation or the extent of mineral deposits in an area. However, for many of the remaining remote sensing challenges being studied currently, such as border protection, drug smuggling, treaty verification, and the war on terror, most targets are very small in nature - a vehicle or even a person. While in typical macro-level problems the objective vegetation is in the scene, for small target detection problems it is not usually known if the desired small target even exists in the scene, never mind finding it in abundance. The ability to find specific small targets, such as vehicles, typifies this problem. Complicating the analyst's life, the growing number of available sensors is generating mountains of imagery outstripping the analysts' ability to visually peruse them. This work presents the important factors influencing spectral exploitation using multispectral data and suggests a different approach to small target detection. The methodology of directed search is presented, including the use of scene-modeled spectral libraries, various search algorithms, and traditional statistical and ROC curve analysis. The work suggests a new metric to calibrate analysis labeled the analytic sweet spot as well as an estimation method for identifying the sweet spot threshold for an image. It also suggests a new visualization aid for highlighting the target in its entirety called nearest neighbor inflation (NNI). It brings these all together to propose that these additions to the target detection arena allow for the construction of a fully automated target detection scheme. This dissertation next details experiments to support the hypothesis that the optimum detection threshold is the analytic sweet spot and that the estimation method adequately predicts it. Experimental results and analysis are presented for the proposed directed
A direct search for energetic electrons produced by laboratory sparks
NASA Astrophysics Data System (ADS)
Carlson, B. E.; Kochkin, P.; van Deursen, A. P. J.; Hansen, R.; Gjesteland, T.; Ostgaard, N.
2012-04-01
High-voltage sparks in the lab unexpectedly emit x-rays with energies up to several hundred keV. These x-rays have been observed repeatedly and can only be produced by bremsstrahlung, impling the presence of a population of energetic electrons. Such energetic electron and x-ray production may be important for the physics of streamers, spark discharges, and lightning, and has been suggested as directly related to the production of terrestrial gamma-ray flashes. We present the results of the first direct search for energetic electrons produced by a lab spark. Small electrically-isolated scintillators are placed at various locations near the spark gap of a 2 MV Marx generator and the resulting signals are recorded. We present results on the spatial, temporal, and statistical variability of signals produced by energetic electrons and compare our results to predictions of energetic electron production from the literature.
NASA Technical Reports Server (NTRS)
Morgan, Philip E.
2004-01-01
This final report contains reports of research related to the tasks "Scalable High Performance Computing: Direct and Lark-Eddy Turbulent FLow Simulations Using Massively Parallel Computers" and "Devleop High-Performance Time-Domain Computational Electromagnetics Capability for RCS Prediction, Wave Propagation in Dispersive Media, and Dual-Use Applications. The discussion of Scalable High Performance Computing reports on three objectives: validate, access scalability, and apply two parallel flow solvers for three-dimensional Navier-Stokes flows; develop and validate a high-order parallel solver for Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) problems; and Investigate and develop a high-order Reynolds averaged Navier-Stokes turbulence model. The discussion of High-Performance Time-Domain Computational Electromagnetics reports on five objectives: enhancement of an electromagnetics code (CHARGE) to be able to effectively model antenna problems; utilize lessons learned in high-order/spectral solution of swirling 3D jets to apply to solving electromagnetics project; transition a high-order fluids code, FDL3DI, to be able to solve Maxwell's Equations using compact-differencing; develop and demonstrate improved radiation absorbing boundary conditions for high-order CEM; and extend high-order CEM solver to address variable material properties. The report also contains a review of work done by the systems engineer.
Co-ordination of directional overcurrent protection with load current for parallel feeders
Wright, J.W.; Lloyd, G.; Hindle, P.J.
1999-11-01
Directional phase overcurrent relays are commonly applied at the receiving ends of parallel feeders or transformer feeders. Their purpose is to ensure full discrimination of main or back-up power system overcurrent protection for a fault near the receiving end of one feeder. This paper reviews this type of relay application and highlights load current setting constraints for directional protection. Such constraints have not previously been publicized in well-known text books. A directional relay current setting constraint that is suggested in some text books is based purely on thermal rating considerations for older technology relays. This constraint may not exist with modern numerical relays. In the absence of any apparent constraint, there is a temptation to adopt lower current settings with modern directional relays in relation to reverse load current at the receiving ends of parallel feeders. This paper identifies the danger of adopting very low current settings without any special relay feature to ensure protection security with load current during power system faults. A system incident recorded by numerical relays is also offered to highlight this danger. In cases where there is a need to infringe the identified constraints an implemented and testing relaying technique is proposed.
Evaluation of parallel direct sparse linear solvers in electromagnetic geophysical problems
NASA Astrophysics Data System (ADS)
Puzyrev, Vladimir; Koric, Seid; Wilkin, Scott
2016-04-01
High performance computing is absolutely necessary for large-scale geophysical simulations. In order to obtain a realistic image of a geologically complex area, industrial surveys collect vast amounts of data making the computational cost extremely high for the subsequent simulations. A major computational bottleneck of modeling and inversion algorithms is solving the large sparse systems of linear ill-conditioned equations in complex domains with multiple right hand sides. Recently, parallel direct solvers have been successfully applied to multi-source seismic and electromagnetic problems. These methods are robust and exhibit good performance, but often require large amounts of memory and have limited scalability. In this paper, we evaluate modern direct solvers on large-scale modeling examples that previously were considered unachievable with these methods. Performance and scalability tests utilizing up to 65,536 cores on the Blue Waters supercomputer clearly illustrate the robustness, efficiency and competitiveness of direct solvers compared to iterative techniques. Wide use of direct methods utilizing modern parallel architectures will allow modeling tools to accurately support multi-source surveys and 3D data acquisition geometries, thus promoting a more efficient use of the electromagnetic methods in geophysics.
Direct and Inverse Kinematics of a Novel Tip-Tilt-Piston Parallel Manipulator
NASA Technical Reports Server (NTRS)
Tahmasebi, Farhad
2004-01-01
Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of tangent of half-angle between one of the limbs and the base plane. Hence, there are at most 16 assembly configurations for the manipulator. In addition, it is shown that the 16 solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.
Direct Search for Dark Matter with DarkSide
NASA Astrophysics Data System (ADS)
Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hungerford, E. V.; Ianni, Al; Ianni, An; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.
2015-11-01
The DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL upper limit on the WIMP-nucleon cross section of 6.1 × 10-44 cm2 (for a WIMP mass of 100 GeV/c2) and it's currently the most sensitive limit obtained with an Argon target.
Light magnetic dark matter in direct detection searches
NASA Astrophysics Data System (ADS)
Del Nobile, Eugenio; Kouvaris, Chris; Panci, Paolo; Sannino, Francesco; Virkajärvi, Jussi
2012-08-01
We study a fermionic Dark Matter particle carrying magnetic dipole moment and analyze its impact on direct detection experiments. In particular we show that it can accommodate the DAMA, CoGeNT and CRESST experimental results. Assuming conservative bounds, this candidate is shown not to be ruled out by the CDMS, XENON and PICASSO experiments. We offer an analytic understanding of how the long-range interaction modifies the experimental allowed regions, in the cross section versus Dark Matter mass parameter space, with respect to the typically assumed contact interaction. Finally, in the context of a symmetric Dark Matter sector, we determine the associated thermal relic density, and further provide relevant constraints imposed by indirect searches and colliders.
Direct search for dark matter with DarkSide
Agnes, P.
2015-11-16
Here, the DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL upper limit on the WIMP-nucleon cross section of 6.1 × 10^{-44} cm^{2} (for a WIMP mass of 100 GeV/c^{2}) and it's currently the most sensitive limit obtained with an Argon target.
Direct search for dark matter with DarkSide
Agnes, P.
2015-11-16
Here, the DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL uppermore » limit on the WIMP-nucleon cross section of 6.1 × 10-44 cm2 (for a WIMP mass of 100 GeV/c2) and it's currently the most sensitive limit obtained with an Argon target.« less
Direct WIMP searches with XENON100 and XENON1T
NASA Astrophysics Data System (ADS)
Alfredo Davide, Ferella
2015-05-01
The XENON100 experiment is the second phase of the XENON direct Dark Matter search program. It consists of an ultra-low background double phase (liquid-gas) xenon filled time projection chamber with a total mass of 161 kg (62 in the target region and 99 in the active shield), installed at the Laboratori Nazionali del Gran Sasso (LNGS). Here the results from the 224.6 live days of data taken between March 2011 and April 2012 are reported. The experiment set one of the most stringent limits on the WIMP-nucleon spin-independent cross section to date (2 × 10-45 cm2 for a 55 Gev/c2 WIMP mass at 90 % confidence level) and the most stringent on the spin-dependent WIMP-neutron interaction (3.5 × 10-40 for a 45 GeV/c2 WIMP mass). With the same dataset, XENON100 excludes also solar axion coupling to electrons at gAe > 7.7 × 10-12 for a mass of mAxion <1 keV/c2 and galactic axion couplings by gAe > 1 × 10-12 at a mass range of mAxion = 5-10 keV/c2 (both 90 % C.L.). Moreover an absolute spectral comparison between simulated and measured nuclear recoil distributions of light and charge signals from a 241AmBe source demonstrates a high level of detector and systematics understanding. Finally, the third generation of the XENON experiments, XENON1T, is the first tonne scale direct WIMP search experiment currently under construction. The commissioning phase of XENON1T is expected to start in early 2015 followed, a few months after, by the first science run. The experiment will reach sensitivities on the WIMP-nucleon spin-independent cross section down to 2 ×10-47 cm2 after two years of data taking.
Direct methods for banded linear systems on massively parallel processor computers
Arbenz, P.; Gander, W.
1995-12-01
The authors discuss direct methods for solving systems of linear equations Ax = b, A {element_of} lR{sup nxn}, on massively parallel processor (MPP) computers. Here, A is a real banded n x n matrix with lower and upper half-bandwidth r and s, respectively. We assume that the matrix A has a narrow band, meaning r + s << n. Only in this case, it is worthwhile taking into account the zero structure of A, i.e. store the matrix by diagonals and modify algorithms.
Tan, Jiubin; Shan, Mingguang; Zhao, Chenguang; Liu, Jian
2008-04-01
Diffractive microlens arrays with continuous relief are designed, fabricated, and characterized by using Fermat's principle to create an array of spots on the photoresist-coated surface of a substrate for parallel laser direct writing. Experimental results indicate that a diffraction efficiency of 71.4% and a spot size of 1.97 microm (FWHM) can be achieved at normal incidence and a writing laser wavelength of 441.6 nm with an array of F/4 fabricated on fused silica, and the developed array can be used to improve the utilization ratio of writing laser energy. PMID:18382568
NASA Astrophysics Data System (ADS)
Yan, Tian-Min; Fresch, Barbara; Levine, R. D.; Remacle, F.
2015-08-01
We propose that information processing can be implemented by measuring the directional components of the macroscopic polarization of an ensemble of molecules subject to a sequence of laser pulses. We describe the logic operation theoretically and demonstrate it by simulations. The measurement of integrated stimulated emission in different phase matching spatial directions provides a logic decomposition of a function that is the discrete analog of an integral transform. The logic operation is reversible and all the possible outputs are computed in parallel for all sets of possible multivalued inputs. The number of logic variables of the function is the number of laser pulses used in sequence. The logic function that is computed depends on the chosen chromophoric molecular complex and on its interactions with the solvent and on the two time intervals between the three pulses and the pulse strengths and polarizations. The outputs are the homodyne detected values of the polarization components that are measured in the allowed phase matching macroscopic directions, kl, k l = ∑ i l i k i where ki is the propagation direction of the ith pulse and {li} is a set of integers that encodes the multivalued inputs. Parallelism is inherently implemented because all the partial polarizations that define the outputs are processed simultaneously. The outputs, which are read directly on the macroscopic level, can be multivalued because the high dynamical range of partial polarization measurements by nonlinear coherent spectroscopy allows for fine binning of the signals. The outputs are uniquely related to the inputs so that the logic is reversible.
Interchromosomal Homology Searches Drive Directional ALT Telomere Movement and Synapsis
Cho, Nam Woo; Dilley, Robert L.; Lampson, Michael A.; Greenberg, Roger A.
2014-01-01
Summary Telomere length maintenance is a requisite feature of cellular immortalization and a hallmark of human cancer. While most human cancers express telomerase activity, approximately 10-15% employ a recombination-dependent telomere maintenance pathway known as Alternative Lengthening of Telomeres (ALT) that is characterized by multi-telomere clusters and associated promyelocytic leukemia protein bodies. Here, we show that a DNA double-strand break (DSB) response at ALT telomeres triggers long-range movement and clustering between chromosome termini, resulting in homology-directed telomere synthesis. Damaged telomeres initiate increased random surveillance of nuclear space before displaying rapid directional movement and association with recipient telomeres over micron-range distances. This phenomenon required Rad51 and the Hop2-Mnd1 heterodimer, which are essential for homologous chromosome synapsis during meiosis. These findings implicate a specialized homology searching mechanism in ALT dependent telomere maintenance and provide a molecular basis underlying the preference for recombination between non- sister telomeres during ALT. PMID:25259924
Li, Qiyue; Qu, Xiaobo; Liu, Yunsong; Guo, Di; Lai, Zongying; Ye, Jing; Chen, Zhong
2015-06-01
Compressed sensing MRI (CS-MRI) is a promising technology to accelerate magnetic resonance imaging. Both improving the image quality and reducing the computation time are important for this technology. Recently, a patch-based directional wavelet (PBDW) has been applied in CS-MRI to improve edge reconstruction. However, this method is time consuming since it involves extensive computations, including geometric direction estimation and numerous iterations of wavelet transform. To accelerate computations of PBDW, we propose a general parallelization of patch-based processing by taking the advantage of multicore processors. Additionally, two pertinent optimizations, excluding smooth patches and pre-arranged insertion sort, that make use of sparsity in MR images are also proposed. Simulation results demonstrate that the acceleration factor with the parallel architecture of PBDW approaches the number of central processing unit cores, and that pertinent optimizations are also effective to make further accelerations. The proposed approaches allow compressed sensing MRI reconstruction to be accomplished within several seconds. PMID:25620521
Effects of rotation on turbulent convection: Direct numerical simulation using parallel processors
NASA Astrophysics Data System (ADS)
Chan, Daniel Chiu-Leung
A new parallel implicit adaptive mesh refinement (AMR) algorithm is developed for the prediction of unsteady behaviour of laminar flames. The scheme is applied to the solution of the system of partial-differential equations governing time-dependent, two- and three-dimensional, compressible laminar flows for reactive thermally perfect gaseous mixtures. A high-resolution finite-volume spatial discretization procedure is used to solve the conservation form of these equations on body-fitted multi-block hexahedral meshes. A local preconditioning technique is used to remove numerical stiffness and maintain solution accuracy for low-Mach-number, nearly incompressible flows. A flexible block-based octree data structure has been developed and is used to facilitate automatic solution-directed mesh adaptation according to physics-based refinement criteria. The data structure also enables an efficient and scalable parallel implementation via domain decomposition. The parallel implicit formulation makes use of a dual-time-stepping like approach with an implicit second-order backward discretization of the physical time, in which a Jacobian-free inexact Newton method with a preconditioned generalized minimal residual (GMRES) algorithm is used to solve the system of nonlinear algebraic equations arising from the temporal and spatial discretization procedures. An additive Schwarz global preconditioner is used in conjunction with block incomplete LU type local preconditioners for each sub-domain. The Schwarz preconditioning and block-based data structure readily allow efficient and scalable parallel implementations of the implicit AMR approach on distributed-memory multi-processor architectures. The scheme was applied to solutions of steady and unsteady laminar diffusion and premixed methane-air combustion and was found to accurately predict key flame characteristics. For a premixed flame under terrestrial gravity, the scheme accurately predicted the frequency of the natural
Composite dark matter and direct-search experiments
NASA Astrophysics Data System (ADS)
Wallemacq, Quentin
2015-11-01
The results of the direct searches for dark matter are reinterpreted in the framework of composite dark matter, i.e. dark matter particles that form neutral bound states, generically called “dark atoms”. Two different scenarios are presented: milli-interacting dark matter and dark anti-atoms. In both of them, dark matter interacts sufficiently strongly with terrestrial matter to be stopped in it before reaching underground detectors, which are typically located at a depth of 1 km. As they drift towards the center of the Earth because of gravity, these thermal dark atoms are radiatively captured by the atoms of the active medium of underground detectors, which causes the emission of photons that produce the signals through their interactions with the electrons of the medium. This provides a way of reinterpreting the results in terms of electron recoils instead of nuclear recoils. The two models involve milli-charges and are able to reconcile the most contradictory experiments. We determine, for each model, the regions in the parameter space that reproduce the experiments with positive results in consistency with the constraints of the experiments with negative results.
Direct Imaging Searches with the Apodizing Phase Plate Coronagraph
NASA Astrophysics Data System (ADS)
Kenworthy, M.; Meshkat, T.; Otten, , G.; Codona, J.
2014-03-01
The sensitivity of direct imaging searches for extrasolar planets is limited by the presence of diffraction rings from the primary star. Coronagraphs are angular filters that minimise these diffraction structures whilst allowing light from faint companions to shine through. The Apodizing Phase Plate (APP; Kenworthy 2007) coronagraph is a simple pupil plane optic that suppresses diffraction over a 180 degree region around each star simultaneously, providing easy beam switching observations and requiring no time consuming optical alignment at the telescope. We will present our results on using the APP at the Very Large Telescope in surveys for extrasolar planets around A/F and debris disk hosting stars in the L' band (3.8 microns) in the Southern Hemisphere, where we reach a contrast of 12 magnitudes at 0.5 arcseconds (Meshkat 2013). In Leiden, we are also developing the next generation of broadband achromatic coronagraphs that can simultaneously image both sides of the star using Vector APPs (Snik 2012, Otten 2012). Recent laboratory results showing the potential of this technology for future ELTs will also be presented.
