Science.gov

Sample records for parallel gpu implementation

  1. Linear Bregman algorithm implemented in parallel GPU

    NASA Astrophysics Data System (ADS)

    Li, Pengyan; Ke, Jue; Sui, Dong; Wei, Ping

    2015-08-01

    At present, most compressed sensing (CS) algorithms have poor converging speed, thus are difficult to run on PC. To deal with this issue, we use a parallel GPU, to implement a broadly used compressed sensing algorithm, the Linear Bregman algorithm. Linear iterative Bregman algorithm is a reconstruction algorithm proposed by Osher and Cai. Compared with other CS reconstruction algorithms, the linear Bregman algorithm only involves the vector and matrix multiplication and thresholding operation, and is simpler and more efficient for programming. We use C as a development language and adopt CUDA (Compute Unified Device Architecture) as parallel computing architectures. In this paper, we compared the parallel Bregman algorithm with traditional CPU realized Bregaman algorithm. In addition, we also compared the parallel Bregman algorithm with other CS reconstruction algorithms, such as OMP and TwIST algorithms. Compared with these two algorithms, the result of this paper shows that, the parallel Bregman algorithm needs shorter time, and thus is more convenient for real-time object reconstruction, which is important to people's fast growing demand to information technology.

  2. Fast, parallel implementation of particle filtering on the GPU architecture

    NASA Astrophysics Data System (ADS)

    Gelencsér-Horváth, Anna; Tornai, Gábor János; Horváth, András; Cserey, György

    2013-12-01

    In this paper, we introduce a modified cellular particle filter (CPF) which we mapped on a graphics processing unit (GPU) architecture. We developed this filter adaptation using a state-of-the art CPF technique. Mapping this filter realization on a highly parallel architecture entailed a shift in the logical representation of the particles. In this process, the original two-dimensional organization is reordered as a one-dimensional ring topology. We proposed a proof-of-concept measurement on two models with an NVIDIA Fermi architecture GPU. This design achieved a 411- μs kernel time per state and a 77-ms global running time for all states for 16,384 particles with a 256 neighbourhood size on a sequence of 24 states for a bearing-only tracking model. For a commonly used benchmark model at the same configuration, we achieved a 266- μs kernel time per state and a 124-ms global running time for all 100 states. Kernel time includes random number generation on the GPU with curand. These results attest to the effective and fast use of the particle filter in high-dimensional, real-time applications.

  3. Efficient Parallel Video Processing Techniques on GPU: From Framework to Implementation

    PubMed Central

    Su, Huayou; Wen, Mei; Wu, Nan; Ren, Ju; Zhang, Chunyuan

    2014-01-01

    Through reorganizing the execution order and optimizing the data structure, we proposed an efficient parallel framework for H.264/AVC encoder based on massively parallel architecture. We implemented the proposed framework by CUDA on NVIDIA's GPU. Not only the compute intensive components of the H.264 encoder are parallelized but also the control intensive components are realized effectively, such as CAVLC and deblocking filter. In addition, we proposed serial optimization methods, including the multiresolution multiwindow for motion estimation, multilevel parallel strategy to enhance the parallelism of intracoding as much as possible, component-based parallel CAVLC, and direction-priority deblocking filter. More than 96% of workload of H.264 encoder is offloaded to GPU. Experimental results show that the parallel implementation outperforms the serial program by 20 times of speedup ratio and satisfies the requirement of the real-time HD encoding of 30 fps. The loss of PSNR is from 0.14 dB to 0.77 dB, when keeping the same bitrate. Through the analysis to the kernels, we found that speedup ratios of the compute intensive algorithms are proportional with the computation power of the GPU. However, the performance of the control intensive parts (CAVLC) is much related to the memory bandwidth, which gives an insight for new architecture design. PMID:24757432

  4. A block-wise approximate parallel implementation for ART algorithm on CUDA-enabled GPU.

    PubMed

    Fan, Zhongyin; Xie, Yaoqin

    2015-01-01

    Computed tomography (CT) has been widely used to acquire volumetric anatomical information in the diagnosis and treatment of illnesses in many clinics. However, the ART algorithm for reconstruction from under-sampled and noisy projection is still time-consuming. It is the goal of our work to improve a block-wise approximate parallel implementation for the ART algorithm on CUDA-enabled GPU to make the ART algorithm applicable to the clinical environment. The resulting method has several compelling features: (1) the rays are allotted into blocks, making the rays in the same block parallel; (2) GPU implementation caters to the actual industrial and medical application demand. We test the algorithm on a digital shepp-logan phantom, and the results indicate that our method is more efficient than the existing CPU implementation. The high computation efficiency achieved in our algorithm makes it possible for clinicians to obtain real-time 3D images. PMID:26405857

  5. Efficient parallel implementation of active appearance model fitting algorithm on GPU.

    PubMed

    Wang, Jinwei; Ma, Xirong; Zhu, Yuanping; Sun, Jizhou

    2014-01-01

    The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia's GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures. PMID:24723812

  6. Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU

    PubMed Central

    Wang, Jinwei; Ma, Xirong; Zhu, Yuanping; Sun, Jizhou

    2014-01-01

    The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia's GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures. PMID:24723812

  7. Parallel implementation of 3D protein structure similarity searches using a GPU and the CUDA.

    PubMed

    Mrozek, Dariusz; Brożek, Miłosz; Małysiak-Mrozek, Bożena

    2014-02-01

    Searching for similar 3D protein structures is one of the primary processes employed in the field of structural bioinformatics. However, the computational complexity of this process means that it is constantly necessary to search for new methods that can perform such a process faster and more efficiently. Finding molecular substructures that complex protein structures have in common is still a challenging task, especially when entire databases containing tens or even hundreds of thousands of protein structures must be scanned. Graphics processing units (GPUs) and general purpose graphics processing units (GPGPUs) can perform many time-consuming and computationally demanding processes much more quickly than a classical CPU can. In this paper, we describe the GPU-based implementation of the CASSERT algorithm for 3D protein structure similarity searching. This algorithm is based on the two-phase alignment of protein structures when matching fragments of the compared proteins. The GPU (GeForce GTX 560Ti: 384 cores, 2GB RAM) implementation of CASSERT ("GPU-CASSERT") parallelizes both alignment phases and yields an average 180-fold increase in speed over its CPU-based, single-core implementation on an Intel Xeon E5620 (2.40GHz, 4 cores). In this paper, we show that massive parallelization of the 3D structure similarity search process on many-core GPU devices can reduce the execution time of the process, allowing it to be performed in real time. GPU-CASSERT is available at: http://zti.polsl.pl/dmrozek/science/gpucassert/cassert.htm. PMID:24481593

  8. Parallel implementation of the genetic algorithm on NVIDIA GPU architecture for synthesis and inversion

    NASA Astrophysics Data System (ADS)

    Karthik, Victor U.; Sivasuthan, Sivamayam; Hoole, Samuel Ratnajeevan H.

    2014-02-01

    The computational algorithms for device synthesis and nondestructive evaluation (NDE) are often the same. In both we have a goal - a particular field configuration yielding the design performance in synthesis or to match exterior measurements in NDE. The geometry of the design or the postulated interior defect is then computed. Several optimization methods are available for this. The most efficient like conjugate gradients are very complex to program for the required derivative information. The least efficient zeroth order algorithms like the genetic algorithm take much computational time but little programming effort. This paper reports launching a Genetic Algorithm kernel on thousands of compute unified device architecture (CUDA) threads exploiting the NVIDIA graphics processing unit (GPU) architecture. The efficiency of parallelization, although below that on shared memory supercomputer architectures, is quite effective in cutting down solution time into the realm of the practicable. We carry this further into multi-physics electro-heat problems where the parameters of description are in the electrical problem and the object function in the thermal problem. Indeed, this is where the derivative of the object function in the heat problem with respect to the parameters in the electrical problem is the most difficult to compute for gradient methods, and where the genetic algorithm is most easily implemented.

  9. GPU-based parallel implementation of 5-layer thermal diffusion scheme

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Mielikainen, Jarno; Huang, Bormin; Huang, H.-L. A.; Goldberg, Mitchell D.

    2012-10-01

    The Weather Research and Forecasting (WRF) is a system of numerical weather prediction and atmospheric simulation with dual purposes for forecasting and research. The WRF software infrastructure consists of several components such as dynamic solvers and physical simulation modules. WRF includes several Land-Surface Models (LSMs). The LSMs use atmospheric information, the radiative and precipitation forcing from the surface layer scheme, the radiation scheme, and the microphysics/convective scheme all together with the lands state variables and land-surface properties, to provide heat and moisture fluxes over land and sea-ice points. The WRF 5-layer thermal diffusion simulation is an LSM based on the MM5 5-layer soil temperature model with an energy budget that includes radiation, sensible, and latent heat flux. The WRF LSMs are very suitable for massively parallel computation as there are no interactions among horizontal grid points. More and more scientific applications have adopted graphics processing units (GPUs) to accelerate the computing performance. This study demonstrates our GPU massively parallel computation efforts on the WRF 5-layer thermal diffusion scheme. Since this scheme is only an intermediate module of the entire WRF model, the I/O transfer does not involve in the intermediate process. Without data transfer, this module can achieve a speedup of 36x with one GPU and 108x with four GPUs as compared to a single threaded CPU processor. With CPU/GPU hybrid strategy, this module can accomplish a even higher speedup, ~114x with one GPU and ~240x with four GPUs. Meanwhile, we are seeking other approaches to improve the speeds.

  10. Parallel LU Factorization on GPU cluster

    SciTech Connect

    D'Azevedo, Ed F; Hill, Judith C

    2012-01-01

    This paper describes our progress in developing software for performing parallel LU factorization of a large dense matrix on a GPU cluster. Three approaches, with increasing software complexity, are considered: (i) a naive 'thunking' approach that links the existing parallel ScaLAPACK software library with cuBLAS through a software emulation layer; (ii) a more intrusive magmaBLAS implementation integrated into the LU solver in the High-Performance Linpack software; and (iii) a left-looking out-of-core algorithm for solving problems that are larger than the available memory on GPU devices. Comparison of the performance gains versus the current ScaLAPACK PZGETRF are provided.

  11. Bayer image parallel decoding based on GPU

    NASA Astrophysics Data System (ADS)

    Hu, Rihui; Xu, Zhiyong; Wei, Yuxing; Sun, Shaohua

    2012-11-01

    In the photoelectrical tracking system, Bayer image is decompressed in traditional method, which is CPU-based. However, it is too slow when the images become large, for example, 2K×2K×16bit. In order to accelerate the Bayer image decoding, this paper introduces a parallel speedup method for NVIDA's Graphics Processor Unit (GPU) which supports CUDA architecture. The decoding procedure can be divided into three parts: the first is serial part, the second is task-parallelism part, and the last is data-parallelism part including inverse quantization, inverse discrete wavelet transform (IDWT) as well as image post-processing part. For reducing the execution time, the task-parallelism part is optimized by OpenMP techniques. The data-parallelism part could advance its efficiency through executing on the GPU as CUDA parallel program. The optimization techniques include instruction optimization, shared memory access optimization, the access memory coalesced optimization and texture memory optimization. In particular, it can significantly speed up the IDWT by rewriting the 2D (Tow-dimensional) serial IDWT into 1D parallel IDWT. Through experimenting with 1K×1K×16bit Bayer image, data-parallelism part is 10 more times faster than CPU-based implementation. Finally, a CPU+GPU heterogeneous decompression system was designed. The experimental result shows that it could achieve 3 to 5 times speed increase compared to the CPU serial method.

  12. SIFT implementation based on GPU

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Geng, Ze-xun; Wei, Xiao-feng; Shen, Chen

    2013-08-01

    Abstract—Image matching is the core research topics of digital photogrammetry and computer vision. SIFT(Scale-Invariant Feature Transform) algorithm is a feature matching algorithm based on local invariant features which is proposed by Lowe at 1999, SIFT features are invariant to image rotation and scaling, even partially invariant to change in 3D camera viewpoint and illumination. They are well localized in both the spatial and frequency domains, reducing the probability of disruption by occlusion, clutter, or noise. So the algorithm has a widely used in image matching and 3D reconstruction based on stereo image. Traditional SIFT algorithm's implementation and optimization are generally for CPU. Due to the large numbers of extracted features(even if only several objects can also extract large numbers of SIFT feature), high-dimensional of the feature vector(usually a 128-dimensional SIFT feature vector), and the complexity for the SIFT algorithm, therefore the SIFT algorithm on the CPU processing speed is slow, hard to fulfil the real-time requirements. Programmable Graphic Process United(PGPU) is commonly used by the current computer graphics as a dedicated device for image processing. The development experience of recent years shows that a high-performance GPU, which can be achieved 10 times single-precision floating-point processing performanceone compared with the same time of a high-performance desktop CPU, simultaneity the GPU's memory bandwidth is up to five times compared with the same period desktop platform. Provide the same computing power, the GPU's cost and power consumption should be less than the CPU-based system. At the same time, due to the parallel nature of graphics rendering and image processing, so GPU-accelerated image processing become to an efficient solution for some algorithm which have requirements for real-time. In this paper, we realized the algorithm by OpenGL shader language and compare to the results which realized by CPU

  13. Parallelization of MODFLOW using a GPU library.

    PubMed

    Ji, Xiaohui; Li, Dandan; Cheng, Tangpei; Wang, Xu-Sheng; Wang, Qun

    2014-01-01

    A new method based on a graphics processing unit (GPU) library is proposed in the paper to parallelize MODFLOW. Two programs, GetAb_CG and CG_GPU, have been developed to reorganize the equations in MODFLOW and solve them with the GPU library. Experimental tests using the NVIDIA Tesla C1060 show that a 1.6- to 10.6-fold speedup can be achieved for models with more than 10(5) cells. The efficiency can be further improved by using up-to-date GPU devices. PMID:23937315

  14. Gpu Implementation of Preconditioning Method for Low-Speed Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Jiale; Chen, Hongquan

    2016-06-01

    An improved preconditioning method for low-Mach-number flows is implemented on a GPU platform. The improved preconditioning method employs the fluctuation of the fluid variables to weaken the influence of accuracy caused by the truncation error. The GPU parallel computing platform is implemented to accelerate the calculations. Both details concerning the improved preconditioning method and the GPU implementation technology are described in this paper. Then a set of typical low-speed flow cases are simulated for both validation and performance analysis of the resulting GPU solver. Numerical results show that dozens of times speedup relative to a serial CPU implementation can be achieved using a single GPU desktop platform, which demonstrates that the GPU desktop can serve as a cost-effective parallel computing platform to accelerate CFD simulations for low-Speed flows substantially.

  15. IMPAIR: massively parallel deconvolution on the GPU

    NASA Astrophysics Data System (ADS)

    Sherry, Michael; Shearer, Andy

    2013-02-01

    The IMPAIR software is a high throughput image deconvolution tool for processing large out-of-core datasets of images, varying from large images with spatially varying PSFs to large numbers of images with spatially invariant PSFs. IMPAIR implements a parallel version of the tried and tested Richardson-Lucy deconvolution algorithm regularised via a custom wavelet thresholding library. It exploits the inherently parallel nature of the convolution operation to achieve quality results on consumer grade hardware: through the NVIDIA Tesla GPU implementation, the multi-core OpenMP implementation, and the cluster computing MPI implementation of the software. IMPAIR aims to address the problem of parallel processing in both top-down and bottom-up approaches: by managing the input data at the image level, and by managing the execution at the instruction level. These combined techniques will lead to a scalable solution with minimal resource consumption and maximal load balancing. IMPAIR is being developed as both a stand-alone tool for image processing, and as a library which can be embedded into non-parallel code to transparently provide parallel high throughput deconvolution.

  16. Parallel hyperspectral compressive sensing method on GPU

    NASA Astrophysics Data System (ADS)

    Bernabé, Sergio; Martín, Gabriel; Nascimento, José M. P.

    2015-10-01

    Remote hyperspectral sensors collect large amounts of data per flight usually with low spatial resolution. It is known that the bandwidth connection between the satellite/airborne platform and the ground station is reduced, thus a compression onboard method is desirable to reduce the amount of data to be transmitted. This paper presents a parallel implementation of an compressive sensing method, called parallel hyperspectral coded aperture (P-HYCA), for graphics processing units (GPU) using the compute unified device architecture (CUDA). This method takes into account two main properties of hyperspectral dataset, namely the high correlation existing among the spectral bands and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. Experimental results conducted using synthetic and real hyperspectral datasets on two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN, reveal that the use of GPUs can provide real-time compressive sensing performance. The achieved speedup is up to 20 times when compared with the processing time of HYCA running on one core of the Intel i7-2600 CPU (3.4GHz), with 16 Gbyte memory.

  17. GPU implementation of JPEG XR

    NASA Astrophysics Data System (ADS)

    Che, Ming-Chao; Liang, Jie

    2010-01-01

    JPEG XR (formerly Microsoft Windows Media Photo and HD Photo) is the latest image coding standard. By integrating various advanced technologies such as integer hierarchical lapped transform, context adaptive Huffman coding, and high dynamic range coding, it achieves competitive performance to JPEG-2000, but with lower computational complexity and memory requirement. In this paper, the GPU implementation of the JPEG XR codec using NVIDIA CUDA (Compute Unified Device Architecture) technology is investigated. Design considerations to speed up the algorithm are discussed, by taking full advantage of the properties of the CUDA framework and JPEG XR. Experimental results are presented to demonstrate the performance of the GPU implementation.

  18. Parallelization and checkpointing of GPU applications through program transformation

    SciTech Connect

    Solano-Quinde, Lizandro Damian

    2012-01-01

    GPUs have emerged as a powerful tool for accelerating general-purpose applications. The availability of programming languages that makes writing general-purpose applications for running on GPUs tractable have consolidated GPUs as an alternative for accelerating general purpose applications. Among the areas that have benefited from GPU acceleration are: signal and image processing, computational fluid dynamics, quantum chemistry, and, in general, the High Performance Computing (HPC) Industry. In order to continue to exploit higher levels of parallelism with GPUs, multi-GPU systems are gaining popularity. In this context, single-GPU applications are parallelized for running in multi-GPU systems. Furthermore, multi-GPU systems help to solve the GPU memory limitation for applications with large application memory footprint. Parallelizing single-GPU applications has been approached by libraries that distribute the workload at runtime, however, they impose execution overhead and are not portable. On the other hand, on traditional CPU systems, parallelization has been approached through application transformation at pre-compile time, which enhances the application to distribute the workload at application level and does not have the issues of library-based approaches. Hence, a parallelization scheme for GPU systems based on application transformation is needed. Like any computing engine of today, reliability is also a concern in GPUs. GPUs are vulnerable to transient and permanent failures. Current checkpoint/restart techniques are not suitable for systems with GPUs. Checkpointing for GPU systems present new and interesting challenges, primarily due to the natural differences imposed by the hardware design, the memory subsystem architecture, the massive number of threads, and the limited amount of synchronization among threads. Therefore, a checkpoint/restart technique suitable for GPU systems is needed. The goal of this work is to exploit higher levels of parallelism and

  19. Robust Adaptive 3-D Segmentation of Vessel Laminae From Fluorescence Confocal Microscope Images and Parallel GPU Implementation

    PubMed Central

    Narayanaswamy, Arunachalam; Dwarakapuram, Saritha; Bjornsson, Christopher S.; Cutler, Barbara M.; Shain, William

    2010-01-01

    This paper presents robust 3-D algorithms to segment vasculature that is imaged by labeling laminae, rather than the lumenal volume. The signal is weak, sparse, noisy, nonuniform, low-contrast, and exhibits gaps and spectral artifacts, so adaptive thresholding and Hessian filtering based methods are not effective. The structure deviates from a tubular geometry, so tracing algorithms are not effective. We propose a four step approach. The first step detects candidate voxels using a robust hypothesis test based on a model that assumes Poisson noise and locally planar geometry. The second step performs an adaptive region growth to extract weakly labeled and fine vessels while rejecting spectral artifacts. To enable interactive visualization and estimation of features such as statistical confidence, local curvature, local thickness, and local normal, we perform the third step. In the third step, we construct an accurate mesh representation using marching tetrahedra, volume-preserving smoothing, and adaptive decimation algorithms. To enable topological analysis and efficient validation, we describe a method to estimate vessel centerlines using a ray casting and vote accumulation algorithm which forms the final step of our algorithm. Our algorithm lends itself to parallel processing, and yielded an 8× speedup on a graphics processor (GPU). On synthetic data, our meshes had average error per face (EPF) values of (0.1–1.6) voxels per mesh face for peak signal-to-noise ratios from (110–28 dB). Separately, the error from decimating the mesh to less than 1% of its original size, the EPF was less than 1 voxel/face. When validated on real datasets, the average recall and precision values were found to be 94.66% and 94.84%, respectively. PMID:20199906

  20. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    PubMed Central

    Xia, Yong; Wang, Kuanquan; Zhang, Henggui

    2015-01-01

    Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations. PMID:26581957

  1. GPU-based Parallel Application Design for Emerging Mobile Devices

    NASA Astrophysics Data System (ADS)

    Gupta, Kshitij

    A revolution is underway in the computing world that is causing a fundamental paradigm shift in device capabilities and form-factor, with a move from well-established legacy desktop/laptop computers to mobile devices in varying sizes and shapes. Amongst all the tasks these devices must support, graphics has emerged as the 'killer app' for providing a fluid user interface and high-fidelity game rendering, effectively making the graphics processor (GPU) one of the key components in (present and future) mobile systems. By utilizing the GPU as a general-purpose parallel processor, this dissertation explores the GPU computing design space from an applications standpoint, in the mobile context, by focusing on key challenges presented by these devices---limited compute, memory bandwidth, and stringent power consumption requirements---while improving the overall application efficiency of the increasingly important speech recognition workload for mobile user interaction. We broadly partition trends in GPU computing into four major categories. We analyze hardware and programming model limitations in current-generation GPUs and detail an alternate programming style called Persistent Threads, identify four use case patterns, and propose minimal modifications that would be required for extending native support. We show how by manually extracting data locality and altering the speech recognition pipeline, we are able to achieve significant savings in memory bandwidth while simultaneously reducing the compute burden on GPU-like parallel processors. As we foresee GPU computing to evolve from its current 'co-processor' model into an independent 'applications processor' that is capable of executing complex work independently, we create an alternate application framework that enables the GPU to handle all control-flow dependencies autonomously at run-time while minimizing host involvement to just issuing commands, that facilitates an efficient application implementation. Finally, as

  2. Parallel hyperbolic PDE simulation on clusters: Cell versus GPU

    NASA Astrophysics Data System (ADS)

    Rostrup, Scott; De Sterck, Hans

    2010-12-01

    :http://cpc.cs.qub.ac.uk/summaries/AEGY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v3 No. of lines in distributed program, including test data, etc.: 59 168 No. of bytes in distributed program, including test data, etc.: 453 409 Distribution format: tar.gz Programming language: C, CUDA Computer: Parallel Computing Clusters. Individual compute nodes may consist of x86 CPU, Cell processor, or x86 CPU with attached NVIDIA GPU accelerator. Operating system: Linux Has the code been vectorised or parallelized?: Yes. Tested on 1-128 x86 CPU cores, 1-32 Cell Processors, and 1-32 NVIDIA GPUs. RAM: Tested on Problems requiring up to 4 GB per compute node. Classification: 12 External routines: MPI, CUDA, IBM Cell SDK Nature of problem: MPI-parallel simulation of Shallow Water equations using high-resolution 2D hyperbolic equation solver on regular Cartesian grids for x86 CPU, Cell Processor, and NVIDIA GPU using CUDA. Solution method: SWsolver provides 3 implementations of a high-resolution 2D Shallow Water equation solver on regular Cartesian grids, for CPU, Cell Processor, and NVIDIA GPU. Each implementation uses MPI to divide work across a parallel computing cluster. Additional comments: Sub-program numdiff is used for the test run.

  3. Problems Related to Parallelization of CFD Algorithms on GPU, Multi-GPU and Hybrid Architectures

    NASA Astrophysics Data System (ADS)

    Biazewicz, Marek; Kurowski, Krzysztof; Ludwiczak, Bogdan; Napieraia, Krystyna

    2010-09-01

    Computational Fluid Dynamics (CFD) is one of the branches of fluid mechanics, which uses numerical methods and algorithms to solve and analyze fluid flows. CFD is used in various domains, such as oil and gas reservoir uncertainty analysis, aerodynamic body shapes optimization (e.g. planes, cars, ships, sport helmets, skis), natural phenomena analysis, numerical simulation for weather forecasting or realistic visualizations. CFD problem is very complex and needs a lot of computational power to obtain the results in a reasonable time. We have implemented a parallel application for two-dimensional CFD simulation with a free surface approximation (MAC method) using new hardware architectures, in particular multi-GPU and hybrid computing environments. For this purpose we decided to use NVIDIA graphic cards with CUDA environment due to its simplicity of programming and good computations performance. We used finite difference discretization of Navier-Stokes equations, where fluid is propagated over an Eulerian Grid. In this model, the behavior of the fluid inside the cell depends only on the properties of local, surrounding cells, therefore it is well suited for the GPU-based architecture. In this paper we demonstrate how to use efficiently the computing power of GPUs for CFD. Additionally, we present some best practices to help users analyze and improve the performance of CFD applications executed on GPU. Finally, we discuss various challenges around the multi-GPU implementation on the example of matrix multiplication.

  4. Efficient implementation of MrBayes on multi-GPU.

    PubMed

    Bao, Jie; Xia, Hongju; Zhou, Jianfu; Liu, Xiaoguang; Wang, Gang

    2013-06-01

    MrBayes, using Metropolis-coupled Markov chain Monte Carlo (MCMCMC or (MC)(3)), is a popular program for Bayesian inference. As a leading method of using DNA data to infer phylogeny, the (MC)(3) Bayesian algorithm and its improved and parallel versions are now not fast enough for biologists to analyze massive real-world DNA data. Recently, graphics processor unit (GPU) has shown its power as a coprocessor (or rather, an accelerator) in many fields. This article describes an efficient implementation a(MC)(3) (aMCMCMC) for MrBayes (MC)(3) on compute unified device architecture. By dynamically adjusting the task granularity to adapt to input data size and hardware configuration, it makes full use of GPU cores with different data sets. An adaptive method is also developed to split and combine DNA sequences to make full use of a large number of GPU cards. Furthermore, a new "node-by-node" task scheduling strategy is developed to improve concurrency, and several optimizing methods are used to reduce extra overhead. Experimental results show that a(MC)(3) achieves up to 63× speedup over serial MrBayes on a single machine with one GPU card, and up to 170× speedup with four GPU cards, and up to 478× speedup with a 32-node GPU cluster. a(MC)(3) is dramatically faster than all the previous (MC)(3) algorithms and scales well to large GPU clusters. PMID:23493260

  5. Efficient Implementation of MrBayes on Multi-GPU

    PubMed Central

    Zhou, Jianfu; Liu, Xiaoguang; Wang, Gang

    2013-01-01

    MrBayes, using Metropolis-coupled Markov chain Monte Carlo (MCMCMC or (MC)3), is a popular program for Bayesian inference. As a leading method of using DNA data to infer phylogeny, the (MC)3 Bayesian algorithm and its improved and parallel versions are now not fast enough for biologists to analyze massive real-world DNA data. Recently, graphics processor unit (GPU) has shown its power as a coprocessor (or rather, an accelerator) in many fields. This article describes an efficient implementation a(MC)3 (aMCMCMC) for MrBayes (MC)3 on compute unified device architecture. By dynamically adjusting the task granularity to adapt to input data size and hardware configuration, it makes full use of GPU cores with different data sets. An adaptive method is also developed to split and combine DNA sequences to make full use of a large number of GPU cards. Furthermore, a new “node-by-node” task scheduling strategy is developed to improve concurrency, and several optimizing methods are used to reduce extra overhead. Experimental results show that a(MC)3 achieves up to 63× speedup over serial MrBayes on a single machine with one GPU card, and up to 170× speedup with four GPU cards, and up to 478× speedup with a 32-node GPU cluster. a(MC)3 is dramatically faster than all the previous (MC)3 algorithms and scales well to large GPU clusters. PMID:23493260

  6. GASPRNG: GPU accelerated scalable parallel random number generator library

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Peterson, Gregory D.

    2013-04-01

    Graphics processors represent a promising technology for accelerating computational science applications. Many computational science applications require fast and scalable random number generation with good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG). We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high performance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage models for pseudorandom numbers and computational science applications executing on the CPU, GPU, or both. This paper describes the implementation approach used to produce high performance and also describes how to use the programming interface. The programming interface allows a user to be able to use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and use it. To help illustrate linking with GASPRNG, various demonstration codes are included for the different usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for scalable computational science applications. Catalogue identifier: AEOI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: UTK license. No. of lines in distributed program, including test data, etc.: 167900 No. of bytes in distributed program, including test data, etc.: 1422058 Distribution format: tar.gz Programming language: C and CUDA. Computer: Any PC or

  7. Gpu Implementation of a Viscous Flow Solver on Unstructured Grids

    NASA Astrophysics Data System (ADS)

    Xu, Tianhao; Chen, Long

    2016-06-01

    Graphics processing units have gained popularities in scientific computing over past several years due to their outstanding parallel computing capability. Computational fluid dynamics applications involve large amounts of calculations, therefore a latest GPU card is preferable of which the peak computing performance and memory bandwidth are much better than a contemporary high-end CPU. We herein focus on the detailed implementation of our GPU targeting Reynolds-averaged Navier-Stokes equations solver based on finite-volume method. The solver employs a vertex-centered scheme on unstructured grids for the sake of being capable of handling complex topologies. Multiple optimizations are carried out to improve the memory accessing performance and kernel utilization. Both steady and unsteady flow simulation cases are carried out using explicit Runge-Kutta scheme. The solver with GPU acceleration in this paper is demonstrated to have competitive advantages over the CPU targeting one.

  8. Revisiting Molecular Dynamics on a CPU/GPU system: Water Kernel and SHAKE Parallelization

    PubMed Central

    Ruymgaart, A. Peter; Elber, Ron

    2012-01-01

    We report Graphics Processing Unit (GPU) and Open-MP parallel implementations of water-specific force calculations and of bond constraints for use in Molecular Dynamics simulations. We focus on a typical laboratory computing-environment in which a CPU with a few cores is attached to a GPU. We discuss in detail the design of the code and we illustrate performance comparable to highly optimized codes such as GROMACS. Beside speed our code shows excellent energy conservation. Utilization of water-specific lists allows the efficient calculations of non-bonded interactions that include water molecules and results in a speed-up factor of more than 40 on the GPU compared to code optimized on a single CPU core for systems larger than 20,000 atoms. This is up four-fold from a factor of 10 reported in our initial GPU implementation that did not include a water-specific code. Another optimization is the implementation of constrained dynamics entirely on the GPU. The routine, which enforces constraints of all bonds, runs in parallel on multiple Open-MP cores or entirely on the GPU. It is based on Conjugate Gradient solution of the Lagrange multipliers (CG SHAKE). The GPU implementation is partially in double precision and requires no communication with the CPU during the execution of the SHAKE algorithm. The (parallel) implementation of SHAKE allows an increase of the time step to 2.0fs while maintaining excellent energy conservation. Interestingly, CG SHAKE is faster than the usual bond relaxation algorithm even on a single core if high accuracy is expected. The significant speedup of the optimized components transfers the computational bottleneck of the MD calculation to the reciprocal part of Particle Mesh Ewald (PME). PMID:23264758

  9. Revisiting Molecular Dynamics on a CPU/GPU system: Water Kernel and SHAKE Parallelization.

    PubMed

    Ruymgaart, A Peter; Elber, Ron

    2012-11-13

    We report Graphics Processing Unit (GPU) and Open-MP parallel implementations of water-specific force calculations and of bond constraints for use in Molecular Dynamics simulations. We focus on a typical laboratory computing-environment in which a CPU with a few cores is attached to a GPU. We discuss in detail the design of the code and we illustrate performance comparable to highly optimized codes such as GROMACS. Beside speed our code shows excellent energy conservation. Utilization of water-specific lists allows the efficient calculations of non-bonded interactions that include water molecules and results in a speed-up factor of more than 40 on the GPU compared to code optimized on a single CPU core for systems larger than 20,000 atoms. This is up four-fold from a factor of 10 reported in our initial GPU implementation that did not include a water-specific code. Another optimization is the implementation of constrained dynamics entirely on the GPU. The routine, which enforces constraints of all bonds, runs in parallel on multiple Open-MP cores or entirely on the GPU. It is based on Conjugate Gradient solution of the Lagrange multipliers (CG SHAKE). The GPU implementation is partially in double precision and requires no communication with the CPU during the execution of the SHAKE algorithm. The (parallel) implementation of SHAKE allows an increase of the time step to 2.0fs while maintaining excellent energy conservation. Interestingly, CG SHAKE is faster than the usual bond relaxation algorithm even on a single core if high accuracy is expected. The significant speedup of the optimized components transfers the computational bottleneck of the MD calculation to the reciprocal part of Particle Mesh Ewald (PME). PMID:23264758

  10. Implementing the projected spatial rich features on a GPU

    NASA Astrophysics Data System (ADS)

    Ker, Andrew D.

    2014-02-01

    The Projected Spatial Rich Model (PSRM) generates powerful steganalysis features, but requires the calculation of tens of thousands of convolutions with image noise residuals. This makes it very slow: the reference implementation takes an impractical 20{30 minutes per 1 megapixel (Mpix) image. We present a case study which first tweaks the definition of the PSRM features, to make them more efficient, and then optimizes an implementation on GPU hardware which exploits their parallelism (whilst avoiding the worst of their sequentiality). Some nonstandard CUDA techniques are used. Even with only a single GPU, the time for feature calculation is reduced by three orders of magnitude, and the detection power is reduced only marginally.

  11. Blind detection of giant pulses: GPU implementation

    NASA Astrophysics Data System (ADS)

    Ait-Allal, Dalal; Weber, Rodolphe; Dumez-Viou, Cédric; Cognard, Ismael; Theureau, Gilles

    2012-01-01

    Radio astronomical pulsar observations require specific instrumentation and dedicated signal processing to cope with the dispersion caused by the interstellar medium. Moreover, the quality of observations can be limited by radio frequency interference (RFI) generated by Telecommunications activity. This article presents the innovative pulsar instrumentation based on graphical processing units (GPU) which has been designed at the Nançay Radio Astronomical Observatory. In addition, for giant pulsar search, we propose a new approach which combines a hardware-efficient search method and some RFI mitigation capabilities. Although this approach is less sensitive than the classical approach, its advantage is that no a priori information on the pulsar parameters is required. The validation of a GPU implementation is under way.

  12. Accelerating Large Scale Image Analyses on Parallel, CPU-GPU Equipped Systems

    PubMed Central

    Teodoro, George; Kurc, Tahsin M.; Pan, Tony; Cooper, Lee A.D.; Kong, Jun; Widener, Patrick; Saltz, Joel H.

    2014-01-01

    The past decade has witnessed a major paradigm shift in high performance computing with the introduction of accelerators as general purpose processors. These computing devices make available very high parallel computing power at low cost and power consumption, transforming current high performance platforms into heterogeneous CPU-GPU equipped systems. Although the theoretical performance achieved by these hybrid systems is impressive, taking practical advantage of this computing power remains a very challenging problem. Most applications are still deployed to either GPU or CPU, leaving the other resource under- or un-utilized. In this paper, we propose, implement, and evaluate a performance aware scheduling technique along with optimizations to make efficient collaborative use of CPUs and GPUs on a parallel system. In the context of feature computations in large scale image analysis applications, our evaluations show that intelligently co-scheduling CPUs and GPUs can significantly improve performance over GPU-only or multi-core CPU-only approaches. PMID:25419545

  13. The development of GPU-based parallel PRNG for Monte Carlo applications in CUDA Fortran

    NASA Astrophysics Data System (ADS)

    Kargaran, Hamed; Minuchehr, Abdolhamid; Zolfaghari, Ahmad

    2016-04-01

    The implementation of Monte Carlo simulation on the CUDA Fortran requires a fast random number generation with good statistical properties on GPU. In this study, a GPU-based parallel pseudo random number generator (GPPRNG) have been proposed to use in high performance computing systems. According to the type of GPU memory usage, GPU scheme is divided into two work modes including GLOBAL_MODE and SHARED_MODE. To generate parallel random numbers based on the independent sequence method, the combination of middle-square method and chaotic map along with the Xorshift PRNG have been employed. Implementation of our developed PPRNG on a single GPU showed a speedup of 150x and 470x (with respect to the speed of PRNG on a single CPU core) for GLOBAL_MODE and SHARED_MODE, respectively. To evaluate the accuracy of our developed GPPRNG, its performance was compared to that of some other commercially available PPRNGs such as MATLAB, FORTRAN and Miller-Park algorithm through employing the specific standard tests. The results of this comparison showed that the developed GPPRNG in this study can be used as a fast and accurate tool for computational science applications.

  14. Rapid Parallel Calculation of shell Element Based On GPU

    NASA Astrophysics Data System (ADS)

    Wanga, Jian Hua; Lia, Guang Yao; Lib, Sheng; Li, Guang Yao

    2010-06-01

    Long computing time bottlenecked the application of finite element. In this paper, an effective method to speed up the FEM calculation by using the existing modern graphic processing unit and programmable colored rendering tool was put forward, which devised the representation of unit information in accordance with the features of GPU, converted all the unit calculation into film rendering process, solved the simulation work of all the unit calculation of the internal force, and overcame the shortcomings of lowly parallel level appeared ever before when it run in a single computer. Studies shown that this method could improve efficiency and shorten calculating hours greatly. The results of emulation calculation about the elasticity problem of large number cells in the sheet metal proved that using the GPU parallel simulation calculation was faster than using the CPU's. It is useful and efficient to solve the project problems in this way.

  15. GPU implementation of the simplex identification via split augmented Lagrangian

    NASA Astrophysics Data System (ADS)

    Sevilla, Jorge; Nascimento, José M. P.

    2015-10-01

    Hyperspectral imaging can be used for object detection and for discriminating between different objects based on their spectral characteristics. One of the main problems of hyperspectral data analysis is the presence of mixed pixels, due to the low spatial resolution of such images. This means that several spectrally pure signatures (endmembers) are combined into the same mixed pixel. Linear spectral unmixing follows an unsupervised approach which aims at inferring pure spectral signatures and their material fractions at each pixel of the scene. The huge data volumes acquired by such sensors put stringent requirements on processing and unmixing methods. This paper proposes an efficient implementation of a unsupervised linear unmixing method on GPUs using CUDA. The method finds the smallest simplex by solving a sequence of nonsmooth convex subproblems using variable splitting to obtain a constraint formulation, and then applying an augmented Lagrangian technique. The parallel implementation of SISAL presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory. The results herein presented indicate that the GPU implementation can significantly accelerate the method's execution over big datasets while maintaining the methods accuracy.

  16. Development of efficient GPU parallelization of WRF Yonsei University planetary boundary layer scheme

    NASA Astrophysics Data System (ADS)

    Huang, M.; Mielikainen, J.; Huang, B.; Chen, H.; Huang, H.-L. A.; Goldberg, M. D.

    2015-09-01

    The planetary boundary layer (PBL) is the lowest part of the atmosphere and where its character is directly affected by its contact with the underlying planetary surface. The PBL is responsible for vertical sub-grid-scale fluxes due to eddy transport in the whole atmospheric column. It determines the flux profiles within the well-mixed boundary layer and the more stable layer above. It thus provides an evolutionary model of atmospheric temperature, moisture (including clouds), and horizontal momentum in the entire atmospheric column. For such purposes, several PBL models have been proposed and employed in the weather research and forecasting (WRF) model of which the Yonsei University (YSU) scheme is one. To expedite weather research and prediction, we have put tremendous effort into developing an accelerated implementation of the entire WRF model using graphics processing unit (GPU) massive parallel computing architecture whilst maintaining its accuracy as compared to its central processing unit (CPU)-based implementation. This paper presents our efficient GPU-based design on a WRF YSU PBL scheme. Using one NVIDIA Tesla K40 GPU, the GPU-based YSU PBL scheme achieves a speedup of 193× with respect to its CPU counterpart running on one CPU core, whereas the speedup for one CPU socket (4 cores) with respect to 1 CPU core is only 3.5×. We can even boost the speedup to 360× with respect to 1 CPU core as two K40 GPUs are applied.

  17. GPU-based parallel clustered differential pulse code modulation

    NASA Astrophysics Data System (ADS)

    Wu, Jiaji; Li, Wenze; Kong, Wanqiu

    2015-10-01

    Hyperspectral remote sensing technology is widely used in marine remote sensing, geological exploration, atmospheric and environmental remote sensing. Owing to the rapid development of hyperspectral remote sensing technology, resolution of hyperspectral image has got a huge boost. Thus data size of hyperspectral image is becoming larger. In order to reduce their saving and transmission cost, lossless compression for hyperspectral image has become an important research topic. In recent years, large numbers of algorithms have been proposed to reduce the redundancy between different spectra. Among of them, the most classical and expansible algorithm is the Clustered Differential Pulse Code Modulation (CDPCM) algorithm. This algorithm contains three parts: first clusters all spectral lines, then trains linear predictors for each band. Secondly, use these predictors to predict pixels, and get the residual image by subtraction between original image and predicted image. Finally, encode the residual image. However, the process of calculating predictors is timecosting. In order to improve the processing speed, we propose a parallel C-DPCM based on CUDA (Compute Unified Device Architecture) with GPU. Recently, general-purpose computing based on GPUs has been greatly developed. The capacity of GPU improves rapidly by increasing the number of processing units and storage control units. CUDA is a parallel computing platform and programming model created by NVIDIA. It gives developers direct access to the virtual instruction set and memory of the parallel computational elements in GPUs. Our core idea is to achieve the calculation of predictors in parallel. By respectively adopting global memory, shared memory and register memory, we finally get a decent speedup.

  18. Accelerating the discontinuous Galerkin method for seismic wave propagation simulations using the graphic processing unit (GPU)—single-GPU implementation

    NASA Astrophysics Data System (ADS)

    Mu, Dawei; Chen, Po; Wang, Liqiang

    2013-02-01

    We have successfully ported an arbitrary high-order discontinuous Galerkin (ADER-DG) method for solving the three-dimensional elastic seismic wave equation on unstructured tetrahedral meshes to an Nvidia Tesla C2075 GPU using the Nvidia CUDA programming model. On average our implementation obtained a speedup factor of about 24.3 for the single-precision version of our GPU code and a speedup factor of about 12.8 for the double-precision version of our GPU code when compared with the double precision serial CPU code running on one Intel Xeon W5880 core. When compared with the parallel CPU code running on two, four and eight cores, the speedup factor of our single-precision GPU code is around 12.9, 6.8 and 3.6, respectively. In this article, we give a brief summary of the ADER-DG method, a short introduction to the CUDA programming model and a description of our CUDA implementation and optimization of the ADER-DG method on the GPU. To our knowledge, this is the first study that explores the potential of accelerating the ADER-DG method for seismic wave-propagation simulations using a GPU.

  19. Evaluation of the GPU architecture for the implementation of target detection algorithms for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Trigueros-Espinosa, Blas; Vélez-Reyes, Miguel; Santiago-Santiago, Nayda G.; Rosario-Torres, Samuel

    2011-06-01

    Hyperspectral sensors can collect hundreds of images taken at different narrow and contiguously spaced spectral bands. This high-resolution spectral information can be used to identify materials and objects within the field of view of the sensor by their spectral signature, but this process may be computationally intensive due to the large data sizes generated by the hyperspectral sensors, typically hundreds of megabytes. This can be an important limitation for some applications where the detection process must be performed in real time (surveillance, explosive detection, etc.). In this work, we developed a parallel implementation of three state-ofthe- art target detection algorithms (RX algorithm, matched filter and adaptive matched subspace detector) using a graphics processing unit (GPU) based on the NVIDIA® CUDA™ architecture. In addition, a multi-core CPUbased implementation of each algorithm was developed to be used as a baseline for the speedups estimation. We evaluated the performance of the GPU-based implementations using an NVIDIA ® Tesla® C1060 GPU card, and the detection accuracy of the implemented algorithms was evaluated using a set of phantom images simulating traces of different materials on clothing. We achieved a maximum speedup in the GPU implementations of around 20x over a multicore CPU-based implementation, which suggests that applications for real-time detection of targets in HSI can greatly benefit from the performance of GPUs as processing hardware.

  20. Immersed boundary method implemented in lattice Boltzmann GPU code

    NASA Astrophysics Data System (ADS)

    Devincentis, Brian; Smith, Kevin; Thomas, John

    2015-11-01

    Lattice Boltzmann is well suited to efficiently utilize the rapidly increasing compute power of GPUs to simulate viscous incompressible flows. Fluid-structure interaction with solids of arbitrarily complex geometry can be modeled in this framework with the immersed boundary method (IBM). In IBM a solid is modeled by its surface which applies a force at the neighboring lattice points. The majority of published IBMs require solving a linear system in order to satisfy the no-slip condition. However, the method presented by Wang et al. (2014) is unique in that it produces equally accurate results without solving a linear system. Furthermore, the algorithm can be applied in a parallel manner over the immersed boundary and is, therefore, well suited for GPUs. Here, a 2D and 3D version of their algorithm is implemented in Sailfish CFD, a GPU-based open source lattice Boltzmann code. One issue unaddressed by most published work is how to correct force and torque calculated from IBM for translating and rotating solids. These corrections are necessary because the fluid inside the solid affects its inertia in a non-trivial manner. Therefore, this implementation uses the Lagrangian points approximation correction shown by Suzuki and Inamuro (2011) to be accurate.

  1. A real-time GPU implementation of the SIFT algorithm for large-scale video analysis tasks

    NASA Astrophysics Data System (ADS)

    Fassold, Hannes; Rosner, Jakub

    2015-02-01

    The SIFT algorithm is one of the most popular feature extraction methods and therefore widely used in all sort of video analysis tasks like instance search and duplicate/ near-duplicate detection. We present an efficient GPU implementation of the SIFT descriptor extraction algorithm using CUDA. The major steps of the algorithm are presented and for each step we describe how to efficiently parallelize it massively, how to take advantage of the unique capabilities of the GPU like shared memory / texture memory and how to avoid or minimize common GPU performance pitfalls. We compare the GPU implementation with the reference CPU implementation in terms of runtime and quality and achieve a speedup factor of approximately 3 - 5 for SD and 5 - 6 for Full HD video with respect to a multi-threaded CPU implementation, allowing us to run the SIFT descriptor extraction algorithm in real-time on SD video. Furthermore, quality tests show that the GPU implementation gives the same quality as the reference CPU implementation from the HessSIFT library. We further describe the benefits of GPU-accelerated SIFT descriptor calculation for video analysis applications such as near-duplicate video detection.

  2. GPU implementations for fast factorizations of STAP covariance matrices

    NASA Astrophysics Data System (ADS)

    Roeder, Michael; Davis, Nolan; Furtek, Jeremy; Braunreiter, Dennis; Healy, Dennis

    2008-08-01

    One of the main goals of the STAP-BOY program has been the implementation of a space-time adaptive processing (STAP) algorithm on graphics processing units (GPUs) with the goal of reducing the processing time. Within the context of GPU implementation, we have further developed algorithms that exploit data redundancy inherent in particular STAP applications. Integration of these algorithms with GPU architecture is of primary importance for fast algorithmic processing times. STAP algorithms involve solving a linear system in which the transformation matrix is a covariance matrix. A standard method involves estimating a covariance matrix from a data matrix, computing its Cholesky factors by one of several methods, and then solving the system by substitution. Some STAP applications have redundancy in successive data matrices from which the covariance matrices are formed. For STAP applications in which a data matrix is updated with the addition of a new data row at the bottom and the elimination of the oldest data in the top of the matrix, a sequence of data matrices have multiple rows in common. Two methods have been developed for exploiting this type of data redundancy when computing Cholesky factors. These two methods are referred to as 1) Fast QR factorizations of successive data matrices 2) Fast Cholesky factorizations of successive covariance matrices. We have developed GPU implementations of these two methods. We show that these two algorithms exhibit reduced computational complexity when compared to benchmark algorithms that do not exploit data redundancy. More importantly, we show that when these algorithmic improvements are optimized for the GPU architecture, the processing times of a GPU implementation of these matrix factorization algorithms may be greatly improved.

  3. Adaptation of a Multi-Block Structured Solver for Effective Use in a Hybrid CPU/GPU Massively Parallel Environment

    NASA Astrophysics Data System (ADS)

    Gutzwiller, David; Gontier, Mathieu; Demeulenaere, Alain

    2014-11-01

    Multi-Block structured solvers hold many advantages over their unstructured counterparts, such as a smaller memory footprint and efficient serial performance. Historically, multi-block structured solvers have not been easily adapted for use in a High Performance Computing (HPC) environment, and the recent trend towards hybrid GPU/CPU architectures has further complicated the situation. This paper will elaborate on developments and innovations applied to the NUMECA FINE/Turbo solver that have allowed near-linear scalability with real-world problems on over 250 hybrid GPU/GPU cluster nodes. Discussion will focus on the implementation of virtual partitioning and load balancing algorithms using a novel meta-block concept. This implementation is transparent to the user, allowing all pre- and post-processing steps to be performed using a simple, unpartitioned grid topology. Additional discussion will elaborate on developments that have improved parallel performance, including fully parallel I/O with the ADIOS API and the GPU porting of the computationally heavy CPUBooster convergence acceleration module. Head of HPC and Release Management, Numeca International.

  4. GPU-based parallel algorithm for blind image restoration using midfrequency-based methods

    NASA Astrophysics Data System (ADS)

    Xie, Lang; Luo, Yi-han; Bao, Qi-liang

    2013-08-01

    GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.

  5. Implementation of GPU-Accelerated Back Projection for EPR imaging

    PubMed Central

    Qiao, Zhiwei; Redler, Gage; Epel, Boris; Qian, Yuhua; Halpern, Howard

    2016-01-01

    Electron paramagnetic resonance (EPR) Imaging (EPRI) is a robust method for measuring in vivo oxygen concentration (pO2). For 3D pulse EPRI, a commonly used reconstruction algorithm is the filtered backprojection (FBP) algorithm, in which the backprojection process is computationally intensive and may be time consuming when implemented on a CPU. A multistage implementation of the backprojection can be used for acceleration, however it is not flexible (requires equal linear angle projection distribution) and may still be time consuming. In this work, single-stage backprojection is implemented on a GPU (Graphics Processing Units) having 1152 cores to accelerate the process. The GPU implementation results in acceleration by over a factor of 200 overall and by over a factor of 3500 if only the computing time is considered. Some important experiences regarding the implementation of GPU-accelerated backprojection for EPRI are summarized. The resulting accelerated image reconstruction is useful for real-time image reconstruction monitoring and other time sensitive applications. PMID:26410654

  6. A Survey on GPU-Based Implementation of Swarm Intelligence Algorithms.

    PubMed

    Tan, Ying; Ding, Ke

    2016-09-01

    Inspired by the collective behavior of natural swarm, swarm intelligence algorithms (SIAs) have been developed and widely used for solving optimization problems. When applied to complex problems, a large number of fitness function evaluations are needed to obtain an acceptable solution. To tackle this vital issue, graphical processing units (GPUs) have been used to accelerate the optimization procedure of SIAs. Thanks to their inherent parallelism, SIAs are very suitable for parallel implementation under the GPU platform which have achieved a great success in recent years. This paper presents a comprehensive review of GPU-based parallel SIAs in accordance with a newly proposed taxonomy. Critical concerns for the efficient parallel implementation of SIAs are also described in detail. Moreover, novel criteria are also proposed to evaluate and compare the parallel implementation and algorithm performance universally. The rationality and practicability of the proposed optimization methodology and criteria are verified by careful case study. Finally, our opinions and perspectives on the trends and prospects on the relatively new research domain are also presented for future development. PMID:26571543

  7. Implementation and Optimization of Image Processing Algorithms on Embedded GPU

    NASA Astrophysics Data System (ADS)

    Singhal, Nitin; Yoo, Jin Woo; Choi, Ho Yeol; Park, In Kyu

    In this paper, we analyze the key factors underlying the implementation, evaluation, and optimization of image processing and computer vision algorithms on embedded GPU using OpenGL ES 2.0 shader model. First, we present the characteristics of the embedded GPU and its inherent advantage when compared to embedded CPU. Additionally, we propose techniques to achieve increased performance with optimized shader design. To show the effectiveness of the proposed techniques, we employ cartoon-style non-photorealistic rendering (NPR), speeded-up robust feature (SURF) detection, and stereo matching as our example algorithms. Performance is evaluated in terms of the execution time and speed-up achieved in comparison with the implementation on embedded CPU.

  8. Mobile Devices and GPU Parallelism in Ionospheric Data Processing

    NASA Astrophysics Data System (ADS)

    Mascharka, D.; Pankratius, V.

    2015-12-01

    Scientific data acquisition in the field is often constrained by data transfer backchannels to analysis environments. Geoscientists are therefore facing practical bottlenecks with increasing sensor density and variety. Mobile devices, such as smartphones and tablets, offer promising solutions to key problems in scientific data acquisition, pre-processing, and validation by providing advanced capabilities in the field. This is due to affordable network connectivity options and the increasing mobile computational power. This contribution exemplifies a scenario faced by scientists in the field and presents the "Mahali TEC Processing App" developed in the context of the NSF-funded Mahali project. Aimed at atmospheric science and the study of ionospheric Total Electron Content (TEC), this app is able to gather data from various dual-frequency GPS receivers. It demonstrates parsing of full-day RINEX files on mobile devices and on-the-fly computation of vertical TEC values based on satellite ephemeris models that are obtained from NASA. Our experiments show how parallel computing on the mobile device GPU enables fast processing and visualization of up to 2 million datapoints in real-time using OpenGL. GPS receiver bias is estimated through minimum TEC approximations that can be interactively adjusted by scientists in the graphical user interface. Scientists can also perform approximate computations for "quickviews" to reduce CPU processing time and memory consumption. In the final stage of our mobile processing pipeline, scientists can upload data to the cloud for further processing. Acknowledgements: The Mahali project (http://mahali.mit.edu) is funded by the NSF INSPIRE grant no. AGS-1343967 (PI: V. Pankratius). We would like to acknowledge our collaborators at Boston College, Virginia Tech, Johns Hopkins University, Colorado State University, as well as the support of UNAVCO for loans of dual-frequency GPS receivers for use in this project, and Intel for loans of

  9. GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes

    NASA Astrophysics Data System (ADS)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal

    2013-11-01

    We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.

  10. GRay: A MASSIVELY PARALLEL GPU-BASED CODE FOR RAY TRACING IN RELATIVISTIC SPACETIMES

    SciTech Connect

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal

    2013-11-01

    We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.

  11. DOE SBIR Phase-1 Report on Hybrid CPU-GPU Parallel Development of the Eulerian-Lagrangian Barracuda Multiphase Program

    SciTech Connect

    Dr. Dale M. Snider

    2011-02-28

    This report gives the result from the Phase-1 work on demonstrating greater than 10x speedup of the Barracuda computer program using parallel methods and GPU processors (General-Purpose Graphics Processing Unit or Graphics Processing Unit). Phase-1 demonstrated a 12x speedup on a typical Barracuda function using the GPU processor. The problem test case used about 5 million particles and 250,000 Eulerian grid cells. The relative speedup, compared to a single CPU, increases with increased number of particles giving greater than 12x speedup. Phase-1 work provided a path for reformatting data structure modifications to give good parallel performance while keeping a friendly environment for new physics development and code maintenance. The implementation of data structure changes will be in Phase-2. Phase-1 laid the ground work for the complete parallelization of Barracuda in Phase-2, with the caveat that implemented computer practices for parallel programming done in Phase-1 gives immediate speedup in the current Barracuda serial running code. The Phase-1 tasks were completed successfully laying the frame work for Phase-2. The detailed results of Phase-1 are within this document. In general, the speedup of one function would be expected to be higher than the speedup of the entire code because of I/O functions and communication between the algorithms. However, because one of the most difficult Barracuda algorithms was parallelized in Phase-1 and because advanced parallelization methods and proposed parallelization optimization techniques identified in Phase-1 will be used in Phase-2, an overall Barracuda code speedup (relative to a single CPU) is expected to be greater than 10x. This means that a job which takes 30 days to complete will be done in 3 days. Tasks completed in Phase-1 are: Task 1: Profile the entire Barracuda code and select which subroutines are to be parallelized (See Section Choosing a Function to Accelerate) Task 2: Select a GPU consultant company and

  12. Streaming parallel GPU acceleration of large-scale filter-based spiking neural networks.

    PubMed

    Slażyński, Leszek; Bohte, Sander

    2012-01-01

    The arrival of graphics processing (GPU) cards suitable for massively parallel computing promises affordable large-scale neural network simulation previously only available at supercomputing facilities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of magnitude, the challenge is to develop fine-grained parallel algorithms to fully exploit the particulars of GPUs. Computation in a neural network is inherently parallel and thus a natural match for GPU architectures: given inputs, the internal state for each neuron can be updated in parallel. We show that for filter-based spiking neurons, like the Spike Response Model, the additive nature of membrane potential dynamics enables additional update parallelism. This also reduces the accumulation of numerical errors when using single precision computation, the native precision of GPUs. We further show that optimizing simulation algorithms and data structures to the GPU's architecture has a large pay-off: for example, matching iterative neural updating to the memory architecture of the GPU speeds up this simulation step by a factor of three to five. With such optimizations, we can simulate in better-than-realtime plausible spiking neural networks of up to 50 000 neurons, processing over 35 million spiking events per second. PMID:23098420

  13. Massively Parallel Computation of Soil Surface Roughness Parameters on A Fermi GPU

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Song, Changhe

    2016-06-01

    Surface roughness is description of the surface micro topography of randomness or irregular. The standard deviation of surface height and the surface correlation length describe the statistical variation for the random component of a surface height relative to a reference surface. When the number of data points is large, calculation of surface roughness parameters is time-consuming. With the advent of Graphics Processing Unit (GPU) architectures, inherently parallel problem can be effectively solved using GPUs. In this paper we propose a GPU-based massively parallel computing method for 2D bare soil surface roughness estimation. This method was applied to the data collected by the surface roughness tester based on the laser triangulation principle during the field experiment in April 2012. The total number of data points was 52,040. It took 47 seconds on a Fermi GTX 590 GPU whereas its serial CPU version took 5422 seconds, leading to a significant 115x speedup.

  14. a Novel Mode and its Verification of Parallel Molecular Dynamics Simulation with the Coupling of Gpu and Cpu

    NASA Astrophysics Data System (ADS)

    Hou, Chaofeng; Ge, Wei

    Graphics processing unit (GPU) is becoming a powerful computational tool in scientific and engineering fields. In this paper, for the purpose of the full employment of computing capability, a novel mode for parallel molecular dynamics (MD) simulation is presented and implemented on basis of multiple GPUs and hybrids with central processing units (CPUs). Taking into account the interactions between CPUs, GPUs, and the threads on GPU in a multi-scale and multilevel computational architecture, several cases, such as polycrystalline silicon and heat transfer on the surface of silicon crystals, are provided and taken as model systems to verify the feasibility and validity of the mode. Furthermore, the mode can be extended to MD simulation of other areas such as biology, chemistry and so forth.

  15. Understanding GPU Programming for Statistical Computation: Studies in Massively Parallel Massive Mixtures

    PubMed Central

    Suchard, Marc A.; Wang, Quanli; Chan, Cliburn; Frelinger, Jacob; Cron, Andrew; West, Mike

    2010-01-01

    This article describes advances in statistical computation for large-scale data analysis in structured Bayesian mixture models via graphics processing unit (GPU) programming. The developments are partly motivated by computational challenges arising in fitting models of increasing heterogeneity to increasingly large datasets. An example context concerns common biological studies using high-throughput technologies generating many, very large datasets and requiring increasingly high-dimensional mixture models with large numbers of mixture components. We outline important strategies and processes for GPU computation in Bayesian simulation and optimization approaches, give examples of the benefits of GPU implementations in terms of processing speed and scale-up in ability to analyze large datasets, and provide a detailed, tutorial-style exposition that will benefit readers interested in developing GPU-based approaches in other statistical models. Novel, GPU-oriented approaches to modifying existing algorithms software design can lead to vast speed-up and, critically, enable statistical analyses that presently will not be performed due to compute time limitations in traditional computational environments. Supplemental materials are provided with all source code, example data, and details that will enable readers to implement and explore the GPU approach in this mixture modeling context. PMID:20877443

  16. APES-based procedure for super-resolution SAR imagery with GPU parallel computing

    NASA Astrophysics Data System (ADS)

    Jia, Weiwei; Xu, Xiaojian; Xu, Guangyao

    2015-10-01

    The amplitude and phase estimation (APES) algorithm is widely used in modern spectral analysis. Compared with conventional Fourier transform (FFT), APES results in lower sidelobes and narrower spectral peaks. However, in synthetic aperture radar (SAR) imaging with large scene, without parallel computation, it is difficult to apply APES directly to super-resolution radar image processing due to its great amount of calculation. In this paper, a procedure is proposed to achieve target extraction and parallel computing of APES for super-resolution SAR imaging. Numerical experimental are carried out on Tesla K40C with 745 MHz GPU clock rate and 2880 CUDA cores. Results of SAR image with GPU parallel computing show that the parallel APES is remarkably more efficient than that of CPU-based with the same super-resolution.

  17. High accuracy digital image correlation powered by GPU-based parallel computing

    NASA Astrophysics Data System (ADS)

    Zhang, Lingqi; Wang, Tianyi; Jiang, Zhenyu; Kemao, Qian; Liu, Yiping; Liu, Zejia; Tang, Liqun; Dong, Shoubin

    2015-06-01

    A sub-pixel digital image correlation (DIC) method with a path-independent displacement tracking strategy has been implemented on NVIDIA compute unified device architecture (CUDA) for graphics processing unit (GPU) devices. Powered by parallel computing technology, this parallel DIC (paDIC) method, combining an inverse compositional Gauss-Newton (IC-GN) algorithm for sub-pixel registration with a fast Fourier transform-based cross correlation (FFT-CC) algorithm for integer-pixel initial guess estimation, achieves a superior computation efficiency over the DIC method purely running on CPU. In the experiments using simulated and real speckle images, the paDIC reaches a computation speed of 1.66×105 POI/s (points of interest per second) and 1.13×105 POI/s respectively, 57-76 times faster than its sequential counterpart, without the sacrifice of accuracy and precision. To the best of our knowledge, it is the fastest computation speed of a sub-pixel DIC method reported heretofore.

  18. GPU-accelerated compressive holography.

    PubMed

    Endo, Yutaka; Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi

    2016-04-18

    In this paper, we show fast signal reconstruction for compressive holography using a graphics processing unit (GPU). We implemented a fast iterative shrinkage-thresholding algorithm on a GPU to solve the ℓ1 and total variation (TV) regularized problems that are typically used in compressive holography. Since the algorithm is highly parallel, GPUs can compute it efficiently by data-parallel computing. For better performance, our implementation exploits the structure of the measurement matrix to compute the matrix multiplications. The results show that GPU-based implementation is about 20 times faster than CPU-based implementation. PMID:27137282

  19. Optimization of Parallel Legendre Transform using Graphics Processing Unit (GPU) for a Geodynamo Code

    NASA Astrophysics Data System (ADS)

    Lokavarapu, H. V.; Matsui, H.

    2015-12-01

    Convection and magnetic field of the Earth's outer core are expected to have vast length scales. To resolve these flows, high performance computing is required for geodynamo simulations using spherical harmonics transform (SHT), a significant portion of the execution time is spent on the Legendre transform. Calypso is a geodynamo code designed to model magnetohydrodynamics of a Boussinesq fluid in a rotating spherical shell, such as the outer core of the Earth. The code has been shown to scale well on computer clusters capable of computing at the order of 10⁵ cores using Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) parallelization for CPUs. To further optimize, we investigate three different algorithms of the SHT using GPUs. One is to preemptively compute the Legendre polynomials on the CPU before executing SHT on the GPU within the time integration loop. In the second approach, both the Legendre polynomials and the SHT are computed on the GPU simultaneously. In the third approach , we initially partition the radial grid for the forward transform and the harmonic order for the backward transform between the CPU and GPU. There after, the partitioned works are simultaneously computed in the time integration loop. We examine the trade-offs between space and time, memory bandwidth and GPU computations on Maverick, a Texas Advanced Computing Center (TACC) supercomputer. We have observed improved performance using a GPU enabled Legendre transform. Furthermore, we will compare and contrast the different algorithms in the context of GPUs.

