Science.gov

Sample records for parallel resonant converter

  1. Analysis of series resonant converter with series-parallel connection

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren; Huang, Chien-Lan

    2011-02-01

    In this study, a parallel inductor-inductor-capacitor (LLC) resonant converter series-connected on the primary side and parallel-connected on the secondary side is presented for server power supply systems. Based on series resonant behaviour, the power metal-oxide-semiconductor field-effect transistors are turned on at zero voltage switching and the rectifier diodes are turned off at zero current switching. Thus, the switching losses on the power semiconductors are reduced. In the proposed converter, the primary windings of the two LLC converters are connected in series. Thus, the two converters have the same primary currents to ensure that they can supply the balance load current. On the output side, two LLC converters are connected in parallel to share the load current and to reduce the current stress on the secondary windings and the rectifier diodes. In this article, the principle of operation, steady-state analysis and design considerations of the proposed converter are provided and discussed. Experiments with a laboratory prototype with a 24 V/21 A output for server power supply were performed to verify the effectiveness of the proposed converter.

  2. A three-phase series-parallel resonant converter -- analysis, design, simulation and experimental results

    SciTech Connect

    Bhat, A.K.S.; Zheng, L.

    1995-12-31

    A three-phase dc-to-dc series-parallel resonant converter is proposed and its operating modes for 180{degree} wide gating pulse scheme are explained. A detailed analysis of the converter using constant current model and Fourier series approach is presented. Based on the analysis, design curves are obtained and a design example of 1 kW converter is given. SPICE simulation results for the designed converter and experimental results for a 500 W converter are presented to verify the performance of the proposed converter for varying load conditions. The converter operates in lagging PF mode for the entire load range and requires a narrow variation in switching frequency.

  3. A three-phase series-parallel resonant converter -- analysis, design, simulation, and experimental results

    SciTech Connect

    Bhat, A.K.S.; Zheng, R.L.

    1996-07-01

    A three-phase dc-to-dc series-parallel resonant converter is proposed /and its operating modes for a 180{degree} wide gating pulse scheme are explained. A detailed analysis of the converter using a constant current model and the Fourier series approach is presented. Based on the analysis, design curves are obtained and a design example of a 1-kW converter is given. SPICE simulation results for the designed converter and experimental results for a 500-W converter are presented to verify the performance of the proposed converter for varying load conditions. The converter operates in lagging power factor (PF) mode for the entire load range and requires a narrow variation in switching frequency, to adequately regulate the output power.

  4. Experimental verification and stability state space analysis of CLL-T series parallel resonant converter with fuzzy controller

    NASA Astrophysics Data System (ADS)

    Nagarajan, Chinnadurai; Madheswaran, Muthusamy

    2012-12-01

    This paper presents a closed loop CLL-T (capacitor inductor inductor) series parallel resonant converter (SPRC) has been simulated and the performance is analyzed. A three element CLL-T SPRC working under load independent operation (voltage type and current type load) is presented in this paper. The stability and AC analysis of CLL-T SPRC has been developed using state space technique and the regulation of output voltage is done by using Fuzzy controller. The simulation study indicates the superiority of fuzzy control over the conventional control methods. The proposed approach is expected to provide better voltage regulation for dynamic load conditions. A prototype 300 W, 100 kHz converter is designed and built to experimentally demonstrate, dynamic and steady state performance for the CLL-T SPRC are compared from the simulation studies.

  5. Pulse width modulated push-pull driven parallel resonant converter with active free-wheel

    DOEpatents

    Reass, William A.; Schrank, Louis

    2004-06-22

    An apparatus and method for high frequency alternating power generation to control kilowatts of supplied power in microseconds. The present invention includes a means for energy storage, push-pull switching means, control electronics, transformer means, resonant circuitry and means for excess energy recovery, all in electrical communication. A push-pull circuit works synchronously with a force commutated free-wheel transistor to provide current pulses to a transformer. A change in the conduction angle of the push-pull circuit changes the amount of energy coupled into the transformer's secondary oscillating circuit, thereby altering the induced secondary resonating voltage. At the end of each pulse, the force commutated free-wheel transistor causes residual excess energy in the primary circuit to be transmitted back to the storage capacitor for later use.

  6. Cascaded resonant bridge converters

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A. (Inventor)

    1989-01-01

    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  7. Auxiliary resonant DC tank converter

    DOEpatents

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  8. Passive Resonant Bidirectional Converter with Galvanic Barrier

    NASA Technical Reports Server (NTRS)

    Rosenblad, Nathan S. (Inventor)

    2014-01-01

    A passive resonant bidirectional converter system that transports energy across a galvanic barrier includes a converter using at least first and second converter sections, each section including a pair of transfer terminals, a center tapped winding; a chopper circuit interconnected between the center tapped winding and one of the transfer terminals; an inductance feed winding interconnected between the other of the transfer terminals and the center tap and a resonant tank circuit including at least the inductance of the center tap winding and the parasitic capacitance of the chopper circuit for operating the converter section at resonance; the center tapped windings of the first and second converter sections being disposed on a first common winding core and the inductance feed windings of the first and second converter sections being disposed on a second common winding core for automatically synchronizing the resonant oscillation of the first and second converter sections and transferring energy between the converter sections until the voltage across the pairs of transfer terminals achieves the turns ratio of the center tapped windings.

  9. Hybrid switch for resonant power converters

    DOEpatents

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  10. Digital parallel-to-series pulse-train converter

    NASA Technical Reports Server (NTRS)

    Hussey, J.

    1971-01-01

    Circuit converts number represented as two level signal on n-bit lines to series of pulses on one of two lines, depending on sign of number. Converter accepts parallel binary input data and produces number of output pulses equal to number represented by input data.

  11. Sequential color video to parallel color video converter

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The engineering design, development, breadboard fabrication, test, and delivery of a breadboard field sequential color video to parallel color video converter is described. The converter was designed for use onboard a manned space vehicle to eliminate a flickering TV display picture and to reduce the weight and bulk of previous ground conversion systems.

  12. A nonsaturating dc-to-dc parallel power converter

    NASA Technical Reports Server (NTRS)

    Lavigna, T.; Gant, G.; Jan, L.

    1977-01-01

    Device is conventional circuit modified with pair of diode rectifiers coupled to switching transistors via feedback winding. Transient-causing collector-current overlap between transistors is eliminated. Technique may be used with nonsaturating parallel-transistor converters operating from voltage source which remains fixed or varies over small range.

  13. Resonant Tunneling Analog-To-Digital Converter

    NASA Technical Reports Server (NTRS)

    Broekaert, T. P. E.; Seabaugh, A. C.; Hellums, J.; Taddiken, A.; Tang, H.; Teng, J.; vanderWagt, J. P. A.

    1995-01-01

    As sampling rates continue to increase, current analog-to-digital converter (ADC) device technologies will soon reach a practical resolution limit. This limit will most profoundly effect satellite and military systems used, for example, for electronic countermeasures, electronic and signal intelligence, and phased array radar. New device and circuit concepts will be essential for continued progress. We describe a novel, folded architecture ADC which could enable a technological discontinuity in ADC performance. The converter technology is based on the integration of multiple resonant tunneling diodes (RTD) and hetero-junction transistors on an indium phosphide substrate. The RTD consists of a layered semiconductor hetero-structure AlAs/InGaAs/AlAs(2/4/2 nm) clad on either side by heavily doped InGaAs contact layers. Compact quantizers based around the RTD offer a reduction in the number of components and a reduction in the input capacitance Because the component count and capacitance scale with the number of bits N, rather than by 2 (exp n) as in the flash ADC, speed can be significantly increased, A 4-bit 2-GSps quantizer circuit is under development to evaluate the performance potential. Circuit designs for ADC conversion with a resolution of 6-bits at 25GSps may be enabled by the resonant tunneling approach.

  14. Charge-coupled-device parallel-to-serial converter

    NASA Technical Reports Server (NTRS)

    Tower, John R. (Inventor)

    1987-01-01

    A CCD parallel-to-serial converter comprising two successions of charge transfer stages, recurrently side-loaded with respective ones of parallelly supplied charge packets, then serially unloaded by time-interleaved respective shift register operations. The charge packets converted to time-division-multiplexed serial form are supplied to a shared electrometer, and the electrometer response is de-multiplexed. Preferably, shift register operations are carried forward concurrently at the same rate, but with the final charge transfer stages clocked in phases staggered in time.

  15. Circuit for automatic load sharing in parallel converter modules

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1979-01-01

    A nondissipative circuit for automatic load sharing in parallel converter modules having push-pull power transistors is presented. Each transistor has a separate current-sensing transformer and an impedance-adjusting transformer in series with its collector. The impedance-adjusting transformer functions as a current-controlled variable impedance that is responsive to the difference between the peak collector current of the transistor and the average peak current of all collector currents of power transistors in all modules, thereby to control the collector currents of all power transistors with reference to the average peak collector current.

  16. Modeling the full-bridge series-resonant power converter

    NASA Technical Reports Server (NTRS)

    King, R. J.; Stuart, T. A.

    1982-01-01

    A steady state model is derived for the full-bridge series-resonant power converter. Normalized parametric curves for various currents and voltages are then plotted versus the triggering angle of the switching devices. The calculations are compared with experimental measurements made on a 50 kHz converter and a discussion of certain operating problems is presented.

  17. Optimum Design of LLC Resonant Converter using Inductance Ratio (Lm/Lr)

    NASA Astrophysics Data System (ADS)

    Palle, Kowstubha; Krishnaveni, K.; Ramesh Reddy, Kolli

    2016-07-01

    The main benefits of LLC resonant dc/dc converter over conventional series and parallel resonant converters are its light load regulation, less circulating currents, larger bandwidth for zero voltage switching, and less tuning of switching frequency for controlled output. An unique analytical tool, called fundamental harmonic approximation with peak gain adjustment is used for designing the converter. In this paper, an optimum design of the converter is proposed by considering three different design criterions with different values of inductance ratio (Lm/Lr) to achieve good efficiency at high input voltage. The optimum design includes the analysis in operating range, switching frequency range, primary side losses of a switch and stability. The analysis is carried out with simulation using the software tools like MATLAB and PSIM. The performance of the optimized design is demonstrated for a design specification of 12 V, 5 A output operating with an input voltage range of 300-400 V using FSFR 2100 IC of Texas instruments.

  18. Convert Acoustic Resonances to Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Li, Yong; Liang, Bin; Cheng, Jian-chun; Zhang, Likun

    2016-07-01

    We use acoustic resonances in a planar layer of half-wavelength thickness to twist wave vectors of an in-coming plane wave into a spiral phase dislocation of an outgoing vortex beam with orbital angular momentum (OAM). The mechanism is numerically and experimentally demonstrated by producing an airborne Bessel-like vortex beam. Our acoustic resonance-based OAM production differs from existing means for OAM production by enormous phased spiral sources or by elaborate spiral profiles. Our study can advance the capability of generating phase dislocated wave fields for further applications of acoustic OAM.

  19. Convert Acoustic Resonances to Orbital Angular Momentum.

    PubMed

    Jiang, Xue; Li, Yong; Liang, Bin; Cheng, Jian-Chun; Zhang, Likun

    2016-07-15

    We use acoustic resonances in a planar layer of half-wavelength thickness to twist wave vectors of an in-coming plane wave into a spiral phase dislocation of an outgoing vortex beam with orbital angular momentum (OAM). The mechanism is numerically and experimentally demonstrated by producing an airborne Bessel-like vortex beam. Our acoustic resonance-based OAM production differs from existing means for OAM production by enormous phased spiral sources or by elaborate spiral profiles. Our study can advance the capability of generating phase dislocated wave fields for further applications of acoustic OAM. PMID:27472113

  20. Phase substitution of spare converter for a failed one of parallel phase staggered converters

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.; Wester, G. W. (Inventor)

    1977-01-01

    Failure detection and substitution of a spare module is provided in a system having a plurality of phase staggered modules connected in parallel to deliver regulated voltage from an unregulated source. Phase control signals applied to the active converter modules are applied to the spare module through NOR gates associated with and disabled by the power output of respective modules such that failure of any one enables its phase control signal to be applied to the spare module, thus controlling the spare module to operate in the phase position of the failed module. A NAND gate detects when any one active module fails and enables a gate in the spare module, thus activating the spare module.

  1. Parallel collective resonances in arrays of gold nanorods.

    PubMed

    Vitrey, Alan; Aigouy, Lionel; Prieto, Patricia; García-Martín, José Miguel; González, María U

    2014-01-01

    In this work we discuss the excitation of parallel collective resonances in arrays of gold nanoparticles. Parallel collective resonances result from the coupling of the nanoparticles localized surface plasmons with diffraction orders traveling in the direction parallel to the polarization vector. While they provide field enhancement and delocalization as the standard collective resonances, our results suggest that parallel resonances could exhibit greater tolerance to index asymmetry in the environment surrounding the arrays. The near- and far-field properties of these resonances are analyzed, both experimentally and numerically. PMID:24645987

  2. Auxiliary quasi-resonant dc tank electrical power converter

    DOEpatents

    Peng, Fang Z.

    2006-10-24

    An auxiliary quasi-resonant dc tank (AQRDCT) power converter with fast current charging, voltage balancing (or charging), and voltage clamping circuits is provided for achieving soft-switched power conversion. The present invention is an improvement of the invention taught in U.S. Pat. No. 6,111,770, herein incorporated by reference. The present invention provides faster current charging to the resonant inductor, thus minimizing delay time of the pulse width modulation (PWM) due to the soft-switching process. The new AQRDCT converter includes three tank capacitors or power supplies to achieve the faster current charging and minimize the soft-switching time delay. The new AQRDCT converter further includes a voltage balancing circuit to charge and discharge the three tank capacitors so that additional isolated power supplies from the utility line are not needed. A voltage clamping circuit is also included for clamping voltage surge due to the reverse recovery of diodes.

  3. Serial-to-parallel color-TV converter

    NASA Technical Reports Server (NTRS)

    Doak, T. W.; Merwin, R. B.; Zuckswert, S. E.; Sepper, W.

    1976-01-01

    Solid analog-to-digital converter eliminates flicker and problems with time base stability and gain variation in sequential color TV cameras. Device includes 3-bit delta modulator; two-field memory; timing, switching, and sync network; and three 3-bit delta demodulators

  4. Analysis and performance of paralleling circuits for modular inverter-converter systems

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.; Gourash, F.

    1972-01-01

    As part of a modular inverter-converter development program, control techniques were developed to provide load sharing among paralleled inverters or converters. An analysis of the requirements of paralleling circuits and a discussion of the circuits developed and their performance are included in this report. The current sharing was within 5.6 percent of rated-load current for the ac modules and 7.4 percent for the dc modules for an initial output voltage unbalance of 5 volts.

  5. Transformer induced instability of the series resonant converter

    NASA Technical Reports Server (NTRS)

    King, R. J.; Stuart, T. A.

    1983-01-01

    It is shown that the common series resonant power converter is subject to a low frequency oscillation that can lead to the loss of cyclic stability. This oscillation is caused by a low frequency resonant circuit formed by the normal L and C components in series with the magnetizing inductance of the output transformer. Three methods for eliminating this oscillation are presented and analyzed. One of these methods requires a change in the circuit topology during the resonance cycle. This requires a new set of steady state equations which are derived and presented in a normalized form. Experimental results are included which demonstrate the nature of the low frequency oscillation before cyclic stability is lost.

  6. Fully parallel superconducting analog-to-digital converter

    NASA Astrophysics Data System (ADS)

    Luong, Howard; Hebert, David; van Duzer, Theodore

    1993-03-01

    The authors present measurements that follow up on a design of a 3-bit wideband analog-to-digital converter (ADC) given by Fang et al. (1991). The original design has been modified, and some circuit parameters have been changed to optimize the margins. Based on this modified design, the authors have fabricated and were able to demonstrate the functionality not only of simple logic gates, including inverters, AND, OR, NAND, NOR, and XOR, but also of much more complicated combinations, including a complete 2-bit ADC and a complete 3-bit binary encoder. After a brief description of the design and modifications, low-speed tests of these circuits are presented and discussed. Simulations have shown that the complete 3-bit ADC can work up to 5 GHz.

  7. Three-phase ac-to-ac series-resonant power converter with a reduced number of thyristors

    SciTech Connect

    Klaassens, J.B.; de Beer, F. )

    1991-07-01

    This paper reports that ac-ac series-resonant converters have been proven to be functional and useful. Power pulse modulation with internal frequencies of tens of kHz and suited for multikilowatt power levels is applied to a series-resonant converter system for generating synthesized multiphase bipolar waveforms with reversible power flow and flow distortion. The use of a series-resonant circuit for power transfer and control obtains natural current commutation of the thyristors and the prevention of excessive stresses on components. Switches are required which have bidirectional current conduction and voltage blocking ability. The conventional series-resonant ac-ac converter applies a total for 24 anti-parallel thyristors. An alternative circuit configuration for the series-resonant ac-ac converter with only 12 thyristors is also presented. The alternative power circuit has three neutrals, related to the polyphase source, the load and the converter, which may be interconnected. If they are connected, the high-frequency component of the source and load currents will flow through the connection between the neutrals. The test results of a converter system generating three-phase sinusoidal input and output waveforms have demonstrated the significant aspects of this type of power interfaces.

  8. Variable frequency iteration MPPT for resonant power converters

    SciTech Connect

    Zhang, Qian; Bataresh, Issa; Chen, Lin

    2015-06-30

    A method of maximum power point tracking (MPPT) uses an MPPT algorithm to determine a switching frequency for a resonant power converter, including initializing by setting an initial boundary frequency range that is divided into initial frequency sub-ranges bounded by initial frequencies including an initial center frequency and first and second initial bounding frequencies. A first iteration includes measuring initial powers at the initial frequencies to determine a maximum power initial frequency that is used to set a first reduced frequency search range centered or bounded by the maximum power initial frequency including at least a first additional bounding frequency. A second iteration includes calculating first and second center frequencies by averaging adjacent frequent values in the first reduced frequency search range and measuring second power values at the first and second center frequencies. The switching frequency is determined from measured power values including the second power values.

  9. Control and protection system for paralleled modular static inverter-converter systems

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.; Gourash, F.

    1973-01-01

    A control and protection system was developed for use with a paralleled 2.5-kWe-per-module static inverter-converter system. The control and protection system senses internal and external fault parameters such as voltage, frequency, current, and paralleling current unbalance. A logic system controls contactors to isolate defective power conditioners or loads. The system sequences contactor operation to automatically control parallel operation, startup, and fault isolation. Transient overload protection and fault checking sequences are included. The operation and performance of a control and protection system, with detailed circuit descriptions, are presented.

  10. Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators

    PubMed Central

    2014-01-01

    We demonstrate parallel transduction of thermally driven mechanical motion of an array of gold-coated silicon nitride nanomechanical beams, by using near-field confinement in plasmonic metal–insulator–metal resonators supported in the gap between the gold layers. The free-space optical readout, enabled by the plasmonic resonances, allows for addressing multiple mechanical resonators in a single measurement. Light absorbed in the metal layer of the beams modifies their mechanical properties, allowing photothermal tuning of the eigenfrequencies. The appearance of photothermally driven parametric amplification indicates the possibility of plasmonic mechanical actuation. PMID:25642442

  11. Parallel Spectral Acquisition with an Ion Cyclotron Resonance Cell Array.

    PubMed

    Park, Sung-Gun; Anderson, Gordon A; Navare, Arti T; Bruce, James E

    2016-01-19

    Mass measurement accuracy is a critical analytical figure-of-merit in most areas of mass spectrometry application. However, the time required for acquisition of high-resolution, high mass accuracy data limits many applications and is an aspect under continual pressure for development. Current efforts target implementation of higher electrostatic and magnetic fields because ion oscillatory frequencies increase linearly with field strength. As such, the time required for spectral acquisition of a given resolving power and mass accuracy decreases linearly with increasing fields. Mass spectrometer developments to include multiple high-resolution detectors that can be operated in parallel could further decrease the acquisition time by a factor of n, the number of detectors. Efforts described here resulted in development of an instrument with a set of Fourier transform ion cyclotron resonance (ICR) cells as detectors that constitute the first MS array capable of parallel high-resolution spectral acquisition. ICR cell array systems consisting of three or five cells were constructed with printed circuit boards and installed within a single superconducting magnet and vacuum system. Independent ion populations were injected and trapped within each cell in the array. Upon filling the array, all ions in all cells were simultaneously excited and ICR signals from each cell were independently amplified and recorded in parallel. Presented here are the initial results of successful parallel spectral acquisition, parallel mass spectrometry (MS) and MS/MS measurements, and parallel high-resolution acquisition with the MS array system. PMID:26669509

  12. Nonlinear Phenomena and Resonant Parametric Perturbation Control in QR-ZCS Buck DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Hsieh, Fei-Hu; Liu, Feng-Shao; Hsieh, Hui-Chang

    The purpose of this study is to investigate the chaotic phenomena and to control in current-mode controlled quasi-resonant zero-current-switching (QR-ZCS) DC-DC buck converters, and to present control of chaos by resonant parametric perturbation control methods. First of all, MATLAB/SIMULINK is used to derive a mathematical model for QR-ZCS DC-DC buck converters, and to simulate the converters to observe the waveform of output voltages, inductance currents and phase-plane portraits from the period-doubling bifurcation to chaos by changing the load resistances. Secondly, using resonant parametric perturbation control in QR-ZCS buck DC-DC converters, the simulation results of the chaotic converter form chaos state turn into stable state period 1, and improve ripple amplitudes of converters under the chaos, to verify the validity of the proposes method.

  13. A 10kW series resonant converter design, transistor characterization, and base-drive optimization

    NASA Technical Reports Server (NTRS)

    Robson, R.; Hancock, D.

    1981-01-01

    Transistors are characterized for use as switches in resonant circuit applications. A base drive circuit to provide the optimal base drive to these transistors under resonant circuit conditions is developed and then used in the design, fabrication and testing of a breadboard, spaceborne type 10 kW series resonant converter.

  14. Performance Optimization of Two-Stage Exoreversible Thermoelectric Converter in Electrically Series and Parallel Configuration

    NASA Astrophysics Data System (ADS)

    Hans, Ranjana; Manikandan, S.; Kaushik, S. C.

    2015-10-01

    A two-stage exoreversible semiconductor thermoelectric converter (TEC) with internal heat transfer is proposed in two different configurations, i.e., electrically series and electrically parallel. The TEC performance assuming Newton's heat transfer law is evaluated through a combination of finite-time thermodynamics (FTT) and nonequilibrium thermodynamics. A formulation based on the power output versus working electrical current and efficiency versus working electrical current is applied in this study. For fixed total number of thermoelectric elements, the current-voltage ( I- V) characteristics of the series and parallel configurations have been obtained for different combinations of thermoelectric elements in the top and bottom stage. The number of thermoelectric elements in the top stage has been optimized to maximize the power output of the TEC in the electrically series and parallel modes. Thermodynamic models for a multistage TEC system considering internal irreversibilities have been developed in a matrix laboratory Simulink environment. The effect of load resistance on V opt, I opt, V oc, and I sc for different combinations of thermoelectric elements in the top and bottom stage has been analyzed. The I- V characteristics obtained for the two-stage series and parallel TEC configurations suggest a range of load resistance values to be chosen, in turn indicating the suitability of the parallel rather than series configuration when designing real multistage TECs. This analysis will be helpful in designing actual multistage TECs.

  15. Non-synchronous control of self-oscillating resonant converters

    DOEpatents

    Glaser, John Stanley; Zane, Regan Andrew

    2002-01-01

    A self-oscillating switching power converter has a controllable reactance including an active device connected to a reactive element, wherein the effective reactance of the reactance and the active device is controlled such that the control waveform for the active device is binary digital and is not synchronized with the switching converter output frequency. The active device is turned completely on and off at a frequency that is substantially greater than the maximum frequency imposed on the output terminals of the active device. The effect is to vary the average resistance across the active device output terminals, and thus the effective output reactance, thereby providing converter output control, while maintaining the response speed of the converter.

  16. Magnetic resonance of terahertz metamaterials in parallel plate waveguides

    NASA Astrophysics Data System (ADS)

    Razanoelina, Manjakavahoaka; Serita, Kazunori; Matsuda, Eiki; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi

    2016-03-01

    As new designs of metamaterials rapidly emerge, methods of characterizing their fundamental electromagnetic properties become increasingly important. Here, we utilize the parallel plate waveguide associated with terahertz time-domain spectroscopy experiments to analyze the coupling of terahertz radiation to ultrathin electric split-ring resonators located halfway between the waveguide plates. Our observations determine that the magnetic response dominates across the frequency range of the system. The experimental results are confirmed by simulations, emphasizing the usefulness of the proposed approach for further investigations of magnetic coupling in metamaterials in the terahertz regime.

  17. Parallel inhomogeneity and the Alfven resonance. 1: Open field lines

    NASA Technical Reports Server (NTRS)

    Hansen, P. J.; Harrold, B. G.

    1994-01-01

    In light of a recent demonstration of the general nonexistence of a singularity at the Alfven resonance in cold, ideal, linearized magnetohydrodynamics, we examine the effect of a small density gradient parallel to uniform, open ambient magnetic field lines. To lowest order, energy deposition is quantitatively unaffected but occurs continuously over a thickened layer. This effect is illustrated in a numerical analysis of a plasma sheet boundary layer model with perfectly absorbing boundary conditions. Consequences of the results are discussed, both for the open field line approximation and for the ensuing closed field line analysis.

  18. Operational characteristics of a 200 C LC parallel resonant circuit

    NASA Technical Reports Server (NTRS)

    Baumann, Eric D.; Hammoud, Ahmad N.

    1995-01-01

    Research efforts are currently underway at the NASA Lewis Research Center to design and demonstrate an inverter capable of operating with a baseplate temperature of 200 C. In support of this project, various electrical components including capacitors, inductors, transformers, cables, and semiconductor switches are being developed or evaluated for integration into the inverter. In this work, a parallel LC resonant circuit was constructed and evaluated under simultaneous electrical and thermal stressing. The tests were performed in the temperature range of 25 to 200 C with an applied voltage of up to 90 V, 20 kHz. The individual components were comprised of high temperature film capacitors and powder core inductors developed in-house. The circuit was characterized in terms of the component currents and case temperatures as well as frequency of resonance as a function of applied bias and temperature. The results obtained, which have indicated good functional stability up to 200 C, are presented and discussed.

  19. A normalized model for the half-bridge series resonant converter

    NASA Technical Reports Server (NTRS)

    King, R.; Stuart, T. A.

    1981-01-01

    Closed-form steady-state equations are derived for the half-bridge series resonant converter with a rectified (dc) load. Normalized curves for various currents and voltages are then plotted as a function of the circuit parameters. Experimental results based on a 10-kHz converter are presented for comparison with the calculations.

  20. Design of A 5-Bit Fully Parallel Analog to Digital Converter Using Common Gate Differrential Mos Pair-Based Comparator

    NASA Astrophysics Data System (ADS)

    Aytar, Oktay

    2015-09-01

    This paper presents a novel comparator structure based on the common gate differential MOS pair. The proposed comparator has been applied to fully parallel analog to digital converter (A/D converter). Furthermore, this article presents 5 bit fully parallel A/D Converter design using the cadence IC5141 design platform and NCSU(North Carolina State University) design kit with 0.18 μm CMOS technology library. The proposed fully parallel A/D converter consist of resistor array block, comparator block, 1-n decoder block and programmable logic array. The 1-n decoder block includes latch block and thermometer code circuit that is implemented using transmission gate based multiplexer circuit. Thus, sampling frequency and analog bandwidth are increased. The INL and DNL of the proposed fully parallel A/D converter are (0/ + 0.63) LSB and (-0.26/ + 0.31) LSB at a sampling frequency of 5 GS/s with an input signal of 50 MHz, respectively. The proposed fully parallel A/D Converter consumes 340 mW from 1.8 V supply.

  1. A design procedure for the phase-controlled parallel-loaded resonant inverter

    NASA Technical Reports Server (NTRS)

    King, Roger J.

    1989-01-01

    High-frequency-link power conversion and distribution based on a resonant inverter (RI) has been recently proposed. The design of several topologies is reviewed, and a simple approximate design procedure is developed for the phase-controlled parallel-loaded RI. This design procedure seeks to ensure the benefits of resonant conversion and is verified by data from a laboratory 2.5 kVA, 20-kHz converter. A simple phasor analysis is introduced as a useful approximation for design purposes. The load is considered to be a linear impedance (or an ac current sink). The design procedure is verified using a 2.5-kVA 20-kHz RI. Also obtained are predictable worst-case ratings for each component of the resonant tank circuit and the inverter switches. For a given load VA requirement, below-resonance operation is found to result in a significantly lower tank VA requirement. Under transient conditions such as load short-circuit, a reversal of the expected commutation sequence is possible.

  2. A study of the high frequency limitations of series resonant converters

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; King, R. J.

    1982-01-01

    A transformer induced oscillation in series resonant (SR) converters is studied. It may occur in the discontinuous current mode. The source of the oscillation is an unexpected resonant circuit formed by normal resonance components in series with the magnetizing inductance of the output transformers. The methods for achieving cyclic stability are: to use a half bridge SR converter where q0.5. Q should be as close to 1.0 as possible. If 0.5q1.0, the instability will be avoided if psi2/3q-1/3. The second objective was to investigate a power field effect transistor (FET) version of the SR converter capable of operating at frequencies above 100 KHz, to study component stress and losses at various frequencies.

  3. Enhanced RF to DC converter with LC resonant circuit

    NASA Astrophysics Data System (ADS)

    Gabrillo, L. J.; Galesand, M. G.; Hora, J. A.

    2015-06-01

    Presented in this paper is an experimental comparison of the conventional and proposed design circuit of a radio frequency (RF) energy harvesting. RF to DC energy harvester simply consists of antenna and rectifier block for receiving electromagnetic radiation signal and to produce a DC voltage, respectively. In addition to this conventional circuit, the proposed design includes LC tank circuit as receiving block of a well-designed antenna radio frequency receiver. Proper choice of an antenna type, realizing of point contact Germanium diodes as rectifier and correct design values for the LC passive components, greatly improved the measurement of the maximum output power, giving approximately a 100% increase compared to the conventional method. Experimental results of the enhanced RF to DC converter measured a maximum output power of 1.80 mWat a distance of 77.84 meters from a TV signal tower operating at 165 MHz.Thus, the harvested signal was enough to supply a low power wireless device applications without battery maintenance.

  4. Modeling and Dynamic Analysis of Paralleled dc/dc Converters With Master-Slave Current Sharing Control

    NASA Technical Reports Server (NTRS)

    Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce

    1996-01-01

    A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.

  5. Modeling and Dynamic Analysis of Paralleled of dc/dc Converters with Master-Slave Current Sharing Control

    NASA Technical Reports Server (NTRS)

    Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce

    1996-01-01

    A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.

  6. A 32-bit Ultrafast Parallel Correlator using Resonant Tunneling Devices

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shriram; Mazumder, Pinaki; Haddad, George I.

    1995-01-01

    An ultrafast 32-bit pipeline correlator has been implemented using resonant tunneling diodes (RTD) and hetero-junction bipolar transistors (HBT). The negative differential resistance (NDR) characteristics of RTD's is the basis of logic gates with the self-latching property that eliminates pipeline area and delay overheads which limit throughput in conventional technologies. The circuit topology also allows threshold logic functions such as minority/majority to be implemented in a compact manner resulting in reduction of the overall complexity and delay of arbitrary logic circuits. The parallel correlator is an essential component in code division multi-access (CDMA) transceivers used for the continuous calculation of correlation between an incoming data stream and a PN sequence. Simulation results show that a nano-pipelined correlator can provide and effective throughput of one 32-bit correlation every 100 picoseconds, using minimal hardware, with a power dissipation of 1.5 watts. RTD plus HBT based logic gates have been fabricated and the RTD plus HBT based correlator is compared with state of the art complementary metal oxide semiconductor (CMOS) implementations.

  7. Parallel magnetic resonance imaging of gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Mueller, Christoph; Penn, Alexander; Pruessmann, Klaas P.

    2015-03-01

    Gas-liquids flows are commonly encountered in nature and industry. Experimental measurements of gas-liquid flows are challenging since such systems can be visually opaque and highly dynamic. Here we report the implementation of advanced magnetic resonance imaging (MRI) strategies allowing us to probe the dynamics (voidage and velocity measurements) of gas-liquid flows with ultra-fast acquisition speeds. Specifically, parallel MRI which exploits the spatial encoding capabilities of multiple receiver coils was implemented. To this end a tailored, 16 channels MR receive array was constructed and employed in the MR acquisition. A magnetic susceptibility matched gas-liquid system was set-up and used to probe the motion, splitting and coalescence of bubbles. The temporal and spatial resolution of our acquired data was 5 ms and 3.5 mm x 3.5 mm, respectively. The total field of view was 200 mm x 200 mm. We will conclude with an outlook of further possible advances in MRI that have the potential to reduce substantially the acquisition time, providing flexible gains in temporal and spatial resolution.

  8. Ultra-fast parallel magnetic resonance imaging of granular systems

    NASA Astrophysics Data System (ADS)

    Penn, Alexander; Pruessmann, Klaas P.; Müller, Christoph

    2015-03-01

    Several non-intrusive techniques have been applied to probe the dynamics of two-phase granular systems, with the most prominent examples being X-ray tomography, positron emission particle tracking (PEPT), electrical capacitance tomography and magnetic resonance imaging (MRI). MRI comes with the particular advantage that by implementing suitable pulse sequences not only spin densities (i.e. voidage), but also velocity, acceleration, diffusion and chemical reactions can be measured. However, so far the investigation of two-phase granular systems has been performed on relatively small-bore systems (max. diameter 60 mm). Such systems are, however, heavily influenced by wall effects. Furthermore, largely only single-coil detection has been employed, limiting severely the temporal resolution of the data acquisition. Here, we report the acquisition of ultra-fast MRI measurements in large volume vessels using medical MRI scanners. Specifically, parallel MRI, i.e. the simultaneous use of multiple receiver coils, has been exploited to speed up the data acquisition. In combination with advanced pulse sequences, we were able to probe the rapid dynamics (voidage and velocity measurements) of gas-solid systems.

  9. A 3D MPI-Parallel GPU-accelerated framework for simulating ocean wave energy converters

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2015-11-01

    We present an MPI-parallel GPU-accelerated computational framework for studying the interaction between ocean waves and wave energy converters (WECs). The computational framework captures the viscous effects, nonlinear fluid-structure interaction (FSI), and breaking of waves around the structure, which cannot be captured in many potential flow solvers commonly used for WEC simulations. The full Navier-Stokes equations are solved using the two-step projection method, which is accelerated by porting the pressure Poisson equation to GPUs. The FSI is captured using the numerically stable fictitious domain method. A novel three-phase interface reconstruction algorithm is used to resolve three phases in a VOF-PLIC context. A consistent mass and momentum transport approach enables simulations at high density ratios. The accuracy of the overall framework is demonstrated via an array of test cases. Numerical simulations of the interaction between ocean waves and WECs are presented. Funding from the National Science Foundation CBET-1236462 grant is gratefully acknowledged.

  10. A resonant high voltage converter with C-type output filter

    SciTech Connect

    Viejo, C.B.; Garcia, M.A.P.; Secades, M.R.; Antolin, J.U.

    1995-12-31

    The delay line of a Traveling Wave Tube (TWT) needs a high dc voltage. A power converter with high transformation ratio is necessary to obtain high output voltage from low input voltage. As a result, a large number of turns is necessary for secondary windings and large leakage inductance and large parasitic capacitor appear. Thus, it is usual to design a resonant converter to include both leakage inductance and capacitance in the power topology. The present paper presents the design of a high voltage power supply for the delay line of a TWT using a resonant converter. All elements of the power supply (high voltage transformer, rectifier, filter and control) are designed taking high voltage and high frequency problems into account.

  11. Fast response double series resonant high-voltage DC-DC converter

    NASA Astrophysics Data System (ADS)

    Lee, S. S.; Iqbal, S.; Kamarol, M.

    2012-10-01

    In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.

  12. Inverting Quasi-Resonant Switched-Capacitor Bidirectional Converter and Its Application to Battery Equalization

    NASA Astrophysics Data System (ADS)

    Lee, Yuang-Shung; Chiu, Yin-Yuan; Cheng, Ming-Wang; Ko, Yi-Pin; Hsiao, Sung-Hsin

    The proposed quasi-resonant (QR) zero current switching (ZCS) switched-capacitor (SC) converter is a new type of bidirectional power flow control conversion scheme. The proposed converter is able to provide voltage conversion ratios from -3/-{1 \\over 3} (triple-mode/trisection-mode) to -n/-{1 \\over n} (-n-mode/-{1 \\over n}-mode) by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse power flow control schemes. It possesses the advantages of low switching losses and current stress in this QR ZCS SC converter. The principle of operation, theoretical analysis of the proposed triple-mode/trisection-mode bidirectional power conversion scheme is described in detail with circuit model analysis. Simulation and experimental studies are carried out to verify the performance of the proposed inverting type ZCS SC QR bidirectional converter. The proposed converters can be applied to battery equalization for battery management system (BMS).