Direct Searches for Scalar Leptoquarks at the Run II Tevatron
Ryan, Daniel E
2004-11-01
This dissertation sets new limits on the mass of the scalar leptoquark from direct searches carried out at the Run II CDF detector using data from March 2001 to October 2003. The data analyzed has a total time-integrated measured luminosity of 198 pb{sup -1} of p{bar p} collisions with {radical}s = 1.96 TeV. Leptoquarks are assumed to be pair-produced and to decay into a lepton and a quark of the same generation. They consider two possible leptoquark decays: (1) {beta} = BR(LQ {yields} {mu}q) = 1.0, and (2) {beta} = BR(LQ {yields} {mu}q) = 0.5. For the {beta} = 1 channel, they focus on the signature represented by two isolated high-p{sub T} muons and two isolated high-p{sub T} jets. For the {beta} = 1/2 channel, they focus on the signature represented by one isolated high-p{sub T} muon, large missing transverse energy, and two isolated high-p{sub T} jets. No leptoquark signal is experimentally detected for either signature. Using the next to leading order theoretical cross section for scalar leptoquark production in p{bar p} collisions [1], they set new mass limits on second generation scalar leptoquarks. They exclude the existence of second generation scalar leptoquarks with masses below 221(175) GeV/c{sup 2} for the {beta} = 1(1/2) channels.
He, H.-Q.; Wan, W. E-mail: wanw@mail.iggcas.ac.cn
2012-03-01
The parallel mean free path of solar energetic particles (SEPs), which is determined by physical properties of SEPs as well as those of solar wind, is a very important parameter in space physics to study the transport of charged energetic particles in the heliosphere, especially for space weather forecasting. In space weather practice, it is necessary to find a quick approach to obtain the parallel mean free path of SEPs for a solar event. In addition, the adiabatic focusing effect caused by a spatially varying mean magnetic field in the solar system is important to the transport processes of SEPs. Recently, Shalchi presented an analytical description of the parallel diffusion coefficient with adiabatic focusing. Based on Shalchi's results, in this paper we provide a direct analytical formula as a function of parameters concerning the physical properties of SEPs and solar wind to directly and quickly determine the parallel mean free path of SEPs with adiabatic focusing. Since all of the quantities in the analytical formula can be directly observed by spacecraft, this direct method would be a very useful tool in space weather research. As applications of the direct method, we investigate the inherent relations between the parallel mean free path and various parameters concerning physical properties of SEPs and solar wind. Comparisons of parallel mean free paths with and without adiabatic focusing are also presented.
Short-term gas dispersion in idealised urban canopy in street parallel with flow direction
NASA Astrophysics Data System (ADS)
Chaloupecká, Hana; Jaňour, Zbyněk; Nosek, Štěpán
2016-03-01
Chemical attacks (e.g. Syria 2014-15 chlorine, 2013 sarine or Iraq 2006-7 chlorine) as well as chemical plant disasters (e.g. Spain 2015 nitric oxide, ferric chloride; Texas 2014 methyl mercaptan) threaten mankind. In these crisis situations, gas clouds are released. Dispersion of gas clouds is the issue of interest investigated in this paper. The paper describes wind tunnel experiments of dispersion from ground level point gas source. The source is situated in a model of an idealised urban canopy. The short duration releases of passive contaminant ethane are created by an electromagnetic valve. The gas cloud concentrations are measured in individual places at the height of the human breathing zone within a street parallel with flow direction by Fast-response Ionisation Detector. The simulations of the gas release for each measurement position are repeated many times under the same experimental set up to obtain representative datasets. These datasets are analysed to compute puff characteristics (arrival, leaving time and duration). The results indicate that the mean value of the dimensionless arrival time can be described as a growing linear function of the dimensionless coordinate in the street parallel with flow direction where the gas source is situated. The same might be stated about the dimensionless leaving time as well as the dimensionless duration, however these fits are worse. Utilising a linear function, we might also estimate some other statistical characteristics from datasets than the datasets means (medians, trimeans). The datasets of the dimensionless arrival time, the dimensionless leaving time and the dimensionless duration can be fitted by the generalized extreme value distribution (GEV) in all sampling positions except one.
Job Search as Goal-Directed Behavior: Objectives and Methods
ERIC Educational Resources Information Center
Van Hoye, Greet; Saks, Alan M.
2008-01-01
This study investigated the relationship between job search objectives (finding a new job/turnover, staying aware of job alternatives, developing a professional network, and obtaining leverage against an employer) and job search methods (looking at job ads, visiting job sites, networking, contacting employment agencies, contacting employers, and…
NASA Technical Reports Server (NTRS)
Zhang, Meng; Maxworthy, Tony
1999-01-01
It has long been recognized that flow in the melt can have a profound influence on the dynamics of a solidifying interface and hence the quality of the solid material. In particular, flow affects the heat and mass transfer, and causes spatial and temporal variations in the flow and melt composition. This results in a crystal with nonuniform physical properties. Flow can be generated by buoyancy, expansion or contraction upon phase change, and thermo-soluto capillary effects. In general, these flows can not be avoided and can have an adverse effect on the stability of the crystal structures. This motivates crystal growth experiments in a microgravity environment, where buoyancy-driven convection is significantly suppressed. However, transient accelerations (g-jitter) caused by the acceleration of the spacecraft can affect the melt, while convection generated from the effects other than buoyancy remain important. Rather than bemoan the presence of convection as a source of interfacial instability, Hurle in the 1960s suggested that flow in the melt, either forced or natural convection, might be used to stabilize the interface. Delves considered the imposition of both a parabolic velocity profile and a Blasius boundary layer flow over the interface. He concluded that fast stirring could stabilize the interface to perturbations whose wave vector is in the direction of the fluid velocity. Forth and Wheeler considered the effect of the asymptotic suction boundary layer profile. They showed that the effect of the shear flow was to generate travelling waves parallel to the flow with a speed proportional to the Reynolds number. There have been few quantitative, experimental works reporting on the coupling effect of fluid flow and morphological instabilities. Huang studied plane Couette flow over cells and dendrites. It was found that this flow could greatly enhance the planar stability and even induce the cell-planar transition. A rotating impeller was buried inside the
Direct Dark Matter Search with the XENON100 Experiment
NASA Astrophysics Data System (ADS)
Mei, Yuan
Dark matter, a non-luminous, non-baryonic matter, is thought to constitute 23 % of the matter-energy components in the universe today. Except for its gravitational effects, the existence of dark matter has never been confirmed by any other means and its nature remains unknown. If a hypothetical Weakly Interacting Massive Particle (WIMP) were in thermal equilibrium in the early universe, it could have a relic abundance close to that of dark matter today, which provides a promising particle candidate of dark matter. Minimal Super-Symmetric extensions to the standard model predicts a stable particle with mass in the range 10 GeV/c2 to 1000 GeV/c2, and spin-independent cross-section with ordinary matter nucleon sigmax < 1 x 10--43 cm2. The XENON100 experiment deploys a Dual Phase Liquid Xenon Time Projection Chamber (LXeTPC) of 62 kg liquid xenon as its sensitive volume, to detect scintillation (S1) and ionization (S2) signals from WIMP dark matter particles directly scattering off xenon nuclei. The detector is located underground at Laboratori Nazionali del Gran Sasso (LNGS) in central Italy. 1.4 km of rock (3.7 km water equivalent) reduces the cosmic muon background by a factor of 106. The event-by-event 3D positioning capability of TPC allows volume fiducialization. With the self-shielding power of liquid xenon, as well as a 99 kg liquid xenon active veto, the electromagnetic radiation background is greatly suppressed. By utilizing the difference of (S2/S1) between electronic recoil and nuclear recoil, the expected WIMP signature, a small nuclear recoil energy deposition, could be discriminated from electronic recoil background with high efficiency. XENON100 achieved the lowest background rate (< 2.2 x 10--2 events/kg/day/keV) in the dark matter search region (< 40 keV) among all direct dark matter detectors. With 11.2 days of data, XENON100 already sets the world's best spin-independent WIMP-nucleon cross-section limit of 2.7 x 10--44 cm2 at WIMP mass 50 GeV/c 2
The Direct Imaging Search of Exoplanets from Ground and Space
NASA Astrophysics Data System (ADS)
Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian
2015-08-01
Exoplanets search is one of the hottest topics in both modern astronomy and public domain. Until now over 1990 exoplanets have been confirmed mostly by the indirect radial velocity and transiting approaches, yielding several important physical information such as masses and radius. The study of the physics of planet formation and evolution will focus on giant planets through the direct imaging.However, the direct imaging of exoplanets remains challenging, due to the large flux ratio difference and the nearby angular distance. In recent years, the extreme adaptive optics (Ex-AO) coronagraphic instrumentation has been proposed and developed on 8-meter class telescopes, which is optimized for the high-contrast imaging observation from ground, for the giant exoplanets and other faint stellar companions. Gemini Planet Imager (GPI) has recently come to its first light, with a development period over 10 years. The contrast level has been pushed to 10-6. Due to the space limitation or this or other reasons, none professional adaptive optics is available for most of current 3~4 meter class telescopes, which will limit its observation power to some extent, especially in the research of high-contrast imaging of exoplanets.In this presentation, we will report the latest observation results by using our Extreme Adaptive Optics (Ex-AO) as a visiting instrument for high-contrast imaging on ESO’s 3.58-meter NTT telescope at LSO, and on 3.5-meter ARC telescope at Apache Point Observatory, respectively. It has demonstrated the Ex-AO can be used for the scientific research of exoplanets and brown dwarfs. With a update of the currect configuration with critical hardware, the dedicated instrument called as EDICT for imaging research of young giant exoplanets will be presented. Meanwhile, we have fully demonstrated in the lab a contrast on the order of 10-9 in a large detection area, which is a critical technique for future Earth-like exoplanets imaging space missions. And a space
NASA Astrophysics Data System (ADS)
Campo, Lorenzo; Castelli, Fabio; Caparrini, Francesca
2010-05-01
The modern distributed hydrological models allow the representation of the different surface and subsurface phenomena with great accuracy and high spatial and temporal resolution. Such complexity requires, in general, an equally accurate parametrization. A number of approaches have been followed in this respect, from simple local search method (like Nelder-Mead algorithm), that minimize a cost function representing some distance between model's output and available measures, to more complex approaches like dynamic filters (such as the Ensemble Kalman Filter) that carry on an assimilation of the observations. In this work the first approach was followed in order to compare the performances of three different direct search algorithms on the calibration of a distributed hydrological balance model. The direct search family can be defined as that category of algorithms that make no use of derivatives of the cost function (that is, in general, a black box) and comprehend a large number of possible approaches. The main benefit of this class of methods is that they don't require changes in the implementation of the numerical codes to be calibrated. The first algorithm is the classical Nelder-Mead, often used in many applications and utilized as reference. The second algorithm is a GSS (Generating Set Search) algorithm, built in order to guarantee the conditions of global convergence and suitable for a parallel and multi-start implementation, here presented. The third one is the EGO algorithm (Efficient Global Optimization), that is particularly suitable to calibrate black box cost functions that require expensive computational resource (like an hydrological simulation). EGO minimizes the number of evaluations of the cost function balancing the need to minimize a response surface that approximates the problem and the need to improve the approximation sampling where prediction error may be high. The hydrological model to be calibrated was MOBIDIC, a complete balance
Fast String Search on Multicore Processors: Mapping fundamental algorithms onto parallel hardware
Scarpazza, Daniele P.; Villa, Oreste; Petrini, Fabrizio
2008-04-01
String searching is one of these basic algorithms. It has a host of applications, including search engines, network intrusion detection, virus scanners, spam filters, and DNA analysis, among others. The Cell processor, with its multiple cores, promises to speed-up string searching a lot. In this article, we show how we mapped string searching efficiently on the Cell. We present two implementations: • The fast implementation supports a small dictionary size (approximately 100 patterns) and provides a throughput of 40 Gbps, which is 100 times faster than reference implementations on x86 architectures. • The heavy-duty implementation is slower (3.3-4.3 Gbps), but supports dictionaries with tens of thousands of strings.
SIMPLE-icity in Direct Dark Matter Searches
Giuliani, F.; Morlat, T.; Ramos, A. R.; Girard, T. A.; Felizardo da Costa, M.; Marques, J. G.; Martins, R. C.; Miley, Harry S.; Limagne, D.; Waysand, G.
2007-11-01
SIMPLE is the European WIMP search based on Superheated Droplet Detectors (SDDs). An SDD consists of an emulsion of metastable liquid droplets in an organic gel, each of which operates on the same principle of the bubble chamber.
Direct numerical simulation of instabilities in parallel flow with spherical roughness elements
NASA Technical Reports Server (NTRS)
Deanna, R. G.
1992-01-01
Results from a direct numerical simulation of laminar flow over a flat surface with spherical roughness elements using a spectral-element method are given. The numerical simulation approximates roughness as a cellular pattern of identical spheres protruding from a smooth wall. Periodic boundary conditions on the domain's horizontal faces simulate an infinite array of roughness elements extending in the streamwise and spanwise directions, which implies the parallel-flow assumption, and results in a closed domain. A body force, designed to yield the horizontal Blasius velocity in the absence of roughness, sustains the flow. Instabilities above a critical Reynolds number reveal negligible oscillations in the recirculation regions behind each sphere and in the free stream, high-amplitude oscillations in the layer directly above the spheres, and a mean profile with an inflection point near the sphere's crest. The inflection point yields an unstable layer above the roughness (where U''(y) is less than 0) and a stable region within the roughness (where U''(y) is greater than 0). Evidently, the instability begins when the low-momentum or wake region behind an element, being the region most affected by disturbances (purely numerical in this case), goes unstable and moves. In compressible flow with periodic boundaries, this motion sends disturbances to all regions of the domain. In the unstable layer just above the inflection point, the disturbances grow while being carried downstream with a propagation speed equal to the local mean velocity; they do not grow amid the low energy region near the roughness patch. The most amplified disturbance eventually arrives at the next roughness element downstream, perturbing its wake and inducing a global response at a frequency governed by the streamwise spacing between spheres and the mean velocity of the most amplified layer.
ERIC Educational Resources Information Center
Chen, Hsinchun; Martinez, Joanne; Kirchhoff, Amy; Ng, Tobun D.; Schatz, Bruce R.
1998-01-01
Grounded on object filtering, automatic indexing, and co-occurrence analysis, an experiment was performed using a parallel supercomputer to analyze over 400,000 abstracts in an INSPEC computer engineering collection. A user evaluation revealed that system-generated thesauri were better than the human-generated INSPEC subject thesaurus in concept…
Technology Transfer Automated Retrieval System (TEKTRAN)
Modern day genomics holds the promise of solving the complexities of basic plant sciences, and of catalyzing practical advances in plant breeding. While contiguous, "base perfect" deep sequencing is a key module of any genome project, recent advances in parallel next generation sequencing technologi...
Direct tabu search algorithm for the fiber Bragg grating distributed strain sensing
NASA Astrophysics Data System (ADS)
Karim, F.; Seddiki, O.
2010-09-01
A direct tabu search (DTS) algorithm used for determining the strain profile along a fiber Bragg grating (FBG) from its reflection spectrum has been demonstrated. By combining the transfer matrix method (TMM) for calculating the reflection spectrum of an FBG and the DTS method, we obtain a new method for the distributed sensing. Direct search based strategies are used to direct a tabu search. These strategies are based on a new pattern search procedure called an adaptive pattern search (APS). In addition, the well-known Nelder-Mead (NME) algorithm is used as a local search method in the final stage of the optimization process. The numerical simulations show good agreement between the original and the reconstructed strain profiles.
A direct search for neutralino production at LEP
NASA Astrophysics Data System (ADS)
Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Clarke, P. E. L.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Debu, P.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Dumas, D. J. P.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gaidot, A.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Harrus, I.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Humbert, R.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Ihssen, H.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Köpke, L.; Kowalewski, R.; Kreutzmann, H.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lee, A. M.; Lehto, M. H.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McNutt, J. R.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Pansart, J. P.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Singh, P.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; Van den plas, D.; Van Dalen, G. J.; Vasseur, G.; Virtue, C. J.; von der Schmitt, H.; von Krogh, J.; Wagner, A.; Wahl, C.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wells, P. S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Toshida, T.; Zeuner, W.; Zorn, G. T.; OPAL Collaboration
1990-09-01
A search has been performed for the production of neutralinos ( χ, χ‧) in e +e - annihilation at energies near the Z 0 pole. No evidence for these particles was found either in searches for events with two acoplanar jets, low visible energy, and missing pt (sensitive to Z0→χχ‧→χχ foverlinef) or in searches for single-photon events (sensitive to Z 0→ χχ‧→ χχγ). Model independent upper limits (at the 95% CL) on the branching ratio for the decay mode Z 0 → χχ‧ of a few 10 -4 are obtained for most of the range of neutralino masses that is kinematically accessible at LEP energies. Upper limits on the mixing factor of neutralinos are also placed as a function of the neutralino masses.
A direct search for new charged heavy leptons at LEP
NASA Astrophysics Data System (ADS)
Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Bavaria, G.; Beck, F.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Bloddworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Cohen, I.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Davies, O. W.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchesneau, D.; Duchovni, E.; Duerdoth, I. P.; Dumas, D.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gandois, B.; Ganel, O.; Gary, J. W.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grosse-Wiesmann, P.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hatzifotiadou, D.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Heintze, J.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Hinde, P. S.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Imori, M.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jin, E.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Köpke, L.; Kokott, T. P.; Koshiba, M.; Kowalewski, R.; Kreutzmann, H.; von Krogh, J.; Kroll, J.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Lasota, M. M. B.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Ma, J.; MacBeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michellini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Muller, A.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Patrick, G. N.; Pawley, S. J.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Possoz, A.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Roehner, F.; Rollnik, A.; Roney, J. M.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; von der Schmitt, H.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Steuerer, J.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk, G.; van den Plas, D.; Vandalen, G. J.; Virtue, C. J.; Wagner, A.; Wahl, C.; Wang, H.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yamashita, H.; Yang, Y.; Yekutieli, G.; Zeuner, W.; Zorn, G. T.; Zylberajch, S.