  20. cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems

    PubMed Central

    Besozzi, Daniela; Pescini, Dario; Mauri, Giancarlo

    2014-01-01

    Tau-leaping is a stochastic simulation algorithm that efficiently reconstructs the temporal evolution of biological systems, modeled according to the stochastic formulation of chemical kinetics. The analysis of dynamical properties of these systems in physiological and perturbed conditions usually requires the execution of a large number of simulations, leading to high computational costs. Since each simulation can be executed independently from the others, a massive parallelization of tau-leaping can bring to relevant reductions of the overall running time. The emerging field of General Purpose Graphic Processing Units (GPGPU) provides power-efficient high-performance computing at a relatively low cost. In this work we introduce cuTauLeaping, a stochastic simulator of biological systems that makes use of GPGPU computing to execute multiple parallel tau-leaping simulations, by fully exploiting the Nvidia's Fermi GPU architecture. We show how a considerable computational speedup is achieved on GPU by partitioning the execution of tau-leaping into multiple separated phases, and we describe how to avoid some implementation pitfalls related to the scarcity of memory resources on the GPU streaming multiprocessors. Our results show that cuTauLeaping largely outperforms the CPU-based tau-leaping implementation when the number of parallel simulations increases, with a break-even directly depending on the size of the biological system and on the complexity of its emergent dynamics. In particular, cuTauLeaping is exploited to investigate the probability distribution of bistable states in the Schlögl model, and to carry out a bidimensional parameter sweep analysis to study the oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. PMID:24663957

  1. A new morphological anomaly detection algorithm for hyperspectral images and its GPU implementation

    NASA Astrophysics Data System (ADS)

    Paz, Abel; Plaza, Antonio

    2011-10-01

    Anomaly detection is considered a very important task for hyperspectral data exploitation. It is now routinely applied in many application domains, including defence and intelligence, public safety, precision agriculture, geology, or forestry. Many of these applications require timely responses for swift decisions which depend upon high computing performance of algorithm analysis. However, with the recent explosion in the amount and dimensionality of hyperspectral imagery, this problem calls for the incorporation of parallel computing techniques. In the past, clusters of computers have offered an attractive solution for fast anomaly detection in hyperspectral data sets already transmitted to Earth. However, these systems are expensive and difficult to adapt to on-board data processing scenarios, in which low-weight and low-power integrated components are essential to reduce mission payload and obtain analysis results in (near) real-time, i.e., at the same time as the data is collected by the sensor. An exciting new development in the field of commodity computing is the emergence of commodity graphics processing units (GPUs), which can now bridge the gap towards on-board processing of remotely sensed hyperspectral data. In this paper, we develop a new morphological algorithm for anomaly detection in hyperspectral images along with an efficient GPU implementation of the algorithm. The algorithm is implemented on latest-generation GPU architectures, and evaluated with regards to other anomaly detection algorithms using hyperspectral data collected by NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the World Trade Center (WTC) in New York, five days after the terrorist attacks that collapsed the two main towers in the WTC complex. The proposed GPU implementation achieves real-time performance in the considered case study.

  2. Sound speed estimation using wave-based ultrasound tomography: theory and GPU implementation

    NASA Astrophysics Data System (ADS)

    Roy, O.; Jovanović, I.; Hormati, A.; Parhizkar, R.; Vetterli, M.

    2010-03-01

    We present preliminary results obtained using a time domain wave-based reconstruction algorithm for an ultrasound transmission tomography scanner with a circular geometry. While a comprehensive description of this type of algorithm has already been given elsewhere, the focus of this work is on some practical issues arising with this approach. In fact, wave-based reconstruction methods suffer from two major drawbacks which limit their application in a practical setting: convergence is difficult to obtain and the computational cost is prohibitive. We address the first problem by appropriate initialization using a ray-based reconstruction. Then, the complexity of the method is reduced by means of an efficient parallel implementation on graphical processing units (GPU). We provide a mathematical derivation of the wave-based method under consideration, describe some details of our implementation and present simulation results obtained with a numerical phantom designed for a breast cancer detection application. The source code of our GPU implementation is freely available on the web at www.usense.org.

  3. Synthetic transmit aperture technique in medical ultrasound imaging implemented on a GPU

    NASA Astrophysics Data System (ADS)

    Li, Ying; Chen, Xiaodong; Zhang, Chuang; Wang, Yi; Jiao, Zhihai; Yu, Daoyin

    2014-11-01

    In the medical ultrasound imaging, the synthetic transmit aperture (STA) technique is very promising and has been a hot research topic. It is dynamically focused in both transmit and receive yielding an improvement in resolution. But this imaging technique sets high demands on processing capabilities and makes implementation of a full STA system very challenging and costly. Many attempts have been made to reduce the demands on the system making it a more realistic task to implement. In this paper we don't consider how to reduce the demands, but consider how to accelerate the processing speed of the system. The recent introduction of general-purpose graphic processing units (GPU) seems to be quite promising in this view, especially for the affordable programming complexity. In this paper we explain the main computational features of STA processing unit, trying to disclose the degree of parallelism in the operations. On the basis of the compute unified device architecture (CUDA) programming model and the extremely flexible structure of the Single Instruction Multiple Threads (SIMT) model, we show that the optimization of STA processing unit can be performed more efficiently. The input data is read from Matlab, the post-processing and display also use Matlab. Performance shows that, using a single NIVDIA GTX-650 GPU board, this amount to a speed up of more than a factor of 30 compared to a highly optimized beamformer running on our test workstation with a 3.20-GHz Intel Core-i5 processor.

  4. GPU-based parallel method of temperature field analysis in a floor heater with a controller

    NASA Astrophysics Data System (ADS)

    Forenc, Jaroslaw

    2016-06-01

    A parallel method enabling acceleration of the numerical analysis of the transient temperature field in an air floor heating system is presented in this paper. An initial-boundary value problem of the heater regulated by an on/off controller is formulated. The analogue model is discretized using the implicit finite difference method. The BiCGStab method is used to compute the obtained system of equations. A computer program implementing simultaneous computations on CPUand GPU(GPGPUtechnology) was developed. CUDA environment and linear algebra libraries (CUBLAS and CUSPARSE) are used by this program. The time of computations was reduced eight times in comparison with a program executed on the CPU only. Results of computations are presented in the form of time profiles and temperature field distributions. An influence of a model of the heat transfer coefficient on the simulation of the system operation was examined. The physical interpretation of obtained results is also presented.Results of computations were verified by comparing them with solutions obtained with the use of a commercial program - COMSOL Mutiphysics.

  5. GPU programming for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Caucci, Luca; Furenlid, Lars R.

    2015-08-01

    Scientific computing is rapidly advancing due to the introduction of powerful new computing hardware, such as graphics processing units (GPUs). Affordable thanks to mass production, GPU processors enable the transition to efficient parallel computing by bringing the performance of a supercomputer to a workstation. We elaborate on some of the capabilities and benefits that GPU technology offers to the field of biomedical imaging. As practical examples, we consider a GPU algorithm for the estimation of position of interaction from photomultiplier (PMT) tube data, as well as a GPU implementation of the MLEM algorithm for iterative image reconstruction.

  6. Big Data GPU-Driven Parallel Processing Spatial and Spatio-Temporal Clustering Algorithms

    NASA Astrophysics Data System (ADS)

    Konstantaras, Antonios; Skounakis, Emmanouil; Kilty, James-Alexander; Frantzeskakis, Theofanis; Maravelakis, Emmanuel

    2016-04-01

    Advances in graphics processing units' technology towards encompassing parallel architectures [1], comprised of thousands of cores and multiples of parallel threads, provide the foundation in terms of hardware for the rapid processing of various parallel applications regarding seismic big data analysis. Seismic data are normally stored as collections of vectors in massive matrices, growing rapidly in size as wider areas are covered, denser recording networks are being established and decades of data are being compiled together [2]. Yet, many processes regarding seismic data analysis are performed on each seismic event independently or as distinct tiles [3] of specific grouped seismic events within a much larger data set. Such processes, independent of one another can be performed in parallel narrowing down processing times drastically [1,3]. This research work presents the development and implementation of three parallel processing algorithms using Cuda C [4] for the investigation of potentially distinct seismic regions [5,6] present in the vicinity of the southern Hellenic seismic arc. The algorithms, programmed and executed in parallel comparatively, are the: fuzzy k-means clustering with expert knowledge [7] in assigning overall clusters' number; density-based clustering [8]; and a selves-developed spatio-temporal clustering algorithm encompassing expert [9] and empirical knowledge [10] for the specific area under investigation. Indexing terms: GPU parallel programming, Cuda C, heterogeneous processing, distinct seismic regions, parallel clustering algorithms, spatio-temporal clustering References [1] Kirk, D. and Hwu, W.: 'Programming massively parallel processors - A hands-on approach', 2nd Edition, Morgan Kaufman Publisher, 2013 [2] Konstantaras, A., Valianatos, F., Varley, M.R. and Makris, J.P.: 'Soft-Computing Modelling of Seismicity in the Southern Hellenic Arc', Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [3] Papadakis, S. and

  7. Multi-prediction particle filter for efficient parallelized implementation

    NASA Astrophysics Data System (ADS)

    Chu, Chun-Yuan; Chao, Chih-Hao; Chao, Min-An; Wu, An-Yeu Andy

    2011-12-01

    Particle filter (PF) is an emerging signal processing methodology, which can effectively deal with nonlinear and non-Gaussian signals by a sample-based approximation of the state probability density function. The particle generation of the PF is a data-independent procedure and can be implemented in parallel. However, the resampling procedure in the PF is a sequential task in natural and difficult to be parallelized. Based on the Amdahl's law, the sequential portion of a task limits the maximum speed-up of the parallelized implementation. Moreover, large particle number is usually required to obtain an accurate estimation, and the complexity of the resampling procedure is highly related to the number of particles. In this article, we propose a multi-prediction (MP) framework with two selection approaches. The proposed MP framework can reduce the required particle number for target estimation accuracy, and the sequential operation of the resampling can be reduced. Besides, the overhead of the MP framework can be easily compensated by parallel implementation. The proposed MP-PF alleviates the global sequential operation by increasing the local parallel computation. In addition, the MP-PF is very suitable for multi-core graphics processing unit (GPU) platform, which is a popular parallel processing architecture. We give prototypical implementations of the MP-PFs on multi-core GPU platform. For the classic bearing-only tracking experiments, the proposed MP-PF can be 25.1 and 15.3 times faster than the sequential importance resampling-PF with 10,000 and 20,000 particles, respectively. Hence, the proposed MP-PF can enhance the efficiency of the parallelization.

  8. GPU-accelerated Monte Carlo convolution∕superposition implementation for dose calculation

    PubMed Central

    Zhou, Bo; Yu, Cedric X.; Chen, Danny Z.; Hu, X. Sharon

    2010-01-01

    Purpose: Dose calculation is a key component in radiation treatment planning systems. Its performance and accuracy are crucial to the quality of treatment plans as emerging advanced radiation therapy technologies are exerting ever tighter constraints on dose calculation. A common practice is to choose either a deterministic method such as the convolution∕superposition (CS) method for speed or a Monte Carlo (MC) method for accuracy. The goal of this work is to boost the performance of a hybrid Monte Carlo convolution∕superposition (MCCS) method by devising a graphics processing unit (GPU) implementation so as to make the method practical for day-to-day usage. Methods: Although the MCCS algorithm combines the merits of MC fluence generation and CS fluence transport, it is still not fast enough to be used as a day-to-day planning tool. To alleviate the speed issue of MC algorithms, the authors adopted MCCS as their target method and implemented a GPU-based version. In order to fully utilize the GPU computing power, the MCCS algorithm is modified to match the GPU hardware architecture. The performance of the authors’ GPU-based implementation on an Nvidia GTX260 card is compared to a multithreaded software implementation on a quad-core system. Results: A speedup in the range of 6.7–11.4× is observed for the clinical cases used. The less than 2% statistical fluctuation also indicates that the accuracy of the authors’ GPU-based implementation is in good agreement with the results from the quad-core CPU implementation. Conclusions: This work shows that GPU is a feasible and cost-efficient solution compared to other alternatives such as using cluster machines or field-programmable gate arrays for satisfying the increasing demands on computation speed and accuracy of dose calculation. But there are also inherent limitations of using GPU for accelerating MC-type applications, which are also analyzed in detail in this article. PMID:21158271

  9. GPU implementation of target and anomaly detection algorithms for remotely sensed hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Paz, Abel; Plaza, Antonio

    2010-08-01

    Automatic target and anomaly detection are considered very important tasks for hyperspectral data exploitation. These techniques are now routinely applied in many application domains, including defence and intelligence, public safety, precision agriculture, geology, or forestry. Many of these applications require timely responses for swift decisions which depend upon high computing performance of algorithm analysis. However, with the recent explosion in the amount and dimensionality of hyperspectral imagery, this problem calls for the incorporation of parallel computing techniques. In the past, clusters of computers have offered an attractive solution for fast anomaly and target detection in hyperspectral data sets already transmitted to Earth. However, these systems are expensive and difficult to adapt to on-board data processing scenarios, in which low-weight and low-power integrated components are essential to reduce mission payload and obtain analysis results in (near) real-time, i.e., at the same time as the data is collected by the sensor. An exciting new development in the field of commodity computing is the emergence of commodity graphics processing units (GPUs), which can now bridge the gap towards on-board processing of remotely sensed hyperspectral data. In this paper, we describe several new GPU-based implementations of target and anomaly detection algorithms for hyperspectral data exploitation. The parallel algorithms are implemented on latest-generation Tesla C1060 GPU architectures, and quantitatively evaluated using hyperspectral data collected by NASA's AVIRIS system over the World Trade Center (WTC) in New York, five days after the terrorist attacks that collapsed the two main towers in the WTC complex.

  10. Parallel NPARC: Implementation and Performance

    NASA Technical Reports Server (NTRS)

    Townsend, S. E.

    1996-01-01

    Version 3 of the NPARC Navier-Stokes code includes support for large-grain (block level) parallelism using explicit message passing between a heterogeneous collection of computers. This capability has the potential for significant performance gains, depending upon the block data distribution. The parallel implementation uses a master/worker arrangement of processes. The master process assigns blocks to workers, controls worker actions, and provides remote file access for the workers. The processes communicate via explicit message passing using an interface library which provides portability to a number of message passing libraries, such as PVM (Parallel Virtual Machine). A Bourne shell script is used to simplify the task of selecting hosts, starting processes, retrieving remote files, and terminating a computation. This script also provides a simple form of fault tolerance. An analysis of the computational performance of NPARC is presented, using data sets from an F/A-18 inlet study and a Rocket Based Combined Cycle Engine analysis. Parallel speedup and overall computational efficiency were obtained for various NPARC run parameters on a cluster of IBM RS6000 workstations. The data show that although NPARC performance compares favorably with the estimated potential parallelism, typical data sets used with previous versions of NPARC will often need to be reblocked for optimum parallel performance. In one of the cases studied, reblocking increased peak parallel speedup from 3.2 to 11.8.

  11. Parallel Implementation of Morphological Profile Based Spectral-Spatial Classification Scheme for Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Kumar, B.; Dikshit, O.

    2016-06-01

    Extended morphological profile (EMP) is a good technique for extracting spectral-spatial information from the images but large size of hyperspectral images is an important concern for creating EMPs. However, with the availability of modern multi-core processors and commodity parallel processing systems like graphics processing units (GPUs) at desktop level, parallel computing provides a viable option to significantly accelerate execution of such computations. In this paper, parallel implementation of an EMP based spectralspatial classification method for hyperspectral imagery is presented. The parallel implementation is done both on multi-core CPU and GPU. The impact of parallelization on speed up and classification accuracy is analyzed. For GPU, the implementation is done in compute unified device architecture (CUDA) C. The experiments are carried out on two well-known hyperspectral images. It is observed from the experimental results that GPU implementation provides a speed up of about 7 times, while parallel implementation on multi-core CPU resulted in speed up of about 3 times. It is also observed that parallel implementation has no adverse impact on the classification accuracy.

  12. Multi-GPU implementation of a VMAT treatment plan optimization algorithm

    SciTech Connect

    Tian, Zhen E-mail: Xun.Jia@UTSouthwestern.edu Folkerts, Michael; Tan, Jun; Jia, Xun E-mail: Xun.Jia@UTSouthwestern.edu Jiang, Steve B. E-mail: Xun.Jia@UTSouthwestern.edu; Peng, Fei

    2015-06-15

    Purpose: Volumetric modulated arc therapy (VMAT) optimization is a computationally challenging problem due to its large data size, high degrees of freedom, and many hardware constraints. High-performance graphics processing units (GPUs) have been used to speed up the computations. However, GPU’s relatively small memory size cannot handle cases with a large dose-deposition coefficient (DDC) matrix in cases of, e.g., those with a large target size, multiple targets, multiple arcs, and/or small beamlet size. The main purpose of this paper is to report an implementation of a column-generation-based VMAT algorithm, previously developed in the authors’ group, on a multi-GPU platform to solve the memory limitation problem. While the column-generation-based VMAT algorithm has been previously developed, the GPU implementation details have not been reported. Hence, another purpose is to present detailed techniques employed for GPU implementation. The authors also would like to utilize this particular problem as an example problem to study the feasibility of using a multi-GPU platform to solve large-scale problems in medical physics. Methods: The column-generation approach generates VMAT apertures sequentially by solving a pricing problem (PP) and a master problem (MP) iteratively. In the authors’ method, the sparse DDC matrix is first stored on a CPU in coordinate list format (COO). On the GPU side, this matrix is split into four submatrices according to beam angles, which are stored on four GPUs in compressed sparse row format. Computation of beamlet price, the first step in PP, is accomplished using multi-GPUs. A fast inter-GPU data transfer scheme is accomplished using peer-to-peer access. The remaining steps of PP and MP problems are implemented on CPU or a single GPU due to their modest problem scale and computational loads. Barzilai and Borwein algorithm with a subspace step scheme is adopted here to solve the MP problem. A head and neck (H and N) cancer case is

  13. GPU Based General-Purpose Parallel computing to Solve Nuclear Reactor In-Core fuel Management Design and Operation Problem

    SciTech Connect

    Prayudhatama, D.; Waris, A.; Kurniasih, N.; Kurniadi, R.

    2010-06-22

    In-core fuel management study is a crucial activity in nuclear power plant design and operation. Its common problem is to find an optimum arrangement of fuel assemblies inside the reactor core. Main objective for this activity is to reduce the cost of generating electricity, which can be done by altering several physical properties of the nuclear reactor without violating any of the constraints imposed by operational and safety considerations. This research try to address the problem of nuclear fuel arrangement problem, which is, leads to the multi-objective optimization problem. However, the calculation of the reactor core physical properties itself is a heavy computation, which became obstacle in solving the optimization problem by using genetic algorithm optimization.This research tends to address that problem by using the emerging General Purpose Computation on Graphics Processing Units (GPGPU) techniques implemented by C language for CUDA (Compute Unified Device Architecture) parallel programming. By using this parallel programming technique, we develop parallelized nuclear reactor fitness calculation, which is involving numerical finite difference computation. This paper describes current prototype of the parallel algorithm code we have developed on CUDA, that performs one hundreds finite difference calculation for nuclear reactor fitness evaluation in parallel by using GPU G9 Hardware Series developed by NVIDIA.

  14. High Performance Data Clustering: A Comparative Analysis of Performance for GPU, RASC, MPI, and OpenMP Implementations.

    PubMed

    Yang, Luobin; Chiu, Steve C; Liao, Wei-Keng; Thomas, Michael A

    2014-10-01

    Compared to Beowulf clusters and shared-memory machines, GPU and FPGA are emerging alternative architectures that provide massive parallelism and great computational capabilities. These architectures can be utilized to run compute-intensive algorithms to analyze ever-enlarging datasets and provide scalability. In this paper, we present four implementations of K-means data clustering algorithm for different high performance computing platforms. These four implementations include a CUDA implementation for GPUs, a Mitrion C implementation for FPGAs, an MPI implementation for Beowulf compute clusters, and an OpenMP implementation for shared-memory machines. The comparative analyses of the cost of each platform, difficulty level of programming for each platform, and the performance of each implementation are presented. PMID:25309040

  15. High Performance Data Clustering: A Comparative Analysis of Performance for GPU, RASC, MPI, and OpenMP Implementations*

    PubMed Central

    Yang, Luobin; Chiu, Steve C.; Liao, Wei-Keng; Thomas, Michael A.

    2013-01-01

    Compared to Beowulf clusters and shared-memory machines, GPU and FPGA are emerging alternative architectures that provide massive parallelism and great computational capabilities. These architectures can be utilized to run compute-intensive algorithms to analyze ever-enlarging datasets and provide scalability. In this paper, we present four implementations of K-means data clustering algorithm for different high performance computing platforms. These four implementations include a CUDA implementation for GPUs, a Mitrion C implementation for FPGAs, an MPI implementation for Beowulf compute clusters, and an OpenMP implementation for shared-memory machines. The comparative analyses of the cost of each platform, difficulty level of programming for each platform, and the performance of each implementation are presented. PMID:25309040

  16. A Multi-CPU/GPU implementation of RBF-generated finite differences for PDEs on a Sphere

    NASA Astrophysics Data System (ADS)

    Bollig, E. F.; Flyer, N.; Erlebacher, G.

    2011-12-01

    Numerical methods leveraging Radial Basis Functions (RBFs) are on the rise in computational science. With natural extensions into higher dimensions, functionality in the face of unstructured grids, stability for large time-steps, competitive accuracy and convergence when compared to other state-of-the-art methods, it is hard to ignore these simple-to-code alternatives. RBF-generated finite differences (RBF-FD) hold a promising future in that they have the advantages of global RBFs but have the ability to be highly parallelizable on multi-core machines. They differ from classical finite differences in that the test functions used to calculate the differentiation weights are n-dimensional RBFs rather than one-dimensional polynomials. This allows for generalization to n-dimensional space on completely scattered node layouts. We present an ongoing effort to develop fast and efficient implementations of RBF-FD for the geosciences. Specifically, we introduce a multi-CPU/GPU implementation for the solution of parabolic and hyperbolic PDEs. This work targets the NSF funded Keeneland GPU cluster, which---like many of the latest HPC systems around the world---offers significantly more GPU accelerators than CPU counterparts. We will discuss parallelization strategies, algorithms and data-structures used to span computation across the heterogeneous architecture.

  17. Parallel Algorithm for GPU Processing; for use in High Speed Machine Vision Sensing of Cotton Lint Trash

    PubMed Central

    Pelletier, Mathew G.

    2008-01-01

    One of the main hurdles standing in the way of optimal cleaning of cotton lint is the lack of sensing systems that can react fast enough to provide the control system with real-time information as to the level of trash contamination of the cotton lint. This research examines the use of programmable graphic processing units (GPU) as an alternative to the PC's traditional use of the central processing unit (CPU). The use of the GPU, as an alternative computation platform, allowed for the machine vision system to gain a significant improvement in processing time. By improving the processing time, this research seeks to address the lack of availability of rapid trash sensing systems and thus alleviate a situation in which the current systems view the cotton lint either well before, or after, the cotton is cleaned. This extended lag/lead time that is currently imposed on the cotton trash cleaning control systems, is what is responsible for system operators utilizing a very large dead-band safety buffer in order to ensure that the cotton lint is not under-cleaned. Unfortunately, the utilization of a large dead-band buffer results in the majority of the cotton lint being over-cleaned which in turn causes lint fiber-damage as well as significant losses of the valuable lint due to the excessive use of cleaning machinery. This research estimates that upwards of a 30% reduction in lint loss could be gained through the use of a tightly coupled trash sensor to the cleaning machinery control systems. This research seeks to improve processing times through the development of a new algorithm for cotton trash sensing that allows for implementation on a highly parallel architecture. Additionally, by moving the new parallel algorithm onto an alternative computing platform, the graphic processing unit “GPU”, for processing of the cotton trash images, a speed up of over 6.5 times, over optimized code running on the PC's central processing unit “CPU”, was gained. The new

  18. gpuPOM: a GPU-based Princeton Ocean Model

    NASA Astrophysics Data System (ADS)

    Xu, S.; Huang, X.; Zhang, Y.; Fu, H.; Oey, L.-Y.; Xu, F.; Yang, G.

    2014-11-01

    Rapid advances in the performance of the graphics processing unit (GPU) have made the GPU a compelling solution for a series of scientific applications. However, most existing GPU acceleration works for climate models are doing partial code porting for certain hot spots, and can only achieve limited speedup for the entire model. In this work, we take the mpiPOM (a parallel version of the Princeton Ocean Model) as our starting point, design and implement a GPU-based Princeton Ocean Model. By carefully considering the architectural features of the state-of-the-art GPU devices, we rewrite the full mpiPOM model from the original Fortran version into a new Compute Unified Device Architecture C (CUDA-C) version. We take several accelerating methods to further improve the performance of gpuPOM, including optimizing memory access in a single GPU, overlapping communication and boundary operations among multiple GPUs, and overlapping input/output (I/O) between the hybrid Central Processing Unit (CPU) and the GPU. Our experimental results indicate that the performance of the gpuPOM on a workstation containing 4 GPUs is comparable to a powerful cluster with 408 CPU cores and it reduces the energy consumption by 6.8 times.

  19. Dissipative Particle Dynamics Simulations at Extreme Scale: GPU Algorithms, Implementation and Applications

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Hang; Karniadakis, George; Crunch Team

    2014-03-01

    We present a scalable dissipative particle dynamics simulation code, fully implemented on the Graphics Processing Units (GPUs) using a hybrid CUDA/MPI programming model, which achieves 10-30 times speedup on a single GPU over 16 CPU cores and almost linear weak scaling across a thousand nodes. A unified framework is developed within which the efficient generation of the neighbor list and maintaining particle data locality are addressed. Our algorithm generates strictly ordered neighbor lists in parallel, while the construction is deterministic and makes no use of atomic operations or sorting. Such neighbor list leads to optimal data loading efficiency when combined with a two-level particle reordering scheme. A faster in situ generation scheme for Gaussian random numbers is proposed using precomputed binary signatures. We designed custom transcendental functions that are fast and accurate for evaluating the pairwise interaction. Computer benchmarks demonstrate the speedup of our implementation over the CPU implementation as well as strong and weak scalability. A large-scale simulation of spontaneous vesicle formation consisting of 128 million particles was conducted to illustrate the practicality of our code in real-world applications. This work was supported by the new Department of Energy Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4). Simulations were carried out at the Oak Ridge Leadership Computing Facility through the INCITE program under project BIP017.

  20. Parallel, distributed and GPU computing technologies in single-particle electron microscopy

    PubMed Central

    Schmeisser, Martin; Heisen, Burkhard C.; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger

    2009-01-01

    Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today’s technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined. PMID:19564686

  1. Rapid automated classification of anesthetic depth levels using GPU based parallelization of neural networks.

    PubMed

    Peker, Musa; Şen, Baha; Gürüler, Hüseyin

    2015-02-01

    The effect of anesthesia on the patient is referred to as depth of anesthesia. Rapid classification of appropriate depth level of anesthesia is a matter of great importance in surgical operations. Similarly, accelerating classification algorithms is important for the rapid solution of problems in the field of biomedical signal processing. However numerous, time-consuming mathematical operations are required when training and testing stages of the classification algorithms, especially in neural networks. In this study, to accelerate the process, parallel programming and computing platform (Nvidia CUDA) facilitates dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU) was utilized. The system was employed to detect anesthetic depth level on related electroencephalogram (EEG) data set. This dataset is rather complex and large. Moreover, the achieving more anesthetic levels with rapid response is critical in anesthesia. The proposed parallelization method yielded high accurate classification results in a faster time. PMID:25650073

  2. Gravity inversion using wavelet-based compression on parallel hybrid CPU/GPU systems: application to southwest Ghana

    NASA Astrophysics Data System (ADS)

    Martin, Roland; Monteiller, Vadim; Komatitsch, Dimitri; Perrouty, Stéphane; Jessell, Mark; Bonvalot, Sylvain; Lindsay, Mark

    2013-12-01

    We solve the 3-D gravity inverse problem using a massively parallel voxel (or finite element) implementation on a hybrid multi-CPU/multi-GPU (graphics processing units/GPUs) cluster. This allows us to obtain information on density distributions in heterogeneous media with an efficient computational time. In a new software package called TOMOFAST3D, the inversion is solved with an iterative least-square or a gradient technique, which minimizes a hybrid L1-/L2-norm-based misfit function. It is drastically accelerated using either Haar or fourth-order Daubechies wavelet compression operators, which are applied to the sensitivity matrix kernels involved in the misfit minimization. The compression process behaves like a pre-conditioning of the huge linear system to be solved and a reduction of two or three orders of magnitude of the computational time can be obtained for a given number of CPU processor cores. The memory storage required is also significantly reduced by a similar factor. Finally, we show how this CPU parallel inversion code can be accelerated further by a factor between 3.5 and 10 using GPU computing. Performance levels are given for an application to Ghana, and physical information obtained after 3-D inversion using a sensitivity matrix with around 5.37 trillion elements is discussed. Using compression the whole inversion process can last from a few minutes to less than an hour for a given number of processor cores instead of tens of hours for a similar number of processor cores when compression is not used.

  3. A GPU-Based Implementation of the Firefly Algorithm for Variable Selection in Multivariate Calibration Problems

    PubMed Central

    de Paula, Lauro C. M.; Soares, Anderson S.; de Lima, Telma W.; Delbem, Alexandre C. B.; Coelho, Clarimar J.; Filho, Arlindo R. G.

    2014-01-01

    Several variable selection algorithms in multivariate calibration can be accelerated using Graphics Processing Units (GPU). Among these algorithms, the Firefly Algorithm (FA) is a recent proposed metaheuristic that may be used for variable selection. This paper presents a GPU-based FA (FA-MLR) with multiobjective formulation for variable selection in multivariate calibration problems and compares it with some traditional sequential algorithms in the literature. The advantage of the proposed implementation is demonstrated in an example involving a relatively large number of variables. The results showed that the FA-MLR, in comparison with the traditional algorithms is a more suitable choice and a relevant contribution for the variable selection problem. Additionally, the results also demonstrated that the FA-MLR performed in a GPU can be five times faster than its sequential implementation. PMID:25493625

  4. Performance analysis of parallel gravitational N-body codes on large GPU clusters

    NASA Astrophysics Data System (ADS)

    Huang, Si-Yi; Spurzem, Rainer; Berczik, Peter

    2016-01-01

    We compare the performance of two very different parallel gravitational N-body codes for astrophysical simulations on large Graphics Processing Unit (GPU) clusters, both of which are pioneers in their own fields as well as on certain mutual scales - NBODY6++ and Bonsai. We carry out benchmarks of the two codes by analyzing their performance, accuracy and efficiency through the modeling of structure decomposition and timing measurements. We find that both codes are heavily optimized to leverage the computational potential of GPUs as their performance has approached half of the maximum single precision performance of the underlying GPU cards. With such performance we predict that a speed-up of 200 - 300 can be achieved when up to 1k processors and GPUs are employed simultaneously. We discuss the quantitative information about comparisons of the two codes, finding that in the same cases Bonsai adopts larger time steps as well as larger relative energy errors than NBODY6++, typically ranging from 10 - 50 times larger, depending on the chosen parameters of the codes. Although the two codes are built for different astrophysical applications, in specified conditions they may overlap in performance at certain physical scales, thus allowing the user to choose either one by fine-tuning parameters accordingly.

  5. GPU Developments for General Circulation Models

    NASA Astrophysics Data System (ADS)

    Appleyard, Jeremy; Posey, Stan; Ponder, Carl; Eaton, Joe

    2014-05-01

    Current trends in high performance computing (HPC) are moving towards the use of graphics processing units (GPUs) to achieve speedups through the extraction of fine-grain parallelism of application software. GPUs have been developed exclusively for computational tasks as massively-parallel co-processors to the CPU, and during 2013 an extensive set of new HPC architectural features were developed in a 4th generation of NVIDIA GPUs that provide further opportunities for GPU acceleration of general circulation models used in climate science and numerical weather prediction. Today computational efficiency and simulation turnaround time continue to be important factors behind scientific decisions to develop models at higher resolutions and deploy increased use of ensembles. This presentation will examine the current state of GPU parallel developments for stencil based numerical operations typical of dynamical cores, and introduce new GPU-based implicit iterative schemes with GPU parallel preconditioning and linear solvers based on ILU, Krylov methods, and multigrid. Several GCMs show substantial gain in parallel efficiency from second-level fine-grain parallelism under first-level distributed memory parallel through a hybrid parallel implementation. Examples are provided relevant to science-scale HPC practice of CPU-GPU system configurations based on model resolution requirements of a particular simulation. Performance results compare use of the latest conventional CPUs with and without GPU acceleration. Finally a forward looking discussion is provided on the roadmap of GPU hardware, software, tools, and programmability for GCM development.

  6. Implementation and optimization of ultrasound signal processing algorithms on mobile GPU

    NASA Astrophysics Data System (ADS)

    Kong, Woo Kyu; Lee, Wooyoul; Kim, Kyu Cheol; Yoo, Yangmo; Song, Tai-Kyong

    2014-03-01

    A general-purpose graphics processing unit (GPGPU) has been used for improving computing power in medical ultrasound imaging systems. Recently, a mobile GPU becomes powerful to deal with 3D games and videos at high frame rates on Full HD or HD resolution displays. This paper proposes the method to implement ultrasound signal processing on a mobile GPU available in the high-end smartphone (Galaxy S4, Samsung Electronics, Seoul, Korea) with programmable shaders on the OpenGL ES 2.0 platform. To maximize the performance of the mobile GPU, the optimization of shader design and load sharing between vertex and fragment shader was performed. The beamformed data were captured from a tissue mimicking phantom (Model 539 Multipurpose Phantom, ATS Laboratories, Inc., Bridgeport, CT, USA) by using a commercial ultrasound imaging system equipped with a research package (Ultrasonix Touch, Ultrasonix, Richmond, BC, Canada). The real-time performance is evaluated by frame rates while varying the range of signal processing blocks. The implementation method of ultrasound signal processing on OpenGL ES 2.0 was verified by analyzing PSNR with MATLAB gold standard that has the same signal path. CNR was also analyzed to verify the method. From the evaluations, the proposed mobile GPU-based processing method has no significant difference with the processing using MATLAB (i.e., PSNR<52.51 dB). The comparable results of CNR were obtained from both processing methods (i.e., 11.31). From the mobile GPU implementation, the frame rates of 57.6 Hz were achieved. The total execution time was 17.4 ms that was faster than the acquisition time (i.e., 34.4 ms). These results indicate that the mobile GPU-based processing method can support real-time ultrasound B-mode processing on the smartphone.

  7. Further GPU implementation of prediction-based lower triangular transform using a zero-order entropy coder for ultraspectral sounder data compression

    NASA Astrophysics Data System (ADS)

    Wei, Shih-Chieh; Huang, Bormin

    2012-10-01

    The ultraspectral sounder data consists of two dimensional pixels, each containing thousands of channels. In retrieval of geophysical parameters, the sounder data is sensitive to noises. Therefore lossless compression is highly desired for storing and transmitting the huge volume data. The prediction-based lower triangular transform (PLT) features the same de-correlation and coding gain properties as the Karhunen-Loeve transform (KLT), but with a lower design and implementational cost. In previous work, we have shown that PLT has the perfect reconstruction property which allows its direct use for lossless compression of sounder data. However PLT is time-consuming in doing compression. To speed up the PLT encoding scheme, we have recently exploited the parallel compute power of modern graphics processing unit (GPU) and implemented several important transform stages to compute the transform coefficients on GPU. In this work, we further incorporated a GPU-based zero-order entropy coder for the last stage of compression. The experimental result shows that our full implementation of the PLT encoding scheme on GPU shows a speedup of 88x compared to its original full implementation on CPU.

  8. Accelerating image registration of MRI by GPU-based parallel computation.

    PubMed

    Huang, Teng-Yi; Tang, Yu-Wei; Ju, Shiun-Ying

    2011-06-01

    Automatic image registration for MRI applications generally requires many iteration loops and is, therefore, a time-consuming task. This drawback prolongs data analysis and delays the workflow of clinical routines. Recent advances in the massively parallel computation of graphic processing units (GPUs) may be a solution to this problem. This study proposes a method to accelerate registration calculations, especially for the popular statistical parametric mapping (SPM) system. This study reimplemented the image registration of SPM system to achieve an approximately 14-fold increase in speed in registering single-modality intrasubject data sets. The proposed program is fully compatible with SPM, allowing the user to simply replace the original image registration library of SPM to gain the benefit of the computation power provided by commodity graphic processors. In conclusion, the GPU computation method is a practical way to accelerate automatic image registration. This technology promises a broader scope of application in the field of image registration. PMID:21531103

  9. Parallelizing the QUDA Library for Multi-GPU Calculations in Lattice Quantum Chromodynamics

    SciTech Connect

    Ronald Babich, Michael Clark, Balint Joo

    2010-11-01

    Graphics Processing Units (GPUs) are having a transformational effect on numerical lattice quantum chromodynamics (LQCD) calculations of importance in nuclear and particle physics. The QUDA library provides a package of mixed precision sparse matrix linear solvers for LQCD applications, supporting single GPUs based on NVIDIA's Compute Unified Device Architecture (CUDA). This library, interfaced to the QDP++/Chroma framework for LQCD calculations, is currently in production use on the "9g" cluster at the Jefferson Laboratory, enabling unprecedented price/performance for a range of problems in LQCD. Nevertheless, memory constraints on current GPU devices limit the problem sizes that can be tackled. In this contribution we describe the parallelization of the QUDA library onto multiple GPUs using MPI, including strategies for the overlapping of communication and computation. We report on both weak and strong scaling for up to 32 GPUs interconnected by InfiniBand, on which we sustain in excess of 4 Tflops.

  10. A Fully GPU-Based Ray-Driven Backprojector via a Ray-Culling Scheme with Voxel-Level Parallelization for Cone-Beam CT Reconstruction.

    PubMed

    Park, Hyeong-Gyu; Shin, Yeong-Gil; Lee, Ho

    2015-12-01

    A ray-driven backprojector is based on ray-tracing, which computes the length of the intersection between the ray paths and each voxel to be reconstructed. To reduce the computational burden caused by these exhaustive intersection tests, we propose a fully graphics processing unit (GPU)-based ray-driven backprojector in conjunction with a ray-culling scheme that enables straightforward parallelization without compromising the high computing performance of a GPU. The purpose of the ray-culling scheme is to reduce the number of ray-voxel intersection tests by excluding rays irrelevant to a specific voxel computation. This rejection step is based on an axis-aligned bounding box (AABB) enclosing a region of voxel projection, where eight vertices of each voxel are projected onto the detector plane. The range of the rectangular-shaped AABB is determined by min/max operations on the coordinates in the region. Using the indices of pixels inside the AABB, the rays passing through the voxel can be identified and the voxel is weighted as the length of intersection between the voxel and the ray. This procedure makes it possible to reflect voxel-level parallelization, allowing an independent calculation at each voxel, which is feasible for a GPU implementation. To eliminate redundant calculations during ray-culling, a shared-memory optimization is applied to exploit the GPU memory hierarchy. In experimental results using real measurement data with phantoms, the proposed GPU-based ray-culling scheme reconstructed a volume of resolution 28032803176 in 77 seconds from 680 projections of resolution 10243768 , which is 26 times and 7.5 times faster than standard CPU-based and GPU-based ray-driven backprojectors, respectively. Qualitative and quantitative analyses showed that the ray-driven backprojector provides high-quality reconstruction images when compared with those generated by the Feldkamp-Davis-Kress algorithm using a pixel-driven backprojector, with an average of 2.5 times

  11. GPU-based implementations of the noniterative regularized-CCSD(T) corrections: applications to strongly correlated systems

    SciTech Connect

    Ma, Wenjing; Krishnamoorthy, Sriram; Villa, Oreste; Kowalski, Karol

    2011-05-10

    The details of the Graphical Processing Unit (GPU) implementation of the most compu- tationally intensive (T)-part of the recently introduced regularized CCSD(T) (Reg-CCSD(T)) method [K. Kowalski, M.Valiev 131, 234107 (2010)] for calculating electronic energies of strongly interacting systems are discussed. Parallel tests performed for several molecular systems show very good scalability of the triples part of the Reg-CCSD(T) approach. We also discuss the performance of the Reg-CCSD(T) GPU implementation as a function of the parameters defining the partitioning of the spinorbital domain (tiling structure). The accuracy of the Reg-CCSD(T) method is illustrated on two examples: the NiO2 molecule and open-shell Spiro cation (5,5’(4H,4H’)-spirobi[cyclopenta[c]pyrrole]2,2’,6,6’-tetrahydro cation), which is a frequently used model to study electron transfer processes. It is demonstrated that a simple regularization of the cluster amplitudes used in the non-iterative corrections accounting for the effect of triply excited configurations significantly improves the accuracies of groundstate energies in the presence of strong quasidegeneracy effects. For NiO2 we compare the Reg-CCSD(T) results with the CCSDT energies, whereas for Spiro cation we compare Reg-CCSD(T) results with the energies obtained with completely renormalized CCSD(T) method.

  12. Massive Exploration of Perturbed Conditions of the Blood Coagulation Cascade through GPU Parallelization

    PubMed Central

    Cazzaniga, Paolo; Nobile, Marco S.; Besozzi, Daniela; Bellini, Matteo; Mauri, Giancarlo

    2014-01-01

    The introduction of general-purpose Graphics Processing Units (GPUs) is boosting scientific applications in Bioinformatics, Systems Biology, and Computational Biology. In these fields, the use of high-performance computing solutions is motivated by the need of performing large numbers of in silico analysis to study the behavior of biological systems in different conditions, which necessitate a computing power that usually overtakes the capability of standard desktop computers. In this work we present coagSODA, a CUDA-powered computational tool that was purposely developed for the analysis of a large mechanistic model of the blood coagulation cascade (BCC), defined according to both mass-action kinetics and Hill functions. coagSODA allows the execution of parallel simulations of the dynamics of the BCC by automatically deriving the system of ordinary differential equations and then exploiting the numerical integration algorithm LSODA. We present the biological results achieved with a massive exploration of perturbed conditions of the BCC, carried out with one-dimensional and bi-dimensional parameter sweep analysis, and show that GPU-accelerated parallel simulations of this model can increase the computational performances up to a 181× speedup compared to the corresponding sequential simulations. PMID:25025072

  13. Parallel, distributed and GPU computing technologies in single-particle electron microscopy

    SciTech Connect

    Schmeisser, Martin; Heisen, Burkhard C.; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger

    2009-07-01

    An introduction to the current paradigm shift towards concurrency in software. Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today’s technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined.

  14. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease.

    PubMed

    Shamonin, Denis P; Bron, Esther E; Lelieveldt, Boudewijn P F; Smits, Marion; Klein, Stefan; Staring, Marius

    2013-01-01

    Nonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e., for atlas-based segmentation or template construction. Faster image registration routines would therefore be beneficial. In this paper we explore acceleration of the image registration package elastix by a combination of several techniques: (i) parallelization on the CPU, to speed up the cost function derivative calculation; (ii) parallelization on the GPU building on and extending the OpenCL framework from ITKv4, to speed up the Gaussian pyramid computation and the image resampling step; (iii) exploitation of certain properties of the B-spline transformation model; (iv) further software optimizations. The accelerated registration tool is employed in a study on diagnostic classification of Alzheimer's disease and cognitively normal controls based on T1-weighted MRI. We selected 299 participants from the publicly available Alzheimer's Disease Neuroimaging Initiative database. Classification is performed with a support vector machine based on gray matter volumes as a marker for atrophy. We evaluated two types of strategies (voxel-wise and region-wise) that heavily rely on nonrigid image registration. Parallelization and optimization resulted in an acceleration factor of 4-5x on an 8-core machine. Using OpenCL a speedup factor of 2 was realized for computation of the Gaussian pyramids, and 15-60 for the resampling step, for larger images. The voxel-wise and the region-wise classification methods had an area under the receiver operator characteristic curve of 88 and 90%, respectively, both for standard and accelerated registration. We conclude that the image registration package elastix was substantially accelerated, with nearly identical results to the non-optimized version. The new functionality will become available in the next release of elastix as open source under the BSD license. PMID

  15. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease

    PubMed Central

    Shamonin, Denis P.; Bron, Esther E.; Lelieveldt, Boudewijn P. F.; Smits, Marion; Klein, Stefan; Staring, Marius

    2013-01-01

    Nonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e., for atlas-based segmentation or template construction. Faster image registration routines would therefore be beneficial. In this paper we explore acceleration of the image registration package elastix by a combination of several techniques: (i) parallelization on the CPU, to speed up the cost function derivative calculation; (ii) parallelization on the GPU building on and extending the OpenCL framework from ITKv4, to speed up the Gaussian pyramid computation and the image resampling step; (iii) exploitation of certain properties of the B-spline transformation model; (iv) further software optimizations. The accelerated registration tool is employed in a study on diagnostic classification of Alzheimer's disease and cognitively normal controls based on T1-weighted MRI. We selected 299 participants from the publicly available Alzheimer's Disease Neuroimaging Initiative database. Classification is performed with a support vector machine based on gray matter volumes as a marker for atrophy. We evaluated two types of strategies (voxel-wise and region-wise) that heavily rely on nonrigid image registration. Parallelization and optimization resulted in an acceleration factor of 4–5x on an 8-core machine. Using OpenCL a speedup factor of 2 was realized for computation of the Gaussian pyramids, and 15–60 for the resampling step, for larger images. The voxel-wise and the region-wise classification methods had an area under the receiver operator characteristic curve of 88 and 90%, respectively, both for standard and accelerated registration. We conclude that the image registration package elastix was substantially accelerated, with nearly identical results to the non-optimized version. The new functionality will become available in the next release of elastix as open source under the BSD license

  16. Graphics Processing Unit (GPU) implementation of image processing algorithms to improve system performance of the Control, Acquisition, Processing, and Image Display System (CAPIDS) of the Micro-Angiographic Fluoroscope (MAF).

    PubMed

    Vasan, S N Swetadri; Ionita, Ciprian N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-02-23

    We present the image processing upgrades implemented on a Graphics Processing Unit (GPU) in the Control, Acquisition, Processing, and Image Display System (CAPIDS) for the custom Micro-Angiographic Fluoroscope (MAF) detector. Most of the image processing currently implemented in the CAPIDS system is pixel independent; that is, the operation on each pixel is the same and the operation on one does not depend upon the result from the operation on the other, allowing the entire image to be processed in parallel. GPU hardware was developed for this kind of massive parallel processing implementation. Thus for an algorithm which has a high amount of parallelism, a GPU implementation is much faster than a CPU implementation. The image processing algorithm upgrades implemented on the CAPIDS system include flat field correction, temporal filtering, image subtraction, roadmap mask generation and display window and leveling. A comparison between the previous and the upgraded version of CAPIDS has been presented, to demonstrate how the improvement is achieved. By performing the image processing on a GPU, significant improvements (with respect to timing or frame rate) have been achieved, including stable operation of the system at 30 fps during a fluoroscopy run, a DSA run, a roadmap procedure and automatic image windowing and leveling during each frame. PMID:24027619

  17. Graphics processing unit (GPU) implementation of image processing algorithms to improve system performance of the control acquisition, processing, and image display system (CAPIDS) of the micro-angiographic fluoroscope (MAF)

    NASA Astrophysics Data System (ADS)

    Swetadri Vasan, S. N.; Ionita, Ciprian N.; Titus, A. H.; Cartwright, A. N.; Bednarek, D. R.; Rudin, S.

    2012-03-01

    We present the image processing upgrades implemented on a Graphics Processing Unit (GPU) in the Control, Acquisition, Processing, and Image Display System (CAPIDS) for the custom Micro-Angiographic Fluoroscope (MAF) detector. Most of the image processing currently implemented in the CAPIDS system is pixel independent; that is, the operation on each pixel is the same and the operation on one does not depend upon the result from the operation on the other, allowing the entire image to be processed in parallel. GPU hardware was developed for this kind of massive parallel processing implementation. Thus for an algorithm which has a high amount of parallelism, a GPU implementation is much faster than a CPU implementation. The image processing algorithm upgrades implemented on the CAPIDS system include flat field correction, temporal filtering, image subtraction, roadmap mask generation and display window and leveling. A comparison between the previous and the upgraded version of CAPIDS has been presented, to demonstrate how the improvement is achieved. By performing the image processing on a GPU, significant improvements (with respect to timing or frame rate) have been achieved, including stable operation of the system at 30 fps during a fluoroscopy run, a DSA run, a roadmap procedure and automatic image windowing and leveling during each frame.

  18. Graphics Processing Unit (GPU) implementation of image processing algorithms to improve system performance of the Control, Acquisition, Processing, and Image Display System (CAPIDS) of the Micro-Angiographic Fluoroscope (MAF)

    PubMed Central

    Vasan, S.N. Swetadri; Ionita, Ciprian N.; Titus, A.H.; Cartwright, A.N.; Bednarek, D.R.; Rudin, S.

    2012-01-01

    We present the image processing upgrades implemented on a Graphics Processing Unit (GPU) in the Control, Acquisition, Processing, and Image Display System (CAPIDS) for the custom Micro-Angiographic Fluoroscope (MAF) detector. Most of the image processing currently implemented in the CAPIDS system is pixel independent; that is, the operation on each pixel is the same and the operation on one does not depend upon the result from the operation on the other, allowing the entire image to be processed in parallel. GPU hardware was developed for this kind of massive parallel processing implementation. Thus for an algorithm which has a high amount of parallelism, a GPU implementation is much faster than a CPU implementation. The image processing algorithm upgrades implemented on the CAPIDS system include flat field correction, temporal filtering, image subtraction, roadmap mask generation and display window and leveling. A comparison between the previous and the upgraded version of CAPIDS has been presented, to demonstrate how the improvement is achieved. By performing the image processing on a GPU, significant improvements (with respect to timing or frame rate) have been achieved, including stable operation of the system at 30 fps during a fluoroscopy run, a DSA run, a roadmap procedure and automatic image windowing and leveling during each frame. PMID:24027619

  19. A 3D MPI-Parallel GPU-accelerated framework for simulating ocean wave energy converters

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2015-11-01

    We present an MPI-parallel GPU-accelerated computational framework for studying the interaction between ocean waves and wave energy converters (WECs). The computational framework captures the viscous effects, nonlinear fluid-structure interaction (FSI), and breaking of waves around the structure, which cannot be captured in many potential flow solvers commonly used for WEC simulations. The full Navier-Stokes equations are solved using the two-step projection method, which is accelerated by porting the pressure Poisson equation to GPUs. The FSI is captured using the numerically stable fictitious domain method. A novel three-phase interface reconstruction algorithm is used to resolve three phases in a VOF-PLIC context. A consistent mass and momentum transport approach enables simulations at high density ratios. The accuracy of the overall framework is demonstrated via an array of test cases. Numerical simulations of the interaction between ocean waves and WECs are presented. Funding from the National Science Foundation CBET-1236462 grant is gratefully acknowledged.

  20. Implementing clips on a parallel computer

    NASA Technical Reports Server (NTRS)

    Riley, Gary

    1987-01-01

    The C language integrated production system (CLIPS) is a forward chaining rule based language to provide training and delivery for expert systems. Conceptually, rule based languages have great potential for benefiting from the inherent parallelism of the algorithms that they employ. During each cycle of execution, a knowledge base of information is compared against a set of rules to determine if any rules are applicable. Parallelism also can be employed for use with multiple cooperating expert systems. To investigate the potential benefits of using a parallel computer to speed up the comparison of facts to rules in expert systems, a parallel version of CLIPS was developed for the FLEX/32, a large grain parallel computer. The FLEX implementation takes a macroscopic approach in achieving parallelism by splitting whole sets of rules among several processors rather than by splitting the components of an individual rule among processors. The parallel CLIPS prototype demonstrates the potential advantages of integrating expert system tools with parallel computers.

  1. a method of gravity and seismic sequential inversion and its GPU implementation

    NASA Astrophysics Data System (ADS)

    Liu, G.; Meng, X.

    2011-12-01

    In this abstract, we introduce a gravity and seismic sequential inversion method to invert for density and velocity together. For the gravity inversion, we use an iterative method based on correlation imaging algorithm; for the seismic inversion, we use the full waveform inversion. The link between the density and velocity is an empirical formula called Gardner equation, for large volumes of data, we use the GPU to accelerate the computation. For the gravity inversion method , we introduce a method based on correlation imaging algorithm,it is also a interative method, first we calculate the correlation imaging of the observed gravity anomaly, it is some value between -1 and +1, then we multiply this value with a little density ,this value become the initial density model. We get a forward reuslt with this initial model and also calculate the correaltion imaging of the misfit of observed data and the forward data, also multiply the correaltion imaging result a little density and add it to the initial model, then do the same procedure above , at last ,we can get a inversion density model. For the seismic inveron method ,we use a mothod base on the linearity of acoustic wave equation written in the frequency domain,with a intial velociy model, we can get a good velocity result. In the sequential inversion of gravity and seismic , we need a link formula to convert between density and velocity ,in our method , we use the Gardner equation. Driven by the insatiable market demand for real time, high-definition 3D images, the programmable NVIDIA Graphic Processing Unit (GPU) as co-processor of CPU has been developed for high performance computing. Compute Unified Device Architecture (CUDA) is a parallel programming model and software environment provided by NVIDIA designed to overcome the challenge of using traditional general purpose GPU while maintaining a low learn curve for programmers familiar with standard programming languages such as C. In our inversion processing

  2. Redundancy computation analysis and implementation of phase diversity based on GPU

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Bao, Hua; Rao, Changhui; Peng, Zhenming

    2015-10-01

    Phase diversity method is not only used as an image restoration technique, but also as a wavefront sensor. However, its computations have been perceived as being too burdensome to achieve its real-time applications on a desktop computer platform. In this paper, the implementation of the phase diversity algorithm based on graphic processing unit (GPU) is presented. The redundancy computations for the pupil function, point spread function, and optical transfer function are analyzed. Two kinds of implementation methods based on GPU are compared: one is the general method which is accomplished by GPU library CUFFT without precision loss (method-1) and the other one performed by our own custom FFT with little damage of precision considering the redundant calculations (method-2). The results show the cost and gradient functions can be speeded up by method-2 in contrast with the method-1 and the overhead of global memory access by kernel fusion can be reduced. For the image of 256 × 256 with the sampling factor of 3, the results reveal that method-2 achieves speedup of 1.83× compared with method-1 when the central 128 × 128 pixels of the point spread function are used.

  3. GPU Accelerated Implementation of Density Functional Theory for Hybrid QM/MM Simulations.

    PubMed

    Nitsche, Matías A; Ferreria, Manuel; Mocskos, Esteban E; González Lebrero, Mariano C

    2014-03-11

    The hybrid simulation tools (QM/MM) evolved into a fundamental methodology for studying chemical reactivity in complex environments. This paper presents an implementation of electronic structure calculations based on density functional theory. This development is optimized for performing hybrid molecular dynamics simulations by making use of graphic processors (GPU) for the most computationally demanding parts (exchange-correlation terms). The proposed implementation is able to take advantage of modern GPUs achieving acceleration in relevant portions between 20 to 30 times faster than the CPU version. The presented code was extensively tested, both in terms of numerical quality and performance over systems of different size and composition. PMID:26580175

  4. National Combustion Code: Parallel Implementation and Performance

    NASA Technical Reports Server (NTRS)

    Quealy, A.; Ryder, R.; Norris, A.; Liu, N.-S.

    2000-01-01

    The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. CORSAIR-CCD is the current baseline reacting flow solver for NCC. This is a parallel, unstructured grid code which uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC flow solver to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This paper describes the parallel implementation of the NCC flow solver and summarizes its current parallel performance on an SGI Origin 2000. Earlier parallel performance results on an IBM SP-2 are also included. The performance improvements which have enabled a turnaround of less than 15 hours for a 1.3 million element fully reacting combustion simulation are described.

  5. Implementation and performance of parallel Prolog interpreter

    SciTech Connect

    Wei, S.; Kale, L.V.; Balkrishna, R. . Dept. of Computer Science)

    1988-01-01

    In this paper, the authors discuss the implementation of a parallel Prolog interpreter on different parallel machines. The implementation is based on the REDUCE--OR process model which exploits both AND and OR parallelism in logic programs. It is machine independent as it runs on top of the chare-kernel--a machine-independent parallel programming system. The authors also give the performance of the interpreter running a diverse set of benchmark pargrams on parallel machines including shared memory systems: an Alliant FX/8, Sequent and a MultiMax, and a non-shared memory systems: Intel iPSC/32 hypercube, in addition to its performance on a multiprocessor simulation system.

  6. Parallel Implementation of the Discontinuous Galerkin Method

    NASA Technical Reports Server (NTRS)

    Baggag, Abdalkader; Atkins, Harold; Keyes, David

    1999-01-01

    This paper describes a parallel implementation of the discontinuous Galerkin method. Discontinuous Galerkin is a spatially compact method that retains its accuracy and robustness on non-smooth unstructured grids and is well suited for time dependent simulations. Several parallelization approaches are studied and evaluated. The most natural and symmetric of the approaches has been implemented in all object-oriented code used to simulate aeroacoustic scattering. The parallel implementation is MPI-based and has been tested on various parallel platforms such as the SGI Origin, IBM SP2, and clusters of SGI and Sun workstations. The scalability results presented for the SGI Origin show slightly superlinear speedup on a fixed-size problem due to cache effects.

  7. Evaluating the power of GPU acceleration for IDW interpolation algorithm.

    PubMed

    Mei, Gang

    2014-01-01

    We first present two GPU implementations of the standard Inverse Distance Weighting (IDW) interpolation algorithm, the tiled version that takes advantage of shared memory and the CDP version that is implemented using CUDA Dynamic Parallelism (CDP). Then we evaluate the power of GPU acceleration for IDW interpolation algorithm by comparing the performance of CPU implementation with three GPU implementations, that is, the naive version, the tiled version, and the CDP version. Experimental results show that the tilted version has the speedups of 120x and 670x over the CPU version when the power parameter p is set to 2 and 3.0, respectively. In addition, compared to the naive GPU implementation, the tiled version is about two times faster. However, the CDP version is 4.8x ∼ 6.0x slower than the naive GPU version, and therefore does not have any potential advantages in practical applications. PMID:24707195

  8. Evaluating the Power of GPU Acceleration for IDW Interpolation Algorithm

    PubMed Central

    2014-01-01

    We first present two GPU implementations of the standard Inverse Distance Weighting (IDW) interpolation algorithm, the tiled version that takes advantage of shared memory and the CDP version that is implemented using CUDA Dynamic Parallelism (CDP). Then we evaluate the power of GPU acceleration for IDW interpolation algorithm by comparing the performance of CPU implementation with three GPU implementations, that is, the naive version, the tiled version, and the CDP version. Experimental results show that the tilted version has the speedups of 120x and 670x over the CPU version when the power parameter p is set to 2 and 3.0, respectively. In addition, compared to the naive GPU implementation, the tiled version is about two times faster. However, the CDP version is 4.8x∼6.0x slower than the naive GPU version, and therefore does not have any potential advantages in practical applications. PMID:24707195

  9. Fast neuromimetic object recognition using FPGA outperforms GPU implementations.

    PubMed

    Orchard, Garrick; Martin, Jacob G; Vogelstein, R Jacob; Etienne-Cummings, Ralph

    2013-08-01

    Recognition of objects in still images has traditionally been regarded as a difficult computational problem. Although modern automated methods for visual object recognition have achieved steadily increasing recognition accuracy, even the most advanced computational vision approaches are unable to obtain performance equal to that of humans. This has led to the creation of many biologically inspired models of visual object recognition, among them the hierarchical model and X (HMAX) model. HMAX is traditionally known to achieve high accuracy in visual object recognition tasks at the expense of significant computational complexity. Increasing complexity, in turn, increases computation time, reducing the number of images that can be processed per unit time. In this paper we describe how the computationally intensive and biologically inspired HMAX model for visual object recognition can be modified for implementation on a commercial field-programmable aate Array, specifically the Xilinx Virtex 6 ML605 evaluation board with XC6VLX240T FPGA. We show that with minor modifications to the traditional HMAX model we can perform recognition on images of size 128 × 128 pixels at a rate of 190 images per second with a less than 1% loss in recognition accuracy in both binary and multiclass visual object recognition tasks. PMID:24808564

  10. Parallel implementation of Mpeg-2 video decoder

    NASA Astrophysics Data System (ADS)

    Sarkar, Abhik; Saha, Kaushik; Maiti, Srijib

    2006-02-01

    The demand for real-time MPEG decoding is growing in multimedia applications. This paper discusses a hardwaresoftware co-design for MPEG-2 Video decoding and describes an efficient parallel implementation of the software module. We have advocated the usage of hardware for VLD since it is inherently serial and efficient hardware implementations are available. The software module is a macro-block level parallel implementation of the IDCT and Motion Compensation. The parallel implementation has been achieved by dividing the picture, into two halves for 2-processor implementation and into four quadrants for 4-processor implementation, and assigning the macro-blocks present in each partition to a processor. The processors perform IDCT and Motion Compensation in parallel for the macro-blocks present in their allotted sections. Thus each processor displays 1/no_of_processors of a picture frame. This implementation minimizes the data dependency among processors while performing the Motion Compensation since data dependencies occur only at the edges of the divided sections. Load balancing among the processors has also been achieved, as all the processors perform computation on an equal number of macro-blocks. Apart from these, the major advantage is that the time taken to perform the IDCT and Motion Compensation reduces linearly with an increase in number of processors.

  11. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    NASA Astrophysics Data System (ADS)

    Xu, Zuwei; Zhao, Haibo; Zheng, Chuguang

    2015-01-01

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance-rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are

  12. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    SciTech Connect

    Xu, Zuwei; Zhao, Haibo Zheng, Chuguang

    2015-01-15

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are

  13. Randomized selection on the GPU

    SciTech Connect

    Monroe, Laura Marie; Wendelberger, Joanne R; Michalak, Sarah E

    2011-01-13

    We implement here a fast and memory-sparing probabilistic top N selection algorithm on the GPU. To our knowledge, this is the first direct selection in the literature for the GPU. The algorithm proceeds via a probabilistic-guess-and-chcck process searching for the Nth element. It always gives a correct result and always terminates. The use of randomization reduces the amount of data that needs heavy processing, and so reduces the average time required for the algorithm. Probabilistic Las Vegas algorithms of this kind are a form of stochastic optimization and can be well suited to more general parallel processors with limited amounts of fast memory.

  14. Sailfish: A flexible multi-GPU implementation of the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Januszewski, M.; Kostur, M.

    2014-09-01

    We present Sailfish, an open source fluid simulation package implementing the lattice Boltzmann method (LBM) on modern Graphics Processing Units (GPUs) using CUDA/OpenCL. We take a novel approach to GPU code implementation and use run-time code generation techniques and a high level programming language (Python) to achieve state of the art performance, while allowing easy experimentation with different LBM models and tuning for various types of hardware. We discuss the general design principles of the code, scaling to multiple GPUs in a distributed environment, as well as the GPU implementation and optimization of many different LBM models, both single component (BGK, MRT, ELBM) and multicomponent (Shan-Chen, free energy). The paper also presents results of performance benchmarks spanning the last three NVIDIA GPU generations (Tesla, Fermi, Kepler), which we hope will be useful for researchers working with this type of hardware and similar codes. Catalogue identifier: AETA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License, version 3 No. of lines in distributed program, including test data, etc.: 225864 No. of bytes in distributed program, including test data, etc.: 46861049 Distribution format: tar.gz Programming language: Python, CUDA C, OpenCL. Computer: Any with an OpenCL or CUDA-compliant GPU. Operating system: No limits (tested on Linux and Mac OS X). RAM: Hundreds of megabytes to tens of gigabytes for typical cases. Classification: 12, 6.5. External routines: PyCUDA/PyOpenCL, Numpy, Mako, ZeroMQ (for multi-GPU simulations), scipy, sympy Nature of problem: GPU-accelerated simulation of single- and multi-component fluid flows. Solution method: A wide range of relaxation models (LBGK, MRT, regularized LB, ELBM, Shan-Chen, free energy, free surface) and boundary conditions within the lattice

  15. CULA: hybrid GPU accelerated linear algebra routines

    NASA Astrophysics Data System (ADS)

    Humphrey, John R.; Price, Daniel K.; Spagnoli, Kyle E.; Paolini, Aaron L.; Kelmelis, Eric J.