  13. Microelectromechanical filter formed from parallel-connected lattice networks of contour-mode resonators

    DOEpatents

    Wojciechowski, Kenneth E; Olsson, III, Roy H; Ziaei-Moayyed, Maryam

    2013-07-30

    A microelectromechanical (MEM) filter is disclosed which has a plurality of lattice networks formed on a substrate and electrically connected together in parallel. Each lattice network has a series resonant frequency and a shunt resonant frequency provided by one or more contour-mode resonators in the lattice network. Different types of contour-mode resonators including single input, single output resonators, differential resonators, balun resonators, and ring resonators can be used in MEM filter. The MEM filter can have a center frequency in the range of 10 MHz-10 GHz, with a filter bandwidth of up to about 1% when all of the lattice networks have the same series resonant frequency and the same shunt resonant frequency. The filter bandwidth can be increased up to about 5% by using unique series and shunt resonant frequencies for the lattice networks.

  14. ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    NASA Technical Reports Server (NTRS)

    Schoenfeld, A. D.; Yu, Y.

    1973-01-01

    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.

  15. The polyphase resonant converter modulator for pulse power and plasma applications

    SciTech Connect

    Reass, W. A.; Baca, D. M.; Doss, James D.; Gribble, R.; North, W. R.

    2002-01-01

    This paper describes a new technique to generate high voltage pulses (100 kV and up) with high peak power (10 MW and up) and high average power (1 MW and up) from a low voltage input source (e.g. +/- 1.2 kV). This technology is presently being used to provide cathode pulse modulation for the Spallation Neutron Source (SNS) accelerator klystron RF amplifiers, which operate to 140 kV 11 MW peak power and 1.1 MW average power. The design of the modulator, referred to as the Polyphase Resonant Converter-Modulator takes advantage of high-power component advances, in response to the needs of the traction motor industry (in particular, railroad locomotives), such as Insulated Gate Bipolar Transistors (IGBT's) and self-clearing metallized hazy polypropylene capacitors. In addition, the use of amorphous nanocrystalline transformer core alloy permits high frequency voltage and current transformation with low loss and small size. Other unique concepts embodied in the converter-modulator topology are polyphase resonant voltage multiplication and resonant rectification. These techniques further reduce size and improve electrical efficiency. Because of the resonant conversion techniques, electronic 'crowbars' and other load protective networks are not required. A shorted load detunes the circuit resonance and little power transfer can occur. This yields a high-power, high-voltage system that is inherently self-protective. To provide regulated output voltages, Pulse Width Modulation (PWM) of the individual IGBT pulses is used. A Digital signal Processor (DSP) is used to control the IGBT's, with adaptive feed forward and feedback control algorithms that improve pulse fidelity. The converter-modulator has many attributes that make it attractive to various pulse power and plasma applications such as high power RF sources, neutral beam modulators, and various plasma applications. This paper will review the design as used for the SNS accelerator and speculate on related plasma

  16. The 25 kW resonant dc/dc power converter

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1983-01-01

    The feasibility of processing 25-kW of power with a single, transistorized, series resonant converter stage was demonstrated by the successful design, development, fabrication, and testing of such a device which employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350 Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Full circuit details of the converter are presented along with the test data.

  17. Design, status and first operations of the spallation neutron source polyphase resonant converter modulator system

    SciTech Connect

    Reass, W. A.; Apgar, S. E.; Baca, D. M.; Doss, James D.; Gonzales, J.; Gribble, R. F.; Hardek, T. W.; Lynch, M. T.; Rees, D. E.; Tallerico, P. J.; Trujillo, P. B.; Anderson, D. E.; Heidenreich, D. A.; Hicks, J. D.; Leontiev, V. N.

    2003-01-01

    The Spallation Neutron Source (SNS) is a new 1.4 MW average power beam, 1 GeV accelerator being built at Oak Ridge National Laboratory. The accelerator requires 15 converter-modulator stations each providing between 9 and 11 MW pulses with up to a 1 .I MW average power. The converter-modulator can be described as a resonant 20 kHz polyphase boost inverter. Each converter modulator derives its buss voltage from a standard substation cast-core transformer. Each substation is followed by an SCR pre-regulator to accommodate voltage changes from no load to full load, in addition to providing a soft-start function. Energy storage is provided by self-clearing metallized hazy polypropylene traction capacitors. These capacitors do not fail short, but clear any internal anomaly. Three 'H-Bridge' IGBT transistor networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are time-gated to generate the desired klystron pulse width. Pulse width modulation of the individual 20 lcHz pulses is utilized to provide regulated output waveforms with DSP based adaptive feedforward and feedback techniques. The boost transformer design utilizes nanocrystalline alloy that provides low core loss at design flux levels and switching frequencies. Capacitors are used on the transformer secondary networks to resonate the leakage inductance. The transformers are wound for a specific leakage inductance, not turns ratio. This design technique generates multiple secondary volts per turn as compared to the primary. With the appropriate tuning conditions, switching losses are minimized. The resonant topology has the added benefit of being deQed in a klystron fault condition, with little energy deposited in the arc. This obviates the need of crowbars or other related networks. A review of these design parameters, operational performance, production status, and OWL installation and performance to date will be presented.

  18. Low Temperature (30 K) TID Test Results of a Radiation Hardened 128 Channel Serial-to-Parallel Converter

    NASA Technical Reports Server (NTRS)

    Meyer, Stephen; Buchner, Stephen; Moseley, Harvey; Ray, Knute; Tuttle, Jim; Quinn, Ed; Buchanan, Ernie; Bloom, Dave; Hait, Tom; Pearce, Mike; Rapchun, David A.

    2006-01-01

    This viewgraph presentation reviews the low temperature, Total Ionizing Dose (TID) tests of radiation hardened serial to parallel converter to be used on the James Webb Space Telescope. The test results show that the original HV583 level shifter - a COTS part -was not suitable for JWST because the supply currents exceeded specs after 20 krad( Si) .The HV584 - functionally similar to the HV583 -was designed using RHBD approach that reduced the leakage currents to within acceptable levels and had only a small effect on the level-shifted output voltage.

  19. New generation polyphase resonant converter-modulators for the Korean atomic energy research institute

    SciTech Connect

    Reass, William A; Baca, David M; Gribble, Robert F

    2009-01-01

    This paper will present operational data and performance parameters of the newest generation polyphase resonant high voltage converter modulator (HVCM) as developed and delivered to the KAERI 100 MeV ''PEFP'' accelerator [1]. The KAERI design realizes improvements from the SNS and SLAC designs [2]. To improve the IGBT switching performance at 20 kHz for the KAERI system, the HVCM utilizes the typical zero-voltage-switching (ZVS) at turn on and as well as artificial zero-current-switching (ZCS) at turn-off. The new technique of artificial ZCS technique should result in a 6 fold reduction of IGBT switching losses (3). This improves the HCVM conversion efficiency to better than 95% at full average power, which is 500 kW for the KAERI two klystron 105 kV, 50 A application. The artificial ZCS is accomplished by placing a resonant RLC circuit across the input busswork to the resonant boost transformer. This secondary resonant circuit provides a damped ''kick-back'' to assist in IGBT commutation. As the transformer input busswork is extremely low inductance (< 10 nH), the single RLC network acts like it is across each of the four IGBT collector-emitter terminals of the H-bridge switching network. We will review these topological improvements and the overall system as delivered to the KAERI accelerator and provide details of the operational results.

  20. Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna.

    PubMed

    Yang, Jing; Zhang, Jiasen

    2013-04-01

    We propose a nano-polarization-converter made of a resonant L-shaped slot antenna in a gold film and study its optical properties using the finite-difference time-domain method. Phase retardation between the fast and slow axes of the nano-polarization-converter originates from the simultaneous excitation of both single-surface first-order magnetic plasmon resonance mode and second-order magnetic plasmon resonance mode at the working wavelength. By adjusting the size of the slot antenna, which is still much smaller than the wavelength, the working wavelength can be tuned within a large wavelength range. PMID:23571885

  1. Parallel Helmholtz resonators for a planar acoustic notch filter

    NASA Astrophysics Data System (ADS)

    Isozaki, Akihiro; Takahashi, Hidetoshi; Tamura, Hiroto; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao

    2014-12-01

    This paper reports on an acoustic planar notch filter with a sub-wavelength thickness at the notch frequency. The developed notch filter consists of a number of spherical Helmholtz resonators (HRs) connected to a hole created in a plate. The HRs were placed at the in-plane vertices of a regular polygon. A simulated pressure distribution revealed that this uniform arrangement of HRs improves the silencing effect because the uniform applied waves emitted from the HRs act as canceling waves to the cross-section of the short hole (in this case, the length of the hole is sub-wavelength). The total pressure emitted from the HRs is equal regardless of the number of HRs connected to the hole. Therefore, the arrangement of HRs is essential for realizing a planar notch filter. Simulated transmittance spectra showed that the depth of the dip in the transmittance increased with the number of uniformly arranged HRs. We confirmed that the experimental transmittance spectra of fabricated notch filters, which consisted of between one and six HRs, agreed with the simulated transmittance spectra. The design of the acoustic filter presented in this study and the corresponding analysis should motivate further development of thin acoustic filters.

  2. Scattering Problem and Resonances for Three-Body Coulomb Quantum Systems: Parallel Calculations

    NASA Astrophysics Data System (ADS)

    Yarevsky, E.

    2016-02-01

    An approach to the solution of scattering and resonance problems based on splitting the potential into a finite range part and a long range tail part is proposed. The explicit solution to the Schrödinger equation for the long range tail Hamiltonian is used as an incoming wave. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling. The same technique is used to determine resonances of the system. Calculations are performed with the finite element method which allows efficient parallel computations. The approach is illustrated with calculations of the electron resonant scattering on the hydrogen and the helium ion.

  3. Study of the onset of the acoustic streaming in parallel plate resonators with pulse ultrasound.

    PubMed

    Castro, Angelica; Hoyos, Mauricio

    2016-03-01

    In a previous study, we introduced pulse mode ultrasound as a new method for reducing and controlling the acoustic streaming in parallel plate resonators (Hoyos and Castro, 2013). Here, by modifying other parameters such as the resonator geometry and the particle size, we have found a threshold for particle manipulation with ultrasonic standing waves in confined resonators without the influence of the acoustic streaming. We demonstrate that pulse mode ultrasound open the possibility of manipulating particles smaller than 1 μm size. PMID:26705604

  4. Parallel-processing with surface plasmons, a new strategy for converting the broad solar spectrum

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1982-01-01

    A new strategy for efficient solar-energy conversion is based on parallel processing with surface plasmons: guided electromagnetic waves supported on thin films of common metals like aluminum or silver. The approach is unique in identifying a broadband carrier with suitable range for energy transport and an inelastic tunneling process which can be used to extract more energy from the more energetic carriers without requiring different materials for each frequency band. The aim is to overcome the fundamental 56-percent loss associated with mismatch between the broad solar spectrum and the monoenergetic conduction electrons used to transport energy in conventional silicon solar cells. This paper presents a qualitative discussion of the unknowns and barrier problems, including ideas for coupling surface plasmons into the tunnels, a step which has been the weak link in the efficiency chain.

  5. 5 mW parallel-connected resonant-tunnelling diode oscillator

    NASA Technical Reports Server (NTRS)

    Stephan, K. D.; Wong, S.-C.; Brown, E. R.; Molvar, K. M.; Calawa, A. R.; Manfra, M. J.

    1992-01-01

    A new type of resonant-tunneling diode (RTD) oscillator that generates 5 mW at 1.18 GHz is reported. This result was obtained by connecting in parallel 25 individual diodes designed for such a connection. This experiment demonstrates that RTDs can successfully be used in a chip-level power-combining circuit.

  6. Demonstration of a 3-bit optical digital-to-analog converter based on silicon microring resonators.

    PubMed

    Yang, Lin; Ding, Jianfeng; Chen, Qiaoshan; Zhou, Ping; Zhang, Fanfan; Zhang, Lei

    2014-10-01

    We propose an N-bit optical digital-to-analog converter based on silicon microring resonators (MRRs), which can transform an N-bit electrical digital signal to an optical analog signal. A 3-bit optical digital-to-analog convertor is fabricated as proof of concept through a CMOS-compatible process on a silicon-on-insulator platform. The silicon MRRs are modulated through the electric-field-induced carrier injection in forward biased PN junctions embedded in the ring waveguides. The electro-optical 3-dB bandwidths of the silicon MRRs are approximately 800 MHz. The device works well at a speed of 500  MSample/s under driving voltage swings of 0.75 V. PMID:25360972

  7. A novel single-stage isolated ac/dc converter with quasi-resonant zero-voltage-switching with a modified forward converter adopting capacitive output filter

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Bok; Youn, Myung-Joong

    2010-07-01

    A new single-stage isolated ac-dc converter, which can achieve a better efficiency and a better power factor, is proposed. It is based on a general forward topology so that it can utilise the transformer more than converters based on flyback topology. In addition, since the capacitive output filter is adopted instead of an inductive type filter, the voltages on the secondary rectifiers can be clamped to the output voltage; meanwhile, the capacitor used in the output filter can be utilised for the resonance with the leakage inductance, and the turn-off loss in the primary main switch and the dissipative loss in the snubber can be reduced. Moreover, since this converter can be operated at the boundary conduction mode, the line input current can be automatically shaped as the waveform of a line voltage and quasi-resonant zero voltage switching can be also obtained. Therefore, it features higher efficiency, lower voltage stress and a smaller-sized transformer than other topologies. A 100 W prototype has been built and tested for the verification of the proposed topology.

  8. Mode coupling in superconducting parallel plate resonator in a cavity with outer conductive enclosure

    SciTech Connect

    Gao, F.; Klein, M.V.; Kruse, J.; Feng, M.

    1996-06-01

    The authors have carefully studied the mode coupling effect from analysis of the measured microwave scattering parameters of superconducting films using a parallel-plate-resonator technique. Due to its high resolution and simplicity, this technique has been widely employed to identify the quality of high-{Tc} superconducting films by measuring the resonance bandwidth, from which the microwave surface resistance is directly derived. To minimize the radiation loss, the resonator is usually housed in a conductive cavity. Using this method, they observe that a number of strong ``cavity`` modes due to the test enclosure fall around the lowest TM mode of the superconducting resonator and that a strong interaction between these two types of resonant modes occurs when their eigenfrequencies are close, causing a significant distortion or a strong antiresonance for the resonator mode. To describe this effect, a coupled harmonic-oscillator model is proposed. They suggest that the interaction arises from a phase interference or a linear coupling among the individual oscillators. The model fits very well the observed Fano-type asymmetric or antiresonant features, and thus can be used to extract the intrinsic Q of the superconducting resonator.

  9. Parallelization in SCALE continuous-energy resonance module GEMINEWTRN and transport module NEWT

    SciTech Connect

    Zhong, Z.; Downar, T. J.; DeHart, M. D.; Williams, M. L.

    2006-07-01

    A new resonance module, GEMINEWTRN, has been developed in SCALE, it can calculate the continuous-energy neutron flux within the whole two-dimensional geometry, providing us a rigorous solution. However, the new code needs tremendously amount of computation and memory for practical problem. To relieve the computational burden and memory requirement, parallelization has been implemented into GEMINEWTRN, both angular and spatial decomposition have been adopted so that both the computation and the memory requirement on each processor can be saved considerably, and this effort makes the new resonance method much feasible for practical use. Because the two-dimensional geometry capability and SN/ESC solver of GEMINEWTRN come from lattice physics code NEWT, the similar parallel technique has also been implemented into NEWT, which can also save the computation considerably. (authors)

  10. Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation

    SciTech Connect

    Singamaneni, Srinivasa Rao; Stesmans, Andre; Tol, Johan van; Kosynkin, D. V.; Tour, James M.

    2014-04-15

    Electronic spin transport properties of graphene nanoribbons (GNRs) are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element) spin-sensitive techniques such as electron spin resonance (ESR) spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW), pulse and hyperfine sublevel correlation (HYSCORE) ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs), which were subsequently chemically converted (CCGNRs) with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH{sub 3} adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns) and fast (39 ns) components. HYSCORE ESR data demonstrate the explicit presence of protons and {sup 13}C atoms. With the provided identification of intrinsic point magnetic defects such as proton and {sup 13}C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic)-based transport properties of CCGNRs.

  11. A continuous fluorescence resonance energy transfer angiotensin I-converting enzyme assay.

    PubMed

    Carmona, Adriana K; Schwager, Sylva L; Juliano, Maria A; Juliano, Luiz; Sturrock, Edward D

    2006-01-01

    Angiotensin I-converting enzyme (ACE) is involved in various physiological and physiopathological conditions; therefore, the measurement of its catalytic activity may provide essential clinical information. This protocol describes a sensitive and rapid procedure for determination of ACE activity using fluorescence resonance energy transfer (FRET) substrates containing o-aminobenzoic acid (Abz) as the fluorescent group and 2,4-dinitrophenyl (Dnp) as the quencher acceptor. Hydrolysis of a peptide bond between the donor/acceptor pair generates fluorescence that can be detected continuously, allowing quantitative measurement of the enzyme activity. The FRET substrates provide a useful tool for kinetic studies and for ACE determination in biological fluids and crude tissue extracts. An important benefit of this method is the use of substrates selective for the two active sites of the enzyme, namely Abz-SDK(Dnp)P-OH for N-domain, Abz-LFK(Dnp)-OH for C-domain and Abz-FRK(Dnp)P-OH for somatic ACE. This methodology can be adapted for determinations using a 96-well fluorescence plate reader. PMID:17487185

  12. Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Stesmans, Andre; van Tol, Johan; Kosynkin, D. V.; Tour, James M.

    2014-04-01

    Electronic spin transport properties of graphene nanoribbons (GNRs) are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element) spin-sensitive techniques such as electron spin resonance (ESR) spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW), pulse and hyperfine sublevel correlation (HYSCORE) ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs), which were subsequently chemically converted (CCGNRs) with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH3 adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns) and fast (39 ns) components. HYSCORE ESR data demonstrate the explicit presence of protons and 13C atoms. With the provided identification of intrinsic point magnetic defects such as proton and 13C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic)-based transport properties of CCGNRs.

  13. Comparing Saddle, Slotted-tube and Parallel-plate Coils for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Nespor, D.; Bartusek, K.; Dokoupil, Z.

    2014-06-01

    The paper is concerned with a comparison of the properties of RF coils of three configurations for MRI measurements on small animals. In comparison with the classical saddle coil the proposed modification of slotted-tube coil exhibits identical homogeneity of B1 field in a larger space. The parallel-plate coil has a satisfactory homogeneity of B1 field over the whole internal space. The signal-to-noise ratio measured for all three coils is roughly the same and is given by the magnitude of RF pre-amplifier noise. As the slotted-tube and parallel-plate coils have a lower inductance compared with the saddle coil, they can be tuned to resonance on the 200 MHz frequency even at larger dimensions. The results show that the parallel-plate coil has very good properties for the measurement of small animals.

  14. Circuit for continuous motional series resonant frequency and motional resistance monitoring of quartz crystal resonators by parallel capacitance compensation

    NASA Astrophysics Data System (ADS)

    Arnau, A.; Sogorb, T.; Jimenez, Y.

    2002-07-01

    A deep analysis of the problem associated with oscillators as interface circuits for quartz-crystal-microbalance sensors, reveals that the so-called static capacitance of the sensor is one of the elements that makes the use of oscillators more critical for sensors applications. A phase-locked-loop based circuit specifically designed for compensating the parallel capacitance effects in quartz crystal resonator sensors is presented. This circuit permits the calibration of the external circuitry to the sensor and an accurate determination of the effective capacitive compensation. The system provides a continuous measurement of the motional series resonant frequency and motional resistance. An extension and automation of the proposed system for multiple sensor characterization is introduced. The theoretical analysis of the circuit along with the experimental results presented prove that the proposed system is a good alternative for quartz sensors characterization.

  15. Photon counting imaging with an electron-bombarded CCD: Towards a parallel-processing photoelectronic time-to-amplitude converter

    SciTech Connect

    Hirvonen, Liisa M.; Jiggins, Stephen; Sergent, Nicolas; Zanda, Gianmarco; Suhling, Klaus

    2014-12-15

    We have used an electron-bombarded CCD for optical photon counting imaging. The photon event pulse height distribution was found to be linearly dependent on the gain voltage. We propose on this basis that a gain voltage sweep during exposure in an electron-bombarded sensor would allow photon arrival time determination with sub-frame exposure time resolution. This effectively uses an electron-bombarded sensor as a parallel-processing photoelectronic time-to-amplitude converter, or a two-dimensional photon counting streak camera. Several applications that require timing of photon arrival, including Fluorescence Lifetime Imaging Microscopy, may benefit from such an approach. A simulation of a voltage sweep performed with experimental data collected with different acceleration voltages validates the principle of this approach. Moreover, photon event centroiding was performed and a hybrid 50% Gaussian/Centre of Gravity + 50% Hyperbolic cosine centroiding algorithm was found to yield the lowest fixed pattern noise. Finally, the camera was mounted on a fluorescence microscope to image F-actin filaments stained with the fluorescent dye Alexa 488 in fixed cells.

  16. Comparison of capacitive and radio frequency resonator sensors for monitoring parallelized droplet microfluidic production.

    PubMed

    Conchouso, David; McKerricher, Garret; Arevalo, Arpys; Castro, David; Shamim, Atif; Foulds, Ian G

    2016-08-16

    Scaled-up production of microfluidic droplets, through the parallelization of hundreds of droplet generators, has received a lot of attention to bring novel multiphase microfluidics research to industrial applications. However, apart from droplet generation, other significant challenges relevant to this goal have never been discussed. Examples include monitoring systems, high-throughput processing of droplets and quality control procedures among others. In this paper, we present and compare capacitive and radio frequency (RF) resonator sensors as two candidates that can measure the dielectric properties of emulsions in microfluidic channels. By placing several of these sensors in a parallelization device, the stability of the droplet generation at different locations can be compared, and potential malfunctions can be detected. This strategy enables for the first time the monitoring of scaled-up microfluidic droplet production. Both sensors were prototyped and characterized using emulsions with droplets of 100-150 μm in diameter, which were generated in parallelization devices at water-in-oil volume fractions (φ) between 11.1% and 33.3%.Using these sensors, we were able to measure accurately increments as small as 2.4% in the water volume fraction of the emulsions. Although both methods rely on the dielectric properties of the emulsions, the main advantage of the RF resonator sensors is the fact that they can be designed to resonate at multiple frequencies of the broadband transmission line. Consequently with careful design, two or more sensors can be parallelized and read out by a single signal. Finally, a comparison between these sensors based on their sensitivity, readout cost and simplicity, and design flexibility is also discussed. PMID:27381892

  17. Equatorial electron loss by double resonance with oblique and parallel intense chorus waves

    NASA Astrophysics Data System (ADS)

    Mourenas, D.; Artemyev, A. V.; Agapitov, O. V.; Mozer, F. S.; Krasnoselskikh, V. V.

    2016-05-01

    Puzzling satellite observations of butterfly pitch angle distributions and rapid dropouts of 30-150 keV electrons are widespread in the Earth's radiation belts. Several mechanisms have been proposed to explain these observations, such as enhanced outward radial diffusion combined with magnetopause shadowing or scattering by intense magnetosonic waves, but their effectiveness is mainly limited to storm times. Moreover, the scattering of 30-150 keV electrons via cyclotron resonance with intense parallel chorus waves should be limited to particles with equatorial pitch angle smaller than 70°-75°, leaving unaffected a large portion of the population. In this paper, we investigate the possible effects of oblique whistler mode waves, noting, in particular, that Landau resonance with very oblique waves can occur up to ˜89°. We demonstrate that such very oblique chorus waves with realistic amplitudes can very efficiently nonlinearly transport nearly equatorially mirroring electrons toward smaller pitch angles where nonlinear scattering (phase bunching) via cyclotron resonance with quasi-parallel waves can take over and quickly send them to much lower pitch angles <40°. The proposed double resonance mechanism could therefore explain the formation of butterfly pitch angle distributions as well as contribute to some fast dropouts of 30-150 keV electrons occurring during moderate geomagnetic disturbances at L = 4-6. Since 30-150 keV electrons represent a seed population for a further acceleration to relativistic energies by intense parallel chorus waves during storms or substorms, the proposed mechanism may have important consequences on the dynamics of 100 keV to MeV electron fluxes in the radiation belts.

  18. Manchester code telemetry system for well logging using quasi-parallel inductive-capacitive resonance

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Chen, Jianjun; Cao, Zhang; Liu, Xingbin; Hu, Jinhai

    2014-07-01

    In this paper, a quasi-parallel inductive-capacitive (LC) resonance method is proposed to improve the recovery of MIL-STD-1553 Manchester code with several frequency components from attenuated, distorted, and drifted signal for data telemetry in well logging, and corresponding telemetry system is developed. Required resonant frequency and quality factor are derived, and the quasi-parallel LC resonant circuit is established at the receiving end of the logging cable to suppress the low-pass filtering effect caused by the distributed capacitance of the cable and provide balanced pass for all the three frequency components of the Manchester code. The performance of the method for various encoding frequencies and cable lengths at different bit energy to noise density ratios (Eb/No) have been evaluated in the simulation. A 5 km single-core cable used in on-site well logging and various encoding frequencies were employed to verify the proposed telemetry system in the experiment. Results obtained demonstrate that the telemetry system is feasible and effective to improve the code recovery in terms of anti-attenuation, anti-distortion, and anti-drift performances, decrease the bit error rate, and increase the reachable transmission rate and distance greatly.

  19. A two-dimensional polarization interferometry based parallel scan angular surface plasmon resonance biosensor.

    PubMed

    Liu, Le; Ma, Suihua; Ji, Yanhong; Chong, Xinyuan; Liu, Zhiyi; He, Yonghong; Guo, Jihua

    2011-02-01

    We describe a two-dimensional polarization interferometry based parallel scan angular surface plasmon resonance (SPR) biosensing technique. The method of line-shaped light illumination and parallel scan offers a high throughput. The simultaneous record of SPR angular spectrum enables the system to be unaffected by the time-dependent variation of the light source. The polarization interferometry technique lowers the minimum of the SPR dip and thereby reduces the noise related to the light intensity. Refractive index resolutions of 1.4 × 10(-6) refractive index unit (RIU) under normal condition and 4.6 × 10(-7) RIU under a more time-consuming condition are achieved in our angle interrogation based sensor. Meanwhile, a manually prepared DNA microarray has been detected, showing the potential applications of this technique in microarray analysis. PMID:21361575

  20. Resonance Cavities in Parallel-Hetero Perturbation Photonic Crystal Waveguide Structures

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Li, Zhi-Yuan

    2012-07-01

    We design a series of W1 waveguide-like parallel-hetero cavities (PHCs) made from the combination of parallelhetero perturbation (PHP) waveguides and photonic crystal waveguides and investigate their optical properties. Spectral properties are calculated numerically using the three-dimensional finite-difierence time-domain method. The resonant frequencies and quality factors are obtained for each type of PHC and comparisons are made among different types of PHC, which is helpful for predicting and understanding the properties of PHC and designing PHC based high-performance cavities. The PHCs can broaden the category of cavity design and find interesting applications in integrated optical devices and solid state lasers.

  1. Design and performance of resonant-cavity parallel baffles for duct silencing

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.

    1981-01-01

    Resonant-cavity parallel baffles, either empty or with a thin absorbent lining, have been investigated as an alternative to fiberglass-filled baffles commonly used to control noise emission from large ducts. A method for predicting silencer attenuation is described, and it is shown that the new type of baffle is characterized by an acoustic performance similar to that of fibrous baffles, while being virtually immune to such problems as clogging, erosion, or settling. The emphasis of the study is on insertion loss measurements in a 7 by 10 ft wind tunnel.

  2. Improved Active Clamp Converter By Resonance Blanking Used For Wide Input Voltage Range

    NASA Astrophysics Data System (ADS)

    Strixner, E.; Godzik, S.

    2011-10-01

    The GPS line receiver as a standard product line of Astrium GmbH Ottobrunn shall operate according to customer requirements on different power busses with no or only minor modifications. Consequently there is an up coming demand to develop a power converter with a wide input voltage range. The hardware shall work with minor adaptation on all standard bus voltages of 28V, 50V and 100V. Themainfocuswas to cover the unregulated 28V bus and the regulated 50V bus without any modifications on the converter module and providing performance data being similar to low input voltage range converters.

  3. Parallel-plate RF resonator imaging of chemical shift resolved capillary flow.

    PubMed

    Zhang, Jing; Balcom, Bruce J

    2010-07-01

    Magnetic resonance imaging has been introduced to study flow in microchannels using pure phase spatial encoding with a microfabricated parallel-plate nuclear magnetic resonance (NMR) probe. The NMR probe and pure phase spatial encoding enhance the sensitivity and resolution of the measurement. In this paper, (1)H NMR spectra and images were acquired at 100 MHz. The B(1) magnetic field is homogeneous and the signal-to-noise ratio of 30 microl doped water for a single scan is 8x10(4). The high sensitivity of the probe enables velocity mapping of the fluids in the micro-channel with a spatial resolution of 13x13 microm. The parallel-plate probe with pure phase encoding permits the acquisition of NMR spectra; therefore, chemical shift resolved velocity mapping was also undertaken. Results are presented which show separate velocity maps for water and methanol flowing through a straight circular micro-channel. Finally, future performance of these techniques for the study of microfluidics is extrapolated and discussed. PMID:20444567

  4. Chaos, bifurcation and intermittent phenomena in DC-DC converters under resonant parametric perturbation

    NASA Astrophysics Data System (ADS)

    Deivasundari, P.; Geetha, R.; Uma, G.; Murali, K.

    2013-07-01

    DC-DC converters act as a black box to study various bifurcations. In the present study, the influence of external periodic interference signal in the input of DC-DC voltage-mode controlled buck converter has been considered. It is found that the presence of sinusoidal or saw-tooth interference signal whose frequency is comparable with the switching frequency of the converter or its rational multiples manifests as remerging chaotic band attractors (or Feigenbaum trees) and intermittent chaos. However, the presence of sinusoidal interference signal having irrational frequency ratios with the switching frequency of the converter leads to quasi-periodic route to chaos. The study was carried out both theoretically and experimentally.

  5. Use of multi-coil parallel-gap resonators for co-registration EPR/NMR imaging

    NASA Astrophysics Data System (ADS)

    Kawada, Yuuki; Hirata, Hiroshi; Fujii, Hirodata

    2007-01-01

    This article reports experimental investigations on the use of RF resonators for continuous-wave electron paramagnetic resonance (cw-EPR) and proton nuclear magnetic resonance (NMR) imaging. We developed a composite resonator system with multi-coil parallel-gap resonators for co-registration EPR/NMR imaging. The resonance frequencies of each resonator were 21.8 MHz for NMR and 670 MHz for EPR. A smaller resonator (22 mm in diameter) for use in EPR was placed coaxially in a larger resonator (40 mm in diameter) for use in NMR. RF magnetic fields in the composite resonator system were visualized by measuring a homogeneous 4-hydroxy-2,2,6,6-tetramethyl-piperidinooxy (4-hydroxy-TEMPO) solution in a test tube. A phantom of five tubes containing distilled water and 4-hydroxy-TEMPO solution was also measured to demonstrate the potential usefulness of this composite resonator system in biomedical science. An image of unpaired electrons was obtained for 4-hydroxy-TEMPO in three tubes, and was successfully mapped on the proton image for five tubes. Technical problems in the implementation of a composite resonator system are discussed with regard to co-registration EPR/NMR imaging for animal experiments.

  6. Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators.

    PubMed

    Tian, Yonghui; Zhao, Yongpeng; Chen, Wenjie; Guo, Anqi; Li, Dezhao; Zhao, Guolin; Liu, Zilong; Xiao, Huifu; Liu, Guipeng; Yang, Jianhong

    2015-10-01

    We report an electro-optic photonic integrated circuit which can perform the exclusive (XOR) logic operation based on two silicon parallel-cascaded microring resonators (MRRs) fabricated on the silicon-on-insulator (SOI) platform. PIN diodes embedded around MRRs are employed to achieve the carrier injection modulation. Two electrical pulse sequences regarded as two operands of operations are applied to PIN diodes to modulate two MRRs through the free carrier dispersion effect. The final operation result of two operands is output at the Output port in the form of light. The scattering matrix method is employed to establish numerical model of the device, and numerical simulator SG-framework is used to simulate the electrical characteristics of the PIN diodes. XOR operation with the speed of 100Mbps is demonstrated successfully. PMID:26480148

  7. Common-Mode Circulating Current Control of Paralleled Interleaved Three-Phase Two-Level Voltage-Source Converters With Discontinuous Space-Vector Modulation

    SciTech Connect

    Zhang, Di; Wang, Fei; Burgos, Rolando; Boroyevich, Dushan

    2011-01-01

    This paper presents a control method to limit the common-mode (CM) circulating current between paralleled three-phase two-level voltage-source converters (VSCs) with discontinuous space-vector pulsewidth modulation (DPWM) and interleaved switching cycles. This CM circulating current can be separated into two separate components based on their frequency; the high-frequency component, close to the switching frequency, can be effectively limited by means of passive components; the low-frequency component, close to the fundamental frequency, embodies the jumping CM circulating current observed in parallel VSCs. This is the main reason why it is usually recommended not to implement discontinuous and interleaving PWM together. The origin of this low-frequency circulating current is analyzed in detail, and based on this, a method to eliminate its presence is proposed by impeding the simultaneous use of different zero vectors between the converters. This control method only requires six additional switching actions per line cycle, presenting a minimum impact on the converter thermal design. The analysis and the feasibility of the control method are verified by simulation and experimental results.

  8. Parallel magnetic resonance imaging as approximation in a reproducing kernel Hilbert space

    NASA Astrophysics Data System (ADS)

    Athalye, Vivek; Lustig, Michael; Uecker, Martin

    2015-04-01

    In magnetic resonance imaging data samples are collected in the spatial frequency domain (k-space), typically by time-consuming line-by-line scanning on a Cartesian grid. Scans can be accelerated by simultaneous acquisition of data using multiple receivers (parallel imaging), and by using more efficient non-Cartesian sampling schemes. To understand and design k-space sampling patterns, a theoretical framework is needed to analyze how well arbitrary sampling patterns reconstruct unsampled k-space using receive coil information. As shown here, reconstruction from samples at arbitrary locations can be understood as approximation of vector-valued functions from the acquired samples and formulated using a reproducing kernel Hilbert space with a matrix-valued kernel defined by the spatial sensitivities of the receive coils. This establishes a formal connection between approximation theory and parallel imaging. Theoretical tools from approximation theory can then be used to understand reconstruction in k-space and to extend the analysis of the effects of samples selection beyond the traditional image-domain g-factor noise analysis to both noise amplification and approximation errors in k-space. This is demonstrated with numerical examples.

  9. Parallel Magnetic Resonance Imaging as Approximation in a Reproducing Kernel Hilbert Space

    PubMed Central

    Athalye, Vivek; Lustig, Michael; Uecker, Martin

    2015-01-01

    In Magnetic Resonance Imaging (MRI) data samples are collected in the spatial frequency domain (k-space), typically by time-consuming line-by-line scanning on a Cartesian grid. Scans can be accelerated by simultaneous acquisition of data using multiple receivers (parallel imaging), and by using more efficient non-Cartesian sampling schemes. To understand and design k-space sampling patterns, a theoretical framework is needed to analyze how well arbitrary sampling patterns reconstruct unsampled k-space using receive coil information. As shown here, reconstruction from samples at arbitrary locations can be understood as approximation of vector-valued functions from the acquired samples and formulated using a Reproducing Kernel Hilbert Space (RKHS) with a matrix-valued kernel defined by the spatial sensitivities of the receive coils. This establishes a formal connection between approximation theory and parallel imaging. Theoretical tools from approximation theory can then be used to understand reconstruction in k-space and to extend the analysis of the effects of samples selection beyond the traditional image-domain g-factor noise analysis to both noise amplification and approximation errors in k-space. This is demonstrated with numerical examples. PMID:25983363

  10. High frequency, high time resolution time-to-digital converter employing passive resonating circuits.

    PubMed

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-05-01

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed. PMID:20515164

  11. High frequency, high time resolution time-to-digital converter employing passive resonating circuits

    SciTech Connect

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-05-15

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.

  12. Characterization and snubbing of a bidirectional MCT in a resonant ac link converter

    NASA Technical Reports Server (NTRS)

    Lee, Tony; Elbuluk, Malik E.; Zinger, Donald S.

    1993-01-01

    The MOS-Controlled Thyristor (MCT) is emerging as a powerful switch that combines the better characteristics of existing power devices. A study of switching stresses on an MCT switch under zero voltage resonant switching is presented. The MCT is used as a bidirectional switch in an ac/ac pulse density modulated inverter for induction motor drive. Current and voltage spikes are observed and analyzed with variations in the timing of the switching. Different snubber circuit configurations are under investigation to minimize the effect of these transients. The results will be extended to study and test the MCT switching in a medium power (5 hp) induction motor drive.

  13. Relationships among classes of self-oscillating transistor parallel inverters. [dc to square wave converter circuits for power conditioning

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Lee, F. C. Y.; Burns, W. W., III; Owen, H. A., Jr.