1990-04-01
Results are presented from a search for a new charged heavy lepton in e+e- annihilation. The data were taken with the OPAL detector at LEP during a scan of the Z0 resonance. Two independent search techniques were used, one looking for events with large missing energy and missing momentum transverse to the beam, and the other for events with isolated energetic leptons. Two candidate events, consistent with expected background, were found in the first search; none was found in the second. These results allow the exclusion at the 95% confidence level of a charged heavy lepton of mass less than 44.3 GeV/c2 if it is assumed to have a massless neutrino partner. Limits are also presented for the case of a massive neutrino.
Direct visualization of a DNA glycosylase searching for damage.
Chen, Liwei; Haushalter, Karl A; Lieber, Charles M; Verdine, Gregory L
2002-03-01
DNA glycosylases preserve the integrity of genetic information by recognizing damaged bases in the genome and catalyzing their excision. It is unknown how DNA glycosylases locate covalently modified bases hidden in the DNA helix amongst vast numbers of normal bases. Here we employ atomic-force microscopy (AFM) with carbon nanotube probes to image search intermediates of human 8-oxoguanine DNA glycosylase (hOGG1) scanning DNA. We show that hOGG1 interrogates DNA at undamaged sites by inducing drastic kinks. The sharp DNA bending angle of these non-lesion-specific search intermediates closely matches that observed in the specific complex of 8-oxoguanine-containing DNA bound to hOGG1. These findings indicate that hOGG1 actively distorts DNA while searching for damaged bases. PMID:11927259
Direct dark matter search with XMASS: modulation analysis
NASA Astrophysics Data System (ADS)
Kobayashi, Kazuyoshi;
2016-05-01
Dark matter search by means of the annual modulation was done using large single-phase liquid-xenon detector, XMASS. With the data from November-2013 to March-2015, model independent analysis showed a weak modulation effect, however, the result can be explained by a fluctuation of the background at the level of 7-17%. If we assume the standard weekly interacting massive particles dark matter, we exclude almost all the allowed region claimed by the DAMA/LIBRA experiment. This is the first extensive search over their allowed region exploiting the annual modulation with high statistics data.
Enhancements, Parallelization and Future Directions of the V3FIT 3-D Equilibrium Reconstruction Code
NASA Astrophysics Data System (ADS)
Cianciosa, M. R.; Hanson, J. D.; Maurer, D. A.; Hartwell, G. J.; Archmiller, M. C.; Ma, X.; Herfindal, J.
2014-10-01
Three-dimensional equilibrium reconstruction is spreading beyond its original application to stellarators. Three-dimensional effects in nominally axisymmetric systems, including quasi-helical states in reversed field pinches and error fields in tokamaks, are becoming increasingly important. V3FIT is a fully three dimensional equilibrium reconstruction code in widespread use throughout the fusion community. The code has recently undergone extensive revision to prepare for the next generation of equilibrium reconstruction problems. The most notable changes are the abstraction of the equilibrium model, the propagation of experimental errors to the reconstructed results, support for multicolor soft x-ray emissivity cameras, and recent efforts to add parallelization for efficient computation on multi-processor system. Work presented will contain discussions on these new capabilities. We will compare probability distributions of reconstructed parameters with results from whole shot reconstructions. We will show benchmarking and profiling results of initial performance improvements through the addition of OpenMP and MPI support. We will discuss future directions of the V3FIT code including steps taken for support of the W-7X stellarator. Work supported by US. Department of Energy Grant No. DEFG-0203-ER-54692B.
Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method
NASA Astrophysics Data System (ADS)
Cave, H. M.; Tseng, K.-C.; Wu, J.-S.; Jermy, M. C.; Huang, J.-C.; Krumdieck, S. P.
2008-06-01
An unsteady sampling routine for a general parallel direct simulation Monte Carlo method called PDSC is introduced, allowing the simulation of time-dependent flow problems in the near continuum range. A post-processing procedure called DSMC rapid ensemble averaging method (DREAM) is developed to improve the statistical scatter in the results while minimising both memory and simulation time. This method builds an ensemble average of repeated runs over small number of sampling intervals prior to the sampling point of interest by restarting the flow using either a Maxwellian distribution based on macroscopic properties for near equilibrium flows (DREAM-I) or output instantaneous particle data obtained by the original unsteady sampling of PDSC for strongly non-equilibrium flows (DREAM-II). The method is validated by simulating shock tube flow and the development of simple Couette flow. Unsteady PDSC is found to accurately predict the flow field in both cases with significantly reduced run-times over single processor code and DREAM greatly reduces the statistical scatter in the results while maintaining accurate particle velocity distributions. Simulations are then conducted of two applications involving the interaction of shocks over wedges. The results of these simulations are compared to experimental data and simulations from the literature where there these are available. In general, it was found that 10 ensembled runs of DREAM processing could reduce the statistical uncertainty in the raw PDSC data by 2.5-3.3 times, based on the limited number of cases in the present study.
NASA Astrophysics Data System (ADS)
Theos, F. V.; Lagaris, I. E.; Papageorgiou, D. G.
2004-05-01
We present two sequential and one parallel global optimization codes, that belong to the stochastic class, and an interface routine that enables the use of the Merlin/MCL environment as a non-interactive local optimizer. This interface proved extremely important, since it provides flexibility, effectiveness and robustness to the local search task that is in turn employed by the global procedures. We demonstrate the use of the parallel code to a molecular conformation problem. Program summaryTitle of program: PANMIN Catalogue identifier: ADSU Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSU Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: PANMIN is designed for UNIX machines. The parallel code runs on either shared memory architectures or on a distributed system. The code has been tested on a SUN Microsystems ENTERPRISE 450 with four CPUs, and on a 48-node cluster under Linux, with both the GNU g77 and the Portland group compilers. The parallel implementation is based on MPI and has been tested with LAM MPI and MPICH Installation: University of Ioannina, Greece Programming language used: Fortran-77 Memory required to execute with typical data: Approximately O( n2) words, where n is the number of variables No. of bits in a word: 64 No. of processors used: 1 or many Has the code been vectorised or parallelized?: Parallelized using MPI No. of bytes in distributed program, including test data, etc.: 147163 No. of lines in distributed program, including the test data, etc.: 14366 Distribution format: gzipped tar file Nature of physical problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques can be
Characterising dark matter searches at colliders and direct detection experiments: Vector mediators
Buchmueller, Oliver; Dolan, Matthew J.; Malik, Sarah A.; McCabe, Christopher
2015-01-09
We introduce a Minimal Simplified Dark Matter (MSDM) framework to quantitatively characterise dark matter (DM) searches at the LHC. We study two MSDM models where the DM is a Dirac fermion which interacts with a vector and axial-vector mediator. The models are characterised by four parameters: m_{DM}, M_{med }, g_{DM} and g_{q}, the DM and mediator masses, and the mediator couplings to DM and quarks respectively. The MSDM models accurately capture the full event kinematics, and the dependence on all masses and couplings can be systematically studied. The interpretation of mono-jet searches in this framework can be used to establish an equal-footing comparison with direct detection experiments. For theories with a vector mediator, LHC mono-jet searches possess better sensitivity than direct detection searches for light DM masses (≲5 GeV). For axial-vector mediators, LHC and direct detection searches generally probe orthogonal directions in the parameter space. We explore the projected limits of these searches from the ultimate reach of the LHC and multi-ton xenon direct detection experiments, and find that the complementarity of the searches remains. In conclusion, we provide a comparison of limits in the MSDM and effective field theory (EFT) frameworks to highlight the deficiencies of the EFT framework, particularly when exploring the complementarity of mono-jet and direct detection searches.
Characterising dark matter searches at colliders and direct detection experiments: Vector mediators
Buchmueller, Oliver; Dolan, Matthew J.; Malik, Sarah A.; McCabe, Christopher
2015-01-09
We introduce a Minimal Simplified Dark Matter (MSDM) framework to quantitatively characterise dark matter (DM) searches at the LHC. We study two MSDM models where the DM is a Dirac fermion which interacts with a vector and axial-vector mediator. The models are characterised by four parameters: mDM, Mmed , gDM and gq, the DM and mediator masses, and the mediator couplings to DM and quarks respectively. The MSDM models accurately capture the full event kinematics, and the dependence on all masses and couplings can be systematically studied. The interpretation of mono-jet searches in this framework can be used to establishmore » an equal-footing comparison with direct detection experiments. For theories with a vector mediator, LHC mono-jet searches possess better sensitivity than direct detection searches for light DM masses (≲5 GeV). For axial-vector mediators, LHC and direct detection searches generally probe orthogonal directions in the parameter space. We explore the projected limits of these searches from the ultimate reach of the LHC and multi-ton xenon direct detection experiments, and find that the complementarity of the searches remains. In conclusion, we provide a comparison of limits in the MSDM and effective field theory (EFT) frameworks to highlight the deficiencies of the EFT framework, particularly when exploring the complementarity of mono-jet and direct detection searches.« less
Cache-Oblivious parallel SIMD Viterbi decoding for sequence search in HMMER
2014-01-01
Background HMMER is a commonly used bioinformatics tool based on Hidden Markov Models (HMMs) to analyze and process biological sequences. One of its main homology engines is based on the Viterbi decoding algorithm, which was already highly parallelized and optimized using Farrar’s striped processing pattern with Intel SSE2 instruction set extension. Results A new SIMD vectorization of the Viterbi decoding algorithm is proposed, based on an SSE2 inter-task parallelization approach similar to the DNA alignment algorithm proposed by Rognes. Besides this alternative vectorization scheme, the proposed implementation also introduces a new partitioning of the Markov model that allows a significantly more efficient exploitation of the cache locality. Such optimization, together with an improved loading of the emission scores, allows the achievement of a constant processing throughput, regardless of the innermost-cache size and of the dimension of the considered model. Conclusions The proposed optimized vectorization of the Viterbi decoding algorithm was extensively evaluated and compared with the HMMER3 decoder to process DNA and protein datasets, proving to be a rather competitive alternative implementation. Being always faster than the already highly optimized ViterbiFilter implementation of HMMER3, the proposed Cache-Oblivious Parallel SIMD Viterbi (COPS) implementation provides a constant throughput and offers a processing speedup as high as two times faster, depending on the model’s size. PMID:24884826
The search for high level parallelism for the iterative solution of large sparse linear systems
Young, D.M.
1988-07-01
In this paper the author is concerned with the numerical solution, based on iterative methods, of large sparse systems of linear algebraic equations of the type which arise in the numerical solution of elliptic and parabolic partial differential equations by finite difference or finite element methods. He considers linear systems of the form Au = b where A is a given N x N matrix which is large and sparse and where b is a given N x 1 column vector. He will assumes that A is symmetric and positive definite (SPD). He considers iterative algorithms which consist of a basic iterative method, such as the Richardson, Jacobi, SSOR or incomplete Cholesky method, combined with an acceleration procedure such as Chebyshev acceleration or conjugate gradient acceleration. The object of this paper is, however, to examine some high-level methods for achieving parallelism. Such techniques involve only matrix/vector operations and do not involve working with blocks of the matrix, subdividing the region, or using different meshes. It is expected that if effective high-level methods could be developed, they could be combined with block and domain decomposition methods, and related methods, to obtain even greater speedups. It is also expected that by working at a higher level it will eventually be possible to develop general purpose software for parallel machines similar to the ITPACK software packages which have already been developed for sequential and vector machines. The discussion here is primarily devoted to describing various techniques which the author and others have considered for obtaining high-level parallelism. The author plans to continue research on these techniques and eventually to develop algorithms and programs for multiprocessors based on them.
Bogdán, István A.; Rivers, Jenny; Beynon, Robert J.; Coca, Daniel
2008-01-01
Motivation: Peptide mass fingerprinting (PMF) is a method for protein identification in which a protein is fragmented by a defined cleavage protocol (usually proteolysis with trypsin), and the masses of these products constitute a ‘fingerprint’ that can be searched against theoretical fingerprints of all known proteins. In the first stage of PMF, the raw mass spectrometric data are processed to generate a peptide mass list. In the second stage this protein fingerprint is used to search a database of known proteins for the best protein match. Although current software solutions can typically deliver a match in a relatively short time, a system that can find a match in real time could change the way in which PMF is deployed and presented. In a paper published earlier we presented a hardware design of a raw mass spectra processor that, when implemented in Field Programmable Gate Array (FPGA) hardware, achieves almost 170-fold speed gain relative to a conventional software implementation running on a dual processor server. In this article we present a complementary hardware realization of a parallel database search engine that, when running on a Xilinx Virtex 2 FPGA at 100 MHz, delivers 1800-fold speed-up compared with an equivalent C software routine, running on a 3.06 GHz Xeon workstation. The inherent scalability of the design means that processing speed can be multiplied by deploying the design on multiple FPGAs. The database search processor and the mass spectra processor, running on a reconfigurable computing platform, provide a complete real-time PMF protein identification solution. Contact: d.coca@sheffield.ac.uk PMID:18453553
Influence of equilibrium shear flow in the parallel magnetic direction on edge localized mode crash
NASA Astrophysics Data System (ADS)
Luo, Y.; Chen, S. Y.; Huang, J.; Xiong, Y. Y.; Tang, C. J.
2016-04-01
The influence of the parallel shear flow on the evolution of peeling-ballooning (P-B) modes is studied with the BOUT++ four-field code in this paper. The parallel shear flow has different effects in linear simulation and nonlinear simulation. In the linear simulations, the growth rate of edge localized mode (ELM) can be increased by Kelvin-Helmholtz term, which can be caused by the parallel shear flow. In the nonlinear simulations, the results accord with the linear simulations in the linear phase. However, the ELM size is reduced by the parallel shear flow in the beginning of the turbulence phase, which is recognized as the P-B filaments' structure. Then during the turbulence phase, the ELM size is decreased by the shear flow.
Status of the DAMIC Direct Dark Matter Search Experiment
Aguilar-Arevalo, A.; et al.
2015-09-30
The DAMIC experiment uses fully depleted, high resistivity CCDs to search for dark matter particles. With an energy threshold $\\sim$50 eV$_{ee}$, and excellent energy and spatial resolutions, the DAMIC CCDs are well-suited to identify and suppress radioactive backgrounds, having an unrivaled sensitivity to WIMPs with masses $<$6 GeV/$c^2$. Early results motivated the construction of a 100 g detector, DAMIC100, currently being installed at SNOLAB. This contribution discusses the installation progress, new calibration efforts near the threshold, a preliminary result with 2014 data, and the prospects for physics results after one year of data taking.
A Scalable Distributed Parallel Breadth-First Search Algorithm on BlueGene/L
Yoo, A; Chow, E; Henderson, K; McLendon, W; Hendrickson, B; Catalyurek, U
2005-07-19
Many emerging large-scale data science applications require searching large graphs distributed across multiple memories and processors. This paper presents a distributed breadth-first search (BFS) scheme that scales for random graphs with up to three billion vertices and 30 billion edges. Scalability was tested on IBM BlueGene/L with 32,768 nodes at the Lawrence Livermore National Laboratory. Scalability was obtained through a series of optimizations, in particular, those that ensure scalable use of memory. We use 2D (edge) partitioning of the graph instead of conventional 1D (vertex) partitioning to reduce communication overhead. For Poisson random graphs, we show that the expected size of the messages is scalable for both 2D and 1D partitionings. Finally, we have developed efficient collective communication functions for the 3D torus architecture of BlueGene/L that also take advantage of the structure in the problem. The performance and characteristics of the algorithm are measured and reported.
Direct and indirect searches for anomalous beta decay
NASA Astrophysics Data System (ADS)
Nistor, Jonathan M.
We present a treatment of time-varying nuclear transition rates intended to guide future experimental searches, focusing primarily on the concept of "self-induce decay.'' This investigation stems from a series of recent reports that suggest that the decay rates of several isotopes may have been influenced by solar activity (perhaps by solar neutrinos). A mechanism in which (anti)neutrinos can influence the decay process suggests that a sample of decaying nuclei emitting neutrinos could affect its own rate of decay. Past experiments have searched for this "self-induced decay" (SID) effect by measuring deviations from the expected decay rate for highly active samples of varying geometries. Here, we further develop a SID formalism which takes into account the activation process. In the course of the treatment, the observation is made that the SID behavior closely resembles the behavior of rate-related losses due to dead-time, and hence that standard dead-time corrections can result in the removal of possible SID-related behavior. Additionally, we discuss a long-running dark matter (DM) experiment which observes an annual signal predicted by standard DM models. Here, we consider the possibility that the annual signal seen by the DAMA collaboration, and interpreted by them as evidence for dark matter, may in fact be due to the radioactive contaminant 40K, which is known to be present in their detector. We also consider the possibility that part of the DAMA signal may arise from relic big-bang neutrinos.
Current Results and Future Directions of the Pulsar Search Collaboratory
NASA Astrophysics Data System (ADS)
Heatherly, Sue Ann; Rosen, R.; McLaughlin, M.; Lorimer, D.
2011-01-01
The Pulsar Search Collaboratory (PSC) is a joint partnership between the National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU). The ultimate goal of the PSC is to interest students in science, technology, engineering, mathematics (STEM) fields by engaging them in conducting authentic scientific research-specifically the search for new pulsars. Of the 33 schools in the original PSC program, 13 come from rural school districts; one third of these are from schools where over 50% participate in the Free/Reduced School Lunch program. We are reaching first generation college-goers. For students, the program succeeds in building confidence in students, rapport with the scientists involved in the project, and greater comfort with team-work. We see additional gains in girls, as they see themselves more as scientists after participating in the PSC program, which is an important predictor of success in STEM fields. The PSC has had several scientific successes as well. To date, PSC students have made two astronomical discoveries: a 4.8-s pulsar and bright radio burst of astrophysical origin, most likely from a sporadic neutron star. We will report on the status of the project including new evaluation data. We will also describe PSC-West, an experiment to involve schools in Illinois and Wisconsin using primarily online tools for professional development of teachers and coaching of students. Knowledge gained through our efforts with PSC-West will assist the PSC team in scaling up the project.
Lick Observatory Optical SETI: targeted search and new directions.