    2010-04-01

    The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of nearly 1 TFLOPS peak throughput at a cost similar to a high-end CPU and an excellent FLOPS/watt ratio. High-level linear algebra operations are computationally intense, often requiring O(N3) operations and would seem a natural fit for the processing power of the GPU. Our work is on CULA, a GPU accelerated implementation of linear algebra routines. We present results from factorizations such as LU decomposition, singular value decomposition and QR decomposition along with applications like system solution and least squares. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally.

  16. 3D Alternating Direction TV-Based Cone-Beam CT Reconstruction with Efficient GPU Implementation

    PubMed Central

    Cai, Ailong; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Guan, Min; Li, Jianxin

    2014-01-01

    Iterative image reconstruction (IIR) with sparsity-exploiting methods, such as total variation (TV) minimization, claims potentially large reductions in sampling requirements. However, the computation complexity becomes a heavy burden, especially in 3D reconstruction situations. In order to improve the performance for iterative reconstruction, an efficient IIR algorithm for cone-beam computed tomography (CBCT) with GPU implementation has been proposed in this paper. In the first place, an algorithm based on alternating direction total variation using local linearization and proximity technique is proposed for CBCT reconstruction. The applied proximal technique avoids the horrible pseudoinverse computation of big matrix which makes the proposed algorithm applicable and efficient for CBCT imaging. The iteration for this algorithm is simple but convergent. The simulation and real CT data reconstruction results indicate that the proposed algorithm is both fast and accurate. The GPU implementation shows an excellent acceleration ratio of more than 100 compared with CPU computation without losing numerical accuracy. The runtime for the new 3D algorithm is about 6.8 seconds per loop with the image size of 256 × 256 × 256 and 36 projections of the size of 512 × 512. PMID:25045400

  17. Agent based modeling of blood coagulation system: implementation using a GPU based high speed framework.

    PubMed

    Chen, Wenan; Ward, Kevin; Li, Qi; Kecman, Vojislav; Najarian, Kayvan; Menke, Nathan

    2011-01-01

    The coagulation and fibrinolytic systems are complex, inter-connected biological systems with major physiological roles. The complex, nonlinear multi-point relationships between the molecular and cellular constituents of two systems render a comprehensive and simultaneous study of the system at the microscopic and macroscopic level a significant challenge. We have created an Agent Based Modeling and Simulation (ABMS) approach for simulating these complex interactions. As the scale of agents increase, the time complexity and cost of the resulting simulations presents a significant challenge. As such, in this paper, we also present a high-speed framework for the coagulation simulation utilizing the computing power of graphics processing units (GPU). For comparison, we also implemented the simulations in NetLogo, Repast, and a direct C version. As our experiments demonstrate, the computational speed of the GPU implementation of the million-level scale of agents is over 10 times faster versus the C version, over 100 times faster versus the Repast version and over 300 times faster versus the NetLogo simulation. PMID:22254271

  18. GPU Accelerated Chemical Similarity Calculation for Compound Library Comparison

    PubMed Central

    Ma, Chao; Wang, Lirong; Xie, Xiang-Qun

    2012-01-01

    Chemical similarity calculation plays an important role in compound library design, virtual screening, and “lead” optimization. In this manuscript, we present a novel GPU-accelerated algorithm for all-vs-all Tanimoto matrix calculation and nearest neighbor search. By taking advantage of multi-core GPU architecture and CUDA parallel programming technology, the algorithm is up to 39 times superior to the existing commercial software that runs on CPUs. Because of the utilization of intrinsic GPU instructions, this approach is nearly 10 times faster than existing GPU-accelerated sparse vector algorithm, when Unity fingerprints are used for Tanimoto calculation. The GPU program that implements this new method takes about 20 minutes to complete the calculation of Tanimoto coefficients between 32M PubChem compounds and 10K Active Probes compounds, i.e., 324G Tanimoto coefficients, on a 128-CUDA-core GPU. PMID:21692447

  19. Implementation of NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Schultz, Matthew; Jin, Hao-Qiang; Yan, Jerry

    2000-01-01

    A number of features make Java an attractive but a debatable choice for High Performance Computing (HPC). In order to gauge the applicability of Java to the Computational Fluid Dynamics (CFD) we have implemented NAS Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would move Java closer to Fortran in the competition for CFD applications.

  20. gEMfitter: a highly parallel FFT-based 3D density fitting tool with GPU texture memory acceleration.

    PubMed

    Hoang, Thai V; Cavin, Xavier; Ritchie, David W

    2013-11-01

    Fitting high resolution protein structures into low resolution cryo-electron microscopy (cryo-EM) density maps is an important technique for modeling the atomic structures of very large macromolecular assemblies. This article presents "gEMfitter", a highly parallel fast Fourier transform (FFT) EM density fitting program which can exploit the special hardware properties of modern graphics processor units (GPUs) to accelerate both the translational and rotational parts of the correlation search. In particular, by using the GPU's special texture memory hardware to rotate 3D voxel grids, the cost of rotating large 3D density maps is almost completely eliminated. Compared to performing 3D correlations on one core of a contemporary central processor unit (CPU), running gEMfitter on a modern GPU gives up to 26-fold speed-up. Furthermore, using our parallel processing framework, this speed-up increases linearly with the number of CPUs or GPUs used. Thus, it is now possible to use routinely more robust but more expensive 3D correlation techniques. When tested on low resolution experimental cryo-EM data for the GroEL-GroES complex, we demonstrate the satisfactory fitting results that may be achieved by using a locally normalised cross-correlation with a Laplacian pre-filter, while still being up to three orders of magnitude faster than the well-known COLORES program. PMID:24060989

  1. GPU-Based Parallelized Solver for Large Scale Vascular Blood Flow Modeling and Simulations.

    PubMed

    Santhanam, Anand P; Neylon, John; Eldredge, Jeff; Teran, Joseph; Dutson, Erik; Benharash, Peyman

    2016-01-01

    Cardio-vascular blood flow simulations are essential in understanding the blood flow behavior during normal and disease conditions. To date, such blood flow simulations have only been done at a macro scale level due to computational limitations. In this paper, we present a GPU based large scale solver that enables modeling the flow even in the smallest arteries. A mechanical equivalent of the circuit based flow modeling system is first developed to employ the GPU computing framework. Numerical studies were employed using a set of 10 million connected vascular elements. Run-time flow analysis were performed to simulate vascular blockages, as well as arterial cut-off. Our results showed that we can achieve ~100 FPS using a GTX 680m and ~40 FPS using a Tegra K1 computing platform. PMID:27046603

  2. Initial Characterization of Parallel NFS Implementations

    SciTech Connect

    Yu, Weikuan; Vetter, Jeffrey S

    2010-01-01

    Parallel NFS (pNFS) is touted as an emergent standard protocol for parallel I/O access in various storage environments. Several pNFS prototypes have been implemented for initial validation and protocol examination. Previous efforts have focused on realizing the pNFS protocol to expose the best bandwidth potential from underlying file and storage systems. In this presentation, we provide an initial characterization of two pNFS prototype implementations, lpNFS (a Lustre-based parallel NFS implementation) and spNFS (another reference implementation from Network Appliance, Inc.). We show that both lpNFS and spNFS can faithfully achieve the primary goal of pNFS, i.e., aggregating I/O bandwidth from many storage servers. However, they both face the challenge of scalable metadata management. Particularly, the throughput of sp-NFS metadata operations degrades significanlty with an increasing number of data servers. Even for the better-performing lpNFS, we discuss its architecture and propose a direct I/O request flow protocol to improve its performance.

  3. Graphics Processing Units (GPU) and the Goddard Earth Observing System atmospheric model (GEOS-5): Implementation and Potential Applications

    NASA Technical Reports Server (NTRS)

    Putnam, William M.

    2011-01-01

    Earth system models like the Goddard Earth Observing System model (GEOS-5) have been pushing the limits of large clusters of multi-core microprocessors, producing breath-taking fidelity in resolving cloud systems at a global scale. GPU computing presents an opportunity for improving the efficiency of these leading edge models. A GPU implementation of GEOS-5 will facilitate the use of cloud-system resolving resolutions in data assimilation and weather prediction, at resolutions near 3.5 km, improving our ability to extract detailed information from high-resolution satellite observations and ultimately produce better weather and climate predictions

  4. Parallel Implementation of Katsevich's FBP Algorithm

    PubMed Central

    Guo, Xiaohu; Kong, Qiang; Zhou, Tie; Jiang, Ming

    2006-01-01

    For spiral cone-beam CT, parallel computing is an effective approach to resolving the problem of heavy computation burden. It is well known that the major computation time is spent in the backprojection step for either filtered-backprojection (FBP) or backprojected-filtration (BPF) algorithms. By the cone-beam cover method [1], the backprojection procedure is driven by cone-beam projections, and every cone-beam projection can be backprojected independently. Basing on this fact, we develop a parallel implementation of Katsevich's FBP algorithm. We do all the numerical experiments on a Linux cluster. In one typical experiment, the sequential reconstruction time is 781.3 seconds, while the parallel reconstruction time is 25.7 seconds with 32 processors. PMID:23165019

  5. A comparison of native GPU computing versus OpenACC for implementing flow-routing algorithms in hydrological applications

    NASA Astrophysics Data System (ADS)

    Rueda, Antonio J.; Noguera, José M.; Luque, Adrián

    2016-02-01

    In recent years GPU computing has gained wide acceptance as a simple low-cost solution for speeding up computationally expensive processing in many scientific and engineering applications. However, in most cases accelerating a traditional CPU implementation for a GPU is a non-trivial task that requires a thorough refactorization of the code and specific optimizations that depend on the architecture of the device. OpenACC is a promising technology that aims at reducing the effort required to accelerate C/C++/Fortran code on an attached multicore device. Virtually with this technology the CPU code only has to be augmented with a few compiler directives to identify the areas to be accelerated and the way in which data has to be moved between the CPU and GPU. Its potential benefits are multiple: better code readability, less development time, lower risk of errors and less dependency on the underlying architecture and future evolution of the GPU technology. Our aim with this work is to evaluate the pros and cons of using OpenACC against native GPU implementations in computationally expensive hydrological applications, using the classic D8 algorithm of O'Callaghan and Mark for river network extraction as case-study. We implemented the flow accumulation step of this algorithm in CPU, using OpenACC and two different CUDA versions, comparing the length and complexity of the code and its performance with different datasets. We advance that although OpenACC can not match the performance of a CUDA optimized implementation (×3.5 slower in average), it provides a significant performance improvement against a CPU implementation (×2-6) with by far a simpler code and less implementation effort.

  6. A real-time photoacoustic and ultrasound dual-modality imaging system facilitated with GPU and code parallel optimization

    NASA Astrophysics Data System (ADS)

    Yuan, Jie; Xu, Guan; Yu, Yao; Zhou, Yu; Carson, Paul L.; Wang, Xueding; Liu, Xiaojun

    2014-03-01

    Photoacoustic tomography (PAT) offers structural and functional imaging of living biological tissue with highly sensitive optical absorption contrast and excellent spatial resolution comparable to medical ultrasound (US) imaging. We report the development of a fully integrated PAT and US dual-modality imaging system, which performs signal scanning, image reconstruction and display for both photoacoustic (PA) and US imaging all in a truly real-time manner. The backprojection (BP) algorithm for PA image reconstruction is optimized to reduce the computational cost and facilitate parallel computation on a state of the art graphics processing unit (GPU) card. For the first time, PAT and US imaging of the same object can be conducted simultaneously and continuously, at a real time frame rate, presently limited by the laser repetition rate of 10 Hz. Noninvasive PAT and US imaging of human peripheral joints in vivo were achieved, demonstrating the satisfactory image quality realized with this system. Another experiment, simultaneous PAT and US imaging of contrast agent flowing through an artificial vessel was conducted to verify the performance of this system for imaging fast biological events. The GPU based image reconstruction software code for this dual-modality system is open source and available for download from http://sourceforge.net/projects/pat realtime .

  7. Computation and parallel implementation for early vision

    NASA Technical Reports Server (NTRS)

    Gualtieri, J. Anthony

    1990-01-01

    The problem of early vision is to transform one or more retinal illuminance images-pixel arrays-to image representations built out of such primitive visual features such as edges, regions, disparities, and clusters. These transformed representations form the input to later vision stages that perform higher level vision tasks including matching and recognition. Researchers developed algorithms for: (1) edge finding in the scale space formulation; (2) correlation methods for computing matches between pairs of images; and (3) clustering of data by neural networks. These algorithms are formulated for parallel implementation of SIMD machines, such as the Massively Parallel Processor, a 128 x 128 array processor with 1024 bits of local memory per processor. For some cases, researchers can show speedups of three orders of magnitude over serial implementations.

  8. Non-rigid multi-modal registration on the GPU

    NASA Astrophysics Data System (ADS)

    Vetter, Christoph; Guetter, Christoph; Xu, Chenyang; Westermann, Rüdiger

    2007-03-01

    Non-rigid multi-modal registration of images/volumes is becoming increasingly necessary in many medical settings. While efficient registration algorithms have been published, the speed of the solutions is a problem in clinical applications. Harnessing the computational power of graphics processing unit (GPU) for general purpose computations has become increasingly popular in order to speed up algorithms further, but the algorithms have to be adapted to the data-parallel, streaming model of the GPU. This paper describes the implementation of a non-rigid, multi-modal registration using mutual information and the Kullback-Leibler divergence between observed and learned joint intensity distributions. The entire registration process is implemented on the GPU, including a GPU-friendly computation of two-dimensional histograms using vertex texture fetches as well as an implementation of recursive Gaussian filtering on the GPU. Since the computation is performed on the GPU, interactive visualization of the registration process can be done without bus transfer between main memory and video memory. This allows the user to observe the registration process and to evaluate the result more easily. Two hybrid approaches distributing the computation between the GPU and CPU are discussed. The first approach uses the CPU for lower resolutions and the GPU for higher resolutions, the second approach uses the GPU to compute a first approximation to the registration that is used as starting point for registration on the CPU using double-precision. The results of the CPU implementation are compared to the different approaches using the GPU regarding speed as well as image quality. The GPU performs up to 5 times faster per iteration than the CPU implementation.

  9. GPU implementation for three-dimensional mantle convection at high Rayleigh number

    NASA Astrophysics Data System (ADS)

    Barnett, G. A.; Wright, G. B.; Yuen, D. A.

    2009-12-01

    The last decade has seen the strong influence exerted by the gaming industry on high-performance scientific computing since the landmark year of 2003 when the speed of floating point operations for GPUs surpassed that of CPUs. Since then, the progress of GPUs has been astounding because of the development of faster components with many flow processing units (cores) and larger memories (240 cores and 4 Gbytes with the NVIDIA Tesla 1060). It is feasible with GPUs to have the potential computing power of around one Teraflop in your office environment for around $5000. In this study we demonstrate the enormous capabilities GPUs offers for certain geophysical fluid dynamics applications. We focus our attention on high Rayleigh number three dimensional mantle convection (ie. Rayleigh-Bénard convection in the infinite Prandtl number limit) in a rectangular box. The model equations are taken from Larsen et al (1997), where a constant viscosity has been assumed, which allows the momentum equations to be decomposed into two coupled Poisson equations involving a scalar potential for computing the velocity. These equations together with the spatial derivatives in the energy equation are approximated with second order finite differences. The whole system is advanced forward in time with an explicit, third order accurate Runge-Kutta scheme, which allows for variable time-stepping. We discuss the method with specific attention given to the solution of the two Poisson equations, which are solved directly with a Fourier transform-based algorithm, eg. Hockney (1965). We compare the implementations of this algorithm and its variations on the GPU vs the CPU and demonstrate how the choice depends on the architecture. We report the results from 3D mantle convection simulations run on a single GPU with Rayleigh number up to 10**7 and grids of size up to 512X512X256 (see figure below). A comparison of the computational time for the GPU code shows a speed up of more than 10 times over the

  10. Efficient implementation of the many-body Reactive Bond Order (REBO) potential on GPU

    NASA Astrophysics Data System (ADS)

    Trędak, Przemysław; Rudnicki, Witold R.; Majewski, Jacek A.

    2016-09-01

    The second generation Reactive Bond Order (REBO) empirical potential is commonly used to accurately model a wide range hydrocarbon materials. It is also extensible to other atom types and interactions. REBO potential assumes complex multi-body interaction model, that is difficult to represent efficiently in the SIMD or SIMT programming model. Hence, despite its importance, no efficient GPGPU implementation has been developed for this potential. Here we present a detailed description of a highly efficient GPGPU implementation of molecular dynamics algorithm using REBO potential. The presented algorithm takes advantage of rarely used properties of the SIMT architecture of a modern GPU to solve difficult synchronizations issues that arise in computations of multi-body potential. Techniques developed for this problem may be also used to achieve efficient solutions of different problems. The performance of proposed algorithm is assessed using a range of model systems. It is compared to highly optimized CPU implementation (both single core and OpenMP) available in LAMMPS package. These experiments show up to 6x improvement in forces computation time using single processor of the NVIDIA Tesla K80 compared to high end 16-core Intel Xeon processor.

  11. Implementation and evaluation of various demons deformable image registration algorithms on a GPU

    NASA Astrophysics Data System (ADS)

    Gu, Xuejun; Pan, Hubert; Liang, Yun; Castillo, Richard; Yang, Deshan; Choi, Dongju; Castillo, Edward; Majumdar, Amitava; Guerrero, Thomas; Jiang, Steve B.

    2010-01-01

    Online adaptive radiation therapy (ART) promises the ability to deliver an optimal treatment in response to daily patient anatomic variation. A major technical barrier for the clinical implementation of online ART is the requirement of rapid image segmentation. Deformable image registration (DIR) has been used as an automated segmentation method to transfer tumor/organ contours from the planning image to daily images. However, the current computational time of DIR is insufficient for online ART. In this work, this issue is addressed by using computer graphics processing units (GPUs). A gray-scale-based DIR algorithm called demons and five of its variants were implemented on GPUs using the compute unified device architecture (CUDA) programming environment. The spatial accuracy of these algorithms was evaluated over five sets of pulmonary 4D CT images with an average size of 256 × 256 × 100 and more than 1100 expert-determined landmark point pairs each. For all the testing scenarios presented in this paper, the GPU-based DIR computation required around 7 to 11 s to yield an average 3D error ranging from 1.5 to 1.8 mm. It is interesting to find out that the original passive force demons algorithms outperform subsequently proposed variants based on the combination of accuracy, efficiency and ease of implementation.

  12. Parallelizing Epistasis Detection in GWAS on FPGA and GPU-Accelerated Computing Systems.

    PubMed

    González-Domínguez, Jorge; Wienbrandt, Lars; Kässens, Jan Christian; Ellinghaus, David; Schimmler, Manfred; Schmidt, Bertil

    2015-01-01

    High-throughput genotyping technologies (such as SNP-arrays) allow the rapid collection of up to a few million genetic markers of an individual. Detecting epistasis (based on 2-SNP interactions) in Genome-Wide Association Studies is an important but time consuming operation since statistical computations have to be performed for each pair of measured markers. Computational methods to detect epistasis therefore suffer from prohibitively long runtimes; e.g., processing a moderately-sized dataset consisting of about 500,000 SNPs and 5,000 samples requires several days using state-of-the-art tools on a standard 3 GHz CPU. In this paper, we demonstrate how this task can be accelerated using a combination of fine-grained and coarse-grained parallelism on two different computing systems. The first architecture is based on reconfigurable hardware (FPGAs) while the second architecture uses multiple GPUs connected to the same host. We show that both systems can achieve speedups of around four orders-of-magnitude compared to the sequential implementation. This significantly reduces the runtimes for detecting epistasis to only a few minutes for moderately-sized datasets and to a few hours for large-scale datasets. PMID:26451813

  13. An efficient mixed-precision, hybrid CPU-GPU implementation of a nonlinearly implicit one-dimensional particle-in-cell algorithm

    SciTech Connect

    Chen, Guangye; Chacon, Luis; Barnes, Daniel C

    2012-01-01

    Recently, a fully implicit, energy- and charge-conserving particle-in-cell method has been developed for multi-scale, full-f kinetic simulations [G. Chen, et al., J. Comput. Phys. 230, 18 (2011)]. The method employs a Jacobian-free Newton-Krylov (JFNK) solver and is capable of using very large timesteps without loss of numerical stability or accuracy. A fundamental feature of the method is the segregation of particle orbit integrations from the field solver, while remaining fully self-consistent. This provides great flexibility, and dramatically improves the solver efficiency by reducing the degrees of freedom of the associated nonlinear system. However, it requires a particle push per nonlinear residual evaluation, which makes the particle push the most time-consuming operation in the algorithm. This paper describes a very efficient mixed-precision, hybrid CPU-GPU implementation of the implicit PIC algorithm. The JFNK solver is kept on the CPU (in double precision), while the inherent data parallelism of the particle mover is exploited by implementing it in single-precision on a graphics processing unit (GPU) using CUDA. Performance-oriented optimizations, with the aid of an analytical performance model, the roofline model, are employed. Despite being highly dynamic, the adaptive, charge-conserving particle mover algorithm achieves up to 300 400 GOp/s (including single-precision floating-point, integer, and logic operations) on a Nvidia GeForce GTX580, corresponding to 20 25% absolute GPU efficiency (against the peak theoretical performance) and 50-70% intrinsic efficiency (against the algorithm s maximum operational throughput, which neglects all latencies). This is about 200-300 times faster than an equivalent serial CPU implementation. When the single-precision GPU particle mover is combined with a double-precision CPU JFNK field solver, overall performance gains 100 vs. the double-precision CPU-only serial version are obtained, with no apparent loss of

  14. PRAND: GPU accelerated parallel random number generation library: Using most reliable algorithms and applying parallelism of modern GPUs and CPUs

    NASA Astrophysics Data System (ADS)

    Barash, L. Yu.; Shchur, L. N.

    2014-04-01

    The library PRAND for pseudorandom number generation for modern CPUs and GPUs is presented. It contains both single-threaded and multi-threaded realizations of a number of modern and most reliable generators recently proposed and studied in Barash (2011), Matsumoto and Tishimura (1998), L'Ecuyer (1999,1999), Barash and Shchur (2006) and the efficient SIMD realizations proposed in Barash and Shchur (2011). One of the useful features for using PRAND in parallel simulations is the ability to initialize up to 1019 independent streams. Using massive parallelism of modern GPUs and SIMD parallelism of modern CPUs substantially improves performance of the generators.

  15. Automating parallel implementation of neural learning algorithms.

    PubMed

    Rana, O F

    2000-06-01

    Neural learning algorithms generally involve a number of identical processing units, which are fully or partially connected, and involve an update function, such as a ramp, a sigmoid or a Gaussian function for instance. Some variations also exist, where units can be heterogeneous, or where an alternative update technique is employed, such as a pulse stream generator. Associated with connections are numerical values that must be adjusted using a learning rule, and and dictated by parameters that are learning rule specific, such as momentum, a learning rate, a temperature, amongst others. Usually, neural learning algorithms involve local updates, and a global interaction between units is often discouraged, except in instances where units are fully connected, or involve synchronous updates. In all of these instances, concurrency within a neural algorithm cannot be fully exploited without a suitable implementation strategy. A design scheme is described for translating a neural learning algorithm from inception to implementation on a parallel machine using PVM or MPI libraries, or onto programmable logic such as FPGAs. A designer must first describe the algorithm using a specialised Neural Language, from which a Petri net (PN) model is constructed automatically for verification, and building a performance model. The PN model can be used to study issues such as synchronisation points, resource sharing and concurrency within a learning rule. Specialised constructs are provided to enable a designer to express various aspects of a learning rule, such as the number and connectivity of neural nodes, the interconnection strategies, and information flows required by the learning algorithm. A scheduling and mapping strategy is then used to translate this PN model onto a multiprocessor template. We demonstrate our technique using a Kohonen and backpropagation learning rules, implemented on a loosely coupled workstation cluster, and a dedicated parallel machine, with PVM libraries

  16. On implementation of EM-type algorithms in the stochastic models for a matrix computing on GPU

    SciTech Connect

    Gorshenin, Andrey K.

    2015-03-10

    The paper discusses the main ideas of an implementation of EM-type algorithms for computing on the graphics processors and the application for the probabilistic models based on the Cox processes. An example of the GPU’s adapted MATLAB source code for the finite normal mixtures with the expectation-maximization matrix formulas is given. The testing of computational efficiency for GPU vs CPU is illustrated for the different sample sizes.

  17. Solving global optimization problems on GPU cluster

    NASA Astrophysics Data System (ADS)

    Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya

    2016-06-01

    The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.

  18. Local Alignment Tool Based on Hadoop Framework and GPU Architecture

    PubMed Central

    Hung, Che-Lun; Hua, Guan-Jie

    2014-01-01

    With the rapid growth of next generation sequencing technologies, such as Slex, more and more data have been discovered and published. To analyze such huge data the computational performance is an important issue. Recently, many tools, such as SOAP, have been implemented on Hadoop and GPU parallel computing architectures. BLASTP is an important tool, implemented on GPU architectures, for biologists to compare protein sequences. To deal with the big biology data, it is hard to rely on single GPU. Therefore, we implement a distributed BLASTP by combining Hadoop and multi-GPUs. The experimental results present that the proposed method can improve the performance of BLASTP on single GPU, and also it can achieve high availability and fault tolerance. PMID:24955362

  19. Local alignment tool based on Hadoop framework and GPU architecture.

    PubMed

    Hung, Che-Lun; Hua, Guan-Jie

    2014-01-01

    With the rapid growth of next generation sequencing technologies, such as Slex, more and more data have been discovered and published. To analyze such huge data the computational performance is an important issue. Recently, many tools, such as SOAP, have been implemented on Hadoop and GPU parallel computing architectures. BLASTP is an important tool, implemented on GPU architectures, for biologists to compare protein sequences. To deal with the big biology data, it is hard to rely on single GPU. Therefore, we implement a distributed BLASTP by combining Hadoop and multi-GPUs. The experimental results present that the proposed method can improve the performance of BLASTP on single GPU, and also it can achieve high availability and fault tolerance. PMID:24955362

  20. High-Speed GPU-Based Fully Three-Dimensional Diffuse Optical Tomographic System

    PubMed Central

    Saikia, Manob Jyoti; Kanhirodan, Rajan; Mohan Vasu, Ram

    2014-01-01

    We have developed a graphics processor unit (GPU-) based high-speed fully 3D system for diffuse optical tomography (DOT). The reduction in execution time of 3D DOT algorithm, a severely ill-posed problem, is made possible through the use of (1) an algorithmic improvement that uses Broyden approach for updating the Jacobian matrix and thereby updating the parameter matrix and (2) the multinode multithreaded GPU and CUDA (Compute Unified Device Architecture) software architecture. Two different GPU implementations of DOT programs are developed in this study: (1) conventional C language program augmented by GPU CUDA and CULA routines (C GPU), (2) MATLAB program supported by MATLAB parallel computing toolkit for GPU (MATLAB GPU). The computation time of the algorithm on host CPU and the GPU system is presented for C and Matlab implementations. The forward computation uses finite element method (FEM) and the problem domain is discretized into 14610, 30823, and 66514 tetrahedral elements. The reconstruction time, so achieved for one iteration of the DOT reconstruction for 14610 elements, is 0.52 seconds for a C based GPU program for 2-plane measurements. The corresponding MATLAB based GPU program took 0.86 seconds. The maximum number of reconstructed frames so achieved is 2 frames per second. PMID:24891848

  1. Scalable simulations for directed self-assembly patterning with the use of GPU parallel computing

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Kenji; Peters, Brandon L.; Khaira, Gurdaman S.; de Pablo, Juan J.

    2012-03-01

    Directed self-assembly (DSA) patterning has been increasingly investigated as an alternative lithographic process for future technology nodes. One of the critical specs for DSA patterning is defects generated through annealing process or by roughness of pre-patterned structure. Due to their high sensitivity to the process and wafer conditions, however, characterization of those defects still remain challenging. DSA simulations can be a powerful tool to predict the formation of the DSA defects. In this work, we propose a new method to perform parallel computing of DSA Monte Carlo (MC) simulations. A consumer graphics card was used to access its hundreds of processing units for parallel computing. By partitioning the simulation system into non-interacting domains, we were able to run MC trial moves in parallel on multiple graphics-processing units (GPUs). Our results show a significant improvement in computational performance.

  2. A high-speed implementation of manifold coordinate representations of hyperspectral imagery: a GPU-based approach to rapid nonlinear modeling

    NASA Astrophysics Data System (ADS)

    Topping, T. Russell; French, James; Hancock, Monte F., Jr.

    2010-04-01

    Working with the Naval Research Laboratory, Celestech has implemented advanced non-linear hyperspectral image (HSI) processing algorithms optimized for Graphics Processing Units (GPU). These algorithms have demonstrated performance improvements of nearly 2 orders of magnitude over optimal CPU-based implementations. The paper briefly covers the architecture of the NIVIDIA GPU to provide a basis for discussing GPU optimization challenges and strategies. The paper then covers optimization approaches employed to extract performance from the GPU implementation of Dr. Bachmann's algorithms including memory utilization and process thread optimization considerations. The paper goes on to discuss strategies for deploying GPU-enabled servers into enterprise service oriented architectures. Also discussed are Celestech's on-going work in the area of middleware frameworks to provide an optimized multi-GPU utilization and scheduling approach that supports both multiple GPUs in a single computer as well as across multiple computers. This paper is a complementary work to the paper submitted by Dr. Charles Bachmann entitled "A Scalable Approach to Modeling Nonlinear Structure in Hyperspectral Imagery and Other High-Dimensional Data Using Manifold Coordinate Representations". Dr. Bachmann's paper covers the algorithmic and theoretical basis for the HSI processing approach.

  3. GPU-assisted computation of centroidal Voronoi tessellation.

    PubMed

    Rong, Guodong; Liu, Yang; Wang, Wenping; Yin, Xiaotian; Gu, Xianfeng David; Guo, Xiaohu

    2011-03-01

    Centroidal Voronoi tessellations (CVT) are widely used in computational science and engineering. The most commonly used method is Lloyd's method, and recently the L-BFGS method is shown to be faster than Lloyd's method for computing the CVT. However, these methods run on the CPU and are still too slow for many practical applications. We present techniques to implement these methods on the GPU for computing the CVT on 2D planes and on surfaces, and demonstrate significant speedup of these GPU-based methods over their CPU counterparts. For CVT computation on a surface, we use a geometry image stored in the GPU to represent the surface for computing the Voronoi diagram on it. In our implementation a new technique is proposed for parallel regional reduction on the GPU for evaluating integrals over Voronoi cells. PMID:21233516

  4. Full waveform time domain solutions for source and induced magnetotelluric and controlled-source electromagnetic fields using quasi-equivalent time domain decomposition and GPU parallelization

    NASA Astrophysics Data System (ADS)

    Imamura, N.; Schultz, A.

    2015-12-01

    Recently, a full waveform time domain solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations of non-zero wavenumber, the ability to operate in areas of high levels of source signal spatial complexity and non-stationarity, etc. This goal would not be obtainable if one were to adopt the finite difference time-domain (FDTD) approach for the forward problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across the large frequency bandwidth. It means that for FDTD simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a linear system that is computationally burdensome to solve. We have implemented our code that addresses this situation through the use of a fictitious wave domain method and GPUs to speed up the computation time. We also substantially reduce the size of the linear systems by applying concepts from successive cascade decimation, through quasi-equivalent time domain decomposition. By combining these refinements, we have made good progress toward implementing the core of a full waveform joint source field/earth conductivity inverse modeling method. From results, we found the use of previous generation of CPU/GPU speeds computations by an order of magnitude over a parallel CPU only approach. In part, this arises from the use of the quasi-equivalent time domain decomposition, which shrinks the size of the linear system dramatically.

  5. Architecting the Finite Element Method Pipeline for the GPU.

    PubMed

    Fu, Zhisong; Lewis, T James; Kirby, Robert M; Whitaker, Ross T

    2014-02-01

    The finite element method (FEM) is a widely employed numerical technique for approximating the solution of partial differential equations (PDEs) in various science and engineering applications. Many of these applications benefit from fast execution of the FEM pipeline. One way to accelerate the FEM pipeline is by exploiting advances in modern computational hardware, such as the many-core streaming processors like the graphical processing unit (GPU). In this paper, we present the algorithms and data-structures necessary to move the entire FEM pipeline to the GPU. First we propose an efficient GPU-based algorithm to generate local element information and to assemble the global linear system associated with the FEM discretization of an elliptic PDE. To solve the corresponding linear system efficiently on the GPU, we implement a conjugate gradient method preconditioned with a geometry-informed algebraic multi-grid (AMG) method preconditioner. We propose a new fine-grained parallelism strategy, a corresponding multigrid cycling stage and efficient data mapping to the many-core architecture of GPU. Comparison of our on-GPU assembly versus a traditional serial implementation on the CPU achieves up to an 87 × speedup. Focusing on the linear system solver alone, we achieve a speedup of up to 51 × versus use of a comparable state-of-the-art serial CPU linear system solver. Furthermore, the method compares favorably with other GPU-based, sparse, linear solvers. PMID:25202164

  6. Architecting the Finite Element Method Pipeline for the GPU

    PubMed Central

    Fu, Zhisong; Lewis, T. James; Kirby, Robert M.

    2014-01-01

    The finite element method (FEM) is a widely employed numerical technique for approximating the solution of partial differential equations (PDEs) in various science and engineering applications. Many of these applications benefit from fast execution of the FEM pipeline. One way to accelerate the FEM pipeline is by exploiting advances in modern computational hardware, such as the many-core streaming processors like the graphical processing unit (GPU). In this paper, we present the algorithms and data-structures necessary to move the entire FEM pipeline to the GPU. First we propose an efficient GPU-based algorithm to generate local element information and to assemble the global linear system associated with the FEM discretization of an elliptic PDE. To solve the corresponding linear system efficiently on the GPU, we implement a conjugate gradient method preconditioned with a geometry-informed algebraic multi-grid (AMG) method preconditioner. We propose a new fine-grained parallelism strategy, a corresponding multigrid cycling stage and efficient data mapping to the many-core architecture of GPU. Comparison of our on-GPU assembly versus a traditional serial implementation on the CPU achieves up to an 87 × speedup. Focusing on the linear system solver alone, we achieve a speedup of up to 51 × versus use of a comparable state-of-the-art serial CPU linear system solver. Furthermore, the method compares favorably with other GPU-based, sparse, linear solvers. PMID:25202164

  7. A Multi-Gigabit Parallel Demodulator and Its FPGA Implementation

    NASA Astrophysics Data System (ADS)

    Lin, Changxing; Zhang, Jian; Shao, Beibei

    This letter presents the architecture of multi-gigabit parallel demodulator suitable for demodulating high order QAM modulated signal and easy to implement on FPGA platform. The parallel architecture is based on frequency domain implementation of matched filter and timing phase correction. Parallel FIFO based delete-keep algorithm is proposed for timing synchronization, while a kind of reduced constellation phase-frequency detector based parallel decision feedback PLL is designed for carrier synchronization. A fully pipelined parallel adaptive blind equalization algorithm is also proposed. Their parallel implementation structures suitable for FPGA platform are investigated. Besides, in the demonstration of 2Gbps demodulator for 16QAM modulation, the architecture is implemented and validated on a Xilinx V6 FPGA platform with performance loss less than 2dB.

  8. Parallel optimization algorithms and their implementation in VLSI design

    NASA Technical Reports Server (NTRS)

    Lee, G.; Feeley, J. J.

    1991-01-01

    Two new parallel optimization algorithms based on the simplex method are described. They may be executed by a SIMD parallel processor architecture and be implemented in VLSI design. Several VLSI design implementations are introduced. An application example is reported to demonstrate that the algorithms are effective.

  9. GPU COMPUTING FOR PARTICLE TRACKING

    SciTech Connect

    Nishimura, Hiroshi; Song, Kai; Muriki, Krishna; Sun, Changchun; James, Susan; Qin, Yong

    2011-03-25

    This is a feasibility study of using a modern Graphics Processing Unit (GPU) to parallelize the accelerator particle tracking code. To demonstrate the massive parallelization features provided by GPU computing, a simplified TracyGPU program is developed for dynamic aperture calculation. Performances, issues, and challenges from introducing GPU are also discussed. General purpose Computation on Graphics Processing Units (GPGPU) bring massive parallel computing capabilities to numerical calculation. However, the unique architecture of GPU requires a comprehensive understanding of the hardware and programming model to be able to well optimize existing applications. In the field of accelerator physics, the dynamic aperture calculation of a storage ring, which is often the most time consuming part of the accelerator modeling and simulation, can benefit from GPU due to its embarrassingly parallel feature, which fits well with the GPU programming model. In this paper, we use the Tesla C2050 GPU which consists of 14 multi-processois (MP) with 32 cores on each MP, therefore a total of 448 cores, to host thousands ot threads dynamically. Thread is a logical execution unit of the program on GPU. In the GPU programming model, threads are grouped into a collection of blocks Within each block, multiple threads share the same code, and up to 48 KB of shared memory. Multiple thread blocks form a grid, which is executed as a GPU kernel. A simplified code that is a subset of Tracy++ [2] is developed to demonstrate the possibility of using GPU to speed up the dynamic aperture calculation by having each thread track a particle.

  10. Parallel Implementation of MAFFT on CUDA-Enabled Graphics Hardware.

    PubMed

    Zhu, Xiangyuan; Li, Kenli; Salah, Ahmad; Shi, Lin; Li, Keqin

    2015-01-01

    Multiple sequence alignment (MSA) constitutes an extremely powerful tool for many biological applications including phylogenetic tree estimation, secondary structure prediction, and critical residue identification. However, aligning large biological sequences with popular tools such as MAFFT requires long runtimes on sequential architectures. Due to the ever increasing sizes of sequence databases, there is increasing demand to accelerate this task. In this paper, we demonstrate how graphic processing units (GPUs), powered by the compute unified device architecture (CUDA), can be used as an efficient computational platform to accelerate the MAFFT algorithm. To fully exploit the GPU's capabilities for accelerating MAFFT, we have optimized the sequence data organization to eliminate the bandwidth bottleneck of memory access, designed a memory allocation and reuse strategy to make full use of limited memory of GPUs, proposed a new modified-run-length encoding (MRLE) scheme to reduce memory consumption, and used high-performance shared memory to speed up I/O operations. Our implementation tested in three NVIDIA GPUs achieves speedup up to 11.28 on a Tesla K20m GPU compared to the sequential MAFFT 7.015. PMID:26357090

  11. Efficient magnetohydrodynamic simulations on distributed multi-GPU systems using a novel GPU Direct-MPI hybrid approach

    NASA Astrophysics Data System (ADS)

    Wong, Un-Hong; Aoki, Takayuki; Wong, Hon-Cheng

    2014-07-01

    Modern graphics processing units (GPUs) have been widely utilized in magnetohydrodynamic (MHD) simulations in recent years. Due to the limited memory of a single GPU, distributed multi-GPU systems are needed to be explored for large-scale MHD simulations. However, the data transfer between GPUs bottlenecks the efficiency of the simulations on such systems. In this paper we propose a novel GPU Direct-MPI hybrid approach to address this problem for overall performance enhancement. Our approach consists of two strategies: (1) We exploit GPU Direct 2.0 to speedup the data transfers between multiple GPUs in a single node and reduce the total number of message passing interface (MPI) communications; (2) We design Compute Unified Device Architecture (CUDA) kernels instead of using memory copy to speedup the fragmented data exchange in the three-dimensional (3D) decomposition. 3D decomposition is usually not preferable for distributed multi-GPU systems due to its low efficiency of the fragmented data exchange. Our approach has made a breakthrough to make 3D decomposition available on distributed multi-GPU systems. As a result, it can reduce the memory usage and computation time of each partition of the computational domain. Experiment results show twice the FLOPS comparing to common 2D decomposition MPI-only implementation method. The proposed approach has been developed in an efficient implementation for MHD simulations on distributed multi-GPU systems, called MGPU-MHD code. The code realizes the GPU parallelization of a total variation diminishing (TVD) algorithm for solving the multidimensional ideal MHD equations, extending our work from single GPU computation (Wong et al., 2011) to multiple GPUs. Numerical tests and performance measurements are conducted on the TSUBAME 2.0 supercomputer at the Tokyo Institute of Technology. Our code achieves 2 TFLOPS in double precision for the problem with 12003 grid points using 216 GPUs.

  12. Design and implementation of a massively parallel version of DIRECT

    SciTech Connect

    He, J.; Verstak, A.; Watson, L.; Sosonkina, M.

    2007-10-24

    This paper describes several massively parallel implementations for a global search algorithm DIRECT. Two parallel schemes take different approaches to address DIRECT's design challenges imposed by memory requirements and data dependency. Three design aspects in topology, data structures, and task allocation are compared in detail. The goal is to analytically investigate the strengths and weaknesses of these parallel schemes, identify several key sources of inefficiency, and experimentally evaluate a number of improvements in the latest parallel DIRECT implementation. The performance studies demonstrate improved data structure efficiency and load balancing on a 2200 processor cluster.

  13. Hyperspectral image feature extraction accelerated by GPU

    NASA Astrophysics Data System (ADS)

    Qu, HaiCheng; Zhang, Ye; Lin, Zhouhan; Chen, Hao

    2012-10-01

    PCA (principal components analysis) algorithm is the most basic method of dimension reduction for high-dimensional data1, which plays a significant role in hyperspectral data compression, decorrelation, denoising and feature extraction. With the development of imaging technology, the number of spectral bands in a hyperspectral image is getting larger and larger, and the data cube becomes bigger in these years. As a consequence, operation of dimension reduction is more and more time-consuming nowadays. Fortunately, GPU-based high-performance computing has opened up a novel approach for hyperspectral data processing6. This paper is concerning on the two main processes in hyperspectral image feature extraction: (1) calculation of transformation matrix; (2) transformation in spectrum dimension. These two processes belong to computationally intensive and data-intensive data processing respectively. Through the introduction of GPU parallel computing technology, an algorithm containing PCA transformation based on eigenvalue decomposition 8(EVD) and feature matching identification is implemented, which is aimed to explore the characteristics of the GPU parallel computing and the prospects of GPU application in hyperspectral image processing by analysing thread invoking and speedup of the algorithm. At last, the result of the experiment shows that the algorithm has reached a 12x speedup in total, in which some certain step reaches higher speedups up to 270 times.

  14. Method for implementation of recursive hierarchical segmentation on parallel computers

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Inventor)

    2005-01-01

    A method, computer readable storage, and apparatus for implementing a recursive hierarchical segmentation algorithm on a parallel computing platform. The method includes setting a bottom level of recursion that defines where a recursive division of an image into sections stops dividing, and setting an intermediate level of recursion where the recursive division changes from a parallel implementation into a serial implementation. The segmentation algorithm is implemented according to the set levels. The method can also include setting a convergence check level of recursion with which the first level of recursion communicates with when performing a convergence check.

  15. Real-time GPU implementation of transverse oscillation vector velocity flow imaging

    NASA Astrophysics Data System (ADS)

    Bradway, David Pierson; Pihl, Michael Johannes; Krebs, Andreas; Tomov, Borislav Gueorguiev; Kjær, Carsten Straso; Nikolov, Svetoslav Ivanov; Jensen, Jørgen Arendt

    2014-03-01

    Rapid estimation of blood velocity and visualization of complex flow patterns are important for clinical use of diagnostic ultrasound. This paper presents real-time processing for two-dimensional (2-D) vector flow imaging which utilizes an off-the-shelf graphics processing unit (GPU). In this work, Open Computing Language (OpenCL) is used to estimate 2-D vector velocity flow in vivo in the carotid artery. Data are streamed live from a BK Medical 2202 Pro Focus UltraView Scanner to a workstation running a research interface software platform. Processing data from a 50 millisecond frame of a duplex vector flow acquisition takes 2.3 milliseconds seconds on an Advanced Micro Devices Radeon HD 7850 GPU card. The detected velocities are accurate to within the precision limit of the output format of the display routine. Because this tool was developed as a module external to the scanner's built-in processing, it enables new opportunities for prototyping novel algorithms, optimizing processing parameters, and accelerating the path from development lab to clinic.

  16. Parallel implementation, validation, and performance of MM5

    SciTech Connect

    Michalakes, J.; Canfield, T.; Nanjundiah, R.; Hammond, S.; Grell, G.

    1994-12-31

    We describe a parallel implementation of the nonhydrostatic version of the Penn State/NCAR Mesoscale Model, MM5, that includes nesting capabilities. This version of the model can run on many different massively Parallel computers (including a cluster of workstations). The model has been implemented and run on the IBM SP and Intel multiprocessors using a columnwise decomposition that supports irregularly shaped allocations of the problem to processors. This stategy will facilitate dynamic load balancing for improved parallel efficiency and promotes a modular design that simplifies the nesting problem AU data communication for finite differencing, inter-domain exchange of data, and I/O is encapsulated within a parallel library, RSL. Hence, there are no sends or receives in the parallel model itself. The library is Generalizable to other, similar finite difference approximation codes. The code is validated by comparing the rate of growth in error between the sequential and parallel models with the error growth rate when the sequential model input is perturbed to simulate floating point rounding error. Series of runs on increasing numbers of parallel processors demonstrate that the parallel implementation is efficient and scalable to large numbers of processors.

  17. Exploration of Optimization Options for Increasing Performance of a GPU Implementation of a Three-dimensional Bilateral Filter

    SciTech Connect

    Bethel, E. Wes; Bethel, E. Wes

    2012-01-06

    This report explores using GPUs as a platform for performing high performance medical image data processing, specifically smoothing using a 3D bilateral filter, which performs anisotropic, edge-preserving smoothing. The algorithm consists of a running a specialized 3D convolution kernel over a source volume to produce an output volume. Overall, our objective is to understand what algorithmic design choices and configuration options lead to optimal performance of this algorithm on the GPU. We explore the performance impact of using different memory access patterns, of using different types of device/on-chip memories, of using strictly aligned and unaligned memory, and of varying the size/shape of thread blocks. Our results reveal optimal configuration parameters for our algorithm when executed sample 3D medical data set, and show performance gains ranging from 30x to over 200x as compared to a single-threaded CPU implementation.

  18. Towards the clinical implementation of iterative low-dose cone-beam CT reconstruction in image-guided radiation therapy: Cone/ring artifact correction and multiple GPU implementation

    SciTech Connect

    Yan, Hao E-mail: xun.jia@utsouthwestern.edu; Shi, Feng; Jiang, Steve B.; Jia, Xun E-mail: xun.jia@utsouthwestern.edu; Wang, Xiaoyu; Cervino, Laura; Bai, Ti; Folkerts, Michael

    2014-11-01

    Purpose: Compressed sensing (CS)-based iterative reconstruction (IR) techniques are able to reconstruct cone-beam CT (CBCT) images from undersampled noisy data, allowing for imaging dose reduction. However, there are a few practical concerns preventing the clinical implementation of these techniques. On the image quality side, data truncation along the superior–inferior direction under the cone-beam geometry produces severe cone artifacts in the reconstructed images. Ring artifacts are also seen in the half-fan scan mode. On the reconstruction efficiency side, the long computation time hinders clinical use in image-guided radiation therapy (IGRT). Methods: Image quality improvement methods are proposed to mitigate the cone and ring image artifacts in IR. The basic idea is to use weighting factors in the IR data fidelity term to improve projection data consistency with the reconstructed volume. In order to improve the computational efficiency, a multiple graphics processing units (GPUs)-based CS-IR system was developed. The parallelization scheme, detailed analyses of computation time at each step, their relationship with image resolution, and the acceleration factors were studied. The whole system was evaluated in various phantom and patient cases. Results: Ring artifacts can be mitigated by properly designing a weighting factor as a function of the spatial location on the detector. As for the cone artifact, without applying a correction method, it contaminated 13 out of 80 slices in a head-neck case (full-fan). Contamination was even more severe in a pelvis case under half-fan mode, where 36 out of 80 slices were affected, leading to poorer soft tissue delineation and reduced superior–inferior coverage. The proposed method effectively corrects those contaminated slices with mean intensity differences compared to FDK results decreasing from ∼497 and ∼293 HU to ∼39 and ∼27 HU for the full-fan and half-fan cases, respectively. In terms of efficiency boost

  19. Towards the clinical implementation of iterative low-dose cone-beam CT reconstruction in image-guided radiation therapy: Cone/ring artifact correction and multiple GPU implementation

    PubMed Central

    Yan, Hao; Wang, Xiaoyu; Shi, Feng; Bai, Ti; Folkerts, Michael; Cervino, Laura; Jiang, Steve B.; Jia, Xun

    2014-01-01

    Purpose: Compressed sensing (CS)-based iterative reconstruction (IR) techniques are able to reconstruct cone-beam CT (CBCT) images from undersampled noisy data, allowing for imaging dose reduction. However, there are a few practical concerns preventing the clinical implementation of these techniques. On the image quality side, data truncation along the superior–inferior direction under the cone-beam geometry produces severe cone artifacts in the reconstructed images. Ring artifacts are also seen in the half-fan scan mode. On the reconstruction efficiency side, the long computation time hinders clinical use in image-guided radiation therapy (IGRT). Methods: Image quality improvement methods are proposed to mitigate the cone and ring image artifacts in IR. The basic idea is to use weighting factors in the IR data fidelity term to improve projection data consistency with the reconstructed volume. In order to improve the computational efficiency, a multiple graphics processing units (GPUs)-based CS-IR system was developed. The parallelization scheme, detailed analyses of computation time at each step, their relationship with image resolution, and the acceleration factors were studied. The whole system was evaluated in various phantom and patient cases. Results: Ring artifacts can be mitigated by properly designing a weighting factor as a function of the spatial location on the detector. As for the cone artifact, without applying a correction method, it contaminated 13 out of 80 slices in a head-neck case (full-fan). Contamination was even more severe in a pelvis case under half-fan mode, where 36 out of 80 slices were affected, leading to poorer soft tissue delineation and reduced superior–inferior coverage. The proposed method effectively corrects those contaminated slices with mean intensity differences compared to FDK results decreasing from ∼497 and ∼293 HU to ∼39 and ∼27 HU for the full-fan and half-fan cases, respectively. In terms of efficiency boost

  20. Advantages of GPU technology in DFT calculations of intercalated graphene

    NASA Astrophysics Data System (ADS)

    Pešić, J.; Gajić, R.

    2014-09-01

    Over the past few years, the expansion of general-purpose graphic-processing unit (GPGPU) technology has had a great impact on computational science. GPGPU is the utilization of a graphics-processing unit (GPU) to perform calculations in applications usually handled by the central processing unit (CPU). Use of GPGPUs as a way to increase computational power in the material sciences has significantly decreased computational costs in already highly demanding calculations. A level of the acceleration and parallelization depends on the problem itself. Some problems can benefit from GPU acceleration and parallelization, such as the finite-difference time-domain algorithm (FTDT) and density-functional theory (DFT), while others cannot take advantage of these modern technologies. A number of GPU-supported applications had emerged in the past several years (www.nvidia.com/object/gpu-applications.html). Quantum Espresso (QE) is reported as an integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nano-scale. It is based on DFT, the use of a plane-waves basis and a pseudopotential approach. Since the QE 5.0 version, it has been implemented as a plug-in component for standard QE packages that allows exploiting the capabilities of Nvidia GPU graphic cards (www.qe-forge.org/gf/proj). In this study, we have examined the impact of the usage of GPU acceleration and parallelization on the numerical performance of DFT calculations. Graphene has been attracting attention worldwide and has already shown some remarkable properties. We have studied an intercalated graphene, using the QE package PHonon, which employs GPU. The term ‘intercalation’ refers to a process whereby foreign adatoms are inserted onto a graphene lattice. In addition, by intercalating different atoms between graphene layers, it is possible to tune their physical properties. Our experiments have shown there are benefits from using GPUs, and we reached an

  1. CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications

    PubMed Central

    2012-01-01

    Background Prediction of ribonucleic acid (RNA) secondary structure remains one of the most important research areas in bioinformatics. The Zuker algorithm is one of the most popular methods of free energy minimization for RNA secondary structure prediction. Thus far, few studies have been reported on the acceleration of the Zuker algorithm on general-purpose processors or on extra accelerators such as Field Programmable Gate-Array (FPGA) and Graphics Processing Units (GPU). To the best of our knowledge, no implementation combines both CPU and extra accelerators, such as GPUs, to accelerate the Zuker algorithm applications. Results In this paper, a CPU-GPU hybrid computing system that accelerates Zuker algorithm applications for RNA secondary structure prediction is proposed. The computing tasks are allocated between CPU and GPU for parallel cooperate execution. Performance differences between the CPU and the GPU in the task-allocation scheme are considered to obtain workload balance. To improve the hybrid system performance, the Zuker algorithm is optimally implemented with special methods for CPU and GPU architecture. Conclusions Speedup of 15.93× over optimized multi-core SIMD CPU implementation and performance advantage of 16% over optimized GPU implementation are shown in the experimental results. More than 14% of the sequences are executed on CPU in the hybrid system. The system combining CPU and GPU to accelerate the Zuker algorithm is proven to be promising and can be applied to other bioinformatics applications. PMID:22369626

  2. CFD Computations on Multi-GPU Configurations.

    NASA Astrophysics Data System (ADS)

    Menon, Sandeep; Perot, Blair

    2007-11-01

    Programmable graphics processors have shown favorable potential for use in practical CFD simulations -- often delivering a speed-up factor between 3 to 5 times over conventional CPUs. In recent times, most PCs are supplied with the option of installing multiple GPUs on a single motherboard, thereby providing the option of a parallel GPU configuration in a shared-memory paradigm. We demonstrate our implementation of an unstructured CFD solver using a set up which is configured to run two GPUs in parallel, and discuss its performance details.

  3. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    SciTech Connect

    Priimak, Dmitri

    2014-12-01

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques.

  4. Multi-GPU kinetic solvers using MPI and CUDA

    NASA Astrophysics Data System (ADS)

    Zabelok, Sergey; Arslanbekov, Robert; Kolobov, Vladimir

    2014-12-01

    This paper describes recent progress towards porting a Unified Flow Solver (UFS) to heterogeneous parallel computing. The main challenge of porting UFS to graphics processing units (GPUs) comes from the dynamically adapted mesh, which causes irregular data access. We describe the implementation of CUDA kernels for three modules in UFS: the direct Boltzmann solver using discrete velocity method (DVM), the DSMC module, and the Lattice Boltzmann Method (LBM) solver, all using octree Cartesian mesh with adaptive Mesh Refinement (AMR). Double digit speedup on single GPU and good scaling for multi-GPU has been demonstrated.

  5. Large scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU)

    PubMed Central

    Shi, Yulin; Veidenbaum, Alexander V.; Nicolau, Alex; Xu, Xiangmin

    2014-01-01

    Background Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post-hoc processing and analysis. New Method Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. Results We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22x speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. Comparison with Existing Method(s) To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Conclusions Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. PMID:25277633

  6. High Performance GPU-Based Fourier Volume Rendering.

    PubMed

    Abdellah, Marwan; Eldeib, Ayman; Sharawi, Amr

    2015-01-01

    Fourier volume rendering (FVR) is a significant visualization technique that has been used widely in digital radiography. As a result of its (N (2)log⁡N) time complexity, it provides a faster alternative to spatial domain volume rendering algorithms that are (N (3)) computationally complex. Relying on the Fourier projection-slice theorem, this technique operates on the spectral representation of a 3D volume instead of processing its spatial representation to generate attenuation-only projections that look like X-ray radiographs. Due to the rapid evolution of its underlying architecture, the graphics processing unit (GPU) became an attractive competent platform that can deliver giant computational raw power compared to the central processing unit (CPU) on a per-dollar-basis. The introduction of the compute unified device architecture (CUDA) technology enables embarrassingly-parallel algorithms to run efficiently on CUDA-capable GPU architectures. In this work, a high performance GPU-accelerated implementation of the FVR pipeline on CUDA-enabled GPUs is presented. This proposed implementation can achieve a speed-up of 117x compared to a single-threaded hybrid implementation that uses the CPU and GPU together by taking advantage of executing the rendering pipeline entirely on recent GPU architectures. PMID:25866499

  7. Many-Body Mean-Field Equations: Parallel implementation

    SciTech Connect

    Vallieres, M.; Umar, S.; Chinn, C.; Strayer, M.

    1993-12-31

    We describe the implementation of Hartree-Fock Many-Body Mean-Field Equations on a Parallel Intel iPSC/860 hypercube. We first discuss the Nuclear Mean-Field approach in physical terms. Then we describe our parallel implementation of this approach on the Intel iPSC/860 hypercube. We discuss and compare the advantages and disadvantages of the domain partition versus the Hilbert space partition for this problem. We conclude by discussing some timing experiments on various computing platforms.

  8. On the design, analysis, and implementation of efficient parallel algorithms

    SciTech Connect

    Sohn, S.M.

    1989-01-01

    There is considerable interest in developing algorithms for a variety of parallel computer architectures. This is not a trivial problem, although for certain models great progress has been made. Recently, general-purpose parallel machines have become available commercially. These machines possess widely varying interconnection topologies and data/instruction access schemes. It is important, therefore, to develop methodologies and design paradigms for not only synthesizing parallel algorithms from initial problem specifications, but also for mapping algorithms between different architectures. This work has considered both of these problems. A systolic array consists of a large collection of simple processors that are interconnected in a uniform pattern. The author has studied in detain the problem of mapping systolic algorithms onto more general-purpose parallel architectures such as the hypercube. The hypercube architecture is notable due to its symmetry and high connectivity, characteristics which are conducive to the efficient embedding of parallel algorithms. Although the parallel-to-parallel mapping techniques have yielded efficient target algorithms, it is not surprising that an algorithm designed directly for a particular parallel model would achieve superior performance. In this context, the author has developed hypercube algorithms for some important problems in speech and signal processing, text processing, language processing and artificial intelligence. These algorithms were implemented on a 64-node NCUBE/7 hypercube machine in order to evaluate their performance.

  9. GPU-based Multilevel Clustering.

    PubMed

    Chiosa, Iurie; Kolb, Andreas

    2010-04-01

    The processing power of parallel co-processors like the Graphics Processing Unit (GPU) are dramatically increasing. However, up until now only a few approaches have been presented to utilize this kind of hardware for mesh clustering purposes. In this paper we introduce a Multilevel clustering technique designed as a parallel algorithm and solely implemented on the GPU. Our formulation uses the spatial coherence present in the cluster optimization and hierarchical cluster merging to significantly reduce the number of comparisons in both parts . Our approach provides a fast, high quality and complete clustering analysis. Furthermore, based on the original concept we present a generalization of the method to data clustering. All advantages of the meshbased techniques smoothly carry over to the generalized clustering approach. Additionally, this approach solves the problem of the missing topological information inherent to general data clustering and leads to a Local Neighbors k-means algorithm. We evaluate both techniques by applying them to Centroidal Voronoi Diagram (CVD) based clustering. Compared to classical approaches, our techniques generate results with at least the same clustering quality. Our technique proves to scale very well, currently being limited only by the available amount of graphics memory. PMID:20421676

  10. GPU-completeness: theory and implications

    NASA Astrophysics Data System (ADS)

    Lin, I.-Jong

    2011-01-01

    This paper formalizes a major insight into a class of algorithms that relate parallelism and performance. The purpose of this paper is to define a class of algorithms that trades off parallelism for quality of result (e.g. visual quality, compression rate), and we propose a similar method for algorithmic classification based on NP-Completeness techniques, applied toward parallel acceleration. We will define this class of algorithm as "GPU-Complete" and will postulate the necessary properties of the algorithms for admission into this class. We will also formally relate his algorithmic space and imaging algorithms space. This concept is based upon our experience in the print production area where GPUs (Graphic Processing Units) have shown a substantial cost/performance advantage within the context of HPdelivered enterprise services and commercial printing infrastructure. While CPUs and GPUs are converging in their underlying hardware and functional blocks, their system behaviors are clearly distinct in many ways: memory system design, programming paradigms, and massively parallel SIMD architecture. There are applications that are clearly suited to each architecture: for CPU: language compilation, word processing, operating systems, and other applications that are highly sequential in nature; for GPU: video rendering, particle simulation, pixel color conversion, and other problems clearly amenable to massive parallelization. While GPUs establishing themselves as a second, distinct computing architecture from CPUs, their end-to-end system cost/performance advantage in certain parts of computation inform the structure of algorithms and their efficient parallel implementations. While GPUs are merely one type of architecture for parallelization, we show that their introduction into the design space of printing systems demonstrate the trade-offs against competing multi-core, FPGA, and ASIC architectures. While each architecture has its own optimal application, we believe

  11. Parallel implementation of WRF double moment 5-class cloud microphysics scheme on multiple GPUs

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    The Weather Research and Forecast (WRF) Double Moment 5-class (WDM5) mixed ice microphysics scheme predicts the mixing ratio of hydrometeors and their number concentrations for warm rain species including clouds and rain. WDM5 can be computed in parallel in the horizontal domain using multi-core GPUs. In order to obtain a better GPU performance, we manually rewrite the original WDM5 Fortran module into a highly parallel CUDA C program. We explore the usage of coalesced memory access and asynchronous data transfer. Our GPU-based WDM5 module is scalable to run on multiple GPUs. By employing one NVIDIA Tesla K40 GPU, our GPU optimization effort on this scheme achieves a speedup of 252x with respect to its CPU counterpart Fortran code running on one CPU core of Intel Xeon E5-2603, whereas the speedup for one CPU socket (4 cores) with respect to one CPU core is only 4.2x. We can even boost the speedup of this scheme to 468x with respect to one CPU core when two NVIDIA Tesla K40 GPUs are applied.

  12. GPU technology as a platform for accelerating physiological systems modeling based on Laguerre-Volterra networks.

    PubMed

    Papadopoulos, Agathoklis; Kostoglou, Kyriaki; Mitsis, Georgios D; Theocharides, Theocharis

    2015-01-01

    The use of a GPGPU programming paradigm (running CUDA-enabled algorithms on GPU cards) in biomedical engineering and biology-related applications have shown promising results. GPU acceleration can be used to speedup computation-intensive models, such as the mathematical modeling of biological systems, which often requires the use of nonlinear modeling approaches with a large number of free parameters. In this context, we developed a CUDA-enabled version of a model which implements a nonlinear identification approach that combines basis expansions and polynomial-type networks, termed Laguerre-Volterra networks and can be used in diverse biological applications. The proposed software implementation uses the GPGPU programming paradigm to take advantage of the inherent parallel characteristics of the aforementioned modeling approach to execute the calculations on the GPU card of the host computer system. The initial results of the GPU-based model presented in this work, show performance improvements over the original MATLAB model. PMID:26736993

  13. A portable implementation of ARPACK for distributed memory parallel architectures

    SciTech Connect

    Maschhoff, K.J.; Sorensen, D.C.

    1996-12-31

    ARPACK is a package of Fortran 77 subroutines which implement the Implicitly Restarted Arnoldi Method used for solving large sparse eigenvalue problems. A parallel implementation of ARPACK is presented which is portable across a wide range of distributed memory platforms and requires minimal changes to the serial code. The communication layers used for message passing are the Basic Linear Algebra Communication Subprograms (BLACS) developed for the ScaLAPACK project and Message Passing Interface(MPI).

  14. Implementation of the NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael A.; Schultz, Matthew; Jin, Haoqiang; Yan, Jerry; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Several features make Java an attractive choice for High Performance Computing (HPC). In order to gauge the applicability of Java to Computational Fluid Dynamics (CFD), we have implemented the NAS (NASA Advanced Supercomputing) Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would position Java closer to Fortran in the competition for CFD applications.