    1974-01-01

    A procedure is developed for classifying dc-to-square-wave two-transistor parallel inverters used in power conditioning applications. The inverters are reduced to equivalent RLC networks and are then grouped with other inverters with the same basic equivalent circuit. Distinction between inverter classes is based on the topology characteristics of the equivalent circuits. Information about one class can then be extended to another class using the basic oscillation theory and the concept of duality. Oscillograms from test circuits confirm the validity of the procedure adopted.

  14. High Efficiency Bi-Directional DC-DC Converter With ZVS-ZCS Applied For Parallel Active Filtering

    NASA Astrophysics Data System (ADS)

    Romero, V.; Soto, A.

    2011-10-01

    In space missions, it is becoming more and more common to have strict EMC requirements to be met. Coping with this is a challenge for all those instruments and subsystems implementing AC loads. In particular, the driving of motors is one of the highest challenges due to the low frequency and high amplitude of the emissions. The driving of these motors without exceeding typical EMC levels implies adding an active filter at its input. Passive filtering approach is not useful due to bulk components required to filter such low frequencies. The aim of this paper is to show a parallel active filtering solution that implements significant advantages compared to other classical approaches in terms of mass and efficiency.

  15. Isolated and soft-switched power converter

    DOEpatents

    Peng, Fang Zheng; Adams, Donald Joe

    2002-01-01

    An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.

  16. High-throughput optogenetic functional magnetic resonance imaging with parallel computations

    PubMed Central

    Fang, Zhongnan; Lee, Jin Hyung

    2013-01-01

    Optogenetic functional magnetic resonance imaging (ofMRI) technology enables cell-type specific, temporally precise neuronal control and accurate, in vivo readout of resulting activity across the whole brain. With the ability to precisely control excitation and inhibition parameters, and to accurately record the resulting activity, there is an increased need for a high-throughput method to bring the ofMRI studies to their full potential. In this paper, an advanced system that can allow real-time fMRI with interactive control and analysis in a fraction of the MRI acquisition repetition time (TR) is proposed. With such high processing speed, sufficient time will be available for integration of future developments that can further enhance ofMRI data quality or better streamline the study. We designed and implemented a highly optimized, massively parallel system using graphics processing unit (GPU)s which achieves reconstruction, motion correction, and analysis of 3D volume data in approximately 12.80 ms. As a result, with a 750 ms TR and 4 interleaf fMRI acquisition, we can now conduct sliding window reconstruction, motion correction, analysis and display in approximately 1.7% of the TR. Therefore, a significant amount of time can now be allocated to integrating advanced but computationally intensive methods that can enable higher image quality and better analysis results all within a TR. Utilizing the proposed high-throughput imaging platform with sliding window reconstruction, we were also able to observe the much-debated initial dips in our ofMRI data. Combined with methods to further improve SNR, the proposed system will enable efficient real-time, interactive, high-throughput ofMRI studies. PMID:23747482

  17. A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer.

    PubMed

    Peng, Jianhong; Wang, Yuhui; Wang, Jialan; Zhou, Xin; Liu, Zhihong

    2011-10-15

    In this work, a new glucose sensor based on up-converting fluorescence resonance energy transfer (UC-FRET) was developed. Up-converting phosphors (UCPs, NaYF(4): Yb, Er), which were covalently labeled with Concanavalin A (ConA), were used as the energy donor with thiolated β-cyclodextrins (SH-β-CDs) functionalized gold nanoparticles as the energy acceptor. Due to the combination between ConA and SH-β-CDs, the energy donor and the acceptor were brought to close proximity, resulting in the quenching of the fluorescence of UCPs by gold nanoparticles. In the presence of glucose which competed with SH-β-CDs towards the binding sites of ConA, the biosensor (UCPs-ConA-SH-β-CDs-Au) was decomposed and the energy donor was separated from the acceptor. Therefore, the fluorescence of UCPs was restored dependent on the concentration of glucose. The increase of UCPs fluorescence intensity was proportional to glucose concentration within the range from 0.4 μM to 10μM in aqueous buffer, with a limit of detection (LOD) of 0.043 μM. A same linear range of glucose concentration was obtained in a human serum matrix (which was pretreated and thus contained no glucose) with a slightly higher LOD (0.065 μM). The glucose sensor was applied to real human serum samples with the results consistent with that of a classic hexokinase (HK) method, indicating that the UC-FRET biosensor was competent for directly sensing glucose in serum samples without optical interference, which benefited from the near infrared (NIR) excitation nature of UCPs. The results of this work suggested that the UC-FRET technique could be a promising alternative for detecting biomolecules in complex biological sample matrixes for diagnostic purposes. PMID:21852101

  18. A 12-bit high-speed column-parallel two-step single-slope analog-to-digital converter (ADC) for CMOS image sensors.

    PubMed

    Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao

    2014-01-01

    A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors. PMID:25407903

  19. A negative-capacitance equivalent circuit model for parallel-plate capacitive-gap-transduced micromechanical resonators.

    PubMed

    Akgul, Mehmet; Wu, Lingqi; Ren, Zeying; Nguyen, Clark T-C

    2014-05-01

    A small-signal equivalent circuit for parallel-plate capacitive-gap-transduced micromechanical resonators is introduced that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates circuit analysis, that better elucidates the mechanisms behind certain potentially puzzling measured phenomena, and that inspires circuit topologies that maximize performance in specific applications. For this work, a micromechanical disk resonator serves as the vehicle with which to derive the equivalent circuits for both radial-contour and wine-glass modes, which are then used in circuit simulations (via simulation) to match measurements on actual fabricated devices. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive- gap-transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for applications that must be stable against environmental perturbations, such as acceleration or power supply variations. Measurements on fabricated devices confirm predictions by the new model of up to 4× improvement in frequency stability against dc-bias voltage variations for contour- mode disk resonators as the resistance loading their ports increases. By enhancing circuit visualization, this circuit model makes more obvious the circuit design procedures and topologies most beneficial for certain mechanical circuits, e.g., filters and oscillators. PMID:24801124

  20. A mode converter to generate a Gaussian-like mode for injection into the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Lyneis, C. Benitez, J.; Hodgkinson, A.; Strohmeier, M.; Todd, D.; Plaum, B.; Thuillier, T.

    2014-02-15

    A number of superconducting electron cyclotron resonance (ECR) ion sources use gyrotrons at either 24 or 28 GHz for ECR heating. In these systems, the microwave power is launched into the plasma using the TE{sub 01} circular waveguide mode. This is fundamentally different and may be less efficient than the typical rectangular, linearly polarized TE{sub 10} mode used for launching waves at lower frequencies. To improve the 28 GHz microwave coupling in VENUS, a TE{sub 01}-HE{sub 11} mode conversion system has been built to test launching HE{sub 11} microwave power into the plasma chamber. The HE{sub 11} mode is a quasi-Gaussian, linearly polarized mode, which should couple strongly to the plasma electrons. The mode conversion is done in two steps. First, a 0.66 m long “snake” converts the TE{sub 01} mode to the TE{sub 11} mode. Second, a corrugated circular waveguide excites the HE{sub 11} mode, which is launched directly into the plasma chamber. The design concept draws on the development of similar devices used in tokamaks and stellerators. The first tests of the new coupling system are described below.

  1. Determination of angiotensin I-converting enzyme activity in cell culture using fluorescence resonance energy transfer peptides.

    PubMed

    Sabatini, R A; Bersanetti, P A; Farias, S L; Juliano, L; Juliano, M A; Casarini, D E; Carmona, A K; Paiva, A C M; Pesquero, J B

    2007-04-15

    An assay using fluorescence resonance energy transfer peptides was developed to assess angiotensin I-converting enzyme (ACE) activity directly on the membrane of transfected Chinese hamster ovary cells (CHO) stably expressing the full-length somatic form of the enzyme. The advantage of the new method is the possibility of using selective substrates for the two active sites of the enzyme, namely Abz-FRK(Dnp)P-OH for somatic ACE, Abz-SDK(Dnp)P-OH for the N domain, and Abz-LFK(Dnp)-OH for the C domain. Hydrolysis of a peptide bond between the donor/acceptor pair (Abz/Dnp) generates detectable fluorescence, allowing quantitative measurement of the enzymatic activity. The kinetic parameter K(m) for the hydrolysis of the three substrates by ACE in this system was also determined and the values are comparable to those obtained using the purified enzyme in solution. The specificity of the activity was demonstrated by the complete inhibition of the hydrolysis by the ACE inhibitor lisinopril. Therefore, the results presented in this work show for the first time that determination of ACE activity directly on the surface of intact CHO cells is feasible and that the method is reliable and sensitive. In conclusion, we describe a methodology that may represent a new tool for the assessment of ACE activity which will open the possibility to study protein interactions in cells in culture. PMID:17320031

  2. A mode converter to generate a Gaussian-like mode for injection into the VENUS electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Lyneis, C.; Benitez, J.; Hodgkinson, A.; Plaum, B.; Strohmeier, M.; Thuillier, T.; Todd, D.

    2014-02-01

    A number of superconducting electron cyclotron resonance (ECR) ion sources use gyrotrons at either 24 or 28 GHz for ECR heating. In these systems, the microwave power is launched into the plasma using the TE01 circular waveguide mode. This is fundamentally different and may be less efficient than the typical rectangular, linearly polarized TE10 mode used for launching waves at lower frequencies. To improve the 28 GHz microwave coupling in VENUS, a TE01-HE11 mode conversion system has been built to test launching HE11 microwave power into the plasma chamber. The HE11 mode is a quasi-Gaussian, linearly polarized mode, which should couple strongly to the plasma electrons. The mode conversion is done in two steps. First, a 0.66 m long "snake" converts the TE01 mode to the TE11 mode. Second, a corrugated circular waveguide excites the HE11 mode, which is launched directly into the plasma chamber. The design concept draws on the development of similar devices used in tokamaks and stellerators. The first tests of the new coupling system are described below.

  3. Performance of a prototype atomic clock based on lin parallel lin coherent population trapping resonances in Rb atomic vapor

    SciTech Connect

    Mikhailov, Eugeniy E.; Horrom, Travis; Belcher, Nathan; Novikova, Irina

    2010-03-15

    We report on the performance of the first table-top prototype atomic clock based on coherent population trapping (CPT) resonances with parallel linearly polarized optical fields (lin parallel lin configuration). Our apparatus uses a vertical-cavity surface-emitting laser (VCSEL) tuned to the D{sub 1} line of {sup 87}Rb with the current modulation at the {sup 87}Rb hyperfine frequency. We demonstrate cancellation of the first-order light shift by the proper choice of rf modulation power and further improve our prototype clock stability by optimizing the parameters of the microwave lock loop. Operating in these optimal conditions, we measured a short-term fractional frequency stability (Allan deviation) 2x10{sup -11}{tau}{sup -1/2} for observation times 1 s{<=}{tau}{<=}20 s. This value is limited by large VCSEL phase noise and environmental temperature fluctuation. Further improvements in frequency stability should be possible with an apparatus designed as a dedicated lin parallel lin CPT resonance clock with environmental impacts minimized.

  4. Making resonance a common case: a high-performance implementation of collective I/O on parallel file systems

    SciTech Connect

    Davis, Marion Kei; Zhang, Xuechen; Jiang, Song

    2009-01-01

    Collective I/O is a widely used technique to improve I/O performance in parallel computing. It can be implemented as a client-based or server-based scheme. The client-based implementation is more widely adopted in MPI-IO software such as ROMIO because of its independence from the storage system configuration and its greater portability. However, existing implementations of client-side collective I/O do not take into account the actual pattern offile striping over multiple I/O nodes in the storage system. This can cause a significant number of requests for non-sequential data at I/O nodes, substantially degrading I/O performance. Investigating the surprisingly high I/O throughput achieved when there is an accidental match between a particular request pattern and the data striping pattern on the I/O nodes, we reveal the resonance phenomenon as the cause. Exploiting readily available information on data striping from the metadata server in popular file systems such as PVFS2 and Lustre, we design a new collective I/O implementation technique, resonant I/O, that makes resonance a common case. Resonant I/O rearranges requests from multiple MPI processes to transform non-sequential data accesses on I/O nodes into sequential accesses, significantly improving I/O performance without compromising the independence ofa client-based implementation. We have implemented our design in ROMIO. Our experimental results show that the scheme can increase I/O throughput for some commonly used parallel I/O benchmarks such as mpi-io-test and ior-mpi-io over the existing implementation of ROMIO by up to 157%, with no scenario demonstrating significantly decreased performance.

  5. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  6. Resonance parallel viscosity in the banana regime in poloidally rotating tokamak plasmas

    SciTech Connect

    Shaing, K.C.; Hsu, C.T.; Dominguez, N. )

    1994-05-01

    Parallel viscosity in the banana regime in a poloidally ([bold E][times][bold B]) rotating tokamak plasma is calculated to include the effects of orbit squeezing and to allow the poloidal [bold E][times][bold B] Mach number [ital M][sub [ital p

  7. A study of Schwarz converters for nuclear powered spacecraft

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; Schwarze, Gene E.

    1987-01-01

    High power space systems which use low dc voltage, high current sources such as thermoelectric generators, will most likely require high voltage conversion for transmission purposes. This study considers the use of the Schwarz resonant converter for use as the basic building block to accomplish this low-to-high voltage conversion for either a dc or an ac spacecraft bus. The Schwarz converter has the important assets of both inherent fault tolerance and resonant operation; parallel operation in modular form is possible. A regulated dc spacecraft bus requires only a single stage converter while a constant frequency ac bus requires a cascaded Schwarz converter configuration. If the power system requires constant output power from the dc generator, then a second converter is required to route unneeded power to a ballast load.

  8. A study of Schwarz converters for nuclear powered spacecraft

    SciTech Connect

    Stuart, T.A.; Schwarze, G.E.

    1994-09-01

    High power space systems which use low dc voltage, high current sources such as thermoelectric generators, will most likely require high voltage conversion for transmission purposes. This study considers the use of the Schwarz resonant converter for use as the basic building block to accomplish this low-to-high voltage conversion for either a dc or an ac spacecraft bus. The Schwarz converter has the important assets of both inherent fault tolerance and resonant operation and parallel operation in modular form is possible. A regulated dc spacecraft bus requires only a single stage converter while a constant frequency ac bus requires a cascaded Schwarz converter configuration. If the power system requires constant output power from the dc generator, then a second converter is required to route unneeded power to a ballast load.

  9. Fabrication artifacts and parallel loss channels in metamorphic epitaxial aluminum superconducting resonators

    NASA Astrophysics Data System (ADS)

    Richardson, C. J. K.; Siwak, N. P.; Hackley, J.; Keane, Z. K.; Robinson, J. E.; Arey, B.; Arslan, I.; Palmer, B. S.

    2016-06-01

    Fabrication of coplanar waveguide resonators with internal quality factors near 106 remains challenging. Here, high-purity superconductors are implemented through metamorphic epitaxial aluminum that is grown via molecular beam epitaxy on silicon and sapphire substrates. X-ray diffraction and scanning transmission electron microscopy indicate an abrupt highly ordered interface that results in crystal relaxation within a few monolayers of the substrate interface and no measurable interfacial contamination. Quarter-wave coplanar waveguide resonators are fabricated using optical lithography and measured at temperatures below 100 mK. Post measurement characterization with charge contrast imaging in a scanning electron microscope identifies processing artifacts at the waveguide sidewalls, on the exposed substrate area and on the exposed aluminum surface. Of primary importance are processing induced corrosion defects on aluminum sidewalls, nanoparticle contamination, and photoresist residue that is difficult to remove without affecting the superconductor material. Likely correlations between these artifacts and the measured quality factor are discussed in context of device to device variations in resonator performance.

  10. A non-resonant, frequency up-converted electromagnetic energy harvester from human-body-induced vibration for hand-held smart system applications

    NASA Astrophysics Data System (ADS)

    Halim, Miah A.; Park, Jae Y.

    2014-03-01

    We present a non-resonant, frequency up-converted electromagnetic energy harvester that generates significant power from human-body-induced vibration, e.g., hand-shaking. Upon excitation, a freely movable non-magnetic ball within a cylinder periodically hits two magnets suspended on two helical compression springs located at either ends of the cylinder, allowing those to vibrate with higher frequencies. The device parameters have been designed based on the characteristics of human hand-shaking vibration. A prototype has been developed and tested both by vibration exciter (for non-resonance test) and by manual hand-shaking. The fabricated device generated 110 μW average power with 15.4 μW cm-3 average power density, while the energy harvester was mounted on a smart phone and was hand-shaken, indicating its ability in powering portable hand-held smart devices from low frequency (<5 Hz) vibrations.

  11. Parallel-scan based microarray imager capable of simultaneous surface plasmon resonance and hyperspectral fluorescence imaging.

    PubMed

    Liu, Zhiyi; Yang, Lei; Liu, Le; Chong, Xinyuan; Guo, Jun; Ma, Suihua; Ji, Yanhong; He, Yonghong

    2011-12-15

    With the development of the microarray technology, demands for array detection techniques become higher and higher. For many microarrays, several biomolecular interactions occur simultaneously and the interplay of various factors that affect these interactions remains poorly understood. Detecting such interactions with a single technique can often be a difficult and complicated process. In this work we propose a combined technique which enables simultaneous angle-interrogation surface plasmon resonance (SPR) sensing and hyperspectral fluorescence imaging. This tandem technique offers two-dimensional imaging of the whole array plane. The refractive index information obtained from SPR sensing and the physicochemical properties obtained from fluorescence imaging provide a comprehensive analysis of biological events on the array-chip. In addition, SPR and fluorescence detection techniques confirm each other in experimental results to exclude false-positive or false-negative cases. In terms of SPR sensing performance, the refractive index resolution is 3.86×10(-6) refractive index units (RIU), and the detection limit is 10(4) cfu/ml of Escherichia coli bacteria. The resolving power and detection sensitivity of fluorescence imaging are approximately 20 μm and 0.61 fluors/μm(2), respectively. Finally, two model experiments, detecting the DNA hybridization and biotin-avidin interactions respectively, demonstrate the biomedical application of this system. PMID:21996322

  12. Analysis and control of a cellular converter system with stochastic ripple cancellation and minimal magnetics

    SciTech Connect

    Perreault, D.J.; Kassakian, J.G.

    1997-01-01

    A parallel converter architecture based on the resonant pole inverter (RPI) topology is presented. It is shown that this architecture minimizes the output magnetics required for current sharing. A new current control scheme is introduced which reduces peak currents, losses, and output voltage ripple for many operating conditions. This new control method is applicable to both the single RPI and the parallel architecture. Additionally, the paper analytically quantifies the degree of passive ripple cancellation between cells of a parallel architecture. It is shown that the rms ripple current of an N-cell paralleled converter system is a factor of 1/{radical}N lower than for an equivalent single converter. These results are verified using a piecewise-linear model. The authors conclude that the parallel architecture overcomes some of the major disadvantages of the conventional RPI.

  13. Time-resolved contrast-enhanced magnetic resonance angiography of the hand with parallel imaging and view sharing: initial experience.

    PubMed

    Brauck, Katja; Maderwald, Stefan; Vogt, Florian M; Zenge, Michael; Barkhausen, Jörg; Herborn, Christoph U

    2007-01-01

    We sought to compare a three-dimensional, contrast-enhanced, magnetic resonance angiogram (3D CE MRA) sequence combining parallel-imaging (generalised autocalibrating partially parallel acquisitions (GRAPPA)) with a time-resolved echo-shared angiographic technique (TREAT) in an intraindividual comparison to a standard 3D MRA sequence. Four healthy volunteers (27-32 years), and 11 patients (11-82 years) with vascular pathologies of the hand were examined on a 1.5-Tesla (T) MR system (Magnetom Avanto, Siemens, Erlangen, Germany) using two multichannel receiver coils. Following automatic injection (flow rate 2.5 cc/s) of 0.1 mmol/kg gadoterate (Dotarem, Guerbet, Roissy, France), 32 consecutive 3D data sets were collected with the TREAT sequence (TR/TE: 4.02/1.31 ms, FA: 10 degrees, GRAPPA acceleration factor: R=2, TREAT factor: 5, voxel size: 1.0 x 0.7 x 1.3 mm(3)) and a T1-wwighted 3D gradient-echo sequence (TR/TE: 5.3/1.57 ms, FA: 30 degrees, GRAPPA acceleration factor: 2, voxel size: 0.71 x 0.71 x 0.71 mm(3,)). MR data sets were evaluated and compared for image quality and visualisation of vascular details. In the volunteer group, all MR imaging was successful while technical problems prevented acquisition of the standard protocol in two patients. For the corresponding segments, the number of visible segments was equal on both sequences. Overall image quality was significantly better on the standard protocol than on the TREAT protocol. TREAT MRA provided functional information in lesions with rapid blood flow, e.g. detection of feeding and draining vessels in an haemangioma. TREAT-MRA is a robust technique that combines morphological and functional information of the hand vasculature and deals with the very special physiological demands of vascular lesions, such as quick arteriovenous transit time. PMID:16710664

  14. Disposable micro-fluidic biosensor array for online parallelized cell adhesion kinetics analysis on quartz crystal resonators

    NASA Astrophysics Data System (ADS)

    Cama, G.; Jacobs, T.; Dimaki, M. I.; Svendsen, W. E.; Hauptmann, P.; Naumann, M.

    2010-08-01

    In this contribution we present a new disposable micro-fluidic biosensor array for the online analysis of adherent Madin Darby canine kidney (MDCK-II) cells on quartz crystal resonators (QCRs). The device was conceived for the parallel cultivation of cells providing the same experimental conditions among all the sensors of the array. As well, dedicated sensor interface electronics were developed and optimized for fast spectra acquisition of all 16 QCRs with a miniaturized impedance analyzer. This allowed performing cell cultivation experiments for the observation of fast cellular reaction kinetics with focus on the comparison of the resulting sensor signals influenced by different cell distributions on the sensor surface. To prove the assumption of equal flow circulation within the symmetric micro-channel network and support the hypothesis of identical cultivation conditions for the cells living above the sensors, the influence of fabrication tolerances on the flow regime has been simulated. As well, the shear stress on the adherent cell layer due to the flowing media was characterized. Injection molding technology was chosen for the cheap mass production of disposable devices. Furthermore, the injection molding process was simulated in order to optimize the mold geometry and minimize the shrinkage and the warpage of the parts. MDCK-II cells were cultivated in the biosensor array. Parallel cultivation of cells on the gold surface of the QCRs led to first observations of the impact of the cell distribution on the sensor signals during cell cultivation. Indeed, the initial cell distribution revealed a significant influence on the changes in the measured acoustic load on the QCRs suggesting dissimilar cell migrations as well as proliferation kinetics of a non-confluent MDCK-II cell layer.

  15. Photocapacitive image converter

    NASA Technical Reports Server (NTRS)

    Miller, W. E.; Sher, A.; Tsuo, Y. H. (Inventor)

    1982-01-01

    An apparatus for converting a radiant energy image into corresponding electrical signals including an image converter is described. The image converter includes a substrate of semiconductor material, an insulating layer on the front surface of the substrate, and an electrical contact on the back surface of the substrate. A first series of parallel transparent conductive stripes is on the insulating layer with a processing circuit connected to each of the conductive stripes for detecting the modulated voltages generated thereon. In a first embodiment of the invention, a modulated light stripe perpendicular to the conductive stripes scans the image converter. In a second embodiment a second insulating layer is deposited over the conductive stripes and a second series of parallel transparent conductive stripes perpendicular to the first series is on the second insulating layer. A different frequency current signal is applied to each of the second series of conductive stripes and a modulated image is applied to the image converter.

  16. Hybrid photomultiplier tube and photodiode parallel detection array for wideband optical spectroscopy of the breast guided by magnetic resonance imaging

    PubMed Central

    Mastanduno, Michael A.; Jiang, Shudong; Pogue, Brian W.; Paulsen, Keith D.

    2013-01-01

    Abstract. A new optical parallel detection system of hybrid frequency and continuous-wave domains was developed to improve the data quality and accuracy in recovery of all breast optical properties. This new system was deployed in a previously existing system for magnetic resonance imaging (MRI)-guided spectroscopy, and allows incorporation of additional near-infrared wavelengths beyond 850 nm, with interlaced channels of photomultiplier tubes (PMTs) and silicon photodiodes (PDs). The acquisition time for obtaining frequency-domain data at six wavelengths (660, 735, 785, 808, 826, and 849 nm) and continuous-wave data at three wavelengths (903, 912, and 948 nm) is 12 min. The dynamic ranges of the detected signal are 105 and 106 for PMT and PD detectors, respectively. Compared to the previous detection system, the SNR ratio of frequency-domain detection was improved by nearly 103 through the addition of an RF amplifier and the utilization of programmable gain. The current system is being utilized in a clinical trial imaging suspected breast cancer tumors as detected by contrast MRI scans. PMID:23979460

  17. Hybrid photomultiplier tube and photodiode parallel detection array for wideband optical spectroscopy of the breast guided by magnetic resonance imaging.

    PubMed

    El-Ghussein, Fadi; Mastanduno, Michael A; Jiang, Shudong; Pogue, Brian W; Paulsen, Keith D

    2014-01-01

    A new optical parallel detection system of hybrid frequency and continuous-wave domains was developed to improve the data quality and accuracy in recovery of all breast optical properties. This new system was deployed in a previously existing system for magnetic resonance imaging (MRI)-guided spectroscopy, and allows incorporation of additional near-infrared wavelengths beyond 850 nm, with interlaced channels of photomultiplier tubes (PMTs) and silicon photodiodes (PDs). The acquisition time for obtaining frequency-domain data at six wavelengths (660, 735, 785, 808, 826, and 849 nm) and continuous-wave data at three wavelengths (903, 912, and 948 nm) is 12 min. The dynamic ranges of the detected signal are 105 and 106 for PMT and PD detectors, respectively. Compared to the previous detection system, the SNR ratio of frequency-domain detection was improved by nearly 103 through the addition of an RF amplifier and the utilization of programmable gain. The current system is being utilized in a clinical trial imaging suspected breast cancer tumors as detected by contrast MRI scans. PMID:23979460

  18. A study of DC-DC converters with MCT's for arcjet power supplies

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.

    1994-01-01

    Many arcjet DC power supplies use PWM full bridge converters with large arrays of parallel FET's. This report investigates an alternative supply using a variable frequency series resonant converter with small arrays of parallel MCT's (metal oxide semiconductor controlled thyristors). The reasons for this approach are to: increase reliability by reducing the number of switching devices; and decrease the surface mounting area of the switching arrays. The variable frequency series resonant approach is used because the relatively slow switching speed of the MCT precludes the use of PWM. The 10 kW converter operated satisfactorily with an efficiency of over 91 percent. Test results indicate this efficiency could be increased further by additional optimization of the series resonant inductor.

  19. A Fourier analysis for a fast simulation algorithm. [for switching converters

    NASA Technical Reports Server (NTRS)

    King, Roger J.

    1988-01-01

    This paper presents a derivation of compact expressions for the Fourier series analysis of the steady-state solution of a typical switching converter. The modeling procedure for the simulation and the steady-state solution is described, and some desirable traits for its matrix exponential subroutine are discussed. The Fourier analysis algorithm was tested on a phase-controlled parallel-loaded resonant converter, providing an experimental confirmation.

  20. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging.

    PubMed

    McElcheran, Clare E; Yang, Benson; Anderson, Kevan J T; Golenstani-Rad, Laleh; Graham, Simon J

    2015-01-01

    Deep Brain Stimulation (DBS) is increasingly used to treat a variety of brain diseases by sending electrical impulses to deep brain nuclei through long, electrically conductive leads. Magnetic resonance imaging (MRI) of patients pre- and post-implantation is desirable to target and position the implant, to evaluate possible side-effects and to examine DBS patients who have other health conditions. Although MRI is the preferred modality for pre-operative planning, MRI post-implantation is limited due to the risk of high local power deposition, and therefore tissue heating, at the tip of the lead. The localized power deposition arises from currents induced in the leads caused by coupling with the radiofrequency (RF) transmission field during imaging. In the present work, parallel RF transmission (pTx) is used to tailor the RF electric field to suppress coupling effects. Electromagnetic simulations were performed for three pTx coil configurations with 2, 4, and 8-elements, respectively. Optimal input voltages to minimize coupling, while maintaining RF magnetic field homogeneity, were determined for all configurations using a Nelder-Mead optimization algorithm. Resulting electric and magnetic fields were compared to that of a 16-rung birdcage coil. Experimental validation was performed with a custom-built 4-element pTx coil. In simulation, 95-99% reduction of the electric field at the tip of the lead was observed between the various pTx coil configurations and the birdcage coil. Maximal reduction in E-field was obtained with the 8-element pTx coil. Magnetic field homogeneity was comparable to the birdcage coil for the 4- and 8-element pTx configurations. In experiment, a temperature increase of 2±0.15°C was observed at the tip of the wire using the birdcage coil, whereas negligible increase (0.2±0.15°C) was observed with the optimized pTx system. Although further research is required, these initial results suggest that the concept of optimizing pTx to reduce DBS

  1. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging

    PubMed Central

    McElcheran, Clare E.; Yang, Benson; Anderson, Kevan J. T.; Golenstani-Rad, Laleh; Graham, Simon J.

    2015-01-01

    Deep Brain Stimulation (DBS) is increasingly used to treat a variety of brain diseases by sending electrical impulses to deep brain nuclei through long, electrically conductive leads. Magnetic resonance imaging (MRI) of patients pre- and post-implantation is desirable to target and position the implant, to evaluate possible side-effects and to examine DBS patients who have other health conditions. Although MRI is the preferred modality for pre-operative planning, MRI post-implantation is limited due to the risk of high local power deposition, and therefore tissue heating, at the tip of the lead. The localized power deposition arises from currents induced in the leads caused by coupling with the radiofrequency (RF) transmission field during imaging. In the present work, parallel RF transmission (pTx) is used to tailor the RF electric field to suppress coupling effects. Electromagnetic simulations were performed for three pTx coil configurations with 2, 4, and 8-elements, respectively. Optimal input voltages to minimize coupling, while maintaining RF magnetic field homogeneity, were determined for all configurations using a Nelder-Mead optimization algorithm. Resulting electric and magnetic fields were compared to that of a 16-rung birdcage coil. Experimental validation was performed with a custom-built 4-element pTx coil. In simulation, 95-99% reduction of the electric field at the tip of the lead was observed between the various pTx coil configurations and the birdcage coil. Maximal reduction in E-field was obtained with the 8-element pTx coil. Magnetic field homogeneity was comparable to the birdcage coil for the 4- and 8-element pTx configurations. In experiment, a temperature increase of 2±0.15°C was observed at the tip of the wire using the birdcage coil, whereas negligible increase (0.2±0.15°C) was observed with the optimized pTx system. Although further research is required, these initial results suggest that the concept of optimizing pTx to reduce DBS

  2. A Column-Parallel Hybrid Analog-to-Digital Converter Using Successive-Approximation-Register and Single-Slope Architectures with Error Correction for Complementary Metal Oxide Silicon Image Sensors

    NASA Astrophysics Data System (ADS)

    Li, Tsung-Ling; Sakai, Shin; Kawada, Shun; Goda, Yasuyuki; Wakashima, Shunichi; Kuroda, Rihito; Sugawa, Shigetoshi

    2013-04-01

    In this paper, a column-parallel hybrid analog-to-digital converter (ADC) architecture taking the advantages of both successive-approximation-register (SAR) and single-slope (SS) architectures has been developed for CMOS image sensors. The proposed architecture achieves high conversion speed and low power consumption without requiring a high clock frequency and a large number of capacitors. Moreover, an error correction methodology has been presented to calibrate capacitance mismatches in a SAR capacitor array for linearity improvement. An 11-bit hybrid prototype ADC has been implemented in a 0.18-µm 1-poly 5-metal standard CMOS process. The conversion time is 1.225 µs with a maximum operation clock frequency of 40 MHz and it consumes 48 µW. With the proposed error correction, the measured differential nonlinearity (DNL) and integral nonlinearity (INL) are +0.40/-0.44 least significant bit (LSB) and +1.21/-1.12 LSB, respectively.

  3. Resonance line transfer calculations by doubling thin layers. I - Comparison with other techniques. II - The use of the R-parallel redistribution function. [planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Yelle, Roger V.; Wallace, Lloyd

    1989-01-01

    A versatile and efficient technique for the solution of the resonance line scattering problem with frequency redistribution in planetary atmospheres is introduced. Similar to the doubling approach commonly used in monochromatic scattering problems, the technique has been extended to include the frequency dependence of the radiation field. Methods for solving problems with external or internal sources and coupled spectral lines are presented, along with comparison of some sample calculations with results from Monte Carlo and Feautrier techniques. The doubling technique has also been applied to the solution of resonance line scattering problems where the R-parallel redistribution function is appropriate, both neglecting and including polarization as developed by Yelle and Wallace (1989). With the constraint that the atmosphere is illuminated from the zenith, the only difficulty of consequence is that of performing precise frequency integrations over the line profiles. With that problem solved, it is no longer necessary to use the Monte Carlo method to solve this class of problem.

  4. A study of resonant-cavity and fiberglass-filled parallel baffles as duct silencers. [for wind tunnels

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.

    1982-01-01

    Acoustical performance and pressure drop were measured for two types of splitters designed to attenuate sound propagating in ducts - resonant-cavity baffles and fiberglass-filled baffles. Arrays of four baffles were evaluated in the 7- by 10-foot wind tunnel number 1 at Ames Research Center at flow speeds from 0 to 41 m/sec. The baffles were 2.1 m high, 305 to 406 mm thick, and 3.1 to 4.4 m long. Emphasis was on measurements of silencer insertion loss as affected by variations of such parameters as baffle length, baffle thickness, perforated skin geometry, cavity size and shape, cavity damping, wind speed, and acoustic field directivity. An analytical method for predicting silencer performance is described and compared with measurements. With the addition of cavity damping in the form of 25-mm foam linings, the insertion loss above 250 Hz of the resonant-cavity baffles was improved 2 to 7 db compared with the undamped baffles; the loss became equal to or greater than the insertion loss of comparable size fiberglass baffles at frequencies above 250 Hz. Variations of cavity size and shape showed that a series of cavities with triangular cross-sections (i.e., variable depth) were superior to cavities with rectangular cross sections (i.e., constant depth). In wind, the undamped, resonant-cavity baffles generated loud cavity-resonance tones; the tones could be eliminated by cavity damping.

  5. XTL Converter

    SciTech Connect

    Spurgeon, Steven R

    2015-10-07

    "XTL Converter" is a short Python script for electron microscopy simulation. The program takes an input crystal file in the VESTA *.XTL format and converts it to a text format readable by the multislice simulation program ìSTEM. The process of converting a crystal *.XTL file to the format used by the ìSTEM simulation program is quite tedious; it generally requires the user to select dozens or hundreds of atoms, rearranging and reformatting their position. Header information must also be reformatted to a specific style to be read by ìSTEM. "XTL Converter" simplifies this process, saving the user time and allowing for easy batch processing of crystals.

  6. XTL Converter

    Energy Science and Technology Software Center (ESTSC)

    2015-10-07

    "XTL Converter" is a short Python script for electron microscopy simulation. The program takes an input crystal file in the VESTA *.XTL format and converts it to a text format readable by the multislice simulation program ìSTEM. The process of converting a crystal *.XTL file to the format used by the ìSTEM simulation program is quite tedious; it generally requires the user to select dozens or hundreds of atoms, rearranging and reformatting their position. Headermore » information must also be reformatted to a specific style to be read by ìSTEM. "XTL Converter" simplifies this process, saving the user time and allowing for easy batch processing of crystals.« less

  7. Resonance

    NASA Astrophysics Data System (ADS)

    Perozzi, E.; Murdin, P.

    2000-11-01

    A resonance in CELESTIAL MECHANICS occurs when some of the quantities characterizing the motion of two or more celestial bodies can be considered as commensurable, i.e. their ratio is close to an integer fraction. In a simplified form, this can be expressed as ...

  8. Interaction between metamaterial resonators and intersubband transitions in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Gabbay, Alon; Reno, John; Wendt, Joel R.; Gin, Aaron; Wanke, Michael C.; Sinclair, Michael B.; Shaner, Eric; Brener, Igal

    2011-05-01

    We report on the coupling and interaction between the fundamental resonances of planar metamaterials (split ring resonators) and intersubband transitions in GaAs/AlGaAs quantum wells structures in the mid-infrared. An incident field polarized parallel to the sample surface is converted by the metamaterial resonators into a field with a finite component polarized normal to the surface and interacts strongly with the large dipole moment associated with quantum well intersubband transitions.

  9. Magnetorheological converters

    SciTech Connect

    Zal'tsgendler, E.A.; Kolomentsev, A.V.; Kordonskii, V.I.; Madorskii, L.S.

    1986-04-01

    The authors study the problems of constructing an electrohydraulic converter functioning based on the magnetoheological effect: the magnetorheological throttle (MR throttle). Requirements are listed that must be taken into account in developing the MR throttle. The paper attempts to calculate the flow-rate characteristics of the MR throttle. The rheological equation which describes sufficiently the mechanical properties of the magnetoheological suspensions is presented. The paper examines the calculation of the magnetic inductor for the example of a toroidal core with a gap, which simultaneously functions as the slot throttling channel. The use of the designs described enabled the development of bridge converters, which have a flat amplitude-frequency characteristic in the range 200-250 Hz and which have good energy indicators. Typical experimental logarithmic amplitude-frequency and phase-frequency characteristics of a bridge converter are shown.