Stone, R P S; Wright, S A; Drake, F; Muñoz, M; Treffers, R; Werthimer, D
2005-10-01
Lick Observatory's Optical SETI (search for extraterrestrial intelligence) program has been in regular operation for 4.5 years. We have observed 4,605 stars of spectral types F-M within 200 light-years of Earth. Occasionally, we have appended objects of special interest, such as stars with known planetary systems. We have observed 14 candidate signals ("triple coincidences"), all but one of which are explained by transient local difficulties. Additional observations of the remaining candidate have failed to confirm arriving pulse events. We now plan to proceed in a more economical manner by operating in an unattended drift scan mode. Between operational and equipment modifications, efficiency will more than double. PMID:16225433
Simulated Milky Way analogues: implications for dark matter direct searches
NASA Astrophysics Data System (ADS)
Bozorgnia, Nassim; Calore, Francesca; Schaller, Matthieu; Lovell, Mark; Bertone, Gianfranco; Frenk, Carlos S.; Crain, Robert A.; Navarro, Julio F.; Schaye, Joop; Theuns, Tom
2016-05-01
We study the implications of galaxy formation on dark matter direct detection using high resolution hydrodynamic simulations of Milky Way-like galaxies simulated within the EAGLE and APOSTLE projects. We identify Milky Way analogues that satisfy observational constraints on the Milky Way rotation curve and total stellar mass. We then extract the dark matter density and velocity distribution in the Solar neighbourhood for this set of Milky Way analogues, and use them to analyse the results of current direct detection experiments. For most Milky Way analogues, the event rates in direct detection experiments obtained from the best fit Maxwellian distribution (with peak speed of 223–289 km/s) are similar to those obtained directly from the simulations. As a consequence, the allowed regions and exclusion limits set by direct detection experiments in the dark matter mass and spin-independent cross section plane shift by a few GeV compared to the Standard Halo Model, at low dark matter masses. For each dark matter mass, the halo-to-halo variation of the local dark matter density results in an overall shift of the allowed regions and exclusion limits for the cross section. However, the compatibility of the possible hints for a dark matter signal from DAMA and CDMS-Si and null results from LUX and SuperCDMS is not improved.
Direct observation of TALE protein dynamics reveals a two-state search mechanism
Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.
2015-01-01
Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process—a search state and a recognition state—facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state. PMID:26027871
Direct observation of TALE protein dynamics reveals a two-state search mechanism
NASA Astrophysics Data System (ADS)
Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.
2015-06-01
Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process--a search state and a recognition state--facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state.
NASA Astrophysics Data System (ADS)
Wang, S.; De Hoop, M. V.; Xia, J.; Li, X.
2011-12-01
We consider the modeling of elastic seismic wave propagation on a rectangular domain via the discretization and solution of the inhomogeneous coupled Helmholtz equation in 3D, by exploiting a parallel multifrontal sparse direct solver equipped with Hierarchically Semi-Separable (HSS) structure to reduce the computational complexity and storage. In particular, we are concerned with solving this equation on a large domain, for a large number of different forcing terms in the context of seismic problems in general, and modeling in particular. We resort to a parsimonious mixed grid finite differences scheme for discretizing the Helmholtz operator and Perfect Matched Layer boundaries, resulting in a non-Hermitian matrix. We make use of a nested dissection based domain decomposition, and introduce an approximate direct solver by developing a parallel HSS matrix compression, factorization, and solution approach. We cast our massive parallelization in the framework of the multifrontal method. The assembly tree is partitioned into local trees and a global tree. The local trees are eliminated independently in each processor, while the global tree is eliminated through massive communication. The solver for the inhomogeneous equation is a parallel hybrid between multifrontal and HSS structure. The computational complexity associated with the factorization is almost linear with the size of the Helmholtz matrix. Our numerical approach can be compared with the spectral element method in 3D seismic applications.
Search for Exoplanets around Young Stellar Objects by Direct Imaging
NASA Astrophysics Data System (ADS)
Uyama, Taichi; Tamura, Motohide; Hashimoto, Jun; Kuzuhara, Masayuki
2015-12-01
SEEDS project, exploring exoplanets and protoplanetary disks with Subaru/HiCIAO, has observed about 500 stars by Direct Imaging from 2009 Dec to 2015 Apr. Among these targets we explore around Young Stellar Objects (YSOs; age ≦ 10Myr) which often have the protoplanetary disks where planets are being formed in order to detect young exoplanets and to understand the formation process. We analyzed 66 YSOs (about 100 data in total) with LOCI data reduction. We will report the results (companion candidates and detection limit) of our exploration.
NASA Astrophysics Data System (ADS)
Hitachi, A.
2013-12-01
The Bragg-like curve for compounds is introduced for directional detection of galactic dark matter. The slow ion collisions are discussed in relation to direct dark matter searches. The Coulomb effect and the threshold effect in stopping power theory are examined. Ionization via molecular orbit (MO) is suggested for an additional contribution to the electronic stopping power at very slow energy.
Scalability of Parallel Spatial Direct Numerical Simulations on Intel Hypercube and IBM SP1 and SP2
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.; Hanebutte, Ulf R.; Zubair, Mohammad
1995-01-01
The implementation and performance of a parallel spatial direct numerical simulation (PSDNS) approach on the Intel iPSC/860 hypercube and IBM SP1 and SP2 parallel computers is documented. Spatially evolving disturbances associated with the laminar-to-turbulent transition in boundary-layer flows are computed with the PSDNS code. The feasibility of using the PSDNS to perform transition studies on these computers is examined. The results indicate that PSDNS approach can effectively be parallelized on a distributed-memory parallel machine by remapping the distributed data structure during the course of the calculation. Scalability information is provided to estimate computational costs to match the actual costs relative to changes in the number of grid points. By increasing the number of processors, slower than linear speedups are achieved with optimized (machine-dependent library) routines. This slower than linear speedup results because the computational cost is dominated by FFT routine, which yields less than ideal speedups. By using appropriate compile options and optimized library routines on the SP1, the serial code achieves 52-56 M ops on a single node of the SP1 (45 percent of theoretical peak performance). The actual performance of the PSDNS code on the SP1 is evaluated with a "real world" simulation that consists of 1.7 million grid points. One time step of this simulation is calculated on eight nodes of the SP1 in the same time as required by a Cray Y/MP supercomputer. For the same simulation, 32-nodes of the SP1 and SP2 are required to reach the performance of a Cray C-90. A 32 node SP1 (SP2) configuration is 2.9 (4.6) times faster than a Cray Y/MP for this simulation, while the hypercube is roughly 2 times slower than the Y/MP for this application. KEY WORDS: Spatial direct numerical simulations; incompressible viscous flows; spectral methods; finite differences; parallel computing.
Taming astrophysical bias in direct dark matter searches
Pato, Miguel; Strigari, Louis E.; Trotta, Roberto; Bertone, Gianfranco E-mail: strigari@stanford.edu E-mail: gf.bertone@gmail.com
2013-02-01
We explore systematic biases in the identification of dark matter in future direct detection experiments and compare the reconstructed dark matter properties when assuming a self-consistent dark matter distribution function and the standard Maxwellian velocity distribution. We find that the systematic bias on the dark matter mass and cross-section determination arising from wrong assumptions for its distribution function is of order ∼ 1σ. A much larger systematic bias can arise if wrong assumptions are made on the underlying Milky Way mass model. However, in both cases the bias is substantially mitigated by marginalizing over galactic model parameters. We additionally show that the velocity distribution can be reconstructed in an unbiased manner for typical dark matter parameters. Our results highlight both the robustness of the dark matter mass and cross-section determination using the standard Maxwellian velocity distribution and the importance of accounting for astrophysical uncertainties in a statistically consistent fashion.
Trinitis, C; Schulz, M
2006-06-29
In today's world, the use of parallel programming and architectures is essential for simulating practical problems in engineering and related disciplines. Remarkable progress in CPU architecture, system scalability, and interconnect technology continues to provide new opportunities, as well as new challenges for both system architects and software developers. These trends are paralleled by progress in parallel algorithms, simulation techniques, and software integration from multiple disciplines. ParSim brings together researchers from both application disciplines and computer science and aims at fostering closer cooperation between these fields. Since its successful introduction in 2002, ParSim has established itself as an integral part of the EuroPVM/MPI conference series. In contrast to traditional conferences, emphasis is put on the presentation of up-to-date results with a short turn-around time. This offers a unique opportunity to present new aspects in this dynamic field and discuss them with a wide, interdisciplinary audience. The EuroPVM/MPI conference series, as one of the prime events in parallel computation, serves as an ideal surrounding for ParSim. This combination enables the participants to present and discuss their work within the scope of both the session and the host conference. This year, eleven papers from authors in nine countries were submitted to ParSim, and we selected five of them. They cover a wide range of different application fields including gas flow simulations, thermo-mechanical processes in nuclear waste storage, and cosmological simulations. At the same time, the selected contributions also address the computer science side of their codes and discuss different parallelization strategies, programming models and languages, as well as the use nonblocking collective operations in MPI. We are confident that this provides an attractive program and that ParSim will be an informal setting for lively discussions and for fostering new
NASA Astrophysics Data System (ADS)
van Putten, Maurice H. P. M.
2016-03-01
Core-collapse supernovae (CC-SNe) are factories of neutron stars and stellar-mass black holes. SNe Ib/c stand out as potentially originating in relatively compact stellar binaries and they have a branching ratio of about 1% into long gamma-ray bursts. The most energetic events probably derive from central engines harboring rapidly rotating black holes, wherein the accretion of fall-back matter down to the innermost stable circular orbit (ISCO) offers a window into broadband extended gravitational wave emission (BEGE). To search for BEGE, we introduce a butterfly filter in time-frequency space by time-sliced matched filtering. To analyze long epochs of data, we propose using coarse-grained searches followed by high-resolution searches on events of interest. We illustrate our proposed coarse-grained search on two weeks of LIGO S6 data prior to SN 2010br (z = 0.002339) using a bank of up to 64,000 templates of one-second duration covering a broad range in chirp frequencies and bandwidth. Correlating events with signal-to-noise ratios > 6 from the LIGO L1 and H1 detectors reduces the total to a few events of interest. Lacking any further properties reflecting a common excitation by broadband gravitational radiation, we disregarded these as spurious. This new pipeline may be used to systematically search for long-duration chirps in nearby CC-SNe from robotic optical transient surveys using embarrassingly parallel computing.
NASA Astrophysics Data System (ADS)
Boluriaan Esfahaani, Said
A parallel two-dimensional code is developed in this thesis to numerically simulate wake vortex detection using a Radio Acoustic Sounding System (RASS). The Maxwell equations for media with non-uniform permittivity and the linearized Euler equations for media with non-uniform mean flow are the main framework for the simulations. The code is written in Fortran 90 with the Message Passing Interface (MPI) for parallel implementation. The main difficulty encountered with a time accurate simulation of a RASS is the number of samples required to resolve the Doppler shift in the scattered electromagnetic signal. Even for a 1D simulation with a typical scatterer size, the CPU time required to run the code is far beyond currently available computer resources. Two solutions that overcome this problem are described. In the first the actual electromagnetic wave propagation speed is replaced with a much lower value. This allows an explicit, time accurate numerical scheme to be used. In the second the governing differential equations are recast in order to remove the carrier frequency and solve only for the frequency shift using an implicit scheme with large time steps. The numerical stability characteristics of the resulting discretized equation with complex coefficients are examined. A number of cases for both the monostatic and bistatic configurations are considered. First, a uniform mean flow is considered and the RASS simulation is performed for two different types of incident acoustic field, namely a short single frequency acoustic pulse and a continuous broadband acoustic source. Both the explicit and implicit schemes are examined and the mean flow velocity is determined from the spectrum of the backscattered electromagnetic signal with very good accuracy. Second, the Taylor and Oseen vortex models are considered and their velocity field along the incident electromagnetic beam is retrieved. The Abel transform is then applied to the velocity profiles determined by both
Chaining direct memory access data transfer operations for compute nodes in a parallel computer
Archer, Charles J.; Blocksome, Michael A.
2010-09-28
Methods, systems, and products are disclosed for chaining DMA data transfer operations for compute nodes in a parallel computer that include: receiving, by an origin DMA engine on an origin node in an origin injection FIFO buffer for the origin DMA engine, a RGET data descriptor specifying a DMA transfer operation data descriptor on the origin node and a second RGET data descriptor on the origin node, the second RGET data descriptor specifying a target RGET data descriptor on the target node, the target RGET data descriptor specifying an additional DMA transfer operation data descriptor on the origin node; creating, by the origin DMA engine, an RGET packet in dependence upon the RGET data descriptor, the RGET packet containing the DMA transfer operation data descriptor and the second RGET data descriptor; and transferring, by the origin DMA engine to a target DMA engine on the target node, the RGET packet.
Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators.
Tian, Yonghui; Zhao, Yongpeng; Chen, Wenjie; Guo, Anqi; Li, Dezhao; Zhao, Guolin; Liu, Zilong; Xiao, Huifu; Liu, Guipeng; Yang, Jianhong
2015-10-01
We report an electro-optic photonic integrated circuit which can perform the exclusive (XOR) logic operation based on two silicon parallel-cascaded microring resonators (MRRs) fabricated on the silicon-on-insulator (SOI) platform. PIN diodes embedded around MRRs are employed to achieve the carrier injection modulation. Two electrical pulse sequences regarded as two operands of operations are applied to PIN diodes to modulate two MRRs through the free carrier dispersion effect. The final operation result of two operands is output at the Output port in the form of light. The scattering matrix method is employed to establish numerical model of the device, and numerical simulator SG-framework is used to simulate the electrical characteristics of the PIN diodes. XOR operation with the speed of 100Mbps is demonstrated successfully. PMID:26480148
Self-pacing direct memory access data transfer operations for compute nodes in a parallel computer
Blocksome, Michael A
2015-02-17
Methods, apparatus, and products are disclosed for self-pacing DMA data transfer operations for nodes in a parallel computer that include: transferring, by an origin DMA on an origin node, a RTS message to a target node, the RTS message specifying an message on the origin node for transfer to the target node; receiving, in an origin injection FIFO for the origin DMA from a target DMA on the target node in response to transferring the RTS message, a target RGET descriptor followed by a DMA transfer operation descriptor, the DMA descriptor for transmitting a message portion to the target node, the target RGET descriptor specifying an origin RGET descriptor on the origin node that specifies an additional DMA descriptor for transmitting an additional message portion to the target node; processing, by the origin DMA, the target RGET descriptor; and processing, by the origin DMA, the DMA transfer operation descriptor.
Oscillation modes of direct current microdischarges with parallel-plate geometry
Stefanovic, Ilija; Kuschel, Thomas; Winter, Joerg; Skoro, Nikola; Maric, Dragana; Petrovic, Zoran Lj
2011-10-15
Two different oscillation modes in microdischarge with parallel-plate geometry have been observed: relaxation oscillations with frequency range between 1.23 and 2.1 kHz and free-running oscillations with 7 kHz frequency. The oscillation modes are induced by increasing power supply voltage or discharge current. For a given power supply voltage, there is a spontaneous transition from one to other oscillation mode and vice versa. Before the transition from relaxation to free-running oscillations, the spontaneous increase of oscillation frequency of relaxation oscillations form 1.3 kHz to 2.1 kHz is measured. Fourier transform spectra of relaxation oscillations reveal chaotic behavior of microdischarges. Volt-ampere (V-A) characteristics associated with relaxation oscillations describes periodical transition between low current, diffuse discharge, and normal glow. However, free-running oscillations appear in subnormal glow only.
Formalizing dependency directed backtracking and explanation based learning in refinement search
Kambhampati, S.
1996-12-31
The ideas of dependency directed backtracking (DDB) and explanation based learning (EBL) have developed independently in constraint satisfaction, planning and problem solving communities. In this paper, I formalize and unify these ideas under the task-independent framework of refinement search, which can model the search strategies used in both planning and constraint satisfaction. I show that both DDB and EBL depend upon the common theory of explaining search failures, and regressing them to higher levels of the search tree. The relevant issues of importance include (a) how the failures are explained and (b) how many failure explanations are remembered. This task-independent understanding of DDB and EBL helps support cross-fertilization of ideas among Constraint Satisfaction, Planning and Explanation-Based Learning communities.
Nobile, Eugenio Del; Gelmini, Graciela B.; Witte, Samuel J.
2015-08-21
We study how gravitational focusing (GF) of dark matter by the Sun affects the annual and biannual modulation of the expected signal in non-directional direct dark matter searches, in the presence of dark matter substructure in the local dark halo. We consider the Sagittarius stream and a possible dark disk, and show that GF suppresses some, but not all, of the distinguishing features that would characterize substructure of the dark halo were GF neglected.
Using the Self-Directed Search: Career Explorer with High-Risk Middle School Students
ERIC Educational Resources Information Center
Osborn, Debra S.; Reardon, Robert C.
2006-01-01
The Self-Directed Search: Career Explorer was used with 98 (95% African American) high-risk middle school students as part of 14 structured career groups based on Cognitive Information Processing theory. Results and implications are presented on the outcomes of this program.
Diagnostic Use of Holland's Self-Directed Search with University Students.
ERIC Educational Resources Information Center
Christensen, Kathleen C.; Sedlacek, William E.
This study explores the use of a self-counseling device, Holland's Self-Directed Search (SDS), as a diagnostic tool in identifying students who have encountered difficulties in college but persist in their attendance when they may have been better suited to vocational training programs. Thirty-seven students in the University of Maryland Office of…
The Influence of Item Response Indecision on the Self-Directed Search
ERIC Educational Resources Information Center
Sampson, James P., Jr.; Shy, Jonathan D.; Hartley, Sarah Lucas; Reardon, Robert C.; Peterson, Gary W.
2009-01-01
Students (N = 247) responded to Self-Directed Search (SDS) per the standard response format and were also instructed to record a question mark (?) for items about which they were uncertain (item response indecision [IRI]). The initial responses of the 114 participants with a (?) were then reversed and a second SDS summary code was obtained and…
Psychometric Properties of the Chinese Self-Directed Search (1994 Edition)
ERIC Educational Resources Information Center
Yang, Weiwei; Lance, Charles E.; Hui, Harry C.