  15. FPGA-Based Filterbank Implementation for Parallel Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Berner, Stephan; DeLeon, Phillip

    1999-01-01

    One approach to parallel digital signal processing decomposes a high bandwidth signal into multiple lower bandwidth (rate) signals by an analysis bank. After processing, the subband signals are recombined into a fullband output signal by a synthesis bank. This paper describes an implementation of the analysis and synthesis banks using (Field Programmable Gate Arrays) FPGAs.

  16. Implementing a Gaussian Process Learning Algorithm in Mixed Parallel Environment

    SciTech Connect

    Chandola, Varun; Vatsavai, Raju

    2011-01-01

    In this paper, we present a scalability analysis of a parallel Gaussian process training algorithm to simultaneously analyze a massive number of time series. We study three different parallel implementations: using threads, MPI, and a hybrid implementation using threads and MPI. We compare the scalability for the multi-threaded implementation on three different hardware platforms: a Mac desktop with two quad-core Intel Xeon processors (16 virtual cores), a Linux cluster node with four quad-core 2.3 GHz AMD Opteron processors, and SGI Altix ICE 8200 cluster node with two quad-core Intel Xeon processors (16 virtual cores). We also study the scalability of the MPI based and the hybrid MPI and thread based implementations on the SGI cluster with 128 nodes (2048 cores). Experimental results show that the hybrid implementation scales better than the multi-threaded and MPI based implementations. The hybrid implementation, using 1536 cores, can analyze a remote sensing data set with over 4 million time series in nearly 5 seconds while the serial algorithm takes nearly 12 hours to process the same data set.

  17. Geological Visualization System with GPU-Based Interpolation

    NASA Astrophysics Data System (ADS)

    Huang, L.; Chen, K.; Lai, Y.; Chang, P.; Song, S.

    2011-12-01

    There has been a large number of research using parallel-processing GPU to accelerate the computation. In Near Surface Geology efficient interpolations are critical for proper interpretation of measured data. Additionally, an appropriate interpolation method for generating proper results depends on the factors such as the dense of the measured locations and the estimation model. Therefore, fast interpolation process is needed to efficiently find a proper interpolation algorithm for a set of collected data. However, a general CPU framework has to process each computation in a sequential manner and is not efficient enough to handle a large number of interpolation generally needed in Near Surface Geology. When carefully observing the interpolation processing, the computation for each grid point is independent from all other computation. Therefore, the GPU parallel framework should be an efficient technology to accelerate the interpolation process which is critical in Near Surface Geology. Thus in this paper we design a geological visualization system whose core includes a set of interpolation algorithms including Nearest Neighbor, Inverse Distance and Kriging. All these interpolation algorithms are implemented using both the CPU framework and GPU framework. The comparison between CPU and GPU implementation in the aspect of precision and processing speed shows that parallel computation can accelerate the interpolation process and also demonstrates the possibility of using GPU-equipped personal computer to replace the expensive workstation. Immediate update at the measurement site is the dream of geologists. In the future the parallel and remote computation ability of cloud will be explored to make the mobile computation on the measurement site possible.

  18. Implementation of ADI: Schemes on MIMD parallel computers

    NASA Technical Reports Server (NTRS)

    Vanderwijngaart, Rob F.

    1993-01-01

    In order to simulate the effects of the impingement of hot exhaust jets of High Performance Aircraft on landing surfaces a multi-disciplinary computation coupling flow dynamics to heat conduction in the runway needs to be carried out. Such simulations, which are essentially unsteady, require very large computational power in order to be completed within a reasonable time frame of the order of an hour. Such power can be furnished by the latest generation of massively parallel computers. These remove the bottleneck of ever more congested data paths to one or a few highly specialized central processing units (CPU's) by having many off-the-shelf CPU's work independently on their own data, and exchange information only when needed. During the past year the first phase of this project was completed, in which the optimal strategy for mapping an ADI-algorithm for the three dimensional unsteady heat equation to a MIMD parallel computer was identified. This was done by implementing and comparing three different domain decomposition techniques that define the tasks for the CPU's in the parallel machine. These implementations were done for a Cartesian grid and Dirichlet boundary conditions. The most promising technique was then used to implement the heat equation solver on a general curvilinear grid with a suite of nontrivial boundary conditions. Finally, this technique was also used to implement the Scalar Penta-diagonal (SP) benchmark, which was taken from the NAS Parallel Benchmarks report. All implementations were done in the programming language C on the Intel iPSC/860 computer.

  19. GPU Lossless Hyperspectral Data Compression System for Space Applications

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Aranki, Nazeeh; Hopson, Ben; Kiely, Aaron; Klimesh, Matthew; Benkrid, Khaled

    2012-01-01

    On-board lossless hyperspectral data compression reduces data volume in order to meet NASA and DoD limited downlink capabilities. At JPL, a novel, adaptive and predictive technique for lossless compression of hyperspectral data, named the Fast Lossless (FL) algorithm, was recently developed. This technique uses an adaptive filtering method and achieves state-of-the-art performance in both compression effectiveness and low complexity. Because of its outstanding performance and suitability for real-time onboard hardware implementation, the FL compressor is being formalized as the emerging CCSDS Standard for Lossless Multispectral & Hyperspectral image compression. The FL compressor is well-suited for parallel hardware implementation. A GPU hardware implementation was developed for FL targeting the current state-of-the-art GPUs from NVIDIA(Trademark). The GPU implementation on a NVIDIA(Trademark) GeForce(Trademark) GTX 580 achieves a throughput performance of 583.08 Mbits/sec (44.85 MSamples/sec) and an acceleration of at least 6 times a software implementation running on a 3.47 GHz single core Intel(Trademark) Xeon(Trademark) processor. This paper describes the design and implementation of the FL algorithm on the GPU. The massively parallel implementation will provide in the future a fast and practical real-time solution for airborne and space applications.

  20. Computationally efficient implementation of combustion chemistry in parallel PDF calculations

    NASA Astrophysics Data System (ADS)

    Lu, Liuyan; Lantz, Steven R.; Ren, Zhuyin; Pope, Stephen B.

    2009-08-01

    In parallel calculations of combustion processes with realistic chemistry, the serial in situ adaptive tabulation (ISAT) algorithm [S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combustion Theory and Modelling, 1 (1997) 41-63; L. Lu, S.B. Pope, An improved algorithm for in situ adaptive tabulation, Journal of Computational Physics 228 (2009) 361-386] substantially speeds up the chemistry calculations on each processor. To improve the parallel efficiency of large ensembles of such calculations in parallel computations, in this work, the ISAT algorithm is extended to the multi-processor environment, with the aim of minimizing the wall clock time required for the whole ensemble. Parallel ISAT strategies are developed by combining the existing serial ISAT algorithm with different distribution strategies, namely purely local processing (PLP), uniformly random distribution (URAN), and preferential distribution (PREF). The distribution strategies enable the queued load redistribution of chemistry calculations among processors using message passing. They are implemented in the software x2f_mpi, which is a Fortran 95 library for facilitating many parallel evaluations of a general vector function. The relative performance of the parallel ISAT strategies is investigated in different computational regimes via the PDF calculations of multiple partially stirred reactors burning methane/air mixtures. The results show that the performance of ISAT with a fixed distribution strategy strongly depends on certain computational regimes, based on how much memory is available and how much overlap exists between tabulated information on different processors. No one fixed strategy consistently achieves good performance in all the regimes. Therefore, an adaptive distribution strategy, which blends PLP, URAN and PREF, is devised and implemented. It yields consistently good performance in all regimes. In the adaptive parallel

  1. Parallelizing Time Using Parareal As Implemented by the SWIM IPS

    NASA Astrophysics Data System (ADS)

    Berry, L. A.; Samaddar, D.; Newman, D. E.; Sanchez, R.

    2010-11-01

    A challenge for time-dependent simulations is to make effective use parallel computers--time cannot be directly parallelized. The Parareal algorithm [Lyons] does parallelize in time, and may run with a shorter wall-clock time at the expense of computer cycles. Parareal iteratively couples a coarse, fast serial solver with a fine, (much) slower solver that runs time slices in parallel. The algorithm specifies how to couple the two solvers and (always) converge to a solution. How efficiently it converges depends on the choice of the coarse solver. This workflow is implemented within the IPS framework to test the use of Parareal in speeding up drift wave simulations. The IPS resource manager is key to the implementation. Tests using the Lorenz system have been successful, and investigations for the drift wave code BETA. [Newman] are now underway [Samaddar]. [Newman] D.E. Newman, et al., Phys. Plasmas 1, 1592 (1994). [Lyons] J.L Lyons, et al., C. R. Acad. Sci. Paris 332, 661 (2001). [Samaddar] D. Samaddar, et al., Journal of Computational Physics 229, 6558 (2010).

  2. Sequential and parallel image restoration: neural network implementations.

    PubMed

    Figueiredo, M T; Leitao, J N

    1994-01-01

    Sequential and parallel image restoration algorithms and their implementations on neural networks are proposed. For images degraded by linear blur and contaminated by additive white Gaussian noise, maximum a posteriori (MAP) estimation and regularization theory lead to the same high dimension convex optimization problem. The commonly adopted strategy (in using neural networks for image restoration) is to map the objective function of the optimization problem into the energy of a predefined network, taking advantage of its energy minimization properties. Departing from this approach, we propose neural implementations of iterative minimization algorithms which are first proved to converge. The developed schemes are based on modified Hopfield (1985) networks of graded elements, with both sequential and parallel updating schedules. An algorithm supported on a fully standard Hopfield network (binary elements and zero autoconnections) is also considered. Robustness with respect to finite numerical precision is studied, and examples with real images are presented. PMID:18296247

  3. Key Techniques of Flat-Earth Phase Removal by Acceleration on the GPU

    NASA Astrophysics Data System (ADS)

    Gao, Zeng; Zeng, Qiming; Jiao, Jian; Cui, Xiai; Liang, Cunren

    2013-01-01

    Because InSAR processing is complex and time-consuming, parallel computing has been drawing more and more attention from researchers. GPUs (Graphics Processing Units) have become an increasingly important parallel platform for image processing in recent years. They are cheap and convenient, compared with large-scale, expensive high performance computing clusters, which have a small marketplace presence. In this paper, a valid parallelism implemented on the GPU is introduced. Taking the flat-earth phase removal for example, we introduced two different techniques that can accelerate applications dramatically on a GPU. From the experiment results, we can see that the result accomplished on the GPU is the same as on the CPU; the two techniques used really work in performance improvement.

  4. GPU-based video motion magnification

    NASA Astrophysics Data System (ADS)

    DomŻał, Mariusz; Jedrasiak, Karol; Sobel, Dawid; Ryt, Artur; Nawrat, Aleksander

    2016-06-01

    Video motion magnification (VMM) allows people see otherwise not visible subtle changes in surrounding world. VMM is also capable of hiding them with a modified version of the algorithm. It is possible to magnify motion related to breathing of patients in hospital to observe it or extinguish it and extract other information from stabilized image sequence for example blood flow. In both cases we would like to perform calculations in real time. Unfortunately, the VMM algorithm requires a great amount of computing power. In the article we suggest that VMM algorithm can be parallelized (each thread processes one pixel) and in order to prove that we implemented the algorithm on GPU using CUDA technology. CPU is used only to grab, write, display frame and schedule work for GPU. Each GPU kernel performs spatial decomposition, reconstruction and motion amplification. In this work we presented approach that achieves a significant speedup over existing methods and allow to VMM process video in real-time. This solution can be used as preprocessing for other algorithms in more complex systems or can find application wherever real time motion magnification would be useful. It is worth to mention that the implementation runs on most modern desktops and laptops compatible with CUDA technology.

  5. Cheaper and faster: How to have your cake and eat it too with GPU implementations of Earth Science simulations.

    NASA Astrophysics Data System (ADS)

    Walsh, S. D.; Saar, M. O.; Bailey, P.; Lilja, D. J.

    2008-12-01

    Many complex natural systems studied in the geosciences are characterized by simple local-scale interactions that result in complex emergent behavior. Simulations of these systems, often implemented in parallel using standard CPU clusters, may be better suited to parallel processing environments with large numbers of simple processors. Such an environment is found in Graphics Processing Units (GPUs) on graphics cards. This presentation discusses graphics card implementations of three example applications from volcanology, seismology, and rock magnetics. These candidate applications involve important modeling techniques, widely employed in physical system simulation: 1) a multiphase lattice-Boltzmann code for geofluidic flows; 2) a spectral-finite-element code for seismic wave propagation simulations; and 3) a least-squares minimization code for interpreting magnetic force microscopy data. Significant performance increases, between one and two orders of magnitude, are seen in all three cases, demonstrating the power of graphics card implementations for these types of simulations.

  6. GPU acceleration of time-domain fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Nowotny, Thomas; Chen, Yu; Li, David Day-Uei

    2016-01-01

    Fluorescence lifetime imaging microscopy (FLIM) plays a significant role in biological sciences, chemistry, and medical research. We propose a graphic processing unit (GPU) based FLIM analysis tool suitable for high-speed, flexible time-domain FLIM applications. With a large number of parallel processors, GPUs can significantly speed up lifetime calculations compared to CPU-OpenMP (parallel computing with multiple CPU cores) based analysis. We demonstrate how to implement and optimize FLIM algorithms on GPUs for both iterative and noniterative FLIM analysis algorithms. The implemented algorithms have been tested on both synthesized and experimental FLIM data. The results show that at the same precision, the GPU analysis can be up to 24-fold faster than its CPU-OpenMP counterpart. This means that even for high-precision but time-consuming iterative FLIM algorithms, GPUs enable fast or even real-time analysis.

  7. GPU accelerated dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Ferroni, Francesco; Tarleton, Edmund; Fitzgerald, Steven

    2014-09-01

    In this paper we analyze the computational bottlenecks in discrete dislocation dynamics modeling (associated with segment-segment interactions as well as the treatment of free surfaces), discuss the parallelization and optimization strategies, and demonstrate the effectiveness of Graphical Processing Unit (GPU) computation in accelerating dislocation dynamics simulations and expanding their scope. Individual algorithmic benchmark tests as well as an example large simulation of a thin film are presented.

  8. Comparing GPU Implementations of Bilateral and Anisotropic Diffusion Filters for 3D Biomedical Datasets

    SciTech Connect

    Howison, Mark

    2010-05-06

    We compare the performance of hand-tuned CUDA implementations of bilateral and anisotropic diffusion filters for denoising 3D MRI datasets. Our tests sweep comparable parameters for the two filters and measure total runtime, memory bandwidth, computational throughput, and mean squared errors relative to a noiseless reference dataset.

  9. Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms

    PubMed Central

    2010-01-01

    Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU) opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU) code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a starting point for modelers to

  10. Comparison of CPU and GPU based coding on low-complexity algorithms for display signals

    NASA Astrophysics Data System (ADS)

    Richter, Thomas; Simon, Sven

    2013-09-01

    Graphics Processing Units (GPUs) are freely programmable massively parallel general purpose processing units and thus offer the opportunity to off-load heavy computations from the CPU to the GPU. One application for GPU programming is image compression, where the massively parallel nature of GPUs promises high speed benefits. This article analyzes the predicaments of data-parallel image coding on the example of two high-throughput coding algorithms. The codecs discussed here were designed to answer a call from the Video Electronics Standards Association (VESA), and require only minimal buffering at encoder and decoder side while avoiding any pixel-based feedback loops limiting the operating frequency of hardware implementations. Comparing CPU and GPU implementations of the codes show that GPU based codes are usually not considerably faster, or perform only with less than ideal rate-distortion performance. Analyzing the details of this result provides theoretical evidence that for any coding engine either parts of the entropy coding and bit-stream build-up must remain serial, or rate-distortion penalties must be paid when offloading all computations on the GPU.

  11. GPU-accelerated adjoint algorithmic differentiation

    NASA Astrophysics Data System (ADS)

    Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe

    2016-03-01

    Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the "tape". Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography.

  12. GPU-Accelerated Adjoint Algorithmic Differentiation

    PubMed Central

    Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe

    2015-01-01

    Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the “tape”. Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography

  13. Parallel implementation of electronic structure energy, gradient, and Hessian calculations.

    PubMed

    Lotrich, V; Flocke, N; Ponton, M; Yau, A D; Perera, A; Deumens, E; Bartlett, R J

    2008-05-21

    ACES III is a newly written program in which the computationally demanding components of the computational chemistry code ACES II [J. F. Stanton et al., Int. J. Quantum Chem. 526, 879 (1992); [ACES II program system, University of Florida, 1994] have been redesigned and implemented in parallel. The high-level algorithms include Hartree-Fock (HF) self-consistent field (SCF), second-order many-body perturbation theory [MBPT(2)] energy, gradient, and Hessian, and coupled cluster singles, doubles, and perturbative triples [CCSD(T)] energy and gradient. For SCF, MBPT(2), and CCSD(T), both restricted HF and unrestricted HF reference wave functions are available. For MBPT(2) gradients and Hessians, a restricted open-shell HF reference is also supported. The methods are programed in a special language designed for the parallelization project. The language is called super instruction assembly language (SIAL). The design uses an extreme form of object-oriented programing. All compute intensive operations, such as tensor contractions and diagonalizations, all communication operations, and all input-output operations are handled by a parallel program written in C and FORTRAN 77. This parallel program, called the super instruction processor (SIP), interprets and executes the SIAL program. By separating the algorithmic complexity (in SIAL) from the complexities of execution on computer hardware (in SIP), a software system is created that allows for very effective optimization and tuning on different hardware architectures with quite manageable effort. PMID:18500853

  14. Parallel implementation of electronic structure energy, gradient, and Hessian calculations

    NASA Astrophysics Data System (ADS)

    Lotrich, V.; Flocke, N.; Ponton, M.; Yau, A. D.; Perera, A.; Deumens, E.; Bartlett, R. J.

    2008-05-01

    ACES III is a newly written program in which the computationally demanding components of the computational chemistry code ACES II [J. F. Stanton et al., Int. J. Quantum Chem. 526, 879 (1992); [ACES II program system, University of Florida, 1994] have been redesigned and implemented in parallel. The high-level algorithms include Hartree-Fock (HF) self-consistent field (SCF), second-order many-body perturbation theory [MBPT(2)] energy, gradient, and Hessian, and coupled cluster singles, doubles, and perturbative triples [CCSD(T)] energy and gradient. For SCF, MBPT(2), and CCSD(T), both restricted HF and unrestricted HF reference wave functions are available. For MBPT(2) gradients and Hessians, a restricted open-shell HF reference is also supported. The methods are programed in a special language designed for the parallelization project. The language is called super instruction assembly language (SIAL). The design uses an extreme form of object-oriented programing. All compute intensive operations, such as tensor contractions and diagonalizations, all communication operations, and all input-output operations are handled by a parallel program written in C and FORTRAN 77. This parallel program, called the super instruction processor (SIP), interprets and executes the SIAL program. By separating the algorithmic complexity (in SIAL) from the complexities of execution on computer hardware (in SIP), a software system is created that allows for very effective optimization and tuning on different hardware architectures with quite manageable effort.

  15. Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations

    PubMed Central

    Hallock, Michael J.; Stone, John E.; Roberts, Elijah; Fry, Corey; Luthey-Schulten, Zaida

    2014-01-01

    Simulation of in vivo cellular processes with the reaction-diffusion master equation (RDME) is a computationally expensive task. Our previous software enabled simulation of inhomogeneous biochemical systems for small bacteria over long time scales using the MPD-RDME method on a single GPU. Simulations of larger eukaryotic systems exceed the on-board memory capacity of individual GPUs, and long time simulations of modest-sized cells such as yeast are impractical on a single GPU. We present a new multi-GPU parallel implementation of the MPD-RDME method based on a spatial decomposition approach that supports dynamic load balancing for workstations containing GPUs of varying performance and memory capacity. We take advantage of high-performance features of CUDA for peer-to-peer GPU memory transfers and evaluate the performance of our algorithms on state-of-the-art GPU devices. We present parallel e ciency and performance results for simulations using multiple GPUs as system size, particle counts, and number of reactions grow. We also demonstrate multi-GPU performance in simulations of the Min protein system in E. coli. Moreover, our multi-GPU decomposition and load balancing approach can be generalized to other lattice-based problems. PMID:24882911

  16. Implementation of a parallel protein structure alignment service on cloud.

    PubMed

    Hung, Che-Lun; Lin, Yaw-Ling

    2013-01-01

    Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform. PMID:23671842

  17. Implementation of a Parallel Protein Structure Alignment Service on Cloud

    PubMed Central

    Hung, Che-Lun; Lin, Yaw-Ling

    2013-01-01

    Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform. PMID:23671842

  18. GPU-Powered Coherent Beamforming

    NASA Astrophysics Data System (ADS)

    Magro, A.; Adami, K. Zarb; Hickish, J.

    2015-03-01

    Graphics processing units (GPU)-based beamforming is a relatively unexplored area in radio astronomy, possibly due to the assumption that any such system will be severely limited by the PCIe bandwidth required to transfer data to the GPU. We have developed a CUDA-based GPU implementation of a coherent beamformer, specifically designed and optimized for deployment at the BEST-2 array which can generate an arbitrary number of synthesized beams for a wide range of parameters. It achieves ˜1.3 TFLOPs on an NVIDIA Tesla K20, approximately 10x faster than an optimized, multithreaded CPU implementation. This kernel has been integrated into two real-time, GPU-based time-domain software pipelines deployed at the BEST-2 array in Medicina: a standalone beamforming pipeline and a transient detection pipeline. We present performance benchmarks for the beamforming kernel as well as the transient detection pipeline with beamforming capabilities as well as results of test observation.

  19. Implementation of an Eta Belt Domain on Parallel Systems

    NASA Technical Reports Server (NTRS)

    Kouatchou, Jules; Rancic, Miodrag; Norris, Peter; Geiger, Jim

    2001-01-01

    We extend the Eta weather model from a regional domain into a belt domain that does not require meridional boundary conditions. We describe how the extension is achieved and the parallel implementation of the code on the Cray T3E and the SGI Origin 2000. We validate the forecast results on the two platforms and examine how the removal of the meridional boundary conditions affects these forecasts. In addition, using several domains of different sizes and resolutions, we present the scaling performance of the code on both systems.

  20. GPU color space conversion

    NASA Astrophysics Data System (ADS)

    Chase, Patrick; Vondran, Gary

    2011-01-01

    Tetrahedral interpolation is commonly used to implement continuous color space conversions from sparse 3D and 4D lookup tables. We investigate the implementation and optimization of tetrahedral interpolation algorithms for GPUs, and compare to the best known CPU implementations as well as to a well known GPU-based trilinear implementation. We show that a 500 NVIDIA GTX-580 GPU is 3x faster than a 1000 Intel Core i7 980X CPU for 3D interpolation, and 9x faster for 4D interpolation. Performance-relevant GPU attributes are explored including thread scheduling, local memory characteristics, global memory hierarchy, and cache behaviors. We consider existing tetrahedral interpolation algorithms and tune based on the structure and branching capabilities of current GPUs. Global memory performance is improved by reordering and expanding the lookup table to ensure optimal access behaviors. Per multiprocessor local memory is exploited to implement optimally coalesced global memory accesses, and local memory addressing is optimized to minimize bank conflicts. We explore the impacts of lookup table density upon computation and memory access costs. Also presented are CPU-based 3D and 4D interpolators, using SSE vector operations that are faster than any previously published solution.

  1. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Ammazzalorso, F.; Bednarz, T.; Jelen, U.

    2014-03-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  2. GPU-based cone-beam reconstruction using wavelet denoising

    NASA Astrophysics Data System (ADS)

    Jin, Kyungchan; Park, Jungbyung; Park, Jongchul

    2012-03-01

    The scattering noise artifact resulted in low-dose projection in repetitive cone-beam CT (CBCT) scans decreases the image quality and lessens the accuracy of the diagnosis. To improve the image quality of low-dose CT imaging, the statistical filtering is more effective in noise reduction. However, image filtering and enhancement during the entire reconstruction process exactly may be challenging due to high performance computing. The general reconstruction algorithm for CBCT data is the filtered back-projection, which for a volume of 512×512×512 takes up to a few minutes on a standard system. To speed up reconstruction, massively parallel architecture of current graphical processing unit (GPU) is a platform suitable for acceleration of mathematical calculation. In this paper, we focus on accelerating wavelet denoising and Feldkamp-Davis-Kress (FDK) back-projection using parallel processing on GPU, utilize compute unified device architecture (CUDA) platform and implement CBCT reconstruction based on CUDA technique. Finally, we evaluate our implementation on clinical tooth data sets. Resulting implementation of wavelet denoising is able to process a 1024×1024 image within 2 ms, except data loading process, and our GPU-based CBCT implementation reconstructs a 512×512×512 volume from 400 projection data in less than 1 minute.

  3. TH-A-19A-04: Latent Uncertainties and Performance of a GPU-Implemented Pre-Calculated Track Monte Carlo Method

    SciTech Connect

    Renaud, M; Seuntjens, J; Roberge, D

    2014-06-15

    Purpose: Assessing the performance and uncertainty of a pre-calculated Monte Carlo (PMC) algorithm for proton and electron transport running on graphics processing units (GPU). While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from recycling a limited number of tracks in the pre-generated track bank is missing from the literature. With a proper uncertainty analysis, an optimal pre-generated track bank size can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pre-generated for electrons and protons using EGSnrc and GEANT4, respectively. The PMC algorithm for track transport was implemented on the CUDA programming framework. GPU-PMC dose distributions were compared to benchmark dose distributions simulated using general-purpose MC codes in the same conditions. A latent uncertainty analysis was performed by comparing GPUPMC dose values to a “ground truth” benchmark while varying the track bank size and primary particle histories. Results: GPU-PMC dose distributions and benchmark doses were within 1% of each other in voxels with dose greater than 50% of Dmax. In proton calculations, a submillimeter distance-to-agreement error was observed at the Bragg Peak. Latent uncertainty followed a Poisson distribution with the number of tracks per energy (TPE) and a track bank of 20,000 TPE produced a latent uncertainty of approximately 1%. Efficiency analysis showed a 937× and 508× gain over a single processor core running DOSXYZnrc for 16 MeV electrons in water and bone, respectively. Conclusion: The GPU-PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty below 1%. The track bank size necessary to achieve an optimal efficiency can be tuned based on the desired uncertainty. Coupled with a model to calculate dose contributions from uncharged particles, GPU-PMC is a candidate for inverse planning of modulated electron radiotherapy

  4. Computing 2D constrained delaunay triangulation using the GPU.

    PubMed

    Qi, Meng; Cao, Thanh-Tung; Tan, Tiow-Seng

    2013-05-01

    We propose the first graphics processing unit (GPU) solution to compute the 2D constrained Delaunay triangulation (CDT) of a planar straight line graph (PSLG) consisting of points and edges. There are many existing CPU algorithms to solve the CDT problem in computational geometry, yet there has been no prior approach to solve this problem efficiently using the parallel computing power of the GPU. For the special case of the CDT problem where the PSLG consists of just points, which is simply the normal Delaunay triangulation (DT) problem, a hybrid approach using the GPU together with the CPU to partially speed up the computation has already been presented in the literature. Our work, on the other hand, accelerates the entire computation on the GPU. Our implementation using the CUDA programming model on NVIDIA GPUs is numerically robust, and runs up to an order of magnitude faster than the best sequential implementations on the CPU. This result is reflected in our experiment with both randomly generated PSLGs and real-world GIS data having millions of points and edges. PMID:23492377

  5. Massively parallel Wang Landau sampling on multiple GPUs

    SciTech Connect

    Yin, Junqi; Landau, D. P.

    2012-01-01

    Wang Landau sampling is implemented on the Graphics Processing Unit (GPU) with the Compute Unified Device Architecture (CUDA). Performances on three different GPU cards, including the new generation Fermi architecture card, are compared with that on a Central Processing Unit (CPU). The parameters for massively parallel Wang Landau sampling are tuned in order to achieve fast convergence. For simulations of the water cluster systems, we obtain an average of over 50 times speedup for a given workload.

  6. A Fast Poisson Solver with Periodic Boundary Conditions for GPU Clusters in Various Configurations

    NASA Astrophysics Data System (ADS)

    Rattermann, Dale Nicholas

    Fast Poisson solvers using the Fast Fourier Transform on uniform grids are especially suited for parallel implementation, making them appropriate for portability on graphical processing unit (GPU) devices. The goal of the following work was to implement, test, and evaluate a fast Poisson solver for periodic boundary conditions for use on a variety of GPU configurations. The solver used in this research was FLASH, an immersed-boundary-based method, which is well suited for complex, time-dependent geometries, has robust adaptive mesh refinement/de-refinement capabilities to capture evolving flow structures, and has been successfully implemented on conventional, parallel supercomputers. However, these solvers are still computationally costly to employ, and the total solver time is dominated by the solution of the pressure Poisson equation using state-of-the-art multigrid methods. FLASH improves the performance of its multigrid solvers by integrating a parallel FFT solver on a uniform grid during a coarse level. This hybrid solver could then be theoretically improved by replacing the highly-parallelizable FFT solver with one that utilizes GPUs, and, thus, was the motivation for my research. In the present work, the CPU-utilizing parallel FFT solver (PFFT) used in the base version of FLASH for solving the Poisson equation on uniform grids has been modified to enable parallel execution on CUDA-enabled GPU devices. New algorithms have been implemented to replace the Poisson solver that decompose the computational domain and send each new block to a GPU for parallel computation. One-dimensional (1-D) decomposition of the computational domain minimizes the amount of network traffic involved in this bandwidth-intensive computation by limiting the amount of all-to-all communication required between processes. Advanced techniques have been incorporated and implemented in a GPU-centric code design, while allowing end users the flexibility of parameter control at runtime in

  7. GPU-based ultrafast IMRT plan optimization

    NASA Astrophysics Data System (ADS)

    Men, Chunhua; Gu, Xuejun; Choi, Dongju; Majumdar, Amitava; Zheng, Ziyi; Mueller, Klaus; Jiang, Steve B.

    2009-11-01

    The widespread adoption of on-board volumetric imaging in cancer radiotherapy has stimulated research efforts to develop online adaptive radiotherapy techniques to handle the inter-fraction variation of the patient's geometry. Such efforts face major technical challenges to perform treatment planning in real time. To overcome this challenge, we are developing a supercomputing online re-planning environment (SCORE) at the University of California, San Diego (UCSD). As part of the SCORE project, this paper presents our work on the implementation of an intensity-modulated radiation therapy (IMRT) optimization algorithm on graphics processing units (GPUs). We adopt a penalty-based quadratic optimization model, which is solved by using a gradient projection method with Armijo's line search rule. Our optimization algorithm has been implemented in CUDA for parallel GPU computing as well as in C for serial CPU computing for comparison purpose. A prostate IMRT case with various beamlet and voxel sizes was used to evaluate our implementation. On an NVIDIA Tesla C1060 GPU card, we have achieved speedup factors of 20-40 without losing accuracy, compared to the results from an Intel Xeon 2.27 GHz CPU. For a specific nine-field prostate IMRT case with 5 × 5 mm2 beamlet size and 2.5 × 2.5 × 2.5 mm3 voxel size, our GPU implementation takes only 2.8 s to generate an optimal IMRT plan. Our work has therefore solved a major problem in developing online re-planning technologies for adaptive radiotherapy.

  8. GPU-based ultrafast IMRT plan optimization.

    PubMed

    Men, Chunhua; Gu, Xuejun; Choi, Dongju; Majumdar, Amitava; Zheng, Ziyi; Mueller, Klaus; Jiang, Steve B

    2009-11-01

    The widespread adoption of on-board volumetric imaging in cancer radiotherapy has stimulated research efforts to develop online adaptive radiotherapy techniques to handle the inter-fraction variation of the patient's geometry. Such efforts face major technical challenges to perform treatment planning in real time. To overcome this challenge, we are developing a supercomputing online re-planning environment (SCORE) at the University of California, San Diego (UCSD). As part of the SCORE project, this paper presents our work on the implementation of an intensity-modulated radiation therapy (IMRT) optimization algorithm on graphics processing units (GPUs). We adopt a penalty-based quadratic optimization model, which is solved by using a gradient projection method with Armijo's line search rule. Our optimization algorithm has been implemented in CUDA for parallel GPU computing as well as in C for serial CPU computing for comparison purpose. A prostate IMRT case with various beamlet and voxel sizes was used to evaluate our implementation. On an NVIDIA Tesla C1060 GPU card, we have achieved speedup factors of 20-40 without losing accuracy, compared to the results from an Intel Xeon 2.27 GHz CPU. For a specific nine-field prostate IMRT case with 5 x 5 mm(2) beamlet size and 2.5 x 2.5 x 2.5 mm(3) voxel size, our GPU implementation takes only 2.8 s to generate an optimal IMRT plan. Our work has therefore solved a major problem in developing online re-planning technologies for adaptive radiotherapy. PMID:19826201

  9. Quaternary Morphodynamics of Fluvial Dispersal Systems Revealed: The Fly River, PNG, and the Sunda Shelf, SE Asia, simulated with the Massively Parallel GPU-based Model 'GULLEM'

    NASA Astrophysics Data System (ADS)

    Aalto, R. E.; Lauer, J. W.; Darby, S. E.; Best, J.; Dietrich, W. E.

    2015-12-01

    During glacial-marine transgressions vast volumes of sediment are deposited due to the infilling of lowland fluvial systems and shallow shelves, material that is removed during ensuing regressions. Modelling these processes would illuminate system morphodynamics, fluxes, and 'complexity' in response to base level change, yet such problems are computationally formidable. Environmental systems are characterized by strong interconnectivity, yet traditional supercomputers have slow inter-node communication -- whereas rapidly advancing Graphics Processing Unit (GPU) technology offers vastly higher (>100x) bandwidths. GULLEM (GpU-accelerated Lowland Landscape Evolution Model) employs massively parallel code to simulate coupled fluvial-landscape evolution for complex lowland river systems over large temporal and spatial scales. GULLEM models the accommodation space carved/infilled by representing a range of geomorphic processes, including: river & tributary incision within a multi-directional flow regime, non-linear diffusion, glacial-isostatic flexure, hydraulic geometry, tectonic deformation, sediment production, transport & deposition, and full 3D tracking of all resulting stratigraphy. Model results concur with the Holocene dynamics of the Fly River, PNG -- as documented with dated cores, sonar imaging of floodbasin stratigraphy, and the observations of topographic remnants from LGM conditions. Other supporting research was conducted along the Mekong River, the largest fluvial system of the Sunda Shelf. These and other field data provide tantalizing empirical glimpses into the lowland landscapes of large rivers during glacial-interglacial transitions, observations that can be explored with this powerful numerical model. GULLEM affords estimates for the timing and flux budgets within the Fly and Sunda Systems, illustrating complex internal system responses to the external forcing of sea level and climate. Furthermore, GULLEM can be applied to most ANY fluvial system to

  10. Design and implementation of highly parallel pipelined VLSI systems

    NASA Astrophysics Data System (ADS)

    Delange, Alphonsus Anthonius Jozef

    A methodology and its realization as a prototype CAD (Computer Aided Design) system for the design and analysis of complex multiprocessor systems is presented. The design is an iterative process in which the behavioral specifications of the system components are refined into structural descriptions consisting of interconnections and lower level components etc. A model for the representation and analysis of multiprocessor systems at several levels of abstraction and an implementation of a CAD system based on this model are described. A high level design language, an object oriented development kit for tool design, a design data management system, and design and analysis tools such as a high level simulator and graphics design interface which are integrated into the prototype system and graphics interface are described. Procedures for the synthesis of semiregular processor arrays, and to compute the switching of input/output signals, memory management and control of processor array, and sequencing and segmentation of input/output data streams due to partitioning and clustering of the processor array during the subsequent synthesis steps, are described. The architecture and control of a parallel system is designed and each component mapped to a module or module generator in a symbolic layout library, compacted for design rules of VLSI (Very Large Scale Integration) technology. An example of the design of a processor that is a useful building block for highly parallel pipelined systems in the signal/image processing domains is given.

  11. GPU-specific reformulations of image compression algorithms

    NASA Astrophysics Data System (ADS)

    Matela, Jiří; Holub, Petr; Jirman, Martin; Årom, Martin

    2012-10-01

    Image compression has a number of applications in various fields, where processing throughput and/or latency is a crucial attribute and the main limitation of state-of-the-art implementations of compression algorithms. At the same time contemporary GPU platforms provide tremendous processing power but they call for specific algorithm design. We discuss key components of successful design of compression algorithms for GPUs and demonstrate this on JPEG and JPEG2000 implementations, each of which contains several types of algorithms requiring different approaches to efficient parallelization for GPUs. Performance evaluation of the optimized JPEG and JPEG2000 chain is used to demonstrate the importance of various aspects of GPU programming, especially with respect to real-time applications.

  12. Ensemble Smoother implemented in parallel for groundwater problems applications

    NASA Astrophysics Data System (ADS)

    Leyva, E.; Herrera, G. S.; de la Cruz, L. M.

    2013-05-01

    Data assimilation is a process that links forecasting models and measurements using the benefits from both sources. The Ensemble Kalman Filter (EnKF) is a data-assimilation sequential-method that was designed to address two of the main problems related to the use of the Extended Kalman Filter (EKF) with nonlinear models in large state spaces, i-e the use of a closure problem and massive computational requirements associated with the storage and subsequent integration of the error covariance matrix. The EnKF has gained popularity because of its simple conceptual formulation and relative ease of implementation. It has been used successfully in various applications of meteorology and oceanography and more recently in petroleum engineering and hydrogeology. The Ensemble Smoother (ES) is a method similar to EnKF, it was proposed by Van Leeuwen and Evensen (1996). Herrera (1998) proposed a version of the ES which we call Ensemble Smoother of Herrera (ESH) to distinguish it from the former. It was introduced for space-time optimization of groundwater monitoring networks. In recent years, this method has been used for data assimilation and parameter estimation in groundwater flow and transport models. The ES method uses Monte Carlo simulation, which consists of generating repeated realizations of the random variable considered, using a flow and transport model. However, often a large number of model runs are required for the moments of the variable to converge. Therefore, depending on the complexity of problem a serial computer may require many hours of continuous use to apply the ES. For this reason, it is required to parallelize the process in order to do it in a reasonable time. In this work we present the results of a parallelization strategy to reduce the execution time for doing a high number of realizations. The software GWQMonitor by Herrera (1998), implements all the algorithms required for the ESH in Fortran 90. We develop a script in Python using mpi4py, in

  13. Highly parallel implementation of non-adiabatic Ehrenfest molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kanai, Yosuke; Schleife, Andre; Draeger, Erik; Anisimov, Victor; Correa, Alfredo

    2014-03-01

    While the adiabatic Born-Oppenheimer approximation tremendously lowers computational effort, many questions in modern physics, chemistry, and materials science require an explicit description of coupled non-adiabatic electron-ion dynamics. Electronic stopping, i.e. the energy transfer of a fast projectile atom to the electronic system of the target material, is a notorious example. We recently implemented real-time time-dependent density functional theory based on the plane-wave pseudopotential formalism in the Qbox/qb@ll codes. We demonstrate that explicit integration using a fourth-order Runge-Kutta scheme is very suitable for modern highly parallelized supercomputers. Applying the new implementation to systems with hundreds of atoms and thousands of electrons, we achieved excellent performance and scalability on a large number of nodes both on the BlueGene based ``Sequoia'' system at LLNL as well as the Cray architecture of ``Blue Waters'' at NCSA. As an example, we discuss our work on computing the electronic stopping power of aluminum and gold for hydrogen projectiles, showing an excellent agreement with experiment. These first-principles calculations allow us to gain important insight into the the fundamental physics of electronic stopping.

  14. SAR wind retrieval: from Singlecore to Multicore and GPU computing

    NASA Astrophysics Data System (ADS)

    Myasoedov, Alexander; Monzikova, Anna

    The large spatial coverage and high resolution of spaceborne synthetic aperture radars (SAR) offers a unique opportunity to derive mesoscale wind fields over the ocean surface, providing high resolution wind fields near the shore. On the other hand, due to the large size of SAR images their processing might be a headache when dealing with operational tasks or doing long-period statistical analysis. Algorithms for satellite image processing often offer many possibilities for parallelism (e.g., pixel-by-pixel processing) which makes them good candidates for execution on high-performance parallel computing hardware such as Multicore CPUs and modern graphic processing units (GPUs). In this study we implement different SAR wind speed retrieval algorithms (e.g. CMOD4, CMOD5) for Singlecore and Multicore systems, including GPUs. For this purpose both serial and parallelized versions of CMOD algorithms were written in Matlab, Python, CPython and PyOpenCL. We apply these algorithms to an Envisat ASAR image, compare the results received with different versions of the algorithms executed on both Intel CPU and a Tesla GPU. As a result of our experiments we not only show the up to 400 times speedup of GPU comparing to CPU but also try to give some advises on how much time we have spent and efforts were made for writing the same algorithm using different programming languages. We hope that our experience will help other scientist to achieve all the goodness from the GPU/Multicore computing.

  15. Cpu/gpu Computing for AN Implicit Multi-Block Compressible Navier-Stokes Solver on Heterogeneous Platform

    NASA Astrophysics Data System (ADS)

    Deng, Liang; Bai, Hanli; Wang, Fang; Xu, Qingxin

    2016-06-01

    CPU/GPU computing allows scientists to tremendously accelerate their numerical codes. In this paper, we port and optimize a double precision alternating direction implicit (ADI) solver for three-dimensional compressible Navier-Stokes equations from our in-house Computational Fluid Dynamics (CFD) software on heterogeneous platform. First, we implement a full GPU version of the ADI solver to remove a lot of redundant data transfers between CPU and GPU, and then design two fine-grain schemes, namely “one-thread-one-point” and “one-thread-one-line”, to maximize the performance. Second, we present a dual-level parallelization scheme using the CPU/GPU collaborative model to exploit the computational resources of both multi-core CPUs and many-core GPUs within the heterogeneous platform. Finally, considering the fact that memory on a single node becomes inadequate when the simulation size grows, we present a tri-level hybrid programming pattern MPI-OpenMP-CUDA that merges fine-grain parallelism using OpenMP and CUDA threads with coarse-grain parallelism using MPI for inter-node communication. We also propose a strategy to overlap the computation with communication using the advanced features of CUDA and MPI programming. We obtain speedups of 6.0 for the ADI solver on one Tesla M2050 GPU in contrast to two Xeon X5670 CPUs. Scalability tests show that our implementation can offer significant performance improvement on heterogeneous platform.

  16. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.

    PubMed

    Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

    2012-09-01

    Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC

  17. GPU-Based Visualization of 3D Fluid Interfaces using Level Set Methods

    NASA Astrophysics Data System (ADS)

    Kadlec, B. J.

    2009-12-01

    We model a simple 3D fluid-interface problem using the level set method and visualize the interface as a dynamic surface. Level set methods allow implicit handling of complex topologies deformed by evolutions where sharp changes and cusps are present without destroying the representation. We present a highly optimized visualization and computation algorithm that is implemented in CUDA to run on the NVIDIA GeForce 295 GTX. CUDA is a general purpose parallel computing architecture that allows the NVIDIA GPU to be treated like a data parallel supercomputer in order to solve many computational problems in a fraction of the time required on a CPU. CUDA is compared to the new OpenCL™ (Open Computing Language), which is designed to run on heterogeneous computing environments but does not take advantage of low-level features in NVIDIA hardware that provide significant speedups. Therefore, our technique is implemented using CUDA and results are compared to a single CPU implementation to show the benefits of using the GPU and CUDA for visualizing fluid-interface problems. We solve a 1024^3 problem and experience significant speedup using the NVIDIA GeForce 295 GTX. Implementation details for mapping the problem to the GPU architecture are described as well as discussion on porting the technique to heterogeneous devices (AMD, Intel, IBM) using OpenCL. The results present a new interactive system for computing and visualizing the evolution of fluid interface problems on the GPU.

  18. Parallel implementation of multireference coupled-cluster theories based on the reference-level parallelism

    SciTech Connect

    Brabec, Jiri; Pittner, Jiri; van Dam, Hubertus JJ; Apra, Edoardo; Kowalski, Karol

    2012-02-01

    A novel algorithm for implementing general type of multireference coupled-cluster (MRCC) theory based on the Jeziorski-Monkhorst exponential Ansatz [B. Jeziorski, H.J. Monkhorst, Phys. Rev. A 24, 1668 (1981)] is introduced. The proposed algorithm utilizes processor groups to calculate the equations for the MRCC amplitudes. In the basic formulation each processor group constructs the equations related to a specific subset of references. By flexible choice of processor groups and subset of reference-specific sufficiency conditions designated to a given group one can assure optimum utilization of available computing resources. The performance of this algorithm is illustrated on the examples of the Brillouin-Wigner and Mukherjee MRCC methods with singles and doubles (BW-MRCCSD and Mk-MRCCSD). A significant improvement in scalability and in reduction of time to solution is reported with respect to recently reported parallel implementation of the BW-MRCCSD formalism [J.Brabec, H.J.J. van Dam, K. Kowalski, J. Pittner, Chem. Phys. Lett. 514, 347 (2011)].

  19. Bin recycling strategy for improving the histogram precision on GPU

    NASA Astrophysics Data System (ADS)

    Cárdenas-Montes, Miguel; Rodríguez-Vázquez, Juan José; Vega-Rodríguez, Miguel A.

    2016-07-01

    Histogram is an easily comprehensible way to present data and analyses. In the current scientific context with access to large volumes of data, the processing time for building histogram has dramatically increased. For this reason, parallel construction is necessary to alleviate the impact of the processing time in the analysis activities. In this scenario, GPU computing is becoming widely used for reducing until affordable levels the processing time of histogram construction. Associated to the increment of the processing time, the implementations are stressed on the bin-count accuracy. Accuracy aspects due to the particularities of the implementations are not usually taken into consideration when building histogram with very large data sets. In this work, a bin recycling strategy to create an accuracy-aware implementation for building histogram on GPU is presented. In order to evaluate the approach, this strategy was applied to the computation of the three-point angular correlation function, which is a relevant function in Cosmology for the study of the Large Scale Structure of Universe. As a consequence of the study a high-accuracy implementation for histogram construction on GPU is proposed.

  20. GPU computing with Kaczmarz’s and other iterative algorithms for linear systems

    PubMed Central

    Elble, Joseph M.; Sahinidis, Nikolaos V.; Vouzis, Panagiotis

    2009-01-01

    The graphics processing unit (GPU) is used to solve large linear systems derived from partial differential equations. The differential equations studied are strongly convection-dominated, of various sizes, and common to many fields, including computational fluid dynamics, heat transfer, and structural mechanics. The paper presents comparisons between GPU and CPU implementations of several well-known iterative methods, including Kaczmarz’s, Cimmino’s, component averaging, conjugate gradient normal residual (CGNR), symmetric successive overrelaxation-preconditioned conjugate gradient, and conjugate-gradient-accelerated component-averaged row projections (CARP-CG). Computations are preformed with dense as well as general banded systems. The results demonstrate that our GPU implementation outperforms CPU implementations of these algorithms, as well as previously studied parallel implementations on Linux clusters and shared memory systems. While the CGNR method had begun to fall out of favor for solving such problems, for the problems studied in this paper, the CGNR method implemented on the GPU performed better than the other methods, including a cluster implementation of the CARP-CG method. PMID:20526446

  1. GPU accelerated dynamic functional connectivity analysis for functional MRI data.

    PubMed

    Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu

    2015-07-01

    Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses. PMID:25805449

  2. SU-E-T-395: Multi-GPU-Based VMAT Treatment Plan Optimization Using a Column-Generation Approach

    SciTech Connect

    Tian, Z; Shi, F; Jia, X; Jiang, S; Peng, F

    2014-06-01

    Purpose: GPU has been employed to speed up VMAT optimizations from hours to minutes. However, its limited memory capacity makes it difficult to handle cases with a huge dose-deposition-coefficient (DDC) matrix, e.g. those with a large target size, multiple arcs, small beam angle intervals and/or small beamlet size. We propose multi-GPU-based VMAT optimization to solve this memory issue to make GPU-based VMAT more practical for clinical use. Methods: Our column-generation-based method generates apertures sequentially by iteratively searching for an optimal feasible aperture (referred as pricing problem, PP) and optimizing aperture intensities (referred as master problem, MP). The PP requires access to the large DDC matrix, which is implemented on a multi-GPU system. Each GPU stores a DDC sub-matrix corresponding to one fraction of beam angles and is only responsible for calculation related to those angles. Broadcast and parallel reduction schemes are adopted for inter-GPU data transfer. MP is a relatively small-scale problem and is implemented on one GPU. One headand- neck cancer case was used for test. Three different strategies for VMAT optimization on single GPU were also implemented for comparison: (S1) truncating DDC matrix to ignore its small value entries for optimization; (S2) transferring DDC matrix part by part to GPU during optimizations whenever needed; (S3) moving DDC matrix related calculation onto CPU. Results: Our multi-GPU-based implementation reaches a good plan within 1 minute. Although S1 was 10 seconds faster than our method, the obtained plan quality is worse. Both S2 and S3 handle the full DDC matrix and hence yield the same plan as in our method. However, the computation time is longer, namely 4 minutes and 30 minutes, respectively. Conclusion: Our multi-GPU-based VMAT optimization can effectively solve the limited memory issue with good plan quality and high efficiency, making GPUbased ultra-fast VMAT planning practical for real clinical use.

  3. A Parallel Implementation of Multilevel Recursive Spectral Bisection for Application to Adaptive Unstructured Meshes. Chapter 1

    NASA Technical Reports Server (NTRS)

    Barnard, Stephen T.; Simon, Horst; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    The design of a parallel implementation of multilevel recursive spectral bisection is described. The goal is to implement a code that is fast enough to enable dynamic repartitioning of adaptive meshes.

  4. The experience of GPU calculations at Lunarc

    NASA Astrophysics Data System (ADS)

    Sjöström, Anders; Lindemann, Jonas; Church, Ross

    2011-09-01

    To meet the ever increasing demand for computational speed and use of ever larger datasets, multi GPU instal- lations look very tempting. Lunarc and the Theoretical Astrophysics group at Lund Observatory collaborate on a pilot project to evaluate and utilize multi-GPU architectures for scientific calculations. Starting with a small workshop in 2009, continued investigations eventually lead to the procurement of the GPU-resource Timaeus, which is a four-node eight-GPU cluster with two Nvidia m2050 GPU-cards per node. The resource is housed within the larger cluster Platon and share disk-, network- and system resources with that cluster. The inaugu- ration of Timaeus coincided with the meeting "Computational Physics with GPUs" in November 2010, hosted by the Theoretical Astrophysics group at Lund Observatory. The meeting comprised of a two-day workshop on GPU-computing and a two-day science meeting on using GPUs as a tool for computational physics research, with a particular focus on astrophysics and computational biology. Today Timaeus is used by research groups from Lund, Stockholm and Lule in fields ranging from Astrophysics to Molecular Chemistry. We are investigating the use of GPUs with commercial software packages and user supplied MPI-enabled codes. Looking ahead, Lunarc will be installing a new cluster during the summer of 2011 which will have a small number of GPU-enabled nodes that will enable us to continue working with the combination of parallel codes and GPU-computing. It is clear that the combination of GPUs/CPUs is becoming an important part of high performance computing and here we will describe what has been done at Lunarc regarding GPU-computations and how we will continue to investigate the new and coming multi-GPU servers and how they can be utilized in our environment.

  5. HOOMD-blue - scaling up from one desktop GPU to Titan

    NASA Astrophysics Data System (ADS)

    Glaser, Jens; Anderson, Joshua A.; Glotzer, Sharon C.

    2014-03-01

    Scaling molecular dynamics simulations from one to many GPUs presents unique challenges. Due to the high parallel efficiency of a single GPU, communication processes become a bottleneck when multiple GPUs are combined in parallel and limit scaling. We show how the fastest general-purpose molecular dynamics code currently available for single GPUs, HOOMD-blue, has been extended using spatial domain decomposition to run efficiently on tens or hundreds of GPUs. A key to parallel efficiency is a highly optimized communication pattern using locally load-balancing algorithms fully implemented on the GPU. We will discuss comparisons to other state-of-the-art codes (LAMMPS) and present preliminary benchmarks on the Titan super computer.

  6. GPU acceleration of melody accurate matching in query-by-humming.

    PubMed

    Xiao, Limin; Zheng, Yao; Tang, Wenqi; Yao, Guangchao; Ruan, Li

    2014-01-01

    With the increasing scale of the melody database, the query-by-humming system faces the trade-offs between response speed and retrieval accuracy. Melody accurate matching is the key factor to restrict the response speed. In this paper, we present a GPU acceleration method for melody accurate matching, in order to improve the response speed without reducing retrieval accuracy. The method develops two parallel strategies (intra-task parallelism and inter-task parallelism) to obtain accelerated effects. The efficiency of our method is validated through extensive experiments. Evaluation results show that our single GPU implementation achieves 20x to 40x speedup ratio, when compared to a typical general purpose CPU's execution time. PMID:24693239

  7. A parallel mixed 3D grid/explicit FEM scheme for computing elastic wave propagation on a GPU using an irregular mesh

    NASA Astrophysics Data System (ADS)

    Cherry, Matthew R.; Aldrin, John C.; Boehnlein, Thomas; Blackshire, James L.

    2013-01-01

    In this work, a combined grid/FEM method that is capable of using parallelepiped or tetragonal mesh elements, as well as a combination of the two, is investigated. A formulation was developed that leverages the architecture of GPUs with irregular grids to efficiently address complex structures and heterogeneous materials. Benchmark studies are presented comparing the computational time, memory requirements, and simulation accuracy for GPU and CPU solvers with several challenge NDE problems.

  8. A GPU-accelerated direct-sum boundary integral Poisson-Boltzmann solver

    NASA Astrophysics Data System (ADS)

    Geng, Weihua; Jacob, Ferosh

    2013-06-01

    In this paper, we present a GPU-accelerated direct-sum boundary integral method to solve the linear Poisson-Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace based linear algebraic solver such as the GMRES. The molecular surfaces are discretized with flat triangles and centroid collocation. To speed up our method, we take advantage of the parallel nature of the boundary integral formulation and parallelize the schemes within CUDA shared memory architecture on GPU. The schemes use only 11N+6Nc size-of-double device memory for a biomolecule with N triangular surface elements and Nc partial charges. Numerical tests of these schemes show well-maintained accuracy and fast convergence. The GPU implementation using one GPU card (Nvidia Tesla M2070) achieves 120-150X speed-up to the implementation using one CPU (Intel L5640 2.27 GHz). With our approach, solving PB equations on well-discretized molecular surfaces with up to 300,000 boundary elements will take less than about 10 min, hence our approach is particularly suitable for fast electrostatics computations on small to medium biomolecules.

  9. Parallel Implementation of a High Order Implicit Collocation Method for the Heat Equation

    NASA Technical Reports Server (NTRS)

    Kouatchou, Jules; Halem, Milton (Technical Monitor)

    2000-01-01

    We combine a high order compact finite difference approximation and collocation techniques to numerically solve the two dimensional heat equation. The resulting method is implicit arid can be parallelized with a strategy that allows parallelization across both time and space. We compare the parallel implementation of the new method with a classical implicit method, namely the Crank-Nicolson method, where the parallelization is done across space only. Numerical experiments are carried out on the SGI Origin 2000.

  10. Scalable Unix commands for parallel processors : a high-performance implementation.

    SciTech Connect

    Ong, E.; Lusk, E.; Gropp, W.

    2001-06-22

    We describe a family of MPI applications we call the Parallel Unix Commands. These commands are natural parallel versions of common Unix user commands such as ls, ps, and find, together with a few similar commands particular to the parallel environment. We describe the design and implementation of these programs and present some performance results on a 256-node Linux cluster. The Parallel Unix Commands are open source and freely available.

  11. GPU-Accelerated Forward and Back-Projections with Spatially Varying Kernels for 3D DIRECT TOF PET Reconstruction

    PubMed Central

    Ha, S.; Matej, S.; Ispiryan, M.; Mueller, K.

    2013-01-01

    We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with. PMID:23531763

  12. MASSIVELY PARALLEL LATENT SEMANTIC ANALYSES USING A GRAPHICS PROCESSING UNIT

    SciTech Connect

    Cavanagh, J.; Cui, S.

    2009-01-01

    Latent Semantic Analysis (LSA) aims to reduce the dimensions of large term-document datasets using Singular Value Decomposition. However, with the ever-expanding size of datasets, current implementations are not fast enough to quickly and easily compute the results on a standard PC. A graphics processing unit (GPU) can solve some highly parallel problems much faster than a traditional sequential processor or central processing unit (CPU). Thus, a deployable system using a GPU to speed up large-scale LSA processes would be a much more effective choice (in terms of cost/performance ratio) than using a PC cluster. Due to the GPU’s application-specifi c architecture, harnessing the GPU’s computational prowess for LSA is a great challenge. We presented a parallel LSA implementation on the GPU, using NVIDIA® Compute Unifi ed Device Architecture and Compute Unifi ed Basic Linear Algebra Subprograms software. The performance of this implementation is compared to traditional LSA implementation on a CPU using an optimized Basic Linear Algebra Subprograms library. After implementation, we discovered that the GPU version of the algorithm was twice as fast for large matrices (1 000x1 000 and above) that had dimensions not divisible by 16. For large matrices that did have dimensions divisible by 16, the GPU algorithm ran fi ve to six times faster than the CPU version. The large variation is due to architectural benefi ts of the GPU for matrices divisible by 16. It should be noted that the overall speeds for the CPU version did not vary from relative normal when the matrix dimensions were divisible by 16. Further research is needed in order to produce a fully implementable version of LSA. With that in mind, the research we presented shows that the GPU is a viable option for increasing the speed of LSA, in terms of cost/performance ratio.

  13. A Framework for Batched and GPU-Resident Factorization Algorithms Applied to Block Householder Transformations

    SciTech Connect

    Dong, Tingzing Tim; Tomov, Stanimire Z; Luszczek, Piotr R; Dongarra, Jack J

    2015-01-01

    As modern hardware keeps evolving, an increasingly effective approach to developing energy efficient and high-performance solvers is to design them to work on many small size and independent problems. Many applications already need this functionality, especially for GPUs, which are currently known to be about four to five times more energy efficient than multicore CPUs. We describe the development of one-sided factorizations that work for a set of small dense matrices in parallel, and we illustrate our techniques on the QR factorization based on Householder transformations. We refer to this mode of operation as a batched factorization. Our approach is based on representing the algorithms as a sequence of batched BLAS routines for GPU-only execution. This is in contrast to the hybrid CPU-GPU algorithms that rely heavily on using the multicore CPU for specific parts of the workload. But for a system to benefit fully from the GPU's significantly higher energy efficiency, avoiding the use of the multicore CPU must be a primary design goal, so the system can rely more heavily on the more efficient GPU. Additionally, this will result in the removal of the costly CPU-to-GPU communication. Furthermore, we do not use a single symmetric multiprocessor(on the GPU) to factorize a single problem at a time. We illustrate how our performance analysis, and the use of profiling and tracing tools, guided the development and optimization of our batched factorization to achieve up to a 2-fold speedup and a 3-fold energy efficiency improvement compared to our highly optimized batched CPU implementations based on the MKL library(when using two sockets of Intel Sandy Bridge CPUs). Compared to a batched QR factorization featured in the CUBLAS library for GPUs, we achieved up to 5x speedup on the K40 GPU.

  14. Simulating spin models on GPU

    NASA Astrophysics Data System (ADS)

    Weigel, Martin

    2011-09-01

    Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.

  15. On Efficient Parallel Implementation of Moving Body Overset Grid Methods

    NASA Technical Reports Server (NTRS)

    Wissink, Andrew M.; Meakin, Robert L.; Warmbrodt, William (Technical Monitor)

    1997-01-01

    An investigation into the parallel performance of moving-body overset grid methods will be presented. Parallel versions of the OVERFLOW flow solver, DCF3D domain connectivity software, and SIXDO six-degree-of-freedom routine are coupled with an automatic load balance routine and tested for 3D Navier-Stokes calculations on the IBM SP2. The primary source of parallel inefficiency in moving and problems are the domain connectivity costs with DCF 3D. Although this algorithm constitutes a relatively low fraction of the total solution cost (e.g. 10-20%) in calculations on serial machines, the consequently cause a significant degradation in the overall parallel performance. The paper will highlight some approaches for improving the scalability of DCF3D. The paper will present results of a proposed new load balancing scheme that seeks more equal distribution of the inter-grid boundary points in order to more evenly load balance the donor search costs associated with DCF3D. Some preliminary results will also be given from a new solution-adaption algorithm coupled with OVERFLOW which incorporates overset cartesian grids with various levels of refinement. The measured parallel performance from a descending delta-wing configuration and a generic store-separation from a wing/pylon case will be presented.

  16. A parallel implementation of kriging with a trend

    SciTech Connect

    Gajraj, A.; Joubert, W.; Jones, J.

    1997-11-01

    This paper describes the parallelization of the GSLIB ktb3dm code. The code is parallelized using the message passing paradigm, Parallel Virtual Machine (PVM), under a Multiple Instructions, Multiple Data (MIMD) architecture. The code performance is analyzed using different grid sizes of 5x5x1, 50x50x1, 100x100x1 and 500x500x1 with 1, 2, 4, 8 and in some cases 16 processors on the Cray T3D supercomputer. The parallelization effort focused on the main kriging do loop. The results confirm that there is a substantial benefit to be derived in terms of CPU time savings (or execution speed) by using the parallel version of the code, especially when considering larger grids. Additionally, speed-up and scalability analyses show that actual speed-up is close to theoretical, while the code scales appropriately within the 1 to 16 processor range tested. The kriging of a quarter-million grid cell system fell from over 9 CPU minutes on one Cray T3D processor to about 1.25 CPU minutes on 16 processors on the same machine.

  17. Distributed GPU Computing in GIScience

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Yang, C.; Huang, Q.; Li, J.; Sun, M.

    2013-12-01

    Geoscientists strived to discover potential principles and patterns hidden inside ever-growing Big Data for scientific discoveries. To better achieve this objective, more capable computing resources are required to process, analyze and visualize Big Data (Ferreira et al., 2003; Li et al., 2013). Current CPU-based computing techniques cannot promptly meet the computing challenges caused by increasing amount of datasets from different domains, such as social media, earth observation, environmental sensing (Li et al., 2013). Meanwhile CPU-based computing resources structured as cluster or supercomputer is costly. In the past several years with GPU-based technology matured in both the capability and performance, GPU-based computing has emerged as a new computing paradigm. Compare to traditional computing microprocessor, the modern GPU, as a compelling alternative microprocessor, has outstanding high parallel processing capability with cost-effectiveness and efficiency(Owens et al., 2008), although it is initially designed for graphical rendering in visualization pipe. This presentation reports a distributed GPU computing framework for integrating GPU-based computing within distributed environment. Within this framework, 1) for each single computer, computing resources of both GPU-based and CPU-based can be fully utilized to improve the performance of visualizing and processing Big Data; 2) within a network environment, a variety of computers can be used to build up a virtual super computer to support CPU-based and GPU-based computing in distributed computing environment; 3) GPUs, as a specific graphic targeted device, are used to greatly improve the rendering efficiency in distributed geo-visualization, especially for 3D/4D visualization. Key words: Geovisualization, GIScience, Spatiotemporal Studies Reference : 1. Ferreira de Oliveira, M. C., & Levkowitz, H. (2003). From visual data exploration to visual data mining: A survey. Visualization and Computer Graphics, IEEE

  18. Theoretical and implementational aspects of parallel-link, resolution in connection graphs

    SciTech Connect

    Loganantharaj, R.

    1985-01-01

    Resolution theorem provers are relatively slow and can generally be speeded up by using parallelism and by directing the search towards an empty clause. In this research, focus is on the application of parallelism to connection graph refutation. The presence of the complete search space during connection-graph refutations suggests the opportunity to use parallel evaluation strategies to improve the efficiency of a generally very slow process. The Pseudo links are not considered for a parallel link resolution because they stand for different copies of a clause. The different kinds of parallelism identified in connection graph refutations are: or parallelism, and parallelism, and dc parallellism. Conditions for the correctness of dc parallel connection graph refutations are shown, resulting in dcpd parallellism. The dcdp parallelism, the links which are incident to distinct clauses and edge disjoint pairs are resolved in parallel. The complexity of the problem of optimally selecting the potential parallel links is equivalent to solving the optimal graph coloring problem. Fortunately, optimal solutions to this NP-hard problem are not crucial. The author describes the parallel solution of a suboptimal graph coloring algorithm, and provides a complete set of algorithms to implement dcdp parallel link resolution on a shared memory MIMD architecture.