  10. Noise amplification in parallel whole-head ultra-low-field magnetic resonance imaging using 306 detectors.

    PubMed

    Lin, Fa-Hsuan; Vesanen, Panu T; Nieminen, Jaakko O; Hsu, Yi-Cheng; Zevenhoven, Koos C J; Dabek, Juhani; Parkkonen, Lauri T; Zhdanov, Andrey; Ilmoniemi, Risto J

    2013-08-01

    In ultra-low-field magnetic resonance imaging, arrays of up to hundreds of highly sensitive superconducting quantum interference devices (SQUIDs) can be used to detect the weak magnetic fields emitted by the precessing magnetization. Here, we investigate the noise amplification in sensitivity-encoded ultra-low-field MRI at various acceleration rates using a SQUID array consisting of 102 magnetometers, 102 gradiometers, or 306 magnetometers and gradiometers, to cover the whole head. Our results suggest that SQUID arrays consisting of 102 magnetometers and 102 gradiometers are similar in g-factor distribution. A SQUID array of 306 sensors (102 magnetometers and 204 gradiometers) only marginally improves the g-factor. Corroborating with previous studies, the g-factor in 2D sensitivity-encoded ultra-low-field MRI with 9 to 16-fold 2D accelerations using the SQUID array studied here may be acceptable. PMID:23023497

  11. Noise amplification in parallel whole-head ultra-low-field magnetic resonance imaging using 306 detectors

    PubMed Central

    Lin, Fa-Hsuan; Vesanen, Panu T.; Nieminen, Jaakko O.; Hsu, Yi-Cheng; Koos, C.J.; Ilmoniemi, åJ.

    2012-01-01

    In ultra-low-field (ULF) magnetic resonance imaging (MRI), arrays of up to hundreds of highly sensitive superconducting quantum interference devices (SQUIDs) can be used to detect the weak magnetic fields emitted by the precessing magnetization. Here we investigate the noise amplification in sensitivity encoded (SENSE) ULF MRI at various acceleration rates using a SQUID array consisting of 102 magnetometers, 102 gradiometers, or 306 magnetometers and gradiometers, to cover the whole head. Our results suggest that SQUID arrays consisting of 102 magnetometers and 102 gradiometers are similar in g-factor distribution. A SQUID array of 306 sensors (102 magnetometers and 204 gradiometers) only marginally improves the g-factor. Corroborating with previous studies, the g-factor in 2D SENSE ULF MRI with 9 to 16-fold 2D accelerations using the SQUID array studied here may be acceptable. PMID:23023497

  12. Triple voltage dc-to-dc converter and method

    SciTech Connect

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  13. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    NASA Astrophysics Data System (ADS)

    Verma, Prakash; Perera, Ajith; Morales, Jorge A.

    2013-11-01

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the 11B, 17O, 9Be, 19F, 1H, 13C, 35Cl, 33S,14N, 31P, and 67Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N7-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin-density distributions, and to

  14. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    SciTech Connect

    Verma, Prakash; Morales, Jorge A.; Perera, Ajith

    2013-11-07

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate

  15. High Density Power Converters for Photovoltaic Power Management

    NASA Astrophysics Data System (ADS)

    Sangwan, Rahul

    In typical photovoltaic systems, PV cells are connected in series to achieve high output voltages, which decreases conduction losses and helps the downstream power electronics operate at higher efficiencies. A series connection means that the current through the string is limited by the worst case cell, substring, or module, which can result in suboptimal operation of the rest of the string. Given how even small shading can have a large effect on performance, there has been growing interest in the use of distributed power management architectures to mitigate losses from variation in PV systems. In particular, partial power processing converters have gained traction as a means to improve the performance of PV arrays with small, distributed converters that configure in parallel with PV cells. These converters can use low voltage components, only process a fraction of the total power allowing them to achieve higher efficiencies and power density and also have higher reliability. This work details the design and operation of a partial power processing converter implemented as a Resonant Switched Capacitor (ReSC) converter. An integrated circuit (IC) is designed in 0.18 mum CMOS process. Operation at high frequencies (20-50 MHz) allows high levels of integration with air core inductors directly attached to the die through a gold bump, solder reflow process. Test results for the IC are presented with power density and efficiency metrics. The IC is then used as a partial power processing converter to implement equalization with a specially constructed PV panel. The converter is shown to mitigate power loss due to mismatch.

  16. Power converter

    NASA Technical Reports Server (NTRS)

    Black, J. M. (Inventor)

    1981-01-01

    A dc-to-dc converter employs four transistor switches in a bridge to chop dc power from a source, and a voltage multiplying diode rectifying ladder network to rectify and filter the chopped dc power for delivery to a load. The bridge switches are cross coupled in order for diagonally opposite pairs to turn on and off together using RC networks for the cross coupling to achieve the mode of operation of a free running multivibrator, and the diode rectifying ladder is configured to operate in a push-pull mode driven from opposite sides of the multivibrator outputs of the ridge switches. The four transistor switches provide a square-wave output voltage which as a peak-to-peak amplitude that is twice the input dc voltage, and is thus useful as a dc-to-ac inverter.

  17. Parallel optical sampler

    SciTech Connect

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

    2014-05-20

    An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCs convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.

  18. Convertible Stadium

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Air flotation technology used in NASA's Apollo program has found an interesting application in Hawaii's Aloha Stadium near Honolulu. The stadium's configuration can be changed, by moving entire 7,000-seat sections on a cushion of air, for best accommodation of spectators and participants at different types of events. In most stadiums, only a few hundred seats can be moved, by rolling sections on wheels or rails. At Aloha Stadium, 28,000 of the 50,000 seats can be repositioned for better spectator viewing and, additionally, for improved playing conditions. For example, a stadium designed primarily for football may compromise the baseball diamond by providing only a shallow outfield. Aloha's convertibility allows a full-size baseball field as well as optimum configurations for many other types of sports and special events. The photos show examples. The stadium owes its versatility to air flotation technology developed by General Motors. Its first large-scale application was movement of huge segments of the mammoth Saturn V moonbooster during assembly operations at Marshall Space Flight Center.

  19. Thermionic converter

    DOEpatents

    Rasor, Ned S.; Britt, Edward J.

    1976-01-01

    A gas-filled thermionic converter is provided with a collector and an emitter having a main emitter region and an auxiliary emitter region in electrical contact with the main emitter region. The main emitter region is so positioned with respect to the collector that a main gap is formed therebetween and the auxiliary emitter region is so positioned with respect to the collector that an auxiliary gap is formed therebetween partially separated from the main gap with access allowed between the gaps to allow ionizable gas in each gap to migrate therebetween. With heat applied to the emitter the work function of the auxiliary emitter region is sufficiently greater than the work function of the collector so that an ignited discharge occurs in the auxiliary gap and the work function of the main emitter region is so related to the work function of the collector that an unignited discharge occurs in the main gap sustained by the ions generated in the auxiliary gap. A current flows through a load coupled across the emitter and collector due to the unignited discharge in the main gap.

  20. Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators

    NASA Astrophysics Data System (ADS)

    Tavousi, Alireza; Mansouri-Birjandi, Mohammad Ali; Saffari, Mehdi

    2016-09-01

    Implementing of photonic sampling and quantizing analog-to-digital converters (ADCs) enable us to extract a single binary word from optical signals without need for extra electronic assisting parts. This would enormously increase the sampling and quantizing time as well as decreasing the consumed power. To this end, based on the concept of successive approximation method, a 4-bit full-optical ADC that operates using the intensity-dependent Kerr-like nonlinearity in a two dimensional photonic crystal (2DPhC) platform is proposed. The Silicon (Si) nanocrystal is chosen because of the suitable nonlinear material characteristic. An optical limiter is used for the clamping and quantization of each successive levels that represent the ADC bits. In the proposal, an energy efficient optical ADC circuit is implemented by controlling the system parameters such as ring-to-waveguide coupling coefficients, the ring's nonlinear refractive index, and the ring's length. The performance of the ADC structure is verified by the simulation using finite difference time domain (FDTD) method.

  1. Parallel MR Imaging

    PubMed Central

    Deshmane, Anagha; Gulani, Vikas; Griswold, Mark A.; Seiberlich, Nicole

    2015-01-01

    Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the under-sampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed. PMID:22696125

  2. Bidirectional buck boost converter

    DOEpatents

    Esser, Albert Andreas Maria

    1998-03-31

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero.

  3. Bidirectional buck boost converter

    DOEpatents

    Esser, A.A.M.

    1998-03-31

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero. 20 figs.

  4. Coarrars for Parallel Processing

    NASA Technical Reports Server (NTRS)

    Snyder, W. Van

    2011-01-01

    The design of the Coarray feature of Fortran 2008 was guided by answering the question "What is the smallest change required to convert Fortran to a robust and efficient parallel language." Two fundamental issues that any parallel programming model must address are work distribution and data distribution. In order to coordinate work distribution and data distribution, methods for communication and synchronization must be provided. Although originally designed for Fortran, the Coarray paradigm has stimulated development in other languages. X10, Chapel, UPC, Titanium, and class libraries being developed for C++ have the same conceptual framework.

  5. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project

    SciTech Connect

    S. Merrill Skeist; Richard H. Baker; Anthony G.P. Marini; DOE Project Officer - Keith Bennett

    2006-03-21

    Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a series L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a low power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in relationship to

  6. Analysis of a transformer-less, multi-level DC-DC converter for HVDC operation

    SciTech Connect

    Karady, G.G.; Devarajan, S.

    1998-12-31

    HVDC systems require DC step up and DC step down units. The traditional approach is the application of twelve-pulse thyristor bridges with transformers. The developments of fast switching IGBT devices permit the development of transformer-less, multi-level converters. A multi-level circuit was suggested by Limpaecher. This paper presents a detailed simulation of the proposed circuit together with the analysis of its performance. The converter consists of a set of capacitors, air core inductors and solid state switches arranged in a ladder network. In the step-up mode, the closing of solid state switches resonantly charges the capacitors in parallel through an air-cored inductor. Then solid state switches resonantly charges the capacitors in parallel through an air-cored inductor. Then solid state switches connect the capacitors in series and discharge them through an air-core inductor to the load. In the step-down mode the capacitors are charged in series and discharged in parallel. The circuit has three modes of operation in each cycle: charge, inversion, and discharge. The circuit operation is analyzed in each mode using SPICE simulations. The selection of the components is discussed and output voltage regulation is analyzed. The results show that the proposed circuit promises significant reduction of losses, because of the zero current switching. The investment cost is reduced because of the elimination of transformers.

  7. Parallel rendering

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1995-01-01

    This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.

  8. Liquid Chromatography with Dual Parallel Mass Spectrometry and 31P Nuclear Magnetic Resonance Spectroscopy for Analysis of Sphingomyelin and Dihydrosphingomyelin. II. Bovine Milk Sphingolipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liquid chromatography coupled to atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) mass spectrometry (MS), in parallel, was used for simultaneous detection of bovine milk sphingolipids (BMS). APCI-MS mass spectra exhibited mostly ceramide-like fragment ions, [Cer-H2O...

  9. Feasibility study for convertible engine torque converter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.

  10. Charge-pump voltage converter

    DOEpatents

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  11. Resonance enhanced multiphoton ionization and zero electron kinetic energy spectroscopy of the DABCO-N2 van der Waals complex: Divergent energy level spacings as evidence for an offset parallel structure

    NASA Astrophysics Data System (ADS)

    Watkins, Mark J.; Cockett, Martin C. R.

    2003-12-01

    The DABCO-N2 van der Waals complex has been investigated using a combination of (1+1') resonance enhanced multiphoton ionization and zero electron kinetic energy spectroscopy, supported by ab initio molecular orbital calculations. The observation of extended vibrational progressions of low wave number with diverging vibrational spacings supports an assignment to an offset parallel structure analogous to the 45° canted parallel structures proposed for the nitrogen dimer. The active vibrational mode is assigned to a mixed van der Waals stretch/rocking mode in which the nitrogen solvent undergoes a hindered rotational motion against the DABCO framework in the plane containing the C3 axis in DABCO and the intermolecular axis in N2. The results of counterpoise corrected ab initio calculations support this assignment to the extent that they suggest that a parallel structure is the most stable with a cross structure identified as a transition state. No experimental evidence is found for the existence of other stable structures.

  12. A General Assignment Method for Oriented Sample (OS) Solid-state NMR of Proteins Based on The Correlation of Resonances through Heteronuclear Dipolar Couplings in Samples Aligned Parallel and Perpendicular to the Magnetic Field

    PubMed Central

    Lu, George J.; Son, Woo Sung; Opella, Stanley J.

    2011-01-01

    A general method for assigning oriented sample (OS) solid-state NMR spectra of proteins is demonstrated. In principle, this method requires only a single sample of a uniformly 15N-labeled membrane protein in magnetically aligned bilayers, and a previously assigned isotropic chemical shift spectrum obtained either from solution NMR on micelle or isotropic bicelle samples or from magic angle spinning (MAS) solid-state NMR on unoriented proteoliposomes. The sequential isotropic resonance assignments are transferred to the OS solid-state NMR spectra of aligned samples by correlating signals from the same residue observed in protein-containing bilayers aligned with their normals parallel and perpendicular to the magnetic field. The underlying principle is that the resonances from the same residue have heteronuclear dipolar couplings that differ by exactly a factor of two between parallel and perpendicular alignments. The method is demonstrated on the membrane-bound form of Pf1 coat protein in phospholipid bilayers, whose assignments have been previously made using an earlier generation of methods that relied on the preparation of many selectively labeled (by residue type) samples. The new method provides the correct resonance assignments using only a single uniformly 15N-labeled sample, two solid-state NMR spectra, and a previously assigned isotropic spectrum. Significantly, this approach is equally applicable to residues in alpha helices, beta sheets, loops, and any other elements of tertiary structure. Moreover, the strategy bridges between OS solid-state NMR of aligned samples and solution NMR or MAS solid-state NMR of unoriented samples. In combination with the development of complementary experimental methods, it provides a step towards unifying these apparently different NMR approaches. PMID:21316275

  13. Improving the spatial accuracy in functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) effect: benefits from parallel imaging and a 32-channel head array coil at 1.5 Tesla.

    PubMed

    Fellner, C; Doenitz, C; Finkenzeller, T; Jung, E M; Rennert, J; Schlaier, J

    2009-01-01

    Geometric distortions and low spatial resolution are current limitations in functional magnetic resonance imaging (fMRI). The aim of this study was to evaluate if application of parallel imaging or significant reduction of voxel size in combination with a new 32-channel head array coil can reduce those drawbacks at 1.5 T for a simple hand motor task. Therefore, maximum t-values (tmax) in different regions of activation, time-dependent signal-to-noise ratios (SNR(t)) as well as distortions within the precentral gyrus were evaluated. Comparing fMRI with and without parallel imaging in 17 healthy subjects revealed significantly reduced geometric distortions in anterior-posterior direction. Using parallel imaging, tmax only showed a mild reduction (7-11%) although SNR(t) was significantly diminished (25%). In 7 healthy subjects high-resolution (2 x 2 x 2 mm3) fMRI was compared with standard fMRI (3 x 3 x 3 mm3) in a 32-channel coil and with high-resolution fMRI in a 12-channel coil. The new coil yielded a clear improvement for tmax (21-32%) and SNR(t) (51%) in comparison with the 12-channel coil. Geometric distortions were smaller due to the smaller voxel size. Therefore, the reduction in tmax (8-16%) and SNR(t) (52%) in the high-resolution experiment seems to be tolerable with this coil. In conclusion, parallel imaging is an alternative to reduce geometric distortions in fMRI at 1.5 T. Using a 32-channel coil, reduction of the voxel size might be the preferable way to improve spatial accuracy. PMID:19713602

  14. Massively parallel visualization: Parallel rendering

    SciTech Connect

    Hansen, C.D.; Krogh, M.; White, W.

    1995-12-01

    This paper presents rendering algorithms, developed for massively parallel processors (MPPs), for polygonal, spheres, and volumetric data. The polygon algorithm uses a data parallel approach whereas the sphere and volume renderer use a MIMD approach. Implementations for these algorithms are presented for the Thinking Machines Corporation CM-5 MPP.

  15. Repetitive resonant railgun power supply

    DOEpatents

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  16. Repetitive resonant railgun power supply

    DOEpatents

    Honig, Emanuel M.; Nunnally, William C.

    1988-01-01

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  17. Parallel machines: Parallel machine languages

    SciTech Connect

    Iannucci, R.A. )

    1990-01-01

    This book presents a framework for understanding the tradeoffs between the conventional view and the dataflow view with the objective of discovering the critical hardware structures which must be present in any scalable, general-purpose parallel computer to effectively tolerate latency and synchronization costs. The author presents an approach to scalable general purpose parallel computation. Linguistic Concerns, Compiling Issues, Intermediate Language Issues, and hardware/technological constraints are presented as a combined approach to architectural Develoement. This book presents the notion of a parallel machine language.

  18. Rotorcraft convertible engine study

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Mar, H. M.

    1982-01-01

    The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988.

  19. Two-axis acceleration of functional connectivity magnetic resonance imaging by parallel excitation of phase-tagged slices and half k-space acceleration.

    PubMed

    Jesmanowicz, Andrzej; Nencka, Andrew S; Li, Shi-Jiang; Hyde, James S

    2011-01-01

    Whole brain functional connectivity magnetic resonance imaging requires acquisition of a time course of gradient-recalled (GR) volumetric images. A method is developed to accelerate this acquisition using GR echo-planar imaging and radio frequency (RF) slice phase tagging. For N-fold acceleration, a tailored RF pulse excites N slices using a uniform-field transmit coil. This pulse is the Fourier transform of the profile for the N slices with a predetermined RF phase tag on each slice. A multichannel RF receive coil is used for detection. For n slices, there are n/N groups of slices. Signal-averaged reference images are created for each slice within each slice group for each member of the coil array and used to separate overlapping images that are simultaneously received. The time-overhead for collection of reference images is small relative to the acquisition time of a complete volumetric time course. A least-squares singular value decomposition method allows image separation on a pixel-by-pixel basis. Twofold slice acceleration is demonstrated using an eight-channel RF receive coil, with application to resting-state functional magnetic resonance imaging in the human brain. Data from six subjects at 3 T are reported. The method has been extended to half k-space acquisition, which not only provides additional acceleration, but also facilitates slice separation because of increased signal intensity of the central lines of k-space coupled with reduced susceptibility effects. PMID:22432957

  20. Parallel pipelining

    SciTech Connect

    Joseph, D.D.; Bai, R.; Liao, T.Y.; Huang, A.; Hu, H.H.

    1995-09-01

    In this paper the authors introduce the idea of parallel pipelining for water lubricated transportation of oil (or other viscous material). A parallel system can have major advantages over a single pipe with respect to the cost of maintenance and continuous operation of the system, to the pressure gradients required to restart a stopped system and to the reduction and even elimination of the fouling of pipe walls in continuous operation. The authors show that the action of capillarity in small pipes is more favorable for restart than in large pipes. In a parallel pipeline system, they estimate the number of small pipes needed to deliver the same oil flux as in one larger pipe as N = (R/r){sup {alpha}}, where r and R are the radii of the small and large pipes, respectively, and {alpha} = 4 or 19/7 when the lubricating water flow is laminar or turbulent.

  1. Data parallelism

    SciTech Connect

    Gorda, B.C.

    1992-09-01

    Data locality is fundamental to performance on distributed memory parallel architectures. Application programmers know this well and go to great pains to arrange data for optimal performance. Data Parallelism, a model from the Single Instruction Multiple Data (SIMD) architecture, is finding a new home on the Multiple Instruction Multiple Data (MIMD) architectures. This style of programming, distinguished by taking the computation to the data, is what programmers have been doing by hand for a long time. Recent work in this area holds the promise of making the programmer's task easier.

  2. Data parallelism

    SciTech Connect

    Gorda, B.C.

    1992-09-01

    Data locality is fundamental to performance on distributed memory parallel architectures. Application programmers know this well and go to great pains to arrange data for optimal performance. Data Parallelism, a model from the Single Instruction Multiple Data (SIMD) architecture, is finding a new home on the Multiple Instruction Multiple Data (MIMD) architectures. This style of programming, distinguished by taking the computation to the data, is what programmers have been doing by hand for a long time. Recent work in this area holds the promise of making the programmer`s task easier.

  3. Interleaved power converter

    DOEpatents

    Zhu, Lizhi

    2007-11-13

    A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.

  4. ITER convertible blanket evaluation

    SciTech Connect

    Wong, C.P.C.; Cheng, E.

    1995-09-01

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate.

  5. The photoelectric displacement converter

    NASA Astrophysics Data System (ADS)

    Dragoner, Valeriu V.

    2005-02-01

    In the article are examined questions of constructing photoelectric displacement converter satisfying demands that are stated above. Converter has channels of approximate and precise readings. The approximate reading may be accomplished either by the method of reading from a code mask or by the method of the consecutive calculation of optical scale gaps number. Phase interpolator of mouar strips" gaps is determined as a precise measuring. It is shown mathematical model of converter that allow evaluating errors and operating speed of conversion.

  6. Acoustics of automotive catalytic converter assemblies

    NASA Astrophysics Data System (ADS)

    Dickey, Nolan S.; Selamet, Ahmet; Parks, Steve J.; Tallio, Kevin V.; Miazgowicz, Keith D.; Radavich, Paul M.

    2003-10-01

    In an automotive exhaust system, the purpose of the catalytic converter is to reduce pollutant emissions. However, catalytic converters also affect the engine and exhaust system breathing characteristics; they increase backpressure, affect exhaust system acoustic characteristics, and contribute to exhaust manifold tuning. Thus, radiated sound models should include catalytic converters since they can affect both the source characteristics and the exhaust system acoustic behavior. A typical catalytic converter assembly employs a ceramic substrate to carry the catalytically active noble metals. The substrate has numerous parallel tubes and is mounted in a housing with swelling mat or wire mesh around its periphery. Seals at the ends of the substrate can be used to help force flow through the substrate and/or protect the mat material. Typically, catalytic converter studies only consider sound propagation in the small capillary tubes of the substrate. Investigations of the acoustic characteristics of entire catalytic converter assemblies (housing, substrate, seals, and mat) do not appear to be available. This work experimentally investigates the acoustic behavior of catalytic converter assemblies and the contributions of the separate components to sound attenuation. Experimental findings are interpreted with respect to available techniques for modeling sound propagation in ceramic substrates.

  7. Solar energy converter using surface plasma waves

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  8. Microminiature thermionic converters

    SciTech Connect

    King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.

    2001-09-25

    Microminiature thermionic converts (MTCs) having high energy-conversion efficiencies and variable operating temperatures. Methods of manufacturing those converters using semiconductor integrated circuit fabrication and micromachine manufacturing techniques are also disclosed. The MTCs of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. Existing prior art thermionic converter technology has energy conversion efficiencies ranging from 5-15%. The MTCs of the present invention have maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.

  9. Converting Nonclassicality into Entanglement.

    PubMed

    Killoran, N; Steinhoff, F E S; Plenio, M B

    2016-02-26

    Quantum mechanics exhibits a wide range of nonclassical features, of which entanglement in multipartite systems takes a central place. In several specific settings, it is well known that nonclassicality (e.g., squeezing, spin squeezing, coherence) can be converted into entanglement. In this work, we present a general framework, based on superposition, for structurally connecting and converting nonclassicality to entanglement. In addition to capturing the previously known results, this framework also allows us to uncover new entanglement convertibility theorems in two broad scenarios, one which is discrete and one which is continuous. In the discrete setting, the classical states can be any finite linearly independent set. For the continuous setting, the pertinent classical states are "symmetric coherent states," connected with symmetric representations of the group SU(K). These results generalize and link convertibility properties from the resource theory of coherence, spin coherent states, and optical coherent states, while also revealing important connections between local and nonlocal pictures of nonclassicality. PMID:26967398

  10. Digital scale converter

    DOEpatents

    Upton, Richard G.

    1978-01-01

    A digital scale converter is provided for binary coded decimal (BCD) conversion. The converter may be programmed to convert a BCD value of a first scale to the equivalent value of a second scale according to a known ratio. The value to be converted is loaded into a first BCD counter and counted down to zero while a second BCD counter registers counts from zero or an offset value depending upon the conversion. Programmable rate multipliers are used to generate pulses at selected rates to the counters for the proper conversion ratio. The value present in the second counter at the time the first counter is counted to the zero count is the equivalent value of the second scale. This value may be read out and displayed on a conventional seven-segment digital display.

  11. Thermionic photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  12. Parallel Information Processing.

    ERIC Educational Resources Information Center

    Rasmussen, Edie M.

    1992-01-01

    Examines parallel computer architecture and the use of parallel processors for text. Topics discussed include parallel algorithms; performance evaluation; parallel information processing; parallel access methods for text; parallel and distributed information retrieval systems; parallel hardware for text; and network models for information…

  13. The language parallel Pascal and other aspects of the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Reeves, A. P.; Bruner, J. D.

    1982-01-01

    A high level language for the Massively Parallel Processor (MPP) was designed. This language, called Parallel Pascal, is described in detail. A description of the language design, a description of the intermediate language, Parallel P-Code, and details for the MPP implementation are included. Formal descriptions of Parallel Pascal and Parallel P-Code are given. A compiler was developed which converts programs in Parallel Pascal into the intermediate Parallel P-Code language. The code generator to complete the compiler for the MPP is being developed independently. A Parallel Pascal to Pascal translator was also developed. The architecture design for a VLSI version of the MPP was completed with a description of fault tolerant interconnection networks. The memory arrangement aspects of the MPP are discussed and a survey of other high level languages is given.

  14. Design considerations for parallel graphics libraries

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1994-01-01

    Applications which run on parallel supercomputers are often characterized by massive datasets. Converting these vast collections of numbers to visual form has proven to be a powerful aid to comprehension. For a variety of reasons, it may be desirable to provide this visual feedback at runtime. One way to accomplish this is to exploit the available parallelism to perform graphics operations in place. In order to do this, we need appropriate parallel rendering algorithms and library interfaces. This paper provides a tutorial introduction to some of the issues which arise in designing parallel graphics libraries and their underlying rendering algorithms. The focus is on polygon rendering for distributed memory message-passing systems. We illustrate our discussion with examples from PGL, a parallel graphics library which has been developed on the Intel family of parallel systems.

  15. Rotorcraft convertible engine study

    NASA Technical Reports Server (NTRS)

    Goldstein, D. N.; Hirschkron, R.; Smith, C. E.

    1983-01-01

    Convertible propulsion systems for advanced rotorcraft are evaluated in terms of their impact on aircraft operating economics and fuel consumption. A variety of propulsion system concepts, including separate thrust and power producing engines, convertible fan/shaft engines, and auxiliary propeller configurations are presented. The merits of each are evaluated in two different rotorcraft missions: an intercity, commercial transport of the ABC(TM) type, and an offshore oil ring supply ship of the X-wing type. The variable inlet guide vane fan/shaft converting engine and auxiliary propeller configurations are shown to offer significant advantages over all the other systems evaluated, in terms of both direct operating cost and fuel consumption.

  16. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  17. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  18. Parallel Analog-to-Digital Image Processor

    NASA Technical Reports Server (NTRS)

    Lokerson, D. C.

    1987-01-01

    Proposed integrated-circuit network of many identical units convert analog outputs of imaging arrays of x-ray or infrared detectors to digital outputs. Converter located near imaging detectors, within cryogenic detector package. Because converter output digital, lends itself well to multiplexing and to postprocessing for correction of gain and offset errors peculiar to each picture element and its sampling and conversion circuits. Analog-to-digital image processor is massively parallel system for processing data from array of photodetectors. System built as compact integrated circuit located near local plane. Buffer amplifier for each picture element has different offset.

  19. Nonuniversality of entanglement convertibility

    NASA Astrophysics Data System (ADS)

    Bragança, Helena; Mascarenhas, Eduardo; Luiz, G. I.; Duarte, C.; Pereira, R. G.; Santos, M. F.; Aguiar, M. C. O.

    2014-06-01

    Recently, it has been suggested that operational properties connected to quantum computation can be alternative indicators of quantum phase transitions. In this work we systematically study these operational properties in one-dimensional systems that present phase transitions of different orders. For this purpose, we evaluate the local convertibility between bipartite ground states. Our results suggest that the operational properties, related to nonanalyticities of the entanglement spectrum, are good detectors of explicit symmetries of the model, but not necessarily of phase transitions. We also show that thermodynamically equivalent phases, such as Luttinger liquids, may display different convertibility properties depending on the underlying microscopic model.

  20. A solar thermophotovoltaic converter

    NASA Astrophysics Data System (ADS)

    Demichelis, F.; Minetti-Mezzetti, E.

    1980-08-01

    A model of a thermophotovoltaic (TPV) converter is presented. Sunlight was focused by an optical system into a spherical cavity made of tungsten or of ytterbium oxide, thereby heating the cavity. The spectral region of the incandescent radiation emitted by the cavity in the range 0.6-1.1 microns (corresponding to the maximum efficiency of silicon cells) was directed onto a distribution of cells facing the radiator. The part of the spectrum not in the range 0.6-1.1 microns was sent back to the radiator and recycled. Conversion efficiencies of about 24% are possible in a TPV converter operating with a 2000 K radiator.

  1. Whole-body three-dimensional contrast-enhanced magnetic resonance (MR) angiography with parallel imaging techniques on a multichannel MR system for the detection of various systemic arterial diseases.

    PubMed

    Lin, Jiang; Chen, Bin; Wang, Jian-Hua; Zeng, Meng-Su; Wang, Yi-Xiang

    2006-11-01

    Using a 1.5-T magnetic resonance (MR) imager equipped with 32 receiving channels and integrated parallel acquisition techniques, 37 patients underwent whole-body three-dimensional (3D) contrast-enhanced MR angiography (WB 3D CE MRA). The patients included had clinically documented or suspected peripheral arterial occlusive disease (PAOD, n = 19), Takayasu arteritis (n = 8), polyarteritis nodosa (n = 1), type-B dissection (n = 4), thoracic and/or abdominal aneurysm (n = 5). Sixty-eight surface coils were employed to encompass the whole body. Four 3D CE MRA stations were acquired successively through automatic table moving. The spatial resolution was 1.6 x 1.0 mm and slice thickness was 1.5 mm for all stations. A total scan range of 188 cm was acquired. Overall image quality of each arterial segment and venous overlay were assessed. The depiction of various systemic arterial diseases was evaluated and compared, in 20 patients, with other imaging modalities. This WB 3D CE MRA yielded a detailed display of the arterial system with an average MR room time of 17.4 min. The image quality was considered diagnostic in 99.3% of the arterial segments. In 7 of 19 patients with PAOD, WB MRA showed additional vascular narrowing apart from peripheral arterial disease. In nine patients with vasculitis, WB MRA depicted luminal irregularity, narrowing or occlusion, aneurysm, and collateral circulation involving multiple vascular segments. WB MRA also clearly revealed the severity and extent of dissection and aortic aneurysm. In 20 cases where additional imaging investigations have been carried out, the vascular pathologies demonstrated by WB MRA agree with these additional imaging investigations. PMID:17143719

  2. Fractional Watt AMTEC Converter

    NASA Astrophysics Data System (ADS)

    Hunt, T. K.; Rasmussen, J. R.

    2006-01-01

    We report here the long term performance of a small, multi-tube AMTEC converter. This converter was designed to operate and produce approximately 12 watt of electrical output from a small, 4 to 6 watt radioisotope heat source for remote power applications. It was built and put on test in 1999 using electrical heaters as stand-ins for the radioisotope capsule. Since that time it has accumulated more than 5 years of run time at an input heater temperature of 700 °C, with numerous thermal cycles to ambient that were generally related to grid power failures or physical moves of the test apparatus. The power output has remained, with variations due to orientation changes and minor variations due to small temperature changes, essentially constant at 0.40 W to 0.60 W over the test period and operation is ongoing. The converter casing and mechanical structure was fabricated from 316 SS and the electrodes are sputtered titanium nitride films. Separate static tests of a multilayer insulation package suitable for use with the converter showed the capability to reach 700 °C with a thermal input of < 4 watts.

  3. Thermionic energy converters

    DOEpatents

    Monroe, Jr., James E.

    1977-08-09

    A thermionic device for converting nuclear energy into electrical energy comprising a tubular anode spaced from and surrounding a cylindrical cathode, the cathode having an outer emitting surface of ruthenium, and nuclear fuel on the inner cylindrical surface. The nuclear fuel is a ceramic composition of fissionable material in a metal matrix. An axial void is provided to collect and contain fission product gases.

  4. Dual-source parallel radiofrequency excitation ACR phantom magnetic resonance imaging at 3 T: Assessment of the effect of image quality on high-contrast spatial resolution, percent signal ghosting, and low-contrast object detectability in comparison with conventional single-source transmission

    NASA Astrophysics Data System (ADS)

    Lee, Kyung-Bae; Park, Yong-Sung; Choe, Bo-Young

    2013-10-01

    The purpose of the present study was to assess dual-source parallel radiofrequency (RF) excitation American College of Radiology (ACR) phantom magnetic resonance (MR) imaging at 3T compared with conventional single-source RF transmission and compared with the standard ACR MRI phantom test. We used a 3T MR scanner equipped with dual-source parallel RF excitation and an 8-channel head phased array coil. We employed T1- and T2-weighted fast spin echo (FSE) pulse sequences for an assessment of the impact of image quality on high-contrast spatial resolution, percent signal ghosting and low-contrast object detectability following the ACR MRI quality control (QC) manual. With geometric accuracy and identical slice locations, dual RFs using dual-source parallel RF excitation MR showed an advantage over single RF using dual-source parallel RF excitation MR and conventional MR in terms of high-contrast spatial resolution (p < 0.010), percent signal ghosting (p < 0.010), and low-contrast object detectability (p < 0.010). The quality of the image from the dual-source parallel RF excitation MR equipment was superior to that of the image from conventional MR equipment for the ACR phantom. We need to pursue dual-source parallel RF excitation MR studies involving various clinical cases.

  5. Resonant snubber inverter

    DOEpatents

    Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.

    1997-06-24

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.

  6. Resonant snubber inverter

    DOEpatents

    Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  7. Liquid metal thermal electric converter

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  8. Parametric energy converter

    SciTech Connect

    Johnson, R.N.

    1981-10-20

    A method and apparatus for converting thermal energy into mechanical energy by parametric pumping of rotary inertia. In a preferred embodiment, a modified tesla turbine rotor is positioned within a rotary boiler along its axis of rotation. An external heat source, such as solar radiation, is directed onto the outer casing of the boiler to convert the liquid to steam. As the steam spirals inwardly toward the discs of the rotor, the moment of inertia of the mass of steam is reduced to thereby substantially increase its kinetic energy. The laminar flow of steam between the discs of the rotor transfers the increased kinetic energy to the rotor which can be coupled out through an output shaft to perform mechanical work. A portion of the mechanical output can be fed back to maintain rotation of the boiler.

  9. Thermionic energy converters

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1983-01-01

    The efficiency of thermionic energy converters is improved by internal distribution of tiny sorted cesium diodes driven by the thermal gradient between the primary emitter and the collector. The tiny, sorted diode distribution comprises protrusions of the emitter material from the main emitter face which contact the main collector face thermally but not electrically. The main collector ends of the protrusions are separated from the main collector by a thin layer of insulation, such as aluminum oxide. The shorted tiny diode distribution augments cesium ionization through internal thermal effects only within the main diode. No electrical inputs are required. This ionization enhancement by the distribution of the tiny shorted diodes not only reduces the plasma voltage drop but also increases the power output and efficiency of the overall thermionic energy converter.

  10. Multiple resonant railgun power supply

    SciTech Connect

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

  11. Multiple resonant railgun power supply

    SciTech Connect

    Honig, Emanuel M.; Nunnally, William C.

    1988-01-01

    A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

  12. Digital to synchro converter

    NASA Technical Reports Server (NTRS)

    Predina, Joseph P. (Inventor)

    1989-01-01

    A digital-to-synchro converter is provided where a binary input code specifies a desired shaft angle and where an resolver type position transducer is employed with additional circuitry to generate a shaft position error signal indicative of the angular difference between the desired shaft angle and the actual shaft angle. The additional circuitry corrects for known and calculated errors in the shaft position detection process and equipment.

  13. Optical analog-to-digital converter

    DOEpatents

    Vawter, G. Allen; Raring, James; Skogen, Erik J.

    2009-07-21

    An optical analog-to-digital converter (ADC) is disclosed which converts an input optical analog signal to an output optical digital signal at a sampling rate defined by a sampling optical signal. Each bit of the digital representation is separately determined using an optical waveguide interferometer and an optical thresholding element. The interferometer uses the optical analog signal and the sampling optical signal to generate a sinusoidally-varying output signal using cross-phase-modulation (XPM) or a photocurrent generated from the optical analog signal. The sinusoidally-varying output signal is then digitized by the thresholding element, which includes a saturable absorber or at least one semiconductor optical amplifier, to form the optical digital signal which can be output either in parallel or serially.