2006-01-01
In this study, we (a) examined the measurement equivalence/invariance (ME/I) of the Chinese Self-Directed Search (SDS; 1994 edition) across gender and geographic regions (Mainland China vs. Hong Kong); (b) assessed the construct validity of the Chinese SDS using Widaman's (1985, 1992) MTMM framework; and (c) determined whether vocational interests…
ERIC Educational Resources Information Center
Miller, Mark J.; Springer, Thomas P.; Tobacyk, Jerome; Wells, Don
2004-01-01
In this study, the relationship of expressed occupational daydreams and scores on the Self-Directed Search (SDS) were examined. Results were consistent with Holland's theory of careers. Implications for career counselors are discussed. Students were asked to provide specific biographical data (i. e., age, gender, race) and to write down their…
Twin Similarities in Holland Types as Shown by Scores on the Self-Directed Search
ERIC Educational Resources Information Center
Chauvin, Ida; McDaniel, Janelle R.; Miller, Mark J.; King, James M.; Eddlemon, Ondie L. M.
2012-01-01
This study examined the degree of similarity between scores on the Self-Directed Search from one set of identical twins. Predictably, a high congruence score was found. Results from a biographical sheet are discussed as well as implications of the results for career counselors.
Status and Prospects of the EDELWEISS-III Direct WIMP Search Experiment
NASA Astrophysics Data System (ADS)
Juillard, A.
2016-08-01
EDELWEISS-III is a direct dark matter search experiment, running 800 g heat-and-ionization cryogenic germanium detectors equipped with Full InterDigitized electrodes (FID) for the rejection of near-surface events. We report a preliminary analysis for a subset of the data (35 kg\\cdot days) as well as future prospects for low-mass WIMPs seach.
ERIC Educational Resources Information Center
Dozier, V. Casey; Sampson, James P.; Reardon, Robert C.
2013-01-01
John Holland's Self-Directed Search (SDS) is a career assessment that consists of several booklets designed to be self-scored and self-administered. It simulates what a practitioner and an individual might do together in a career counseling session (e.g., review preferred activities and occupations; review competencies, abilities and possible…
Choongsang Cho; Sangkeun Lee
2016-04-01
Image smoothing has been used for image segmentation, image reconstruction, object classification, and 3D content generation. Several smoothing approaches have been used at the pre-processing step to retain the critical edge, while removing noise and small details. However, they have limited performance, especially in removing small details and smoothing discrete regions. Therefore, to provide fast and accurate smoothing, we propose an effective scheme that uses a weighted combination of the gradient, Laplacian, and diagonal derivatives of a smoothed image. In addition, to reduce computational complexity, we designed and implemented a parallel processing structure for the proposed scheme on a graphics processing unit (GPU). For an objective evaluation of the smoothing performance, the images were linearly quantized into several layers to generate experimental images, and the quantized images were smoothed using several methods for reconstructing the smoothly changed shape and intensity of the original image. Experimental results showed that the proposed scheme has higher objective scores and better successful smoothing performance than similar schemes, while preserving and removing critical and trivial details, respectively. For computational complexity, the proposed smoothing scheme running on a GPU provided 18 and 16 times lower complexity than the proposed smoothing scheme running on a CPU and the L0-based smoothing scheme, respectively. In addition, a simple noise reduction test was conducted to show the characteristics of the proposed approach; it reported that the presented algorithm outperforms the state-of-the art algorithms by more than 5.4 dB. Therefore, we believe that the proposed scheme can be a useful tool for efficient image smoothing. PMID:26886985
NASA Technical Reports Server (NTRS)
Sanger, Eugen
1932-01-01
A method is presented for approximate static calculation, which is based on the customary assumption of rigid ribs, while taking into account the systematic errors in the calculation results due to this arbitrary assumption. The procedure is given in greater detail for semicantilever and cantilever wings with polygonal spar plan form and for wings under direct loading only. The last example illustrates the advantages of the use of influence lines for such wing structures and their practical interpretation.
NASA Technical Reports Server (NTRS)
Gutmann, R. J.; Borrego, J. M.
1978-01-01
Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions.
Abreu Velez, Ana Maria; Upegui Zapata, Yulieth Alexandra; Howard, Michael S
2016-01-01
Background: In many countries and laboratories, techniques such as direct immunofluorescence (DIF) are not available for the diagnosis of skin diseases. Thus, these laboratories are limited in the full diagnoses of autoimmune skin diseases, vasculitis, and rheumatologic diseases. In our experience with these diseases and the patient's skin biopsies, we have noted a positive correlation between periodic acid-Schiff (PAS) staining and immunofluorescence patterns; however, these were just empiric observations. In the current study, we aim to confirm these observations, given the concept that the majority of autoantibodies are glycoproteins and should thus be recognized by PAS staining. Aims: To compare direct immunofluorescent and PAS staining, in multiple autoimmune diseases that are known to exhibit specific direct immunofluorescent patterns. Materials and Methods: We studied multiple autoimmune skin diseases: Five cases of bullous pemphigoid, five cases of pemphigus vulgaris, ten cases of cutaneous lupus, ten cases of autoimmune vasculitis, ten cases of lichen planus (LP), and five cases of cutaneous drug reactions (including one case of erythema multiforme). In addition, we utilized 45 normal skin control specimens from plastic surgery reductions. Results: We found a 98% positive correlation between DIF and PAS staining patterns over all the disease samples. Conclusion: We recommend that laboratories without access to DIF always perform PAS staining in addition to hematoxylin and eosin (H&E) staining, for a review of the reactivity pattern. PMID:27114972
Multiparty controlled quantum secure direct communication based on quantum search algorithm
NASA Astrophysics Data System (ADS)
Kao, Shih-Hung; Hwang, Tzonelih
2013-12-01
In this study, a new controlled quantum secure direct communication (CQSDC) protocol using the quantum search algorithm as the encoding function is proposed. The proposed protocol is based on the multi-particle Greenberger-Horne-Zeilinger entangled state and the one-step quantum transmission strategy. Due to the one-step transmission of qubits, the proposed protocol can be easily extended to a multi-controller environment, and is also free from the Trojan horse attacks. The analysis shows that the use of quantum search algorithm in the construction of CQSDC appears very promising.
NASA Astrophysics Data System (ADS)
An, Fengwei; Mihara, Keisuke; Yamasaki, Shogo; Chen, Lei; Jürgen Mattausch, Hans
2016-04-01
VLSI-implementations are often applied to solve the high computational cost of pattern matching but have usually low flexibility for satisfying different target applications. In this paper, a digital word-parallel associative memory architecture for k nearest neighbor (KNN) search, which is one of the most basic algorithms in pattern recognition, is reported applying the squared Euclidean distance measure. The reported architecture features reconfigurable parallelism, dual-storage space to achieve a flexible number of reference vectors, and a dedicated majority vote circuit. Programmable switching circuits, located between vector components, enable scalability of the searching parallelism by configuring the reference feature-vector dimensionality. A pipelined storage with dual static-random-access-memory (SRAM) cells for each unit and an intermediate winner control circuit are designed to extend the applicability by improving the flexibility of the reference storage. A test chip in 180 nm CMOS technology, which has 32 rows, 4 elements in each row and 2-parallel 8-bit dual-components in each element, consumes altogether 61.4 mW and in particular only 11.9 mW during the reconfigurable KNN classification (at 45.58 MHz and 1.8 V).
Results of a direct search for the thorium-229 nuclear isomeric transition
NASA Astrophysics Data System (ADS)
Schneider, Christian; Jeet, Justin; Sullivan, Scott T.; Rellergert, Wade G.; Mirzadeh, Saed; Cassanho, A.; Jenssen, H. P.; Tkalya, Eugene V.; Hudson, Eric R.
2015-05-01
The nucleus of thorium-229 has an exceptionally low-energy isomeric transition in the vacuum-ultraviolet spectrum around 7 . 8 +/- 0 . 5 eV. The prospects of a laser-accessible nuclear transition are manifold but require spectroscopically resolving the transition. Our approach is a direct search using thorium-doped crystals as samples and exciting the isomeric state with vacuum-ultraviolet synchrotron radiation. In a recent experiment, we were able to search for the transition at the Advanced Light Source synchrotron, LBNL, between 7 . 3 eV and 8 . 8 eV. We found no evidence for the transition within a lifetime range of 1-2s to 2000-5600s. This result excludes large parts of the theoretically expected region. We conclude reporting on our efforts of a search using laser-generated vacuum-ultraviolet light.
Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz
2014-01-01
Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. PMID:25024412
Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz
2014-08-13
Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. PMID:25024412
Development of a super-resolution optical microscope for directional dark matter search experiment
NASA Astrophysics Data System (ADS)
Alexandrov, A.; Asada, T.; Consiglio, L.; D`Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Furuya, S.; Hakamata, K.; Ishikawa, M.; Katsuragawa, T.; Kuwabara, K.; Machii, S.; Naka, T.; Pupilli, F.; Sirignano, C.; Tawara, Y.; Tioukov, V.; Umemoto, A.; Yoshimoto, M.
2016-07-01
Nuclear emulsion is a perfect choice for a detector for directional DM search because of its high density and excellent position accuracy. The minimal detectable track length of a recoil nucleus in emulsion is required to be at least 100 nm, making the resolution of conventional optical microscopes insufficient to resolve them. Here we report about the R&D on a super-resolution optical microscope to be used in future directional DM search experiments with nuclear emulsion as a detector media. The microscope will be fully automatic, will use novel image acquisition and analysis techniques, will achieve the spatial resolution of the order of few tens of nm and will be capable of reconstructing recoil tracks with the length of at least 100 nm with high angular resolution.
Search for Coincidences in Time and Arrival Direction of Auger Data with Astrophysical Transients
Anchordoqui, Luis; Collaboration, for the Pierre Auger
2007-06-01
The data collected by the Pierre Auger Observatory are analyzed to search for coincidences between the arrival directions of high-energy cosmic rays and the positions in the sky of astrophysical transients. Special attention is directed towards gamma ray observations recorded by NASA's Swift mission, which have an angular resolution similar to that of the Auger surface detectors. In particular, we check our data for evidence of a signal associated with the giant flare that came from the soft gamma repeater 1806-20 on December 27, 2004.
Parallel algorithms and architectures
Albrecht, A.; Jung, H.; Mehlhorn, K.
1987-01-01
Contents of this book are the following: Preparata: Deterministic simulation of idealized parallel computers on more realistic ones; Convex hull of randomly chosen points from a polytope; Dataflow computing; Parallel in sequence; Towards the architecture of an elementary cortical processor; Parallel algorithms and static analysis of parallel programs; Parallel processing of combinatorial search; Communications; An O(nlogn) cost parallel algorithms for the single function coarsest partition problem; Systolic algorithms for computing the visibility polygon and triangulation of a polygonal region; and RELACS - A recursive layout computing system. Parallel linear conflict-free subtree access.
Intrinsic neutron background of nuclear emulsions for directional Dark Matter searches
NASA Astrophysics Data System (ADS)
Alexandrov, A.; Asada, T.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Di Vacri, M. L.; Furuya, S.; Galati, G.; Gentile, V.; Katsuragawa, T.; Laubenstein, M.; Lauria, A.; Loverre, P. F.; Machii, S.; Monacelli, P.; Montesi, M. C.; Naka, T.; Pupilli, F.; Rosa, G.; Sato, O.; Strolin, P.; Tioukov, V.; Umemoto, A.; Yoshimoto, M.
2016-07-01
Recent developments of the nuclear emulsion technology led to the production of films with nanometric silver halide grains suitable to track low energy nuclear recoils with submicrometric length. This improvement opens the way to a directional Dark Matter detection, thus providing an innovative and complementary approach to the on-going WIMP searches. An important background source for these searches is represented by neutron-induced nuclear recoils that can mimic the WIMP signal. In this paper we provide an estimation of the contribution to this background from the intrinsic radioactive contamination of nuclear emulsions. We also report the neutron-induced background as a function of the read-out threshold, by using a GEANT4 simulation of the nuclear emulsion, showing that it amounts to about 0.06 per year per kilogram, fully compatible with the design of a 10 kg × year exposure.
Intrinsic neutron background of nuclear emulsions for directional Dark Matter searches
NASA Astrophysics Data System (ADS)
Alexandrov, A.; Asada, T.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Di Vacri, M. L.; Furuya, S.; Galati, G.; Gentile, V.; Katsuragawa, T.; Laubenstein, M.; Lauria, A.; Loverre, P. F.; Machii, S.; Monacelli, P.; Montesi, M. C.; Naka, T.; Pupilli, F.; Rosa, G.; Sato, O.; Strolin, P.; Tioukov, V.; Umemoto, A.; Yoshimoto, M.
2016-07-01
Recent developments of the nuclear emulsion technology led to the production of films with nanometric silver halide grains suitable to track low energy nuclear recoils with submicrometric length. This improvement opens the way to a directional Dark Matter detection, thus providing an innovative and complementary approach to the on-going WIMP searches. An important background source for these searches is represented by neutron-induced nuclear recoils that can mimic the WIMP signal. In this paper we provide an estimation of the contribution to this background from the intrinsic radioactive contamination of nuclear emulsions. We also report the neutron-induced background as a function of the read-out threshold, by using a GEANT4 simulation of the nuclear emulsion, showing that it amounts to about 0.06 per year per kilogram, fully compatible with the design of a 10 kg × year exposure.
NASA Astrophysics Data System (ADS)
Ovaysi, S.; Piri, M.
2009-12-01
We present a three-dimensional fully dynamic parallel particle-based model for direct pore-level simulation of incompressible viscous fluid flow in disordered porous media. The model was developed from scratch and is capable of simulating flow directly in three-dimensional high-resolution microtomography images of naturally occurring or man-made porous systems. It reads the images as input where the position of the solid walls are given. The entire medium, i.e., solid and fluid, is then discretized using particles. The model is based on Moving Particle Semi-implicit (MPS) technique. We modify this technique in order to improve its stability. The model handles highly irregular fluid-solid boundaries effectively. It takes into account viscous pressure drop in addition to the gravity forces. It conserves mass and can automatically detect any false connectivity with fluid particles in the neighboring pores and throats. It includes a sophisticated algorithm to automatically split and merge particles to maintain hydraulic connectivity of extremely narrow conduits. Furthermore, it uses novel methods to handle particle inconsistencies and open boundaries. To handle the computational load, we present a fully parallel version of the model that runs on distributed memory computer clusters and exhibits excellent scalability. The model is used to simulate unsteady-state flow problems under different conditions starting from straight noncircular capillary tubes with different cross-sectional shapes, i.e., circular/elliptical, square/rectangular and triangular cross-sections. We compare the predicted dimensionless hydraulic conductances with the data available in the literature and observe an excellent agreement. We then test the scalability of our parallel model with two samples of an artificial sandstone, samples A and B, with different volumes and different distributions (non-uniform and uniform) of solid particles among the processors. An excellent linear scalability is
Neutralino dark matter in minimal supergravity: Direct detection versus collider searches
Baer, H.; Brhlik, M.
1998-01-01
We calculate expected event rates for direct detection of relic neutralinos as a function of parameter space of the minimal supergravity model. Numerical results are presented for the specific case of a {sup 73}Ge detector. We find significant detection rates (R{gt}0.01events/kg/day) in regions of parameter space most favored by constraints from B{r_arrow}X{sub s}{gamma} and the cosmological relic density of neutralinos. The detection rates are especially large in regions of large tan{beta}, where many conventional signals for supersymmetry at collider experiments are difficult to detect. If the parameter tan{beta} is large, then there is a significant probability that the first direct evidence for supersymmetry could come from direct detection experiments, rather than from collider searches for sparticles. {copyright} {ital 1997} {ital The American Physical Society}
The Impact of Transiting Planet Science on the Next Generation of Direct-Imaging Planet Searches
NASA Astrophysics Data System (ADS)
Carson, Joseph C.
2009-02-01
Within the next five years, a number of direct-imaging planet search instruments, like the VLT SPHERE instrument, will be coming online. To successfully carry out their programs, these instruments will rely heavily on a-priori information on planet composition, atmosphere, and evolution. Transiting planet surveys, while covering a different semi-major axis regime, have the potential to provide critical foundations for these next-generation surveys. For example, improved information on planetary evolutionary tracks may significantly impact the insights that can be drawn from direct-imaging statistical data. Other high-impact results from transiting planet science include information on mass-to-radius relationships as well as atmospheric absorption bands. The marriage of transiting planet and direct-imaging results may eventually give us the first complete picture of planet migration, multiplicity, and general evolution.
Móricz, Agnes M; Ott, Péter G; Alberti, Agnes; Böszörményi, Andrea; Lemberkovics, Eva; Szoke, Eva; Kéry, Agnes; Mincsovics, Emil
2013-01-01
In situ sample preparation and preparative overpressured layer chromatography (OPLC) fractionation on a 0.5 mm thick adsorbent layer of chamomile flower methanol extract prepurified by conventional gravitation accelerated column chromatography were applied in searching for bioactive components. Sample cleanup in situ on the adsorbent layer subsequent to sample application was performed using mobile phase flow in the opposite direction (the input and output of the eluent was exchanged). The antibacterial effect of the fractions obtained from the stepwise gradient OPLC separation with the flow in the normal direction was evaluated by direct bioautography against two Gram-negative bacteria: the luminescence gene tagged plant pathogenic Pseudomonas syringae pv. maculicola, and the naturally luminescent marine bacterium Vibrio fischeri. The fractions having strong activity were analyzed by SPME-GC/MS and HPLC/MS/MS. Mainly essential oil components, coumarins, flavonoids, phenolic acids, and fatty acids were tentatively identified in the fractions. PMID:24645496
Light neutralino dark matter: direct/indirect detection and collider searches
NASA Astrophysics Data System (ADS)
Han, Tao; Liu, Zhen; Su, Shufang
2014-08-01
We study the neutralino being the Lightest Supersymmetric Particle (LSP) as a cold Dark Matter (DM) candidate with a mass less than 40 GeV in the framework of the Next-to-Minimal-Supersymmetric-Standard-Model (NMSSM). We find that with the current collider constraints from LEP, the Tevatron and the LHC, there are three types of light DM solutions consistent with the direct/indirect searches as well as the relic abundance considerations: ( i) A 1, H 1-funnels, ( ii) stau coannihilation and ( iii) sbottom coannihilation. Type-( i) may take place in any theory with a light scalar (or pseudo-scalar) near the LSP pair threshold; while Type-( ii) and ( iii) could occur in the framework of Minimal-Supersymmetric-Standard-Model (MSSM) as well. We present a comprehensive study on the properties of these solutions and point out their immediate relevance to the experiments of the underground direct detection such as superCDMS and LUX/LZ, and the astro-physical indirect search such as Fermi-LAT. We also find that the decays of the SM-like Higgs boson may be modified appreciably and the new decay channels to the light SUSY particles may be sizable. The new light CP-even and CP-odd Higgs bosons will decay to a pair of LSPs as well as other observable final states, leading to interesting new Higgs phenomenology at colliders. For the light sfermion searches, the signals would be very challenging to observe at the LHC given the current bounds. However, a high energy and high luminosity lepton collider, such as the ILC, would be able to fully cover these scenarios by searching for events with large missing energy plus charged tracks or displaced vertices.