  19. The BRUSH algorithm for two-electron integrals on GPU

    NASA Astrophysics Data System (ADS)

    Rák, Ádám; Cserey, György

    2015-02-01

    This Letter presents a new algorithmic method developed to evaluate two-electron repulsion integrals based on contracted Gaussian basis functions in a parallel way. This new algorithm scheme provides distinct SIMD (single instruction multiple data) optimized paths which symbolically transforms integral parameters into target integral algorithms. Our measurements indicate that the method gives a significant improvement over the CPU-friendly PRISM algorithm. The benchmark tests (evaluation of more than 108 integrals using the STO-3G basis set) of our GPU (NVIDIA GTX 780) implementation showed up to 750-fold speedup compared to a single core of Athlon II X4 635 CPU.

  20. Graphics Processing Unit Enhanced Parallel Document Flocking Clustering

    SciTech Connect

    Cui, Xiaohui; Potok, Thomas E; ST Charles, Jesse Lee

    2010-01-01

    Analyzing and clustering documents is a complex problem. One explored method of solving this problem borrows from nature, imitating the flocking behavior of birds. One limitation of this method of document clustering is its complexity O(n2). As the number of documents grows, it becomes increasingly difficult to generate results in a reasonable amount of time. In the last few years, the graphics processing unit (GPU) has received attention for its ability to solve highly-parallel and semi-parallel problems much faster than the traditional sequential processor. In this paper, we have conducted research to exploit this archi- tecture and apply its strengths to the flocking based document clustering problem. Using the CUDA platform from NVIDIA, we developed a doc- ument flocking implementation to be run on the NVIDIA GEFORCE GPU. Performance gains ranged from thirty-six to nearly sixty times improvement of the GPU over the CPU implementation.

  1. The OpenMP Implementation of NAS Parallel Benchmarks and its Performance

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Frumkin, Michael; Yan, Jerry

    1999-01-01

    As the new ccNUMA architecture became popular in recent years, parallel programming with compiler directives on these machines has evolved to accommodate new needs. In this study, we examine the effectiveness of OpenMP directives for parallelizing the NAS Parallel Benchmarks. Implementation details will be discussed and performance will be compared with the MPI implementation. We have demonstrated that OpenMP can achieve very good results for parallelization on a shared memory system, but effective use of memory and cache is very important.

  2. Accelerating Satellite Image Based Large-Scale Settlement Detection with GPU

    SciTech Connect

    Patlolla, Dilip Reddy; Cheriyadat, Anil M; Weaver, Jeanette E; Bright, Eddie A

    2012-01-01

    Computer vision algorithms for image analysis are often computationally demanding. Application of such algorithms on large image databases\\---- such as the high-resolution satellite imagery covering the entire land surface, can easily saturate the computational capabilities of conventional CPUs. There is a great demand for vision algorithms running on high performance computing (HPC) architecture capable of processing petascale image data. We exploit the parallel processing capability of GPUs to present a GPU-friendly algorithm for robust and efficient detection of settlements from large-scale high-resolution satellite imagery. Feature descriptor generation is an expensive, but a key step in automated scene analysis. To address this challenge, we present GPU implementations for three different feature descriptors\\-- multiscale Historgram of Oriented Gradients (HOG), Gray Level Co-Occurrence Matrix (GLCM) Contrast and local pixel intensity statistics. We perform extensive experimental evaluations of our implementation using diverse and large image datasets. Our GPU implementation of the feature descriptor algorithms results in speedups of 220 times compared to the CPU version. We present an highly efficient settlement detection system running on a multiGPU architecture capable of extracting human settlement regions from a city-scale sub-meter spatial resolution aerial imagery spanning roughly 1200 sq. kilometers in just 56 seconds with detection accuracy close to 90\\%. This remarkable speedup gained by our vision algorithm maintaining high detection accuracy clearly demonstrates that such computational advancements clearly hold the solution for petascale image analysis challenges.

  3. Parallel processing implementation for the coupled transport of photons and electrons using OpenMP

    NASA Astrophysics Data System (ADS)

    Doerner, Edgardo

    2016-05-01

    In this work the use of OpenMP to implement the parallel processing of the Monte Carlo (MC) simulation of the coupled transport for photons and electrons is presented. This implementation was carried out using a modified EGSnrc platform which enables the use of the Microsoft Visual Studio 2013 (VS2013) environment, together with the developing tools available in the Intel Parallel Studio XE 2015 (XE2015). The performance study of this new implementation was carried out in a desktop PC with a multi-core CPU, taking as a reference the performance of the original platform. The results were satisfactory, both in terms of scalability as parallelization efficiency.

  4. GPU-accelerated 3D neutron diffusion code based on finite difference method

    SciTech Connect

    Xu, Q.; Yu, G.; Wang, K.

    2012-07-01

    Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)

  5. GPU-accelerated Classical Trajectory Calculation Direct Simulation Monte Carlo applied to shock waves

    NASA Astrophysics Data System (ADS)

    Norman, Paul; Valentini, Paolo; Schwartzentruber, Thomas

    2013-08-01

    In this work we outline a Classical Trajectory Calculation Direct Simulation Monte Carlo (CTC-DSMC) implementation that uses the no-time-counter scheme with a cross-section determined by the interatomic potential energy surface (PES). CTC-DSMC solutions for translational and rotational relaxation in one-dimensional shock waves are compared directly to pure Molecular Dynamics simulations employing an identical PES, where exact agreement is demonstrated for all cases. For the flows considered, long-lived collisions occur within the simulations and their implications for multi-body collisions as well as algorithm implications for the CTC-DSMC method are discussed. A parallelization technique for CTC-DSMC simulations using a heterogeneous multicore CPU/GPU system is demonstrated. Our approach shows good scaling as long as a sufficiently large number of collisions are calculated simultaneously per GPU (˜100,000) at each DSMC iteration. We achieve a maximum speedup of 140× on a 4 GPU/CPU system vs. the performance on one CPU core in serial for a diatomic nitrogen shock. The parallelization approach presented here significantly reduces the cost of CTC-DSMC simulations and has the potential to scale to large CPU/GPU clusters, which could enable future application to 3D flows in strong thermochemical nonequilibrium.

  6. A Highly Parallel Implementation of K-Means for Multithreaded Architecture

    SciTech Connect

    Mackey, Patrick S.; Feo, John T.; Wong, Pak C.; Chen, Yousu

    2011-04-06

    We present a parallel implementation of the popular k-means clustering algorithm for massively multithreaded computer systems, as well as a parallelized version of the KKZ seed selection algorithm. We demonstrate that as system size increases, sequential seed selection can become a bottleneck. We also present an early attempt at parallelizing k-means that highlights critical performance issues when programming massively multithreaded systems. For our case studies, we used data collected from electric power simulations and run on the Cray XMT.

  7. Acceleration of 3D Finite Difference AWP-ODC for seismic simulation on GPU Fermi Architecture

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Cui, Y.; Choi, D.

    2011-12-01

    AWP-ODC, a highly scalable parallel finite-difference application, enables petascale 3D earthquake calculations. This application generates realistic dynamic earthquake source description and detailed physics-based anelastic ground motions at frequencies pertinent to safe building design. In 2010, the code achieved M8, a full dynamical simulation of a magnitude-8 earthquake on the southern San Andreas fault up to 2-Hz, the largest-ever earthquake simulation. Building on the success of the previous work, we have implemented CUDA on AWP-ODC to accelerate wave propagation on GPU platform. Our CUDA development aims on aggressive parallel efficiency, optimized global and shared memory access to make the best use of GPU memory hierarchy. The benchmark on NVIDIA Tesla C2050 graphics cards demonstrated many tens of speedup in single precision compared to serial implementation at a testing problem size, while an MPI-CUDA implementation is in the progress to extend our solver to multi-GPU clusters. Our CUDA implementation has been carefully verified for accuracy.

  8. Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI)

    SciTech Connect

    Huang Bormin; Mielikainen, Jarno; Oh, Hyunjong; Allen Huang, Hung-Lung

    2011-03-20

    Satellite-observed radiance is a nonlinear functional of surface properties and atmospheric temperature and absorbing gas profiles as described by the radiative transfer equation (RTE). In the era of hyperspectral sounders with thousands of high-resolution channels, the computation of the radiative transfer model becomes more time-consuming. The radiative transfer model performance in operational numerical weather prediction systems still limits the number of channels we can use in hyperspectral sounders to only a few hundreds. To take the full advantage of such high-resolution infrared observations, a computationally efficient radiative transfer model is needed to facilitate satellite data assimilation. In recent years the programmable commodity graphics processing unit (GPU) has evolved into a highly parallel, multi-threaded, many-core processor with tremendous computational speed and very high memory bandwidth. The radiative transfer model is very suitable for the GPU implementation to take advantage of the hardware's efficiency and parallelism where radiances of many channels can be calculated in parallel in GPUs. In this paper, we develop a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI) launched in 2006 onboard the first European meteorological polar-orbiting satellites, METOP-A. Each IASI spectrum has 8461 spectral channels. The IASI radiative transfer model consists of three modules. The first module for computing the regression predictors takes less than 0.004% of CPU time, while the second module for transmittance computation and the third module for radiance computation take approximately 92.5% and 7.5%, respectively. Our GPU-based IASI radiative transfer model is developed to run on a low-cost personal supercomputer with four GPUs with total 960 compute cores, delivering near 4 TFlops theoretical peak performance. By massively parallelizing the second and third modules, we reached 364x

  9. Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Astrophysics Data System (ADS)

    Huang, Bormin; Mielikainen, Jarno; Oh, Hyunjong; Allen Huang, Hung-Lung

    2011-03-01

    Satellite-observed radiance is a nonlinear functional of surface properties and atmospheric temperature and absorbing gas profiles as described by the radiative transfer equation (RTE). In the era of hyperspectral sounders with thousands of high-resolution channels, the computation of the radiative transfer model becomes more time-consuming. The radiative transfer model performance in operational numerical weather prediction systems still limits the number of channels we can use in hyperspectral sounders to only a few hundreds. To take the full advantage of such high-resolution infrared observations, a computationally efficient radiative transfer model is needed to facilitate satellite data assimilation. In recent years the programmable commodity graphics processing unit (GPU) has evolved into a highly parallel, multi-threaded, many-core processor with tremendous computational speed and very high memory bandwidth. The radiative transfer model is very suitable for the GPU implementation to take advantage of the hardware's efficiency and parallelism where radiances of many channels can be calculated in parallel in GPUs. In this paper, we develop a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI) launched in 2006 onboard the first European meteorological polar-orbiting satellites, METOP-A. Each IASI spectrum has 8461 spectral channels. The IASI radiative transfer model consists of three modules. The first module for computing the regression predictors takes less than 0.004% of CPU time, while the second module for transmittance computation and the third module for radiance computation take approximately 92.5% and 7.5%, respectively. Our GPU-based IASI radiative transfer model is developed to run on a low-cost personal supercomputer with four GPUs with total 960 compute cores, delivering near 4 TFlops theoretical peak performance. By massively parallelizing the second and third modules, we reached 364

  10. Implementing hybrid MPI/OpenMP parallelism in Fluidity

    NASA Astrophysics Data System (ADS)

    Gorman, Gerard; Lange, Michael; Avdis, Alexandros; Guo, Xiaohu; Mitchell, Lawrence; Weiland, Michele

    2014-05-01

    Parallelising finite element codes using domain decomposition methods and MPI has nearly become routine at the application code level. This has been helped in no small part by the development of an eco-system of open source libraries to provide key functionality, for example SCOTCH for graph partitioning or PETSc for sparse iterative solvers. As we move to an era where pure MPI no longer suffices, application developers cannot only focus on the application code, but must consider the full software stack. In the case of Fluidity (an open source control volume/finite element general purpose fluid dynamics code) the decision to improve parallel efficiency by moving to a hybrid MPI/OpenMP programming model it became necessary to get involved in extending 3rd party open source libraries, specifically PETSc, in addition to the application code itself. The effort involved in re-engineering a large application code highlights the fact that as computing platforms continue their advance towards low power many core processors, the software stack must also develop at a similar pace or application codes will suffer. In this presentation we will illustrate the steps required to re-engineer Fluidity to achieve good parallel efficiency when using MPI/OpenMP. We identify performance pitfalls when using Fortran features such as automatic arrays in a multi-threaded context, as well as poor data locality on NUMA platforms. A significant proportion of the computational cost is in the sparse iterative solvers. For this we collaborated with the development team at Argonne National Laboratory to add OpenMP support to PETSc. We will present performance results for both the application as a whole, as well as for key individual components such as matrix assembly and the solvers. We also show that while we did not explicitly target I/O for optimisation here, its performance is nonetheless greatly improved because of fewer processes accessing the file system. One of the main remaining

  11. Massively parallel implementation of the multi-reference Brillouin-Wigner CCSD method

    SciTech Connect

    Brabec, Jiri; Krishnamoorthy, Sriram; van Dam, Hubertus JJ; Kowalski, Karol; Pittner, Jiri

    2011-10-06

    This paper reports the parallel implementation of the Brillouin Wigner MultiReference Coupled Cluster method with Single and Double excitations (BW-MRCCSD). Preliminary tests for systems composed of 304 and 440 correlated obritals demonstrate the performance of our implementation across 1000 cores and clearly indicate the advantages of using improved task scheduling. Possible ways for further improvements of the parallel performance are also delineated.

  12. GPU-based Integration with Application in Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Atanassov, Emanouil; Ivanovska, Sofiya; Karaivanova, Aneta; Slavov, Dimitar

    2010-05-01

    The presented work is an important part of the grid application MCSAES (Monte Carlo Sensitivity Analysis for Environmental Studies) which aim is to develop an efficient Grid implementation of a Monte Carlo based approach for sensitivity studies in the domains of Environmental modelling and Environmental security. The goal is to study the damaging effects that can be caused by high pollution levels (especially effects on human health), when the main modeling tool is the Danish Eulerian Model (DEM). Generally speaking, sensitivity analysis (SA) is the study of how the variation in the output of a mathematical model can be apportioned to, qualitatively or quantitatively, different sources of variation in the input of a model. One of the important classes of methods for Sensitivity Analysis are Monte Carlo based, first proposed by Sobol, and then developed by Saltelli and his group. In MCSAES the general Saltelli procedure has been adapted for SA of the Danish Eulerian model. In our case we consider as factors the constants determining the speeds of the chemical reactions in the DEM and as output a certain aggregated measure of the pollution. Sensitivity simulations lead to huge computational tasks (systems with up to 4 × 109 equations at every time-step, and the number of time-steps can be more than a million) which motivates its grid implementation. MCSAES grid implementation scheme includes two main tasks: (i) Grid implementation of the DEM, (ii) Grid implementation of the Monte Carlo integration. In this work we present our new developments in the integration part of the application. We have developed an algorithm for GPU-based generation of scrambled quasirandom sequences which can be combined with the CPU-based computations related to the SA. Owen first proposed scrambling of Sobol sequence through permutation in a manner that improves the convergence rates. Scrambling is necessary not only for error analysis but for parallel implementations. Good scrambling is

  13. Development of GPU-Optimized EFIT for DIII-D Equilibrium Reconstructions

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Lao, L. L.; Xiao, B. J.; Luo, Z. P.; Yue, X. N.

    2015-11-01

    The development of a parallel, Graphical Processing Unit (GPU)-optimized version of EFIT for DIII-D equilibrium reconstructions is presented. This GPU-optimized version (P-EFIT) is built with the CUDA (Compute Unified Device Architecture) platform to take advantage of massively parallel GPU cores to significantly accelerate the computation under the EFIT framework. The parallel processing is implemented with the Single-Instruction Multiple-Thread (SIMT) architecture. New parallel modules to trace plasma surfaces and compute plasma parameters have been constructed. DIII-D magnetic benchmark tests show that P-EFIT could accurately reproduce the EFIT reconstruction algorithms at a fraction of the computational cost. The acceleration factor continues to increase as the (R, Z) spatial grids are increased from 65 × 65 to 257 × 257 , suggesting there may be rooms for further optimization by further reducing the communication cost. Details of the P-EFIT optimization algorithms will be discussed. Work supported by US DOE DE-FC02-04ER54698, and by China MOST under 2014GB103000, China NNSF 11205191, China CAS GJHZ201303.

  14. Accelerating Content-Based Image Retrieval via GPU-Adaptive Index Structure

    PubMed Central

    2014-01-01

    A tremendous amount of work has been conducted in content-based image retrieval (CBIR) on designing effective index structure to accelerate the retrieval process. Most of them improve the retrieval efficiency via complex index structures, and few take into account the parallel implementation of them on underlying hardware, making the existing index structures suffer from low-degree of parallelism. In this paper, a novel graphics processing unit (GPU) adaptive index structure, termed as plane semantic ball (PSB), is proposed to simultaneously reduce the work of retrieval process and exploit the parallel acceleration of underlying hardware. In PSB, semantics are embedded into the generation of representative pivots and multiple balls are selected to cover more informative reference features. With PSB, the online retrieval of CBIR is factorized into independent components that are implemented on GPU efficiently. Comparative experiments with GPU-based brute force approach demonstrate that the proposed approach can achieve high speedup with little information loss. Furthermore, PSB is compared with the state-of-the-art approach, random ball cover (RBC), on two standard image datasets, Corel 10 K and GIST 1 M. Experimental results show that our approach achieves higher speedup than RBC on the same accuracy level. PMID:24782668

  15. GPU-based rapid reconstruction of cellular 3D refractive index maps from tomographic phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dardikman, Gili; Shaked, Natan T.

    2016-03-01

    We present highly parallel and efficient algorithms for real-time reconstruction of the quantitative three-dimensional (3-D) refractive-index maps of biological cells without labeling, as obtained from the interferometric projections acquired by tomographic phase microscopy (TPM). The new algorithms are implemented on the graphic processing unit (GPU) of the computer using CUDA programming environment. The reconstruction process includes two main parts. First, we used parallel complex wave-front reconstruction of the TPM-based interferometric projections acquired at various angles. The complex wave front reconstructions are done on the GPU in parallel, while minimizing the calculation time of the Fourier transforms and phase unwrapping needed. Next, we implemented on the GPU in parallel the 3-D refractive index map retrieval using the TPM filtered-back projection algorithm. The incorporation of algorithms that are inherently parallel with a programming environment such as Nvidia's CUDA makes it possible to obtain real-time processing rate, and enables high-throughput platform for label-free, 3-D cell visualization and diagnosis.

  16. Object-Oriented Implementation of the NAS Parallel Benchmarks using Charm++

    NASA Technical Reports Server (NTRS)

    Krishnan, Sanjeev; Bhandarkar, Milind; Kale, Laxmikant V.

    1996-01-01

    This report describes experiences with implementing the NAS Computational Fluid Dynamics benchmarks using a parallel object-oriented language, Charm++. Our main objective in implementing the NAS CFD kernel benchmarks was to develop a code that could be used to easily experiment with different domain decomposition strategies and dynamic load balancing. We also wished to leverage the object-orientation provided by the Charm++ parallel object-oriented language, to develop reusable abstractions that would simplify the process of developing parallel applications. We first describe the Charm++ parallel programming model and the parallel object array abstraction, then go into detail about each of the Scalar Pentadiagonal (SP) and Lower/Upper Triangular (LU) benchmarks, along with performance results. Finally we conclude with an evaluation of the methodology used.

  17. Parallel asynchronous hardware implementation of image processing algorithms

    NASA Technical Reports Server (NTRS)

    Coon, Darryl D.; Perera, A. G. U.

    1990-01-01

    Research is being carried out on hardware for a new approach to focal plane processing. The hardware involves silicon injection mode devices. These devices provide a natural basis for parallel asynchronous focal plane image preprocessing. The simplicity and novel properties of the devices would permit an independent analog processing channel to be dedicated to every pixel. A laminar architecture built from arrays of the devices would form a two-dimensional (2-D) array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuron-like asynchronous pulse-coded form through the laminar processor. No multiplexing, digitization, or serial processing would occur in the preprocessing state. High performance is expected, based on pulse coding of input currents down to one picoampere with noise referred to input of about 10 femtoamperes. Linear pulse coding has been observed for input currents ranging up to seven orders of magnitude. Low power requirements suggest utility in space and in conjunction with very large arrays. Very low dark current and multispectral capability are possible because of hardware compatibility with the cryogenic environment of high performance detector arrays. The aforementioned hardware development effort is aimed at systems which would integrate image acquisition and image processing.

  18. Implementation of Parallel Computing Technology to Vortex Flow

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer

    1999-01-01

    Mainframe supercomputers such as the Cray C90 was invaluable in obtaining large scale computations using several millions of grid points to resolve salient features of a tip vortex flow over a lifting wing. However, real flight configurations require tracking not only of the flow over several lifting wings but its growth and decay in the near- and intermediate- wake regions, not to mention the interaction of these vortices with each other. Resolving and tracking the evolution and interaction of these vortices shed from complex bodies is computationally intensive. Parallel computing technology is an attractive option in solving these flows. In planetary science vortical flows are also important in studying how planets and protoplanets form when cosmic dust and gases become gravitationally unstable and eventually form planets or protoplanets. The current paradigm for the formation of planetary systems maintains that the planets accreted from the nebula of gas and dust left over from the formation of the Sun. Traditional theory also indicate that such a preplanetary nebula took the form of flattened disk. The coagulation of dust led to the settling of aggregates toward the midplane of the disk, where they grew further into asteroid-like planetesimals. Some of the issues still remaining in this process are the onset of gravitational instability, the role of turbulence in the damping of particles and radial effects. In this study the focus will be with the role of turbulence and the radial effects.

  19. Montblanc: GPU accelerated Radio Interferometer Measurement Equations in support of Bayesian Inference for Radio Observations

    NASA Astrophysics Data System (ADS)

    Perkins, Simon; Marais, Patrick; Zwart, Jonathan; Natarajan, Iniyan; Tasse, Cyril; Smirnov, Oleg

    2015-02-01

    Montblanc, written in Python, is a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. The parameter space that BIRO explores results in tens of thousands of computationally expensive RIME evaluations before reduction to a single X2 value. The RIME is calculated over four dimensions, time, baseline, channel and source and the values in this 4D space can be independently calculated; therefore, the RIME is particularly amenable to a parallel implementation accelerated by Graphics Programming Units (GPUs). Montblanc is implemented for NVIDIA's CUDA architecture and outperforms MeqTrees (ascl:1209.010) and OSKAR.

  20. GPU Lossless Hyperspectral Data Compression System

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh I.; Keymeulen, Didier; Kiely, Aaron B.; Klimesh, Matthew A.

    2014-01-01

    Hyperspectral imaging systems onboard aircraft or spacecraft can acquire large amounts of data, putting a strain on limited downlink and storage resources. Onboard data compression can mitigate this problem but may require a system capable of a high throughput. In order to achieve a high throughput with a software compressor, a graphics processing unit (GPU) implementation of a compressor was developed targeting the current state-of-the-art GPUs from NVIDIA(R). The implementation is based on the fast lossless (FL) compression algorithm reported in "Fast Lossless Compression of Multispectral-Image Data" (NPO- 42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which operates on hyperspectral data and achieves excellent compression performance while having low complexity. The FL compressor uses an adaptive filtering method and achieves state-of-the-art performance in both compression effectiveness and low complexity. The new Consultative Committee for Space Data Systems (CCSDS) Standard for Lossless Multispectral & Hyperspectral image compression (CCSDS 123) is based on the FL compressor. The software makes use of the highly-parallel processing capability of GPUs to achieve a throughput at least six times higher than that of a software implementation running on a single-core CPU. This implementation provides a practical real-time solution for compression of data from airborne hyperspectral instruments.

  1. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues.

    PubMed

    Ren, Nunu; Liang, Jimin; Qu, Xiaochao; Li, Jianfeng; Lu, Bingjia; Tian, Jie

    2010-03-29

    As the most accurate model for simulating light propagation in heterogeneous tissues, Monte Carlo (MC) method has been widely used in the field of optical molecular imaging. However, MC method is time-consuming due to the calculations of a large number of photons propagation in tissues. The structural complexity of the heterogeneous tissues further increases the computational time. In this paper we present a parallel implementation for MC simulation of light propagation in heterogeneous tissues whose surfaces are constructed by different number of triangle meshes. On the basis of graphics processing units (GPU), the code is implemented with compute unified device architecture (CUDA) platform and optimized to reduce the access latency as much as possible by making full use of the constant memory and texture memory on GPU. We test the implementation in the homogeneous and heterogeneous mouse models with a NVIDIA GTX 260 card and a 2.40GHz Intel Xeon CPU. The experimental results demonstrate the feasibility and efficiency of the parallel MC simulation on GPU. PMID:20389700

  2. Locality-Driven Dynamic GPU Cache Bypassing

    SciTech Connect

    Li, Chao; Song, Shuaiwen; Dai, Hongwen; Sidelnik, A.; Hari, Siva; Zhou, Huiyang

    2015-06-07

    This paper presents novel cache optimizations for massively parallel, throughput-oriented architectures like GPUs. Based on the reuse characteristics of GPU workloads, we propose a design that integrates such efficient locality filtering capability into the decoupled tag store of the existing L1 D-cache through simple and cost-effective hardware extensions.

  3. Accelerating the performance of a novel meshless method based on collocation with radial basis functions by employing a graphical processing unit as a parallel coprocessor

    NASA Astrophysics Data System (ADS)

    Owusu-Banson, Derek

    In recent times, a variety of industries, applications and numerical methods including the meshless method have enjoyed a great deal of success by utilizing the graphical processing unit (GPU) as a parallel coprocessor. These benefits often include performance improvement over the previous implementations. Furthermore, applications running on graphics processors enjoy superior performance per dollar and performance per watt than implementations built exclusively on traditional central processing technologies. The GPU was originally designed for graphics acceleration but the modern GPU, known as the General Purpose Graphical Processing Unit (GPGPU) can be used for scientific and engineering calculations. The GPGPU consists of massively parallel array of integer and floating point processors. There are typically hundreds of processors per graphics card with dedicated high-speed memory. This work describes an application written by the author, titled GaussianRBF to show the implementation and results of a novel meshless method that in-cooperates the collocation of the Gaussian radial basis function by utilizing the GPU as a parallel co-processor. Key phases of the proposed meshless method have been executed on the GPU using the NVIDIA CUDA software development kit. Especially, the matrix fill and solution phases have been carried out on the GPU, along with some post processing. This approach resulted in a decreased processing time compared to similar algorithm implemented on the CPU while maintaining the same accuracy.

  4. Implementation of the morphological shared-weight neural network (MSNN) for target recognition on the Parallel Algebraic Logic (PAL) computer

    NASA Astrophysics Data System (ADS)

    Li, Hongzheng; Shi, Hongchi; Gader, Paul D.; Keller, James M.

    1998-09-01

    The morphological shared-weight neural network (MSNN) is an effective approach to automatic target recognition. Implementation of the network in parallel is critical for real-time target recognition systems. Although there is significant parallelism inherent in the MSNN, it is a challenge to implement it on an SIMD parallel computer consisting of a large array of simple processing elements. This paper discusses issues related to detection accuracy and throughput in implementing the MSNN on the Parallel Algebraic Logic computer.

  5. Algebraic computations in seismology on GPU-clusters

    NASA Astrophysics Data System (ADS)

    Meskaranian, Mahjoobeh; Sadeghi, Hossein; Mohammadzaheri, Afsaneh; Toutounian, Faezeh; Navazandeh, Mahdi

    2013-04-01

    Recent advances in high-performance computing have allowed scientists to increase the speed of scientific computations. One of these advances is Graphics Processing Unit (GPU) which is a many-core processor and multithreaded in high-performance computing. Algorithms that can be expressed as data parallel computations such as matrix processing, in which single instruction is executed for multiple data (SIMD) are especially suitable for performing on GPU. We present algorithms for LSQR (Paige and Saunders, 1982) and LSMR (Fong and Saunders, 2011) methods, executable on GPUs. The LSQR and LSMR are iterative methods for solving least squares problems that are usually used for solving inverse problems. These methods are based on Golub and Kahan's bidiagonalization process. The LSQR and LSMR give reliable results especially when problems involve the large and spars ill- conditioned matrices, such matrices can be found in seismic tomography. The most time-consuming operation in these methods is the sparse matrix-vector multiplication (SpMV). For efficient matrix storage as well as SpMV, we use a Compressed Sparse Row (vector) Format (Bell and Garland, 2008), that dedicates one warp (32 thread) to each row. The model resolution matrix illustrates how well estimated model parameters fit the true model parameters. Although some researchers tried to approximate a generalized inverse for LSQR method, this method does not explicitly compute generalized inverse. Therefore it cannot be clearly used to calculate resolution matrix. However, following Yao et al. 2001, it is possible to determine resolution matrix by N times implementing LSQR independently. Therefore, we can utilize the Map-Reduce idea in our algorithm for computation of the model resolution matrix on GPU-clusters. Map-Reduce paradigm was popularized in 2004 by Google's researchers Dean and Ghemawat. Our algorithm is based on the Map-Reduce of Mohammadzaheri, et al. 2012, which consists of two main functions: Map and

  6. Accelerating DNA analysis applications on GPU clusters

    SciTech Connect

    Tumeo, Antonino; Villa, Oreste

    2010-06-13

    DNA analysis is an emerging application of high performance bioinformatic. Modern sequencing machinery are able to provide, in few hours, large input streams of data which needs to be matched against exponentially growing databases known fragments. The ability to recognize these patterns effectively and fastly may allow extending the scale and the reach of the investigations performed by biology scientists. Aho-Corasick is an exact, multiple pattern matching algorithm often at the base of this application. High performance systems are a promising platform to accelerate this algorithm, which is computationally intensive but also inherently parallel. Nowadays, high performance systems also include heterogeneous processing elements, such as Graphic Processing Units (GPUs), to further accelerate parallel algorithms. Unfortunately, the Aho-Corasick algorithm exhibits large performance variabilities, depending on the size of the input streams, on the number of patterns to search and on the number of matches, and poses significant challenges on current high performance software and hardware implementations. An adequate mapping of the algorithm on the target architecture, coping with the limit of the underlining hardware, is required to reach the desired high throughputs. Load balancing also plays a crucial role when considering the limited bandwidth among the nodes of these systems. In this paper we present an efficient implementation of the Aho-Corasick algorithm for high performance clusters accelerated with GPUs. We discuss how we partitioned and adapted the algorithm to fit the Tesla C1060 GPU and then present a MPI based implementation for a heterogeneous high performance cluster. We compare this implementation to MPI and MPI with pthreads based implementations for a homogeneous cluster of x86 processors, discussing the stability vs. the performance and the scaling of the solutions, taking into consideration aspects such as the bandwidth among the different nodes.

  7. GPU Accelerated Vector Median Filter

    NASA Technical Reports Server (NTRS)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  8. A two-level parallel direct search implementation for arbitrarily sized objective functions

    SciTech Connect

    Hutchinson, S.A.; Shadid, N.; Moffat, H.K.

    1994-12-31

    In the past, many optimization schemes for massively parallel computers have attempted to achieve parallel efficiency using one of two methods. In the case of large and expensive objective function calculations, the optimization itself may be run in serial and the objective function calculations parallelized. In contrast, if the objective function calculations are relatively inexpensive and can be performed on a single processor, then the actual optimization routine itself may be parallelized. In this paper, a scheme based upon the Parallel Direct Search (PDS) technique is presented which allows the objective function calculations to be done on an arbitrarily large number (p{sub 2}) of processors. If, p, the number of processors available, is greater than or equal to 2p{sub 2} then the optimization may be parallelized as well. This allows for efficient use of computational resources since the objective function calculations can be performed on the number of processors that allow for peak parallel efficiency and then further speedup may be achieved by parallelizing the optimization. Results are presented for an optimization problem which involves the solution of a PDE using a finite-element algorithm as part of the objective function calculation. The optimum number of processors for the finite-element calculations is less than p/2. Thus, the PDS method is also parallelized. Performance comparisons are given for a nCUBE 2 implementation.

  9. Fast quantum Monte Carlo on a GPU

    NASA Astrophysics Data System (ADS)

    Lutsyshyn, Y.

    2015-02-01

    We present a scheme for the parallelization of quantum Monte Carlo method on graphical processing units, focusing on variational Monte Carlo simulation of bosonic systems. We use asynchronous execution schemes with shared memory persistence, and obtain an excellent utilization of the accelerator. The CUDA code is provided along with a package that simulates liquid helium-4. The program was benchmarked on several models of Nvidia GPU, including Fermi GTX560 and M2090, and the Kepler architecture K20 GPU. Special optimization was developed for the Kepler cards, including placement of data structures in the register space of the Kepler GPUs. Kepler-specific optimization is discussed.

  10. Accelerating sub-pixel marker segmentation using GPU

    NASA Astrophysics Data System (ADS)

    Handel, Holger

    2009-02-01

    Sub-pixel accurate marker segmentation is an important task for many computer vision systems. The 3D-positions of markers are used in control loops to determine the position of machine tools or robot end-effectors. Accurate segmentation of the marker position in the image plane is crucial for accurate reconstruction. Many subpixel segmentation algorithms are computationally intensive, especially when the number of markers increases. Modern graphics hardware with its massively parallel architecture provides a powerful tool for many image segmentation tasks. Especially, the time consuming sub-pixel refinement steps in marker segmentation can benefit from the recent progress. This article presents an implementation of a sub-pixel marker segmentation framework using the GPU to accelerate the processing time. The image segmentation chain consists of two stages. The first is a pre-processing stage which segments the initial position of the marker with pixel accuracy, the second stage refines the initial marker position to sub-pixel accuracy. Both stages are implemented as shader programs on the GPU. The flexible architecture allows it to combine different pre-processing and sub-pixel refinement algorithms. Experimental results show that significant speed-up can be achieved compared to CPU implementations, especially when the number of markers increases.

  11. Real-time imaging implementation of the Army Research Laboratory synchronous impulse reconstruction radar on a graphics processing unit architecture

    NASA Astrophysics Data System (ADS)

    Park, Song Jun; Nguyen, Lam H.; Shires, Dale R.; Henz, Brian J.

    2009-05-01

    High computing requirements for the synchronous impulse reconstruction (SIRE) radar algorithm present a challenge for near real-time processing, particularly the calculations involved in output image formation. Forming an image requires a large number of parallel and independent floating-point computations. To reduce the processing time and exploit the abundant parallelism of image processing, a graphics processing unit (GPU) architecture is considered for the imaging algorithm. Widely available off the shelf, high-end GPUs offer inexpensive technology that exhibits great capacity of computing power in one card. To address the parallel nature of graphics processing, the GPU architecture is designed for high computational throughput realized through multiple computing resources to target data parallel applications. Due to a leveled or in some cases reduced clock frequency in mainstream single and multi-core general-purpose central processing units (CPUs), GPU computing is becoming a competitive option for compute-intensive radar imaging algorithm prototyping. We describe the translation and implementation of the SIRE radar backprojection image formation algorithm on a GPU platform. The programming model for GPU's parallel computing and hardware-specific memory optimizations are discussed in the paper. A considerable level of speedup is available from the GPU implementation resulting in processing at real-time acquisition speeds.

  12. Impact of data layouts on the efficiency of GPU-accelerated IDW interpolation.

    PubMed

    Mei, Gang; Tian, Hong

    2016-01-01

    This paper focuses on evaluating the impact of different data layouts on the computational efficiency of GPU-accelerated Inverse Distance Weighting (IDW) interpolation algorithm. First we redesign and improve our previous GPU implementation that was performed by exploiting the feature of CUDA dynamic parallelism (CDP). Then we implement three versions of GPU implementations, i.e., the naive version, the tiled version, and the improved CDP version, based upon five data layouts, including the Structure of Arrays (SoA), the Array of Structures (AoS), the Array of aligned Structures (AoaS), the Structure of Arrays of aligned Structures (SoAoS), and the Hybrid layout. We also carry out several groups of experimental tests to evaluate the impact. Experimental results show that: the layouts AoS and AoaS achieve better performance than the layout SoA for both the naive version and tiled version, while the layout SoA is the best choice for the improved CDP version. We also observe that: for the two combined data layouts (the SoAoS and the Hybrid), there are no notable performance gains when compared to other three basic layouts. We recommend that: in practical applications, the layout AoaS is the best choice since the tiled version is the fastest one among three versions. The source code of all implementations are publicly available. PMID:26877902

  13. Parallel Latent Semantic Analysis using a Graphics Processing Unit

    SciTech Connect

    Cui, Xiaohui; Potok, Thomas E; Cavanagh, Joseph M

    2009-01-01

    Latent Semantic Analysis (LSA) can be used to reduce the dimensions of large Term-Document datasets using Singular Value Decomposition. However, with the ever expanding size of data sets, current implementations are not fast enough to quickly and easily compute the results on a standard PC. The Graphics Processing Unit (GPU) can solve some highly parallel problems much faster than the traditional sequential processor (CPU). Thus, a deployable system using a GPU to speedup large-scale LSA processes would be a much more effective choice (in terms of cost/performance ratio) than using a computer cluster. In this paper, we presented a parallel LSA implementation on the GPU, using NVIDIA Compute Unified Device Architecture (CUDA) and Compute Unified Basic Linear Algebra Subprograms (CUBLAS). The performance of this implementation is compared to traditional LSA implementation on CPU using an optimized Basic Linear Algebra Subprograms library. For large matrices that have dimensions divisible by 16, the GPU algorithm ran five to six times faster than the CPU version.

  14. Massive parallel implementation of JPEG2000 decoding algorithm with multi-GPUs

    NASA Astrophysics Data System (ADS)

    Wu, Xianyun; Li, Yunsong; Liu, Kai; Wang, Keyan; Wang, Li

    2014-05-01

    JPEG2000 is an important technique for image compression that has been successfully used in many fields. Due to the increasing spatial, spectral and temporal resolution of remotely sensed imagery data sets, fast decompression of remote sensed data is becoming a very important and challenging object. In this paper, we develop an implementation of the JPEG2000 decompression in graphics processing units (GPUs) for fast decoding of codeblock-based parallel compression stream. We use one CUDA block to decode one frame. Tier-2 is still serial decoded while Tier-1 and IDWT are parallel processed. Since our encode stream are block-based parallel which means each block are independent with other blocks, we parallel process each block in T1 with one thread. For IDWT, we use one CUDA block to execute one line and one CUDA thread to process one pixel. We investigate the speedups that can be gained by using the GPUs implementations with regards to the CPUs-based serial implementations. Experimental result reveals that our implementation can achieve significant speedups compared with serial implementations.

  15. A Parallel Supercomputer Implementation of a Biological Inspired Neural Network and its use for Pattern Recognition

    NASA Astrophysics Data System (ADS)

    de Ladurantaye, Vincent; Lavoie, Jean; Bergeron, Jocelyn; Parenteau, Maxime; Lu, Huizhong; Pichevar, Ramin; Rouat, Jean

    2012-02-01

    A parallel implementation of a large spiking neural network is proposed and evaluated. The neural network implements the binding by synchrony process using the Oscillatory Dynamic Link Matcher (ODLM). Scalability, speed and performance are compared for 2 implementations: Message Passing Interface (MPI) and Compute Unified Device Architecture (CUDA) running on clusters of multicore supercomputers and NVIDIA graphical processing units respectively. A global spiking list that represents at each instant the state of the neural network is described. This list indexes each neuron that fires during the current simulation time so that the influence of their spikes are simultaneously processed on all computing units. Our implementation shows a good scalability for very large networks. A complex and large spiking neural network has been implemented in parallel with success, thus paving the road towards real-life applications based on networks of spiking neurons. MPI offers a better scalability than CUDA, while the CUDA implementation on a GeForce GTX 285 gives the best cost to performance ratio. When running the neural network on the GTX 285, the processing speed is comparable to the MPI implementation on RQCHP's Mammouth parallel with 64 notes (128 cores).

  16. Analysis and selection of optimal function implementations in massively parallel computer

    DOEpatents

    Archer, Charles Jens; Peters, Amanda; Ratterman, Joseph D.

    2011-05-31

    An apparatus, program product and method optimize the operation of a parallel computer system by, in part, collecting performance data for a set of implementations of a function capable of being executed on the parallel computer system based upon the execution of the set of implementations under varying input parameters in a plurality of input dimensions. The collected performance data may be used to generate selection program code that is configured to call selected implementations of the function in response to a call to the function under varying input parameters. The collected performance data may be used to perform more detailed analysis to ascertain the comparative performance of the set of implementations of the function under the varying input parameters.

  17. Architecture, implementation and parallelization of the software to search for periodic gravitational wave signals

    NASA Astrophysics Data System (ADS)

    Poghosyan, G.; Matta, S.; Streit, A.; Bejger, M.; Królak, A.

    2015-03-01

    The parallelization, design and scalability of the PolGrawAllSky code to search for periodic gravitational waves from rotating neutron stars is discussed. The code is based on an efficient implementation of the F-statistic using the Fast Fourier Transform algorithm. To perform an analysis of data from the advanced LIGO and Virgo gravitational wave detectors' network, which will start operating in 2015, hundreds of millions of CPU hours will be required-the code utilizing the potential of massively parallel supercomputers is therefore mandatory. We have parallelized the code using the Message Passing Interface standard, implemented a mechanism for combining the searches at different sky-positions and frequency bands into one extremely scalable program. The parallel I/O interface is used to escape bottlenecks, when writing the generated data into file system. This allowed to develop a highly scalable computation code, which would enable the data analysis at large scales on acceptable time scales. Benchmarking of the code on a Cray XE6 system was performed to show efficiency of our parallelization concept and to demonstrate scaling up to 50 thousand cores in parallel.

  18. GPU-Accelerated Stony-Brook University 5-class Microphysics Scheme in WRF

    NASA Astrophysics Data System (ADS)

    Mielikainen, J.; Huang, B.; Huang, A.

    2011-12-01

    The Weather Research and Forecasting (WRF) model is a next-generation mesoscale numerical weather prediction system. Microphysics plays an important role in weather and climate prediction. Several bulk water microphysics schemes are available within the WRF, with different numbers of simulated hydrometeor classes and methods for estimating their size fall speeds, distributions and densities. Stony-Brook University scheme (SBU-YLIN) is a 5-class scheme with riming intensity predicted to account for mixed-phase processes. In the past few years, co-processing on Graphics Processing Units (GPUs) has been a disruptive technology in High Performance Computing (HPC). GPUs use the ever increasing transistor count for adding more processor cores. Therefore, GPUs are well suited for massively data parallel processing with high floating point arithmetic intensity. Thus, it is imperative to update legacy scientific applications to take advantage of this unprecedented increase in computing power. CUDA is an extension to the C programming language offering programming GPU's directly. It is designed so that its constructs allow for natural expression of data-level parallelism. A CUDA program is organized into two parts: a serial program running on the CPU and a CUDA kernel running on the GPU. The CUDA code consists of three computational phases: transmission of data into the global memory of the GPU, execution of the CUDA kernel, and transmission of results from the GPU into the memory of CPU. CUDA takes a bottom-up point of view of parallelism is which thread is an atomic unit of parallelism. Individual threads are part of groups called warps, within which every thread executes exactly the same sequence of instructions. To test SBU-YLIN, we used a CONtinental United States (CONUS) benchmark data set for 12 km resolution domain for October 24, 2001. A WRF domain is a geographic region of interest discretized into a 2-dimensional grid parallel to the ground. Each grid point has

  19. GPU acceleration of Runge Kutta-Fehlberg and its comparison with Dormand-Prince method

    NASA Astrophysics Data System (ADS)

    Seen, Wo Mei; Gobithaasan, R. U.; Miura, Kenjiro T.

    2014-07-01

    There is a significant reduction of processing time and speedup of performance in computer graphics with the emergence of Graphic Processing Units (GPUs). GPUs have been developed to surpass Central Processing Unit (CPU) in terms of performance and processing speed. This evolution has opened up a new area in computing and researches where highly parallel GPU has been used for non-graphical algorithms. Physical or phenomenal simulations and modelling can be accelerated through General Purpose Graphic Processing Units (GPGPU) and Compute Unified Device Architecture (CUDA) implementations. These phenomena can be represented with mathematical models in the form of Ordinary Differential Equations (ODEs) which encompasses the gist of change rate between independent and dependent variables. ODEs are numerically integrated over time in order to simulate these behaviours. The classical Runge-Kutta (RK) scheme is the common method used to numerically solve ODEs. The Runge Kutta Fehlberg (RKF) scheme has been specially developed to provide an estimate of the principal local truncation error at each step, known as embedding estimate technique. This paper delves into the implementation of RKF scheme for GPU devices and compares its result with Dorman Prince method. A pseudo code is developed to show the implementation in detail. Hence, practitioners will be able to understand the data allocation in GPU, formation of RKF kernels and the flow of data to/from GPU-CPU upon RKF kernel evaluation. The pseudo code is then written in C Language and two ODE models are executed to show the achievable speedup as compared to CPU implementation. The accuracy and efficiency of the proposed implementation method is discussed in the final section of this paper.

  20. Molecular dynamics simulations through GPU video games technologies

    PubMed Central

    Loukatou, Styliani; Papageorgiou, Louis; Fakourelis, Paraskevas; Filntisi, Arianna; Polychronidou, Eleftheria; Bassis, Ioannis; Megalooikonomou, Vasileios; Makałowski, Wojciech; Vlachakis, Dimitrios; Kossida, Sophia

    2016-01-01

    Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements of atoms and molecules is molecular dynamics (MD). MD is an in silico method to simulate the physical motions of atoms and molecules under certain conditions. This has become a state strategic technique and now plays a key role in many areas of exact sciences, such as chemistry, biology, physics and medicine. Due to their complexity, MD calculations could require enormous amounts of computer memory and time and therefore their execution has been a big problem. Despite the huge computational cost, molecular dynamics have been implemented using traditional computers with a central memory unit (CPU). A graphics processing unit (GPU) computing technology was first designed with the goal to improve video games, by rapidly creating and displaying images in a frame buffer such as screens. The hybrid GPU-CPU implementation, combined with parallel computing is a novel technology to perform a wide range of calculations. GPUs have been proposed and used to accelerate many scientific computations including MD simulations. Herein, we describe the new methodologies developed initially as video games and how they are now applied in MD simulations. PMID:27525251

  1. Accelerating universal Kriging interpolation algorithm using CUDA-enabled GPU

    NASA Astrophysics Data System (ADS)

    Cheng, Tangpei

    2013-04-01

    Kriging algorithms are a group of important interpolation methods, which are very useful in many geological applications. However, the algorithm based on traditional general purpose processors can be computationally expensive, especially when the problem scale expands. Inspired by the current trend in graphics processing technology, we proposed an efficient parallel scheme to accelerate the universal Kriging algorithm on the NVIDIA CUDA platform. Some high-performance mathematical functions have been introduced to calculate the compute-intensive steps in the Kriging algorithm, such as matrix-vector multiplication and matrix-matrix multiplication. To further optimize performance, we reduced the memory transfer overhead by reconstructing the time-consuming loops, specifically for the execution on GPU. In the numerical experiment, we compared the performances among different multi-core CPU and GPU implementations to interpolate a geological site. The improved CUDA implementation shows a nearly 18× speedup with respect to the sequential program and is 6.32 times faster compared to the OpenMP-based version running on Intel Xeon E5320 quad-cores CPU and scales well with the size of the system.

  2. Application of GPU processing for Brownian particle simulation

    NASA Astrophysics Data System (ADS)

    Cheng, Way Lee; Sheharyar, Ali; Sadr, Reza; Bouhali, Othmane

    2015-01-01

    Reports on the anomalous thermal-fluid properties of nanofluids (dilute suspension of nano-particles in a base fluid) have been the subject of attention for 15 years. The underlying physics that govern nanofluid behavior, however, is not fully understood and is a subject of much dispute. The interactions between the suspended particles and the base fluid have been cited as a major contributor to the improvement in heat transfer reported in the literature. Numerical simulations are instrumental in studying the behavior of nanofluids. However, such simulations can be computationally intensive due to the small dimensions and complexity of these problems. In this study, a simplified computational approach for isothermal nanofluid simulations was applied, and simulations were conducted using both conventional CPU and parallel GPU implementations. The GPU implementations significantly improved the computational performance, in terms of the simulation time, by a factor of 1000-2500. The results of this investigation show that, as the computational load increases, the simulation efficiency approaches a constant. At a very high computational load, the amount of improvement may even decrease due to limited system memory.

  3. Same-source parallel implementation of the PSU/NCAR MM5

    SciTech Connect

    Michalakes, J.

    1997-12-31

    The Pennsylvania State/National Center for Atmospheric Research Mesoscale Model is a limited-area model of atmospheric systems, now in its fifth generation, MM5. Designed and maintained for vector and shared-memory parallel architectures, the official version of MM5 does not run on message-passing distributed memory (DM) parallel computers. The authors describe a same-source parallel implementation of the PSU/NCAR MM5 using FLIC, the Fortran Loop and Index Converter. The resulting source is nearly line-for-line identical with the original source code. The result is an efficient distributed memory parallel option to MM5 that can be seamlessly integrated into the official version.

  4. Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments

    SciTech Connect

    Jin, Shuangshuang; Chen, Yousu; Wu, Di; Diao, Ruisheng; Huang, Zhenyu

    2015-12-09

    Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Message Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.

  5. A parallel implementation of an EBE solver for the finite element method

    SciTech Connect

    Silva, R.P.; Las Casas, E.B.; Carvalho, M.L.B.

    1994-12-31

    A parallel implementation using PVM on a cluster of workstations of an Element By Element (EBE) solver using the Preconditioned Conjugate Gradient (PCG) method is described, along with an application in the solution of the linear systems generated from finite element analysis of a problem in three dimensional linear elasticity. The PVM (Parallel Virtual Machine) system, developed at the Oak Ridge Laboratory, allows the construction of a parallel MIMD machine by connecting heterogeneous computers linked through a network. In this implementation, version 3.1 of PVM is used, and 11 SLC Sun workstations and a Sun SPARC-2 model are connected through Ethernet. The finite element program is based on SDP, System for Finite Element Based Software Development, developed at the Brazilian National Laboratory for Scientific Computation (LNCC). SDP provides the basic routines for a finite element application program, as well as a standard for programming and documentation, intended to allow exchanges between research groups in different centers.

  6. GISAXS simulation and analysis on GPU clusters

    NASA Astrophysics Data System (ADS)

    Chourou, Slim; Sarje, Abhinav; Li, Xiaoye; Chan, Elaine; Hexemer, Alexander

    2012-02-01

    We have implemented a flexible Grazing Incidence Small-Angle Scattering (GISAXS) simulation code based on the Distorted Wave Born Approximation (DWBA) theory that effectively utilizes the parallel processing power provided by the GPUs. This constitutes a handy tool for experimentalists facing a massive flux of data, allowing them to accurately simulate the GISAXS process and analyze the produced data. The software computes the diffraction image for any given superposition of custom shapes or morphologies (e.g. obtained graphically via a discretization scheme) in a user-defined region of k-space (or region of the area detector) for all possible grazing incidence angles and in-plane sample rotations. This flexibility then allows to easily tackle a wide range of possible sample geometries such as nanostructures on top of or embedded in a substrate or a multilayered structure. In cases where the sample displays regions of significant refractive index contrast, an algorithm has been implemented to perform an optimal slicing of the sample along the vertical direction and compute the averaged refractive index profile to be used as the reference geometry of the unperturbed system. Preliminary tests on a single GPU show a speedup of over 200 times compared to the sequential code.

  7. Adaptive mesh fluid simulations on GPU

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Abel, Tom; Kaehler, Ralf

    2010-10-01

    We describe an implementation of compressible inviscid fluid solvers with block-structured adaptive mesh refinement on Graphics Processing Units using NVIDIA's CUDA. We show that a class of high resolution shock capturing schemes can be mapped naturally on this architecture. Using the method of lines approach with the second order total variation diminishing Runge-Kutta time integration scheme, piecewise linear reconstruction, and a Harten-Lax-van Leer Riemann solver, we achieve an overall speedup of approximately 10 times faster execution on one graphics card as compared to a single core on the host computer. We attain this speedup in uniform grid runs as well as in problems with deep AMR hierarchies. Our framework can readily be applied to more general systems of conservation laws and extended to higher order shock capturing schemes. This is shown directly by an implementation of a magneto-hydrodynamic solver and comparing its performance to the pure hydrodynamic case. Finally, we also combined our CUDA parallel scheme with MPI to make the code run on GPU clusters. Close to ideal speedup is observed on up to four GPUs.

  8. A Simple GPU-Accelerated Two-Dimensional MUSCL-Hancock Solver for Ideal Magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Bard, Christopher; Dorelli, John C.

    2013-01-01

    We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of approx. = 126 for a sq 1024 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.

  9. 3D multi-scale analysis of coupled heat and moisture transport and its parallel implementation

    NASA Astrophysics Data System (ADS)

    Kruis, Jaroslav

    2016-06-01

    Parallel implementation of two-scale model of coupled heat and moisture transport is described. The coupled heat and moisture transport is based on the Künzel model. Motivation for the two-scale analysis comes from the requirement to describe distribution of the relative humidity and temperature in historical masonry structures.

  10. Parallel implementation of RX anomaly detection on multi-core processors: impact of data partitioning strategies

    NASA Astrophysics Data System (ADS)

    Molero, Jose M.; Garzón, Ester M.; García, Inmaculada; Plaza, Antonio

    2011-11-01

    Anomaly detection is an important task for remotely sensed hyperspectral data exploitation. One of the most widely used and successful algorithms for anomaly detection in hyperspectral images is the Reed-Xiaoli (RX) algorithm. Despite its wide acceptance and high computational complexity when applied to real hyperspectral scenes, few documented parallel implementations of this algorithm exist, in particular for multi-core processors. The advantage of multi-core platforms over other specialized parallel architectures is that they are a low-power, inexpensive, widely available and well-known technology. A critical issue in the parallel implementation of RX is the sample covariance matrix calculation, which can be approached in global or local fashion. This aspect is crucial for the RX implementation since the consideration of a local or global strategy for the computation of the sample covariance matrix is expected to affect both the scalability of the parallel solution and the anomaly detection results. In this paper, we develop new parallel implementations of the RX in multi-core processors and specifically investigate the impact of different data partitioning strategies when parallelizing its computations. For this purpose, we consider both global and local data partitioning strategies in the spatial domain of the scene, and further analyze their scalability in different multi-core platforms. The numerical effectiveness of the considered solutions is evaluated using receiver operating characteristics (ROC) curves, analyzing their capacity to detect thermal hot spots (anomalies) in hyperspectral data collected by the NASA's Airborne Visible Infra- Red Imaging Spectrometer system over the World Trade Center in New York, five days after the terrorist attacks of September 11th, 2001.

  11. GPU acceleration of predictiion-based lower triangular transform for lossless compression

    NASA Astrophysics Data System (ADS)

    Wei, Shih-Chieh; Huang, Bormin

    2012-10-01

    The prediction-based lower triangular transform (PLT) features the same de-correlation and coding gain properties as the Karhunen-Loeve transform (KLT), but with a lower design and implementational cost. Unlike KLT, PLT has the perfect reconstruction property which allows its direct use for lossless compression. Our previous work has shown that PLT is good for lossless compression of ultraspectral sounder data with several thousands of channels. As the computation involves many operations on large matrices, this work will exploit the parallel compute power of graphics processing unit (GPU) to speed up the PLT encoding scheme. The CUDA (Compute Unified Device Architecture) platform by NVidia will be used for comparison with a single threaded CPU core. The experimental result reveals that our GPU implementation of the PLT encoding scheme shows a speedup of 95x compared to its original Matlab implementation on CPU. Thus it is promising to apply the GPU-based PLT encoding scheme for ultraspectral sounder data compression.

  12. TH-A-19A-11: Validation of GPU-Based Monte Carlo Code (gPMC) Versus Fully Implemented Monte Carlo Code (TOPAS) for Proton Radiation Therapy: Clinical Cases Study

    SciTech Connect

    Giantsoudi, D; Schuemann, J; Dowdell, S; Paganetti, H; Jia, X; Jiang, S

    2014-06-15

    Purpose: For proton radiation therapy, Monte Carlo simulation (MCS) methods are recognized as the gold-standard dose calculation approach. Although previously unrealistic due to limitations in available computing power, GPU-based applications allow MCS of proton treatment fields to be performed in routine clinical use, on time scales comparable to that of conventional pencil-beam algorithms. This study focuses on validating the results of our GPU-based code (gPMC) versus fully implemented proton therapy based MCS code (TOPAS) for clinical patient cases. Methods: Two treatment sites were selected to provide clinical cases for this study: head-and-neck cases due to anatomical geometrical complexity (air cavities and density heterogeneities), making dose calculation very challenging, and prostate cases due to higher proton energies used and close proximity of the treatment target to sensitive organs at risk. Both gPMC and TOPAS methods were used to calculate 3-dimensional dose distributions for all patients in this study. Comparisons were performed based on target coverage indices (mean dose, V90 and D90) and gamma index distributions for 2% of the prescription dose and 2mm. Results: For seven out of eight studied cases, mean target dose, V90 and D90 differed less than 2% between TOPAS and gPMC dose distributions. Gamma index analysis for all prostate patients resulted in passing rate of more than 99% of voxels in the target. Four out of five head-neck-cases showed passing rate of gamma index for the target of more than 99%, the fifth having a gamma index passing rate of 93%. Conclusion: Our current work showed excellent agreement between our GPU-based MCS code and fully implemented proton therapy based MC code for a group of dosimetrically challenging patient cases.

  13. GPU-FS-kNN: A Software Tool for Fast and Scalable kNN Computation Using GPUs

    PubMed Central

    Arefin, Ahmed Shamsul; Riveros, Carlos; Berretta, Regina; Moscato, Pablo

    2012-01-01

    Background The analysis of biological networks has become a major challenge due to the recent development of high-throughput techniques that are rapidly producing very large data sets. The exploding volumes of biological data are craving for extreme computational power and special computing facilities (i.e. super-computers). An inexpensive solution, such as General Purpose computation based on Graphics Processing Units (GPGPU), can be adapted to tackle this challenge, but the limitation of the device internal memory can pose a new problem of scalability. An efficient data and computational parallelism with partitioning is required to provide a fast and scalable solution to this problem. Results We propose an efficient parallel formulation of the k-Nearest Neighbour (kNN) search problem, which is a popular method for classifying objects in several fields of research, such as pattern recognition, machine learning and bioinformatics. Being very simple and straightforward, the performance of the kNN search degrades dramatically for large data sets, since the task is computationally intensive. The proposed approach is not only fast but also scalable to large-scale instances. Based on our approach, we implemented a software tool GPU-FS-kNN (GPU-based Fast and Scalable k-Nearest Neighbour) for CUDA enabled GPUs. The basic approach is simple and adaptable to other available GPU architectures. We observed speed-ups of 50–60 times compared with CPU implementation on a well-known breast microarray study and its associated data sets. Conclusion Our GPU-based Fast and Scalable k-Nearest Neighbour search technique (GPU-FS-kNN) provides a significant performance improvement for nearest neighbour computation in large-scale networks. Source code and the software tool is available under GNU Public License (GPL) at https://sourceforge.net/p/gpufsknn/. PMID:22937144

  14. A GPU Accelerated Discontinuous Galerkin Conservative Level Set Method for Simulating Atomization

    NASA Astrophysics Data System (ADS)

    Jibben, Zechariah J.

    This dissertation describes a process for interface capturing via an arbitrary-order, nearly quadrature free, discontinuous Galerkin (DG) scheme for the conservative level set method (Olsson et al., 2005, 2008). The DG numerical method is utilized to solve both advection and reinitialization, and executed on a refined level set grid (Herrmann, 2008) for effective use of processing power. Computation is executed in parallel utilizing both CPU and GPU architectures to make the method feasible at high order. Finally, a sparse data structure is implemented to take full advantage of parallelism on the GPU, where performance relies on well-managed memory operations. With solution variables projected into a kth order polynomial basis, a k + 1 order convergence rate is found for both advection and reinitialization tests using the method of manufactured solutions. Other standard test cases, such as Zalesak's disk and deformation of columns and spheres in periodic vortices are also performed, showing several orders of magnitude improvement over traditional WENO level set methods. These tests also show the impact of reinitialization, which often increases shape and volume errors as a result of level set scalar trapping by normal vectors calculated from the local level set field. Accelerating advection via GPU hardware is found to provide a 30x speedup factor comparing a 2.0GHz Intel Xeon E5-2620 CPU in serial vs. a Nvidia Tesla K20 GPU, with speedup factors increasing with polynomial degree until shared memory is filled. A similar algorithm is implemented for reinitialization, which relies on heavier use of shared and global memory and as a result fills them more quickly and produces smaller speedups of 18x.

  15. GPU-accelerated inverse identification of radiative properties of particle suspensions in liquid by the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Ma, C. Y.; Zhao, J. M.; Liu, L. H.; Zhang, L.; Li, X. C.; Jiang, B. C.

    2016-03-01

    Inverse identification of radiative properties of participating media is usually time consuming. In this paper, a GPU accelerated inverse identification model is presented to obtain the radiative properties of particle suspensions. The sample medium is placed in a cuvette and a narrow light beam is irradiated normally from the side. The forward three-dimensional radiative transfer problem is solved using a massive parallel Monte Carlo method implemented on graphics processing unit (GPU), and particle swarm optimization algorithm is applied to inversely identify the radiative properties of particle suspensions based on the measured bidirectional scattering distribution function (BSDF). The GPU-accelerated Monte Carlo simulation significantly reduces the solution time of the radiative transfer simulation and hence greatly accelerates the inverse identification process. Hundreds of speedup is achieved as compared to the CPU implementation. It is demonstrated using both simulated BSDF and experimentally measured BSDF of microalgae suspensions that the radiative properties of particle suspensions can be effectively identified based on the GPU-accelerated algorithm with three-dimensional radiative transfer modelling.

  16. Identification of continuous-time dynamical systems: Neural network based algorithms and parallel implementation

    SciTech Connect

    Farber, R.M.; Lapedes, A.S.; Rico-Martinez, R.; Kevrekidis, I.G.

    1993-06-01

    Time-delay mappings constructed using neural networks have proven successful performing nonlinear system identification; however, because of their discrete nature, their use in bifurcation analysis of continuous-tune systems is limited. This shortcoming can be avoided by embedding the neural networks in a training algorithm that mimics a numerical integrator. Both explicit and implicit integrators can be used. The former case is based on repeated evaluations of the network in a feedforward implementation; the latter relies on a recurrent network implementation. Here the algorithms and their implementation on parallel machines (SIMD and MIMD architectures) are discussed.

  17. Identification of continuous-time dynamical systems: Neural network based algorithms and parallel implementation

    SciTech Connect

    Farber, R.M.; Lapedes, A.S. ); Rico-Martinez, R.; Kevrekidis, I.G. . Dept. of Chemical Engineering)

    1993-01-01

    Time-delay mappings constructed using neural networks have proven successful performing nonlinear system identification; however, because of their discrete nature, their use in bifurcation analysis of continuous-tune systems is limited. This shortcoming can be avoided by embedding the neural networks in a training algorithm that mimics a numerical integrator. Both explicit and implicit integrators can be used. The former case is based on repeated evaluations of the network in a feedforward implementation; the latter relies on a recurrent network implementation. Here the algorithms and their implementation on parallel machines (SIMD and MIMD architectures) are discussed.

  18. An abstract-device interface for implementing portable parallel-I/O interfaces

    SciTech Connect

    Thakur, R.; Gropp, W.; Lusk, E.