  14. Broadband wide-angle polarization converter for LCD backlight.

    PubMed

    Tsai, Chang-Ching; Wu, Shin-Tson

    2008-05-20

    A novel polarization converter using reflective metallic gratings and a polarization beam splitter is introduced for LCD backlight illumination. These two optical elements form a polarization rotation resonator. Broadband and high optical efficiency of polarization conversion in the visible region is achieved through the resonance of the refracted light and the surface plasmon wave in metallic surface-relief gratings. For wide-angle illumination, the conversion efficiency with arbitrary incident angle is studied. This device can convert unpolarized light to linear polarization with over 85% efficiency. PMID:18493296

  15. Special parallel processing workshop

    SciTech Connect

    1994-12-01

    This report contains viewgraphs from the Special Parallel Processing Workshop. These viewgraphs deal with topics such as parallel processing performance, message passing, queue structure, and other basic concept detailing with parallel processing.

  16. Miniature Sapphire Acoustic Resonator - MSAR

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, Robert L.

    2011-01-01

    A room temperature sapphire acoustics resonator incorporated into an oscillator represents a possible opportunity to improve on quartz ultrastable oscillator (USO) performance, which has been a staple for NASA missions since the inception of spaceflight. Where quartz technology is very mature and shows a performance improvement of perhaps 1 dB/decade, these sapphire acoustic resonators when integrated with matured quartz electronics could achieve a frequency stability improvement of 10 dB or more. As quartz oscillators are an essential element of nearly all types of frequency standards and reference systems, the success of MSAR would advance the development of frequency standards and systems for both groundbased and flight-based projects. Current quartz oscillator technology is limited by quartz mechanical Q. With a possible improvement of more than x 10 Q with sapphire acoustic modes, the stability limit of current quartz oscillators may be improved tenfold, to 10(exp -14) at 1 second. The electromagnetic modes of sapphire that were previously developed at JPL require cryogenic temperatures to achieve the high Q levels needed to achieve this stability level. However sapphire fs acoustic modes, which have not been used before in a high-stability oscillator, indicate the required Q values (as high as Q = 10(exp 8)) may be achieved at room temperature in the kHz range. Even though sapphire is not piezoelectric, such a high Q should allow electrostatic excitation of the acoustic modes with a combination of DC and AC voltages across a small sapphire disk (approximately equal to l mm thick). The first evaluations under this task will test predictions of an estimated input impedance of 10 kilohms at Q = 10(exp 8), and explore the Q values that can be realized in a smaller resonator, which has not been previously tested for acoustic modes. This initial Q measurement and excitation demonstration can be viewed similar to a transducer converting electrical energy to

  17. Transistorized converter provides nondissipative regulation

    NASA Technical Reports Server (NTRS)

    1964-01-01

    A transistorized regulator converter efficiently converts fluctuating input voltages to a constant output voltage, avoiding the use of saturable reactors. It is nondissipative in operation and functions in an open loop through variable duty cycles.

  18. Electrothermodynamic (etd) power converter

    SciTech Connect

    Marks, A.M.

    1983-07-26

    These inventions relate to novel advances in Electrothermodynamics (ETD), also known as charged aerosol, heat/electric power generators: (1) A new more efficient, compact converging/diverging configuration comprising a torus of revolution (TORON) used with a gas flywheel. (2) A ''Method II'' two-fluid mixed flow ejector/converter in a gas flywheel loop employing a primary steam or a high molecular weight driver jet such as a fluorocarbon containing charged aerosol water droplets and a low molecular weight carrier gas such as hydrogen or helium with an electro-negative gas additive, in a Rankine cycle including a vapor/gas and liquid separator with a bypass to the ejector/converter loop. (3) A ''Method III'' two-fluid mixed flow comprising a supersonic jet expanding conically within a subsonic flow, separated by a boundary layer in which the charged aerosol forms downstream of the orifice, at a cross section of at least 100 times the orifice section; and in which the electric charge density of the charged aerosol decreases along the jet axis, whereby substantially all of the kinetic power of the jet is converted to electric power within the jet, there being no ejector. (4) An array of supersonic jets utilizing Method III. (5) An array of supersonic jets utilizing Method III without separating duct walls in which ''convection cells'' provide return flows, forming a plurality of TORON configurations. (6) A supercritical Rankline cycle in a single stage employing Method III. (7) A method IV two-fluid cycle uses charged aerosols in an inert gas and operates on an Ericsson-type cycle. (8) Optimum operating conditions are defined for Methods II, III, and IV. (9) A high potential emitter is employed with a grounded body, and a sapphire tube sealed to metal by a new technique provides an insulating duct for the high temperature, high pressure vapor.

  19. Enhancing the efficiency of silicon Raman converters

    NASA Astrophysics Data System (ADS)

    Vermeulen, Nathalie; Sipe, John E.; Thienpont, Hugo

    2010-05-01

    We propose a silicon ring Raman converter in which the spatial variation of the Raman gain along the ring for TE polarization is used to quasi-phase-match the CARS process. If in addition the pump, Stokes, and anti-Stokes waves involved in the CARS interaction are resonantly enhanced by the ring structure, the Stokes-to-anti-Stokes conversion efficiency can be increased by at least four orders of magnitude over that of one-dimensional perfectly phase-matched silicon Raman converters, and can reach values larger than unity with relatively low input pump intensities. These improvements in conversion performance could substantially expand the practical applicability of the CARS process for optical wavelength conversion.

  20. High power density dc/dc converter: Selection of converter topology

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  1. Cycloidal Wave Energy Converter

    SciTech Connect

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  2. Processing and circuit design enhance a data converter's radiation tolerance

    SciTech Connect

    Heuner, R.; Zazzu, V.; Pennisi, L.

    1988-12-01

    Rad-hard CMOS/SOS processing has been applied to a novel comparator-inverter circuit design to develop 6 and 8-bit parallel (flash) ADC (analog-to-digital converter) circuits featuring high-speed operation, low power consumption, and total-dose radiation tolerances up to 1 Mrad(Si).

  3. Converting Sunlight to Electricity--Some Practical Concerns

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2005-01-01

    A photovoltaic panel can convert sunlight directly into electricity. If one connects enough of them in a series-parallel arrangement called a solar array, they can provide about half of a home's annual electricity needs. The panels comprise specially treated electronic materials that when exposed to sunlight will give up electrons freely, and…

  4. Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P.; Gott, Robert W.

    1991-01-01

    In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.

  5. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-01-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  6. Injection-controlled laser resonator

    DOEpatents

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  7. Injection-controlled laser resonator

    DOEpatents

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  8. Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Jianliang; Deng, Longjiang

    2015-09-01

    We propose to realize a broadband and wide-angle reflective polarization converter in microwave regions. The proposed converter can convert a linearly polarized (LP) wave to its cross-polarized wave at three resonant frequencies. It can also convert the LP wave to a circularly polarized wave at other two resonant frequencies. Furthermore, the proposed converter can achieve broad bandwidth with incident angle up to 45°. The simulated and measured results are in agreement in the entire frequency regions, and the bandwidth of polarization conversion over 75 % can be obtained from 7.6 to 15.5 GHz under normal incidence and from 7.8 to 13.0 GHz under incident angle of 45°. The surface current distributions of the proposed converter are discussed to analyze the physical mechanism. The converter tolerance to wide angle of incidence and the broad bandwidth could be useful in the range of applications in the microwave regions.

  9. Architecture for a High-to-Medium-Voltage Power Converter

    NASA Technical Reports Server (NTRS)

    Vorpenian, Vatche

    2008-01-01

    A power converter now undergoing development is required to operate at a DC input potential ranging between 5.5 and 10 kV and a DC output potential of 400 V at a current up to 25 A. This power converter is also required to be sufficiently compact and reliable to fit and operate within the confines of a high-pressure case to be lowered to several miles (approx.5 km) below the surface of the ocean. The architecture chosen to satisfy these requirements calls for a series/ parallel arrangement of 48 high-frequency, pulse-width-modulation (PWM), transformer-isolation DC-to-DC power converter blocks. The input sides of the converter blocks would be connected in series so that the input potential would be divided among them, each of them being exposed to an input potential of no more than 10 kV/48 . 210 V. The series connection of inputs would also enforce a requirement that all the converter blocks operate at the same input current. The outputs of the converter blocks would be connected in a matrix comprising 6 parallel legs, each leg being a cascade of eight outputs wired in series (see figure). All the converter blocks would be identical within the tolerances of the values of their components. A single voltage feedback loop would regulate the output potential. All the converter blocks would be driven by the same PWM waveform generated by this feedback loop. The power transformer of each converter block would have a unity turns ratio and would be capable of withstanding as much as 10 kVDC between its primary and secondary windings. (Although, in general, the turns ratio could be different from unity, the simplest construction for minimizing leakage and maximizing breakdown voltage is attained at a turns ratio of unity.)

  10. Parallel rendering techniques for massively parallel visualization

    SciTech Connect

    Hansen, C.; Krogh, M.; Painter, J.

    1995-07-01

    As the resolution of simulation models increases, scientific visualization algorithms which take advantage of the large memory. and parallelism of Massively Parallel Processors (MPPs) are becoming increasingly important. For large applications rendering on the MPP tends to be preferable to rendering on a graphics workstation due to the MPP`s abundant resources: memory, disk, and numerous processors. The challenge becomes developing algorithms that can exploit these resources while minimizing overhead, typically communication costs. This paper will describe recent efforts in parallel rendering for polygonal primitives as well as parallel volumetric techniques. This paper presents rendering algorithms, developed for massively parallel processors (MPPs), for polygonal, spheres, and volumetric data. The polygon algorithm uses a data parallel approach whereas the sphere and volume render use a MIMD approach. Implementations for these algorithms are presented for the Thinking Ma.chines Corporation CM-5 MPP.

  11. Serial Pixel Analog-to-Digital Converter

    SciTech Connect

    Larson, E D

    2010-02-01

    This method reduces the data path from the counter to the pixel register of the analog-to-digital converter (ADC) from as many as 10 bits to a single bit. The reduction in data path width is accomplished by using a coded serial data stream similar to a pseudo random number (PRN) generator. The resulting encoded pixel data is then decoded into a standard hexadecimal format before storage. The high-speed serial pixel ADC concept is based on the single-slope integrating pixel ADC architecture. Previous work has described a massively parallel pixel readout of a similar architecture. The serial ADC connection is similar to the state-of-the art method with the exception that the pixel ADC register is a shift register and the data path is a single bit. A state-of-the-art individual-pixel ADC uses a single-slope charge integration converter architecture with integral registers and “one-hot” counters. This implies that parallel data bits are routed among the counter and the individual on-chip pixel ADC registers. The data path bit-width to the pixel is therefore equivalent to the pixel ADC bit resolution.

  12. Parallel algorithms and architectures

    SciTech Connect

    Albrecht, A.; Jung, H.; Mehlhorn, K.

    1987-01-01

    Contents of this book are the following: Preparata: Deterministic simulation of idealized parallel computers on more realistic ones; Convex hull of randomly chosen points from a polytope; Dataflow computing; Parallel in sequence; Towards the architecture of an elementary cortical processor; Parallel algorithms and static analysis of parallel programs; Parallel processing of combinatorial search; Communications; An O(nlogn) cost parallel algorithms for the single function coarsest partition problem; Systolic algorithms for computing the visibility polygon and triangulation of a polygonal region; and RELACS - A recursive layout computing system. Parallel linear conflict-free subtree access.

  13. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  14. Fluorescent radiation converter

    NASA Technical Reports Server (NTRS)

    Viehmann, W. (Inventor)

    1981-01-01

    A fluorescence radiation converter is described which includes a substantially undoped optically transparent substrate and a waveshifter coating deposited on at least one portion of the substrate for absorption of radiation and conversion of fluorescent radiation. The coating is formed to substantially 1000 g/liter of a solvent, 70 to 200 g/liter of an organic polymer, and 0.2 to 25 g/liter of at least one organic fluorescent dye. The incoming incident radiation impinges on the coating. Radiation is absorbed by the fluorescent dye and is re-emitted as a longer wavelength radiation. Radiation is trapped within the substrate and is totally internally reflected by the boundary surface. Emitted radiation leaves the substrate ends to be detected.

  15. Unity power factor converter

    NASA Technical Reports Server (NTRS)

    Wester, Gene W. (Inventor)

    1980-01-01

    A unity power factor converter capable of effecting either inversion (dc-to-dc) or rectification (ac-to-dc), and capable of providing bilateral power control from a DC source (or load) through an AC transmission line to a DC load (or source) for power flow in either direction, is comprised of comparators for comparing the AC current i with an AC signal i.sub.ref (or its phase inversion) derived from the AC ports to generate control signals to operate a switch control circuit for high speed switching to shape the AC current waveform to a sine waveform, and synchronize it in phase and frequency with the AC voltage at the AC ports, by selectively switching the connections to a series inductor as required to increase or decrease the current i.

  16. Parallel execution and scriptability in micromagnetic simulations

    NASA Astrophysics Data System (ADS)

    Fischbacher, Thomas; Franchin, Matteo; Bordignon, Giuliano; Knittel, Andreas; Fangohr, Hans

    2009-04-01

    We demonstrate the feasibility of an "encapsulated parallelism" approach toward micromagnetic simulations that combines offering a high degree of flexibility to the user with the efficient utilization of parallel computing resources. While parallelization is obviously desirable to address the high numerical effort required for realistic micromagnetic simulations through utilizing now widely available multiprocessor systems (including desktop multicore CPUs and computing clusters), conventional approaches toward parallelization impose strong restrictions on the structure of programs: numerical operations have to be executed across all processors in a synchronized fashion. This means that from the user's perspective, either the structure of the entire simulation is rigidly defined from the beginning and cannot be adjusted easily, or making modifications to the computation sequence requires advanced knowledge in parallel programming. We explain how this dilemma is resolved in the NMAG simulation package in such a way that the user can utilize without any additional effort on his side both the computational power of multiple CPUs and the flexibility to tailor execution sequences for specific problems: simulation scripts written for single-processor machines can just as well be executed on parallel machines and behave in precisely the same way, up to increased speed. We provide a simple instructive magnetic resonance simulation example that demonstrates utilizing both custom execution sequences and parallelism at the same time. Furthermore, we show that this strategy of encapsulating parallelism even allows to benefit from speed gains through parallel execution in simulations controlled by interactive commands given at a command line interface.

  17. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  18. Power line carrier interference from HVDC converter terminals

    SciTech Connect

    Tatro, P.J.; Adamson, K.A. ); Eitzmann, M.A.; Smead, M. . Power Systems Engineering Dept.)

    1993-07-01

    Power line carrier (PLC) equipment typically operates in the frequency range from 25 kHz to 300 kHz. Interference studies for HVDC converters usually concentrate on interference from noise sources within this frequency range. However, operating experience at the Sandy Pond converter terminal has indicated that PLC equipment is also susceptible to interference from sources of power system harmonics below the PLC frequency range. Extensive field testing and analytical studies have shown that each PLC circuit has a resonant frequency below the operating frequency. If excited at this resonant frequency, high voltages may exist within the PLC circuit. The resulting saturation of PLC components leads to local generation of radio frequency (RF) noise that interferes with proper operation of PLC circuits. Sources of power system harmonics in the 3-10 kHz range, such as line commutated dc converters, are potential sources of this type of interference.

  19. Adiabatic circuits: converter for static CMOS signals

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Amirante, E.; Bargagli-Stoffi, A.; Schmitt-Landsiedel, D.

    2003-05-01

    Ultra low power applications can take great advantages from adiabatic circuitry. In this technique a multiphase system is used which consists ideally of trapezoidal voltage signals. The input signals to be processed will often come from a function block realized in static CMOS. The static rectangular signals must be converted for the oscillating multiphase system of the adiabatic circuitry. This work shows how to convert the input signals to the proposed pulse form which is synchronized to the appropriate supply voltage. By means of adder structures designed for a 0.13µm technology in a 4-phase system there will be demonstrated, which additional circuits are necessary for the conversion. It must be taken into account whether the data arrive in parallel or serial form. Parallel data are all in one phase and therefore it is advantageous to use an adder structure with a proper input stage, e.g. a Carry Lookahead Adder (CLA). With a serial input stage it is possible to read and to process four signals during one cycle due to the adiabatic 4-phase system. Therefore input signals with a frequency four times higher than the adiabatic clock frequency can be used. This reduces the disadvantage of the slow clock period typical for adiabatic circuits. By means of an 8 bit Ripple Carry Adder (8 bit RCA) the serial reading will be introduced. If the word width is larger than 4 bits the word can be divided in 4 bit words which are processed in parallel. This is the most efficient way to minimize the number of input lines and pads. At the same time a high throughput is achieved.

  20. Module Fourteen: Parallel AC Resistive-Reactive Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will learn about parallel RL (resistive-inductance), RC (resistive-capacitive), and RCL (resistive-capacitive-inductance) circuits and the conditions that exist at resonance. The module is divided into six lessons: solving for quantities in RL parallel circuits; variational analysis of RL parallel circuits; parallel RC…

  1. Resonances and resonance widths

    SciTech Connect

    Collins, T.

    1986-05-01

    Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.

  2. Turbo-Brayton Power Converter

    NASA Technical Reports Server (NTRS)

    Breedlove, Jeffrey

    2015-01-01

    Future NASA space missions will require advanced thermal-to-electric power converters that are reliable, efficient, and lightweight. Creare, LLC, is developing a turbo-Brayton power converter that offers high efficiency and specific power. The converter employs gas bearings to provide maintenance free, long-life operation. Discrete components can be packaged to fit optimally with other subsystems, and the converter's continuous gas flow can communicate directly with remote heat sources and heat rejection surfaces without the need for ancillary heat-transfer components and intermediate flow loops. Creare has completed detailed analyses, trade studies, fabrication trials, and preliminary designs for the components and converter assembly. The company is fabricating and testing a breadboard converter.

  3. MPP parallel forth

    NASA Technical Reports Server (NTRS)

    Dorband, John E.

    1987-01-01

    Massively Parallel Processor (MPP) Parallel FORTH is a derivative of FORTH-83 and Unified Software Systems' Uni-FORTH. The extension of FORTH into the realm of parallel processing on the MPP is described. With few exceptions, Parallel FORTH was made to follow the description of Uni-FORTH as closely as possible. Likewise, the parallel FORTH extensions were designed as philosophically similar to serial FORTH as possible. The MPP hardware characteristics, as viewed by the FORTH programmer, is discussed. Then a description is presented of how parallel FORTH is implemented on the MPP.

  4. Pulsed thermionic converter study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A nuclear electric propulsion concept using a thermionic reactor inductively coupled to a magnetoplasmadynamic accelerator (MPD arc jet) is described, and the results of preliminary analyses are presented. In this system, the MPD thruster operates intermittently at higher voltages and power levels than the thermionic generating unit. A typical thrust pulse from the MPD arc jet is characterized by power levels of 1 to 4 MWe, a duration of 1 msec, and a duty cycle of approximately 20%. The thermionic generating unit operates continuously but with a lower power level of approximately 0.4 MWe. Energy storage between thrust pulses is provided by building up a large current in an inductor using the output of the thermionic converter array. Periodically, the charging current is interrupted, and the energy stored in the magnetic field of the inductor is utilized for a short duration thrust pulse. The results of the preliminary analysis show that a coupling effectiveness of approximately 85 to 90% is feasible for a nominal 400 KWe system with an inductive unit suitable for a flight vehicle.

  5. Self-powered microthermionic converter

    SciTech Connect

    Marshall, Albert C.; King, Donald B.; Zavadil, Kevin R.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-08-10

    A self-powered microthermionic converter having an internal thermal power source integrated into the microthermionic converter. These converters can have high energy-conversion efficiencies over a range of operating temperatures. Microengineering techniques are used to manufacture the converter. The utilization of an internal thermal power source increases potential for mobility and incorporation into small devices. High energy efficiency is obtained by utilization of micron-scale interelectrode gap spacing. Alpha-particle emitting radioisotopes can be used for the internal thermal power source, such as curium and polonium isotopes.

  6. Liquid Nitrogen Temperature Operation of a Switching Power Converter

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The performance of a 42/28 V, 175 W, 50 kHz pulse-width modulated buck dc/dc switching power converter at liquid nitrogen temperature (LNT) is compared with room temperature operation. The power circuit as well as the control circuit of the converter, designed with commercially available components, were operated at LNT and resulted in a slight improvement in converter efficiency. The improvement in power MOSFET operation was offset by deteriorating performance of the output diode rectifier at LNT. Performance of the converter could be further improved at low temperatures by using only power MOSFET's as switches. The use of a resonant topology will further improve the circuit performance by reducing the switching noise and loss.

  7. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  8. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  9. Parallel simulation today

    NASA Technical Reports Server (NTRS)

    Nicol, David; Fujimoto, Richard

    1992-01-01

    This paper surveys topics that presently define the state of the art in parallel simulation. Included in the tutorial are discussions on new protocols, mathematical performance analysis, time parallelism, hardware support for parallel simulation, load balancing algorithms, and dynamic memory management for optimistic synchronization.

  10. Proposed electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  11. Thyristor converter simulation and analysis

    SciTech Connect

    Zhang, S.Y.

    1991-01-01

    In this paper we present a simulation on thyristor converters. The simulation features nonlinearity, non-uniform firing, and the commutations. Several applications such as a current regulation, a converter frequency characteristics analysis, and a power line disturbance analysis will be presented. 4 refs., 4 figs.

  12. Markets, Schools and the Convertibility of Economic Capital: The Complex Dynamics of Class Choice

    ERIC Educational Resources Information Center

    Lynch, Kathleen; Moran, Marie

    2006-01-01

    While economic capital is not synonymous with cultural, social or symbolic capital in either its constitutional or organizational form, it nevertheless remains the more flexible and convertible form of capital. The convertibility of economic capital has particular resonance within "Celtic Tiger" Ireland. The states reluctance to fully endorse an…

  13. Eclipse Parallel Tools Platform

    SciTech Connect

    Watson, Gregory; DeBardeleben, Nathan; Rasmussen, Craig

    2005-02-18

    Designing and developing parallel programs is an inherently complex task. Developers must choose from the many parallel architectures and programming paradigms that are available, and face a plethora of tools that are required to execute, debug, and analyze parallel programs i these environments. Few, if any, of these tools provide any degree of integration, or indeed any commonality in their user interfaces at all. This further complicates the parallel developer's task, hampering software engineering practices, and ultimately reducing productivity. One consequence of this complexity is that best practice in parallel application development has not advanced to the same degree as more traditional programming methodologies. The result is that there is currently no open-source, industry-strength platform that provides a highly integrated environment specifically designed for parallel application development. Eclipse is a universal tool-hosting platform that is designed to providing a robust, full-featured, commercial-quality, industry platform for the development of highly integrated tools. It provides a wide range of core services for tool integration that allow tool producers to concentrate on their tool technology rather than on platform specific issues. The Eclipse Integrated Development Environment is an open-source project that is supported by over 70 organizations, including IBM, Intel and HP. The Eclipse Parallel Tools Platform (PTP) plug-in extends the Eclipse framwork by providing support for a rich set of parallel programming languages and paradigms, and a core infrastructure for the integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration, support for a small number of parallel architectures, and basis

  14. Teaching RLC Parallel Circuits in High-School Physics Class

    ERIC Educational Resources Information Center

    Simon, Alpár

    2015-01-01

    This paper will try to give an alternative treatment of the subject "parallel RLC circuits" and "resonance in parallel RLC circuits" from the Physics curricula for the XIth grade from Romanian high-schools, with an emphasis on practical type circuits and their possible applications, and intends to be an aid for both Physics…

  15. Adjustable wideband reflective converter based on cut-wire metasurface

    NASA Astrophysics Data System (ADS)

    Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Jianliang; Deng, Longjiang

    2015-10-01

    We present the design, analysis, and measurement of a broadband reflective converter using a cut-wire (CW) metasurface. Based on the characteristics of LC resonances, the proposed reflective converter can rotate a linearly polarized (LP) wave into its cross-polarized wave at three resonance frequencies, or convert the LP wave to a circularly polarized (CP) wave at two other resonance frequencies. Furthermore, the broad-band properties of the polarization conversion can be sustained when the incident wave is a CP wave. The polarization states can be adjusted easily by changing the length and width of the CW. The measured results show that a polarization conversion ratio (PCR) over 85% can be achieved from 6.16 GHz to 16.56 GHz for both LP and CP incident waves. The origin of the polarization conversion is interpreted by the theory of microwave antennas, with equivalent impedance and electromagnetic (EM) field distributions. With its simple geometry and multiple broad frequency bands, the proposed converter has potential applications in the area of selective polarization control.

  16. New zero voltage switching DC converter with flying capacitors

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren; Shiau, Tung-Yuan

    2016-04-01

    A new soft switching converter is presented for medium power applications. Two full-bridge converters are connected in series at high voltage side in order to limit the voltage stress of power switches at Vin/2. Therefore, power metal-oxide-semiconductor field-effect transistors (MOSFETs) with 600 V voltage rating can be adopted for 1200 V input voltage applications. In order to balance two input split capacitor voltages in every switching cycle, two flying capacitors are connected on the AC side of two full-bridge converters. Phase-shift pulse-width modulation (PS-PWM) is adopted to regulate the output voltage. Based on the resonant behaviour by the output capacitance of MOSFETs and the resonant inductance, active MOSFETs can be turned on under zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. Two full-bridge converters are used in the proposed circuit to share load current and reduce the current stress of passive and active components. The circuit analysis and design example of the prototype circuit are provided in detail and the performance of the proposed converter is verified by the experiments.

  17. Parallel Atomistic Simulations

    SciTech Connect

    HEFFELFINGER,GRANT S.

    2000-01-18

    Algorithms developed to enable the use of atomistic molecular simulation methods with parallel computers are reviewed. Methods appropriate for bonded as well as non-bonded (and charged) interactions are included. While strategies for obtaining parallel molecular simulations have been developed for the full variety of atomistic simulation methods, molecular dynamics and Monte Carlo have received the most attention. Three main types of parallel molecular dynamics simulations have been developed, the replicated data decomposition, the spatial decomposition, and the force decomposition. For Monte Carlo simulations, parallel algorithms have been developed which can be divided into two categories, those which require a modified Markov chain and those which do not. Parallel algorithms developed for other simulation methods such as Gibbs ensemble Monte Carlo, grand canonical molecular dynamics, and Monte Carlo methods for protein structure determination are also reviewed and issues such as how to measure parallel efficiency, especially in the case of parallel Monte Carlo algorithms with modified Markov chains are discussed.

  18. Molecular solid-state inverter-converter system

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1973-01-01

    A modular approach for aerospace electrical systems has been developed, using lightweight high efficiency pulse width modulation techniques. With the modular approach, a required system is obtained by paralleling modules. The modular system includes the inverters and converters, a paralleling system, and an automatic control and fault-sensing protection system with a visual annunciator. The output is 150 V dc, or a low distortion three phase sine wave at 120 V, 400 Hz. Input power is unregulated 56 V dc. Each module is rated 2.5 kW or 3.6 kVA at 0.7 power factor.

  19. Modular DC-DC converter system for energy harvesting with EAPs

    NASA Astrophysics Data System (ADS)

    Eitzen, L.; Graf, C.; Maas, J.

    2013-04-01

    Energy harvesting with EAPs requires an energy-efficient power electronics providing a bidirectional energy transfer and operating voltages of up to several kilovolts. A possibility to achieve a high energy-efficiency for high voltage conversion is the use of a modular converter system consisting of several bidirectional converter modules, which are connected in series on the converter output side and in parallel at the input side. Since each converter stage provides only a part of the overall converter output voltage, the converter module output voltages can effectively be reduced by choosing the number of cascaded converter modules appropriately. This allows the use of standard semiconductor switches with superior electrical characteristics compared to high voltage semiconductors, enabling a high energy-efficiency and smaller passive components. Since EAP devices exhibit a mainly capacitive behavior and a limitation of the operating current is required for electrode protection, the utilized converter structure/topology has to be operated as a controllable current source on the lowest control level, which is achieved by operating the converter modules of the modular converter system with a subordinate closed-looped current control scheme. In order to avoid voltage unbalances among the single converter modules, a method for voltage balancing is presented. For validation, experimental results of a realized bidirectional flyback converter prototype are presented and discussed.

  20. Parallel Harness for Informatic Stream Hashing

    SciTech Connect

    Steve Plimpton, Tim Shead

    2012-09-11

    PHISH is a lightweight framework which a set of independent processes can use to exchange data as they run on the same desktop machine, on processors of a parallel machine, or on different machines across a network. This enables them to work in a coordinated parallel fashion to perform computations on either streaming, archived, or self-generated data. The PHISH distribution includes a simple, portable library for performing data exchanges in useful patterns either via MPI message-passing or ZMQ sockets. PHISH input scripts are used to describe a data-processing algorithm, and additional tools provided in the PHISH distribution convert the script into a form that can be launched as a parallel job.

  1. Parallel Harness for Informatic Stream Hashing

    Energy Science and Technology Software Center (ESTSC)

    2012-09-11

    PHISH is a lightweight framework which a set of independent processes can use to exchange data as they run on the same desktop machine, on processors of a parallel machine, or on different machines across a network. This enables them to work in a coordinated parallel fashion to perform computations on either streaming, archived, or self-generated data. The PHISH distribution includes a simple, portable library for performing data exchanges in useful patterns either via MPImore » message-passing or ZMQ sockets. PHISH input scripts are used to describe a data-processing algorithm, and additional tools provided in the PHISH distribution convert the script into a form that can be launched as a parallel job.« less

  2. Delta connected resonant snubber circuit

    DOEpatents

    Lai, J.S.; Peng, F.Z.; Young, R.W. Sr.; Ott, G.W. Jr.

    1998-01-20

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 36 figs.

  3. Delta connected resonant snubber circuit

    DOEpatents

    Lai, Jih-Sheng; Peng, Fang Zheng; Young, Sr., Robert W.; Ott, Jr., George W.

    1998-01-01

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  4. The application of standardized control and interface circuits to three dc to dc power converters.

    NASA Technical Reports Server (NTRS)

    Yu, Y.; Biess, J. J.; Schoenfeld, A. D.; Lalli, V. R.

    1973-01-01

    Standardized control and interface circuits were applied to the three most commonly used dc to dc converters: the buck-boost converter, the series-switching buck regulator, and the pulse-modulated parallel inverter. The two-loop ASDTIC regulation control concept was implemented by using a common analog control signal processor and a novel digital control signal processor. This resulted in control circuit standardization and superior static and dynamic performance of the three dc-to-dc converters. Power components stress control, through active peak current limiting and recovery of switching losses, was applied to enhance reliability and converter efficiency.

  5. Electron heating and current drive by mode converted slow waves

    SciTech Connect

    Majeski, R.; Phillips, C.K.; Wilson, J.R.

    1994-08-01

    An approach to obtaining efficient single pass mode conversion at high parallel wavenumber from the fast magnetosonic wave to the slow ion Bernstein wave, in a two ion species tokamak plasma, is described. The intent is to produce localized electron heating or current drive via the mode converted slow wave. In particular, this technique can be adapted to off-axis current drive for current profile control. Modelling for the case of deuterium-tritium plasmas in TFTR is presented.

  6. Tunable wavelength terahertz polarization converter based on quartz waveplates.

    PubMed

    Kaveev, A K; Kropotov, G I; Tsypishka, D I; Tzibizov, I A; Vinerov, I A; Kaveeva, E G

    2014-08-20

    We present the results of calculation and experimental testing of the tunable wavelength terahertz polarization converter represented by a set of plane-parallel birefringent plates with an in-plane birefringence axis. An experimental device has been produced and tested. The calculations show that the effect of interference between the interfaces, including air gaps, may be neglected. The considered device may be used as a simple narrow achromatic waveplate, or a Solc band pass filter for the specified wavelength. PMID:25321112

  7. High-power converters for space applications

    NASA Technical Reports Server (NTRS)

    Park, J. N.; Cooper, Randy

    1991-01-01

    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  8. Wind/water energy converter

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.

    1979-01-01

    Device will convert wind, water, tidal or wave energy into electrical or mechanical energy. Is comprised of windmill-like paddles or blades synchronously geared to orient themselves to wind direction for optimum energy extraction.

  9. The J3 SCR model applied to resonant converter simulation

    NASA Technical Reports Server (NTRS)

    Avant, R. L.; Lee, F. C. Y.

    1985-01-01

    The J3 SCR model is a continuous topology computer model for the SCR. Its circuit analog and parameter estimation procedure are uniformly applicable to popular computer-aided design and analysis programs such as SPICE2 and SCEPTRE. The circuit analog is based on the intrinsic three pn junction structure of the SCR. The parameter estimation procedure requires only manufacturer's specification sheet quantities as a data base.

  10. Parallel digital forensics infrastructure.

    SciTech Connect

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexico Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.

  11. Boron nitride converted carbon fiber

    DOEpatents

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  12. PCLIPS: Parallel CLIPS

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.; Bennett, Bonnie H.; Tello, Ivan

    1994-01-01

    A parallel version of CLIPS 5.1 has been developed to run on Intel Hypercubes. The user interface is the same as that for CLIPS with some added commands to allow for parallel calls. A complete version of CLIPS runs on each node of the hypercube. The system has been instrumented to display the time spent in the match, recognize, and act cycles on each node. Only rule-level parallelism is supported. Parallel commands enable the assertion and retraction of facts to/from remote nodes working memory. Parallel CLIPS was used to implement a knowledge-based command, control, communications, and intelligence (C(sup 3)I) system to demonstrate the fusion of high-level, disparate sources. We discuss the nature of the information fusion problem, our approach, and implementation. Parallel CLIPS has also be used to run several benchmark parallel knowledge bases such as one to set up a cafeteria. Results show from running Parallel CLIPS with parallel knowledge base partitions indicate that significant speed increases, including superlinear in some cases, are possible.

  13. Eclipse Parallel Tools Platform

    Energy Science and Technology Software Center (ESTSC)

    2005-02-18

    Designing and developing parallel programs is an inherently complex task. Developers must choose from the many parallel architectures and programming paradigms that are available, and face a plethora of tools that are required to execute, debug, and analyze parallel programs i these environments. Few, if any, of these tools provide any degree of integration, or indeed any commonality in their user interfaces at all. This further complicates the parallel developer's task, hampering software engineering practices,more » and ultimately reducing productivity. One consequence of this complexity is that best practice in parallel application development has not advanced to the same degree as more traditional programming methodologies. The result is that there is currently no open-source, industry-strength platform that provides a highly integrated environment specifically designed for parallel application development. Eclipse is a universal tool-hosting platform that is designed to providing a robust, full-featured, commercial-quality, industry platform for the development of highly integrated tools. It provides a wide range of core services for tool integration that allow tool producers to concentrate on their tool technology rather than on platform specific issues. The Eclipse Integrated Development Environment is an open-source project that is supported by over 70 organizations, including IBM, Intel and HP. The Eclipse Parallel Tools Platform (PTP) plug-in extends the Eclipse framwork by providing support for a rich set of parallel programming languages and paradigms, and a core infrastructure for the integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration, support for a small number of parallel architectures

  14. Radiation effects on DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Zhang, Dexin; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2000-01-01

    DC-DC switching converters are circuits that can be used to convert a DC voltage of one value to another by switching action. They are increasing being used in space systems. Most of the popular DC-DC switching converters utilize power MOSFETs. However power MOSFETs, when subjected to radiation, are susceptible to degradation of device characteristics or catastrophic failure. This work focuses on the effects of total ionizing dose on converter performance. Four fundamental switching converters (buck converter, buck-boost converter, cuk converter, and flyback converter) were built using Harris IRF250 power MOSFETs. These converters were designed for converting an input of 60 volts to an output of about 12 volts with a switching frequency of 100 kHz. The four converters were irradiated with a Co-60 gamma source at dose rate of 217 rad/min. The performances of the four converters were examined during the exposure to the radiation. The experimental results show that the output voltage of the converters increases as total dose increases. However, the increases of the output voltage were different for the four different converters, with the buck converter and cuk converter the highest and the flyback converter the lowest. We observed significant increases in output voltage for cuk converter at a total dose of 24 krad (si).

  15. Parallel scheduling algorithms

    SciTech Connect

    Dekel, E.; Sahni, S.

    1983-01-01

    Parallel algorithms are given for scheduling problems such as scheduling to minimize the number of tardy jobs, job sequencing with deadlines, scheduling to minimize earliness and tardiness penalties, channel assignment, and minimizing the mean finish time. The shared memory model of parallel computers is used to obtain fast algorithms. 26 references.

  16. A High Voltage Ratio and Low Ripple Interleaved DC-DC Converter for Fuel Cell Applications

    PubMed Central

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536

  17. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    PubMed

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536

  18. Multipacting Analysis of the Superconducting Parallel-bar Cavity

    SciTech Connect

    S.U. De Silva, J.R. Delayen,

    2011-03-01

    The superconducting parallel-bar cavity is a deflecting/crabbing cavity with attractive properties, compared to other conventional designs, that is being considered for a number of applications. Multipacting can be a limiting factor to the performance of in any superconducting structure. In the parallel-bar cavity the main contribution to the deflection is due to the transverse deflecting voltage, between the parallel bars, making the design potentially prone to multipacting. This paper presents the results of analytical calculations and numerical simulations of multipacting in the parallel-bar cavity with resonant voltage, impact energies and corresponding particle trajectories.