NASA Astrophysics Data System (ADS)
Grossman, S.
2015-05-01
Since the events of September 11, 2001, the intelligence focus has moved from large order-of-battle targets to small targets of opportunity. Additionally, the business community has discovered the use of remotely sensed data to anticipate demand and derive data on their competition. This requires the finer spectral and spatial fidelity now available to recognize those targets. This work hypothesizes that directed searches using calibrated data perform at least as well as inscene manually intensive target detection searches. It uses calibrated Worldview-2 multispectral images with NEF generated signatures and standard detection algorithms to compare bespoke directed search capabilities against ENVI™ in-scene search capabilities. Multiple execution runs are performed at increasing thresholds to generate detection rates. These rates are plotted and statistically analyzed. While individual head-to-head comparison results vary, 88% of the directed searches performed at least as well as in-scene searches with 50% clearly outperforming in-scene methods. The results strongly support the premise that directed searches perform at least as well as comparable in-scene searches.
ERIC Educational Resources Information Center
Carjuzaa, Jioanna; Fenimore-Smith, J. Kay; Fuller, Ethlyn Davis; Howe, William A.; Kugler, Eileen; London, Arcenia P.; Ruiz, Ivette; Shin, Barbara
2008-01-01
In 2004, a professional delegation of multicultural educators visited the People's Republic of China to explore how diversity issues are addressed and how students are prepared for entry into the international workforce. The delegation, sponsored by the People to People Ambassador Programs, observed numerous parallels to the American system of…
NASA Astrophysics Data System (ADS)
Chen, Yung-Yao; Hong, Sheng-Yi; Chen, Kai-Wen
2015-03-01
This paper proposes a novel message-embedded halftoning scheme that is based on orientation modulation (OM) encoding. To achieve high image quality, we employ a human visual system (HVS)-based error metric between the continuous-tone image and a data-embedded halftone, and integrate a modified direct binary search (DBS) framework into the proposed message-embedded halftoning method. The modified DBS framework ensures that the resulting data-embedded halftones have optimal image quality from the viewpoint of the HVS.
Kang, Chaogui; Liu, Yu; Guo, Diansheng; Qin, Kun
2015-01-01
We generalized the recently introduced “radiation model”, as an analog to the generalization of the classic “gravity model”, to consolidate its nature of universality for modeling diverse mobility systems. By imposing the appropriate scaling exponent λ, normalization factor κ and system constraints including searching direction and trip OD constraint, the generalized radiation model accurately captures real human movements in various scenarios and spatial scales, including two different countries and four different cities. Our analytical results also indicated that the generalized radiation model outperformed alternative mobility models in various empirical analyses. PMID:26600153
Efficient design of direct-binary-search computer-generated holograms
Jennison, B.K.; Allebach. J.P. ); Sweeney, D.W. )
1991-04-01
Computer-generated holograms (CGH's) synthesized by the iterative direct-binary-search (DBS) algorithm yield lower reconstruction error and higher diffraction efficiency than do CGH's designed by conventional methods, but the DBS algorithm is computationally intensive. A fast algorithm for DBS is developed that recursively computes the error measure to be minimized. For complex amplitude-based error, the required computation for an L-point and modifications are considered in order to make the algorithm more efficient. An acceleration technique that attempts to increase the rate of convergence of the DBS algorithm is also investigated.
NASA Astrophysics Data System (ADS)
Xie, Changjun; Xu, Xinyi; Bujlo, Piotr; Shen, Di; Zhao, Hengbing; Quan, Shuhai
2015-04-01
In this study, a novel fuel cell-Li-ion battery hybrid powertrain using a direct parallel structure with an ultracapacitor bank is presented. In addition, a fuzzy logic controller is designed for the energy management of hybrid powertrain aimed at adjusting and stabilizing the DC bus voltage via a bidirectional DC/DC converter. To validate the Fuel cell-Li-ion battery-Ultracapacitor (FC-LIB-UC) hybrid powertrain and energy management strategies developed in this study, a test station powered by a 1 kW fuel cell system, a 2.8 kWh Li-ion battery pack and a 330 F/48.6 V ultracapacitor bank is designed and constructed on the basis of stand-alone module. Finally, an Urban Dynamometer Driving Schedule cycle is performed on this station and the experimental results show that: (i) the power distribution of FC system is narrowest and the power distribution of UC bank is widest during a cycle, and (ii) the FC system is controlled to satisfy the slow dynamic variation in this hybrid powertrain and the output of the LIB pack and UC bank is adjusted to meet fast dynamic load requirements. As a result, the proposed FC-LIB-UC hybrid powertrain can take full advantage of three kinds of energy sources.
NASA Astrophysics Data System (ADS)
Pourteau, Marie-Line; Servin, Isabelle; Lepinay, Kévin; Essomba, Cyrille; Dal'Zotto, Bernard; Pradelles, Jonathan; Lattard, Ludovic; Brandt, Pieter; Wieland, Marco
2016-03-01
The emerging Massively Parallel-Electron Beam Direct Write (MP-EBDW) is an attractive high resolution high throughput lithography technology. As previously shown, Chemically Amplified Resists (CARs) meet process/integration specifications in terms of dose-to-size, resolution, contrast, and energy latitude. However, they are still limited by their line width roughness. To overcome this issue, we tested an alternative advanced non-CAR and showed it brings a substantial gain in sensitivity compared to CAR. We also implemented and assessed in-line post-lithographic treatments for roughness mitigation. For outgassing-reduction purpose, a top-coat layer is added to the total process stack. A new generation top-coat was tested and showed improved printing performances compared to the previous product, especially avoiding dark erosion: SEM cross-section showed a straight pattern profile. A spin-coatable charge dissipation layer based on conductive polyaniline has also been tested for conductivity and lithographic performances, and compatibility experiments revealed that the underlying resist type has to be carefully chosen when using this product. Finally, the Process Of Reference (POR) trilayer stack defined for 5 kV multi-e-beam lithography was successfully etched with well opened and straight patterns, and no lithography-etch bias.
NASA Astrophysics Data System (ADS)
Pinto, Thiago M.; Schilstra, Maria J.; Steuber, Volker; Roque, Antonio C.
2015-12-01
Long-term plasticity at parallel fibre (PF)-Purkinje cell (PC) synapses is thought to mediate cerebellar motor learning. It is known that calcium-calmodulin dependent protein kinase II (CaMKII) is essential for plasticity in the cerebellum. Recently, Van Woerden et al. demonstrated that the β isoform of CaMKII regulates the bidirectional inversion of PF-PC plasticity. Because the cellular events that underlie these experimental findings are still poorly understood, our work aims at unravelling how β CaMKII controls the direction of plasticity at PF-PC synapses. We developed a bidirectional plasticity model that replicates the experimental observations by Van Woerden et al. Simulation results obtained from this model indicate the mechanisms that underlie the bidirectional inversion of cerebellar plasticity. As suggested by Van Woerden et al., the filamentous actin binding enables β CaMKII to regulate the bidirectional plasticity at PF-PC synapses. Our model suggests that the reversal of long-term plasticity in PCs is based on a combination of mechanisms that occur at different calcium concentrations.
Direction of Auditory Pitch-Change Influences Visual Search for Slope From Graphs.
Parrott, Stacey; Guzman-Martinez, Emmanuel; Orte, Laura; Grabowecky, Marcia; Huntington, Mark D; Suzuki, Satoru
2015-01-01
Linear trend (slope) is important information conveyed by graphs. We investigated how sounds influenced slope detection in a visual search paradigm. Four bar graphs or scatter plots were presented on each trial. Participants looked for a positive-slope or a negative-slope target (in blocked trials), and responded to targets in a go or no-go fashion. For example, in a positive-slope-target block, the target graph displayed a positive slope while other graphs displayed negative slopes (a go trial), or all graphs displayed negative slopes (a no-go trial). When an ascending or descending sound was presented concurrently, ascending sounds slowed detection of negative-slope targets whereas descending sounds slowed detection of positive-slope targets. The sounds had no effect when they immediately preceded the visual search displays, suggesting that the results were due to crossmodal interaction rather than priming. The sounds also had no effect when targets were words describing slopes, such as "positive," "negative," "increasing," or "decreasing," suggesting that the results were unlikely due to semantic-level interactions. Manipulations of spatiotemporal similarity between sounds and graphs had little effect. These results suggest that ascending and descending sounds influence visual search for slope based on a general association between the direction of auditory pitch-change and visual linear trend. PMID:26541054
Directed search for gravitational waves from Scorpius X-1 with initial LIGO data
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Arnaud, N.; Ashton, G.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dartez, L.; Dattilo, V.; Dave, I.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Germain, V.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangano, V.; Mansell, G. L.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meacher, D.; Meadors, G. D.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Reula, O.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Swinkels, B.; Szczepanczyk, M.; Szeifert, G.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Tshilumba, D.; Turconi, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration, Virgo Collaboration
2015-03-01
We present results of a search for continuously emitted gravitational radiation, directed at the brightest low-mass x-ray binary, Scorpius X-1. Our semicoherent analysis covers 10 days of LIGO S5 data ranging from 50-550 Hz, and performs an incoherent sum of coherent F -statistic power distributed amongst frequency-modulated orbital sidebands. All candidates not removed at the veto stage were found to be consistent with noise at a 1% false alarm rate. We present Bayesian 95% confidence upper limits on gravitational-wave strain amplitude using two different prior distributions: a standard one, with no a priori assumptions about the orientation of Scorpius X-1; and an angle-restricted one, using a prior derived from electromagnetic observations. Median strain upper limits of 1.3 ×10-24 and 8 ×10-25 are reported at 150 Hz for the standard and angle-restricted searches respectively. This proof-of-principle analysis was limited to a short observation time by unknown effects of accretion on the intrinsic spin frequency of the neutron star, but improves upon previous upper limits by factors of ˜1.4 for the standard, and 2.3 for the angle-restricted search at the sensitive region of the detector.
NASA Astrophysics Data System (ADS)
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
Following the creation described in Part I of a deformable edge finite-element simulator for 3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for the Gauss-Newton model update. By exploiting the data-space approach, the computational cost of the model update becomes much less in both time and computer memory than the cost of the forward simulation. In order to regularize using the second norm of the gradient, we factor the matrix related to the regularization term and apply its inverse to the Jacobian, which is done using the MKL PARDISO library. For dense matrix multiplication and factorization related to the model update, we use the PLASMA library which shows very good scalability across processor cores. A synthetic test inversion using a simple hill model shows that including topography can be important; in this case depression of the electric field by the hill can cause false conductors at depth or mask the presence of resistive structure. With a simple model of two buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more accurate locations for the tomographic images compared to weightings which were a function of parameter Jacobians. We implement joint inversion for static distortion matrices tested using the Dublin secret model 2, for which we are able to reduce nRMS to ˜1.1 while avoiding oscillatory convergence. Finally we test the code on field data by inverting full impedance and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain. Among several prominent structures, the north-south trending, eruption-controlling shear zone is clearly imaged in the inversion.
Searches for direct pair production of third generation squarks with the ATLAS detector
NASA Astrophysics Data System (ADS)
Pagacova, Martina
2015-05-01
Naturalness arguments for weak-scale supersymmetry favour supersymmetric partners of the third generation quarks with masses not too far from those of their Standard Model counterparts. If the masses of top and bottom squarks are below 1 TeV, the direct pair production cross-section is sufficient to produce observable signatures at the ATLAS detector and to probe various theoretical scenarios with the Large Hadron Collider (LHC) data at √s = 8 TeV. The most recent ATLAS results from searches for direct stop and sbottom pair production are presented in these proceedings. No evidence of deviations from the Standard Model expectation has been observed, and the limits have been set on the masses of the top and bottom squarks.
NASA Technical Reports Server (NTRS)
Fung, Shing F.; Hoffman, R. A.
1991-01-01
Model calculations are performed demonstrating the effect of weak parallel electric fields on the differential spectra of the low-energy electrons observed in the inverted-V electron precipitation events in the topside ionosphere. A comparison of the altitude dependence of the observed spectra with the model calculations shows that there can be, on average, no more than a 2-V potential drop between the altitudes of 400 and 900 km, corresponding to a distributed parallel dc electric field of less than 4 microV/m under the inverted-V electron precipitation regions. Statistical results are presented on the spectral dependence of secondary electrons on the inverted-V primary beam parameters.
A Direct Dark Matter Search with the MAJORANA Low-Background Broad Energy Germanium Detector
NASA Astrophysics Data System (ADS)
Finnerty, Padraic Seamus
It is well established that a significant portion of our Universe is comprised of invisible, non-luminous matter, commonly referred to as dark matter. The detection and characterization of this missing matter is an active area of research in cosmology and particle astrophysics. A general class of candidates for non-baryonic particle dark matter is weakly interacting massive particles (WIMPs). WIMPs emerge naturally from supersymmetry with predicted masses between 1--1000 GeV. There are many current and near-future experiments that may shed light on the nature of dark matter by directly detecting WIMP-nucleus scattering events. The MAJORANA experiment will use p-type point contact (PPC) germanium detectors as both the source and detector to search for neutrinoless double-beta decay in 76Ge. These detectors have both exceptional energy resolution and low-energy thresholds. The low-energy performance of PPC detectors, due to their low-capacitance point-contact design, makes them suitable for direct dark matter searches. As a part of the research and development efforts for the MAJORANA experiment, a custom Canberra PPC detector has been deployed at the Kimballton Underground Research Facility in Ripplemead, Virginia. This detector has been used to perform a search for low-mass (< 10 GeV) WIMP induced nuclear recoils using a 221.49 live-day exposure. It was found that events originating near the surface of the detector plague the signal region, even after all cuts. For this reason, only an upper limit on WIMP induced nuclear recoils was placed. This limit is inconsistent with several recent claims to have observed light WIMP based dark matter.
Quasi-steady state reduction of molecular motor-based models of directed intermittent search.
Newby, Jay M; Bressloff, Paul C
2010-10-01
We present a quasi-steady state reduction of a linear reaction-hyperbolic master equation describing the directed intermittent search for a hidden target by a motor-driven particle moving on a one-dimensional filament track. The particle is injected at one end of the track and randomly switches between stationary search phases and mobile nonsearch phases that are biased in the anterograde direction. There is a finite possibility that the particle fails to find the target due to an absorbing boundary at the other end of the track. Such a scenario is exemplified by the motor-driven transport of vesicular cargo to synaptic targets located on the axon or dendrites of a neuron. The reduced model is described by a scalar Fokker-Planck (FP) equation, which has an additional inhomogeneous decay term that takes into account absorption by the target. The FP equation is used to compute the probability of finding the hidden target (hitting probability) and the corresponding conditional mean first passage time (MFPT) in terms of the effective drift velocity V, diffusivity D, and target absorption rate λ of the random search. The quasi-steady state reduction determines V, D, and λ in terms of the various biophysical parameters of the underlying motor transport model. We first apply our analysis to a simple 3-state model and show that our quasi-steady state reduction yields results that are in excellent agreement with Monte Carlo simulations of the full system under physiologically reasonable conditions. We then consider a more complex multiple motor model of bidirectional transport, in which opposing motors compete in a "tug-of-war", and use this to explore how ATP concentration might regulate the delivery of cargo to synaptic targets. PMID:20169417
Activity in V4 reflects the direction, but not the latency, of saccades during visual search.
Gee, Angela L; Ipata, Anna E; Goldberg, Michael E
2010-10-01
We constantly make eye movements to bring objects of interest onto the fovea for more detailed processing. Activity in area V4, a prestriate visual area, is enhanced at the location corresponding to the target of an eye movement. However, the precise role of activity in V4 in relation to these saccades and the modulation of other cortical areas in the oculomotor system remains unknown. V4 could be a source of visual feature information used to select the eye movement, or alternatively, it could reflect the locus of spatial attention. To test these hypotheses, we trained monkeys on a visual search task in which they were free to move their eyes. We found that activity in area V4 reflected the direction of the upcoming saccade but did not predict the latency of the saccade in contrast to activity in the lateral intraparietal area (LIP). We suggest that the signals in V4, unlike those in LIP, are not directly involved in the generation of the saccade itself but rather are more closely linked to visual perception and attention. Although V4 and LIP have different roles in spatial attention and preparing eye movements, they likely perform complimentary processes during visual search. PMID:20610790
Modelling Peripheral Pre-Attention And Foveal Fixation For Search Directed Machine Vision Systems
NASA Astrophysics Data System (ADS)
Luckman, Adrian J.; Allinson, Nigel M.
1990-02-01
The human visual system has evolved towards a close integration of visual information processing and visual data acquisition. Fast, peripheral, pre-attentive vision uses low resolution input to direct the fixation of the fovea to features of importance in an efficient visual search pattern. Here we describe a system which emulates the multi-resolution aspect of human visual processing to provide computational efficiency in data analysis. The visual task used is the location of specific features in human faces for use in videotelephony. The feature location technique uses a Kohonen-based neural network architecture to permit learning by example. Input data is in the form of a resolution pyramid to emulate the differing modes of human vision. The system is implemented on a RISC-based microcomputer workstation with purpose-built real-time image acquisition hardware. It performs well with both familiar and unseen image data and, with refinement, could form the basis of a useable system.