    1996-12-31

    Portable parallel programming has been hampered by the lack of a single, standard, portable application-programmer`s interface (API) for parallel I/O. Instead, the programmer must choose from several different APIs, many of which are not portable. To alleviate this problem, the authors have developed an abstract-device interface for parallel I/O, called ADIO. ADIO is not intended as a new API; rather, it is a strategy for implementing other APIs in a simple, portable, and efficient manner. ADIO facilitates the implementation of any existing or new API on any existing or new file system. ADIO thus enables users to experiment with different APIs, a feature that, they think, would help in the definition of a standard API. It also makes existing applications portable across a wide range of platforms. In this paper, they introduce the concept of ADIO. They describe the design of ADIO and its use in implementing APIs. They have currently implemented subsets of the Intel PFS, IBM PIOFS, and MPI-IO APIs on both the PFS and PIOFS file systems. As a result, they are able to run IBM PIOFS applications on the Intel Paragon, Intel PFS applications on the IBM SP, and MPI-IO applications on both systems. They report performance results obtained from two test programs and one real production application on the SP and Paragon. These results indicate that the performance overhead of using ADIO as an implementation strategy is negligible.

  19. GPU-accelerated micromagnetic simulations using cloud computing

    NASA Astrophysics Data System (ADS)

    Jermain, C. L.; Rowlands, G. E.; Buhrman, R. A.; Ralph, D. C.

    2016-03-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics.

  20. STEM image simulation with hybrid CPU/GPU programming.

    PubMed

    Yao, Y; Ge, B H; Shen, X; Wang, Y G; Yu, R C

    2016-07-01

    STEM image simulation is achieved via hybrid CPU/GPU programming under parallel algorithm architecture to speed up calculation on a personal computer (PC). To utilize the calculation power of a PC fully, the simulation is performed using the GPU core and multi-CPU cores at the same time to significantly improve efficiency. GaSb and an artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. PMID:27093687

  1. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    SciTech Connect

    Kerr, J.P.

    1992-01-01

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  2. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    SciTech Connect

    Kerr, J.P.

    1992-12-31

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  3. A New GPU-Enabled MODTRAN Thermal Model for the PLUME TRACKER Volcanic Emission Analysis Toolkit

    NASA Astrophysics Data System (ADS)

    Acharya, P. K.; Berk, A.; Guiang, C.; Kennett, R.; Perkins, T.; Realmuto, V. J.

    2013-12-01

    Real-time quantification of volcanic gaseous and particulate releases is important for (1) recognizing rapid increases in SO2 gaseous emissions which may signal an impending eruption; (2) characterizing ash clouds to enable safe and efficient commercial aviation; and (3) quantifying the impact of volcanic aerosols on climate forcing. The Jet Propulsion Laboratory (JPL) has developed state-of-the-art algorithms, embedded in their analyst-driven Plume Tracker toolkit, for performing SO2, NH3, and CH4 retrievals from remotely sensed multi-spectral Thermal InfraRed spectral imagery. While Plume Tracker provides accurate results, it typically requires extensive analyst time. A major bottleneck in this processing is the relatively slow but accurate FORTRAN-based MODTRAN atmospheric and plume radiance model, developed by Spectral Sciences, Inc. (SSI). To overcome this bottleneck, SSI in collaboration with JPL, is porting these slow thermal radiance algorithms onto massively parallel, relatively inexpensive and commercially-available GPUs. This paper discusses SSI's efforts to accelerate the MODTRAN thermal emission algorithms used by Plume Tracker. Specifically, we are developing a GPU implementation of the Curtis-Godson averaging and the Voigt in-band transmittances from near line center molecular absorption, which comprise the major computational bottleneck. The transmittance calculations were decomposed into separate functions, individually implemented as GPU kernels, and tested for accuracy and performance relative to the original CPU code. Speedup factors of 14 to 30× were realized for individual processing components on an NVIDIA GeForce GTX 295 graphics card with no loss of accuracy. Due to the separate host (CPU) and device (GPU) memory spaces, a redesign of the MODTRAN architecture was required to ensure efficient data transfer between host and device, and to facilitate high parallel throughput. Currently, we are incorporating the separate GPU kernels into a

  4. Parallel implementation of the time-evolving block decimation algorithm for the Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Urbanek, Miroslav; Soldán, Pavel

    2016-02-01

    A system of ultracold atoms in an optical lattice represents a powerful experimental setup for testing the fundamentals of quantum mechanics. While its microscopic interaction mechanisms are well understood, the system behavior for a moderate number of particles is difficult to simulate due to a high dimension of its many-body space. This article presents TEBDOL, a parallel implementation of the time-evolving block decimation (TEBD) algorithm that can efficiently simulate time evolution of a one-dimensional chain of atoms in optical lattices. We investigate the parallelization strategy and the strong and weak scaling with the number of processes.

  5. GPU-accelerated voxelwise hepatic perfusion quantification.

    PubMed

    Wang, H; Cao, Y

    2012-09-01

    Voxelwise quantification of hepatic perfusion parameters from dynamic contrast enhanced (DCE) imaging greatly contributes to assessment of liver function in response to radiation therapy. However, the efficiency of the estimation of hepatic perfusion parameters voxel-by-voxel in the whole liver using a dual-input single-compartment model requires substantial improvement for routine clinical applications. In this paper, we utilize the parallel computation power of a graphics processing unit (GPU) to accelerate the computation, while maintaining the same accuracy as the conventional method. Using compute unified device architecture-GPU, the hepatic perfusion computations over multiple voxels are run across the GPU blocks concurrently but independently. At each voxel, nonlinear least-squares fitting the time series of the liver DCE data to the compartmental model is distributed to multiple threads in a block, and the computations of different time points are performed simultaneously and synchronically. An efficient fast Fourier transform in a block is also developed for the convolution computation in the model. The GPU computations of the voxel-by-voxel hepatic perfusion images are compared with ones by the CPU using the simulated DCE data and the experimental DCE MR images from patients. The computation speed is improved by 30 times using a NVIDIA Tesla C2050 GPU compared to a 2.67 GHz Intel Xeon CPU processor. To obtain liver perfusion maps with 626 400 voxels in a patient's liver, it takes 0.9 min with the GPU-accelerated voxelwise computation, compared to 110 min with the CPU, while both methods result in perfusion parameters differences less than 10(-6). The method will be useful for generating liver perfusion images in clinical settings. PMID:22892645

  6. GPU-accelerated computation of electron transfer.

    PubMed

    Höfinger, Siegfried; Acocella, Angela; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Beu, Titus; Zerbetto, Francesco

    2012-11-01

    Electron transfer is a fundamental process that can be studied with the help of computer simulation. The underlying quantum mechanical description renders the problem a computationally intensive application. In this study, we probe the graphics processing unit (GPU) for suitability to this type of problem. Time-critical components are identified via profiling of an existing implementation and several different variants are tested involving the GPU at increasing levels of abstraction. A publicly available library supporting basic linear algebra operations on the GPU turns out to accelerate the computation approximately 50-fold with minor dependence on actual problem size. The performance gain does not compromise numerical accuracy and is of significant value for practical purposes. PMID:22847673

  7. Massively parallel implementation of the Penn State/NCAR Mesoscale Model

    SciTech Connect

    Foster, I.; Michalakes, J.

    1992-01-01

    Parallel computing promises significant improvements in both the raw speed and cost performance of mesoscale atmospheric models. On distributed-memory massively parallel computers available today, the performance of a mesoscale model will exceed that of conventional supercomputers; on the teraflops machines expected within the next five years, performance will increase by several orders of magnitude. As a result, scientists will be able to consider larger problems, more complex model processes, and finer resolutions. In this paper. we report on a project at Argonne National Laboratory that will allow scientists to take advantage of parallel computing technology. This Massively Parallel Mesoscale Model (MPMM) will be functionally equivalent to the Penn State/NCAR Mesoscale Model (MM). In a prototype study, we produced a parallel version of MM4 using a static (compile-time) coarse-grained patch'' decomposition. This code achieves one-third the performance of a one-processor CRAY Y-MP on twelve Intel 1860 microprocessors. The current version of MPMM is based on all MM5 and uses a more fine-grained approach, decomposing the grid as finely as the mesh itself allows so that each horizontal grid cell is a parallel process. This will allow the code to utilize many hundreds of processors. A high-level language for expressing parallel programs is used to implement communication strearns between the processes in a way that permits dynamic remapping to the physical processors of a particular parallel computer. This facilitates load balancing, grid nesting, and coupling with graphical systems and other models.

  8. Massively parallel implementation of the Penn State/NCAR Mesoscale Model

    SciTech Connect

    Foster, I.; Michalakes, J.

    1992-12-01

    Parallel computing promises significant improvements in both the raw speed and cost performance of mesoscale atmospheric models. On distributed-memory massively parallel computers available today, the performance of a mesoscale model will exceed that of conventional supercomputers; on the teraflops machines expected within the next five years, performance will increase by several orders of magnitude. As a result, scientists will be able to consider larger problems, more complex model processes, and finer resolutions. In this paper. we report on a project at Argonne National Laboratory that will allow scientists to take advantage of parallel computing technology. This Massively Parallel Mesoscale Model (MPMM) will be functionally equivalent to the Penn State/NCAR Mesoscale Model (MM). In a prototype study, we produced a parallel version of MM4 using a static (compile-time) coarse-grained ``patch`` decomposition. This code achieves one-third the performance of a one-processor CRAY Y-MP on twelve Intel 1860 microprocessors. The current version of MPMM is based on all MM5 and uses a more fine-grained approach, decomposing the grid as finely as the mesh itself allows so that each horizontal grid cell is a parallel process. This will allow the code to utilize many hundreds of processors. A high-level language for expressing parallel programs is used to implement communication strearns between the processes in a way that permits dynamic remapping to the physical processors of a particular parallel computer. This facilitates load balancing, grid nesting, and coupling with graphical systems and other models.

  9. Implementation of the DPM Monte Carlo code on a parallel architecture for treatment planning applications.

    PubMed

    Tyagi, Neelam; Bose, Abhijit; Chetty, Indrin J

    2004-09-01

    We have parallelized the Dose Planning Method (DPM), a Monte Carlo code optimized for radiotherapy class problems, on distributed-memory processor architectures using the Message Passing Interface (MPI). Parallelization has been investigated on a variety of parallel computing architectures at the University of Michigan-Center for Advanced Computing, with respect to efficiency and speedup as a function of the number of processors. We have integrated the parallel pseudo random number generator from the Scalable Parallel Pseudo-Random Number Generator (SPRNG) library to run with the parallel DPM. The Intel cluster consisting of 800 MHz Intel Pentium III processor shows an almost linear speedup up to 32 processors for simulating 1 x 10(8) or more particles. The speedup results are nearly linear on an Athlon cluster (up to 24 processors based on availability) which consists of 1.8 GHz+ Advanced Micro Devices (AMD) Athlon processors on increasing the problem size up to 8 x 10(8) histories. For a smaller number of histories (1 x 10(8)) the reduction of efficiency with the Athlon cluster (down to 83.9% with 24 processors) occurs because the processing time required to simulate 1 x 10(8) histories is less than the time associated with interprocessor communication. A similar trend was seen with the Opteron Cluster (consisting of 1400 MHz, 64-bit AMD Opteron processors) on increasing the problem size. Because of the 64-bit architecture Opteron processors are capable of storing and processing instructions at a faster rate and hence are faster as compared to the 32-bit Athlon processors. We have validated our implementation with an in-phantom dose calculation study using a parallel pencil monoenergetic electron beam of 20 MeV energy. The phantom consists of layers of water, lung, bone, aluminum, and titanium. The agreement in the central axis depth dose curves and profiles at different depths shows that the serial and parallel codes are equivalent in accuracy. PMID:15487756

  10. GPU Accelerated Numerical Simulation of Viscous Flow Down a Slope

    NASA Astrophysics Data System (ADS)

    Gygax, Remo; Räss, Ludovic; Omlin, Samuel; Podladchikov, Yuri; Jaboyedoff, Michel

    2014-05-01

    Numerical simulations are an effective tool in natural risk analysis. They are useful to determine the propagation and the runout distance of gravity driven movements such as debris flows or landslides. To evaluate these processes an approach on analogue laboratory experiments and a GPU accelerated numerical simulation of the flow of a viscous liquid down an inclined slope is considered. The physical processes underlying large gravity driven flows share certain aspects with the propagation of debris mass in a rockslide and the spreading of water waves. Several studies have shown that the numerical implementation of the physical processes of viscous flow produce a good fit with the observation of experiments in laboratory in both a quantitative and a qualitative way. When considering a process that is this far explored we can concentrate on its numerical transcription and the application of the code in a GPU accelerated environment to obtain a 3D simulation. The objective of providing a numerical solution in high resolution by NVIDIA-CUDA GPU parallel processing is to increase the speed of the simulation and the accuracy on the prediction. The main goal is to write an easily adaptable and as short as possible code on the widely used platform MATLAB, which will be translated to C-CUDA to achieve higher resolution and processing speed while running on a NVIDIA graphics card cluster. The numerical model, based on the finite difference scheme, is compared to analogue laboratory experiments. This way our numerical model parameters are adjusted to reproduce the effective movements observed by high-speed camera acquisitions during the laboratory experiments.

  11. Fast computer simulation of reconstructed image from rainbow hologram based on GPU

    NASA Astrophysics Data System (ADS)

    Shuming, Jiao; Yoshikawa, Hiroshi

    2015-10-01

    A fast computer simulation solution for rainbow hologram reconstruction based on GPU is proposed. In the commonly used segment Fourier transform method for rainbow hologram reconstruction, the computation of 2D Fourier transform on each hologram segment is very time consuming. GPU-based parallel computing can be applied to improve the computing speed. Compared with CPU computing, simulation results indicate that our proposed GPU computing can effectively reduce the computation time by as much as eight times.

  12. A parallel real-time computing-cluster implementation of spotlight SAR processing

    NASA Astrophysics Data System (ADS)

    Mathew, Bipin; Rabinkin, Daniel

    2005-05-01

    The high resolution imaging capability of Synthetic Aperture Radar (SAR) is largely unaffected by atmospheric conditions and has proven to be an indispensable asset in a variety of military and civilian applications. Application of SAR methodology for real-time imaging however carries with it the large computational complexity and storage requirements of the image-forming algorithms. Recently however, the rapidly diminishing cost of computing hardware and the related ascent of cluster-based computing, has made parallelization of these algorithms an appealing area of investigation. This paper describes a parallel SAR processor developed at MIT Lincoln Laboratory. Several novel technologies were employed in it's implementation, including pMatlab which is a parallel extension of standard Matlab that is also being developed at MIT Lincoln Laboratory. These technologies will be described later in the document. We begin with a brief description of the basic SAR algorithm.

  13. Synchronous parallel Kinetic Monte Carlo: Implementation and results for object and lattice approaches

    NASA Astrophysics Data System (ADS)

    Martin-Bragado, Ignacio; Abujas, J.; Galindo, P. L.; Pizarro, J.

    2015-06-01

    An adaptation of the synchronous parallel Kinetic Monte Carlo (spKMC) algorithm developed by Martinez et al. (2008) to the existing KMC code MMonCa (Martin-Bragado et al. 2013) is presented in this work. Two cases, general enough to provide an idea of the current state-of-the-art in parallel KMC, are presented: Object KMC simulations of the evolution of damage in irradiated iron, and Lattice KMC simulations of epitaxial regrowth of amorphized silicon. The results allow us to state that (a) the parallel overhead is critical, and severely degrades the performance of the simulator when it is comparable to the CPU time consumed per event, (b) the balance between domains is important, but not critical, (c) the algorithm and its implementation are correct and (d) further improvements are needed for spKMC to become a general, all-working solution for KMC simulations.

  14. A parallel implementation of the Cellular Potts Model for simulation of cell-based morphogenesis

    PubMed Central

    Chen, Nan; Glazier, James A.; Izaguirre, Jesús A.; Alber, Mark S.

    2007-01-01

    The Cellular Potts Model (CPM) has been used in a wide variety of biological simulations. However, most current CPM implementations use a sequential modified Metropolis algorithm which restricts the size of simulations. In this paper we present a parallel CPM algorithm for simulations of morphogenesis, which includes cell–cell adhesion, a cell volume constraint, and cell haptotaxis. The algorithm uses appropriate data structures and checkerboard subgrids for parallelization. Communication and updating algorithms synchronize properties of cells simulated on different processor nodes. Tests show that the parallel algorithm has good scalability, permitting large-scale simulations of cell morphogenesis (107 or more cells) and broadening the scope of CPM applications. The new algorithm satisfies the balance condition, which is sufficient for convergence of the underlying Markov chain. PMID:18084624

  15. Optimization of FIR Digital Filters Using a Real Parameter Parallel Genetic Algorithm and Implementations.

    NASA Astrophysics Data System (ADS)

    Xu, Dexiang

    This dissertation presents a novel method of designing finite word length Finite Impulse Response (FIR) digital filters using a Real Parameter Parallel Genetic Algorithm (RPPGA). This algorithm is derived from basic Genetic Algorithms which are inspired by natural genetics principles. Both experimental results and theoretical studies in this work reveal that the RPPGA is a suitable method for determining the optimal or near optimal discrete coefficients of finite word length FIR digital filters. Performance of RPPGA is evaluated by comparing specifications of filters designed by other methods with filters designed by RPPGA. The parallel and spatial structures of the algorithm result in faster and more robust optimization than basic genetic algorithms. A filter designed by RPPGA is implemented in hardware to attenuate high frequency noise in a data acquisition system for collecting seismic signals. These studies may lead to more applications of the Real Parameter Parallel Genetic Algorithms in Electrical Engineering.

  16. A data-parallel algorithm for three-dimensional Delaunay triangulation and its implementation

    SciTech Connect

    Teng, Y.A.; Sullivan, F.; Beichl, I.; Puppo, E.

    1993-12-31

    In this paper, the authors present a parallel algorithm for constructing the Delaunay triangulation of a set of vertices in three-dimensional space. The algorithm achieves a high degree of parallelism by starting the construction from every vertex and expanding over all open faces thereafter. In the expansion of open faces, the search is made faster by using a bucketing technique. The algorithm is designed under a data-parallel paradigm. It uses segmented list structures and virtual processing for load-balancing. As a result, the algorithm achieves a fast running time and good scalability over a wide range of problem sizes and machine sizes. They also incorporate a topological check to eliminate inconsistencies due to degeneracies and numerical error. The algorithm is implemented on Connection Machines CM-2 and CM-5, and experimental results are presented.

  17. Binary image segmentation based on optimized parallel K-means

    NASA Astrophysics Data System (ADS)

    Qiu, Xiao-bing; Zhou, Yong; Lin, Li

    2015-07-01

    K-means is a classic unsupervised learning clustering algorithm. In theory, it can work well in the field of image segmentation. But compared with other segmentation algorithms, this algorithm needs much more computation, and segmentation speed is slow. This limits its application. With the emergence of general-purpose computing on the GPU and the release of CUDA, some scholars try to implement K-means algorithm in parallel on the GPU, and applied to image segmentation at the same time. They have achieved some results, but the approach they use is not completely parallel, not take full advantage of GPU's super computing power. K-means algorithm has two core steps: label and update, in current parallel realization of K-means, only labeling is parallel, update operation is still serial. In this paper, both of the two steps in K-means will be parallel to improve the degree of parallelism and accelerate this algorithm. Experimental results show that this improvement has reached a much quicker speed than the previous research.

  18. Sub-second pencil beam dose calculation on GPU for adaptive proton therapy

    NASA Astrophysics Data System (ADS)

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-06-01

    Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system.

  19. Sub-second pencil beam dose calculation on GPU for adaptive proton therapy.

    PubMed

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-06-21

    Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system. PMID:26040956

  20. Design and implementation of the parallel processing system of multi-channel polarization images

    NASA Astrophysics Data System (ADS)

    Li, Zhi-yong; Huang, Qin-chao

    2013-08-01

    Compared with traditional optical intensity image processing, polarization images processing has two main problems. One is that the amount of data is larger. The other is that processing tasks is more complex. To resolve these problems, the parallel processing system of multi-channel polarization images is designed by the multi-DSP technique. It contains a communication control unit (CCU) and a data processing array (DPA). CCU controls communications inside and outside the system. Its logics are designed by a FPGA chip. DPA is made up of four Digital Signal Processor (DSP) chips, which are interlinked by the loose coupling method. DPA implements processing tasks including images registration and images synthesis by parallel processing methods. The polarization images parallel processing model is designed on multi levels including the system task, the algorithm and the operation. Its program is designed by the assemble language. While the polarization image resolution is 782x582 pixels, the pixel data length is 12 bits in the experiment. After it received 3 channels of polarization image simultaneously, this system implements parallel task to acquire the target polarization characteristics. Experimental results show that this system has good real-time and reliability. The processing time of images registration is 293.343ms while the registration accuracy achieves 0.5 pixel. The processing time of images synthesis is 3.199ms.

  1. High-performance FFT implementation on the BOPS ManArray parallel DSP

    NASA Astrophysics Data System (ADS)

    Pitsianis, Nikos P.; Pechanek, Gerald

    1999-11-01

    We present a high performance implementation of the FFT algorithm on the BOPS ManArray parallel DSP processor. The ManArray we consider for this application consists of an array controller and 2 to 4 fully interconnected processing elements. To expose the parallelism inherent to an FFT algorithm we use a factorization of the DFT matrix in Kronecker products, permutation and diagonal matrices. Our implementation utilizes the multiple levels of parallelism that are available on the ManArray. We use the special multiply complex instruction, that calculates the product of two complex 32-bit fixed point numbers in 2 cycles (pipelinable). Instruction level parallelism is exploited via the indirect Very Long Instruction Word (iVLIW). With an iVLIW, in the same cycle a complex number is read from memory, another complex number is written to memory, a complex multiplication starts and another finishes, two complex additions or subtractions are done and a complex number is exchanged with another processing element. Multiple local FFTs are executed in Single Instruction Multiple Data (SIMD) mode, and to avoid a costly data transposition we execute distributed FFTs in Synchronous Multiple Instructions Multiple Data (SMIMD) mode.

  2. Efficient GPU Accelerationfor Integrating Large Thermonuclear Networks in Astrophysics

    NASA Astrophysics Data System (ADS)

    Guidry, Mike

    2016-02-01

    We demonstrate the systematic implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. We take as representative test cases Type Ia supernova explosions with extremely stiff thermonuclear reaction networks having 150-365 isotopic species and 1600-4400 reactions, assumed coupled to hydrodynamics using operator splitting. In such examples we demonstrate the capability to integrate independent thermonuclear networks from ~250-500 hydro zones (assumed to be deployed on CPU cores) in parallel on a single GPU in the same wall clock time that standard implicit methods can integrate the network for a single zone. This two or more orders of magnitude increase in efficiency for solving systems of realistic thermonuclear networks coupled to fluid dynamics implies that important coupled, multiphysics problems in various scientific and technical disciplines that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible. As examples of such applications I will discuss our ongoing deployment of these new methods for Type Ia supernova explosions in astrophysics and for simulation of the complex atmospheric chemistry entering into weather and climate problems.

  3. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    NASA Astrophysics Data System (ADS)

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.

    2016-03-01

    This work discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package authored at Oak Ridge National Laboratory. Shift has been developed to scale well from laptops to small computing clusters to advanced supercomputers and includes features such as support for multiple geometry and physics engines, hybrid capabilities for variance reduction methods such as the Consistent Adjoint-Driven Importance Sampling methodology, advanced parallel decompositions, and tally methods optimized for scalability on supercomputing architectures. The scaling studies presented in this paper demonstrate good weak and strong scaling behavior for the implemented algorithms. Shift has also been validated and verified against various reactor physics benchmarks, including the Consortium for Advanced Simulation of Light Water Reactors' Virtual Environment for Reactor Analysis criticality test suite and several Westinghouse AP1000® problems presented in this paper. These benchmark results compare well to those from other contemporary Monte Carlo codes such as MCNP5 and KENO.

  4. Parallel Implementation of the Recursive Approximation of an Unsupervised Hierarchical Segmentation Algorithm. Chapter 5

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Plaza, Antonio J. (Editor); Chang, Chein-I. (Editor)

    2008-01-01

    The hierarchical image segmentation algorithm (referred to as HSEG) is a hybrid of hierarchical step-wise optimization (HSWO) and constrained spectral clustering that produces a hierarchical set of image segmentations. HSWO is an iterative approach to region grooving segmentation in which the optimal image segmentation is found at N(sub R) regions, given a segmentation at N(sub R+1) regions. HSEG's addition of constrained spectral clustering makes it a computationally intensive algorithm, for all but, the smallest of images. To counteract this, a computationally efficient recursive approximation of HSEG (called RHSEG) has been devised. Further improvements in processing speed are obtained through a parallel implementation of RHSEG. This chapter describes this parallel implementation and demonstrates its computational efficiency on a Landsat Thematic Mapper test scene.

  5. A Massively Parallel Adaptive Fast Multipole Method on Heterogeneous Architectures

    SciTech Connect

    Lashuk, Ilya; Chandramowlishwaran, Aparna; Langston, Harper; Nguyen, Tuan-Anh; Sampath, Rahul S; Shringarpure, Aashay; Vuduc, Richard; Ying, Lexing; Zorin, Denis; Biros, George

    2012-01-01

    We describe a parallel fast multipole method (FMM) for highly nonuniform distributions of particles. We employ both distributed memory parallelism (via MPI) and shared memory parallelism (via OpenMP and GPU acceleration) to rapidly evaluate two-body nonoscillatory potentials in three dimensions on heterogeneous high performance computing architectures. We have performed scalability tests with up to 30 billion particles on 196,608 cores on the AMD/CRAY-based Jaguar system at ORNL. On a GPU-enabled system (NSF's Keeneland at Georgia Tech/ORNL), we observed 30x speedup over a single core CPU and 7x speedup over a multicore CPU implementation. By combining GPUs with MPI, we achieve less than 10 ns/particle and six digits of accuracy for a run with 48 million nonuniformly distributed particles on 192 GPUs.

  6. FLIC: A translator for same-source parallel implementation of regular grid applications

    SciTech Connect

    Michalakes, J.

    1997-02-01

    FLIC, a Fortran loop and index converter, is a parser-based source translation tool that automates the conversion of program loops and array indices for distributed-memory parallel computers. This conversion is important in the implementation of gridded models on distributed memory because it allows for decomposition and shrinking of model data structures. FLIC does not provide the parallel services itself, but rather provides an automated and transparent mapping of the source code to calls or directives of the user`s choice of run-time systems or parallel libraries. The amount of user-supplied input required by FLIC to direct the conversion is small enough to fit as command line arguments for the tool. The tool requires no additional statements, comments, or directives in the source code, thus avoiding the pervasiveness and intrusiveness imposed by directives-based preprocessors and parallelizing compilers. FLIC is lightweight and suitable for use as a precompiler and facilitates a same-source approach to operability on diverse computer architectures. FLIC is targeted to new or existing applications that employ regular gridded domains, such as weather models, that will be parallelized by data-domain decomposition.

  7. Fast parallel implementation of multidimensional data-domain FORTRAN codes on distributed-memory processor arrays

    NASA Astrophysics Data System (ADS)

    Reale, F.; Barbera, M.; Sciortino, S.

    1992-11-01

    We illustrate a general and straightforward approach to develop FORTRAN parallel two-dimensional data-domain applications on distributed-memory systems, such as those based on transputers. We have aimed at achieving flexibility for different processor topologies and processor numbers, non-homogeneous processor configurations and coarse load-balancing. We have assumed a master-slave architecture as basic programming model in the framework of a domain decomposition approach. After developing a library of high-level general network and communication routines, based on low-level system-dependent libraries, we have used it to parallelize some specific applications: an elementary 2-D code, useful as a pattern and guide for other more complex applications, and a 2-D hydrodynamic code for astrophysical studies. Code parallelization is achieved by splitting the original code into two independent codes, one for the master and the other for the slaves, and then by adding coordinated calls to network setting and message-passing routines into the programs. The parallel applications have been implemented on a Meiko Computing Surface hosted by a SUN 4 workstation and running CSTools software package. After the basic network and communication routines were developed, the task of parallelizing the 2-D hydrodynamic code took approximately 12 man hours. The parallel efficiency of the code ranges between 98% and 58% on arrays between 2 and 20 T800 transputers, on a relatively small computational mesh (≈3000 cells). Arrays consisting of a limited number of faster Intel i860 processors achieve a high parallel efficiency on large computational grids (> 10000 grid points) with performances in the class of minisupercomputers.

  8. Parallel processing implementations of a contextual classifier for multispectral remote sensing data

    NASA Technical Reports Server (NTRS)

    Siegel, H. J.; Swain, P. H.; Smith, B. W.

    1980-01-01

    Contextual classifiers are being developed as a method to exploit the spatial/spectral context of a pixel to achieve accurate classification. Classification algorithms such as the contextual classifier typically require large amounts of computation time. One way to reduce the execution time of these tasks is through the use of parallelism. The applicability of the CDC flexible processor system and of a proposed multimicroprocessor system (PASM) for implementing contextual classifiers is examined.

  9. The implementation of the upwind leapfrog scheme for 3D electromagnetic scattering on massively parallel computers

    SciTech Connect

    Nguyen, B.T.; Hutchinson, S.A.

    1995-07-01

    The upwind leapfrog scheme for electromagnetic scattering is briefly described. Its application to the 3D Maxwell`s time domain equations is shown in detail. The scheme`s use of upwind characteristic variables and a narrow stencil result in a smaller demand in communication overhead, making it ideal for implementation on distributed memory parallel computers. The algorithm`s implementation on two message passing computers, a 1024-processor nCUBE 2 and a 1840-processor Intel Paragon, is described. Performance evaluation demonstrates that the scheme performs well with both good scaling qualities and high efficiencies on these machines.

  10. Parallel implementation of three-dimensional molecular dynamic simulation for laser-cluster interaction

    SciTech Connect

    Holkundkar, Amol R.

    2013-11-15

    The objective of this article is to report the parallel implementation of the 3D molecular dynamic simulation code for laser-cluster interactions. The benchmarking of the code has been done by comparing the simulation results with some of the experiments reported in the literature. Scaling laws for the computational time is established by varying the number of processor cores and number of macroparticles used. The capabilities of the code are highlighted by implementing various diagnostic tools. To study the dynamics of the laser-cluster interactions, the executable version of the code is available from the author.

  11. Parallel fixed point implementation of a radial basis function network in an FPGA.

    PubMed

    de Souza, Alisson C D; Fernandes, Marcelo A C

    2014-01-01

    This paper proposes a parallel fixed point radial basis function (RBF) artificial neural network (ANN), implemented in a field programmable gate array (FPGA) trained online with a least mean square (LMS) algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA. PMID:25268918

  12. Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA

    PubMed Central

    de Souza, Alisson C. D.; Fernandes, Marcelo A. C.

    2014-01-01

    This paper proposes a parallel fixed point radial basis function (RBF) artificial neural network (ANN), implemented in a field programmable gate array (FPGA) trained online with a least mean square (LMS) algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA. PMID:25268918

  13. Butterfly interconnection implementation for an n-bit parallel ripple carry full adder.

    PubMed

    Sun, D G; Weng, Z H

    1991-05-10

    Free-space optical interconnections are important both in massive digital optical computing and in communication systems. The optical butterfly interconnection has many advantages over other interconnections in implementing various basic logic functions such as addition, subtraction, multiplication. This paper starts with the conventional Karnaugh maps and Boolean algebra to implement a parallel n-bit ripple carry full adder by the use of multilayer butterfly interconnection networks. Then we describe in detail the design and architecture of the full adder and provide accurate interconnection networks and the structures or patterns of key devices such as the masks to implement AND and OR operations in this calculation. Finally, we discuss development of the interconnection in implementing logic operations. PMID:20700358

  14. Explicit integration with GPU acceleration for large kinetic networks

    DOE PAGESBeta

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; Guidry, Mike W.

    2015-09-15

    In this study, we demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. In addition, this orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies thatmore » important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.« less

  15. Explicit integration with GPU acceleration for large kinetic networks

    SciTech Connect

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; Guidry, Mike W.

    2015-09-15

    In this study, we demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. In addition, this orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.

  16. Explicit integration with GPU acceleration for large kinetic networks

    NASA Astrophysics Data System (ADS)

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; Guidry, Mike

    2015-12-01

    We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. This orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.

  17. Task-parallel implementation of 3D shortest path raytracing for geophysical applications

    NASA Astrophysics Data System (ADS)

    Giroux, Bernard; Larouche, Benoît

    2013-04-01

    This paper discusses two variants of the shortest path method and their parallel implementation on a shared-memory system. One variant is designed to perform raytracing in models with stepwise distributions of interval velocity while the other is better suited for continuous velocity models. Both rely on a discretization scheme where primary nodes are located at the corners of cuboid cells and where secondary nodes are found on the edges and sides of the cells. The parallel implementations allow raytracing concurrently for different sources, providing an attractive framework for ray-based tomography. The accuracy and performance of the implementations were measured by comparison with the analytic solution for a layered model and for a vertical gradient model. Mean relative error less than 0.2% was obtained with 5 secondary nodes for the layered model and 9 secondary nodes for the gradient model. Parallel performance depends on the level of discretization refinement, on the number of threads, and on the problem size, with the most determinant variable being the level of discretization refinement (number of secondary nodes). The results indicate that a good trade-off between speed and accuracy is achieved with the number of secondary nodes equal to 5. The programs are written in C++ and rely on the Standard Template Library and OpenMP.

  18. The design and implementation of a parallel unstructured Euler solver using software primitives

    NASA Technical Reports Server (NTRS)

    Das, R.; Mavriplis, D. J.; Saltz, J.; Gupta, S.; Ponnusamy, R.

    1992-01-01

    This paper is concerned with the implementation of a three-dimensional unstructured grid Euler-solver on massively parallel distributed-memory computer architectures. The goal is to minimize solution time by achieving high computational rates with a numerically efficient algorithm. An unstructured multigrid algorithm with an edge-based data structure has been adopted, and a number of optimizations have been devised and implemented in order to accelerate the parallel communication rates. The implementation is carried out by creating a set of software tools, which provide an interface between the parallelization issues and the sequential code, while providing a basis for future automatic run-time compilation support. Large practical unstructured grid problems are solved on the Intel iPSC/860 hypercube and Intel Touchstone Delta machine. The quantitative effect of the various optimizations are demonstrated, and we show that the combined effect of these optimizations leads to roughly a factor of three performance improvement. The overall solution efficiency is compared with that obtained on the CRAY-YMP vector supercomputer.

  19. A Novel Implementation of Massively Parallel Three Dimensional Monte Carlo Radiation Transport

    NASA Astrophysics Data System (ADS)

    Robinson, P. B.; Peterson, J. D. L.

    2005-12-01

    The goal of our summer project was to implement the difference formulation for radiation transport into Cosmos++, a multidimensional, massively parallel, magneto hydrodynamics code for astrophysical applications (Peter Anninos - AX). The difference formulation is a new method for Symbolic Implicit Monte Carlo thermal transport (Brooks and Szöke - PAT). Formerly, simultaneous implementation of fully implicit Monte Carlo radiation transport in multiple dimensions on multiple processors had not been convincingly demonstrated. We found that a combination of the difference formulation and the inherent structure of Cosmos++ makes such an implementation both accurate and straightforward. We developed a "nearly nearest neighbor physics" technique to allow each processor to work independently, even with a fully implicit code. This technique coupled with the increased accuracy of an implicit Monte Carlo solution and the efficiency of parallel computing systems allows us to demonstrate the possibility of massively parallel thermal transport. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

  20. A fast and memory-sparing probabilistic selection algorithm for the GPU

    SciTech Connect

    Monroe, Laura M; Wendelberger, Joanne; Michalak, Sarah

    2010-09-29

    A fast and memory-sparing probabilistic top-N selection algorithm is implemented on the GPU. This probabilistic algorithm gives a deterministic result and always terminates. The use of randomization reduces the amount of data that needs heavy processing, and so reduces both the memory requirements and the average time required for the algorithm. This algorithm is well-suited to more general parallel processors with multiple layers of memory hierarchy. Probabilistic Las Vegas algorithms of this kind are a form of stochastic optimization and can be especially useful for processors having a limited amount of fast memory available.

  1. GPU-optimized Code for Long-term Simulations of Beam-beam Effects in Colliders

    SciTech Connect

    Roblin, Yves; Morozov, Vasiliy; Terzic, Balsa; Aturban, Mohamed A.; Ranjan, D.; Zubair, Mohammed

    2013-06-01

    We report on the development of the new code for long-term simulation of beam-beam effects in particle colliders. The underlying physical model relies on a matrix-based arbitrary-order symplectic particle tracking for beam transport and the Bassetti-Erskine approximation for beam-beam interaction. The computations are accelerated through a parallel implementation on a hybrid GPU/CPU platform. With the new code, a previously computationally prohibitive long-term simulations become tractable. We use the new code to model the proposed medium-energy electron-ion collider (MEIC) at Jefferson Lab.

  2. Computer implementations of iterative and non-iterative crystal plasticity solvers on high performance graphics hardware

    NASA Astrophysics Data System (ADS)

    Savage, Daniel J.; Knezevic, Marko

    2015-10-01

    We present parallel implementations of Newton-Raphson iterative and spectral based non-iterative solvers for single-crystal visco-plasticity models on a specialized computer hardware integrating a graphics-processing unit (GPU). We explore two implementations for the iterative solver on GPU multiprocessors: one based on a thread per crystal parallelization on local memory and another based on multiple threads per crystal on shared memory. The non-iterative solver implementation on the GPU hardware is based on a divide-conquer approach for matrix operations. The reduction of computational time for the iterative scheme was found to approach one order of magnitude. From detailed performance comparisons of the developed GPU iterative and non-iterative implementations, we conclude that the spectral non-iterative solver programed on a GPU platform is superior over the iterative implementation in terms of runtime as well as ease of implementation. It provides remarkable speedup factors exceeding three orders of magnitude over the iterative scalar version of the solver.

  3. Research on GPU Acceleration for Monte Carlo Criticality Calculation

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Yu, Ganglin; Wang, Kan

    2014-06-01

    The Monte Carlo neutron transport method can be naturally parallelized by multi-core architectures due to the dependency between particles during the simulation. The GPU+CPU heterogeneous parallel mode has become an increasingly popular way of parallelism in the field of scientific supercomputing. Thus, this work focuses on the GPU acceleration method for the Monte Carlo criticality simulation, as well as the computational efficiency that GPUs can bring. The "neutron transport step" is introduced to increase the GPU thread occupancy. In order to test the sensitivity of the MC code's complexity, a 1D one-group code and a 3D multi-group general purpose code are respectively transplanted to GPUs, and the acceleration effects are compared. The result of numerical experiments shows considerable acceleration effect of the "neutron transport step" strategy. However, the performance comparison between the 1D code and the 3D code indicates the poor scalability of MC codes on GPUs.

  4. GPU Computing in Bayesian Inference of Realized Stochastic Volatility Model

    NASA Astrophysics Data System (ADS)

    Takaishi, Tetsuya

    2015-01-01

    The realized stochastic volatility (RSV) model that utilizes the realized volatility as additional information has been proposed to infer volatility of financial time series. We consider the Bayesian inference of the RSV model by the Hybrid Monte Carlo (HMC) algorithm. The HMC algorithm can be parallelized and thus performed on the GPU for speedup. The GPU code is developed with CUDA Fortran. We compare the computational time in performing the HMC algorithm on GPU (GTX 760) and CPU (Intel i7-4770 3.4GHz) and find that the GPU can be up to 17 times faster than the CPU. We also code the program with OpenACC and find that appropriate coding can achieve the similar speedup with CUDA Fortran.

  5. Massive parallelization of a 3D finite difference electromagnetic forward solution using domain decomposition methods on multiple CUDA enabled GPUs

    NASA Astrophysics Data System (ADS)

    Schultz, A.

    2010-12-01

    3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We

  6. GPU Computing in Space Weather Modeling

    NASA Astrophysics Data System (ADS)

    Feng, X.; Zhong, D.; Xiang, C.; Zhang, Y.

    2013-04-01

    Space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that affect human life or health. In order to make the real- or faster than real-time numerical prediction of adverse space weather events and their influence on the geospace environment, high-performance computational models are required. The main objective in this article is to explore the application of programmable graphic processing units (GPUs) to the numerical space weather modeling for the study of solar wind background that is a crucial part in the numerical space weather modeling. GPU programming is realized for our Solar-Interplanetary-CESE MHD model (SIP-CESE MHD model) by numerically studying the solar corona/interplanetary solar wind. The global solar wind structures is obtained by the established GPU model with the magnetic field synoptic data as input. The simulated global structures for Carrington rotation 2060 agrees well with solar observations and solar wind measurements from spacecraft near the Earth. The model's implementation of the adaptive-mesh-refinement (AMR) and message passing interface (MPI) enables the full exploitation of the computing power in a heterogeneous CPU/GPU cluster and significantly improves the overall performance. Our initial tests with available hardware show speedups of roughly 5x compared to traditional software implementation. This work presents a novel application of GPU to the space weather study.

  7. Parallel implementation of the particle simulation method with dynamic load balancing: Toward realistic geodynamical simulation

    NASA Astrophysics Data System (ADS)

    Furuichi, M.; Nishiura, D.

    2015-12-01

    Fully Lagrangian methods such as Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM) have been widely used to solve the continuum and particles motions in the computational geodynamics field. These mesh-free methods are suitable for the problems with the complex geometry and boundary. In addition, their Lagrangian nature allows non-diffusive advection useful for tracking history dependent properties (e.g. rheology) of the material. These potential advantages over the mesh-based methods offer effective numerical applications to the geophysical flow and tectonic processes, which are for example, tsunami with free surface and floating body, magma intrusion with fracture of rock, and shear zone pattern generation of granular deformation. In order to investigate such geodynamical problems with the particle based methods, over millions to billion particles are required for the realistic simulation. Parallel computing is therefore important for handling such huge computational cost. An efficient parallel implementation of SPH and DEM methods is however known to be difficult especially for the distributed-memory architecture. Lagrangian methods inherently show workload imbalance problem for parallelization with the fixed domain in space, because particles move around and workloads change during the simulation. Therefore dynamic load balance is key technique to perform the large scale SPH and DEM simulation. In this work, we present the parallel implementation technique of SPH and DEM method utilizing dynamic load balancing algorithms toward the high resolution simulation over large domain using the massively parallel super computer system. Our method utilizes the imbalances of the executed time of each MPI process as the nonlinear term of parallel domain decomposition and minimizes them with the Newton like iteration method. In order to perform flexible domain decomposition in space, the slice-grid algorithm is used. Numerical tests show that our

  8. A parallel implementation of an off-lattice individual-based model of multicellular populations

    NASA Astrophysics Data System (ADS)

    Harvey, Daniel G.; Fletcher, Alexander G.; Osborne, James M.; Pitt-Francis, Joe

    2015-07-01

    As computational models of multicellular populations include ever more detailed descriptions of biophysical and biochemical processes, the computational cost of simulating such models limits their ability to generate novel scientific hypotheses and testable predictions. While developments in microchip technology continue to increase the power of individual processors, parallel computing offers an immediate increase in available processing power. To make full use of parallel computing technology, it is necessary to develop specialised algorithms. To this end, we present a parallel algorithm for a class of off-lattice individual-based models of multicellular populations. The algorithm divides the spatial domain between computing processes and comprises communication routines that ensure the model is correctly simulated on multiple processors. The parallel algorithm is shown to accurately reproduce the results of a deterministic simulation performed using a pre-existing serial implementation. We test the scaling of computation time, memory use and load balancing as more processes are used to simulate a cell population of fixed size. We find approximate linear scaling of both speed-up and memory consumption on up to 32 processor cores. Dynamic load balancing is shown to provide speed-up for non-regular spatial distributions of cells in the case of a growing population.

  9. A Dynamic Era-Based Time-Symmetric Block Time-Step Algorithm with Parallel Implementations

    NASA Astrophysics Data System (ADS)

    Kaplan, Murat; Saygin, Hasan

    2012-06-01

    The time-symmetric block time-step (TSBTS) algorithm is a newly developed efficient scheme for N-body integrations. It is constructed on an era-based iteration. In this work, we re-designed the TSBTS integration scheme with a dynamically changing era size. A number of numerical tests were performed to show the importance of choosing the size of the era, especially for long-time integrations. Our second aim was to show that the TSBTS scheme is as suitable as previously known schemes for developing parallel N-body codes. In this work, we relied on a parallel scheme using the copy algorithm for the time-symmetric scheme. We implemented a hybrid of data and task parallelization for force calculation to handle load balancing problems that can appear in practice. Using the Plummer model initial conditions for different numbers of particles, we obtained the expected efficiency and speedup for a small number of particles. Although parallelization of the direct N-body codes is negatively affected by the communication/calculation ratios, we obtained good load-balanced results. Moreover, we were able to conserve the advantages of the algorithm (e.g., energy conservation for long-term simulations).

  10. Implementation of a Parallel Kalman Filter for Stratospheric Chemical Tracer Assimilation

    NASA Technical Reports Server (NTRS)

    Chang, Lang-Ping; Lyster, Peter M.; Menard, R.; Cohn, S. E.

    1998-01-01

    A Kalman filter for the assimilation of long-lived atmospheric chemical constituents has been developed for two-dimensional transport models on isentropic surfaces over the globe. An important attribute of the Kalman filter is that it calculates error covariances of the constituent fields using the tracer dynamics. Consequently, the current Kalman-filter assimilation is a five-dimensional problem (coordinates of two points and time), and it can only be handled on computers with large memory and high floating point speed. In this paper, an implementation of the Kalman filter for distributed-memory, message-passing parallel computers is discussed. Two approaches were studied: an operator decomposition and a covariance decomposition. The latter was found to be more scalable than the former, and it possesses the property that the dynamical model does not need to be parallelized, which is of considerable practical advantage. This code is currently used to assimilate constituent data retrieved by limb sounders on the Upper Atmosphere Research Satellite. Tests of the code examined the variance transport and observability properties. Aspects of the parallel implementation, some timing results, and a brief discussion of the physical results will be presented.

  11. Full Parallel Implementation of an All-Electron Four-Component Dirac-Kohn-Sham Program.

    PubMed

    Rampino, Sergio; Belpassi, Leonardo; Tarantelli, Francesco; Storchi, Loriano

    2014-09-01

    A full distributed-memory implementation of the Dirac-Kohn-Sham (DKS) module of the program BERTHA (Belpassi et al., Phys. Chem. Chem. Phys. 2011, 13, 12368-12394) is presented, where the self-consistent field (SCF) procedure is replicated on all the parallel processes, each process working on subsets of the global matrices. The key feature of the implementation is an efficient procedure for switching between two matrix distribution schemes, one (integral-driven) optimal for the parallel computation of the matrix elements and another (block-cyclic) optimal for the parallel linear algebra operations. This approach, making both CPU-time and memory scalable with the number of processors used, virtually overcomes at once both time and memory barriers associated with DKS calculations. Performance, portability, and numerical stability of the code are illustrated on the basis of test calculations on three gold clusters of increasing size, an organometallic compound, and a perovskite model. The calculations are performed on a Beowulf and a BlueGene/Q system. PMID:26588521

  12. Parallel implementation of the accelerated BEM approach for EMSI of the human brain.

    PubMed

    Ataseven, Y; Akalin-Acar, Z; Acar, C E; Gençer, N G

    2008-07-01

    Boundary element method (BEM) is one of the numerical methods which is commonly used to solve the forward problem (FP) of electro-magnetic source imaging with realistic head geometries. Application of BEM generates large systems of linear equations with dense matrices. Generation and solution of these matrix equations are time and memory consuming. This study presents a relatively cheap and effective solution for parallel implementation of the BEM to reduce the processing times to clinically acceptable values. This is achieved using a parallel cluster of personal computers on a local area network. We used eight workstations and implemented a parallel version of the accelerated BEM approach that distributes the computation and the BEM matrix efficiently to the processors. The performance of the solver is evaluated in terms of the CPU operations and memory usage for different number of processors. Once the transfer matrix is computed, for a 12,294 node mesh, a single FP solution takes 676 ms on a single processor and 72 ms on eight processors. It was observed that workstation clusters are cost effective tools for solving the complex BEM models in a clinically acceptable time. PMID:18299914

  13. Implementation and analysis of a Navier-Stokes algorithm on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1988-01-01

    The results of the implementation of a Navier-Stokes algorithm on three parallel/vector computers are presented. The object of this research is to determine how well, or poorly, a single numerical algorithm would map onto three different architectures. The algorithm is a compact difference scheme for the solution of the incompressible, two-dimensional, time-dependent Navier-Stokes equations. The computers were chosen so as to encompass a variety of architectures. They are the following: the MPP, an SIMD machine with 16K bit serial processors; Flex/32, an MIMD machine with 20 processors; and Cray/2. The implementation of the algorithm is discussed in relation to these architectures and measures of the performance on each machine are given. The basic comparison is among SIMD instruction parallelism on the MPP, MIMD process parallelism on the Flex/32, and vectorization of a serial code on the Cray/2. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally, conclusions are presented.

  14. Fast CGH computation using S-LUT on GPU.

    PubMed

    Pan, Yuechao; Xu, Xuewu; Solanki, Sanjeev; Liang, Xinan; Tanjung, Ridwan Bin Adrian; Tan, Chiwei; Chong, Tow-Chong

    2009-10-12

    In computation of full-parallax computer-generated hologram (CGH), balance between speed and memory usage is always the core of algorithm development. To solve the speed problem of coherent ray trace (CRT) algorithm and memory problem of look-up table (LUT) algorithm without sacrificing reconstructed object quality, we develop a novel algorithm with split look-up tables (S-LUT) and implement it on graphics processing unit (GPU). Our results show that S-LUT on GPU has the fastest speed among all the algorithms investigated in this paper, while it still maintaining low memory usage. We also demonstrate high quality objects reconstructed from CGHs computed with S-LUT on GPU. The GPU implementation of our new algorithm may enable real-time and interactive holographic 3D display in the future. PMID:20372585

  15. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    DOE PAGESBeta

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.

    2015-12-21

    This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000® problems. These benchmark and scaling studies show promising results.« less

  16. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    SciTech Connect

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.

    2015-12-21

    This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Some specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000® problems. These benchmark and scaling studies show promising results.

  17. Wavelet-Based DFT calculations on Massively Parallel Hybrid Architectures

    NASA Astrophysics Data System (ADS)

    Genovese, Luigi

    2011-03-01

    In this contribution, we present an implementation of a full DFT code that can run on massively parallel hybrid CPU-GPU clusters. Our implementation is based on modern GPU architectures which support double-precision floating-point numbers. This DFT code, named BigDFT, is delivered within the GNU-GPL license either in a stand-alone version or integrated in the ABINIT software package. Hybrid BigDFT routines were initially ported with NVidia's CUDA language, and recently more functionalities have been added with new routines writeen within Kronos' OpenCL standard. The formalism of this code is based on Daubechies wavelets, which is a systematic real-space based basis set. As we will see in the presentation, the properties of this basis set are well suited for an extension on a GPU-accelerated environment. In addition to focusing on the implementation of the operators of the BigDFT code, this presentation also relies of the usage of the GPU resources in a complex code with different kinds of operations. A discussion on the interest of present and expected performances of Hybrid architectures computation in the framework of electronic structure calculations is also adressed.

  18. Discrete shearlet transform on GPU with applications in anomaly detection and denoising

    NASA Astrophysics Data System (ADS)

    Gibert, Xavier; Patel, Vishal M.; Labate, Demetrio; Chellappa, Rama

    2014-12-01

    Shearlets have emerged in recent years as one of the most successful methods for the multiscale analysis of multidimensional signals. Unlike wavelets, shearlets form a pyramid of well-localized functions defined not only over a range of scales and locations, but also over a range of orientations and with highly anisotropic supports. As a result, shearlets are much more effective than traditional wavelets in handling the geometry of multidimensional data, and this was exploited in a wide range of applications from image and signal processing. However, despite their desirable properties, the wider applicability of shearlets is limited by the computational complexity of current software implementations. For example, denoising a single 512 × 512 image using a current implementation of the shearlet-based shrinkage algorithm can take between 10 s and 2 min, depending on the number of CPU cores, and much longer processing times are required for video denoising. On the other hand, due to the parallel nature of the shearlet transform, it is possible to use graphics processing units (GPU) to accelerate its implementation. In this paper, we present an open source stand-alone implementation of the 2D discrete shearlet transform using CUDA C++ as well as GPU-accelerated MATLAB implementations of the 2D and 3D shearlet transforms. We have instrumented the code so that we can analyze the running time of each kernel under different GPU hardware. In addition to denoising, we describe a novel application of shearlets for detecting anomalies in textured images. In this application, computation times can be reduced by a factor of 50 or more, compared to multicore CPU implementations.

  19. Montblanc1: GPU accelerated radio interferometer measurement equations in support of Bayesian inference for radio observations

    NASA Astrophysics Data System (ADS)

    Perkins, S. J.; Marais, P. C.; Zwart, J. T. L.; Natarajan, I.; Tasse, C.; Smirnov, O.

    2015-09-01

    We present Montblanc, a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. BIRO uses Bayesian inference to select sky models that best match the visibilities observed by a radio interferometer. To accomplish this, BIRO evaluates the RIME multiple times, varying sky model parameters to produce multiple model visibilities. χ2 values computed from the model and observed visibilities are used as likelihood values to drive the Bayesian sampling process and select the best sky model. As most of the elements of the RIME and χ2 calculation are independent of one another, they are highly amenable to parallel computation. Additionally, Montblanc caters for iterative RIME evaluation to produce multiple χ2 values. Modified model parameters are transferred to the GPU between each iteration. We implemented Montblanc as a Python package based upon NVIDIA's CUDA architecture. As such, it is easy to extend and implement different pipelines. At present, Montblanc supports point and Gaussian morphologies, but is designed for easy addition of new source profiles. Montblanc's RIME implementation is performant: On an NVIDIA K40, it is approximately 250 times faster than MEQTREES on a dual hexacore Intel E5-2620v2 CPU. Compared to the OSKAR simulator's GPU-implemented RIME components it is 7.7 and 12 times faster on the same K40 for single and double-precision floating point respectively. However, OSKAR's RIME implementation is more general than Montblanc's BIRO-tailored RIME. Theoretical analysis of Montblanc's dominant CUDA kernel suggests that it is memory bound. In practice, profiling shows that is balanced between compute and memory, as much of the data required by the problem is retained in L1 and L2 caches.

  20. Tempest: GPU-CPU computing for high-throughput database spectral matching

    PubMed Central

    Milloy, Jeffrey A.; Faherty, Brendan K.; Gerber, Scott A.

    2012-01-01

    Modern mass spectrometers are now capable of producing hundreds of thousands of tandem (MS/MS) spectra per experiment, making the translation of these fragmentation spectra into peptide matches a common bottleneck in proteomics research. When coupled with experimental designs that enrich for post-translational modifications such as phosphorylation and/or include isotopically-labeled amino acids for quantification, additional burdens are placed on this computational infrastructure by shotgun sequencing. To address this issue, we have developed a new database searching program that utilizes the massively parallel compute capabilities of a graphical processing unit (GPU) to produce peptide spectral matches in a very high throughput fashion. Our program, named Tempest, combines efficient database digestion and MS/MS spectral indexing on a CPU with fast similarity scoring on a GPU. In our implementation, the entire similarity score, including the generation of full theoretical peptide candidate fragmentation spectra and its comparison to experimental spectra, is conducted on the GPU. Although Tempest uses the classical SEQUEST XCorr score as a primary metric for evaluating similarity for spectra collected at unit resolution, we have developed a new “Accelerated Score” for MS/MS spectra collected at high resolution that is based on a computationally inexpensive dot product but exhibits scoring accuracy similar to the classical XCorr. In our experience, Tempest provides compute-cluster level performance in an affordable desktop computer. PMID:22640374

  1. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    NASA Astrophysics Data System (ADS)

    Lyakh, Dmitry I.

    2015-04-01

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typically appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the naïve scattering algorithm (no memory access optimization). The tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).

  2. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    SciTech Connect

    Lyakh, Dmitry I.

    2015-01-05

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typically appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).

  3. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    DOE PAGESBeta

    Lyakh, Dmitry I.

    2015-01-05

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typicallymore » appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).« less

  4. Tempest: GPU-CPU computing for high-throughput database spectral matching.

    PubMed

    Milloy, Jeffrey A; Faherty, Brendan K; Gerber, Scott A

    2012-07-01

    Modern mass spectrometers are now capable of producing hundreds of thousands of tandem (MS/MS) spectra per experiment, making the translation of these fragmentation spectra into peptide matches a common bottleneck in proteomics research. When coupled with experimental designs that enrich for post-translational modifications such as phosphorylation and/or include isotopically labeled amino acids for quantification, additional burdens are placed on this computational infrastructure by shotgun sequencing. To address this issue, we have developed a new database searching program that utilizes the massively parallel compute capabilities of a graphical processing unit (GPU) to produce peptide spectral matches in a very high throughput fashion. Our program, named Tempest, combines efficient database digestion and MS/MS spectral indexing on a CPU with fast similarity scoring on a GPU. In our implementation, the entire similarity score, including the generation of full theoretical peptide candidate fragmentation spectra and its comparison to experimental spectra, is conducted on the GPU. Although Tempest uses the classical SEQUEST XCorr score as a primary metric for evaluating similarity for spectra collected at unit resolution, we have developed a new "Accelerated Score" for MS/MS spectra collected at high resolution that is based on a computationally inexpensive dot product but exhibits scoring accuracy similar to that of the classical XCorr. In our experience, Tempest provides compute-cluster level performance in an affordable desktop computer. PMID:22640374

  5. A Faster Parallel Algorithm and Efficient Multithreaded Implementations for Evaluating Betweenness Centrality on Massive Datasets

    SciTech Connect

    Madduri, Kamesh; Ediger, David; Jiang, Karl; Bader, David A.; Chavarría-Miranda, Daniel

    2009-05-29

    We present a new lock-free parallel algorithm for computing betweenness centrality of massive small-world networks. With minor changes to the data structures, our algorithm also achieves better spatial cache locality compared to previous approaches. Betweenness centrality is a key algorithm kernel in the HPCS SSCA#2 Graph Analysis benchmark, which has been extensively used to evaluate the performance of emerging high-performance computing architectures for graph-theoretic computations. We design optimized implementations of betweenness centrality and the SSCA#2 benchmark for two hardware multithreaded systems: a Cray XMT system with the ThreadStorm processor, and a single-socket Sun multicore server with the UltraSparc T2 processor. For a small-world network of 134 million vertices and 1.073 billion edges, the 16-processor XMT system and the 8-core Sun Fire T5120 server achieve TEPS scores (an algorithmic performance count for the SSCA#2 benchmark) of 160 million and 90 million respectively, which corresponds to more than a 2X performance improvement over the previous parallel implementations. To better characterize the performance of these multithreaded systems, we correlate the SSCA#2 performance results with data from the memory-intensive STREAM and RandomAccess benchmarks. Finally, we demonstrate the applicability of our implementation to analyze massive real-world datasets by computing approximate betweenness centrality for a large-scale IMDb movie-actor network.

  6. A Faster Parallel Algorithm and Efficient Multithreaded Implementations for Evaluating Betweenness Centrality on Massive Datasets

    SciTech Connect

    Madduri, Kamesh; Ediger, David; Jiang, Karl; Bader, David A.; Chavarria-Miranda, Daniel

    2009-02-15

    We present a new lock-free parallel algorithm for computing betweenness centralityof massive small-world networks. With minor changes to the data structures, ouralgorithm also achieves better spatial cache locality compared to previous approaches. Betweenness centrality is a key algorithm kernel in HPCS SSCA#2, a benchmark extensively used to evaluate the performance of emerging high-performance computing architectures for graph-theoretic computations. We design optimized implementations of betweenness centrality and the SSCA#2 benchmark for two hardware multithreaded systems: a Cray XMT system with the Threadstorm processor, and a single-socket Sun multicore server with the UltraSPARC T2 processor. For a small-world network of 134 million vertices and 1.073 billion edges, the 16-processor XMT system and the 8-core Sun Fire T5120 server achieve TEPS scores (an algorithmic performance count for the SSCA#2 benchmark) of 160 million and 90 million respectively, which corresponds to more than a 2X performance improvement over the previous parallel implementations. To better characterize the performance of these multithreaded systems, we correlate the SSCA#2 performance results with data from the memory-intensive STREAM and RandomAccess benchmarks. Finally, we demonstrate the applicability of our implementation to analyze massive real-world datasets by computing approximate betweenness centrality for a large-scale IMDb movie-actor network.

  7. Lossy hyperspectral image compression on a graphics processing unit: parallelization strategy and performance evaluation

    NASA Astrophysics Data System (ADS)

    Santos, Lucana; Magli, Enrico; Vitulli, Raffaele; Núñez, Antonio; López, José F.; Sarmiento, Roberto

    2013-01-01

    There is an intense necessity for the development of new hardware architectures for the implementation of algorithms for hyperspectral image compression on board satellites. Graphics processing units (GPUs) represent a very attractive opportunity, offering the possibility to dramatically increase the computation speed in applications that are data and task parallel. An algorithm for the lossy compression of hyperspectral images is implemented on a GPU using Nvidia computer unified device architecture (CUDA) parallel computing architecture. The parallelization strategy is explained, with emphasis on the entropy coding and bit packing phases, for which a more sophisticated strategy is necessary due to the existing data dependencies. Experimental results are obtained by comparing the performance of the GPU implementation with a single-threaded CPU implementation, showing high speedups of up to 15.41. A profiling of the algorithm is provided, demonstrating the high performance of the designed parallel entropy coding phase. The accuracy of the GPU implementation is presented, as well as the effect of the configuration parameters on performance. The convenience of using GPUs for on-board processing is demonstrated, and solutions to the potential difficulties encountered when accelerating hyperspectral compression algorithms are proposed, if space-qualified GPUs become a reality in the near future.

  8. Accelerated GPU based SPECT Monte Carlo simulations.

    PubMed

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational

  9. Accelerated GPU based SPECT Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency

  10. Extended computational kernels in a massively parallel implementation of the Trotter-Suzuki approximation

    NASA Astrophysics Data System (ADS)

    Wittek, Peter; Calderaro, Luca

    2015-12-01

    We extended a parallel and distributed implementation of the Trotter-Suzuki algorithm for simulating quantum systems to study a wider range of physical problems and to make the library easier to use. The new release allows periodic boundary conditions, many-body simulations of non-interacting particles, arbitrary stationary potential functions, and imaginary time evolution to approximate the ground state energy. The new release is more resilient to the computational environment: a wider range of compiler chains and more platforms are supported. To ease development, we provide a more extensive command-line interface, an application programming interface, and wrappers from high-level languages.

  11. Astrophysical data mining with GPU. A case study: Genetic classification of globular clusters

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Garofalo, M.; Brescia, M.; Paolillo, M.; Pescape', A.; Longo, G.; Ventre, G.

    2014-01-01

    We present a multi-purpose genetic algorithm, designed and implemented with GPGPU/CUDA parallel computing technology. The model was derived from our CPU serial implementation, named GAME (Genetic Algorithm Model Experiment). It was successfully tested and validated on the detection of candidate Globular Clusters in deep, wide-field, single band HST images. The GPU version of GAME will be made available to the community by integrating it into the web application DAMEWARE (DAta Mining Web Application REsource, http://dame.dsf.unina.it/beta_info.html), a public data mining service specialized on massive astrophysical data. Since genetic algorithms are inherently parallel, the GPGPU computing paradigm leads to a speedup of a factor of 200× in the training phase with respect to the CPU based version.

  12. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing

    PubMed Central

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-01-01

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate. PMID:27070606

  13. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.

    PubMed

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-01-01

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate. PMID:27070606

  14. GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources

    NASA Astrophysics Data System (ADS)

    Townson, Reid W.; Jia, Xun; Tian, Zhen; Jiang Graves, Yan; Zavgorodni, Sergei; Jiang, Steve B.