  19. Massively parallel mathematical sieves

    SciTech Connect

    Montry, G.R.

    1989-01-01

    The Sieve of Eratosthenes is a well-known algorithm for finding all prime numbers in a given subset of integers. A parallel version of the Sieve is described that produces computational speedups over 800 on a hypercube with 1,024 processing elements for problems of fixed size. Computational speedups as high as 980 are achieved when the problem size per processor is fixed. The method of parallelization generalizes to other sieves and will be efficient on any ensemble architecture. We investigate two highly parallel sieves using scattered decomposition and compare their performance on a hypercube multiprocessor. A comparison of different parallelization techniques for the sieve illustrates the trade-offs necessary in the design and implementation of massively parallel algorithms for large ensemble computers.

  20. Parallel computing works

    SciTech Connect

    Not Available

    1991-10-23

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of many computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.

  1. Electrical performance characteristics of high power converters for space power applications

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.

    1989-01-01

    The first goal of this project was to investigate various converters that would be suitable for processing electric power derived from a nuclear reactor. The implementation is indicated of a 20 kHz system that includes a source converter, a ballast converter, and a fixed frequency converter for generating the 20 kHz output. This system can be converted to dc simply by removing the fixed frequency converter. This present study emphasized the design and testing of the source and ballast converters. A push-pull current-fed (PPCF) design was selected for the source converter, and a 2.7 kW version of this was implemented using three 900 watt modules in parallel. The characteristic equation for two converters in parallel was derived, but this analysis did not yield any experimental methods for measuring relative stability. The three source modules were first tested individually and then in parallel as a 2.7 kW system. All tests proved to be satisfactory; the system was stable; efficiency and regulation were acceptable; and the system was fault tolerant. The design of a ballast-load converter, which was operated as a shunt regulator, was investigated. The proposed power circuit is suitable for use with BJTs because proportional base drive is easily implemented. A control circuit which minimizes switching frequency ripple and automatically bypasses a faulty shunt section was developed. A nonlinear state-space-averaged model of the shunt regulator was developed and shown to produce an accurate incremental (small-signal) dynamic model, even though the usual state-space-averaging assumptions were not met. The nonlinear model was also shown to be useful for large-signal dynamic simulation using PSpice.

  2. Inducing Resonant Interactions in Ultracold Atoms with a Modulated Magnetic Field

    NASA Astrophysics Data System (ADS)

    Smith, D. Hudson

    2015-11-01

    In systems of ultracold atoms, pairwise interactions can be resonantly enhanced by a new mechanism that does not rely upon a magnetic Feshbach resonance. In this mechanism, interactions are controlled by tuning the frequency of an oscillating parallel component of the magnetic field close to the transition frequency between the scattering atoms and a two-atom bound state. The real part of the resulting s -wave scattering length a is resonantly enhanced when the oscillation frequency is close to the transition frequency. The resonance parameters can be controlled by varying the amplitude of the oscillating field. The amplitude also controls the imaginary part of a , which arises because the oscillating field converts atom pairs into molecules. The real part of a can be made much larger than the background scattering length without introducing catastrophic atom losses from the imaginary part. For the case of a shallow bound state in the scattering channel, the dimensionless resonance parameters are universal functions of the dimensionless oscillation amplitude.

  3. Parallel nearest neighbor calculations

    NASA Astrophysics Data System (ADS)

    Trease, Harold

    We are just starting to parallelize the nearest neighbor portion of our free-Lagrange code. Our implementation of the nearest neighbor reconnection algorithm has not been parallelizable (i.e., we just flip one connection at a time). In this paper we consider what sort of nearest neighbor algorithms lend themselves to being parallelized. For example, the construction of the Voronoi mesh can be parallelized, but the construction of the Delaunay mesh (dual to the Voronoi mesh) cannot because of degenerate connections. We will show our most recent attempt to tessellate space with triangles or tetrahedrons with a new nearest neighbor construction algorithm called DAM (Dial-A-Mesh). This method has the characteristics of a parallel algorithm and produces a better tessellation of space than the Delaunay mesh. Parallel processing is becoming an everyday reality for us at Los Alamos. Our current production machines are Cray YMPs with 8 processors that can run independently or combined to work on one job. We are also exploring massive parallelism through the use of two 64K processor Connection Machines (CM2), where all the processors run in lock step mode. The effective application of 3-D computer models requires the use of parallel processing to achieve reasonable "turn around" times for our calculations.

  4. Bilingual parallel programming

    SciTech Connect

    Foster, I.; Overbeek, R.

    1990-01-01

    Numerous experiments have demonstrated that computationally intensive algorithms support adequate parallelism to exploit the potential of large parallel machines. Yet successful parallel implementations of serious applications are rare. The limiting factor is clearly programming technology. None of the approaches to parallel programming that have been proposed to date -- whether parallelizing compilers, language extensions, or new concurrent languages -- seem to adequately address the central problems of portability, expressiveness, efficiency, and compatibility with existing software. In this paper, we advocate an alternative approach to parallel programming based on what we call bilingual programming. We present evidence that this approach provides and effective solution to parallel programming problems. The key idea in bilingual programming is to construct the upper levels of applications in a high-level language while coding selected low-level components in low-level languages. This approach permits the advantages of a high-level notation (expressiveness, elegance, conciseness) to be obtained without the cost in performance normally associated with high-level approaches. In addition, it provides a natural framework for reusing existing code.

  5. High efficiency thermionic converter studies

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, T. R.; Lieb, D.; Oettinger, P. E.; Goodale, D. B.

    1977-01-01

    Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion.

  6. Parallel system simulation

    SciTech Connect

    Tai, H.M.; Saeks, R.

    1984-03-01

    A relaxation algorithm for solving large-scale system simulation problems in parallel is proposed. The algorithm, which is composed of both a time-step parallel algorithm and a component-wise parallel algorithm, is described. The interconnected nature of the system, which is characterized by the component connection model, is fully exploited by this approach. A technique for finding an optimal number of the time steps is also described. Finally, this algorithm is illustrated via several examples in which the possible trade-offs between the speed-up ratio, efficiency, and waiting time are analyzed.

  7. The NAS parallel benchmarks

    NASA Technical Reports Server (NTRS)

    Bailey, David (Editor); Barton, John (Editor); Lasinski, Thomas (Editor); Simon, Horst (Editor)

    1993-01-01

    A new set of benchmarks was developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of a set of kernels, the 'Parallel Kernels,' and a simulated application benchmark. Together they mimic the computation and data movement characteristics of large scale computational fluid dynamics (CFD) applications. The principal distinguishing feature of these benchmarks is their 'pencil and paper' specification - all details of these benchmarks are specified only algorithmically. In this way many of the difficulties associated with conventional benchmarking approaches on highly parallel systems are avoided.

  8. Hybrid-mode thermionic converter

    NASA Technical Reports Server (NTRS)

    Rasor, N. S.; Britt, E. J.

    1976-01-01

    Converter's collector electrode has uniform low work-function surface and operates at sufficiently low temperature to produce negligible electron emission. Emitter electrode has main region which has intermediate work-function and auxiliary region which has relatively high work-function surface.

  9. Converting accounts receivable into cash.

    PubMed

    Folk, M D; Roest, P R

    1995-09-01

    In recent years, increasing numbers of healthcare providers have converted their accounts receivable into cash through a process called securitization. This practice has gained popularity because it provides a means to raise capital necessary to healthcare organizations. Although securitization transactions can be complex, they may provide increased financial flexibility to providers as they prepare for continuing change in the healthcare industry. PMID:10145096

  10. Parallel programming with PCN

    SciTech Connect

    Foster, I.; Tuecke, S.

    1991-12-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, tools for developing and debugging programs in this language, and interfaces to Fortran and C that allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. In includes both tutorial and reference material. It also presents the basic concepts that underly PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous FTP from Argonne National Laboratory in the directory pub/pcn at info.mcs.anl.gov (c.f. Appendix A).

  11. Parallels with nature

    NASA Astrophysics Data System (ADS)

    2014-10-01

    Adam Nelson and Stuart Warriner, from the University of Leeds, talk with Nature Chemistry about their work to develop viable synthetic strategies for preparing new chemical structures in parallel with the identification of desirable biological activity.

  12. The Parallel Axiom

    ERIC Educational Resources Information Center

    Rogers, Pat

    1972-01-01

    Criteria for a reasonable axiomatic system are discussed. A discussion of the historical attempts to prove the independence of Euclids parallel postulate introduces non-Euclidean geometries. Poincare's model for a non-Euclidean geometry is defined and analyzed. (LS)

  13. Simplified Parallel Domain Traversal

    SciTech Connect

    Erickson III, David J

    2011-01-01

    Many data-intensive scientific analysis techniques require global domain traversal, which over the years has been a bottleneck for efficient parallelization across distributed-memory architectures. Inspired by MapReduce and other simplified parallel programming approaches, we have designed DStep, a flexible system that greatly simplifies efficient parallelization of domain traversal techniques at scale. In order to deliver both simplicity to users as well as scalability on HPC platforms, we introduce a novel two-tiered communication architecture for managing and exploiting asynchronous communication loads. We also integrate our design with advanced parallel I/O techniques that operate directly on native simulation output. We demonstrate DStep by performing teleconnection analysis across ensemble runs of terascale atmospheric CO{sub 2} and climate data, and we show scalability results on up to 65,536 IBM BlueGene/P cores.

  14. Partitioning and parallel radiosity

    NASA Astrophysics Data System (ADS)

    Merzouk, S.; Winkler, C.; Paul, J. C.

    1996-03-01

    This paper proposes a theoretical framework, based on domain subdivision for parallel radiosity. Moreover, three various implementation approaches, taking advantage of partitioning algorithms and global shared memory architecture, are presented.

  15. Switching transients in high-frequency high-power converters using power MOSFET's

    NASA Technical Reports Server (NTRS)

    Sloane, T. H.; Owen, H. A., Jr.; Wilson, T. G.

    1979-01-01

    The use of MOSFETs in a high-frequency high-power dc-to-dc converter is investigated. Consideration is given to the phenomena associated with the paralleling of MOSFETs and to the effect of stray circuit inductances on the converter circuit performance. Analytical relationships between various time constants during the turning-on and turning-off intervals are derived which provide estimates of plateau and peak levels during these intervals.

  16. Scalable parallel communications

    NASA Technical Reports Server (NTRS)

    Maly, K.; Khanna, S.; Overstreet, C. M.; Mukkamala, R.; Zubair, M.; Sekhar, Y. S.; Foudriat, E. C.

    1992-01-01

    Coarse-grain parallelism in networking (that is, the use of multiple protocol processors running replicated software sending over several physical channels) can be used to provide gigabit communications for a single application. Since parallel network performance is highly dependent on real issues such as hardware properties (e.g., memory speeds and cache hit rates), operating system overhead (e.g., interrupt handling), and protocol performance (e.g., effect of timeouts), we have performed detailed simulations studies of both a bus-based multiprocessor workstation node (based on the Sun Galaxy MP multiprocessor) and a distributed-memory parallel computer node (based on the Touchstone DELTA) to evaluate the behavior of coarse-grain parallelism. Our results indicate: (1) coarse-grain parallelism can deliver multiple 100 Mbps with currently available hardware platforms and existing networking protocols (such as Transmission Control Protocol/Internet Protocol (TCP/IP) and parallel Fiber Distributed Data Interface (FDDI) rings); (2) scale-up is near linear in n, the number of protocol processors, and channels (for small n and up to a few hundred Mbps); and (3) since these results are based on existing hardware without specialized devices (except perhaps for some simple modifications of the FDDI boards), this is a low cost solution to providing multiple 100 Mbps on current machines. In addition, from both the performance analysis and the properties of these architectures, we conclude: (1) multiple processors providing identical services and the use of space division multiplexing for the physical channels can provide better reliability than monolithic approaches (it also provides graceful degradation and low-cost load balancing); (2) coarse-grain parallelism supports running several transport protocols in parallel to provide different types of service (for example, one TCP handles small messages for many users, other TCP's running in parallel provide high bandwidth

  17. Parallel image compression

    NASA Technical Reports Server (NTRS)

    Reif, John H.

    1987-01-01

    A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.

  18. Continuous parallel coordinates.

    PubMed

    Heinrich, Julian; Weiskopf, Daniel

    2009-01-01

    Typical scientific data is represented on a grid with appropriate interpolation or approximation schemes,defined on a continuous domain. The visualization of such data in parallel coordinates may reveal patterns latently contained in the data and thus can improve the understanding of multidimensional relations. In this paper, we adopt the concept of continuous scatterplots for the visualization of spatially continuous input data to derive a density model for parallel coordinates. Based on the point-line duality between scatterplots and parallel coordinates, we propose a mathematical model that maps density from a continuous scatterplot to parallel coordinates and present different algorithms for both numerical and analytical computation of the resulting density field. In addition, we show how the 2-D model can be used to successively construct continuous parallel coordinates with an arbitrary number of dimensions. Since continuous parallel coordinates interpolate data values within grid cells, a scalable and dense visualization is achieved, which will be demonstrated for typical multi-variate scientific data. PMID:19834230

  19. Converting the patterns of local heat flux via thermal illusion device

    NASA Astrophysics Data System (ADS)

    Zhu, N. Q.; Shen, X. Y.; Huang, J. P.

    2015-05-01

    Since the thermal conduction equation has form invariance under coordinate transformation, one can design thermal metamaterials with novel functions by tailoring materials' thermal conductivities. In this work, we establish a different transformation theory, and propose a layered device with anisotropic thermal conductivities. The device is able to convert heat flux from parallel patterns into non-parallel patterns and vice versa. In the mean time, the heat flux pattern outside the device keeps undisturbed as if this device is absent. We perform finite-element simulations to confirm the converting behavior. This work paves a different way to manipulate the flow of heat at will.

  20. Parametric study of laser photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  1. Design and evaluation of cellular power converter architectures

    NASA Astrophysics Data System (ADS)

    Perreault, David John

    Power electronic technology plays an important role in many energy conversion and storage applications, including machine drives, power supplies, frequency changers and UPS systems. Increases in performance and reductions in cost have been achieved through the development of higher performance power semiconductor devices and integrated control devices with increased functionality. Manufacturing techniques, however, have changed little. High power is typically achieved by paralleling multiple die in a sing!e package, producing the physical equivalent of a single large device. Consequently, both the device package and the converter in which the device is used continue to require large, complex mechanical structures, and relatively sophisticated heat transfer systems. An alternative to this approach is the use of a cellular power converter architecture, which is based upon the parallel connection of a large number of quasi-autonomous converters, called cells, each of which is designed for a fraction of the system rating. The cell rating is chosen such that single-die devices in inexpensive packages can be used, and the cell fabricated with an automated assembly process. The use of quasi-autonomous cells means that system performance is not compromised by the failure of a cell. This thesis explores the design of cellular converter architectures with the objective of achieving improvements in performance, reliability, and cost over conventional converter designs. New approaches are developed and experimentally verified for highly distributed control of cellular converters, including methods for ripple cancellation and current-sharing control. The performance of these techniques are quantified, and their dynamics are analyzed. Cell topologies suitable to the cellular architecture are investigated, and their use for systems in the 5-500 kVA range is explored. The design, construction, and experimental evaluation of a 6 kW cellular switched-mode rectifier is also addressed

  2. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  3. Photoelectric converters with quantum coherence.

    PubMed

    Su, Shan-He; Sun, Chang-Pu; Li, Sheng-Wen; Chen, Jin-Can

    2016-05-01

    Photon impingement is capable of liberating electrons in electronic devices and driving the electron flux from the lower chemical potential to higher chemical potential. Previous studies hinted that the thermodynamic efficiency of a nanosized photoelectric converter at maximum power is bounded by the Curzon-Ahlborn efficiency η_{CA}. In this study, we apply quantum effects to design a photoelectric converter based on a three-level quantum dot (QD) interacting with fermionic baths and photons. We show that, by adopting a pair of suitable degenerate states, quantum coherences induced by the couplings of QDs to sunlight and fermion baths can coexist steadily in nanoelectronic systems. Our analysis indicates that the efficiency at maximum power is no longer limited to η_{CA} through manipulation of carefully controlled quantum coherences. PMID:27300826

  4. Vibration converter with magnetic levitation

    NASA Astrophysics Data System (ADS)

    Gladilin, A. V.; Pirogov, V. A.; Golyamina, I. P.; Kulaev, U. V.; Kurbatov, P. A.; Kurbatova, E. P.

    2015-05-01

    The paper presents a mathematical model, the results of computational and theoretical research, and the feasibility of creating a vibration converter with full magnetic levitation in the suspension of a high-temperature superconductor (HTSC). The axial and radial stability of the active part of the converter is provided by the interaction of the magnetic field of ring-shaped permanent magnets and a hollow cylinder made of the ceramic HTSC material. The force is created by a system of current-carrying coils whose magnetic field is polarized by permanent magnets and interacts with induced currents in the superconducting cylinder. The case of transition to the superconducting state of HTSC material in the field of the permanent magnets (FC mode) is considered. The data confirm the outlook for the proposed technical solutions.

  5. Photoelectric converters with quantum coherence

    NASA Astrophysics Data System (ADS)

    Su, Shan-He; Sun, Chang-Pu; Li, Sheng-Wen; Chen, Jin-Can

    2016-05-01

    Photon impingement is capable of liberating electrons in electronic devices and driving the electron flux from the lower chemical potential to higher chemical potential. Previous studies hinted that the thermodynamic efficiency of a nanosized photoelectric converter at maximum power is bounded by the Curzon-Ahlborn efficiency ηCA. In this study, we apply quantum effects to design a photoelectric converter based on a three-level quantum dot (QD) interacting with fermionic baths and photons. We show that, by adopting a pair of suitable degenerate states, quantum coherences induced by the couplings of QDs to sunlight and fermion baths can coexist steadily in nanoelectronic systems. Our analysis indicates that the efficiency at maximum power is no longer limited to ηCA through manipulation of carefully controlled quantum coherences.

  6. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler, Lisle B.; Kokko, Edwin; Switzer, Vernon A

    2007-05-22

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  7. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler, Lisle B.; Kokko, Edwin; Switzer, Vernon A.

    2011-03-15

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more frusto-conically-tapered telescoping rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration by the friction fit of adjacent pairs of frusto-conically-tapered rings to each other.

  8. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler,; Lisle B.; Kokko, Edwin; Switzer, Vernon A

    2010-10-26

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  9. Parallel time integration software

    Energy Science and Technology Software Center (ESTSC)

    2014-07-01

    This package implements an optimal-scaling multigrid solver for the (non) linear systems that arise from the discretization of problems with evolutionary behavior. Typically, solution algorithms for evolution equations are based on a time-marching approach, solving sequentially for one time step after the other. Parallelism in these traditional time-integrarion techniques is limited to spatial parallelism. However, current trends in computer architectures are leading twards system with more, but not faster. processors. Therefore, faster compute speeds mustmore » come from greater parallelism. One approach to achieve parallelism in time is with multigrid, but extending classical multigrid methods for elliptic poerators to this setting is a significant achievement. In this software, we implement a non-intrusive, optimal-scaling time-parallel method based on multigrid reduction techniques. The examples in the package demonstrate optimality of our multigrid-reduction-in-time algorithm (MGRIT) for solving a variety of parabolic equations in two and three sparial dimensions. These examples can also be used to show that MGRIT can achieve significant speedup in comparison to sequential time marching on modern architectures.« less

  10. Parallel time integration software

    SciTech Connect

    2014-07-01

    This package implements an optimal-scaling multigrid solver for the (non) linear systems that arise from the discretization of problems with evolutionary behavior. Typically, solution algorithms for evolution equations are based on a time-marching approach, solving sequentially for one time step after the other. Parallelism in these traditional time-integrarion techniques is limited to spatial parallelism. However, current trends in computer architectures are leading twards system with more, but not faster. processors. Therefore, faster compute speeds must come from greater parallelism. One approach to achieve parallelism in time is with multigrid, but extending classical multigrid methods for elliptic poerators to this setting is a significant achievement. In this software, we implement a non-intrusive, optimal-scaling time-parallel method based on multigrid reduction techniques. The examples in the package demonstrate optimality of our multigrid-reduction-in-time algorithm (MGRIT) for solving a variety of parabolic equations in two and three sparial dimensions. These examples can also be used to show that MGRIT can achieve significant speedup in comparison to sequential time marching on modern architectures.

  11. Simplified dc to dc converter

    NASA Technical Reports Server (NTRS)

    Gruber, R. P. (Inventor)

    1984-01-01

    A dc to dc converter which can start with a shorted output and which regulates output voltage and current is described. Voltage controlled switches directed current through the primary of a transformer the secondary of which includes virtual reactance. The switching frequency of the switches is appropriately varied to increase the voltage drop across the virtual reactance in the secondary winding to which there is connected a low impedance load. A starting circuit suitable for voltage switching devices is provided.

  12. High-Precision Hysteresis Sensing of the Quartz Crystal Inductance-to-Frequency Converter.

    PubMed

    Matko, Vojko; Milanović, Miro

    2016-01-01

    A new method for the automated measurement of the hysteresis of the temperature-compensated inductance-to-frequency converter with a single quartz crystal is proposed. The new idea behind this method is a converter with two programmable analog switches enabling the automated measurement of the converter hysteresis, as well as the temperature compensation of the quartz crystal and any other circuit element. Also used is the programmable timing control device that allows the selection of different oscillating frequencies. In the proposed programmable method two different inductances connected in series to the quartz crystal are switched in a short time sequence, compensating the crystal's natural temperature characteristics (in the temperature range between 0 and 50 °C). The procedure allows for the measurement of the converter hysteresis at various values of capacitance connected in parallel with the quartz crystal for the converter sensitivity setting at selected inductance. It, furthermore, enables the measurement of hysteresis at various values of inductance at selected parallel capacitance (sensitivity) connected to the quartz crystal. The article shows that the proposed hysteresis measurement of the converter, which converts the inductance in the range between 95 and 100 μH to a frequency in the range between 1 and 200 kHz, has only 7 × 10(-13) frequency instability (during the temperature change between 0 and 50 °C) with a maximum 1 × 10(-11) hysteresis frequency difference. PMID:27367688

  13. High-Precision Hysteresis Sensing of the Quartz Crystal Inductance-to-Frequency Converter

    PubMed Central

    Matko, Vojko; Milanović, Miro

    2016-01-01

    A new method for the automated measurement of the hysteresis of the temperature-compensated inductance-to-frequency converter with a single quartz crystal is proposed. The new idea behind this method is a converter with two programmable analog switches enabling the automated measurement of the converter hysteresis, as well as the temperature compensation of the quartz crystal and any other circuit element. Also used is the programmable timing control device that allows the selection of different oscillating frequencies. In the proposed programmable method two different inductances connected in series to the quartz crystal are switched in a short time sequence, compensating the crystal’s natural temperature characteristics (in the temperature range between 0 and 50 °C). The procedure allows for the measurement of the converter hysteresis at various values of capacitance connected in parallel with the quartz crystal for the converter sensitivity setting at selected inductance. It, furthermore, enables the measurement of hysteresis at various values of inductance at selected parallel capacitance (sensitivity) connected to the quartz crystal. The article shows that the proposed hysteresis measurement of the converter, which converts the inductance in the range between 95 and 100 μH to a frequency in the range between 1 and 200 kHz, has only 7 × 10−13 frequency instability (during the temperature change between 0 and 50 °C) with a maximum 1 × 10−11 hysteresis frequency difference. PMID:27367688

  14. Recent advancements in photonic converters

    NASA Astrophysics Data System (ADS)

    Hayduk, Michael J.; Bussjager, Rebecca J.; Getbehead, Mark A.; Louthain, James A.

    2000-09-01

    Analog-to-digital converters (ADCs) are an essential component of digital receiver systems. Progress at advancing the electronic ADC modules has been very slow due in large part to the difficulties in fabricating the electronic circuitry required for very high resolution and high sampling rate converters. This slow progress has resulted in a bottleneck between the received analog signal and the digital signal processing system. Single or multiple analog signal down conversion stages are required in digital receivers to down convert the received analog signal to an intermediate frequency (IF) that can be processed by the electronic ADC. There has been much recent interest in the use of photonics for direct digitization of the analog signal at the received RF frequency thus eliminating the need for analog down conversion. This paper reviews some of the recent research advancements in photonic ADCs. We will especially focus on the development of a novel photonic ADC module that uses semiconductor saturable absorbers to perform the data quantization. We will also present recent results in the development of a mode-locked fiber laser used as the sampling source in this photonic ADC architecture.

  15. High efficiency thermionic converter studies

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, D. P.; Oettinger, P. E.

    1976-01-01

    The objective is to improve thermionic converter performance by means of reduced interelectrode losses, greater emitter capabilities, and lower collector work functions until the converter performance level is suitable for out-of-core space reactors and radioisotope generators. Electrode screening experiments have identified several promising collector materials. Back emission work function measurements of a ZnO collector in a thermionic diode have given values less than 1.3 eV. Diode tests were conducted over the range of temperatures of interest for space power applications. Enhanced mode converter experiments have included triodes operated in both the surface ionization and plasmatron modes. Pulsed triodes were studied as a function of pulse length, pulse potential, inert gas fill pressure, cesium pressure, spacing, emitter temperature and collector temperature. Current amplifications (i.e., mean output current/mean grid current) of several hundred were observed up to output current densities of one amp/sq cm. These data correspond to an equivalent arc drop less than 0.1 eV.

  16. Digital Control Technologies for Modular DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon

    2002-01-01

    Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.

  17. High-Efficiency Hall Thruster Discharge Power Converter

    NASA Technical Reports Server (NTRS)

    Jaquish, Thomas

    2015-01-01

    Busek Company, Inc., is designing, building, and testing a new printed circuit board converter. The new converter consists of two series or parallel boards (slices) intended to power a high-voltage Hall accelerator (HiVHAC) thruster or other similarly sized electric propulsion devices. The converter accepts 80- to 160-V input and generates 200- to 700-V isolated output while delivering continually adjustable 300-W to 3.5-kW power. Busek built and demonstrated one board that achieved nearly 94 percent efficiency the first time it was turned on, with projected efficiency exceeding 97 percent following timing software optimization. The board has a projected specific mass of 1.2 kg/kW, achieved through high-frequency switching. In Phase II, Busek optimized to exceed 97 percent efficiency and built a second prototype in a form factor more appropriate for flight. This converter then was integrated with a set of upgraded existing boards for powering magnets and the cathode. The program culminated with integrating the entire power processing unit and testing it on a Busek thruster and on NASA's HiVHAC thruster.

  18. Multi-speed multi-phase resolver converter

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean (Inventor); Howard, David (Inventor)

    1994-01-01

    A multiphase converter circuit generates a plurality of sinusoidal outputs of displaced phase and given speed value from the output of an angular resolver system attachable to a motor excited by these multi-phase outputs, the resolver system having a lower speed value than that of the motor. The angular resolver system provides in parallel format sequential digital numbers indicative of the amount of rotation of the shaft of an angular position sensor associated with the angular resolver system. These numbers are used to excite simultaneously identical addresses of a plurality of addressable memory systems, each memory system having stored therein at sequential addresses sequential values of a sinusoidal wavetrain of a given number of sinusoids. The stored wavetrain values represent sinusoids displaced from each other in phase according to the number of output phases desired. A digital-to-analog converter associated with each memory system converts each accessed word to a corresponding analog value to generate attendant to rotation of the angular resolver a sinusoidal wave of proper phase at each of the plurality of outputs. By properly orienting the angular resolver system with respect to the rotor of the motor, essentially ripple-free torque is supplied to the rotor. The angular resolver system may employ an analog resolver feeding an integrated circuit resolver-to-digital converter to produce the requisite digital values serving as addresses. Alternative versions employing incremental or absolute encoders are also described.

  19. Multi-speed multi-phase resolver converter

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor)

    1995-01-01

    A multiphase converter circuit generates a plurality of sinusoidal outputs of displaced phase and given speed value from the output of an angular resolver system attachable to a motor excited by these multi-phase outputs, the resolver system having a lower speed value than that of the motor. The angular resolver system provides in parallel format sequential digital numbers indicative of the amount of rotation of the shaft of an angular position sensor associated with the angular resolver system. These numbers are used to excite simultaneously identical addresses of a plurality of addressable memory systems, each memory system having stored therein at sequential addresses sequential values of a sinusoidal wavetrain of a given number of sinusoids. The stored wavetrain values represent sinusoids displaced from each other in phase according to the number of output phases desired. A digital-to-analog converter associated with each memory system converts each accessed word to a corresponding analog value to generate attendant to rotation of the angular resolver a sinusoidal wave of proper phase at each of the plurality of outputs. By properly orienting the angular resolver system with respect to the rotor of the motor, essentially ripple-free torque is supplied to the rotor. The angular resolver system may employ an analog resolver feeding an integrated circuit resolver-to-digital converter to produce the requisite digital values serving as addresses. Alternative versions employing incremental or absolute encoders are also described.

  20. Radio frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  1. The NAS Parallel Benchmarks

    SciTech Connect

    Bailey, David H.

    2009-11-15

    The NAS Parallel Benchmarks (NPB) are a suite of parallel computer performance benchmarks. They were originally developed at the NASA Ames Research Center in 1991 to assess high-end parallel supercomputers. Although they are no longer used as widely as they once were for comparing high-end system performance, they continue to be studied and analyzed a great deal in the high-performance computing community. The acronym 'NAS' originally stood for the Numerical Aeronautical Simulation Program at NASA Ames. The name of this organization was subsequently changed to the Numerical Aerospace Simulation Program, and more recently to the NASA Advanced Supercomputing Center, although the acronym remains 'NAS.' The developers of the original NPB suite were David H. Bailey, Eric Barszcz, John Barton, David Browning, Russell Carter, LeoDagum, Rod Fatoohi, Samuel Fineberg, Paul Frederickson, Thomas Lasinski, Rob Schreiber, Horst Simon, V. Venkatakrishnan and Sisira Weeratunga. The original NAS Parallel Benchmarks consisted of eight individual benchmark problems, each of which focused on some aspect of scientific computing. The principal focus was in computational aerophysics, although most of these benchmarks have much broader relevance, since in a much larger sense they are typical of many real-world scientific computing applications. The NPB suite grew out of the need for a more rational procedure to select new supercomputers for acquisition by NASA. The emergence of commercially available highly parallel computer systems in the late 1980s offered an attractive alternative to parallel vector supercomputers that had been the mainstay of high-end scientific computing. However, the introduction of highly parallel systems was accompanied by a regrettable level of hype, not only on the part of the commercial vendors but even, in some cases, by scientists using the systems. As a result, it was difficult to discern whether the new systems offered any fundamental performance advantage

  2. Adaptive parallel logic networks

    NASA Technical Reports Server (NTRS)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  3. Speeding up parallel processing

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    In 1967 Amdahl expressed doubts about the ultimate utility of multiprocessors. The formulation, now called Amdahl's law, became part of the computing folklore and has inspired much skepticism about the ability of the current generation of massively parallel processors to efficiently deliver all their computing power to programs. The widely publicized recent results of a group at Sandia National Laboratory, which showed speedup on a 1024 node hypercube of over 500 for three fixed size problems and over 1000 for three scalable problems, have convincingly challenged this bit of folklore and have given new impetus to parallel scientific computing.

  4. Programming parallel vision algorithms

    SciTech Connect

    Shapiro, L.G.

    1988-01-01

    Computer vision requires the processing of large volumes of data and requires parallel architectures and algorithms to be useful in real-time, industrial applications. The INSIGHT dataflow language was designed to allow encoding of vision algorithms at all levels of the computer vision paradigm. INSIGHT programs, which are relational in nature, can be translated into a graph structure that represents an architecture for solving a particular vision problem or a configuration of a reconfigurable computational network. The authors consider here INSIGHT programs that produce a parallel net architecture for solving low-, mid-, and high-level vision tasks.

  5. Highly parallel computation

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.; Tichy, Walter F.

    1990-01-01

    Among the highly parallel computing architectures required for advanced scientific computation, those designated 'MIMD' and 'SIMD' have yielded the best results to date. The present development status evaluation of such architectures shown neither to have attained a decisive advantage in most near-homogeneous problems' treatment; in the cases of problems involving numerous dissimilar parts, however, such currently speculative architectures as 'neural networks' or 'data flow' machines may be entailed. Data flow computers are the most practical form of MIMD fine-grained parallel computers yet conceived; they automatically solve the problem of assigning virtual processors to the real processors in the machine.

  6. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  7. Graphene optical-to-thermal converter

    NASA Astrophysics Data System (ADS)

    Manjavacas, Alejandro; Thongrattanasiri, Sukosin; Greffet, Jean-Jacques; Garcia de Abajo, Javier

    2015-03-01

    Infrared plasmons in doped graphene nanostructures produce large optical absorption that can be used for narrow-band thermal light emission at tunable frequencies that strongly depend on the doping charge. By virtue of Kirchhoff's law, thermal light emission is proportional to the absorption, thus resulting in narrow emission lines associated with the electrically controlled plasmons of heated graphene. Here we show that realistic designs of graphene plasmonic structures can release over 90% of the emission through individual infrared lines with 1% bandwidth. We examine anisotropic graphene structures in which efficient heating can be produced upon optical pumping tuned to a plasmonic absorption resonance situated in the blue region relative to the thermal emission. An incoherent thermal light converter is thus achieved. Our results open a new approach for designing tunable nanoscale infrared light sources. A.M. acknowledges financial support from the Welch foundation through the J. Evans Attwell-Welch Postdoctoral Fellowship Program of the Smalley Institute of Rice University (Grant L-C-004).

  8. Modular Power Converters for PV Applications

    SciTech Connect

    Ozpineci, Burak; Tolbert, Leon M

    2012-05-01

    for detailed design of new power converters for each new application or installation. One set of modules and controllers can be pre-developed and the only design question would be how many modules need to be in series or parallel for the specific power requirement. Then, a designer can put the modules together and add the intelligent reconfigurable controller. The controller determines how many modules are connected, but it might also ask for user input for the specific application during setup. The modules include protection against faults and can reset it, if necessary. In case of a power device failure, the controller reconfigures itself to continue limited operation until repair which might be as simple as taking the faulty module out and inserting a new module. The result is cost savings in design, maintenance, repair, and a grid that is more reliable and available. This concept would be a perfect fit for the recently announced funding opportunity announcement (DE-FOA-0000653) on Plug and Play Photovoltaics.

  9. Multiple output zero-current switching switched-capacitor bidirectional dc-dc converter

    NASA Astrophysics Data System (ADS)

    Lee, Yuang-Shung; Ko, Yi-Pin; Chi, Chien-An

    2010-08-01

    The proposed circuit is a multiple output quasi-resonant (QR) zero-current switching (ZCS) switched-capacitor (SC) converter with a bidirectional power flow control conversion scheme. The principles of the proposed multiple output QR ZCS SC bidirectional dc-dc converter are described using a detailed circuit model for analysis. Simulation and experimental results are carried out to verify the validity and the soft switching performance of the proposed converter. The maximum efficiency achievable is about 94 and 92% for the forward and reverse power flow control schemes, respectively. The output voltage can be regulated by changing the switching frequency for the designed compensated closed-loop controller.

  10. Parallel Total Energy

    Energy Science and Technology Software Center (ESTSC)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  11. NAS Parallel Benchmarks Results

    NASA Technical Reports Server (NTRS)

    Subhash, Saini; Bailey, David H.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    The NAS Parallel Benchmarks (NPB) were developed in 1991 at NASA Ames Research Center to study the performance of parallel supercomputers. The eight benchmark problems are specified in a pencil and paper fashion i.e. the complete details of the problem to be solved are given in a technical document, and except for a few restrictions, benchmarkers are free to select the language constructs and implementation techniques best suited for a particular system. In this paper, we present new NPB performance results for the following systems: (a) Parallel-Vector Processors: Cray C90, Cray T'90 and Fujitsu VPP500; (b) Highly Parallel Processors: Cray T3D, IBM SP2 and IBM SP-TN2 (Thin Nodes 2); (c) Symmetric Multiprocessing Processors: Convex Exemplar SPP1000, Cray J90, DEC Alpha Server 8400 5/300, and SGI Power Challenge XL. We also present sustained performance per dollar for Class B LU, SP and BT benchmarks. We also mention NAS future plans of NPB.

  12. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  13. Parallel programming with PCN

    SciTech Connect

    Foster, I.; Tuecke, S.

    1993-01-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, tools for developing and debugging programs in this language, and interfaces to Fortran and Cthat allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. It includes both tutorial and reference material. It also presents the basic concepts that underlie PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous ftp from Argonne National Laboratory in the directory pub/pcn at info.mcs. ani.gov (cf. Appendix A). This version of this document describes PCN version 2.0, a major revision of the PCN programming system. It supersedes earlier versions of this report.

  14. Parallel Multigrid Equation Solver

    Energy Science and Technology Software Center (ESTSC)

    2001-09-07

    Prometheus is a fully parallel multigrid equation solver for matrices that arise in unstructured grid finite element applications. It includes a geometric and an algebraic multigrid method and has solved problems of up to 76 mullion degrees of feedom, problems in linear elasticity on the ASCI blue pacific and ASCI red machines.