Low-energy recoils and energy scale in liquid xenon detector for direct dark matter searches
NASA Astrophysics Data System (ADS)
Wang, Lu; Mei, Dongming; Cubed Collaboration
2015-04-01
Liquid xenon has been proven to be a great detector medium for the direct search of dark matter. However, in the energy region of below 10 keV, the light yield and charge production are not fully understood due to the convolution of excitation, recombination and quenching. We have already studied a recombination model to explain the physics processes involved in liquid xenon. Work is continued on the average energy expended per electron-ion pair as a function of energy based on the cross sections for different type of scattering processes. In this paper, the results will be discussed in comparison with available experimental data using Birk's Law to understand how scintillation quenching contributes to the non-linear light yield for electron recoils with energy below 10 keV in liquid xenon. This work is supported by DOE Grant DE-FG02-10ER46709 and the state of South Dakota.
NASA Astrophysics Data System (ADS)
Kaplan, Sezgin; Rabadi, Ghaith
2013-01-01
This article addresses the aerial refuelling scheduling problem (ARSP), where a set of fighter jets (jobs) with certain ready times must be refuelled from tankers (machines) by their due dates; otherwise, they reach a low fuel level (deadline) incurring a high cost. ARSP is an identical parallel machine scheduling problem with release times and due date-to-deadline windows to minimize the total weighted tardiness. A simulated annealing (SA) and metaheuristic for randomized priority search (Meta-RaPS) with the newly introduced composite dispatching rule, apparent piecewise tardiness cost with ready times (APTCR), are applied to the problem. Computational experiments compared the algorithms' solutions to optimal solutions for small problems and to each other for larger problems. To obtain optimal solutions, a mixed integer program with a piecewise weighted tardiness objective function was solved for up to 12 jobs. The results show that Meta-RaPS performs better in terms of average relative error but SA is more efficient.
Search for Direct Stop Production Using the Razor Variables with the CMS Experiment at the CERN LHC
NASA Astrophysics Data System (ADS)
Gauthier, Lucie
A search for supersymmetry in the context of direct stop production is presented using the full 19/fb dataset collected in 2012 by the Compact Muon Solenoid experiment at the Large Hadron Collider with a center of mass energy of 8 TeV. This analysis makes use of the razor kinematic variables, aimed at formulating searches for new physics as a resonance search, despite the lack of constraints from missing momentum due to new physics particles escaping the detector unseen. In the absence of a signal, upper limits on allowed cross sections are derived, resulting in excluded masses for stops and neutralinos (assumed to be the lightest supersymmetric particle).
The first search for sub-eV scalar fields via four-wave mixing at a quasi-parallel laser collider
NASA Astrophysics Data System (ADS)
Homma, Kensuke; Hasebe, Takashi; Kume, Kazuki
2014-08-01
A search for sub-eV scalar fields coupling to two photons has been performed via four-wave mixing at a quasi-parallel laser collider for the first time. The experiment demonstrates the novel approach of searching for resonantly produced sub-eV scalar fields by combining two-color laser fields in the vacuum. The aim of this paper is to provide the concrete experimental setup and the analysis method based on specific combinations of polarization states between incoming and outgoing photons, which is extendable to higher-intensity laser systems operated at high repetition rates. No significant signal of four-wave mixing was observed by combining a 0.2 μ J/0.75 ns pulse laser and a 2 mW CW laser on the same optical axis. Based on the prescription developed for this particular experimental approach, we obtained the upper limit at a confidence level of 95% on the coupling-mass relation.
Stable computation of search directions for near-degenerate linear programming problems
Hough, P.D.
1997-03-01
In this paper, we examine stability issues that arise when computing search directions ({delta}x, {delta}y, {delta} s) for a primal-dual path-following interior point method for linear programming. The dual step {delta}y can be obtained by solving a weighted least-squares problem for which the weight matrix becomes extremely il conditioned near the boundary of the feasible region. Hough and Vavisis proposed using a type of complete orthogonal decomposition (the COD algorithm) to solve such a problem and presented stability results. The work presented here addresses the stable computation of the primal step {delta}x and the change in the dual slacks {delta}s. These directions can be obtained in a straight-forward manner, but near-degeneracy in the linear programming instance introduces ill-conditioning which can cause numerical problems in this approach. Therefore, we propose a new method of computing {delta}x and {delta}s. More specifically, this paper describes and orthogonal projection algorithm that extends the COD method. Unlike other algorithms, this method is stable for interior point methods without assuming nondegeneracy in the linear programming instance. Thus, it is more general than other algorithms on near-degenerate problems.
Multipath Separation-Direction of Arrival (MS-DOA) with Genetic Search Algorithm for HF channels
NASA Astrophysics Data System (ADS)
Arikan, Feza; Koroglu, Ozan; Fidan, Serdar; Arikan, Orhan; Guldogan, Mehmet B.
2009-09-01
Direction-of-Arrival (DOA) defines the estimation of arrival angles of an electromagnetic wave impinging on a set of sensors. For dispersive and time-varying HF channels, where the propagating wave also suffers from the multipath phenomena, estimation of DOA is a very challenging problem. Multipath Separation-Direction of Arrival (MS-DOA), that is developed to estimate both the arrival angles in elevation and azimuth and the incoming signals at the output of the reference antenna with very high accuracy, proves itself as a strong alternative in DOA estimation for HF channels. In MS-DOA, a linear system of equations is formed using the coefficients of the basis vector for the array output vector, the incoming signal vector and the array manifold. The angles of arrival in elevation and azimuth are obtained as the maximizers of the sum of the magnitude squares of the projection of the signal coefficients on the column space of the array manifold. In this study, alternative Genetic Search Algorithms (GA) for the maximizers of the projection sum are investigated using simulated and experimental ionospheric channel data. It is observed that GA combined with MS-DOA is a powerful alternative in online DOA estimation and can be further developed according to the channel characteristics of a specific HF link.
SCIENCE PARAMETRICS FOR MISSIONS TO SEARCH FOR EARTH-LIKE EXOPLANETS BY DIRECT IMAGING
Brown, Robert A.
2015-01-20
We use N{sub t} , the number of exoplanets observed in time t, as a science metric to study direct-search missions like Terrestrial Planet Finder. In our model, N has 27 parameters, divided into three categories: 2 astronomical, 7 instrumental, and 18 science-operational. For various ''27-vectors'' of those parameters chosen to explore parameter space, we compute design reference missions to estimate N{sub t} . Our treatment includes the recovery of completeness c after a search observation, for revisits, solar and antisolar avoidance, observational overhead, and follow-on spectroscopy. Our baseline 27-vector has aperture D = 16 m, inner working angle IWA = 0.039'', mission time t = 0-5 yr, occurrence probability for Earth-like exoplanets η = 0.2, and typical values for the remaining 23 parameters. For the baseline case, a typical five-year design reference mission has an input catalog of ∼4700 stars with nonzero completeness, ∼1300 unique stars observed in ∼2600 observations, of which ∼1300 are revisits, and it produces N {sub 1} ∼ 50 exoplanets after one year and N {sub 5} ∼ 130 after five years. We explore offsets from the baseline for 10 parameters. We find that N depends strongly on IWA and only weakly on D. It also depends only weakly on zodiacal light for Z < 50 zodis, end-to-end efficiency for h > 0.2, and scattered starlight for ζ < 10{sup –10}. We find that observational overheads, completeness recovery and revisits, solar and antisolar avoidance, and follow-on spectroscopy are all important factors in estimating N.
Science Parametrics for Missions to Search for Earth-like Exoplanets by Direct Imaging
NASA Astrophysics Data System (ADS)
Brown, Robert A.
2015-01-01
We use Nt , the number of exoplanets observed in time t, as a science metric to study direct-search missions like Terrestrial Planet Finder. In our model, N has 27 parameters, divided into three categories: 2 astronomical, 7 instrumental, and 18 science-operational. For various "27-vectors" of those parameters chosen to explore parameter space, we compute design reference missions to estimate Nt . Our treatment includes the recovery of completeness c after a search observation, for revisits, solar and antisolar avoidance, observational overhead, and follow-on spectroscopy. Our baseline 27-vector has aperture D = 16 m, inner working angle IWA = 0.039'', mission time t = 0-5 yr, occurrence probability for Earth-like exoplanets η = 0.2, and typical values for the remaining 23 parameters. For the baseline case, a typical five-year design reference mission has an input catalog of ~4700 stars with nonzero completeness, ~1300 unique stars observed in ~2600 observations, of which ~1300 are revisits, and it produces N 1 ~ 50 exoplanets after one year and N 5 ~ 130 after five years. We explore offsets from the baseline for 10 parameters. We find that N depends strongly on IWA and only weakly on D. It also depends only weakly on zodiacal light for Z < 50 zodis, end-to-end efficiency for h > 0.2, and scattered starlight for ζ < 10-10. We find that observational overheads, completeness recovery and revisits, solar and antisolar avoidance, and follow-on spectroscopy are all important factors in estimating N.
NASA Astrophysics Data System (ADS)
Kojima, A.; Ikegami, N.; Yoshida, T.; Miyaguchi, H.; Muroyama, M.; Yoshida, S.; Totsu, K.; Koshida, N.; Esashi, M.
2016-03-01
Developments of a Micro Electro-Mechanical System (MEMS) electrostatic Condenser Lens Array (CLA) for a Massively Parallel Electron Beam Direct Write (MPEBDW) lithography system are described. The CLA converges parallel electron beams for fine patterning. The structure of the CLA was designed on a basis of analysis by a finite element method (FEM) simulation. The lens was fabricated with precise machining and assembled with a nanocrystalline silicon (nc-Si) electron emitter array as an electron source of MPEBDW. The nc-Si electron emitter has the advantage that a vertical-emitted surface electron beam can be obtained without any extractor electrodes. FEM simulation of electron optics characteristics showed that the size of the electron beam emitted from the electron emitter was reduced to 15% by a radial direction, and the divergence angle is reduced to 1/18.
$H \\to \\gamma\\gamma$ search and direct photon pair production differential cross section
Bu, Xuebing
2010-06-01
context of the particular fermiophobic Higgs model. The corresponding results have reached the same sensitivity as a single LEP experiement, setting a lower limit on the fermiophobic Higgs of M_{hf} > 102.5 GeV (M_{hf} > 107.5 GeV expected). We are slightly below the combined LEP limit (M_{hf} > 109.7 GeV). We also provide access to the M_{hf} > 125 GeV region which was inaccessible at LEP. During the study, we found the major and irreducible background direct γγ (DPP) production is not well modelled by the current theoretical predictions: RESBOS, DIPHOX or PYTHIA. There is ~20% theoretical uncertainty for the predicted values. Thus, for our Higgs search, we use the side-band fitting method to estimate DPP contribution directly from the data events. Furthermore, DPP production is also a significant background in searches for new phenomena, such as new heavy resonances, extra spatial dimensions, or cascade decays of heavy new particles. Thus, precise measurements of the DPP cross sections for various kinematic variables and their theoretical understanding are extremely important for future Higgs and new phenomena searches. In this thesis, we also present a precise measurement of the DPP single differential cross sections as a function of the diphoton mass, the transverse momentum of the diphoton system, the azimuthal angle between the photons, and the polar scattering angle of the photons, as well as the double differential cross sections considering the last three kinematic variables in three diphoton mass bins, using 4.2 fb^{-1} data. These results are the first of their kind at D0 Run II, and in fact the double differential measurements are the first of their kind at Tevatron. The results are compared with different perturbative QCD predictions and event generators.
Theoretical and implementational aspects of parallel-link, resolution in connection graphs
Loganantharaj, R.
1985-01-01
Resolution theorem provers are relatively slow and can generally be speeded up by using parallelism and by directing the search towards an empty clause. In this research, focus is on the application of parallelism to connection graph refutation. The presence of the complete search space during connection-graph refutations suggests the opportunity to use parallel evaluation strategies to improve the efficiency of a generally very slow process. The Pseudo links are not considered for a parallel link resolution because they stand for different copies of a clause. The different kinds of parallelism identified in connection graph refutations are: or parallelism, and parallelism, and dc parallellism. Conditions for the correctness of dc parallel connection graph refutations are shown, resulting in dcpd parallellism. The dcdp parallelism, the links which are incident to distinct clauses and edge disjoint pairs are resolved in parallel. The complexity of the problem of optimally selecting the potential parallel links is equivalent to solving the optimal graph coloring problem. Fortunately, optimal solutions to this NP-hard problem are not crucial. The author describes the parallel solution of a suboptimal graph coloring algorithm, and provides a complete set of algorithms to implement dcdp parallel link resolution on a shared memory MIMD architecture.
Jeet, Justin; Schneider, Christian; Sullivan, Scott T; Rellergert, Wade G; Mirzadeh, Saed; Cassanho, A; Jenssen, H P; Tkalya, Eugene V; Hudson, Eric R
2015-06-26
We report the results of a direct search for the (229)Th (I(π)=3/2(+)←5/2(+)) nuclear isomeric transition, performed by exposing (229)Th-doped LiSrAlF(6) crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between 7.3 eV and 8.8 eV with transition lifetime (1-2) s≲τ≲(2000-5600) s. This measurement excludes roughly half of the favored transition search area and can be used to direct future searches. PMID:26197124
Banks of templates for directed searches of gravitational waves from spinning neutron stars
Pisarski, Andrzej; Jaranowski, Piotr; Pietka, Maciej
2011-02-15
We construct efficient banks of templates suitable for directed searches of almost monochromatic gravitational waves originating from spinning neutron stars in our Galaxy in data being collected by currently operating interferometric detectors. We thus assume that the position of the gravitational-wave source in the sky is known, but we do not assume that the wave's frequency and its derivatives are a priori known. In the construction we employ a simplified model of the signal with constant amplitude and phase which is a polynomial function of time. All our template banks enable usage of the fast Fourier transform algorithm in the computation of the maximum-likelihood F-statistic for nodes of the grids defining the bank. We study and employ the dependence of the grid's construction on the choice of the position of the observational interval with respect to the origin of time axis. We also study the usage of the fast Fourier transform algorithms with nonstandard frequency resolutions achieved by zero padding or folding the data. In the case of the gravitational-wave signal with one spin-down parameter included we have found grids with covering thicknesses which are only 0.1-16% larger than the thickness of the optimal 2-dimensional hexagonal covering.
Garcia-Cely, Camilo; Ibarra, Alejandro; Molinaro, Emiliano E-mail: alejandro.ibarra@ph.tum.de
2013-11-01
The stability of the dark matter particle could be attributed to the remnant Z{sub 2} symmetry that arises from the spontaneous breaking of a global U(1) symmetry. This plausible scenario contains a Goldstone boson which, as recently shown by Weinberg, is a strong candidate for dark radiation. We show in this paper that this Goldstone boson, together with the CP-even scalar associated to the spontaneous breaking of the global U(1) symmetry, plays a central role in the dark matter production. Besides, the mixing of the CP-even scalar with the Standard Model Higgs boson leads to novel Higgs decay channels and to interactions with nucleons, thus opening the possibility of probing this scenario at the LHC and in direct dark matter search experiments. We carefully analyze the latter possibility and we show that there are good prospects to observe a signal at the future experiments LUX and XENON1T provided the dark matter particle was produced thermally and has a mass larger than ∼ 25 GeV.
Radiopurity of CaWO4 crystals for direct dark matter search with CRESST and EURECA
NASA Astrophysics Data System (ADS)
Münster, A.; Sivers, M. v.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; Feilitzsch, F. v.; Gorla, P.; Gütlein, A.; Hauff, D.; Jochum, J.; Kraus, H.; Lanfranchi, J.-C.; Laubenstein, M.; Loebell, J.; Ortigoza, Y.; Petricca, F.; Potzel, W.; Pröbst, F.; Puimedon, J.; Reindl, F.; Roth, S.; Rottler, K.; Sailer, C.; Schäffner, K.; Schieck, J.; Scholl, S.; Schönert, S.; Seidel, W.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A.
2014-05-01
The direct dark matter search experiment CRESST uses scintillating CaWO4 single crystals as targets for possible WIMP scatterings. An intrinsic radioactive contamination of the crystals as low as possible is crucial for the sensitivity of the detectors. In the past CaWO4 crystals operated in CRESST were produced by institutes in Russia and the Ukraine. Since 2011 CaWO4 crystals have also been grown at the crystal laboratory of the Technische Universität München (TUM) to better meet the requirements of CRESST and of the future tonne-scale multi-material experiment EURECA. The radiopurity of the raw materials and of first TUM-grown crystals was measured by ultra-low background γ-spectrometry. Two TUM-grown crystals were also operated as low-temperature detectors at a test setup in the Gran Sasso underground laboratory. These measurements were used to determine the crystals' intrinsic α-activities which were compared to those of crystals produced at other institutes. The total α-activities of TUM-grown crystals as low as 1.23±0.06 mBq/kg were found to be significantly smaller than the activities of crystals grown at other institutes typically ranging between ~ 15 mBq/kg and ~ 35 mBq/kg.
Lu, H; Wang, R; Xiong, J; Xie, H; Kayser, B; Jia, Z P
2015-05-01
Despite decades of research, the exact pathogenic mechanisms underlying acute mountain sickness (AMS) are still poorly understood. This fact frustrates the search for novel pharmacological prophylaxis for AMS. The prevailing view is that AMS results from an insufficient physiological response to hypoxia and that prophylaxis should aim at stimulating the response. Starting off from the opposite hypothesis that AMS may be caused by an initial excessive response to hypoxia, we suggest that directly or indirectly blunting-specific parts of the response might provide promising research alternatives. This reasoning is based on the observations that (i) humans, once acclimatized, can climb Mt Everest experiencing arterial partial oxygen pressures (PaO2) as low as 25 mmHg without AMS symptoms; (ii) paradoxically, AMS usually develops at much higher PaO2 levels; and (iii) several biomarkers, suggesting initial activation of specific pathways at such PaO2, are correlated with AMS. Apart from looking for substances that stimulate certain hypoxia triggered effects, such as the ventilatory response to hypoxia, we suggest to also investigate pharmacological means aiming at blunting certain other specific hypoxia-activated pathways, or stimulating their agonists, in the quest for better pharmacological prophylaxis for AMS. PMID:25778288
NASA Astrophysics Data System (ADS)
Karim, Fethallah; Seddiki, Omar
2010-05-01
In this paper, Direct Tabu Search (DTS) is proposed to synthesize the physical parameters of a fiber Bragg grating (FBG) numerically from its reflection response. A reflected spectrum is being calculated by using the Transfer Matrix Method (TMM). Direct search based strategies are used to direct a tabu search. These strategies are based on a new pattern search procedure called Adaptive Pattern Search (APS). In addition, the well-known Nelder-Mead (NME) algorithm is used as a local search method at the final stage of the optimization process. Direct Tabu Search (DTS) is applied for reconstruction of a raised cosine chirped fiber Bragg grating (CFBG) and a Gaussian multi channel fiber grating. The method is then used to synthesize a CFBG from its reflectivity taken at different temperatures. It gives a good estimate of the thermal expansion coefficient and the thermo-optic coefficient of the fiber.