    2013-06-01

    A novel phase-space source implementation has been designed for graphics processing unit (GPU)-based Monte Carlo dose calculation engines. Short of full simulation of the linac head, using a phase-space source is the most accurate method to model a clinical radiation beam in dose calculations. However, in GPU-based Monte Carlo dose calculations where the computation efficiency is very high, the time required to read and process a large phase-space file becomes comparable to the particle transport time. Moreover, due to the parallelized nature of GPU hardware, it is essential to simultaneously transport particles of the same type and similar energies but separated spatially to yield a high efficiency. We present three methods for phase-space implementation that have been integrated into the most recent version of the GPU-based Monte Carlo radiotherapy dose calculation package gDPM v3.0. The first method is to sequentially read particles from a patient-dependent phase-space and sort them on-the-fly based on particle type and energy. The second method supplements this with a simple secondary collimator model and fluence map implementation so that patient-independent phase-space sources can be used. Finally, as the third method (called the phase-space-let, or PSL, method) we introduce a novel source implementation utilizing pre-processed patient-independent phase-spaces that are sorted by particle type, energy and position. Position bins located outside a rectangular region of interest enclosing the treatment field are ignored, substantially decreasing simulation time with little effect on the final dose distribution. The three methods were validated in absolute dose against BEAMnrc/DOSXYZnrc and compared using gamma-index tests (2%/2 mm above the 10% isodose). It was found that the PSL method has the optimal balance between accuracy and efficiency and thus is used as the default method in gDPM v3.0. Using the PSL method, open fields of 4 × 4, 10 × 10 and 30 × 30 cm

  15. GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources.

    PubMed

    Townson, Reid W; Jia, Xun; Tian, Zhen; Graves, Yan Jiang; Zavgorodni, Sergei; Jiang, Steve B

    2013-06-21

    A novel phase-space source implementation has been designed for graphics processing unit (GPU)-based Monte Carlo dose calculation engines. Short of full simulation of the linac head, using a phase-space source is the most accurate method to model a clinical radiation beam in dose calculations. However, in GPU-based Monte Carlo dose calculations where the computation efficiency is very high, the time required to read and process a large phase-space file becomes comparable to the particle transport time. Moreover, due to the parallelized nature of GPU hardware, it is essential to simultaneously transport particles of the same type and similar energies but separated spatially to yield a high efficiency. We present three methods for phase-space implementation that have been integrated into the most recent version of the GPU-based Monte Carlo radiotherapy dose calculation package gDPM v3.0. The first method is to sequentially read particles from a patient-dependent phase-space and sort them on-the-fly based on particle type and energy. The second method supplements this with a simple secondary collimator model and fluence map implementation so that patient-independent phase-space sources can be used. Finally, as the third method (called the phase-space-let, or PSL, method) we introduce a novel source implementation utilizing pre-processed patient-independent phase-spaces that are sorted by particle type, energy and position. Position bins located outside a rectangular region of interest enclosing the treatment field are ignored, substantially decreasing simulation time with little effect on the final dose distribution. The three methods were validated in absolute dose against BEAMnrc/DOSXYZnrc and compared using gamma-index tests (2%/2 mm above the 10% isodose). It was found that the PSL method has the optimal balance between accuracy and efficiency and thus is used as the default method in gDPM v3.0. Using the PSL method, open fields of 4 × 4, 10 × 10 and 30 × 30 cm

  16. Parallel computation for blood cell classification in medical hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wu, Lucheng; Qiu, Xianbo; Ran, Qiong; Xie, Xiaoming

    2016-09-01

    With the advantage of fine spectral resolution, hyperspectral imagery provides great potential for cell classification. This paper provides a promising classification system including the following three stages: (1) band selection for a subset of spectral bands with distinctive and informative features, (2) spectral-spatial feature extraction, such as local binary patterns (LBP), and (3) followed by an effective classifier. Moreover, these three steps are further implemented on graphics processing units (GPU) respectively, which makes the system real-time and more practical. The GPU parallel implementation is compared with the serial implementation on central processing units (CPU). Experimental results based on real medical hyperspectral data demonstrate that the proposed system is able to offer high accuracy and fast speed, which are appealing for cell classification in medical hyperspectral imagery.

  17. Implementation of Helioseismic Data Reduction and Diagnostic Techniques on Massively Parallel Architectures

    NASA Technical Reports Server (NTRS)

    Korzennik, Sylvain

    1997-01-01

    Under the direction of Dr. Rhodes, and the technical supervision of Dr. Korzennik, the data assimilation of high spatial resolution solar dopplergrams has been carried out throughout the program on the Intel Delta Touchstone supercomputer. With the help of a research assistant, partially supported by this grant, and under the supervision of Dr. Korzennik, code development was carried out at SAO, using various available resources. To ensure cross-platform portability, PVM was selected as the message passing library. A parallel implementation of power spectra computation for helioseismology data reduction, using PVM was successfully completed. It was successfully ported to SMP architectures (i.e. SUN), and to some MPP architectures (i.e. the CM5). Due to limitation of the implementation of PVM on the Cray T3D, the port to that architecture was not completed at the time.

  18. Design and implementation of a parallel array operator for the arbitrary remapping of data.

    SciTech Connect

    Dietz, Steven; Choi, S. E.; Chamberlain, B. L.; Snyder, Lawrence

    2003-01-01

    The data redistribution or remapping functions, gather and scatter, are of long-standing in high-performance computing, having been included in Cray Fortran for decades. In this paper, we present a highly-general array operator with powerful ga.ther and scatter capa.bilities unmatched in other array languages. We discuss an efficient parallel implementation, introducing several new optimizations-run length encoding, dead army reuse, and direct conimunica.tion-that lessen the costs associa.ted with the operator's wide applicability. In our implementation of this operator in ZPL, we demonstrade comparable performance to the highly-tuned, hand-coded Fortran plus MPI versions of the NAS FT and NAS CG benchmarks.

  19. LIBEFP: A new parallel implementation of the effective fragment potential method as a portable software library.

    PubMed

    Kaliman, Ilya A; Slipchenko, Lyudmila V

    2013-10-01

    A new high performance parallel implementation of the general Effective Fragment Potential (EFP) method in a form of a portable software library called libefp is presented. The libefp library was designed to provide developers of various quantum chemistry software packages with an easy way to add EFP functionality to the program of their choice. The general overview of the library is presented and various aspects of interfacing the library with third party quantum chemistry packages are considered. The reference implementation of common methods of computational chemistry such as geometry optimization and molecular dynamics on top of libefp is delivered in the form of efpmd program. Results of molecular dynamics simulation of liquid water using the developed software are described. PMID:24159627

  20. An object-oriented implementation of a parallel Monte Carlo code for radiation transport

    NASA Astrophysics Data System (ADS)

    Santos, Pedro Duarte; Lani, Andrea

    2016-05-01

    This paper describes the main features of a state-of-the-art Monte Carlo solver for radiation transport which has been implemented within COOLFluiD, a world-class open source object-oriented platform for scientific simulations. The Monte Carlo code makes use of efficient ray tracing algorithms (for 2D, axisymmetric and 3D arbitrary unstructured meshes) which are described in detail. The solver accuracy is first verified in testcases for which analytical solutions are available, then validated for a space re-entry flight experiment (i.e. FIRE II) for which comparisons against both experiments and reference numerical solutions are provided. Through the flexible design of the physical models, ray tracing and parallelization strategy (fully reusing the mesh decomposition inherited by the fluid simulator), the implementation was made efficient and reusable.

  1. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms.

    PubMed

    Diamond, Alan; Nowotny, Thomas; Schmuker, Michael

    2015-01-01

    Neuromorphic computing employs models of neuronal circuits to solve computing problems. Neuromorphic hardware systems are now becoming more widely available and "neuromorphic algorithms" are being developed. As they are maturing toward deployment in general research environments, it becomes important to assess and compare them in the context of the applications they are meant to solve. This should encompass not just task performance, but also ease of implementation, speed of processing, scalability, and power efficiency. Here, we report our practical experience of implementing a bio-inspired, spiking network for multivariate classification on three different platforms: the hybrid digital/analog Spikey system, the digital spike-based SpiNNaker system, and GeNN, a meta-compiler for parallel GPU hardware. We assess performance using a standard hand-written digit classification task. We found that whilst a different implementation approach was required for each platform, classification performances remained in line. This suggests that all three implementations were able to exercise the model's ability to solve the task rather than exposing inherent platform limits, although differences emerged when capacity was approached. With respect to execution speed and power consumption, we found that for each platform a large fraction of the computing time was spent outside of the neuromorphic device, on the host machine. Time was spent in a range of combinations of preparing the model, encoding suitable input spiking data, shifting data, and decoding spike-encoded results. This is also where a large proportion of the total power was consumed, most markedly for the SpiNNaker and Spikey systems. We conclude that the simulation efficiency advantage of the assessed specialized hardware systems is easily lost in excessive host-device communication, or non-neuronal parts of the computation. These results emphasize the need to optimize the host-device communication architecture for

  2. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms

    PubMed Central

    Diamond, Alan; Nowotny, Thomas; Schmuker, Michael

    2016-01-01

    Neuromorphic computing employs models of neuronal circuits to solve computing problems. Neuromorphic hardware systems are now becoming more widely available and “neuromorphic algorithms” are being developed. As they are maturing toward deployment in general research environments, it becomes important to assess and compare them in the context of the applications they are meant to solve. This should encompass not just task performance, but also ease of implementation, speed of processing, scalability, and power efficiency. Here, we report our practical experience of implementing a bio-inspired, spiking network for multivariate classification on three different platforms: the hybrid digital/analog Spikey system, the digital spike-based SpiNNaker system, and GeNN, a meta-compiler for parallel GPU hardware. We assess performance using a standard hand-written digit classification task. We found that whilst a different implementation approach was required for each platform, classification performances remained in line. This suggests that all three implementations were able to exercise the model's ability to solve the task rather than exposing inherent platform limits, although differences emerged when capacity was approached. With respect to execution speed and power consumption, we found that for each platform a large fraction of the computing time was spent outside of the neuromorphic device, on the host machine. Time was spent in a range of combinations of preparing the model, encoding suitable input spiking data, shifting data, and decoding spike-encoded results. This is also where a large proportion of the total power was consumed, most markedly for the SpiNNaker and Spikey systems. We conclude that the simulation efficiency advantage of the assessed specialized hardware systems is easily lost in excessive host-device communication, or non-neuronal parts of the computation. These results emphasize the need to optimize the host-device communication architecture

  3. Recent Progress on the Parallel Implementation of Moving-Body Overset Grid Schemes

    NASA Technical Reports Server (NTRS)

    Wissink, Andrew; Allen, Edwin (Technical Monitor)

    1998-01-01

    Viscous calculations about geometrically complex bodies in which there is relative motion between component parts is one of the most computationally demanding problems facing CFD researchers today. This presentation documents results from the first two years of a CHSSI-funded effort within the U.S. Army AFDD to develop scalable dynamic overset grid methods for unsteady viscous calculations with moving-body problems. The first pan of the presentation will focus on results from OVERFLOW-D1, a parallelized moving-body overset grid scheme that employs traditional Chimera methodology. The two processes that dominate the cost of such problems are the flow solution on each component and the intergrid connectivity solution. Parallel implementations of the OVERFLOW flow solver and DCF3D connectivity software are coupled with a proposed two-part static-dynamic load balancing scheme and tested on the IBM SP and Cray T3E multi-processors. The second part of the presentation will cover some recent results from OVERFLOW-D2, a new flow solver that employs Cartesian grids with various levels of refinement, facilitating solution adaption. A study of the parallel performance of the scheme on large distributed- memory multiprocessor computer architectures will be reported.

  4. WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation

    NASA Astrophysics Data System (ADS)

    Siripunvaraporn, Weerachai; Egbert, Gary

    2009-04-01

    We describe two extensions to the three-dimensional magnetotelluric inversion program WSINV3DMT (Siripunvaraporn, W., Egbert, G., Lenbury, Y., Uyeshima, M., 2005, Three-dimensional magnetotelluric inversion: data-space method. Phys. Earth Planet. Interiors 150, 3-14), including modifications to allow inversion of the vertical magnetic transfer functions (VTFs), and parallelization of the code. The parallel implementation, which is most appropriate for small clusters, uses MPI to distribute forward solutions for different frequencies, as well as some linear algebraic computations, over multiple processors. In addition to reducing run times, the parallelization reduces memory requirements by distributing storage of the sensitivity matrix. Both new features are tested on synthetic and real datasets, revealing nearly linear speedup for a small number of processors (up to 8). Experiments on synthetic examples show that the horizontal position and lateral conductivity contrasts of anomalies can be recovered by inverting VTFs alone. However, vertical positions and absolute amplitudes are not well constrained unless an accurate host resistivity is imposed a priori. On very simple synthetic models including VTFs in a joint inversion had little impact on the inverse solution computed with impedances alone. However, in experiments with real data, inverse solutions obtained from joint inversion of VTF and impedances, and from impedances alone, differed in important ways, suggesting that for structures with more realistic levels of complexity the VTFs will in general provide useful additional constraints.

  5. Parallel Implementation and Scaling of an Adaptive Mesh Discrete Ordinates Algorithm for Transport

    SciTech Connect

    Howell, L H

    2004-11-29

    Block-structured adaptive mesh refinement (AMR) uses a mesh structure built up out of locally-uniform rectangular grids. In the BoxLib parallel framework used by the Raptor code, each processor operates on one or more of these grids at each refinement level. The decomposition of the mesh into grids and the distribution of these grids among processors may change every few timesteps as a calculation proceeds. Finer grids use smaller timesteps than coarser grids, requiring additional work to keep the system synchronized and ensure conservation between different refinement levels. In a paper for NECDC 2002 I presented preliminary results on implementation of parallel transport sweeps on the AMR mesh, conjugate gradient acceleration, accuracy of the AMR solution, and scalar speedup of the AMR algorithm compared to a uniform fully-refined mesh. This paper continues with a more in-depth examination of the parallel scaling properties of the scheme, both in single-level and multi-level calculations. Both sweeping and setup costs are considered. The algorithm scales with acceptable performance to several hundred processors. Trends suggest, however, that this is the limit for efficient calculations with traditional transport sweeps, and that modifications to the sweep algorithm will be increasingly needed as job sizes in the thousands of processors become common.

  6. On the design and implementation of a parallel, object-oriented, image processing toolkit

    SciTech Connect

    Kamath, C; Baldwin, C; Fodor, I; Tang, N A

    2000-06-22

    Advanced in technology have enabled us to collect data from observations, experiments, and simulations at an ever increasing pace. As these data sets approach the terabyte and petabyte range, scientists are increasingly using semi-automated techniques from data mining and pattern recognition to find useful information in the data. In order for data mining to be successful, the raw data must first be processed into a form suitable for the detection of patterns. When the data is in the form of images, this can involve a substantial amount of processing on very large data sets. To help make this task more efficient, they are designing and implementing an object-oriented image processing toolkit that specifically targets massively-parallel, distributed-memory architectures. They first show that it is possible to use object-oriented technology to effectively address the diverse needs of image applications. Next, they describe how we abstract out the similarities in image processing algorithms to enable re-use in the software. They will also discuss the difficulties encountered in parallelizing image algorithms on massively parallel machines as well as the bottlenecks to high performance. They will demonstrate the work using images from an astronomical data set, and illustrate how techniques such as filters and denoising through the thresholding of wavelet coefficients can be applied when a large image is distributed across several processors.

  7. Design and implementation of a parallel object-oriented image processing toolkit

    NASA Astrophysics Data System (ADS)

    Kamath, Chandrika; Baldwin, Chuck H.; Fodor, Imola K.; Tang, Nu A.

    2000-10-01

    Advances in technology have enabled us to collect data from observations, experiments, and simulations at an ever increasing pace. As these data sets approach the terabyte and petabyte range, scientists are increasingly using semi-automated techniques from data mining and pattern recognition to find useful information in the data. In order for data mining to be successful, the raw data must first be processed into a form suitable for the detection of patterns. When the data is in the form of images, this can involve a substantial amount of processing on very large data sets. To help make this task more efficient, we are designing and implementing an object-oriented image processing toolkit that specifically targets massively-parallel, distributed-memory architectures. We first show that it is possible to use object-oriented technology to effectively address the diverse needs of image applications. Next, we describe how we abstract out the similarities in image processing algorithms to enable re-use in our software. We will also discuss the difficulties encountered in parallelizing image algorithms on the massively parallel machines as well as the bottlenecks to high performance. We will demonstrate our work using images from an astronomical data set, and illustrate how techniques such as filters and denoising through the thresholding of wavelet coefficients can be applied when a large image is distributed across several processors.

  8. Parallel implementation of arbitrary-shaped MPEG-4 decoder for multiprocessor systems

    NASA Astrophysics Data System (ADS)

    Pastrnak, Milan; de With, Peter H. N.; Stuijk, Sander; van Meerbergen, Jef

    2006-01-01

    MPEG-4 is the first standard that combines synthetic objects, like 2D/3D graphics objects, with natural rectangular and non-rectangular video objects. The independent access to individual synthetic video objects for further manipulation creates a large space for future applications. This paper addresses the optimization of such complex multimedia algorithms for implementation on multiprocessor platforms. It is shown that when choosing the correct granularity of processing for enhanced parallelism and splitting time-critical tasks, a substantial improvement in processing efficiency can be obtained. In our work, we focus on non-rectangular (also called arbitrary-shaped) video objects decoder. In previous work, we motivated the use of a multiprocessor System-on-Chip(SoC) setup that satisfies the requirements on the overall computation capacity. We propose the optimization of the MPEG-4 algorithm to increase the decoding throughput and a more efficient usage of the multiprocessor architecture. First, we present a modification of the Repetitive Padding to increase the pipelining at block level. We identified the part of the padding algorithm that can be executed in parallel with the DCT-coefficient decoding and modified the original algorithm into two communicating tasks. Second, we introduce a synchronization mechanism that allows the processing for the Extended Padding and postprocessing (Deblocking & Deringing) filters at block level. The first optimization results in about 58% decrease of the original Repetitive-Padding task computational requirements. By introducing the previously proposed data-level parallelism and exploiting the inherent parallelism between the separated color components (Y, Cr, Cb), the computational savings are about 72% on the average. Moreover, the proposed optimizations marginalize the processing latency from frame size to slice order-of-magnitude.

  9. Parallel implementation of linear and nonlinear spectral unmixing of remotely sensed hyperspectral images

    NASA Astrophysics Data System (ADS)

    Plaza, Antonio; Plaza, Javier

    2011-11-01

    Hyperspectral unmixing is a very important task for remotely sensed hyperspectral data exploitation. It addresses the (possibly) mixed nature of pixels collected by instruments for Earth observation, which are due to several phenomena including limited spatial resolution, presence of mixing effects at different scales, etc. Spectral unmixing involves the separation of a mixed pixel spectrum into its pure component spectra (called endmembers) and the estimation of the proportion (abundance) of endmember in the pixel. Two models have been widely used in the literature in order to address the mixture problem in hyperspectral data. The linear model assumes that the endmember substances are sitting side-by-side within the field of view of the imaging instrument. On the other hand, the nonlinear mixture model assumes nonlinear interactions between endmember substances. Both techniques can be computationally expensive, in particular, for high-dimensional hyperspectral data sets. In this paper, we develop and compare parallel implementations of linear and nonlinear unmixing techniques for remotely sensed hyperspectral data. For the linear model, we adopt a parallel unsupervised processing chain made up of two steps: i) identification of pure spectral materials or endmembers, and ii) estimation of the abundance of each endmember in each pixel of the scene. For the nonlinear model, we adopt a supervised procedure based on the training of a parallel multi-layer perceptron neural network using intelligently selected training samples also derived in parallel fashion. The compared techniques are experimentally validated using hyperspectral data collected at different altitudes over a so-called Dehesa (semi-arid environment) in Extremadura, Spain, and evaluated in terms of computational performance using high performance computing systems such as commodity Beowulf clusters.

  10. Finite volume numerical scheme for high-resolution gravity field modelling and its parallel implementation

    NASA Astrophysics Data System (ADS)

    Fašková, Z.; Macák, M.; Čunderlík, R.; Mikula, K.

    2012-04-01

    The paper discusses a numerical solution of the geodetic boundary value problem (GBVP) by the finite volume method (FVM). The FVM is a numerical method where numerical flux is conserved from one discretization cell to its neighbour, so it's very appropriate for solving GBVP with the Neumann and the Dirichlet BCs. Our numerical scheme is developed for 3D computational domain above an ellipsoid. It is shown that a refinement of the discretization in height's direction leads to more precise numerical results. In order to achieve high-resolution numerical results, parallel implementations of algorithms using the MPI procedures were developed and computations on parallel computers were successfully performed. This basis includes the splitting of all arrays in meridian's direction, usage of an implementation of the Bi-CGSTAB non-stationary iterative solver instead of the standard SOR and an optimization of communications on parallel computers with the NUMA architecture. This gives us higher speed up in comparison to standard approaches and enables us to develop an efficient tool for high-resolution global or regional gravity field modelling in huge areas. Numerical experiments present global modelling with the resolution comparable with EGM2008 and detailed regional modelling in the Pacific Ocean with the resolution 2x2 arc min. Input gravity disturbances are generated from the DTU10-GRAV gravity field model and the disturbing potential is computed from the GOCE_DIR2 satellite geopotential model up to degree 240. Finally, the obtained disturbing potential is used to evaluate the geopotential on the DTU10 mean sea surface and the achieved mean dynamic topography is compared with the ECCO oceanographic model.

  11. CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm: 2D and 3D Ising, Potts, and XY models

    NASA Astrophysics Data System (ADS)

    Komura, Yukihiro; Okabe, Yutaka

    2014-03-01

    We present sample CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm. We deal with the classical spin models; the Ising model, the q-state Potts model, and the classical XY model. As for the lattice, both the 2D (square) lattice and the 3D (simple cubic) lattice are treated. We already reported the idea of the GPU implementation for 2D models (Komura and Okabe, 2012). We here explain the details of sample programs, and discuss the performance of the present GPU implementation for the 3D Ising and XY models. We also show the calculated results of the moment ratio for these models, and discuss phase transitions. Catalogue identifier: AERM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERM_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5632 No. of bytes in distributed program, including test data, etc.: 14688 Distribution format: tar.gz Programming language: C, CUDA. Computer: System with an NVIDIA CUDA enabled GPU. Operating system: System with an NVIDIA CUDA enabled GPU. Classification: 23. External routines: NVIDIA CUDA Toolkit 3.0 or newer Nature of problem: Monte Carlo simulation of classical spin systems. Ising, q-state Potts model, and the classical XY model are treated for both two-dimensional and three-dimensional lattices. Solution method: GPU-based Swendsen-Wang multi-cluster spin flip Monte Carlo method. The CUDA implementation for the cluster-labeling is based on the work by Hawick et al. [1] and that by Kalentev et al. [2]. Restrictions: The system size is limited depending on the memory of a GPU. Running time: For the parameters used in the sample programs, it takes about a minute for each program. Of course, it depends on the system size, the number of Monte Carlo steps, etc. References: [1] K

  12. Combined algorithmic and GPU acceleration for ultra-fast circular conebeam backprojection

    NASA Astrophysics Data System (ADS)

    Brokish, Jeffrey; Sack, Paul; Bresler, Yoram

    2010-04-01

    In this paper, we describe the first implementation and performance of a fast O(N3logN) hierarchical backprojection algorithm for cone beam CT with a circular trajectory1,developed on a modern Graphics Processing Unit (GPU). The resulting tomographic backprojection system for 3D cone beam geometry combines speedup through algorithmic improvements provided by the hierarchical backprojection algorithm with speedup from a massively parallel hardware accelerator. For data parameters typical in diagnostic CT and using a mid-range GPU card, we report reconstruction speeds of up to 360 frames per second, and relative speedup of almost 6x compared to conventional backprojection on the same hardware. The significance of these results is twofold. First, they demonstrate that the reduction in operation counts demonstrated previously for the FHBP algorithm can be translated to a comparable run-time improvement in a massively parallel hardware implementation, while preserving stringent diagnostic image quality. Second, the dramatic speedup and throughput numbers achieved indicate the feasibility of systems based on this technology, which achieve real-time 3D reconstruction for state-of-the art diagnostic CT scanners with small footprint, high-reliability, and affordable cost.

  13. GPU surface extraction using the closest point embedding

    NASA Astrophysics Data System (ADS)

    Kim, Mark; Hansen, Charles

    2015-01-01

    Isosurface extraction is a fundamental technique used for both surface reconstruction and mesh generation. One method to extract well-formed isosurfaces is a particle system; unfortunately, particle systems can be slow. In this paper, we introduce an enhanced parallel particle system that uses the closest point embedding as the surface representation to speedup the particle system for isosurface extraction. The closest point embedding is used in the Closest Point Method (CPM), a technique that uses a standard three dimensional numerical PDE solver on two dimensional embedded surfaces. To fully take advantage of the closest point embedding, it is coupled with a Barnes-Hut tree code on the GPU. This new technique produces well-formed, conformal unstructured triangular and tetrahedral meshes from labeled multi-material volume datasets. Further, this new parallel implementation of the particle system is faster than any known methods for conformal multi-material mesh extraction. The resulting speed-ups gained in this implementation can reduce the time from labeled data to mesh from hours to minutes and benefits users, such as bioengineers, who employ triangular and tetrahedral meshes

  14. GPU-based fast gamma index calculation

    NASA Astrophysics Data System (ADS)

    Gu, Xuejun; Jia, Xun; Jiang, Steve B.

    2011-03-01

    The γ-index dose comparison tool has been widely used to compare dose distributions in cancer radiotherapy. The accurate calculation of γ-index requires an exhaustive search of the closest Euclidean distance in the high-resolution dose-distance space. This is a computational intensive task when dealing with 3D dose distributions. In this work, we combine a geometric method (Ju et al 2008 Med. Phys. 35 879-87) with a radial pre-sorting technique (Wendling et al 2007 Med. Phys. 34 1647-54) and implement them on computer graphics processing units (GPUs). The developed GPU-based γ-index computational tool is evaluated on eight pairs of IMRT dose distributions. The γ-index calculations can be finished within a few seconds for all 3D testing cases on one single NVIDIA Tesla C1060 card, achieving 45-75× speedup compared to CPU computations conducted on an Intel Xeon 2.27 GHz processor. We further investigated the effect of various factors on both CPU and GPU computation time. The strategy of pre-sorting voxels based on their dose difference values speeds up the GPU calculation by about 2.7-5.5 times. For n-dimensional dose distributions, γ-index calculation time on CPU is proportional to the summation of γn over all voxels, while that on GPU is affected by γn distributions and is approximately proportional to the γn summation over all voxels. We found that increasing the resolution of dose distributions leads to a quadratic increase of computation time on CPU, while less-than-quadratic increase on GPU. The values of dose difference and distance-to-agreement criteria also have an impact on γ-index calculation time.

  15. GPU-based fast gamma index calculation.

    PubMed

    Gu, Xuejun; Jia, Xun; Jiang, Steve B

    2011-03-01

    The γ-index dose comparison tool has been widely used to compare dose distributions in cancer radiotherapy. The accurate calculation of γ-index requires an exhaustive search of the closest Euclidean distance in the high-resolution dose-distance space. This is a computational intensive task when dealing with 3D dose distributions. In this work, we combine a geometric method (Ju et al 2008 Med. Phys. 35 879-87) with a radial pre-sorting technique (Wendling et al 2007 Med. Phys. 34 1647-54) and implement them on computer graphics processing units (GPUs). The developed GPU-based γ-index computational tool is evaluated on eight pairs of IMRT dose distributions. The γ-index calculations can be finished within a few seconds for all 3D testing cases on one single NVIDIA Tesla C1060 card, achieving 45-75× speedup compared to CPU computations conducted on an Intel Xeon 2.27 GHz processor. We further investigated the effect of various factors on both CPU and GPU computation time. The strategy of pre-sorting voxels based on their dose difference values speeds up the GPU calculation by about 2.7-5.5 times. For n-dimensional dose distributions, γ-index calculation time on CPU is proportional to the summation of γ(n) over all voxels, while that on GPU is affected by γ(n) distributions and is approximately proportional to the γ(n) summation over all voxels. We found that increasing the resolution of dose distributions leads to a quadratic increase of computation time on CPU, while less-than-quadratic increase on GPU. The values of dose difference and distance-to-agreement criteria also have an impact on γ-index calculation time. PMID:21317484

  16. A GPU accelerated Barnes-Hut tree code for FLASH4

    NASA Astrophysics Data System (ADS)

    Lukat, Gunther; Banerjee, Robi

    2016-05-01

    We present a GPU accelerated CUDA-C implementation of the Barnes Hut (BH) tree code for calculating the gravitational potential on octree adaptive meshes. The tree code algorithm is implemented within the FLASH4 adaptive mesh refinement (AMR) code framework and therefore fully MPI parallel. We describe the algorithm and present test results that demonstrate its accuracy and performance in comparison to the algorithms available in the current FLASH4 version. We use a MacLaurin spheroid to test the accuracy of our new implementation and use spherical, collapsing cloud cores with effective AMR to carry out performance tests also in comparison with previous gravity solvers. Depending on the setup and the GPU/CPU ratio, we find a speedup for the gravity unit of at least a factor of 3 and up to 60 in comparison to the gravity solvers implemented in the FLASH4 code. We find an overall speedup factor for full simulations of at least factor 1.6 up to a factor of 10.

  17. Implementation and performance of FDPS: a framework for developing parallel particle simulation codes

    NASA Astrophysics Data System (ADS)

    Iwasawa, Masaki; Tanikawa, Ataru; Hosono, Natsuki; Nitadori, Keigo; Muranushi, Takayuki; Makino, Junichiro

    2016-08-01

    We present the basic idea, implementation, measured performance, and performance model of FDPS (Framework for Developing Particle Simulators). FDPS is an application-development framework which helps researchers to develop simulation programs using particle methods for large-scale distributed-memory parallel supercomputers. A particle-based simulation program for distributed-memory parallel computers needs to perform domain decomposition, exchange of particles which are not in the domain of each computing node, and gathering of the particle information in other nodes which are necessary for interaction calculation. Also, even if distributed-memory parallel computers are not used, in order to reduce the amount of computation, algorithms such as the Barnes-Hut tree algorithm or the Fast Multipole Method should be used in the case of long-range interactions. For short-range interactions, some methods to limit the calculation to neighbor particles are required. FDPS provides all of these functions which are necessary for efficient parallel execution of particle-based simulations as "templates," which are independent of the actual data structure of particles and the functional form of the particle-particle interaction. By using FDPS, researchers can write their programs with the amount of work necessary to write a simple, sequential and unoptimized program of O(N2) calculation cost, and yet the program, once compiled with FDPS, will run efficiently on large-scale parallel supercomputers. A simple gravitational N-body program can be written in around 120 lines. We report the actual performance of these programs and the performance model. The weak scaling performance is very good, and almost linear speed-up was obtained for up to the full system of the K computer. The minimum calculation time per timestep is in the range of 30 ms (N = 107) to 300 ms (N = 109). These are currently limited by the time for the calculation of the domain decomposition and communication

  18. Implementation and performance of FDPS: a framework for developing parallel particle simulation codes

    NASA Astrophysics Data System (ADS)

    Iwasawa, Masaki; Tanikawa, Ataru; Hosono, Natsuki; Nitadori, Keigo; Muranushi, Takayuki; Makino, Junichiro

    2016-06-01

    We present the basic idea, implementation, measured performance, and performance model of FDPS (Framework for Developing Particle Simulators). FDPS is an application-development framework which helps researchers to develop simulation programs using particle methods for large-scale distributed-memory parallel supercomputers. A particle-based simulation program for distributed-memory parallel computers needs to perform domain decomposition, exchange of particles which are not in the domain of each computing node, and gathering of the particle information in other nodes which are necessary for interaction calculation. Also, even if distributed-memory parallel computers are not used, in order to reduce the amount of computation, algorithms such as the Barnes-Hut tree algorithm or the Fast Multipole Method should be used in the case of long-range interactions. For short-range interactions, some methods to limit the calculation to neighbor particles are required. FDPS provides all of these functions which are necessary for efficient parallel execution of particle-based simulations as "templates," which are independent of the actual data structure of particles and the functional form of the particle-particle interaction. By using FDPS, researchers can write their programs with the amount of work necessary to write a simple, sequential and unoptimized program of O(N2) calculation cost, and yet the program, once compiled with FDPS, will run efficiently on large-scale parallel supercomputers. A simple gravitational N-body program can be written in around 120 lines. We report the actual performance of these programs and the performance model. The weak scaling performance is very good, and almost linear speed-up was obtained for up to the full system of the K computer. The minimum calculation time per timestep is in the range of 30 ms (N = 107) to 300 ms (N = 109). These are currently limited by the time for the calculation of the domain decomposition and communication

  19. GPU-Accelerated Text Mining

    SciTech Connect

    Cui, Xiaohui; Mueller, Frank; Zhang, Yongpeng; Potok, Thomas E

    2009-01-01

    Accelerating hardware devices represent a novel promise for improving the performance for many problem domains but it is not clear for which domains what accelerators are suitable. While there is no room in general-purpose processor design to significantly increase the processor frequency, developers are instead resorting to multi-core chips duplicating conventional computing capabilities on a single die. Yet, accelerators offer more radical designs with a much higher level of parallelism and novel programming environments. This present work assesses the viability of text mining on CUDA. Text mining is one of the key concepts that has become prominent as an effective means to index the Internet, but its applications range beyond this scope and extend to providing document similarity metrics, the subject of this work. We have developed and optimized text search algorithms for GPUs to exploit their potential for massive data processing. We discuss the algorithmic challenges of parallelization for text search problems on GPUs and demonstrate the potential of these devices in experiments by reporting significant speedups. Our study may be one of the first to assess more complex text search problems for suitability for GPU devices, and it may also be one of the first to exploit and report on atomic instruction usage that have recently become available in NVIDIA devices.

  20. SU-D-BRD-03: A Gateway for GPU Computing in Cancer Radiotherapy Research

    SciTech Connect

    Jia, X; Folkerts, M; Shi, F; Yan, H; Yan, Y; Jiang, S; Sivagnanam, S; Majumdar, A

    2014-06-01

    Purpose: Graphics Processing Unit (GPU) has become increasingly important in radiotherapy. However, it is still difficult for general clinical researchers to access GPU codes developed by other researchers, and for developers to objectively benchmark their codes. Moreover, it is quite often to see repeated efforts spent on developing low-quality GPU codes. The goal of this project is to establish an infrastructure for testing GPU codes, cross comparing them, and facilitating code distributions in radiotherapy community. Methods: We developed a system called Gateway for GPU Computing in Cancer Radiotherapy Research (GCR2). A number of GPU codes developed by our group and other developers can be accessed via a web interface. To use the services, researchers first upload their test data or use the standard data provided by our system. Then they can select the GPU device on which the code will be executed. Our system offers all mainstream GPU hardware for code benchmarking purpose. After the code running is complete, the system automatically summarizes and displays the computing results. We also released a SDK to allow the developers to build their own algorithm implementation and submit their binary codes to the system. The submitted code is then systematically benchmarked using a variety of GPU hardware and representative data provided by our system. The developers can also compare their codes with others and generate benchmarking reports. Results: It is found that the developed system is fully functioning. Through a user-friendly web interface, researchers are able to test various GPU codes. Developers also benefit from this platform by comprehensively benchmarking their codes on various GPU platforms and representative clinical data sets. Conclusion: We have developed an open platform allowing the clinical researchers and developers to access the GPUs and GPU codes. This development will facilitate the utilization of GPU in radiation therapy field.

  1. Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications

    PubMed Central

    2014-01-01

    Background The huge quantity of data produced in Biomedical research needs sophisticated algorithmic methodologies for its storage, analysis, and processing. High Performance Computing (HPC) appears as a magic bullet in this challenge. However, several hard to solve parallelization and load balancing problems arise in this context. Here we discuss the HPC-oriented implementation of a general purpose learning algorithm, originally conceived for DNA analysis and recently extended to treat uncertainty on data (U-BRAIN). The U-BRAIN algorithm is a learning algorithm that finds a Boolean formula in disjunctive normal form (DNF), of approximately minimum complexity, that is consistent with a set of data (instances) which may have missing bits. The conjunctive terms of the formula are computed in an iterative way by identifying, from the given data, a family of sets of conditions that must be satisfied by all the positive instances and violated by all the negative ones; such conditions allow the computation of a set of coefficients (relevances) for each attribute (literal), that form a probability distribution, allowing the selection of the term literals. The great versatility that characterizes it, makes U-BRAIN applicable in many of the fields in which there are data to be analyzed. However the memory and the execution time required by the running are of O(n3) and of O(n5) order, respectively, and so, the algorithm is unaffordable for huge data sets. Results We find mathematical and programming solutions able to lead us towards the implementation of the algorithm U-BRAIN on parallel computers. First we give a Dynamic Programming model of the U-BRAIN algorithm, then we minimize the representation of the relevances. When the data are of great size we are forced to use the mass memory, and depending on where the data are actually stored, the access times can be quite different. According to the evaluation of algorithmic efficiency based on the Disk Model, in order to

  2. GPU phase-field lattice Boltzmann simulations of growth and motion of a binary alloy dendrite

    NASA Astrophysics Data System (ADS)

    Takaki, T.; Rojas, R.; Ohno, M.; Shimokawabe, T.; Aoki, T.

    2015-06-01

    A GPU code has been developed for a phase-field lattice Boltzmann (PFLB) method, which can simulate the dendritic growth with motion of solids in a dilute binary alloy melt. The GPU accelerated PFLB method has been implemented using CUDA C. The equiaxed dendritic growth in a shear flow and settling condition have been simulated by the developed GPU code. It has been confirmed that the PFLB simulations were efficiently accelerated by introducing the GPU computation. The characteristic dendrite morphologies which depend on the melt flow and the motion of the dendrite could also be confirmed by the simulations.

  3. Development of a GPU Compatible Version of the Fast Radiation Code RRTMG

    NASA Astrophysics Data System (ADS)

    Iacono, M. J.; Mlawer, E. J.; Berthiaume, D.; Cady-Pereira, K. E.; Suarez, M.; Oreopoulos, L.; Lee, D.

    2012-12-01

    The absorption of solar radiation and emission/absorption of thermal radiation are crucial components of the physics that drive Earth's climate and weather. Therefore, accurate radiative transfer calculations are necessary for realistic climate and weather simulations. Efficient radiation codes have been developed for this purpose, but their accuracy requirements still necessitate that as much as 30% of the computational time of a GCM is spent computing radiative fluxes and heating rates. The overall computational expense constitutes a limitation on a GCM's predictive ability if it becomes an impediment to adding new physics to or increasing the spatial and/or vertical resolution of the model. The emergence of Graphics Processing Unit (GPU) technology, which will allow the parallel computation of multiple independent radiative calculations in a GCM, will lead to a fundamental change in the competition between accuracy and speed. Processing time previously consumed by radiative transfer will now be available for the modeling of other processes, such as physics parameterizations, without any sacrifice in the accuracy of the radiative transfer. Furthermore, fast radiation calculations can be performed much more frequently and will allow the modeling of radiative effects of rapid changes in the atmosphere. The fast radiation code RRTMG, developed at Atmospheric and Environmental Research (AER), is utilized operationally in many dynamical models throughout the world. We will present the results from the first stage of an effort to create a version of the RRTMG radiation code designed to run efficiently in a GPU environment. This effort will focus on the RRTMG implementation in GEOS-5. RRTMG has an internal pseudo-spectral vector of length of order 100 that, when combined with the much greater length of the global horizontal grid vector from which the radiation code is called in GEOS-5, makes RRTMG/GEOS-5 particularly suited to achieving a significant speed improvement

  4. Medical image denoising via optimal implementation of non-local means on hybrid parallel architecture.

    PubMed

    Nguyen, Tuan-Anh; Nakib, Amir; Nguyen, Huy-Nam

    2016-06-01

    The Non-local means denoising filter has been established as gold standard for image denoising problem in general and particularly in medical imaging due to its efficiency. However, its computation time limited its applications in real world application, especially in medical imaging. In this paper, a distributed version on parallel hybrid architecture is proposed to solve the computation time problem and a new method to compute the filters' coefficients is also proposed, where we focused on the implementation and the enhancement of filters' parameters via taking the neighborhood of the current voxel more accurately into account. In terms of implementation, our key contribution consists in reducing the number of shared memory accesses. The different tests of the proposed method were performed on the brain-web database for different levels of noise. Performances and the sensitivity were quantified in terms of speedup, peak signal to noise ratio, execution time, the number of floating point operations. The obtained results demonstrate the efficiency of the proposed method. Moreover, the implementation is compared to that of other techniques, recently published in the literature. PMID:27084318

  5. A multiply parallel implementation of finite element-based discrete dislocation dynamics for arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Crone, Joshua C.; Chung, Peter W.; Leiter, Kenneth W.; Knap, Jaroslaw; Aubry, Sylvie; Hommes, Gregg; Arsenlis, Athanasios

    2014-04-01

    Discrete dislocation dynamics (DD) approaches have proven useful in modeling the dynamics of large ensembles of dislocations. Continuing interest in finite body effects via image stresses has extended DD numerical approaches to improve the handling of surfaces. However, a physically accurate, yet computationally scalable, implementation has been elusive. This paper presents a new framework and implementation of a finite element-based discrete DD code that (1) treats arbitrarily shaped non-convex surfaces through image tractions, (2) allows for systematic refinement of the finite element mesh both in the bulk and on the surface and (3) provides a platform to scale to relatively larger and lengthier simulations. The approach is based on the capabilities of the Parallel Dislocation Simulator coupled through a distributed shared memory implementation for the calculation of large numbers of dislocation segments interacting with an independently large number of surface finite elements. Surface tracking approaches enable topological features at surfaces to be modeled. We verify the computed results via comparisons with analytical solutions for an infinite screw dislocation and prismatic loop near a surface and examine surface effects on a Frank-Read source. Convergence of the image force error with h- and p-refinement is shown to indicate the computational robustness. Additionally, through larger numerical experiments, we demonstrate the new capabilities in a three-dimensional elastic body of finite extent.

  6. Parallel Implementation of Gamma-Point Pseudopotential Plane-Wave DFT with Exact Exchange

    SciTech Connect

    Bylaska, Eric J.; Tsemekhman, Kiril L.; Baden, Scott B.; Weare, John H.; Jonsson, Hannes

    2011-01-15

    One of the more persistent failures of conventional density functional theory (DFT) methods has been their failure to yield localized charge states such as polarons, excitons and solitons in solid-state and extended systems. It has been suggested that conventional DFT functionals, which are not self-interaction free, tend to favor delocalized electronic states since self-interaction creates a Coulomb barrier to charge localization. Pragmatic approaches in which the exchange correlation functionals are augmented with small amount of exact exchange (hybrid-DFT, e.g. B3LYP and PBE0) have shown promise in localizing charge states and predicting accurate band gaps and reaction barriers. We have developed a parallel algorithm for implementing exact exchange into pseudopotential plane-wave density functional theory and we have implemented it in the NWChem program package. The technique developed can readily be employed in plane-wave DFT programs. Furthermore, atomic forces and stresses are straightforward to implement, making it applicable to both confined and extended systems, as well as to Car-Parrinello ab initio molecular dynamic simulations. This method has been applied to several systems for which conventional DFT methods do not work well, including calculations for band gaps in oxides and the electronic structure of a charge trapped state in the Fe(II) containing mica, annite.

  7. A parallel strategy for implementing real-time expert systems using CLIPS

    NASA Technical Reports Server (NTRS)

    Ilyes, Laszlo A.; Villaseca, F. Eugenio; Delaat, John

    1994-01-01

    As evidenced by current literature, there appears to be a continued interest in the study of real-time expert systems. It is generally recognized that speed of execution is only one consideration when designing an effective real-time expert system. Some other features one must consider are the expert system's ability to perform temporal reasoning, handle interrupts, prioritize data, contend with data uncertainty, and perform context focusing as dictated by the incoming data to the expert system. This paper presents a strategy for implementing a real time expert system on the iPSC/860 hypercube parallel computer using CLIPS. The strategy takes into consideration not only the execution time of the software, but also those features which define a true real-time expert system. The methodology is then demonstrated using a practical implementation of an expert system which performs diagnostics on the Space Shuttle Main Engine (SSME). This particular implementation uses an eight node hypercube to process ten sensor measurements in order to simultaneously diagnose five different failure modes within the SSME. The main program is written in ANSI C and embeds CLIPS to better facilitate and debug the rule based expert system.

  8. QYMSYM: A GPU-accelerated hybrid symplectic integrator

    NASA Astrophysics Data System (ADS)

    Moore, Alexander; Quillen, Alice C.

    2012-10-01

    QYMSYM is a GPU accelerated 2nd order hybrid symplectic integrator that identifies close approaches between particles and switches from symplectic to Hermite algorithms for particles that require higher resolution integrations. This is a parallel code running with CUDA on a video card that puts the many processors on board to work while taking advantage of fast shared memory.

  9. An implementation of a tree code on a SIMD, parallel computer

    NASA Technical Reports Server (NTRS)

    Olson, Kevin M.; Dorband, John E.

    1994-01-01

    We describe a fast tree algorithm for gravitational N-body simulation on SIMD parallel computers. The tree construction uses fast, parallel sorts. The sorted lists are recursively divided along their x, y and z coordinates. This data structure is a completely balanced tree (i.e., each particle is paired with exactly one other particle) and maintains good spatial locality. An implementation of this tree-building algorithm on a 16k processor Maspar MP-1 performs well and constitutes only a small fraction (approximately 15%) of the entire cycle of finding the accelerations. Each node in the tree is treated as a monopole. The tree search and the summation of accelerations also perform well. During the tree search, node data that is needed from another processor is simply fetched. Roughly 55% of the tree search time is spent in communications between processors. We apply the code to two problems of astrophysical interest. The first is a simulation of the close passage of two gravitationally, interacting, disk galaxies using 65,636 particles. We also simulate the formation of structure in an expanding, model universe using 1,048,576 particles. Our code attains speeds comparable to one head of a Cray Y-MP, so single instruction, multiple data (SIMD) type computers can be used for these simulations. The cost/performance ratio for SIMD machines like the Maspar MP-1 make them an extremely attractive alternative to either vector processors or large multiple instruction, multiple data (MIMD) type parallel computers. With further optimizations (e.g., more careful load balancing), speeds in excess of today's vector processing computers should be possible.

  10. An implementation of a tree code on a SIMD, parallel computer

    NASA Astrophysics Data System (ADS)

    Olson, Kevin M.; Dorband, John E.

    1994-08-01

    We describe a fast tree algorithm for gravitational N-body simulation on SIMD parallel computers. The tree construction uses fast, parallel sorts. The sorted lists are recursively divided along their x, y and z coordinates. This data structure is a completely balanced tree (i.e., each particle is paired with exactly one other particle) and maintains good spatial locality. An implementation of this tree-building algorithm on a 16k processor Maspar MP-1 performs well and constitutes only a small fraction (approximately 15%) of the entire cycle of finding the accelerations. Each node in the tree is treated as a monopole. The tree search and the summation of accelerations also perform well. During the tree search, node data that is needed from another processor is simply fetched. Roughly 55% of the tree search time is spent in communications between processors. We apply the code to two problems of astrophysical interest. The first is a simulation of the close passage of two gravitationally, interacting, disk galaxies using 65,636 particles. We also simulate the formation of structure in an expanding, model universe using 1,048,576 particles. Our code attains speeds comparable to one head of a Cray Y-MP, so single instruction, multiple data (SIMD) type computers can be used for these simulations. The cost/performance ratio for SIMD machines like the Maspar MP-1 make them an extremely attractive alternative to either vector processors or large multiple instruction, multiple data (MIMD) type parallel computers. With further optimizations (e.g., more careful load balancing), speeds in excess of today's vector processing computers should be possible.

  11. A parallel FPGA implementation for real-time 2D pixel clustering for the ATLAS Fast Tracker Processor

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, C. L.; Gkaitatzis, S.; Annovi, A.; Beretta, M.; Kordas, K.; Nikolaidis, S.; Petridou, C.; Volpi, G.

    2014-10-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level-1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. This flexibility makes the implementation suitable for a variety of demanding image processing applications. The implementation is robust against bit errors in the input data stream and drops all data that cannot be identified. In the unlikely event of missing control words, the implementation will ensure stable data processing by inserting the missing control words in the data stream. The 2D pixel clustering implementation is developed and tested in both single flow and parallel versions. The first parallel version with 16 parallel cluster identification engines is presented. The input data from the RODs are received through S-Links and the processing units that follow the clustering implementation also require a single data stream, therefore data parallelizing (demultiplexing) and serializing (multiplexing) modules are introduced in order to accommodate the parallelized version and restore the data stream afterwards. The results of the first hardware tests of

  12. An efficient parallel implementation of explicit multirate Runge–Kutta schemes for discontinuous Galerkin computations

    SciTech Connect

    Seny, Bruno Lambrechts, Jonathan; Toulorge, Thomas; Legat, Vincent; Remacle, Jean-François

    2014-01-01

    Although explicit time integration schemes require small computational efforts per time step, their efficiency is severely restricted by their stability limits. Indeed, the multi-scale nature of some physical processes combined with highly unstructured meshes can lead some elements to impose a severely small stable time step for a global problem. Multirate methods offer a way to increase the global efficiency by gathering grid cells in appropriate groups under local stability conditions. These methods are well suited to the discontinuous Galerkin framework. The parallelization of the multirate strategy is challenging because grid cells have different workloads. The computational cost is different for each sub-time step depending on the elements involved and a classical partitioning strategy is not adequate any more. In this paper, we propose a solution that makes use of multi-constraint mesh partitioning. It tends to minimize the inter-processor communications, while ensuring that the workload is almost equally shared by every computer core at every stage of the algorithm. Particular attention is given to the simplicity of the parallel multirate algorithm while minimizing computational and communication overheads. Our implementation makes use of the MeTiS library for mesh partitioning and the Message Passing Interface for inter-processor communication. Performance analyses for two and three-dimensional practical applications confirm that multirate methods preserve important computational advantages of explicit methods up to a significant number of processors.

  13. Implementation of a Parallel High-Performance Visualization Technique in GRASS GIS

    SciTech Connect

    Sorokine, Alexandre

    2007-01-01

    This paper describes an extension for GRASS GIS that enables users to perform geographic visualization tasks on tiled high-resolution displays powered by the clusters of commodity personal computers. Parallel visualization systems are becoming more common in scientific computing due to the decreasing hardware costs and availability of the open source software to support such architecture. High-resolution displays allow scientists to visualize very large datasets with minimal loss of details. Such systems have a big promise especially in the field of geographic information systems because users can naturally combine several geographic scales on a single display. The paper discusses architecture, implementation and operation of pd-GRASS - a GRASS GIS extension for high-performance parallel visualization on tiled displays. pd-GRASS is specifically well suited for the very large geographic datasets such as LIDAR data or high-resolution nation-wide geographic databases. The paper also briefly touches on computational efficiency, performance and potential applications for such systems.

  14. Implementation and parallelization of fast matrix multiplication for a fast Legendre transform

    SciTech Connect

    Chen, Wentao

    1993-09-01

    An algorithm was presented by Alpert and Rokhlin for the rapid evaluation of Legendre transforms. The fast algorithm can be expressed as a matrix-vector product followed by a fast cosine transform. Using the Chebyshev expansion to approximate the entries of the matrix and exchanging the order of summations reduces the time complexity of computation from O(n{sup 2}) to O(n log n), where n is the size of the input vector. Our work has been focused on the implementation and the parallelization of the fast algorithm of matrix-vector product. Results have shown the expected performance of the algorithm. Precision problems which arise as n becomes large can be resolved by doubling the precision of the calculation.

  15. Implementation and efficiency analysis of parallel computation using OpenACC: a case study using flow field simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Shanghong; Yuan, Rui; Wu, Yu; Yi, Yujun

    2016-01-01

    The Open Accelerator (OpenACC) application programming interface is a relatively new parallel computing standard. In this paper, particle-based flow field simulations are examined as a case study of OpenACC parallel computation. The parallel conversion process of the OpenACC standard is explained, and further, the performance of the flow field parallel model is analysed using different directive configurations and grid schemes. With careful implementation and optimisation of the data transportation in the parallel algorithm, a speedup factor of 18.26× is possible. In contrast, a speedup factor of just 11.77× was achieved with the conventional Open Multi-Processing (OpenMP) parallel mode on a 20-kernel computer. These results demonstrate that optimised feature settings greatly influence the degree of speedup, and models involving larger numbers of calculations exhibit greater efficiency and higher speedup factors. In addition, the OpenACC parallel mode is found to have good portability, making it easy to implement parallel computation from the original serial model.

  16. GPU-based relative fuzzy connectedness image segmentation

    SciTech Connect

    Zhuge Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.

    2013-01-15

    Purpose:Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an Script-Small-L {sub {infinity}}-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8 Multiplication-Sign , 22.9 Multiplication-Sign , 20.9 Multiplication-Sign , and 17.5 Multiplication-Sign , correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  17. GPU-based relative fuzzy connectedness image segmentation

    PubMed Central

    Zhuge, Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.

    2013-01-01

    Purpose: Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an ℓ∞-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology. PMID:23298094

  18. Towards real-time wavefront sensorless adaptive optics using a graphical processing unit (GPU) in a line scanning system

    NASA Astrophysics Data System (ADS)

    Biss, David P.; Patel, Ankit H.; Ferguson, R. Daniel; Mujat, Mircea; Iftimia, Nicusor; Hammer, Daniel X.

    2011-03-01

    Adaptive optics ophthalmic imaging systems that rely on a standalone wave-front sensor can be costly to build and difficult for non-technical personnel to operate. As an alternative we present a simplified wavefront sensorless adaptive optics laser scanning ophthalmoscope. This sensorless system is based on deterministic search algorithms that utilize the image's spatial frequency as an optimization metric. We implement this algorithm on a NVIDIA video card to take advantage of the graphics processing unit (GPU)'s parallel architecture to reduce algorithm computation times and approach real-time correction.

  19. Parallel design of JPEG-LS encoder on graphics processing units

    NASA Astrophysics Data System (ADS)

    Duan, Hao; Fang, Yong; Huang, Bormin

    2012-01-01

    With recent technical advances in graphic processing units (GPUs), GPUs have outperformed CPUs in terms of compute capability and memory bandwidth. Many successful GPU applications to high performance computing have been reported. JPEG-LS is an ISO/IEC standard for lossless image compression which utilizes adaptive context modeling and run-length coding to improve compression ratio. However, adaptive context modeling causes data dependency among adjacent pixels and the run-length coding has to be performed in a sequential way. Hence, using JPEG-LS to compress large-volume hyperspectral image data is quite time-consuming. We implement an efficient parallel JPEG-LS encoder for lossless hyperspectral compression on a NVIDIA GPU using the computer unified device architecture (CUDA) programming technology. We use the block parallel strategy, as well as such CUDA techniques as coalesced global memory access, parallel prefix sum, and asynchronous data transfer. We also show the relation between GPU speedup and AVIRIS block size, as well as the relation between compression ratio and AVIRIS block size. When AVIRIS images are divided into blocks, each with 64×64 pixels, we gain the best GPU performance with 26.3x speedup over its original CPU code.

  20. Quantum.Ligand.Dock: protein-ligand docking with quantum entanglement refinement on a GPU system.

    PubMed

    Kantardjiev, Alexander A

    2012-07-01

    Quantum.Ligand.Dock (protein-ligand docking with graphic processing unit (GPU) quantum entanglement refinement on a GPU system) is an original modern method for in silico prediction of protein-ligand interactions via high-performance docking code. The main flavour of our approach is a combination of fast search with a special account for overlooked physical interactions. On the one hand, we take care of self-consistency and proton equilibria mutual effects of docking partners. On the other hand, Quantum.Ligand.Dock is the the only docking server offering such a subtle supplement to protein docking algorithms as quantum entanglement contributions. The motivation for development and proposition of the method to the community hinges upon two arguments-the fundamental importance of quantum entanglement contribution in molecular interaction and the realistic possibility to implement it by the availability of supercomputing power. The implementation of sophisticated quantum methods is made possible by parallelization at several bottlenecks on a GPU supercomputer. The high-performance implementation will be of use for large-scale virtual screening projects, structural bioinformatics, systems biology and fundamental research in understanding protein-ligand recognition. The design of the interface is focused on feasibility and ease of use. Protein and ligand molecule structures are supposed to be submitted as atomic coordinate files in PDB format. A customization section is offered for addition of user-specified charges, extra ionogenic groups with intrinsic pK(a) values or fixed ions. Final predicted complexes are ranked according to obtained scores and provided in PDB format as well as interactive visualization in a molecular viewer. Quantum.Ligand.Dock server can be accessed at http://87.116.85.141/LigandDock.html. PMID:22669908

  1. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures

    SciTech Connect

    Neylon, J. Sheng, K.; Yu, V.; Low, D. A.; Kupelian, P.; Santhanam, A.; Chen, Q.

    2014-10-15

    , respectively. Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. Results: The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. Conclusions: The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems.

  2. FARGO3D: A New GPU-oriented MHD Code

    NASA Astrophysics Data System (ADS)

    Benítez-Llambay, Pablo; Masset, Frédéric S.

    2016-03-01

    We present the FARGO3D code, recently publicly released. It is a magnetohydrodynamics code developed with special emphasis on the physics of protoplanetary disks and planet-disk interactions, and parallelized with MPI. The hydrodynamics algorithms are based on finite-difference upwind, dimensionally split methods. The magnetohydrodynamics algorithms consist of the constrained transport method to preserve the divergence-free property of the magnetic field to machine accuracy, coupled to a method of characteristics for the evaluation of electromotive forces and Lorentz forces. Orbital advection is implemented, and an N-body solver is included to simulate planets or stars interacting with the gas. We present our implementation in detail and present a number of widely known tests for comparison purposes. One strength of FARGO3D is that it can run on either graphical processing units (GPUs) or central processing units (CPUs), achieving large speed-up with respect to CPU cores. We describe our implementation choices, which allow a user with no prior knowledge of GPU programming to develop new routines for CPUs, and have them translated automatically for GPUs.

  3. Implementation of the Turn Function Method in a three-dimensional, parallelized hydrodynamics code

    NASA Astrophysics Data System (ADS)

    Orourke, P. J.; Fairfield, M. S.

    1992-08-01

    The implementation of the Turn Function Method in KIVA-F90, a version of the KIVA computer program written in the FORTRAN 90 programming language that is used on some massively parallel computers is described. The Turn Function Method solves both linear momentum and vorticity equations in numerical calculations of compressible fluid flow. Solving a vorticity equation allows vorticity to be both conserved and transported more accurately than in traditional methods for computing compressible flow. This first implementation of the Turn Function Method in a three-dimensional hydrodynamics code involved some modification of the original method and some numerical difference approximations. In particular, a penalty method is used to keep the divergence of the computed vorticity field close to zero. Difference operators are also defined in such a way that the finite difference analog of del(del x u) = 0 is exactly satisfied. Three example problems show the increased computational cost and the accuracy to be gained by using the Turn Function Method in calculations of flows with rotational motion. Use of the Method can increase by 60 percent the computational times of the Euler equation solver in KIVA-F90, but it is concluded that this increased cost is justified by the increased accuracy.

  4. Parallel Implementations Of The Nelder-Mead Simplex Algorithm For Unconstrained Optimization

    NASA Astrophysics Data System (ADS)

    Dennis, J. E.; Torczon, Virginia

    1988-04-01

    We are interested in implementing direct search methods on parallel computers to solve the unconstrained minimization problem: Given a function f : IRn --? IR find an x E En that minimizes 1 (x). Our preliminary work has focused on the Nelder-Mead simplex algorithm. The origin of the algorithm can be found in a 1962 paper by Spendley, Hext and Himsworth;1 Nelder and Meade proposed an adaptive version which proved to be much more robust in practice. Dennis and Woods3 give a clear presentation of the standard Nelder-Mead simplex algorithm; Woods4 includes a more complete discussion of implementation details as well as some preliminary convergence results. Since descriptions of the standard Nelder-Mead simplex algorithm appear in Nelder and Mead,2 Dennis and Woods,3 and Woods,4 we will limit our introductory discussion to the advantages and disadvantages of the algorithm, as well as some of the features which make it so popular. We then outline the approaches we have taken and discuss our preliminary results. We conclude with a discussion of future research and some observations about our findings.

  5. A highly scalable parallel computation strategy and optimized implementation for Fresnel Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Gao, Yongan; Zhao, Changhai; Li, Chuang; Yan, Haihua; Zhao, Liang

    2013-03-01

    Fresnel Seismic Tomography which uses a huge amount of seismic data is an efficient methodology of researching three-dimensional structure of earth. However, in practical application, it confronts with two key challenges of enormous data volume and huge computation. It is difficult to accomplish computation tasks under normal operating environment and computation strategies. In this paper, a Job-By-Application parallel computation strategy, which uses MPI (Message Passing Interface) and Pthread hybrid programming models based on the cluster, is designed to implement Fresnel seismic tomography, this method can solve the problem of allocating tasks dynamically, improve the load balancing and scalability of the system effectively; and we adopted the cached I/O strategy to accommodate the limited memory resources. Experimental results demonstrated that the program implemented on these strategies could completed the actual job within the idea time, the running of the program was stable, achieved load balancing, showed a good speedup and could adapt to the hardware environment of insufficient memory.

  6. GPU-based ultra-fast dose calculation using a finite size pencil beam model

    NASA Astrophysics Data System (ADS)

    Gu, Xuejun; Choi, Dongju; Men, Chunhua; Pan, Hubert; Majumdar, Amitava; Jiang, Steve B.

    2009-10-01

    Online adaptive radiation therapy (ART) is an attractive concept that promises the ability to deliver an optimal treatment in response to the inter-fraction variability in patient anatomy. However, it has yet to be realized due to technical limitations. Fast dose deposit coefficient calculation is a critical component of the online planning process that is required for plan optimization of intensity-modulated radiation therapy (IMRT). Computer graphics processing units (GPUs) are well suited to provide the requisite fast performance for the data-parallel nature of dose calculation. In this work, we develop a dose calculation engine based on a finite-size pencil beam (FSPB) algorithm and a GPU parallel computing framework. The developed framework can accommodate any FSPB model. We test our implementation in the case of a water phantom and the case of a prostate cancer patient with varying beamlet and voxel sizes. All testing scenarios achieved speedup ranging from 200 to 400 times when using a NVIDIA Tesla C1060 card in comparison with a 2.27 GHz Intel Xeon CPU. The computational time for calculating dose deposition coefficients for a nine-field prostate IMRT plan with this new framework is less than 1 s. This indicates that the GPU-based FSPB algorithm is well suited for online re-planning for adaptive radiotherapy.