  15. Parallel Dislocation Simulator

    Energy Science and Technology Software Center (ESTSC)

    2006-10-30

    ParaDiS is software capable of simulating the motion, evolution, and interaction of dislocation networks in single crystals using massively parallel computer architectures. The software is capable of outputting the stress-strain response of a single crystal whose plastic deformation is controlled by the dislocation processes.

  16. Optical parallel selectionist systems

    NASA Astrophysics Data System (ADS)

    Caulfield, H. John

    1993-01-01

    There are at least two major classes of computers in nature and technology: connectionist and selectionist. A subset of connectionist systems (Turing Machines) dominates modern computing, although another subset (Neural Networks) is growing rapidly. Selectionist machines have unique capabilities which should allow them to do truly creative operations. It is possible to make a parallel optical selectionist system using methods describes in this paper.

  17. Parallel fast gauss transform

    SciTech Connect

    Sampath, Rahul S; Sundar, Hari; Veerapaneni, Shravan

    2010-01-01

    We present fast adaptive parallel algorithms to compute the sum of N Gaussians at N points. Direct sequential computation of this sum would take O(N{sup 2}) time. The parallel time complexity estimates for our algorithms are O(N/n{sub p}) for uniform point distributions and O( (N/n{sub p}) log (N/n{sub p}) + n{sub p}log n{sub p}) for non-uniform distributions using n{sub p} CPUs. We incorporate a plane-wave representation of the Gaussian kernel which permits 'diagonal translation'. We use parallel octrees and a new scheme for translating the plane-waves to efficiently handle non-uniform distributions. Computing the transform to six-digit accuracy at 120 billion points took approximately 140 seconds using 4096 cores on the Jaguar supercomputer. Our implementation is 'kernel-independent' and can handle other 'Gaussian-type' kernels even when explicit analytic expression for the kernel is not known. These algorithms form a new class of core computational machinery for solving parabolic PDEs on massively parallel architectures.

  18. Parallel hierarchical global illumination

    SciTech Connect

    Snell, Q.O.

    1997-10-08

    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.

  19. Parallel hierarchical radiosity rendering

    SciTech Connect

    Carter, M.

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  20. Large wind energy converter: Growian 3 MW

    NASA Technical Reports Server (NTRS)

    Koerber, F.; Thiele, H. A.

    1979-01-01

    The main features of the Growian wind energy converter are presented. Energy yield, environmental impact, and construction of the energy converter are discussed. Reliability of the windpowered system is assessed.

  1. PARAMESH: A Parallel Adaptive Mesh Refinement Community Toolkit

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Olson, Kevin M.; Mobarry, Clark; deFainchtein, Rosalinda; Packer, Charles

    1999-01-01

    In this paper, we describe a community toolkit which is designed to provide parallel support with adaptive mesh capability for a large and important class of computational models, those using structured, logically cartesian meshes. The package of Fortran 90 subroutines, called PARAMESH, is designed to provide an application developer with an easy route to extend an existing serial code which uses a logically cartesian structured mesh into a parallel code with adaptive mesh refinement. Alternatively, in its simplest use, and with minimal effort, it can operate as a domain decomposition tool for users who want to parallelize their serial codes, but who do not wish to use adaptivity. The package can provide them with an incremental evolutionary path for their code, converting it first to uniformly refined parallel code, and then later if they so desire, adding adaptivity.

  2. 12 CFR 1.6 - Convertible securities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Convertible securities. 1.6 Section 1.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY INVESTMENT SECURITIES § 1.6 Convertible securities. A national bank may not purchase securities convertible into stock at the option...

  3. 12 CFR 1.6 - Convertible securities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Convertible securities. 1.6 Section 1.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY INVESTMENT SECURITIES § 1.6 Convertible securities. A national bank may not purchase securities convertible into stock at the option of the...

  4. 12 CFR 1.6 - Convertible securities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Convertible securities. 1.6 Section 1.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY INVESTMENT SECURITIES § 1.6 Convertible securities. A national bank may not purchase securities convertible into stock at the option...

  5. 12 CFR 1.6 - Convertible securities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Convertible securities. 1.6 Section 1.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY INVESTMENT SECURITIES § 1.6 Convertible securities. A national bank may not purchase securities convertible into stock at the option...

  6. Hidden variables: the resonance factor

    NASA Astrophysics Data System (ADS)

    Brooks, Juliana H. J.

    2009-08-01

    In 1900 Max Karl Planck performed his famous black-body radiation work which sparked the quantum revolution. Re-examination of that work has revealed hidden variables, consistent with Einstein's famous sentiment that quantum mechanics is incomplete due to the existence of "hidden variables". The recent discovery of these previously hidden variables, which have been missing from foundational equations for more than one hundred years, has important implications for theoretical, experimental and applied sciences and technologies. Planck attempted to integrate the new "resonant Hertzian (electromagnetic) waves", with existing Helmholtz theories on energy and thermodynamics. In his famous January 1901, paper on black-body radiation, Planck described two significant hypotheses - his well known Quantum Hypothesis, and his more obscure Resonance Hypothesis. Few scientists today are aware that Planck hypothesized resonant electromagnetic energy as a form of non-thermal energy available to perform work on a molecular basis, and that Planck's Resonance Hypothesis bridged the gap between classical Helmholtz energy state dynamics of the bulk macrostate, and energy state dynamics of the molecular microstate. Since the black-body experimental data involved only a thermal effect and not a resonant effect, Planck excluded the resonant state in his black-body derivation. He calculated Boltzmann's constant "kB" using completely thermal/entropic data, arriving at a value of 1.38 ×10-23 J K-1 per molecule, representing the internal energy of a molecule under completely thermal conditions. He further hypothesized, however, that if resonant energy was present in a system, the resonant energy would be "free to be converted into work". Planck seems to have been caught up in the events of the quantum revolution and never returned to his Resonance Hypothesis. As a result, a mathematical foundation for resonance dynamics was never completed. Boltzmann's constant was adopted into

  7. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  8. Hybrid thermionic-photovoltaic converter

    NASA Astrophysics Data System (ADS)

    Datas, A.

    2016-04-01

    A conceptual device for the direct conversion of heat into electricity is presented. This concept hybridizes thermionic (TI) and thermophotovoltaic (TPV) energy conversion in a single thermionic-photovoltaic (TIPV) solid-state device. This device transforms into electricity both the electron and photon fluxes emitted by an incandescent surface. This letter presents an idealized analysis of this device in order to determine its theoretical potential. According to this analysis, the key advantage of this converter, with respect to either TPV or TI, is the higher power density in an extended temperature range. For low temperatures, TIPV performs like TPV due to the negligible electron flux. On the contrary, for high temperatures, TIPV performs like TI due to the great enhancement of the electron flux, which overshadows the photon flux contribution. At the intermediate temperatures, ˜1650 K in the case of this particular study, I show that the power density potential of TIPV converter is twice as great as that of TPV and TI. The greatest impact concerns applications in which the temperature varies in a relatively wide range, for which averaged power density enhancement above 500% is attainable.

  9. A dc to dc converter

    NASA Technical Reports Server (NTRS)

    Willis, A. E.; Gould, J. M.; Matheney, J. L.; Garrett, H. (Inventor)

    1984-01-01

    The object of the invention is to provide an improved converter for converting one direct current voltage to another. A plurality of phased square wave voltages are provided from a ring counter through amplifiers to a like plurality of output transformers. Each of these transformers has two windings, and S(1) winding and an S(2) winding. The S(1) windings are connected in series, then the S(2) windings are connected in series, and finally, the two sets of windings are connected in series. One of six SCRs is connected between each two series connected windings to a positive output terminal and one of diodes is connected between each set of two windings of a zero output terminal. By virtue of this configuration, a quite high average direct current voltage is obtained, which varies between full voltage and two-thirds full voltage rather than from full voltage to zero. Further, its variation, ripple frequency, is reduced to one-sixth of that present in a single phase system. Application to raising battery voltage for an ion propulsion system is mentioned.

  10. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  11. Tunable graphene-based dual-frequency cross polarization converters

    NASA Astrophysics Data System (ADS)

    Ding, Jun; Arigong, Bayaner; Ren, Han; Shao, Jin; Zhou, Mi; Lin, Yuankun; Zhang, Hualiang

    2015-03-01

    In this paper, we proposed a novel cross-polarization converter that simultaneously works at two frequencies in the reflection mode, which is constructed of an L-shape perforated graphene sheet printed on a dielectric spacer backed by a gold layer. For the normal incidence, the optical rotation at these two working frequencies originates from the simultaneous excitation of both eigenmodes characterized as the localized surface plasmon resonances. In addition, both working frequencies can be tuned within a large frequency range by varying the Fermi energy of the graphene, which opens up tremendous opportunities to develop voltage-controlled tunable devices at mid-IR frequencies.

  12. Resonance scraping

    SciTech Connect

    Collins, T.

    1986-06-01

    Protons lost in a ring leave at a few preferred locations, determined by some non-linear property of the dipoles. This paper suggests taking control of lost protons by beating the magnets at their own game - by means of a designed resonance used as a beam scraper. It is a study of suitable resonances, including estimates of the required multipole element strengths. The appropriate resonances are two-dimensional. A large number of figures is included.

  13. Parallel Subconvolution Filtering Architectures

    NASA Technical Reports Server (NTRS)

    Gray, Andrew A.

    2003-01-01

    These architectures are based on methods of vector processing and the discrete-Fourier-transform/inverse-discrete- Fourier-transform (DFT-IDFT) overlap-and-save method, combined with time-block separation of digital filters into frequency-domain subfilters implemented by use of sub-convolutions. The parallel-processing method implemented in these architectures enables the use of relatively small DFT-IDFT pairs, while filter tap lengths are theoretically unlimited. The size of a DFT-IDFT pair is determined by the desired reduction in processing rate, rather than on the order of the filter that one seeks to implement. The emphasis in this report is on those aspects of the underlying theory and design rules that promote computational efficiency, parallel processing at reduced data rates, and simplification of the designs of very-large-scale integrated (VLSI) circuits needed to implement high-order filters and correlators.

  14. Parallel Anisotropic Tetrahedral Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.

  15. Homology, convergence and parallelism.

    PubMed

    Ghiselin, Michael T

    2016-01-01

    Homology is a relation of correspondence between parts of parts of larger wholes. It is used when tracking objects of interest through space and time and in the context of explanatory historical narratives. Homologues can be traced through a genealogical nexus back to a common ancestral precursor. Homology being a transitive relation, homologues remain homologous however much they may come to differ. Analogy is a relationship of correspondence between parts of members of classes having no relationship of common ancestry. Although homology is often treated as an alternative to convergence, the latter is not a kind of correspondence: rather, it is one of a class of processes that also includes divergence and parallelism. These often give rise to misleading appearances (homoplasies). Parallelism can be particularly hard to detect, especially when not accompanied by divergences in some parts of the body. PMID:26598721

  16. Parallel grid population

    DOEpatents

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  17. Seeing in parallel

    SciTech Connect

    Little, J.J.; Poggio, T.; Gamble, E.B. Jr.

    1988-01-01

    Computer algorithms have been developed for early vision processes that give separate cues to the distance from the viewer of three-dimensional surfaces, their shape, and their material properties. The MIT Vision Machine is a computer system that integrates several early vision modules to achieve high-performance recognition and navigation in unstructured environments. It is also an experimental environment for theoretical progress in early vision algorithms, their parallel implementation, and their integration. The Vision Machine consists of a movable, two-camera Eye-Head input device and an 8K Connection Machine. The authors have developed and implemented several parallel early vision algorithms that compute edge detection, stereopsis, motion, texture, and surface color in close to real time. The integration stage, based on coupled Markov random field models, leads to a cartoon-like map of the discontinuities in the scene, with partial labeling of the brightness edges in terms of their physical origin.

  18. Ultrascalable petaflop parallel supercomputer

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Chiu, George; Cipolla, Thomas M.; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Hall, Shawn; Haring, Rudolf A.; Heidelberger, Philip; Kopcsay, Gerard V.; Ohmacht, Martin; Salapura, Valentina; Sugavanam, Krishnan; Takken, Todd

    2010-07-20

    A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.

  19. PCLIPS: Parallel CLIPS

    NASA Technical Reports Server (NTRS)

    Gryphon, Coranth D.; Miller, Mark D.

    1991-01-01

    PCLIPS (Parallel CLIPS) is a set of extensions to the C Language Integrated Production System (CLIPS) expert system language. PCLIPS is intended to provide an environment for the development of more complex, extensive expert systems. Multiple CLIPS expert systems are now capable of running simultaneously on separate processors, or separate machines, thus dramatically increasing the scope of solvable tasks within the expert systems. As a tool for parallel processing, PCLIPS allows for an expert system to add to its fact-base information generated by other expert systems, thus allowing systems to assist each other in solving a complex problem. This allows individual expert systems to be more compact and efficient, and thus run faster or on smaller machines.

  20. Parallel multilevel preconditioners

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Xu, Jinchao.

    1989-01-01

    In this paper, we shall report on some techniques for the development of preconditioners for the discrete systems which arise in the approximation of solutions to elliptic boundary value problems. Here we shall only state the resulting theorems. It has been demonstrated that preconditioned iteration techniques often lead to the most computationally effective algorithms for the solution of the large algebraic systems corresponding to boundary value problems in two and three dimensional Euclidean space. The use of preconditioned iteration will become even more important on computers with parallel architecture. This paper discusses an approach for developing completely parallel multilevel preconditioners. In order to illustrate the resulting algorithms, we shall describe the simplest application of the technique to a model elliptic problem.

  1. Parallel hardware architecture for CCD-mosaic digital mammography

    NASA Astrophysics Data System (ADS)

    Smith, Scott T.; Kim, Hyunkeun; Swarnakar, Vivek; Jeong, Myoungki; Wobschall, Darold C.

    1998-06-01

    The development of an efficient parallel hardware architecture suitable for CCD-mosaic digital mammography has been accomplished. This paper presents this architecture including both the analog and digital portions of the imaging hardware. A two dimensional array of CCD sensors are used to capture the mammographic image synchronously and simultaneously. Each CCD's analog signal is converted to a 12 bits/pixel digital value through an array of high speed analog-to-digital converters. A parallel array of mesh connected TMS320C40 DSP processors then takes in the digital image data simultaneously. The DSP's are used to precisely register the mosaic of individual images to form the final large format digital mammogram. Also, they are used to control CCD characteristics and parallel data transport to the viewing workstation. One master DSP is located on the workstation's PCI bus which controls the parallel DSP array and collects compressed image data through a 60MB/s port. Since all computations are performed in parallel using local memory on each DSP, the overall acquisition, image registration, and transmission to display of the final mammogram is performed in less than 30 seconds. This allows the physician to perform a preliminary observation of the patient's mammogram.

  2. Photovoltaic converters for solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Heinbockel, John H.

    1988-01-01

    The authors describe a mathematical parametric study of converters used to convert laser radiation to electricity for space-based laser power systems. Two different lasers, the 1.06-micron Nd laser and the 1.315-micron iodine laser, are used in the vertical junction converter. The calculated efficiency is 50 percent for a 100-junction Si photovoltaic converter when used with a Nd laser. The calculated efficiency for a 1000-junction Ga(0.53)In(0.47)As photovoltaic converter is 43 percent when used with an iodine laser.

  3. Thermoelectric converters for alternating current standards

    NASA Astrophysics Data System (ADS)

    Anatychuk, L. I.; Taschuk, D. D.

    2012-06-01

    Thermoelectric converters of alternating current remain priority instruments when creating standard equipment. This work presents the results of design and manufacture of alternating current converter for a military standard of alternating current in Ukraine. Results of simulation of temperature distribution in converter elements, ways of optimization to improve the accuracy of alternating current signal reproduction are presented. Results of metrological trials are given. The quality of thermoelectric material specially created for alternating current metrology is verified. The converter was used in alternating current standard for the frequency range from 10 Hz to 30 MHz. The efficiency of using thermoelectric signal converters in measuring instruments is confirmed.

  4. Parallel sphere rendering

    SciTech Connect

    Krogh, M.; Painter, J.; Hansen, C.

    1996-10-01

    Sphere rendering is an important method for visualizing molecular dynamics data. This paper presents a parallel algorithm that is almost 90 times faster than current graphics workstations. To render extremely large data sets and large images, the algorithm uses the MIMD features of the supercomputers to divide up the data, render independent partial images, and then finally composite the multiple partial images using an optimal method. The algorithm and performance results are presented for the CM-5 and the M.

  5. Xyce parallel electronic simulator.

    SciTech Connect

    Keiter, Eric Richard; Mei, Ting; Russo, Thomas V.; Rankin, Eric Lamont; Schiek, Richard Louis; Thornquist, Heidi K.; Fixel, Deborah A.; Coffey, Todd Stirling; Pawlowski, Roger Patrick; Santarelli, Keith R.

    2010-05-01

    This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.

  6. ASSEMBLY OF PARALLEL PLATES

    DOEpatents

    Groh, E.F.; Lennox, D.H.

    1963-04-23

    This invention is concerned with a rigid assembly of parallel plates in which keyways are stamped out along the edges of the plates and a self-retaining key is inserted into aligned keyways. Spacers having similar keyways are included between adjacent plates. The entire assembly is locked into a rigid structure by fastening only the outermost plates to the ends of the keys. (AEC)

  7. Adaptive parallel logic networks

    SciTech Connect

    Martinez, T.R.; Vidal, J.J.

    1988-02-01

    This paper presents a novel class of special purpose processors referred to as ASOCS (adaptive self-organizing concurrent systems). Intended applications include adaptive logic devices, robotics, process control, system malfunction management, and in general, applications of logic reasoning. ASOCS combines massive parallelism with self-organization to attain a distributed mechanism for adaptation. The ASOCS approach is based on an adaptive network composed of many simple computing elements (nodes) which operate in a combinational and asynchronous fashion. Problem specification (programming) is obtained by presenting to the system if-then rules expressed as Boolean conjunctions. New rules are added incrementally. In the current model, when conflicts occur, precedence is given to the most recent inputs. With each rule, desired network response is simply presented to the system, following which the network adjusts itself to maintain consistency and parsimony of representation. Data processing and adaptation form two separate phases of operation. During processing, the network acts as a parallel hardware circuit. Control of the adaptive process is distributed among the network nodes and efficiently exploits parallelism.

  8. Apparatuses and method for converting electromagnetic radiation to direct current

    SciTech Connect

    Kotter, Dale K; Novack, Steven D

    2014-09-30

    An energy conversion device may include a first antenna and a second antenna configured to generate an AC current responsive to incident radiation, at least one stripline, and a rectifier coupled with the at least one stripline along a length of the at least one stripline. An energy conversion device may also include an array of nanoantennas configured to generate an AC current in response to receiving incident radiation. Each nanoantenna of the array includes a pair of resonant elements, and a shared rectifier operably coupled to the pair of resonant elements, the shared rectifier configured to convert the AC current to a DC current. The energy conversion device may further include a bus structure operably coupled with the array of nanoantennas and configured to receive the DC current from the array of nanoantennas and transmit the DC current away from the array of nanoantennas.

  9. Incremental Parallelization of Non-Data-Parallel Programs Using the Charon Message-Passing Library

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.

    2000-01-01

    Message passing is among the most popular techniques for parallelizing scientific programs on distributed-memory architectures. The reasons for its success are wide availability (MPI), efficiency, and full tuning control provided to the programmer. A major drawback, however, is that incremental parallelization, as offered by compiler directives, is not generally possible, because all data structures have to be changed throughout the program simultaneously. Charon remedies this situation through mappings between distributed and non-distributed data. It allows breaking up the parallelization into small steps, guaranteeing correctness at every stage. Several tools are available to help convert legacy codes into high-performance message-passing programs. They usually target data-parallel applications, whose loops carrying most of the work can be distributed among all processors without much dependency analysis. Others do a full dependency analysis and then convert the code virtually automatically. Even more toolkits are available that aid construction from scratch of message passing programs. None, however, allows piecemeal translation of codes with complex data dependencies (i.e. non-data-parallel programs) into message passing codes. The Charon library (available in both C and Fortran) provides incremental parallelization capabilities by linking legacy code arrays with distributed arrays. During the conversion process, non-distributed and distributed arrays exist side by side, and simple mapping functions allow the programmer to switch between the two in any location in the program. Charon also provides wrapper functions that leave the structure of the legacy code intact, but that allow execution on truly distributed data. Finally, the library provides a rich set of communication functions that support virtually all patterns of remote data demands in realistic structured grid scientific programs, including transposition, nearest-neighbor communication, pipelining

  10. Converting to proactive environmental management

    SciTech Connect

    Duff, P.B.

    1994-12-31

    There are three components which the environmental manager of any major company faces. The first component deals with complying with today`s laws and regulations. The second component involves correcting past disposal activities which were consistent with standard industrial practice and complied with the laws and regulations in effect at the time. In the 1990s, a third component has emerged and gained increasing importance: taking the environmental program beyond compliance. Improvements in areas such as waste minimization, toxic chemical usage reduction, product life-cycle design, and selection of off-site disposal facilities go beyond the current regulations to bring valuable environmental and economic benefits to the company and the community. The key to successfully managing an environmental organization is the ability to convert the company`s program from reactive to proactive. This chapter provides guidance on successfully making this conversion.

  11. Thermionic converter emitter support arrangement

    DOEpatents

    Allen, Daniel T.

    1990-01-01

    A support is provided for use in a thermionic converter to support an end an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially at its temperatures changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housng, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  12. Thermionic converter emitter support arrangement

    DOEpatents

    Allen, Daniel T.

    1990-01-01

    A support is provided for use in a therminonic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  13. Trajectory optimization using parallel shooting method on parallel computer

    SciTech Connect

    Wirthman, D.J.; Park, S.Y.; Vadali, S.R.

    1995-03-01

    The efficiency of a parallel shooting method on a parallel computer for solving a variety of optimal control guidance problems is studied. Several examples are considered to demonstrate that a speedup of nearly 7 to 1 is achieved with the use of 16 processors. It is suggested that further improvements in performance can be achieved by parallelizing in the state domain. 10 refs.

  14. Bidirectional power converter control electronics

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.

    1987-01-01

    The object of this program was to design, build, test, and deliver a set of control electronics suitable for control of bidirectional resonant power processing equipment of the direct output type. The program is described, including the technical background, and results discussed. Even though the initial program tested only the logic outputs, the hardware was subsequently tested with high-power breadboard equipment, and in the testbed of NASA contract NAS3-24399. The completed equipment is now operating as part of the Space Station Power System Test Facility at NASA Lewis Research Center.

  15. Trimode Power Converter optimizes PV, diesel and battery energy sources

    SciTech Connect

    O`Sullivan, G.; Bonn, R.; Bower, W.

    1994-07-01

    Conservatively, there are 100,000 localities in the world waiting for the benefits that electricity can provide, and many of these are in climates where sunshine is plentiful. With these locations in mind a prototype 30 kW hybrid system has been assembled at Sandia to prove the reliability and economics of photovoltaic, diesel and battery energy sources managed by an autonomous power converter. In the Trimode Power Converter the same power parts, four IGBT`s with an isolation transformer and filter components, serve as rectifier and charger to charge the battery from the diesel; as a stand-alone inverter to convert PV and battery energy to AC; and, as a parallel inverter with the diesel-generator to accommodate loads larger than the rating of the diesel. Whenever the diesel is supplying the load, an algorithm assures that the diesel is running at maximum efficiency by regulating the battery charger operating point. Given the profile of anticipated solar energy, the cost of transporting diesel fuel to a remote location and a five year projection of load demand, a method to size the PV array, battery and diesel for least cost is developed.

  16. Multigigahertz performance of a superconducting analog-to-digital converter

    NASA Astrophysics Data System (ADS)

    Luong, Howard C.; Van Duzer, Theodore

    1994-07-01

    This paper presents the progress we have made on our design, fabrication, and testing of a fully parallel superconducting analog-to-digital converter (ADC) with multi-GHz clock frequencies and input bandwidth. To our best knowledge, this converter is the first flash-type analog-to-digital converter ever reported in Josephson technology that fully integrates a quantizer and a thermometer-to-binary encoder to achieve binary outputs. In this design, the quantizer consists of 2(superscript N-1 comparators, each of which is realized using a hysteretic one- junction sampling SQUID driving a two-junction readout SQUID. A new logic family has been designed based on the same comparator building block and has been used to implement the thermometer-to- binary encoder. Taking advantage of the fact that the encoder's input is thermometer-coded, we have designed three-input and four-input quasi-XOR gates with only three NAND gates and therefore reduced significantly the total gate count. Functionalities of all the sub-circuits have been verified experimentally at clock frequencies up to 3 GHz, which is limited by our currently available testing equipment.

  17. The Galley Parallel File System

    NASA Technical Reports Server (NTRS)

    Nieuwejaar, Nils; Kotz, David

    1996-01-01

    As the I/O needs of parallel scientific applications increase, file systems for multiprocessors are being designed to provide applications with parallel access to multiple disks. Many parallel file systems present applications with a conventional Unix-like interface that allows the application to access multiple disks transparently. The interface conceals the parallelism within the file system, which increases the ease of programmability, but makes it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. Furthermore, most current parallel file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic parallel workloads. We discuss Galley's file structure and application interface, as well as an application that has been implemented using that interface.

  18. Resistor Combinations for Parallel Circuits.

    ERIC Educational Resources Information Center

    McTernan, James P.

    1978-01-01

    To help simplify both teaching and learning of parallel circuits, a high school electricity/electronics teacher presents and illustrates the use of tables of values for parallel resistive circuits in which total resistances are whole numbers. (MF)

  19. Method and apparatus for controlling LCL converters using asymmetric voltage cancellation techniques

    DOEpatents

    Wu, Hunter; Sealy, Kylee Devro; Sharp, Bryan Thomas; Gilchrist, Aaron

    2016-01-26

    A method and apparatus for LCL resonant converter control utilizing Asymmetric Voltage Cancellation is described. The methods to determine the optimal trajectory of the control variables are discussed. Practical implementations of sensing load parameters are included. Simple PI, PID and fuzzy logic controllers are included with AVC for achieving good transient response characteristics with output current regulation.

  20. Analysis, design and implementation of an interleaved three-level PWM DC/DC ZVS converter

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren; Liu, Chien-Hung

    2016-02-01

    This paper presents a new parallel three-level soft switching pulse-width modulation (PWM) converter. The proposed converter has two circuit cells operated by the interleaved PWM modulation. Thus, the ripple currents at input and output sides are reduced. Each circuit cell has two three-level zero voltage switching circuits sharing the same power switches. Therefore, the current and power rating of the secondary side components are reduced. Current double rectifier topology is selected on the secondary side to decrease output ripple current. The main advantages of the proposed converter are soft switching of power switches, low ripple current on the output side and low-voltage rating of power switches for medium-power applications. Finally, the performance of the proposed converter is verified by experiments with 1 kW prototype circuit.

  1. Parallel Pascal - An extended Pascal for parallel computers

    NASA Technical Reports Server (NTRS)

    Reeves, A. P.

    1984-01-01

    Parallel Pascal is an extended version of the conventional serial Pascal programming language which includes a convenient syntax for specifying array operations. It is upward compatible with standard Pascal and involves only a small number of carefully chosen new features. Parallel Pascal was developed to reduce the semantic gap between standard Pascal and a large range of highly parallel computers. Two important design goals of Parallel Pascal were efficiency and portability. Portability is particularly difficult to achieve since different parallel computers frequently have very different capabilities.

  2. Design, definition, and manufacture participation for the SAR Electronic Power Converter (EPC) breadboard

    NASA Astrophysics Data System (ADS)

    Klaassens, J. B.; Schwarz, F. C.

    1983-05-01

    A principle of fine regulation applied to the high voltage line supplying a pulsed load (radar tube) is presented. The high voltage power supply system is a combination of a single series resonant converter and a capacitor multiplier in the output stages. The electronic power conversion system uses a Schwarz converter employing a series resonant circuit for the transfer and control of power. An internal frequency of 35 kHz enhances the power density of the converter model. This model provides 16 kV for the helix-cathode circuit of a klystron with an accuracy of 0.5 per mill and 11 kV for the collector-cathode circuit with an accuracy of 5%. Experiments suggest that the improved power supply should alleviate problems associated with high voltage transformers and ensure the high accuracy required for the voltage control for the helix-cathode circuit to avoid distortion in the returning signal of a spaceborne radar system.

  3. Parallel sphere rendering

    SciTech Connect

    Krogh, M.; Hansen, C.; Painter, J.; de Verdiere, G.C.

    1995-05-01

    Sphere rendering is an important method for visualizing molecular dynamics data. This paper presents a parallel divide-and-conquer algorithm that is almost 90 times faster than current graphics workstations. To render extremely large data sets and large images, the algorithm uses the MIMD features of the supercomputers to divide up the data, render independent partial images, and then finally composite the multiple partial images using an optimal method. The algorithm and performance results are presented for the CM-5 and the T3D.

  4. Parallel Eclipse Project Checkout

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas M.; Joswig, Joseph C.; Shams, Khawaja S.; Powell, Mark W.; Bachmann, Andrew G.

    2011-01-01

    Parallel Eclipse Project Checkout (PEPC) is a program written to leverage parallelism and to automate the checkout process of plug-ins created in Eclipse RCP (Rich Client Platform). Eclipse plug-ins can be aggregated in a feature project. This innovation digests a feature description (xml file) and automatically checks out all of the plug-ins listed in the feature. This resolves the issue of manually checking out each plug-in required to work on the project. To minimize the amount of time necessary to checkout the plug-ins, this program makes the plug-in checkouts parallel. After parsing the feature, a request to checkout for each plug-in in the feature has been inserted. These requests are handled by a thread pool with a configurable number of threads. By checking out the plug-ins in parallel, the checkout process is streamlined before getting started on the project. For instance, projects that took 30 minutes to checkout now take less than 5 minutes. The effect is especially clear on a Mac, which has a network monitor displaying the bandwidth use. When running the client from a developer s home, the checkout process now saturates the bandwidth in order to get all the plug-ins checked out as fast as possible. For comparison, a checkout process that ranged from 8-200 Kbps from a developer s home is now able to saturate a pipe of 1.3 Mbps, resulting in significantly faster checkouts. Eclipse IDE (integrated development environment) tries to build a project as soon as it is downloaded. As part of another optimization, this innovation programmatically tells Eclipse to stop building while checkouts are happening, which dramatically reduces lock contention and enables plug-ins to continue downloading until all of them finish. Furthermore, the software re-enables automatic building, and forces Eclipse to do a clean build once it finishes checking out all of the plug-ins. This software is fully generic and does not contain any NASA-specific code. It can be applied to any

  5. Highly parallel computation

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.; Tichy, Walter F.

    1990-01-01

    Highly parallel computing architectures are the only means to achieve the computation rates demanded by advanced scientific problems. A decade of research has demonstrated the feasibility of such machines and current research focuses on which architectures designated as multiple instruction multiple datastream (MIMD) and single instruction multiple datastream (SIMD) have produced the best results to date; neither shows a decisive advantage for most near-homogeneous scientific problems. For scientific problems with many dissimilar parts, more speculative architectures such as neural networks or data flow may be needed.

  6. Fastpath Speculative Parallelization

    NASA Astrophysics Data System (ADS)

    Spear, Michael F.; Kelsey, Kirk; Bai, Tongxin; Dalessandro, Luke; Scott, Michael L.; Ding, Chen; Wu, Peng

    We describe Fastpath, a system for speculative parallelization of sequential programs on conventional multicore processors. Our system distinguishes between the lead thread, which executes at almost-native speed, and speculative threads, which execute somewhat slower. This allows us to achieve nontrivial speedup, even on two-core machines. We present a mathematical model of potential speedup, parameterized by application characteristics and implementation constants. We also present preliminary results gleaned from two different Fastpath implementations, each derived from an implementation of software transactional memory.

  7. CSM parallel structural methods research

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1989-01-01

    Parallel structural methods, research team activities, advanced architecture computers for parallel computational structural mechanics (CSM) research, the FLEX/32 multicomputer, a parallel structural analyses testbed, blade-stiffened aluminum panel with a circular cutout and the dynamic characteristics of a 60 meter, 54-bay, 3-longeron deployable truss beam are among the topics discussed.

  8. Synchronous Parallel Kinetic Monte Carlo

    SciTech Connect

    Mart?nez, E; Marian, J; Kalos, M H

    2006-12-14

    A novel parallel kinetic Monte Carlo (kMC) algorithm formulated on the basis of perfect time synchronicity is presented. The algorithm provides an exact generalization of any standard serial kMC model and is trivially implemented in parallel architectures. We demonstrate the mathematical validity and parallel performance of the method by solving several well-understood problems in diffusion.

  9. Roo: A parallel theorem prover

    SciTech Connect

    Lusk, E.L.; McCune, W.W.; Slaney, J.K.

    1991-11-01

    We describe a parallel theorem prover based on the Argonne theorem-proving system OTTER. The parallel system, called Roo, runs on shared-memory multiprocessors such as the Sequent Symmetry. We explain the parallel algorithm used and give performance results that demonstrate near-linear speedups on large problems.

  10. Parallelized direct execution simulation of message-passing parallel programs

    NASA Technical Reports Server (NTRS)

    Dickens, Phillip M.; Heidelberger, Philip; Nicol, David M.

    1994-01-01

    As massively parallel computers proliferate, there is growing interest in findings ways by which performance of massively parallel codes can be efficiently predicted. This problem arises in diverse contexts such as parallelizing computers, parallel performance monitoring, and parallel algorithm development. In this paper we describe one solution where one directly executes the application code, but uses a discrete-event simulator to model details of the presumed parallel machine such as operating system and communication network behavior. Because this approach is computationally expensive, we are interested in its own parallelization specifically the parallelization of the discrete-event simulator. We describe methods suitable for parallelized direct execution simulation of message-passing parallel programs, and report on the performance of such a system, Large Application Parallel Simulation Environment (LAPSE), we have built on the Intel Paragon. On all codes measured to date, LAPSE predicts performance well typically within 10 percent relative error. Depending on the nature of the application code, we have observed low slowdowns (relative to natively executing code) and high relative speedups using up to 64 processors.

  11. Test and evaluation of load converter topologies used in the Space Station Freedom Power Management and distribution DC test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station Freedom dc Electrical Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switchmode converter, and a switching full-bridge forward converter. The topology, operation principles, and tests results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  12. Test and evaluation of load converter topologies used in the Space Station Freedom power management and distribution dc test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  13. Performance of Power Converters at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2001-01-01

    Power converters capable of operation at cryogenic temperatures are anticipated to play an important role in the power system architecture of future NASA deep space missions. Design of such converters to survive cryogenic temperatures will improve the power system performance and reduce development and launch costs. Aerospace power systems are mainly a DC distribution network. Therefore, DC/DC and DC/AC converters provide the outputs needed to different loads at various power levels. Recently, research efforts have been performed at the NASA Glenn Research Center (GRC) to design and evaluate DC/DC converters that are capable of operating at cryogenic temperatures. This paper presents a summary of the research performed to evaluate the low temperature performance of five DC/DC converters. Various parameters were investigated as a function of temperature in the range of 20 to -196 C. Data pertaining to the output voltage regulation and efficiency of the converters is presented and discussed.

  14. Radiation-Tolerant DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Skutt, Glenn; Sable, Dan; Leslie, Leonard; Graham, Shawn

    2012-01-01

    A document discusses power converters suitable for space use that meet the DSCC MIL-PRF-38534 Appendix G radiation hardness level P classification. A method for qualifying commercially produced electronic parts for DC-DC converters per the Defense Supply Center Columbus (DSCC) radiation hardened assurance requirements was developed. Development and compliance testing of standard hybrid converters suitable for space use were completed for missions with total dose radiation requirements of up to 30 kRad. This innovation provides the same overall performance as standard hybrid converters, but includes assurance of radiation- tolerant design through components and design compliance testing. This availability of design-certified radiation-tolerant converters can significantly reduce total cost and delivery time for power converters for space applications that fit the appropriate DSCC classification (30 kRad).

  15. Tolerant (parallel) Programming

    NASA Technical Reports Server (NTRS)

    DiNucci, David C.; Bailey, David H. (Technical Monitor)

    1997-01-01

    In order to be truly portable, a program must be tolerant of a wide range of development and execution environments, and a parallel program is just one which must be tolerant of a very wide range. This paper first defines the term "tolerant programming", then describes many layers of tools to accomplish it. The primary focus is on F-Nets, a formal model for expressing computation as a folded partial-ordering of operations, thereby providing an architecture-independent expression of tolerant parallel algorithms. For implementing F-Nets, Cooperative Data Sharing (CDS) is a subroutine package for implementing communication efficiently in a large number of environments (e.g. shared memory and message passing). Software Cabling (SC), a very-high-level graphical programming language for building large F-Nets, possesses many of the features normally expected from today's computer languages (e.g. data abstraction, array operations). Finally, L2(sup 3) is a CASE tool which facilitates the construction, compilation, execution, and debugging of SC programs.

  16. Massively Parallel QCD

    SciTech Connect

    Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G

    2007-04-11

    The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results.