ERIC Educational Resources Information Center
Lumsden, Jill A.; Sampson, James P., Jr.; Reardon, Robert C.; Lenz, Janet G.; Peterson, Gary W.
2004-01-01
The authors examined the extent to which the Realistic, Investigative, Artistic, Social, Enterprising, and Conventional scales and 3-point codes of the Self-Directed Search may be considered statistically and practically equivalent across 3 different modes of administration: paper-and-pencil, personal computer, and Internet. Student preferences…
ERIC Educational Resources Information Center
Bullock, Emily E.; Reardon, Robert C.
2008-01-01
The study used the Self-Directed Search (SDS) and the NEO-FFI to explore profile elevation, four secondary constructs, and the Big Five personality factors in a sample of college students in a career course. Regression model results showed that openness, conscientiousness, differentiation high-low, differentiation Iachan, and consistency accounted…
ERIC Educational Resources Information Center
Rowell, R. Kevin
A pilot study was conducted with 48 adults to determine if career indecision/dissatisfaction as indicated by flat Strong Interest Inventory (SII) (L. Harmon, J. Hansen, F. Borgen, and A. Hammer, 1994) profiles corresponded with flat profiles on the Self-Directed Search (SDS) and to determine if indecision affected scores on SII Personal Style…
ERIC Educational Resources Information Center
Poitras, Sarah-Caroline; Guay, Frederic; Ratelle, Catherine F.
2012-01-01
Using Item Response Theory (IRT) and Confirmatory Factor Analysis (CFA), the goal of this study was to select a reduced pool of items from the French Canadian version of the Self-Directed Search--Activities Section (Holland, Fritzsche, & Powell, 1994). Two studies were conducted. Results of Study 1, involving 727 French Canadian students, showed…
ERIC Educational Resources Information Center
Price, Gary E.; And Others
A comparison of Self-Scoring Error Rate for Self Directed Search (SDS) and the revised SDS is presented. The subjects were college freshmen and sophomores who participated in career planning as a part of their orientation program, and a career workshop. Subjects, N=190 on first study and N=84 on second study, were then randomly assigned to the SDS…
WEIRD : Wide orbit Exoplanet search with InfraRed Direct imaging
NASA Astrophysics Data System (ADS)
Baron, Frédérique; Artigau, Etienne; Rameau, Julien; Lafrenière, David; Albert, Loic; Naud, Marie-Eve; Gagné, Jonathan; Malo, Lison; Doyon, Rene; Beichman, Charles; Delorme, Philippe; Janson, Markus
2015-12-01
We currently do not know what does the emission spectrum of a young 1 Jupiter-mass planet look like, as no such object has yet been directly imaged. Arguably, the most useful Jupiter-mass planet would be one that is bound to a star of known age, distance and metallicity but which has an orbit large enough (100-5000 UA) that it can be studied as an "isolated" object. We are therefore searching for the most extreme planetary systems. We are currently gathering a large dataset to try to identify such objects through deep [3.6] and [4.5] imaging from SPITZER and deep seeing-limited J (with Flamingos 2 and WIRCam) and z imaging (with GMOS-S and MegaCam) of all 181 known confirmed members of a known young association (<120 Myr) within 70pc of the Sun. Our study will reveal distant planetary companions, over the reveal distant PMCs up to 5000 AU. AU separation range, through their distinctively red z-J and [4.5]-[3.6] colors. The sensitivity limits of our combined Spitzer+ground-based program will allow detection of planets with masses as low as 1 Mjup with very low contamination rates. Here we present some preliminary results of our survey. This approach is unique in the community and will give us an overview of the architecture of the outer part of planetary systems that were never probed before. Our survey will provide benchmark young Saturn and Jupiter for imaging and spectroscopy with the JWST
NASA Astrophysics Data System (ADS)
Zatarain-Salazar, J.; Reed, P. M.; Herman, J. D.; Giuliani, M.; Castelletti, A.
2014-12-01
Globally reservoir operations provide fundamental services to water supply, energy generation, recreation, and ecosystems. The pressures of expanding populations, climate change, and increased energy demands are motivating a significant investment in re-operationalizing existing reservoirs or defining operations for new reservoirs. Recent work has highlighted the potential benefits of exploiting recent advances in many-objective optimization and direct policy search (DPS) to aid in addressing these systems' multi-sector demand tradeoffs. This study contributes to a comprehensive diagnostic assessment of multi-objective evolutionary optimization algorithms (MOEAs) efficiency, effectiveness, reliability, and controllability when supporting DPS for the Conowingo dam in the Lower Susquehanna River Basin. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to the system's competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. Seven benchmark and state-of-the-art MOEAs are tested on deterministic and stochastic instances of the Susquehanna test case. In the deterministic formulation, the operating objectives are evaluated over the historical realization of the hydroclimatic variables (i.e., inflows and evaporation rates). In the stochastic formulation, the same objectives are instead evaluated over an ensemble of stochastic inflows and evaporation rates realizations. The algorithms are evaluated in their ability to support DPS in discovering reservoir operations that compose the tradeoffs for six multi-sector performance objectives with thirty-two decision variables. Our diagnostic results highlight that many-objective DPS is very challenging for modern MOEAs and that epsilon dominance is critical for attaining high levels of performance. Epsilon dominance algorithms epsilon-MOEA, epsilon-NSGAII and the auto adaptive Borg
Relative scintillation efficiency of liquid xenon in the XENON10 direct dark matter search
NASA Astrophysics Data System (ADS)
Manzur, Angel
There is almost universal agreement that most of the mass in the Universe consists of dark matter. Many lines of reasoning suggest that the dark matter consists of a weakly interactive massive particle (WIMP) with mass ranging from 10 GeV/c 2 to a few TeV/c 2 . Today, numerous experiments aim for direct or indirect dark matter detection. XENON10 is a direct detection experiment using a xenon dual phase time projection chamber. Particles interacting with xenon will create a scintillation signal ( S 1) and ionization. The charge produced is extracted into the gas phase and converted into a proportional scintillation light ( S 2), with an external electric field. The dominant background, b particles and g rays, will undergo an electron recoil (ER) interaction, while WIMPs and neutrons will undergo a nuclear recoil (NR) interaction. Event-by-event discrimination of background signals is based on log 10 ( S 2/ S 1) NR < log 10 ( S 2/ S 1) ER and the 3-D position reconstruction. In 2006 the XENON10 detector started underground operations at laboratorio Nazionali del Gran Sasso in Italy. After 6 months of operations, totaling 58.6 live days and 5.4 kg of fiducial mass, XENON10 set the best upper limits at the time. Finding a spin- independent WIMP-nucleon cross-section s h = 8.8 × 10^-44 cm 2 and a spin- dependent WIMP-neutron cross-section s h = 1.0 × 10^-38 cm 2 for a WIMP mass of 100 GeV/c 2 (90% C.L.). In this work I give an overview of the dark matter evidence and review the requirements for a dark matter search. In particular I discuss the XENON10 detector, deployment, operation, calibrations, analysis and WIMP-nucleon cross- section limits. Finally, I present our latest results for the relative scintillation efficiency ([Special characters omitted.] ) for nuclear recoils in liquid xenon, which was the biggest source of uncertainty in the XENON10 limit. This quantity is essential to determine the nuclear energy scale and to determine the WIMP-nucleon cross
High Efficiency Bi-Directional DC-DC Converter With ZVS-ZCS Applied For Parallel Active Filtering
NASA Astrophysics Data System (ADS)
Romero, V.; Soto, A.
2011-10-01
In space missions, it is becoming more and more common to have strict EMC requirements to be met. Coping with this is a challenge for all those instruments and subsystems implementing AC loads. In particular, the driving of motors is one of the highest challenges due to the low frequency and high amplitude of the emissions. The driving of these motors without exceeding typical EMC levels implies adding an active filter at its input. Passive filtering approach is not useful due to bulk components required to filter such low frequencies. The aim of this paper is to show a parallel active filtering solution that implements significant advantages compared to other classical approaches in terms of mass and efficiency.
NASA Astrophysics Data System (ADS)
Doi, Toshiyuki
2015-12-01
Poiseuille flow and thermal transpiration of a rarefied gas between two parallel plates are studied for the situation that one of the walls is a Maxwell-type boundary with a periodic distribution of the accommodation coefficient in the longitudinal direction. The flow behavior is studied numerically based on the Bhatnager-Gross-Krook-Welander model of the Boltzmann equation. The solution is sought in a superposition of a linear and a periodic functions in the longitudinal coordinate. The numerical solution is provided over a wide range of the mean free path and the parameters characterizing the distribution of the accommodation coefficient. Due to the nonuniform surface properties in the longitudinal direction, the flow is nonparallel, and a deviation in the pressure and the temperature of the gas from those of the conventional parallel flow is observed. An energy transfer between the gas and the walls arises. The mass flow rate of the gas is approximated by a formula consisting of the data of one-dimensional flows; however, a non-negligible disagreement is observed in Poiseuille flow when the amplitude of the variation of the accommodation coefficient is sufficiently large. The validity of the present approach is confirmed by a direct numerical analysis of a flow through a long channel.
Aab, Alexander
2015-06-20
Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×1019 eV by analyzing cosmic rays with energies above E ≥ 5×1018 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. As amore » result, the comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.« less
Aab, Alexander
2015-06-20
Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×10^{19} eV by analyzing cosmic rays with energies above E ≥ 5×10^{18} eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. As a result, the comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.
Lewis, Robert Michael (College of William and Mary, Williamsburg, VA); Torczon, Virginia Joanne (College of William and Mary, Williamsburg, VA); Kolda, Tamara Gibson
2006-08-01
We consider the solution of nonlinear programs in the case where derivatives of the objective function and nonlinear constraints are unavailable. To solve such problems, we propose an adaptation of a method due to Conn, Gould, Sartenaer, and Toint that proceeds by approximately minimizing a succession of linearly constrained augmented Lagrangians. Our modification is to use a derivative-free generating set direct search algorithm to solve the linearly constrained subproblems. The stopping criterion proposed by Conn, Gould, Sartenaer and Toint for the approximate solution of the subproblems requires explicit knowledge of derivatives. Such information is presumed absent in the generating set search method we employ. Instead, we show that stationarity results for linearly constrained generating set search methods provide a derivative-free stopping criterion, based on a step-length control parameter, that is sufficient to preserve the convergence properties of the original augmented Lagrangian algorithm.
A parallelized binary search tree
Technology Transfer Automated Retrieval System (TEKTRAN)
PTTRNFNDR is an unsupervised statistical learning algorithm that detects patterns in DNA sequences, protein sequences, or any natural language texts that can be decomposed into letters of a finite alphabet. PTTRNFNDR performs complex mathematical computations and its processing time increases when i...
NASA Astrophysics Data System (ADS)
Rossi, Linda; Breedveld, Sebastiaan; Heijmen, Ben J. M.; Voet, Peter W. J.; Lanconelli, Nico; Aluwini, Shafak
2012-09-01
In a recent paper, we have published a new algorithm, designated ‘iCycle’, for fully automated multi-criterial optimization of beam angles and intensity profiles. In this study, we have used this algorithm to investigate the relationship between plan quality and the extent of the beam direction search space, i.e. the set of candidate beam directions that may be selected for generating an optimal plan. For a group of ten prostate cancer patients, optimal IMRT plans were made for stereotactic body radiation therapy (SBRT), mimicking high dose rate brachytherapy dosimetry. Plans were generated for five different beam direction input sets: a coplanar (CP) set and four non-coplanar (NCP) sets. For CP treatments, the search space consisted of 72 orientations (5° separations). The NCP CyberKnife (CK) space contained all directions available in the robotic CK treatment unit. The fully non-coplanar (F-NCP) set facilitated the highest possible degree of freedom in selecting optimal directions. CK+ and CK++ were subsets of F-NCP to investigate some aspects of the CK space. For each input set, plans were generated with up to 30 selected beam directions. Generated plans were clinically acceptable, according to an assessment of our clinicians. Convergence in plan quality occurred only after around 20 included beams. For individual patients, variations in PTV dose delivery between the five generated plans were minimal, as aimed for (average spread in V95: 0.4%). This allowed plan comparisons based on organ at risk (OAR) doses, with the rectum considered most important. Plans generated with the NCP search spaces had improved OAR sparing compared to the CP search space, especially for the rectum. OAR sparing was best with the F-NCP, with reductions in rectum DMean, V40Gy, V60Gy and D2% compared to CP of 25%, 35%, 37% and 8%, respectively. Reduced rectum sparing with the CK search space compared to F-NCP could be largely compensated by expanding CK with beams with relatively
NASA Astrophysics Data System (ADS)
Jessup, M. J.; Cottle, J. M.; Newell, D. L.; Berger, A. L.; Spotila, J. A.
2008-12-01
In the South Tibetan Himalaya, two major detachment systems are exposed in the Ama Drime and Mount Everest Massifs. These structures represent a fundamental shift in the dynamics of the Himalayan orogen, recording a progression from south-directed to orogen-parallel mid-crustal flow and exhumation. The South Tibetan detachment system (STDS) accommodated exhumation of the Greater Himalayan series (GHS) until the Middle Miocene. A relatively narrow mylonite zone that progressed into a brittle detachment accommodated exhumation of the GHS. Northward, in the down-dip direction (Dzakaa Chu and Doya La), a 1-km-wide distributed zone of deformation that lacks a foliation-parallel brittle detachment characterizes the STDS. Leucogranites in the footwall of the STDS range between 17-18 Ma. Previously published 40Ar/39Ar ages suggest that movement on the STDS ended by ~ 16 Ma in Rongbuk Valley and ~ 13 Ma near Dinggye. This once continuous section of the STDS is displaced by the trans- Himalayan Ama Drime Massif and Xainza-Dinggye graben. Two oppositely dipping normal faults and shear zones that bound the Ama Drime Massif record orogen-parallel extension. During exhumation, deformation was partitioned into relatively narrow (100-300-m-thick) mylonite zones that progressed into brittle faults/detachments, which offset Quaternary deposits. U(-Th-)Pb geochronology of mafic lenses suggests that the core of the ADM reached granulite facies at ~ 15 Ma. Leucogranites in the footwall of the detachment faults range between 12-11 Ma: significantly younger than those related to movement on the STDS. Previously published 40Ar/39Ar ages from the eastern limb of the Ama Drime Massif suggest that exhumation progressed into the footwall of the Nyüonno detachment between ~ 13-10 Ma. (U-Th)/He apatite ages record a minimum exhumation rate of ~ 1mm/yr between 1.5-3.0 Ma that was enhanced by focused denudation in the trans-Himalayan Arun River gorge. Together these bracket the timing (~ 12 Ma
THE DEPENDENCE OF VISUAL SCANNING PERFORMANCE ON SEARCH DIRECTION AND DIFFICULTY
Phillips, Matthew H.; Edelman, Jay A.
2009-01-01
Phillips & Edelman (2008) presented evidence that performance variability in a visual scanning task depended on oculomotor variables related to saccade amplitude rather than fixation duration, and that saccade-related metrics reflected perceptual span. Here, we extend these results by showing that even for extremely difficult searches trial-to-trial performance variability still depends on saccade-related metrics and not fixation duration. We also show that scanning speed is faster for horizontal than for vertical searches, and that these differences derive again from differences in saccade-based metrics and not from differences in fixation duration. We find perceptual span to be larger for horizontal than vertical searches, and approximately symmetric about the line of gaze. PMID:18640144
Neutron beam tests of CsI(Na) and CaF2(Eu) crystals for dark matter direct search
NASA Astrophysics Data System (ADS)
Guo, C.; Ma, X. H.; Wang, Z. M.; Bao, J.; Dai, C. J.; Guan, M. Y.; Liu, J. C.; Li, Z. H.; Ren, J.; Ruan, X. C.; Yang, C. G.; Yu, Z. Y.; Zhong, W. L.; Huerta, C.
2016-05-01
In recent decades, inorganic crystals have been widely used in dark matter direct search experiments. To contribute to the understanding of the capabilities of CsI(Na) and CaF2(Eu) crystals, a mono-energetic neutron beam is utilized to study the properties of nuclear recoils, which are expected to be similar to signals of dark matter direct detection. The quenching factor of nuclear recoils in CsI(Na) and CaF2Eu, as well as an improved discrimination factor between nuclear recoils and γ backgrounds in CsI(Na), are reported.
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1976-01-01
A number of current research directions in the fields of digital signal processing and modern control and estimation theory were studied. Topics such as stability theory, linear prediction and parameter identification, system analysis and implementation, two-dimensional filtering, decentralized control and estimation, image processing, and nonlinear system theory were examined in order to uncover some of the basic similarities and differences in the goals, techniques, and philosophy of the two disciplines. An extensive bibliography is included.
A Search for Institutional Distinctiveness. New Directions for Community Colleges, Number 65.
ERIC Educational Resources Information Center
Townsend, Barbara K., Ed.
1989-01-01
The essays in this collection argue that community colleges have much to gain by seeking out and maintaining positive recognition of the features that distinguish them from other colleges in the region and state. In addition, the sourcebook contains articles discussing the process of conducting a search for institutional distinctiveness and ways…