  7. GPU-based ultra-fast dose calculation using a finite size pencil beam model.

    PubMed

    Gu, Xuejun; Choi, Dongju; Men, Chunhua; Pan, Hubert; Majumdar, Amitava; Jiang, Steve B

    2009-10-21

    Online adaptive radiation therapy (ART) is an attractive concept that promises the ability to deliver an optimal treatment in response to the inter-fraction variability in patient anatomy. However, it has yet to be realized due to technical limitations. Fast dose deposit coefficient calculation is a critical component of the online planning process that is required for plan optimization of intensity-modulated radiation therapy (IMRT). Computer graphics processing units (GPUs) are well suited to provide the requisite fast performance for the data-parallel nature of dose calculation. In this work, we develop a dose calculation engine based on a finite-size pencil beam (FSPB) algorithm and a GPU parallel computing framework. The developed framework can accommodate any FSPB model. We test our implementation in the case of a water phantom and the case of a prostate cancer patient with varying beamlet and voxel sizes. All testing scenarios achieved speedup ranging from 200 to 400 times when using a NVIDIA Tesla C1060 card in comparison with a 2.27 GHz Intel Xeon CPU. The computational time for calculating dose deposition coefficients for a nine-field prostate IMRT plan with this new framework is less than 1 s. This indicates that the GPU-based FSPB algorithm is well suited for online re-planning for adaptive radiotherapy. PMID:19794244

  8. GPU-based beamformer: fast realization of plane wave compounding and synthetic aperture imaging.

    PubMed

    Yiu, Billy Y S; Tsang, Ivan K H; Yu, Alfred C H

    2011-08-01

    Although they show potential to improve ultrasound image quality, plane wave (PW) compounding and synthetic aperture (SA) imaging are computationally demanding and are known to be challenging to implement in real-time. In this work, we have developed a novel beamformer architecture with the real-time parallel processing capacity needed to enable fast realization of PW compounding and SA imaging. The beamformer hardware comprises an array of graphics processing units (GPUs) that are hosted within the same computer workstation. Their parallel computational resources are controlled by a pixel-based software processor that includes the operations of analytic signal conversion, delay-and-sum beamforming, and recursive compounding as required to generate images from the channel-domain data samples acquired using PW compounding and SA imaging principles. When using two GTX-480 GPUs for beamforming and one GTX-470 GPU for recursive compounding, the beamformer can compute compounded 512 x 255 pixel PW and SA images at throughputs of over 4700 fps and 3000 fps, respectively, for imaging depths of 5 cm and 15 cm (32 receive channels, 40 MHz sampling rate). Its processing capacity can be further increased if additional GPUs or more advanced models of GPU are used. PMID:21859591

  9. Fast phase processing in off-axis holography by CUDA including parallel phase unwrapping.

    PubMed

    Backoach, Ohad; Kariv, Saar; Girshovitz, Pinhas; Shaked, Natan T

    2016-02-22

    We present parallel processing implementation for rapid extraction of the quantitative phase maps from off-axis holograms on the Graphics Processing Unit (GPU) of the computer using computer unified device architecture (CUDA) programming. To obtain efficient implementation, we parallelized both the wrapped phase map extraction algorithm and the two-dimensional phase unwrapping algorithm. In contrast to previous implementations, we utilized unweighted least squares phase unwrapping algorithm that better suits parallelism. We compared the proposed algorithm run times on the CPU and the GPU of the computer for various sizes of off-axis holograms. Using the GPU implementation, we extracted the unwrapped phase maps from the recorded off-axis holograms at 35 frames per second (fps) for 4 mega pixel holograms, and at 129 fps for 1 mega pixel holograms, which presents the fastest processing framerates obtained so far, to the best of our knowledge. We then used common-path off-axis interferometric imaging to quantitatively capture the phase maps of a micro-organism with rapid flagellum movements. PMID:26906982

  10. SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method

    SciTech Connect

    Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J; Guo, X

    2015-06-15

    Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed.

  11. Implementation of a parallel algorithm for thermo-chemical nonequilibrium flow simulations

    SciTech Connect

    Wong, C.C.; Blottner, F.G.; Payne, J.L.; Soetrisno, M.

    1995-01-01

    Massively parallel (MP) computing is considered to be the future direction of high performance computing. When engineers apply this new MP computing technology to solve large-scale problems, one major interest is what is the maximum problem size that a MP computer can handle. To determine the maximum size, it is important to address the code scalability issue. Scalability implies whether the code can provide an increase in performance proportional to an increase in problem size. If the size of the problem increases, by utilizing more computer nodes, the ideal elapsed time to simulate a problem should not increase much. Hence one important task in the development of the MP computing technology is to ensure scalability. A scalable code is an efficient code. In order to obtain good scaled performance, it is necessary to first have the code optimized for a single node performance before proceeding to a large-scale simulation with a large number of computer nodes. This paper will discuss the implementation of a massively parallel computing strategy and the process of optimization to improve the scaled performance. Specifically, we will look at domain decomposition, resource management in the code, communication overhead, and problem mapping. By incorporating these improvements and adopting an efficient MP computing strategy, an efficiency of about 85% and 96%, respectively, has been achieved using 64 nodes on MP computers for both perfect gas and chemically reactive gas problems. A comparison of the performance between MP computers and a vectorized computer, such as Cray-YMP, will also be presented.

  12. Gfargo: Fargo for Gpu

    NASA Astrophysics Data System (ADS)

    Masset, Frédéric

    2015-09-01

    GFARGO is a GPU version of FARGO. It is written in C and C for CUDA and runs only on NVIDIA’s graphics cards. Though it corresponds to the standard, isothermal version of FARGO, not all functionnalities of the CPU version have been translated to CUDA. The code is available in single and double precision versions, the latter compatible with FERMI architectures. GFARGO can run on a graphics card connected to the display, allowing the user to see in real time how the fields evolve.

  13. Mapping high-fidelity volume rendering for medical imaging to CPU, GPU and many-core architectures.

    PubMed

    Smelyanskiy, Mikhail; Holmes, David; Chhugani, Jatin; Larson, Alan; Carmean, Douglas M; Hanson, Dennis; Dubey, Pradeep; Augustine, Kurt; Kim, Daehyun; Kyker, Alan; Lee, Victor W; Nguyen, Anthony D; Seiler, Larry; Robb, Richard

    2009-01-01

    Medical volumetric imaging requires high fidelity, high performance rendering algorithms. We motivate and analyze new volumetric rendering algorithms that are suited to modern parallel processing architectures. First, we describe the three major categories of volume rendering algorithms and confirm through an imaging scientist-guided evaluation that ray-casting is the most acceptable. We describe a thread- and data-parallel implementation of ray-casting that makes it amenable to key architectural trends of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel architecture code-named Larrabee. We achieve more than an order of magnitude performance improvement on a number of large 3D medical datasets. We further describe a data compression scheme that significantly reduces data-transfer overhead. This allows our approach to scale well to large numbers of Larrabee cores. PMID:19834234

  14. Bin-Hash Indexing: A Parallel Method for Fast Query Processing

    SciTech Connect

    Bethel, Edward W; Gosink, Luke J.; Wu, Kesheng; Bethel, Edward Wes; Owens, John D.; Joy, Kenneth I.

    2008-06-27

    This paper presents a new parallel indexing data structure for answering queries. The index, called Bin-Hash, offers extremely high levels of concurrency, and is therefore well-suited for the emerging commodity of parallel processors, such as multi-cores, cell processors, and general purpose graphics processing units (GPU). The Bin-Hash approach first bins the base data, and then partitions and separately stores the values in each bin as a perfect spatial hash table. To answer a query, we first determine whether or not a record satisfies the query conditions based on the bin boundaries. For the bins with records that can not be resolved, we examine the spatial hash tables. The procedures for examining the bin numbers and the spatial hash tables offer the maximum possible level of concurrency; all records are able to be evaluated by our procedure independently in parallel. Additionally, our Bin-Hash procedures access much smaller amounts of data than similar parallel methods, such as the projection index. This smaller data footprint is critical for certain parallel processors, like GPUs, where memory resources are limited. To demonstrate the effectiveness of Bin-Hash, we implement it on a GPU using the data-parallel programming language CUDA. The concurrency offered by the Bin-Hash index allows us to fully utilize the GPU's massive parallelism in our work; over 12,000 records can be simultaneously evaluated at any one time. We show that our new query processing method is an order of magnitude faster than current state-of-the-art CPU-based indexing technologies. Additionally, we compare our performance to existing GPU-based projection index strategies.

  15. The Design and Implementation of hypre, a Library of Parallel High Performance Preconditioners

    SciTech Connect

    Falgout, R D; Jones, J E; Yang, U M

    2004-07-17

    The increasing demands of computationally challenging applications and the advance of larger more powerful computers with more complicated architectures have necessitated the development of new solvers and preconditioners. Since the implementation of these methods is quite complex, the use of high performance libraries with the newest efficient solvers and preconditioners becomes more important for promulgating their use into applications with relative ease. The hypre library [14, 17] has been designed with the primary goal of providing users with advanced scalable parallel preconditioners. Issues of robustness, ease of use, flexibility and interoperability have also been important. It can be used both as a solver package and as a framework for algorithm development. Its object model is more general and flexible than most current generation solver libraries [9]. hypre also provides several of the most commonly used solvers, such as conjugate gradient for symmetric systems or GMRES for nonsymmetric systems to be used in conjunction with the preconditioners. Design innovations have been made to enable access to the library in the way that applications users naturally think about their problems. For example, application developers that use structured grids, typically think of their problems in terms of stencils and grids. hypre's users do not have to learn complicated sparse matrix structures; instead hypre does the work of building these data structures through various conceptual interfaces. The conceptual interfaces currently implemented include stencil-based structured and semi-structured interfaces, a finite-element based unstructured interface, and a traditional linear-algebra based interface. The primary focus of this paper is on the design and implementation of the conceptual interfaces in hypre. The paper is organized as follows. The first two sections are of general interest.We begin in Section 2 with an introductory discussion of conceptual interfaces and

  16. Implementation of a Message Passing Interface into a Cloud-Resolving Model for Massively Parallel Computing

    NASA Technical Reports Server (NTRS)

    Juang, Hann-Ming Henry; Tao, Wei-Kuo; Zeng, Xi-Ping; Shie, Chung-Lin; Simpson, Joanne; Lang, Steve

    2004-01-01

    The capability for massively parallel programming (MPP) using a message passing interface (MPI) has been implemented into a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model. The design for the MPP with MPI uses the concept of maintaining similar code structure between the whole domain as well as the portions after decomposition. Hence the model follows the same integration for single and multiple tasks (CPUs). Also, it provides for minimal changes to the original code, so it is easily modified and/or managed by the model developers and users who have little knowledge of MPP. The entire model domain could be sliced into one- or two-dimensional decomposition with a halo regime, which is overlaid on partial domains. The halo regime requires that no data be fetched across tasks during the computational stage, but it must be updated before the next computational stage through data exchange via MPI. For reproducible purposes, transposing data among tasks is required for spectral transform (Fast Fourier Transform, FFT), which is used in the anelastic version of the model for solving the pressure equation. The performance of the MPI-implemented codes (i.e., the compressible and anelastic versions) was tested on three different computing platforms. The major results are: 1) both versions have speedups of about 99% up to 256 tasks but not for 512 tasks; 2) the anelastic version has better speedup and efficiency because it requires more computations than that of the compressible version; 3) equal or approximately-equal numbers of slices between the x- and y- directions provide the fastest integration due to fewer data exchanges; and 4) one-dimensional slices in the x-direction result in the slowest integration due to the need for more memory relocation for computation.

  17. Parallel implementation of the multiple endmember spectral mixture analysis algorithm for hyperspectral unmixing

    NASA Astrophysics Data System (ADS)

    Bernabe, Sergio; Igual, Francisco D.; Botella, Guillermo; Prieto-Matias, Manuel; Plaza, Antonio

    2015-10-01

    In the last decade, the issue of endmember variability has received considerable attention, particularly when each pixel is modeled as a linear combination of endmembers or pure materials. As a result, several models and algorithms have been developed for considering the effect of endmember variability in spectral unmixing and possibly include multiple endmembers in the spectral unmixing stage. One of the most popular approach for this purpose is the multiple endmember spectral mixture analysis (MESMA) algorithm. The procedure executed by MESMA can be summarized as follows: (i) First, a standard linear spectral unmixing (LSU) or fully constrained linear spectral unmixing (FCLSU) algorithm is run in an iterative fashion; (ii) Then, we use different endmember combinations, randomly selected from a spectral library, to decompose each mixed pixel; (iii) Finally, the model with the best fit, i.e., with the lowest root mean square error (RMSE) in the reconstruction of the original pixel, is adopted. However, this procedure can be computationally very expensive due to the fact that several endmember combinations need to be tested and several abundance estimation steps need to be conducted, a fact that compromises the use of MESMA in applications under real-time constraints. In this paper we develop (for the first time in the literature) an efficient implementation of MESMA on different platforms using OpenCL, an open standard for parallel programing on heterogeneous systems. Our experiments have been conducted using a simulated data set and the clMAGMA mathematical library. This kind of implementations with the same descriptive language on different architectures are very important in order to actually calibrate the possibility of using heterogeneous platforms for efficient hyperspectral imaging processing in real remote sensing missions.

  18. Parallel and Low-Order Scaling Implementation of Hartree-Fock Exchange Using Local Density Fitting.

    PubMed

    Köppl, Christoph; Werner, Hans-Joachim

    2016-07-12

    Calculations using modern linear-scaling electron-correlation methods are often much faster than the necessary reference Hartree-Fock (HF) calculations. We report a newly implemented HF program that speeds up the most time-consuming step, namely, the evaluation of the exchange contributions to the Fock matrix. Using localized orbitals and their sparsity, local density fitting (LDF), and atomic orbital domains, we demonstrate that the calculation of the exchange matrix scales asymptotically linearly with molecular size. The remaining parts of the HF calculation scale cubically but become dominant only for very large molecular sizes or with many processing cores. The method is well parallelized, and the speedup scales well with up to about 100 CPU cores on multiple compute nodes. The effect of the local approximations on the accuracy of computed HF and local second-order Møller-Plesset perturbation theory energies is systematically investigated, and default values are established for the parameters that determine the domain sizes. Using these values, calculations for molecules with hundreds of atoms in combination with triple-ζ basis sets can be carried out in less than 1 h, with just a few compute nodes. The method can also be used to speed up density functional theory calculations with hybrid functionals that contain HF exchange. PMID:27267488

  19. Implementation of parallel computational algorithms on a modified CORDIC arithmetic logic

    SciTech Connect

    Naseem, A.

    1984-01-01

    CORDIC (COordinate Rotation Digital Computer) is a powerful technique for evaluating trigonometric, hyperbolic, exponential and logarithmic functions and for performing a variety of plane coordinate transformations. Furthermore, the algorithm is also suitable for other computations such as multiplication, division, and the conversion between binary and mixed-radix number systems. The basis for the algorithm is coordinate rotation in a linear, circular, or hyperbolic coordinate system depending on which function is to be calculated. The algorithm involves iterative procedures that require only additions, shift operations, and recall of prestored constants. However, the iterative nature of the algorithm dictates hardware implementations that are highly sequential in nature, resulting in slow speed of processing. The growing need for processing at high speed has resulted in a constant push for the development of faster computing structures balanced against the constraint to minimize computational complexity. With the advent of VLSI, many processing elements can now be realized on a single chip, and a large collection of processors have therefore become economically feasible. So, with this possibility in mind, the CORDIC iteration equations were modified in order to eliminate their sequential nature and to incorporate more parallelism.

  20. Adaptive multi-GPU Exchange Monte Carlo for the 3D Random Field Ising Model

    NASA Astrophysics Data System (ADS)

    Navarro, Cristóbal A.; Huang, Wei; Deng, Youjin

    2016-08-01

    This work presents an adaptive multi-GPU Exchange Monte Carlo approach for the simulation of the 3D Random Field Ising Model (RFIM). The design is based on a two-level parallelization. The first level, spin-level parallelism, maps the parallel computation as optimal 3D thread-blocks that simulate blocks of spins in shared memory with minimal halo surface, assuming a constant block volume. The second level, replica-level parallelism, uses multi-GPU computation to handle the simulation of an ensemble of replicas. CUDA's concurrent kernel execution feature is used in order to fill the occupancy of each GPU with many replicas, providing a performance boost that is more notorious at the smallest values of L. In addition to the two-level parallel design, the work proposes an adaptive multi-GPU approach that dynamically builds a proper temperature set free of exchange bottlenecks. The strategy is based on mid-point insertions at the temperature gaps where the exchange rate is most compromised. The extra work generated by the insertions is balanced across the GPUs independently of where the mid-point insertions were performed. Performance results show that spin-level performance is approximately two orders of magnitude faster than a single-core CPU version and one order of magnitude faster than a parallel multi-core CPU version running on 16-cores. Multi-GPU performance is highly convenient under a weak scaling setting, reaching up to 99 % efficiency as long as the number of GPUs and L increase together. The combination of the adaptive approach with the parallel multi-GPU design has extended our possibilities of simulation to sizes of L = 32 , 64 for a workstation with two GPUs. Sizes beyond L = 64 can eventually be studied using larger multi-GPU systems.

  1. Numerical Aspects of Nonhydrostatic Implementations Applied to a Parallel Finite Element Tsunami Model

    NASA Astrophysics Data System (ADS)

    Fuchs, A.; Androsov, A.; Harig, S.; Hiller, W.; Rakowsky, N.

    2012-04-01

    Based on the jeopardy of devastating tsunamis and the unpredictability of such events, tsunami modelling as part of warning systems is still a contemporary topic. The tsunami group of Alfred Wegener Institute developed the simulation tool TsunAWI as contribution to the Early Warning System in Indonesia. Although the precomputed scenarios for this purpose qualify for satisfying deliverables, the study of further improvements continues. While TsunAWI is governed by the Shallow Water Equations, an extension of the model is based on a nonhydrostatic approach. At the arrival of a tsunami wave in coastal regions with rough bathymetry, the term containing the nonhydrostatic part of pressure, that is neglected in the original hydrostatic model, gains in importance. In consideration of this term, a better approximation of the wave is expected. Differences of hydrostatic and nonhydrostatic model results are contrasted in the standard benchmark problem of a solitary wave runup on a plane beach. The observation data provided by Titov and Synolakis (1995) serves as reference. The nonhydrostatic approach implies a set of equations that are similar to the Shallow Water Equations, so the variation of the code can be implemented on top. However, this additional routines cause a lot of issues you have to cope with. So far the computations of the model were purely explicit. In the nonhydrostatic version the determination of an additional unknown and the solution of a large sparse system of linear equations is necessary. The latter constitutes the lion's share of computing time and memory requirement. Since the corresponding matrix is only symmetric in structure and not in values, an iterative Krylov Subspace Method is used, in particular the restarted Generalized Minimal Residual Algorithm GMRES(m). With regard to optimization, we present a comparison of several combinations of sequential and parallel preconditioning techniques respective number of iterations and setup

  2. A comparison using APPL and PVM for a parallel implementation of an unstructured grid generation program

    NASA Technical Reports Server (NTRS)

    Arthur, Trey; Bockelie, Michael J.

    1993-01-01

    Efforts to parallelize the VGRIDSG unstructured surface grid generation program are described. The inherent parallel nature of the grid generation algorithm used in VGRIDSG was exploited on a cluster of Silicon Graphics IRIS 4D workstations using the message passing libraries Application Portable Parallel Library (APPL) and Parallel Virtual Machine (PVM). Comparisons of speed up are presented for generating the surface grid of a unit cube and a Mach 3.0 High Speed Civil Transport. It was concluded that for this application, both APPL and PVM give approximately the same performance, however, APPL is easier to use.

  3. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores

    PubMed Central

    2011-01-01

    Background Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Findings Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. Conclusions GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/. PMID:21615923

  4. Multi-GPU three dimensional Stokes solver for simulating glacier flow

    NASA Astrophysics Data System (ADS)

    Licul, Aleksandar; Herman, Frédéric; Podladchikov, Yuri; Räss, Ludovic; Omlin, Samuel

    2016-04-01

    Here we present how we have recently developed a three-dimensional Stokes solver on the GPUs and apply it to a glacier flow. We numerically solve the Stokes momentum balance equations together with the incompressibility equation, while also taking into account strong nonlinearities for ice rheology. We have developed a fully three-dimensional numerical MATLAB application based on an iterative finite difference scheme with preconditioning of residuals. Differential equations are discretized on a regular staggered grid. We have ported it to C-CUDA to run it on GPU's in parallel, using MPI. We demonstrate the accuracy and efficiency of our developed model by manufactured analytical solution test for three-dimensional Stokes ice sheet models (Leng et al.,2013) and by comparison with other well-established ice sheet models on diagnostic ISMIP-HOM benchmark experiments (Pattyn et al., 2008). The results show that our developed model is capable to accurately and efficiently solve Stokes system of equations in a variety of different test scenarios, while preserving good parallel efficiency on up to 80 GPU's. For example, in 3D test scenarios with 250000 grid points our solver converges in around 3 minutes for single precision computations and around 10 minutes for double precision computations. We have also optimized the developed code to efficiently run on our newly acquired state-of-the-art GPU cluster octopus. This allows us to solve our problem on more than 20 million grid points, by just increasing the number of GPU used, while keeping the computation time the same. In future work we will apply our solver to real world applications and implement the free surface evolution capabilities. REFERENCES Leng,W.,Ju,L.,Gunzburger,M. & Price,S., 2013. Manufactured solutions and the verification of three-dimensional stokes ice-sheet models. Cryosphere 7,19-29. Pattyn, F., Perichon, L., Aschwanden, A., Breuer, B., de Smedt, B., Gagliardini, O., Gudmundsson,G.H., Hindmarsh, R

  5. GPU-based four-dimensional general-relativistic ray tracing

    NASA Astrophysics Data System (ADS)

    Kuchelmeister, Daniel; Müller, Thomas; Ament, Marco; Wunner, Günter; Weiskopf, Daniel

    2012-10-01

    This paper presents a new general-relativistic ray tracer that enables image synthesis on an interactive basis by exploiting the performance of graphics processing units (GPUs). The application is capable of visualizing the distortion of the stellar background as well as trajectories of moving astronomical objects orbiting a compact mass. Its source code includes metric definitions for the Schwarzschild and Kerr spacetimes that can be easily extended to other metric definitions, relying on its object-oriented design. The basic functionality features a scene description interface based on the scripting language Lua, real-time image output, and the ability to edit almost every parameter at runtime. The ray tracing code itself is implemented for parallel execution on the GPU using NVidia's Compute Unified Device Architecture (CUDA), which leads to performance improvement of an order of magnitude compared to a single CPU and makes the application competitive with small CPU cluster architectures. Program summary Program title: GpuRay4D Catalog identifier: AEMV_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 73649 No. of bytes in distributed program, including test data, etc.: 1334251 Distribution format: tar.gz Programming language: C++, CUDA. Computer: Linux platforms with a NVidia CUDA enabled GPU (Compute Capability 1.3 or higher), C++ compiler, NVCC (The CUDA Compiler Driver). Operating system: Linux. RAM: 2 GB Classification: 1.5. External routines: OpenGL Utility Toolkit development files, NVidia CUDA Toolkit 3.2, Lua5.2 Nature of problem: Ray tracing in four-dimensional Lorentzian spacetimes. Solution method: Numerical integration of light rays, GPU-based parallel programming using CUDA, 3D

  6. A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    PubMed Central

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S.; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities. PMID:22164116

  7. Accelerating Pseudo-Random Number Generator for MCNP on GPU

    NASA Astrophysics Data System (ADS)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Hu, Qingfeng; Deng, Li; Gong, Zhenghu

    2010-09-01

    Pseudo-random number generators (PRNG) are intensively used in many stochastic algorithms in particle simulations, artificial neural networks and other scientific computation. The PRNG in Monte Carlo N-Particle Transport Code (MCNP) requires long period, high quality, flexible jump and fast enough. In this paper, we implement such a PRNG for MCNP on NVIDIA's GTX200 Graphics Processor Units (GPU) using CUDA programming model. Results shows that 3.80 to 8.10 times speedup are achieved compared with 4 to 6 cores CPUs and more than 679.18 million double precision random numbers can be generated per second on GPU.

  8. Numerical cosmology on the GPU with Enzo and Ramses

    NASA Astrophysics Data System (ADS)

    Gheller, C.; Wang, P.; Vazza, F.; Teyssier, R.

    2015-09-01

    A number of scientific numerical codes can currently exploit GPUs with remarkable performance. In astrophysics, Enzo and Ramses are prime examples of such applications. The two codes have been ported to GPUs adopting different strategies and programming models, Enzo adopting CUDA and Ramses using OpenACC. We describe here the different solutions used for the GPU implementation of both cases. Performance benchmarks will be presented for Ramses. The results of the usage of the more mature GPU version of Enzo, adopted for a scientific project within the CHRONOS programme, will be summarised.

  9. Finite Difference Elastic Wave Field Simulation On GPU

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Zhang, W.

    2011-12-01

    Numerical modeling of seismic wave propagation is considered as a basic and important aspect in investigation of the Earth's structure, and earthquake phenomenon. Among various numerical methods, the finite-difference method is considered one of the most efficient tools for the wave field simulation. However, with the increment of computing scale, the power of computing has becoming a bottleneck. With the development of hardware, in recent years, GPU shows powerful computational ability and bright application prospects in scientific computing. Many works using GPU demonstrate that GPU is powerful . Recently, GPU has not be used widely in the simulation of wave field. In this work, we present forward finite difference simulation of acoustic and elastic seismic wave propagation in heterogeneous media on NVIDIA graphics cards with the CUDA programming language. We also implement perfectly matched layers on the graphics cards to efficiently absorb outgoing waves on the fictitious edges of the grid Simulations compared with the results on CPU platform shows reliable accuracy and remarkable efficiency. This work proves that GPU can be an effective platform for wave field simulation, and it can also be used as a practical tool for real-time strong ground motion simulation.

  10. Optimizing Tensor Contraction Expressions for Hybrid CPU-GPU Execution

    SciTech Connect

    Ma, Wenjing; Krishnamoorthy, Sriram; Villa, Oreste; Kowalski, Karol; Agrawal, Gagan

    2013-03-01

    Tensor contractions are generalized multidimensional matrix multiplication operations that widely occur in quantum chemistry. Efficient execution of tensor contractions on Graphics Processing Units (GPUs) requires several challenges to be addressed, including index permutation and small dimension-sizes reducing thread block utilization. Moreover, to apply the same optimizations to various expressions, we need a code generation tool. In this paper, we present our approach to automatically generate CUDA code to execute tensor contractions on GPUs, including management of data movement between CPU and GPU. To evaluate our tool, GPU-enabled code is generated for the most expensive contractions in CCSD(T), a key coupled cluster method, and incorporated into NWChem, a popular computational chemistry suite. For this method, we demonstrate speedup over a factor of 8.4 using one GPU (instead of one core per node) and over 2.6 when utilizing the entire system using hybrid CPU+GPU solution with 2 GPUs and 5 cores (instead of 7 cores per node). Finally, we analyze the implementation behavior on future GPU systems.

  11. Multi-Core Parallel Implementation of Data Filtering Algorithm for Multi-Beam Bathymetry Data

    NASA Astrophysics Data System (ADS)

    Liu, Tianyang; Xu, Weiming; Yin, Xiaodong; Zhao, Xiliang

    In order to improve the multi-beam bathymetry data processing speed, we propose a parallel filtering algorithm based on multi thread technology. The algorithm consists of two parts. The first is the parallel data re-order step, in which the surveying area is divided into a regular grid, and the discrete bathymetry data is arranged into each grid by parallel method. The second part is the parallel filtering step, which involves dividing the grid into blocks and parallel executing filtering process in each block. In the experiment, the speedup of the proposed algorithm reaches to about 3.67 with an 8 core computer. The result shows the method can improve computing efficiency significantly comparing to the traditional algorithm.

  12. GPU applications for data processing

    SciTech Connect

    Vladymyrov, Mykhailo; Aleksandrov, Andrey; Tioukov, Valeri

    2015-12-31

    Modern experiments that use nuclear photoemulsion imply fast and efficient data acquisition from the emulsion can be performed. The new approaches in developing scanning systems require real-time processing of large amount of data. Methods that use Graphical Processing Unit (GPU) computing power for emulsion data processing are presented here. It is shown how the GPU-accelerated emulsion processing helped us to rise the scanning speed by factor of nine.

  13. A GPU-computing Approach to Solar Stokes Profile Inversion

    NASA Astrophysics Data System (ADS)

    Harker, Brian J.; Mighell, Kenneth J.

    2012-09-01

    We present a new computational approach to the inversion of solar photospheric Stokes polarization profiles, under the Milne-Eddington model, for vector magnetography. Our code, named GENESIS, employs multi-threaded parallel-processing techniques to harness the computing power of graphics processing units (GPUs), along with algorithms designed to exploit the inherent parallelism of the Stokes inversion problem. Using a genetic algorithm (GA) engineered specifically for use with a GPU, we produce full-disk maps of the photospheric vector magnetic field from polarized spectral line observations recorded by the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectromagnetograph (VSM) instrument. We show the advantages of pairing a population-parallel GA with data-parallel GPU-computing techniques, and present an overview of the Stokes inversion problem, including a description of our adaptation to the GPU-computing paradigm. Full-disk vector magnetograms derived by this method are shown using SOLIS/VSM data observed on 2008 March 28 at 15:45 UT.

  14. A GPU-COMPUTING APPROACH TO SOLAR STOKES PROFILE INVERSION

    SciTech Connect

    Harker, Brian J.; Mighell, Kenneth J. E-mail: mighell@noao.edu

    2012-09-20

    We present a new computational approach to the inversion of solar photospheric Stokes polarization profiles, under the Milne-Eddington model, for vector magnetography. Our code, named GENESIS, employs multi-threaded parallel-processing techniques to harness the computing power of graphics processing units (GPUs), along with algorithms designed to exploit the inherent parallelism of the Stokes inversion problem. Using a genetic algorithm (GA) engineered specifically for use with a GPU, we produce full-disk maps of the photospheric vector magnetic field from polarized spectral line observations recorded by the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectromagnetograph (VSM) instrument. We show the advantages of pairing a population-parallel GA with data-parallel GPU-computing techniques, and present an overview of the Stokes inversion problem, including a description of our adaptation to the GPU-computing paradigm. Full-disk vector magnetograms derived by this method are shown using SOLIS/VSM data observed on 2008 March 28 at 15:45 UT.

  15. A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in 131I SPECT

    PubMed Central

    Dewaraja, Yuni K.; Ljungberg, Michael; Majumdar, Amitava; Bose, Abhijit; Koral, Kenneth F.

    2009-01-01

    This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number streams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For 131I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction. PMID:11809318

  16. Continuous development of schemes for parallel computing of the electrostatics in biological systems: Implementation in DelPhi

    PubMed Central

    Li, Chuan; Petukh, Marharyta; Li, Lin; Alexov, Emil

    2013-01-01

    Due to the enormous importance of electrostatics in molecular biology, calculating the electrostatic potential and corresponding energies has become a standard computational approach for the study of biomolecules and nano-objects immersed in water and salt phase or other media. However, the electrostatics of large macromolecules and macromolecular complexes, including nano-objects, may not be obtainable via explicit methods and even the standard continuum electrostatics methods may not be applicable due to high computational time and memory requirements. Here, we report further development of the parallelization scheme reported in our previous work (J Comput Chem. 2012 Sep 15; 33(24):1960–6.) to include parallelization of the molecular surface and energy calculations components of the algorithm. The parallelization scheme utilizes different approaches such as space domain parallelization, algorithmic parallelization, multi-threading, and task scheduling, depending on the quantity being calculated. This allows for efficient use of the computing resources of the corresponding computer cluster. The parallelization scheme is implemented in the popular software DelPhi and results in speedup of several folds. As a demonstration of the efficiency and capability of this methodology, the electrostatic potential and electric field distributions are calculated for the bovine mitochondrial supercomplex illustrating their complex topology which cannot be obtained by modeling the supercomplex components alone. PMID:23733490

  17. gPGA: GPU Accelerated Population Genetics Analyses

    PubMed Central

    Zhou, Chunbao; Lang, Xianyu; Wang, Yangang; Zhu, Chaodong

    2015-01-01

    Background The isolation with migration (IM) model is important for studies in population genetics and phylogeography. IM program applies the IM model to genetic data drawn from a pair of closely related populations or species based on Markov chain Monte Carlo (MCMC) simulations of gene genealogies. But computational burden of IM program has placed limits on its application. Methodology With strong computational power, Graphics Processing Unit (GPU) has been widely used in many fields. In this article, we present an effective implementation of IM program on one GPU based on Compute Unified Device Architecture (CUDA), which we call gPGA. Conclusions Compared with IM program, gPGA can achieve up to 52.30X speedup on one GPU. The evaluation results demonstrate that it allows datasets to be analyzed effectively and rapidly for research on divergence population genetics. The software is freely available with source code at https://github.com/chunbaozhou/gPGA. PMID:26248314

  18. GPU Accelerated Smith-Waterman

    SciTech Connect

    Liu, Y; Huang, W; Johnson, J; Vaidya, S

    2006-02-08

    We present a novel hardware implementation of the double affine Smith-Waterman (DASW) algorithm, which uses dynamic programming to compare and align genomic sequences such as DNA and proteins. We implement DASW on a commodity graphics card, taking advantage of the general purpose programmability of the graphics processing unit to leverage its cheap parallel processing power. The results demonstrate that our system's performance is competitive with current optimized software packages.

  19. Real-time optical flow estimation on a GPU for a skied-steered mobile robot

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2016-04-01

    Accurate egomotion estimation is required for mobile robot navigation. Often the egomotion is estimated using optical flow algorithms. For an accurate estimation of optical flow most of modern algorithms require high memory resources and processor speed. However simple single-board computers that control the motion of the robot usually do not provide such resources. On the other hand, most of modern single-board computers are equipped with an embedded GPU that could be used in parallel with a CPU to improve the performance of the optical flow estimation algorithm. This paper presents a new Z-flow algorithm for efficient computation of an optical flow using an embedded GPU. The algorithm is based on the phase correlation optical flow estimation and provide a real-time performance on a low cost embedded GPU. The layered optical flow model is used. Layer segmentation is performed using graph-cut algorithm with a time derivative based energy function. Such approach makes the algorithm both fast and robust in low light and low texture conditions. The algorithm implementation for a Raspberry Pi Model B computer is discussed. For evaluation of the algorithm the computer was mounted on a Hercules mobile skied-steered robot equipped with a monocular camera. The evaluation was performed using a hardware-in-the-loop simulation and experiments with Hercules mobile robot. Also the algorithm was evaluated using KITTY Optical Flow 2015 dataset. The resulting endpoint error of the optical flow calculated with the developed algorithm was low enough for navigation of the robot along the desired trajectory.

  20. Singular value decomposition utilizing parallel algorithms on graphical processors

    SciTech Connect

    Kotas, Charlotte W; Barhen, Jacob

    2011-01-01

    One of the current challenges in underwater acoustic array signal processing is the detection of quiet targets in the presence of noise. In order to enable robust detection, one of the key processing steps requires data and replica whitening. This, in turn, involves the eigen-decomposition of the sample spectral matrix, Cx = 1/K xKX(k)XH(k) where X(k) denotes a single frequency snapshot with an element for each element of the array. By employing the singular value decomposition (SVD) method, the eigenvectors and eigenvalues can be determined directly from the data without computing the sample covariance matrix, reducing the computational requirements for a given level of accuracy (van Trees, Optimum Array Processing). (Recall that the SVD of a complex matrix A involves determining V, , and U such that A = U VH where U and V are orthonormal and is a positive, real, diagonal matrix containing the singular values of A. U and V are the eigenvectors of AAH and AHA, respectively, while the singular values are the square roots of the eigenvalues of AAH.) Because it is desirable to be able to compute these quantities in real time, an efficient technique for computing the SVD is vital. In addition, emerging multicore processors like graphical processing units (GPUs) are bringing parallel processing capabilities to an ever increasing number of users. Since the computational tasks involved in array signal processing are well suited for parallelization, it is expected that these computations will be implemented using GPUs as soon as users have the necessary computational tools available to them. Thus, it is important to have an SVD algorithm that is suitable for these processors. This work explores the effectiveness of two different parallel SVD implementations on an NVIDIA Tesla C2050 GPU (14 multiprocessors, 32 cores per multiprocessor, 1.15 GHz clock - peed). The first algorithm is based on a two-step algorithm which bidiagonalizes the matrix using Householder

  1. Parallelization of the Legendre Transform for a Geodynamics Code

    NASA Astrophysics Data System (ADS)

    Lokavarapu, H. V.; Matsui, H.; Heien, E. M.

    2014-12-01

    Calypso is a geodynamo code designed to model magnetohydrodynamics of a Boussinesq fluid in a rotating spherical shell, such as the outer core of Earth. The code has been shown to scale well on computer clusters capable of computing at the order of millions of core hours. Depending on the resolution and time requirements, simulations may require weeks to years of clock time for specific target problems. A significant portion of the code execution time is spent transforming computed quantities between physical values and spherical harmonic coefficients, equivalent to a series of linear algebra operations. Intermixing C and Fortran code has opened the door to the parallel computing platform, Cuda and its associated libraries. We successfully implemented the parallelization of the scaling of the Legendre polynomials by both Schmidt Normalization coefficients, and a set of weighting coefficients; however, the expected speedup was not realized. Specifically, the original version of Calypso 1.1 computes the Legendre transform approximately four seconds faster than the Cuda-enabled modified version. By profiling the code, we determined that the time taken to transfer the data from host memory to GPU memory does not compare to the number of computations happening within the GPU. Nevertheless, by utilizing techniques such as memory coalescing, cached memory, pinned memory, dynamic parallelism, asynchronous calls, and overlapped memory transfers with computations, the likelihood of a speedup increases. Moreover, ideally the generation of the Legendre polynomial coefficients, Schmidt Normalization Coefficients, and the set of weights should not only be parallelized but be computed on-the-fly within the GPU. The end result is that we reduce the number of memory transfers from host to GPU, increase the number of parallelized computations on the GPU, and decrease the number of serial computations on the CPU. Also, the time taken to transform physical values to spherical

  2. Rapid indirect trajectory optimization on highly parallel computing architectures

    NASA Astrophysics Data System (ADS)

    Antony, Thomas

    Trajectory optimization is a field which can benefit greatly from the advantages offered by parallel computing. The current state-of-the-art in trajectory optimization focuses on the use of direct optimization methods, such as the pseudo-spectral method. These methods are favored due to their ease of implementation and large convergence regions while indirect methods have largely been ignored in the literature in the past decade except for specific applications in astrodynamics. It has been shown that the shortcomings conventionally associated with indirect methods can be overcome by the use of a continuation method in which complex trajectory solutions are obtained by solving a sequence of progressively difficult optimization problems. High performance computing hardware is trending towards more parallel architectures as opposed to powerful single-core processors. Graphics Processing Units (GPU), which were originally developed for 3D graphics rendering have gained popularity in the past decade as high-performance, programmable parallel processors. The Compute Unified Device Architecture (CUDA) framework, a parallel computing architecture and programming model developed by NVIDIA, is one of the most widely used platforms in GPU computing. GPUs have been applied to a wide range of fields that require the solution of complex, computationally demanding problems. A GPU-accelerated indirect trajectory optimization methodology which uses the multiple shooting method and continuation is developed using the CUDA platform. The various algorithmic optimizations used to exploit the parallelism inherent in the indirect shooting method are described. The resulting rapid optimal control framework enables the construction of high quality optimal trajectories that satisfy problem-specific constraints and fully satisfy the necessary conditions of optimality. The benefits of the framework are highlighted by construction of maximum terminal velocity trajectories for a hypothetical

  3. Beta operations: efficient implementation of a primitive parallel operation. Technical report

    SciTech Connect

    Cohn, E.R.; Haddad, R.W.

    1986-08-01

    The ever-decreasing cost of computer processors has created a great interest in multi-processor computers. However, along with the increased power that this parallelism brings comes increased complexity in programming. One approach to lessening this complexity is to provide the programmer with general-purpose parallel primitives that shield him from the structure of the underlying machine. In The Connection Machine, Hillis suggests the beta operation as a parallel primitive for his hypercube-based machine. This paper explores efficient ways to perform this operation on several different well known architectures, including the hypercube. It presents some lower bounds associated with the problem.

  4. GAMUT: GPU accelerated microRNA analysis to uncover target genes through CUDA-miRanda

    PubMed Central

    2014-01-01

    Background Non-coding sequences such as microRNAs have important roles in disease processes. Computational microRNA target identification (CMTI) is becoming increasingly important since traditional experimental methods for target identification pose many difficulties. These methods are time-consuming, costly, and often need guidance from computational methods to narrow down candidate genes anyway. However, most CMTI methods are computationally demanding, since they need to handle not only several million query microRNA and reference RNA pairs, but also several million nucleotide comparisons within each given pair. Thus, the need to perform microRNA identification at such large scale has increased the demand for parallel computing. Methods Although most CMTI programs (e.g., the miRanda algorithm) are based on a modified Smith-Waterman (SW) algorithm, the existing parallel SW implementations (e.g., CUDASW++ 2.0/3.0, SWIPE) are unable to meet this demand in CMTI tasks. We present CUDA-miRanda, a fast microRNA target identification algorithm that takes advantage of massively parallel computing on Graphics Processing Units (GPU) using NVIDIA's Compute Unified Device Architecture (CUDA). CUDA-miRanda specifically focuses on the local alignment of short (i.e., ≤ 32 nucleotides) sequences against longer reference sequences (e.g., 20K nucleotides). Moreover, the proposed algorithm is able to report multiple alignments (up to 191 top scores) and the corresponding traceback sequences for any given (query sequence, reference sequence) pair. Results Speeds over 5.36 Giga Cell Updates Per Second (GCUPs) are achieved on a server with 4 NVIDIA Tesla M2090 GPUs. Compared to the original miRanda algorithm, which is evaluated on an Intel Xeon E5620@2.4 GHz CPU, the experimental results show up to 166 times performance gains in terms of execution time. In addition, we have verified that the exact same targets were predicted in both CUDA-miRanda and the original mi

  5. Development of a discrete ordinates code system for unstructured meshes of tetrahedral cells, with serial and parallel implementations

    SciTech Connect

    Miller, R.L.

    1998-11-01

    A numerically stable, accurate, and robust form of the exponential characteristic (EC) method, used to solve the time-independent linearized Boltzmann Transport Equation, is derived using direct affine coordinate transformations on unstructured meshes of tetrahedra. This quadrature, as well as the linear characteristic (LC) spatial quadrature, is implemented in the transport code, called TETRAN. This code solves multi-group neutral particle transport problems with anisotropic scattering and was parallelized using High Performance Fortran and angular domain decomposition. A new, parallel algorithm for updating the scattering source is introduced. The EC source and inflow flux coefficients are efficiently evaluated using Broyden`s rootsolver, started with special approximations developed here. TETRAN showed robustness, stability and accuracy on a variety of challenging test problems. Parallel speed-up was observed as the number of processors was increased using an IBM SP computer system.

  6. Implementation of parallel matrix decomposition for NIKE3D on the KSR1 system

    SciTech Connect

    Su, Philip S.; Fulton, R.E.; Zacharia, T.

    1995-06-01

    New massively parallel computer architecture has revolutionized the design of computer algorithms and promises to have significant influence on algorithms for engineering computations. Realistic engineering problems using finite element analysis typically imply excessively large computational requirements. Parallel supercomputers that have the potential for significantly increasing calculation speeds can meet these computational requirements. This report explores the potential for the parallel Cholesky (U{sup T}DU) matrix decomposition algorithm on NIKE3D through actual computations. The examples of two- and three-dimensional nonlinear dynamic finite element problems are presented on the Kendall Square Research (KSR1) multiprocessor system, with 64 processors, at Oak Ridge National Laboratory. The numerical results indicate that the parallel Cholesky (U{sup T}DU) matrix decomposition algorithm is attractive for NIKE3D under multi-processor system environments.

  7. PARALLEL IMPLEMENTATION OF THE TOPAZ OPACITY CODE: ISSUES IN LOAD-BALANCING

    SciTech Connect

    Sonnad, V; Iglesias, C A

    2008-05-12

    The TOPAZ opacity code explicitly includes configuration term structure in the calculation of bound-bound radiative transitions. This approach involves myriad spectral lines and requires the large computational capabilities of parallel processing computers. It is important, however, to make use of these resources efficiently. For example, an increase in the number of processors should yield a comparable reduction in computational time. This proportional 'speedup' indicates that very large problems can be addressed with massively parallel computers. Opacity codes can readily take advantage of parallel architecture since many intermediate calculations are independent. On the other hand, since the different tasks entail significantly disparate computational effort, load-balancing issues emerge so that parallel efficiency does not occur naturally. Several schemes to distribute the labor among processors are discussed.

  8. GPU Based Software Correlators - Perspectives for VLBI2010

    NASA Technical Reports Server (NTRS)

    Hobiger, Thomas; Kimura, Moritaka; Takefuji, Kazuhiro; Oyama, Tomoaki; Koyama, Yasuhiro; Kondo, Tetsuro; Gotoh, Tadahiro; Amagai, Jun

    2010-01-01

    Caused by historical separation and driven by the requirements of the PC gaming industry, Graphics Processing Units (GPUs) have evolved to massive parallel processing systems which entered the area of non-graphic related applications. Although a single processing core on the GPU is much slower and provides less functionality than its counterpart on the CPU, the huge number of these small processing entities outperforms the classical processors when the application can be parallelized. Thus, in recent years various radio astronomical projects have started to make use of this technology either to realize the correlator on this platform or to establish the post-processing pipeline with GPUs. Therefore, the feasibility of GPUs as a choice for a VLBI correlator is being investigated, including pros and cons of this technology. Additionally, a GPU based software correlator will be reviewed with respect to energy consumption/GFlop/sec and cost/GFlop/sec.

  9. Implementation of a parallel unstructured Euler solver on the CM-5

    NASA Technical Reports Server (NTRS)

    Morano, Eric; Mavriplis, D. J.

    1995-01-01

    An efficient unstructured 3D Euler solver is parallelized on a Thinking Machine Corporation Connection Machine 5, distributed memory computer with vectoring capability. In this paper, the single instruction multiple data (SIMD) strategy is employed through the use of the CM Fortran language and the CMSSL scientific library. The performance of the CMSSL mesh partitioner is evaluated and the overall efficiency of the parallel flow solver is discussed.

  10. A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction.

    PubMed

    Zheng, Shawn Q; Branlund, Eric; Kesthelyi, Bettina; Braunfeld, Michael B; Cheng, Yifan; Sedat, John W; Agard, David A

    2011-07-01

    Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096(2) × 512 voxels from an input tilt series containing 122 projection images of 4096(2) pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024(2) × 256 voxels from 122 1024(2) pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment. PMID:21741915

  11. Efficient Irregular Wavefront Propagation Algorithms on Hybrid CPU-GPU Machines.

    PubMed

    Teodoro, George; Pan, Tony; Kurc, Tahsin; Kong, Jun; Cooper, Lee; Saltz, Joel

    2013-04-01

    We address the problem of efficient execution of a computation pattern, referred to here as the irregular wavefront propagation pattern (IWPP), on hybrid systems with multiple CPUs and GPUs. The IWPP is common in several image processing operations. In the IWPP, data elements in the wavefront propagate waves to their neighboring elements on a grid if a propagation condition is satisfied. Elements receiving the propagated waves become part of the wavefront. This pattern results in irregular data accesses and computations. We develop and evaluate strategies for efficient computation and propagation of wavefronts using a multi-level queue structure. This queue structure improves the utilization of fast memories in a GPU and reduces synchronization overheads. We also develop a tile-based parallelization strategy to support execution on multiple CPUs and GPUs. We evaluate our approaches on a state-of-the-art GPU accelerated machine (equipped with 3 GPUs and 2 multicore CPUs) using the IWPP implementations of two widely used image processing operations: morphological reconstruction and euclidean distance transform. Our results show significant performance improvements on GPUs. The use of multiple CPUs and GPUs cooperatively attains speedups of 50× and 85× with respect to single core CPU executions for morphological reconstruction and euclidean distance transform, respectively. PMID:23908562

  12. Efficient Irregular Wavefront Propagation Algorithms on Hybrid CPU-GPU Machines

    PubMed Central

    Teodoro, George; Pan, Tony; Kurc, Tahsin; Kong, Jun; Cooper, Lee; Saltz, Joel

    2013-01-01

    We address the problem of efficient execution of a computation pattern, referred to here as the irregular wavefront propagation pattern (IWPP), on hybrid systems with multiple CPUs and GPUs. The IWPP is common in several image processing operations. In the IWPP, data elements in the wavefront propagate waves to their neighboring elements on a grid if a propagation condition is satisfied. Elements receiving the propagated waves become part of the wavefront. This pattern results in irregular data accesses and computations. We develop and evaluate strategies for efficient computation and propagation of wavefronts using a multi-level queue structure. This queue structure improves the utilization of fast memories in a GPU and reduces synchronization overheads. We also develop a tile-based parallelization strategy to support execution on multiple CPUs and GPUs. We evaluate our approaches on a state-of-the-art GPU accelerated machine (equipped with 3 GPUs and 2 multicore CPUs) using the IWPP implementations of two widely used image processing operations: morphological reconstruction and euclidean distance transform. Our results show significant performance improvements on GPUs. The use of multiple CPUs and GPUs cooperatively attains speedups of 50× and 85× with respect to single core CPU executions for morphological reconstruction and euclidean distance transform, respectively. PMID:23908562

  13. GPU accelerated solver for nonlinear reaction-diffusion systems. Application to the electrophysiology problem

    NASA Astrophysics Data System (ADS)

    Mena, Andres; Ferrero, Jose M.; Rodriguez Matas, Jose F.

    2015-11-01

    Solving the electric activity of the heart possess a big challenge, not only because of the structural complexities inherent to the heart tissue, but also because of the complex electric behaviour of the cardiac cells. The multi-scale nature of the electrophysiology problem makes difficult its numerical solution, requiring temporal and spatial resolutions of 0.1 ms and 0.2 mm respectively for accurate simulations, leading to models with millions degrees of freedom that need to be solved for thousand time steps. Solution of this problem requires the use of algorithms with higher level of parallelism in multi-core platforms. In this regard the newer programmable graphic processing units (GPU) has become a valid alternative due to their tremendous computational horsepower. This paper presents results obtained with a novel electrophysiology simulation software entirely developed in Compute Unified Device Architecture (CUDA). The software implements fully explicit and semi-implicit solvers for the monodomain model, using operator splitting. Performance is compared with classical multi-core MPI based solvers operating on dedicated high-performance computer clusters. Results obtained with the GPU based solver show enormous potential for this technology with accelerations over 50 × for three-dimensional problems.

  14. The GENGA code: gravitational encounters in N-body simulations with GPU acceleration

    SciTech Connect

    Grimm, Simon L.; Stadel, Joachim G.

    2014-11-20

    We describe an open source GPU implementation of a hybrid symplectic N-body integrator, GENGA (Gravitational ENcounters with Gpu Acceleration), designed to integrate planet and planetesimal dynamics in the late stage of planet formation and stability analyses of planetary systems. GENGA uses a hybrid symplectic integrator to handle close encounters with very good energy conservation, which is essential in long-term planetary system integration. We extended the second-order hybrid integration scheme to higher orders. The GENGA code supports three simulation modes: integration of up to 2048 massive bodies, integration with up to a million test particles, or parallel integration of a large number of individual planetary systems. We compare the results of GENGA to Mercury and pkdgrav2 in terms of energy conservation and performance and find that the energy conservation of GENGA is comparable to Mercury and around two orders of magnitude better than pkdgrav2. GENGA runs up to 30 times faster than Mercury and up to 8 times faster than pkdgrav2. GENGA is written in CUDA C and runs on all NVIDIA GPUs with a computing capability of at least 2.0.

  15. On the performance of a simple parallel implementation of the ILU-PCG for the Poisson equation on irregular domains

    NASA Astrophysics Data System (ADS)

    Gibou, Frédéric; Min, Chohong

    2012-05-01

    We report on the performance of a parallel algorithm for solving the Poisson equation on irregular domains. We use the spatial discretization of Gibou et al. (2002) [6] for the Poisson equation with Dirichlet boundary conditions, while we use a finite volume discretization for imposing Neumann boundary conditions (Ng et al., 2009; Purvis and Burkhalter, 1979) [8,10]. The parallelization algorithm is based on the Cuthill-McKee ordering. Its implementation is straightforward, especially in the case of shared memory machines, and produces significant speedup; about three times on a standard quad core desktop computer and about seven times on a octa core shared memory cluster. The implementation code is posted on the authors' web pages for reference.

  16. A Parallel Implementation of a Smoothed Particle Hydrodynamics Method on Graphics Hardware Using the Compute Unified Device Architecture

    SciTech Connect

    Wong Unhong; Wong Honcheng; Tang Zesheng

    2010-05-21

    The smoothed particle hydrodynamics (SPH), which is a class of meshfree particle methods (MPMs), has a wide range of applications from micro-scale to macro-scale as well as from discrete systems to continuum systems. Graphics hardware, originally designed for computer graphics, now provide unprecedented computational power for scientific computation. Particle system needs a huge amount of computations in physical simulation. In this paper, an efficient parallel implementation of a SPH method on graphics hardware using the Compute Unified Device Architecture is developed for fluid simulation. Comparing to the corresponding CPU implementation, our experimental results show that the new approach allows significant speedups of fluid simulation through handling huge amount of computations in parallel on graphics hardware.

  17. GPU acceleration for digitally reconstructed radiographs using bindless texture objects and CUDA/OpenGL interoperability.

    PubMed

    Abdellah, Marwan; Eldeib, Ayman; Owis, Mohamed I

    2015-08-01

    This paper features an advanced implementation of the X-ray rendering algorithm that harnesses the giant computing power of the current commodity graphics processors to accelerate the generation of high resolution digitally reconstructed radiographs (DRRs). The presented pipeline exploits the latest features of NVIDIA Graphics Processing Unit (GPU) architectures, mainly bindless texture objects and dynamic parallelism. The rendering throughput is substantially improved by exploiting the interoperability mechanisms between CUDA and OpenGL. The benchmarks of our optimized rendering pipeline reflect its capability of generating DRRs with resolutions of 2048(2) and 4096(2) at interactive and semi interactive frame-rates using an NVIDIA GeForce 970 GTX device. PMID:26737231

  18. Modelling Nonlinear Dynamic Textures using Hybrid DWT-DCT and Kernel PCA with GPU

    NASA Astrophysics Data System (ADS)

    Ghadekar, Premanand Pralhad; Chopade, Nilkanth Bhikaji

    2016-06-01

    Most of the real-world dynamic textures are nonlinear, non-stationary, and irregular. Nonlinear motion also has some repetition of motion, but it exhibits high variation, stochasticity, and randomness. Hybrid DWT-DCT and Kernel Principal Component Analysis (KPCA) with YCbCr/YIQ colour coding using the Dynamic Texture Unit (DTU) approach is proposed to model a nonlinear dynamic texture, which provides better results than state-of-art methods in terms of PSNR, compression ratio, model coefficients, and model size. Dynamic texture is decomposed into DTUs as they help to extract temporal self-similarity. Hybrid DWT-DCT is used to extract spatial redundancy. YCbCr/YIQ colour encoding is performed to capture chromatic correlation. KPCA is applied to capture nonlinear motion. Further, the proposed algorithm is implemented on Graphics Processing Unit (GPU), which comprise of hundreds of small processors to decrease time complexity and to achieve parallelism.

  19. Use of GPU Computing to Study Coupled Deformation and Fluid Flow in Porous Rocks

    NASA Astrophysics Data System (ADS)

    Räss, Ludovic; Omlin, Samuel; Simon, Nina; Podladchikov, Yuri

    2015-04-01

    Actual challenges in computational geodynamics put high requirements for the development of new coupled models. These need to solve accurate physics, on high resolution and in reasonable computation time. Multi-scale problems such as deformation of porous rocks triggered by fluid flow require both high temporal and spatial resolution. The resulting preferential flow paths involve complex physics and a strong coupling between deformation and fluid flow processes. Shortcuts such as sequential or iterative coupling of two existing solvers will not be sufficient in these difficult cases to localize the deformation and flow. We base our numerical implementation on the physically and thermodynamically consistent mathematical model for fluid flow in porous rocks, taking nonlinear stress dependent visco-elasto-plastic rheology into account. The effective permeability used for the Darcy flow is obtained through the nonlinear Karman-Cozeny relation. The model is not restricted by the lithostatic stress assumption, allowing for background stress regime as it occurs in natural conditions. We have developed a fully three-dimensional numerical application based on an iterative finite difference scheme. The application is written in C-CUDA, is enabled for GPU accelerators and is parallelized with MPI to run on multi-GPU clusters. The parallelization on a rectangular grid is straightforward (at each iteration, the boundaries of the local problem are updated by the neighboring processes) and requires no MPI global operations, only MPI point-to-point communication between neighboring processes. This parallelization method should allow by construction for linear weak scaling on any number of processors. Our linearly scaling numerical application predicts the formation of dynamically evolving fluid pathways. These supercomuting applications are vital for resolving actual challenging high-resolution three-dimensional models.

  20. Parallel implementation of an adaptive and parameter-free N-body integrator

    NASA Astrophysics Data System (ADS)

    Pruett, C. David; Ingham, William H.; Herman, Ralph D.

    2011-05-01

    Previously, Pruett et al. (2003) [3] described an N-body integrator of arbitrarily high order M with an asymptotic operation count of O(MN). The algorithm's structure lends itself readily to data parallelization, which we document and demonstrate here in the integration of point-mass systems subject to Newtonian gravitation. High order is shown to benefit parallel efficiency. The resulting N-body integrator is robust, parameter-free, highly accurate, and adaptive in both time-step and order. Moreover, it exhibits linear speedup on distributed parallel processors, provided that each processor is assigned at least a handful of bodies. Program summaryProgram title: PNB.f90 Catalogue identifier: AEIK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3052 No. of bytes in distributed program, including test data, etc.: 68 600 Distribution format: tar.gz Programming language: Fortran 90 and OpenMPI Computer: All shared or distributed memory parallel processors Operating system: Unix/Linux Has the code been vectorized or parallelized?: The code has been parallelized but has not been explicitly vectorized. RAM: Dependent upon N Classification: 4.3, 4.12, 6.5 Nature of problem: High accuracy numerical evaluation of trajectories of N point masses each subject to Newtonian gravitation. Solution method: Parallel and adaptive extrapolation in time via power series of arbitrary degree. Running time: 5.1 s for the demo program supplied with the package.

  1. Parallel implementation of high-speed, phase diverse atmospheric turbulence compensation method on a neural network-based architecture

    NASA Astrophysics Data System (ADS)

    Arrasmith, William W.; Sullivan, Sean F.

    2008-04-01

    Phase diversity imaging methods work well in removing atmospheric turbulence and some system effects from predominantly near-field imaging systems. However, phase diversity approaches can be computationally intensive and slow. We present a recently adapted, high-speed phase diversity method using a conventional, software-based neural network paradigm. This phase-diversity method has the advantage of eliminating many time consuming, computationally heavy calculations and directly estimates the optical transfer function from the entrance pupil phases or phase differences. Additionally, this method is more accurate than conventional Zernike-based, phase diversity approaches and lends itself to implementation on parallel software or hardware architectures. We use computer simulation to demonstrate how this high-speed, phase diverse imaging method can be implemented on a parallel, highspeed, neural network-based architecture-specifically the Cellular Neural Network (CNN). The CNN architecture was chosen as a representative, neural network-based processing environment because 1) the CNN can be implemented in 2-D or 3-D processing schemes, 2) it can be implemented in hardware or software, 3) recent 2-D implementations of CNN technology have shown a 3 orders of magnitude superiority in speed, area, or power over equivalent digital representations, and 4) a complete development environment exists. We also provide a short discussion on processing speed.

  2. Commodity cluster and hardware-based massively parallel implementations of hyperspectral imaging algorithms

    NASA Astrophysics Data System (ADS)

    Plaza, Antonio; Chang, Chein-I.; Plaza, Javier; Valencia, David

    2006-05-01

    The incorporation of hyperspectral sensors aboard airborne/satellite platforms is currently producing a nearly continual stream of multidimensional image data, and this high data volume has soon introduced new processing challenges. The price paid for the wealth spatial and spectral information available from hyperspectral sensors is the enormous amounts of data that they generate. Several applications exist, however, where having the desired information calculated quickly enough for practical use is highly desirable. High computing performance of algorithm analysis is particularly important in homeland defense and security applications, in which swift decisions often involve detection of (sub-pixel) military targets (including hostile weaponry, camouflage, concealment, and decoys) or chemical/biological agents. In order to speed-up computational performance of hyperspectral imaging algorithms, this paper develops several fast parallel data processing techniques. Techniques include four classes of algorithms: (1) unsupervised classification, (2) spectral unmixing, and (3) automatic target recognition, and (4) onboard data compression. A massively parallel Beowulf cluster (Thunderhead) at NASA's Goddard Space Flight Center in Maryland is used to measure parallel performance of the proposed algorithms. In order to explore the viability of developing onboard, real-time hyperspectral data compression algorithms, a Xilinx Virtex-II field programmable gate array (FPGA) is also used in experiments. Our quantitative and comparative assessment of parallel techniques and strategies may help image analysts in selection of parallel hyperspectral algorithms for specific applications.

  3. Implementation of the Distributed Parallel Program for Geoid Heights Computation Using MPI and Openmp

    NASA Astrophysics Data System (ADS)

    Lee, S.; Kim, J.; Jung, Y.; Choi, J.; Choi, C.

    2012-07-01

    Much research have been carried out using optimization algorithms for developing high-performance program, under the parallel computing environment with the evolution of the computer hardware technology such as dual-core processor and so on. Then, the studies by the parallel computing in geodesy and surveying fields are not so many. The present study aims to reduce running time for the geoid heights computation and carrying out least-squares collocation to improve its accuracy using distributed parallel technology. A distributed parallel program was developed in which a multi-core CPU-based PC cluster was adopted using MPI and OpenMP library. Geoid heights were calculated by the spherical harmonic analysis using the earth geopotential model of the National Geospatial-Intelligence Agency(2008). The geoid heights around the Korean Peninsula were calculated and tested in diskless-based PC cluster environment. As results, for the computing geoid heights by a earth geopotential model, the distributed parallel program was confirmed more effective to reduce the computational time compared to the sequential program.

  4. GMH: A Message Passing Toolkit for GPU Clusters

    SciTech Connect

    Jie Chen, W. Watson, Weizhen Mao

    2011-01-01

    Driven by the market demand for high-definition 3D graphics, commodity graphics processing units (GPUs) have evolved into highly parallel, multi-threaded, many-core processors, which are ideal for data parallel computing. Many applications have been ported to run on a single GPU with tremendous speedups using general C-style programming languages such as CUDA. However, large applications require multiple GPUs and demand explicit message passing. This paper presents a message passing toolkit, called GMH (GPU Message Handler), on NVIDIA GPUs. This toolkit utilizes a data-parallel thread group as a way to map multiple GPUs on a single host to an MPI rank, and introduces a notion of virtual GPUs as a way to bind a thread to a GPU automatically. This toolkit provides high performance MPI style point-to-point and collective communication, but more importantly, facilitates event-driven APIs to allow an application to be managed and executed by the toolkit at runtime.

  5. A survey of GPU-based medical image computing techniques.

    PubMed

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming; Wang, Defeng

    2012-09-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080

  6. A survey of GPU-based medical image computing techniques

    PubMed Central

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming

    2012-01-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080

  7. Detailed numerical simulation of shock-body interaction in 3D multicomponent flow using the RKDG numerical method and ”DiamondTorre” GPU algorithm of implementation

    NASA Astrophysics Data System (ADS)

    Korneev, Boris; Levchenko, Vadim

    2016-02-01

    Interaction between a shock wave and an inhomogeneity in fluid has complicated behavior, including vortex and turbulence generating, mixing, shock wave scattering and reflection. In the present paper we deal with the numerical simulation of the considered process. The Euler equations of unsteady inviscid compressible three-dimensional flow are used into the four-equation model of multicomponent flow. These equations are discretized using the RKDG numerical method. It is implemented with the help of the DiamondTorre algorithm, so the effective GPGPU solver is obtained having outstanding computing properties. With its use we carry out several sets of numerical experiments of shock-bubble interaction problem. The bubble deformation and mixture formation is observed.

  8. Coarse-grained and fine-grained parallel optimization for real-time en-face OCT imaging

    NASA Astrophysics Data System (ADS)

    Kapinchev, Konstantin; Bradu, Adrian; Barnes, Frederick; Podoleanu, Adrian

    2016-03-01

    This paper presents parallel optimizations in the en-face (C-scan) optical coherence tomography (OCT) display. Compared with the cross-sectional (B-scan) imagery, the production of en-face images is more computationally demanding, due to the increased size of the data handled by the digital signal processing (DSP) algorithms. A sequential implementation of the DSP leads to a limited number of real-time generated en-face images. There are OCT applications, where simultaneous production of large number of en-face images from multiple depths is required, such as real-time diagnostics and monitoring of surgery and ablation. In sequential computing, this requirement leads to a significant increase of the time to process the data and to generate the images. As a result, the processing time exceeds the acquisition time and the image generation is not in real-time. In these cases, not producing en-face images in real-time makes the OCT system ineffective. Parallel optimization of the DSP algorithms provides a solution to this problem. Coarse-grained central processing unit (CPU) based and fine-grained graphics processing unit (GPU) based parallel implementations of the conventional Fourier domain (CFD) OCT method and the Master-Slave Interferometry (MSI) OCT method are studied. In the coarse-grained CPU implementation, each parallel thread processes the whole OCT frame and generates a single en-face image. The corresponding fine-grained GPU implementation launches one parallel thread for every data point from the OCT frame and thus