  17. Making parallel lines meet

    PubMed Central

    Baskin, Tobias I.; Gu, Ying

    2012-01-01

    The extracellular matrix is constructed beyond the plasma membrane, challenging mechanisms for its control by the cell. In plants, the cell wall is highly ordered, with cellulose microfibrils aligned coherently over a scale spanning hundreds of cells. To a considerable extent, deploying aligned microfibrils determines mechanical properties of the cell wall, including strength and compliance. Cellulose microfibrils have long been seen to be aligned in parallel with an array of microtubules in the cell cortex. How do these cortical microtubules affect the cellulose synthase complex? This question has stood for as many years as the parallelism between the elements has been observed, but now an answer is emerging. Here, we review recent work establishing that the link between microtubules and microfibrils is mediated by a protein named cellulose synthase-interacting protein 1 (CSI1). The protein binds both microtubules and components of the cellulose synthase complex. In the absence of CSI1, microfibrils are synthesized but their alignment becomes uncoupled from the microtubules, an effect that is phenocopied in the wild type by depolymerizing the microtubules. The characterization of CSI1 significantly enhances knowledge of how cellulose is aligned, a process that serves as a paradigmatic example of how cells dictate the construction of their extracellular environment. PMID:22902763

  18. Applied Parallel Metadata Indexing

    SciTech Connect

    Jacobi, Michael R

    2012-08-01

    The GPFS Archive is parallel archive is a parallel archive used by hundreds of users in the Turquoise collaboration network. It houses 4+ petabytes of data in more than 170 million files. Currently, users must navigate the file system to retrieve their data, requiring them to remember file paths and names. A better solution might allow users to tag data with meaningful labels and searach the archive using standard and user-defined metadata, while maintaining security. last summer, I developed the backend to a tool that adheres to these design goals. The backend works by importing GPFS metadata into a MongoDB cluster, which is then indexed on each attribute. This summer, the author implemented security and developed the user interfae for the search tool. To meet security requirements, each database table is associated with a single user, which only stores records that the user may read, and requires a set of credentials to access. The interface to the search tool is implemented using FUSE (Filesystem in USErspace). FUSE is an intermediate layer that intercepts file system calls and allows the developer to redefine how those calls behave. In the case of this tool, FUSE interfaces with MongoDB to issue queries and populate output. A FUSE implementation is desirable because it allows users to interact with the search tool using commands they are already familiar with. These security and interface additions are essential for a usable product.

  19. Parallel ptychographic reconstruction

    PubMed Central

    Nashed, Youssef S. G.; Vine, David J.; Peterka, Tom; Deng, Junjing; Ross, Rob; Jacobsen, Chris

    2014-01-01

    Ptychography is an imaging method whereby a coherent beam is scanned across an object, and an image is obtained by iterative phasing of the set of diffraction patterns. It is able to be used to image extended objects at a resolution limited by scattering strength of the object and detector geometry, rather than at an optics-imposed limit. As technical advances allow larger fields to be imaged, computational challenges arise for reconstructing the correspondingly larger data volumes, yet at the same time there is also a need to deliver reconstructed images immediately so that one can evaluate the next steps to take in an experiment. Here we present a parallel method for real-time ptychographic phase retrieval. It uses a hybrid parallel strategy to divide the computation between multiple graphics processing units (GPUs) and then employs novel techniques to merge sub-datasets into a single complex phase and amplitude image. Results are shown on a simulated specimen and a real dataset from an X-ray experiment conducted at a synchrotron light source. PMID:25607174

  20. Heat flow in a pyroelectric converter

    NASA Astrophysics Data System (ADS)

    Olsen, R. B.; Butler, W. F.; Drummond, J. E.; Bruno, D. A.; Briscoe, J. M.

    1985-12-01

    A simulated pyroelectric converter has been constructed. The heat flow and temperature profiles within the converter have been measured. Computer simulations of the heat flow compare well with the measurements and predict an efficiency of 12 percent of the Carnot limit for a real pyroelectric converter with the operating configuration of the simulation. These heat flow results are useful in considerations of heat engines using active materials other than pyroelectrics, such as Nitinol, when these engines utilize similar heat flow management.

  1. Silicon waveguide based TE mode converter.

    PubMed

    Zhang, Jing; Liow, Tsung-Yang; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2010-11-22

    A silicon waveguide based TE mode converter was designed for the mode conversion between a horizontal waveguide and vertical waveguide in the two-layer structure waveguide based polarization diversity circuit. The TE mode converter's performance was studied. The polarization mode converter with minimum length of 5 μm was demonstrated to provide the TE mode conversion while maintaining the polarization status. The insertion loss at the transition region was less than 2 dB. PMID:21164874

  2. Ocean floor mounting of wave energy converters

    SciTech Connect

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  3. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  4. A closely regulated TWT converter.

    NASA Technical Reports Server (NTRS)

    Hopper, D. J.; Andryczyk, R. W.

    1971-01-01

    The design concept for the TWT amplifier converter for possible use in the Thermoelectric Outer Planet Spacecraft (TOPS) is presented. An unusual combination of semiconductors and magnetics was utilized to achieve very stable voltage regulation on a number of separate outputs to satisfy the requirements of a high-power TWT, and at the same time operate at an efficiency of better than 90% from a 30-V source. The circuitry consists of an output filter, an auxiliary Jensen oscillator driving a high-reactance transformer to provide current limiting to the heater, a variable time delay, a main Jensen oscillator driving the power transformer with a maximum step-up ratio of 120 to 1, and series transistorized post regulators to provide precise voltage adjustment and low output impedance. This paper discusses the design of the high-reactance transformer and the high step-up ratio transformer, as well as the high-voltage series regulators that are limited in range and operate at the top of the unregulated output voltage. Test data are presented, and details of current transients caused by charging the filter circuits, input current ripple, and output voltage ripples are considered.

  5. Parallel optical readout of cantilever arrays in dynamic mode.

    PubMed

    Koelmans, W W; van Honschoten, J; de Vries, J; Vettiger, P; Abelmann, L; Elwenspoek, M C

    2010-10-01

    Parallel frequency readout of an array of cantilevers is demonstrated using optical beam deflection with a single laser-diode pair. Multi-frequency addressing makes the individual nanomechanical response of each cantilever distinguishable within the received signal. Addressing is accomplished by exciting the array with the sum of all cantilever resonant frequencies. This technique requires considerably less hardware compared to other parallel optical readout techniques. Readout is demonstrated in beam deflection mode and interference mode. Many cantilevers can be readout in parallel, limited by the oscillators' quality factor and available bandwidth. The proposed technique facilitates parallelism in applications at the nano-scale, including probe-based data storage and biological sensing. PMID:20820095

  6. DC/DC Converter Stability Testing Study

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2008-01-01

    This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.

  7. Parallel Quantum Circuit in a Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian; GNS theory group Team

    In between 2 metallic nanopads, adding identical and independent electron transfer paths in parallel increases the electronic effective coupling between the 2 nanopads through the quantum circuit defined by those paths. Measuring this increase of effective coupling using the tunnelling current intensity can lead for example for 2 paths in parallel to the now standard G =G1 +G2 + 2√{G1 .G2 } conductance superposition law (1). This is only valid for the tunnelling regime (2). For large electronic coupling to the nanopads (or at resonance), G can saturate and even decay as a function of the number of parallel paths added in the quantum circuit (3). We provide here the explanation of this phenomenon: the measurement of the effective Rabi oscillation frequency using the current intensity is constrained by the normalization principle of quantum mechanics. This limits the quantum conductance G for example to go when there is only one channel per metallic nanopads. This ef fect has important consequences for the design of Boolean logic gates at the atomic scale using atomic scale or intramolecular circuits. References: This has the financial support by European PAMS project.

  8. A systolic array parallelizing compiler

    SciTech Connect

    Tseng, P.S. )

    1990-01-01

    This book presents a completely new approach to the problem of systolic array parallelizing compiler. It describes the AL parallelizing compiler for the Warp systolic array, the first working systolic array parallelizing compiler which can generate efficient parallel code for complete LINPACK routines. This book begins by analyzing the architectural strength of the Warp systolic array. It proposes a model for mapping programs onto the machine and introduces the notion of data relations for optimizing the program mapping. Also presented are successful applications of the AL compiler in matrix computation and image processing. A complete listing of the source program and compiler-generated parallel code are given to clarify the overall picture of the compiler. The book concludes that systolic array parallelizing compiler can produce efficient parallel code, almost identical to what the user would have written by hand.

  9. Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam

    NASA Astrophysics Data System (ADS)

    Eichhorn, C.; Goldschmidtboeing, F.; Woias, P.

    2009-09-01

    A piezoelectric energy converter is presented, whose resonance frequency can be tuned by applying mechanical stress to its structure. The converter consists of a piezo-polymer cantilever beam with two additional thin arms, which are used to apply an axial preload to the tip of the beam. The compressive or tensile prestress applied through the arms leads to a shift of the beam's resonance frequency. Experiments with this structure indicate a high potential: the resonance frequency of a harvester to which a compressive preload was applied could be altered from 380 Hz to 292 Hz. In another experiment, a harvester with stiffened arms was tuned from 440 Hz to 460 Hz by applying a tensile preload. In combination with automatic control of the applied force, this type of structure could be used to enhance the performance of energy harvesters in vibrating environments with occasional shifts of the vibrational frequency.

  10. Hands-on resonance-enhanced photoacoustic detection

    NASA Astrophysics Data System (ADS)

    Euler, Manfred

    2001-10-01

    The design of an improved photoacoustic converter cell using kitchen equipment is described. It operates by changing manually the Helmholtz resonance frequency of bottles by adjusting the distance between the bottleneck and the outer ear. The experiment helps to gain insights in ear performance, in photoacoustic detection methods, in resonance phenomena and their role for detecting small periodic signals in the presence of noise.

  11. Parallel Computing in SCALE

    SciTech Connect

    DeHart, Mark D; Williams, Mark L; Bowman, Stephen M

    2010-01-01

    The SCALE computational architecture has remained basically the same since its inception 30 years ago, although constituent modules and capabilities have changed significantly. This SCALE concept was intended to provide a framework whereby independent codes can be linked to provide a more comprehensive capability than possible with the individual programs - allowing flexibility to address a wide variety of applications. However, the current system was designed originally for mainframe computers with a single CPU and with significantly less memory than today's personal computers. It has been recognized that the present SCALE computation system could be restructured to take advantage of modern hardware and software capabilities, while retaining many of the modular features of the present system. Preliminary work is being done to define specifications and capabilities for a more advanced computational architecture. This paper describes the state of current SCALE development activities and plans for future development. With the release of SCALE 6.1 in 2010, a new phase of evolutionary development will be available to SCALE users within the TRITON and NEWT modules. The SCALE (Standardized Computer Analyses for Licensing Evaluation) code system developed by Oak Ridge National Laboratory (ORNL) provides a comprehensive and integrated package of codes and nuclear data for a wide range of applications in criticality safety, reactor physics, shielding, isotopic depletion and decay, and sensitivity/uncertainty (S/U) analysis. Over the last three years, since the release of version 5.1 in 2006, several important new codes have been introduced within SCALE, and significant advances applied to existing codes. Many of these new features became available with the release of SCALE 6.0 in early 2009. However, beginning with SCALE 6.1, a first generation of parallel computing is being introduced. In addition to near-term improvements, a plan for longer term SCALE enhancement

  12. Unified Parallel Software

    SciTech Connect

    McKay, Mike

    2003-12-01

    UPS (Unified Paralled Software is a collection of software tools libraries, scripts, executables) that assist in parallel programming. This consists of: o libups.a C/Fortran callable routines for message passing (utilities written on top of MPI) and file IO (utilities written on top of HDF). o libuserd-HDF.so EnSight user-defined reader for visualizing data files written with UPS File IO. o ups_libuserd_query, ups_libuserd_prep.pl, ups_libuserd_script.pl Executables/scripts to get information from data files and to simplify the use of EnSight on those data files. o ups_io_rm/ups_io_cp Manipulate data files written with UPS File IO These tools are portable to a wide variety of Unix platforms.

  13. Parallel Polarization State Generation

    PubMed Central

    She, Alan; Capasso, Federico

    2016-01-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security. PMID:27184813

  14. Unified Parallel Software

    Energy Science and Technology Software Center (ESTSC)

    2003-12-01

    UPS (Unified Paralled Software is a collection of software tools libraries, scripts, executables) that assist in parallel programming. This consists of: o libups.a C/Fortran callable routines for message passing (utilities written on top of MPI) and file IO (utilities written on top of HDF). o libuserd-HDF.so EnSight user-defined reader for visualizing data files written with UPS File IO. o ups_libuserd_query, ups_libuserd_prep.pl, ups_libuserd_script.pl Executables/scripts to get information from data files and to simplify the use ofmore » EnSight on those data files. o ups_io_rm/ups_io_cp Manipulate data files written with UPS File IO These tools are portable to a wide variety of Unix platforms.« less

  15. Parallel Polarization State Generation

    NASA Astrophysics Data System (ADS)

    She, Alan; Capasso, Federico

    2016-05-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  16. Parallel Polarization State Generation.

    PubMed

    She, Alan; Capasso, Federico

    2016-01-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security. PMID:27184813

  17. Parallel tridiagonal equation solvers

    NASA Technical Reports Server (NTRS)

    Stone, H. S.

    1974-01-01

    Three parallel algorithms were compared for the direct solution of tridiagonal linear systems of equations. The algorithms are suitable for computers such as ILLIAC 4 and CDC STAR. For array computers similar to ILLIAC 4, cyclic odd-even reduction has the least operation count for highly structured sets of equations, and recursive doubling has the least count for relatively unstructured sets of equations. Since the difference in operation counts for these two algorithms is not substantial, their relative running times may be more related to overhead operations, which are not measured in this paper. The third algorithm, based on Buneman's Poisson solver, has more arithmetic operations than the others, and appears to be the least favorable. For pipeline computers similar to CDC STAR, cyclic odd-even reduction appears to be the most preferable algorithm for all cases.

  18. Propagation characteristics of waves upstream and downstream of quasi-parallel shocks

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, D.; Omidi, N.

    1993-01-01

    The propagation characteristics of waves upstream and downstream of quasi-parallel shocks are investigated by using 2D hybrid simulations. At low Alfven Mach numbers, M(A) below about 2, the shock is initially associated with upstream phase-standing whistlers. At later times, backstreaming ions excite longer-wavelength whistlers via the right-hand resonant ion/ion instability. These waves propagate along the magnetic field at a group velocity no smaller than the upstream flow speed, so that the waves remain in the upstream region. At higher MA (above about 3), these waves are convected back into the shock, causing its reformation and downstream perturbations. Shock transmitted waves mode-convert into Alfven/ion-cyclotron waves which have a wave vector along the shock normal (pointing upstream) and convect downstream. The 2D simulation results confirm our earlier suggestion that the upstream waves should be field aligned, and that their convection into the downstream is associated with linear mode conversion into the Alfven/ion-cyclotron branch.

  19. Parallel Imaging Microfluidic Cytometer

    PubMed Central

    Ehrlich, Daniel J.; McKenna, Brian K.; Evans, James G.; Belkina, Anna C.; Denis, Gerald V.; Sherr, David; Cheung, Man Ching

    2011-01-01

    By adding an additional degree of freedom from multichannel flow, the parallel microfluidic cytometer (PMC) combines some of the best features of flow cytometry (FACS) and microscope-based high-content screening (HCS). The PMC (i) lends itself to fast processing of large numbers of samples, (ii) adds a 1-D imaging capability for intracellular localization assays (HCS), (iii) has a high rare-cell sensitivity and, (iv) has an unusual capability for time-synchronized sampling. An inability to practically handle large sample numbers has restricted applications of conventional flow cytometers and microscopes in combinatorial cell assays, network biology, and drug discovery. The PMC promises to relieve a bottleneck in these previously constrained applications. The PMC may also be a powerful tool for finding rare primary cells in the clinic. The multichannel architecture of current PMC prototypes allows 384 unique samples for a cell-based screen to be read out in approximately 6–10 minutes, about 30-times the speed of most current FACS systems. In 1-D intracellular imaging, the PMC can obtain protein localization using HCS marker strategies at many times the sample throughput of CCD-based microscopes or CCD-based single-channel flow cytometers. The PMC also permits the signal integration time to be varied over a larger range than is practical in conventional flow cytometers. The signal-to-noise advantages are useful, for example, in counting rare positive cells in the most difficult early stages of genome-wide screening. We review the status of parallel microfluidic cytometry and discuss some of the directions the new technology may take. PMID:21704835

  20. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Liu, Yajun; Xia, Song; Shi, Hongyu; Zhang, Anxue; Xu, Zhuo

    2016-06-01

    We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5-20.0 GHz) and Ka (28.8-34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.

  1. Parallelizing OVERFLOW: Experiences, Lessons, Results

    NASA Technical Reports Server (NTRS)

    Jespersen, Dennis C.

    1999-01-01

    The computer code OVERFLOW is widely used in the aerodynamic community for the numerical solution of the Navier-Stokes equations. Current trends in computer systems and architectures are toward multiple processors and parallelism, including distributed memory. This report describes work that has been carried out by the author and others at Ames Research Center with the goal of parallelizing OVERFLOW using a variety of parallel architectures and parallelization strategies. This paper begins with a brief description of the OVERFLOW code. This description includes the basic numerical algorithm and some software engineering considerations. Next comes a description of a parallel version of OVERFLOW, OVERFLOW/PVM, using PVM (Parallel Virtual Machine). This parallel version of OVERFLOW uses the manager/worker style and is part of the standard OVERFLOW distribution. Then comes a description of a parallel version of OVERFLOW, OVERFLOW/MPI, using MPI (Message Passing Interface). This parallel version of OVERFLOW uses the SPMD (Single Program Multiple Data) style. Finally comes a discussion of alternatives to explicit message-passing in the context of parallelizing OVERFLOW.

  2. Current Sharing Analysis of Arm Prototype for ITER PF Converter Bridge

    NASA Astrophysics Data System (ADS)

    Li, Jinchao; Song, Zhiquan; Xu, Liuwei; Fu, Peng; Guo, Bin; Li, Sen; Dong, Lin; Wang, Min

    2014-03-01

    A bridge arm prototype of ITER poloidal field (PF) converter modules has been designed and fabricated. Non-cophase counter parallel connection is chosen as the arm structure of the prototype. Among all factors affecting current sharing, arm structure is the main one. During the design of the arm prototype, a novel method based on inductance matrixes is employed to improve the current sharing of the bridge arm. The test results on the prototype show that the current sharing performance of the arm prototype is much better than relevant design requirement, and that the matrix method is very effective to analyze and solve the current sharing problems of thyristor converters.

  3. RF digital-to-analog converter

    DOEpatents

    Conway, P.H.; Yu, D.U.L.

    1995-02-28

    A digital-to-analog converter is disclosed for producing an RF output signal proportional to a digital input word of N bits from an RF reference input, N being an integer greater or equal to 2. The converter comprises a plurality of power splitters, power combiners and a plurality of mixers or RF switches connected in a predetermined configuration. 18 figs.

  4. High-Efficiency dc/dc Converter

    NASA Technical Reports Server (NTRS)

    Sturman, J.

    1982-01-01

    High-efficiency dc/dc converter has been developed that provides commonly used voltages of plus or minus 12 Volts from an unregulated dc source of from 14 to 40 Volts. Unique features of converter are its high efficiency at low power level and ability to provide output either larger or smaller than input voltage.

  5. Controller for a wave energy converter

    SciTech Connect

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  6. RF digital-to-analog converter

    DOEpatents

    Conway, Patrick H.; Yu, David U. L.

    1995-01-01

    A digital-to analogue converter for producing an RF output signal proportional to a digital input word of N bits from an RF reference input, N being an integer greater or equal to 2. The converter comprises a plurality of power splitters, power combiners and a plurality of mixers or RF switches connected in a predetermined configuration.

  7. Power Converters Secure Electronics in Harsh Environments

    NASA Technical Reports Server (NTRS)

    2013-01-01

    In order to harden power converters for the rigors of space, NASA awarded multiple SBIR contracts to Blacksburg, Virginia-based VPT Inc. The resulting hybrid DC-DC converters have proven valuable in aerospace applications, and as a result the company has generated millions in revenue from the product line and created four high-tech jobs to handle production.

  8. Distributed electrical leads for thermionic converter

    DOEpatents

    Fitzpatrick, Gary O.; Britt, Edward J.

    1979-01-01

    In a thermionic converter, means are provided for coupling an electrical lead to at least one of the electrodes thereof. The means include a bus bar and a plurality of distributed leads coupled to the bus bar each of which penetrates through one electrode and are then coupled to the other electrode of the converter in spaced apart relation.

  9. Increased Energy Delivery for Parallel Battery Packs with No Regulated Bus

    NASA Astrophysics Data System (ADS)

    Hsu, Chung-Ti

    In this dissertation, a new approach to paralleling different battery types is presented. A method for controlling charging/discharging of different battery packs by using low-cost bi-directional switches instead of DC-DC converters is proposed. The proposed system architecture, algorithms, and control techniques allow batteries with different chemistry, voltage, and SOC to be properly charged and discharged in parallel without causing safety problems. The physical design and cost for the energy management system is substantially reduced. Additionally, specific types of failures in the maximum power point tracking (MPPT) in a photovoltaic (PV) system when tracking only the load current of a DC-DC converter are analyzed. The periodic nonlinear load current will lead MPPT realized by the conventional perturb and observe (P&O) algorithm to be problematic. A modified MPPT algorithm is proposed and it still only requires typically measured signals, yet is suitable for both linear and periodic nonlinear loads. Moreover, for a modular DC-DC converter using several converters in parallel, the input power from PV panels is processed and distributed at the module level. Methods for properly implementing distributed MPPT are studied. A new approach to efficient MPPT under partial shading conditions is presented. The power stage architecture achieves fast input current change rate by combining a current-adjustable converter with a few converters operating at a constant current.

  10. Radiation Effects on DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Zhang, De-Xin; AbdulMazid, M. D.; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2001-01-01

    In this work, several DC-DC converters were designed and built. The converters are Buck Buck-Boost, Cuk, Flyback, and full-bridge zero-voltage switched. The total ionizing dose radiation and single event effects on the converters were investigated. The experimental results for the TID effects tests show that the voltages of the Buck Buck-Boost, Cuk, and Flyback converters increase as total dose increased when using power MOSFET IRF250 as a switching transistor. The change in output voltage with total dose is highest for the Buck converter and the lowest for Flyback converter. The trend of increase in output voltages with total dose in the present work agrees with those of the literature. The trends of the experimental results also agree with those obtained from PSPICE simulation. For the full-bridge zero-voltage switch converter, it was observed that the dc-dc converter with IRF250 power MOSFET did not show a significant change of output voltage with total dose. In addition, for the dc-dc converter with FSF254R4 radiation-hardened power MOSFET, the output voltage did not change significantly with total dose. The experimental results were confirmed by PSPICE simulation that showed that FB-ZVS converter with IRF250 power MOSFET's was not affected with the increase in total ionizing dose. Single Event Effects (SEE) radiation tests were performed on FB-ZVS converters. It was observed that the FB-ZVS converter with the IRF250 power MOSFET, when the device was irradiated with Krypton ion with ion-energy of 150 MeV and LET of 41.3 MeV-square cm/mg, the output voltage increased with the increase in fluence. However, for Krypton with ion-energy of 600 MeV and LET of 33.65 MeV-square cm/mg, and two out of four transistors of the converter were permanently damaged. The dc-dc converter with FSF254R4 radiation hardened power MOSFET's did not show significant change at the output voltage with fluence while being irradiated by Krypton with ion energy of 1.20 GeV and LET of 25

  11. Charge integration successive approximation analog-to-digital converter for focal plane applications using a single amplifier

    NASA Technical Reports Server (NTRS)

    Zhou, Zhimin (Inventor); Pain, Bedabrata (Inventor)

    1999-01-01

    An analog-to-digital converter for on-chip focal-plane image sensor applications. The analog-to-digital converter utilizes a single charge integrating amplifier in a charge balancing architecture to implement successive approximation analog-to-digital conversion. This design requires minimal chip area and has high speed and low power dissipation for operation in the 2-10 bit range. The invention is particularly well suited to CMOS on-chip applications requiring many analog-to-digital converters, such as column-parallel focal-plane architectures.

  12. Modelling, analyses and design of switching converters

    NASA Technical Reports Server (NTRS)

    Cuk, S. M.; Middlebrook, R. D.

    1978-01-01

    A state-space averaging method for modelling switching dc-to-dc converters for both continuous and discontinuous conduction mode is developed. In each case the starting point is the unified state-space representation, and the end result is a complete linear circuit model, for each conduction mode, which correctly represents all essential features, namely, the input, output, and transfer properties (static dc as well as dynamic ac small-signal). While the method is generally applicable to any switching converter, it is extensively illustrated for the three common power stages (buck, boost, and buck-boost). The results for these converters are then easily tabulated owing to the fixed equivalent circuit topology of their canonical circuit model. The insights that emerge from the general state-space modelling approach lead to the design of new converter topologies through the study of generic properties of the cascade connection of basic buck and boost converters.

  13. High frequency converters for thermophotovoltaic applications

    SciTech Connect

    Fatemi, N.S.; Hoffman, R.W. Jr.; Lowe, R.A.; Jenkins, P.P.; Garverick, L.M.; Wilt, D.M.; Scheiman, D.

    1996-12-31

    Thermophotovoltaic (TPV) converters were developed and tested at the heat source operating temperature of 1,700 K. Rare-earth-doped yttrium aluminum garnet (YAG) and lutetium yttrium aluminum garnet (Lu, YAG) selective emitters, as well as a blackbody emitter, were coupled to InGaAs/InP photovoltaic (PV) cells and bandpass/infrared (IR) reflector filters. YAG-based selective emitters were adopted with Ho, Tm, and Er. PV cells had bandgaps of 0.51, 0.57, and 0.69 eV. Converter energy conversion efficiencies approaching 30%, as well as electrical output power densities near 2 W/cm{sup 2} were demonstrated. The overall performance of the filtered blackbody-based converter was found to be superior to the selective emitter YAG-based converters. The details of the measurements performed on the above converters and their individual components are presented.

  14. Evaluations of uranium-nitride fueled converters.

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Cassell, P. L.

    1971-01-01

    Evaluation of two uranium-nitride (UN) fueled converters was initiated at the Jet Propulsion Laboratory to investigate the effect of fuel on the converter performance while being operated out-of-core. The initial tests were performed with the dynamic data acquisition system that was developed at the Laboratory. Parametric tests of these converters were to obtain: (1) static volt-ampere curves, (2) dynamic volt-ampere curves, and (3) the electrode work functions. The power outputs were 9.3 W/sq cm for the rhenium converter and 3.8 W/sq cm for the tungsten converter at 0.6 V when the emitter surface temperature was 2000 K, according to the static volt-ampere curves.

  15. Qualitative model of a plasma photoelectric converter

    NASA Astrophysics Data System (ADS)

    Gorbunov, N. A.; Flamant, G.

    2009-01-01

    A converter of focused optical radiation into electric current is considered on the basis of the photovoltaic effect in plasmas. The converter model is based on analysis of asymmetric spatial distributions of charge particle number density and ambipolar potential in the photoplasma produced by external optical radiation focused in a heat pipe filled with a mixture of alkali vapor and a heavy inert gas. Energy balance in the plasma photoelectric converter is analyzed. The conditions in which the external radiation energy is effectively absorbed in the converter are indicated. The plasma parameters for which the energy of absorbed optical radiation is mainly spent on sustaining the ambipolar field in the plasma are determined. It is shown that the plasma photoelectric converter makes it possible to attain a high conversion efficiency for focused solar radiation.

  16. Plasmon resonant cavities in vertical nanowire arrays

    SciTech Connect

    Bora, M; Bond, T; Behymer, E; Chang, A

    2010-02-23

    We investigate tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides. Resonances are observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors over 103 are possible due to plasmon focusing in the inter-wire space.

  17. Boost matrix converters in clean energy systems

    NASA Astrophysics Data System (ADS)

    Karaman, Ekrem

    This dissertation describes an investigation of novel power electronic converters, based on the ultra-sparse matrix topology and characterized by the minimum number of semiconductor switches. The Z-source, Quasi Z-source, Series Z-source and Switched-inductor Z-source networks were originally proposed for boosting the output voltage of power electronic inverters. These ideas were extended here on three-phase to three-phase and three-phase to single-phase indirect matrix converters. For the three-phase to three-phase matrix converters, the Z-source networks are placed between the three-switch input rectifier stage and the output six-switch inverter stage. A brief shoot-through state produces the voltage boost. An optimal pulse width modulation technique was developed to achieve high boosting capability and minimum switching losses in the converter. For the three-phase to single-phase matrix converters, those networks are placed similarly. For control purposes, a new modulation technique has been developed. As an example application, the proposed converters constitute a viable alternative to the existing solutions in residential wind-energy systems, where a low-voltage variable-speed generator feeds power to the higher-voltage fixed-frequency grid. Comprehensive analytical derivations and simulation results were carried out to investigate the operation of the proposed converters. Performance of the proposed converters was then compared between each other as well as with conventional converters. The operation of the converters was experimentally validated using a laboratory prototype.

  18. Multiple-band reflective polarization converter based on deformed F-shaped metamaterial

    NASA Astrophysics Data System (ADS)

    Li, He; Xiao, Boxun; Huang, Xiaojun; Yang, Helin

    2015-03-01

    A three-layered deformed F-shaped metamaterial reflective polarization converter (RPC) is proposed to realize linear and circular polarization conversions. The proposed F-shaped RPC can convert a linearly polarized wave to its cross-polarized wave at the four resonant frequencies. It also can convert the linearly polarized wave to a circularly polarized wave at the other four resonant frequencies. In addition, the proposed F-shaped RPC can maintain the same rational direction at the five resonant frequencies when the incident is a circularly polarized wave and higher reflective coefficients can be obtained with the increase of the thickness of the dielectric layer. The simulated and measured results are in agreement in the entire frequency range, and the polarization conversion ratio is more than 85% for both linear and circular polarizations. Further simulations reveal that the polarization in the terahertz range can also be obtained by changing the thickness of the dielectric layer and the unit of the reflective polarization converter.

  19. PMESH: A parallel mesh generator

    SciTech Connect

    Hardin, D.D.

    1994-10-21

    The Parallel Mesh Generation (PMESH) Project is a joint LDRD effort by A Division and Engineering to develop a unique mesh generation system that can construct large calculational meshes (of up to 10{sup 9} elements) on massively parallel computers. Such a capability will remove a critical roadblock to unleashing the power of massively parallel processors (MPPs) for physical analysis. PMESH will support a variety of LLNL 3-D physics codes in the areas of electromagnetics, structural mechanics, thermal analysis, and hydrodynamics.

  20. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  1. On the conversion of infrared radiation from fission reactor-based photon engine into parallel beam

    NASA Astrophysics Data System (ADS)

    Gulevich, Andrey V.; Levchenko, Vladislav E.; Loginov, Nicolay I.; Kukharchuk, Oleg F.; Evtodiev, Denis A.; Zrodnikov, Anatoly V.

    2002-01-01

    The efficiency of infrared radiation conversion from photon engine based on fission reactor into parallel photon beam is discussed. Two different ways of doing that are considered. One of them is to use the parabolic mirror to convert of infrared radiation into parallel photon beam. The another one is based on the use of special lattice consisting of numerous light conductors. The experimental facility and some results are described. .

  2. Light weight, high power, high voltage dc/dc converter technologies

    NASA Technical Reports Server (NTRS)

    Kraus, Robert; Myers, Ira; Baumann, Eric

    1990-01-01

    Power-conditioning weight reductions by orders of magnitude will be required to enable the megawatt-power-level space systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. An interagency program has been initiated to develop an 0.1-kg/kW dc/dc converter technology base for these future space applications. Three contractors are in the first phase of a competitive program to develop a megawatt dc/dc converter. Researchers at NASA Lewis Research Center are investigating innovative converter topology control. Three different converter subsystems based on square wave, resonant, and super-resonant topologies are being designed. The components required for the converter designs cover a wide array of technologies. Two different switches, one semiconductor and the other gas, are under development. Issues related to thermal management and material reliability for inductors, transformers, and capacitors are being investigated in order to maximize power density. A brief description of each of the concepts proposed to meet the goals of this program is presented.

  3. Parallel processor engine model program

    NASA Technical Reports Server (NTRS)

    Mclaughlin, P.

    1984-01-01

    The Parallel Processor Engine Model Program is a generalized engineering tool intended to aid in the design of parallel processing real-time simulations of turbofan engines. It is written in the FORTRAN programming language and executes as a subset of the SOAPP simulation system. Input/output and execution control are provided by SOAPP; however, the analysis, emulation and simulation functions are completely self-contained. A framework in which a wide variety of parallel processing architectures could be evaluated and tools with which the parallel implementation of a real-time simulation technique could be assessed are provided.

  4. Parallel computation with the force

    NASA Technical Reports Server (NTRS)

    Jordan, H. F.

    1985-01-01

    A methodology, called the force, supports the construction of programs to be executed in parallel by a force of processes. The number of processes in the force is unspecified, but potentially very large. The force idea is embodied in a set of macros which produce multiproceossor FORTRAN code and has been studied on two shared memory multiprocessors of fairly different character. The method has simplified the writing of highly parallel programs within a limited class of parallel algorithms and is being extended to cover a broader class. The individual parallel constructs which comprise the force methodology are discussed. Of central concern are their semantics, implementation on different architectures and performance implications.

  5. Parallel processing and expert systems

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Lau, Sonie

    1991-01-01

    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 90's cannot enjoy an increased level of autonomy without the efficient use of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real time demands are met for large expert systems. Speed-up via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial labs in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems was surveyed. The survey is divided into three major sections: (1) multiprocessors for parallel expert systems; (2) parallel languages for symbolic computations; and (3) measurements of parallelism of expert system. Results to date indicate that the parallelism achieved for these systems is small. In order to obtain greater speed-ups, data parallelism and application parallelism must be exploited.

  6. Parallel Programming in the Age of Ubiquitous Parallelism

    NASA Astrophysics Data System (ADS)

    Pingali, Keshav

    2014-04-01

    Multicore and manycore processors are now ubiquitous, but parallel programming remains as difficult as it was 30-40 years ago. During this time, our community has explored many promising approaches including functional and dataflow languages, logic programming, and automatic parallelization using program analysis and restructuring, but none of these approaches has succeeded except in a few niche application areas. In this talk, I will argue that these problems arise largely from the computation-centric foundations and abstractions that we currently use to think about parallelism. In their place, I will propose a novel data-centric foundation for parallel programming called the operator formulation in which algorithms are described in terms of actions on data. The operator formulation shows that a generalized form of data-parallelism called amorphous data-parallelism is ubiquitous even in complex, irregular graph applications such as mesh generation/refinement/partitioning and SAT solvers. Regular algorithms emerge as a special case of irregular ones, and many application-specific optimization techniques can be generalized to a broader context. The operator formulation also leads to a structural analysis of algorithms called TAO-analysis that provides implementation guidelines for exploiting parallelism efficiently. Finally, I will describe a system called Galois based on these ideas for exploiting amorphous data-parallelism on multicores and GPUs

  7. A Multicell Converter Model of DBD Plasma Discharges

    SciTech Connect

    Flores-Fuentes, A. A.; Piedad-Beneitez, A. de la; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia A, R.; Barocio, S. R.; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.

    2006-12-04

    A compact Matlab model of plasma discharges in a DBD reactor consisting of two parallel electrode plates with a small gap and a thin dielectric sheet between them is reported. Its DBD plasma is modelled as a voltage controlled current-source switched on when the voltage across the gap exceeds the breakdown voltage. A three cell voltage-source inverter, configured in half-bridge, has been used as a power supply. This configuration has an excellent performance when operating as an open-loop. The distribution of total energy between a large number of low power converters proofs to be advantageous, allowing an efficient high power drive. Simulation results show that the current source and its output current tend to follow an exponential behaviour. A phenomenological characteristic of the voltage-current behaviour of DBD is then described by power laws with different voltage exponent function values.

  8. Discrete resonances

    NASA Astrophysics Data System (ADS)

    Vivaldi, Franco

    2015-12-01

    The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.

  9. Discrete resonances

    NASA Astrophysics Data System (ADS)

    Vivaldi, Franco

    The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.

  10. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  11. Influence of resonance parameters' correlations on the resonance integral uncertainty; 55Mn case

    NASA Astrophysics Data System (ADS)

    Žerovnik, Gašper; Trkov, Andrej; Capote, Roberto; Rochman, Dimitri

    2011-03-01

    For nuclides with a large number of resonances the covariance matrix of resonance parameters can become very large and expensive to process in terms of the computation time. By converting covariance matrix of resonance parameters into covariance matrices of background cross-section in a more or less coarse group structure a considerable amount of computer time and memory can be saved. The question is how important is the information that is discarded in the process. First, the uncertainty of the 55Mn resonance integral was estimated in narrow resonance approximation for different levels of self-shielding using Bondarenko method by random sampling of resonance parameters according to their covariance matrices from two different 55Mn evaluations: one from Nuclear Research and Consultancy Group NRG (with large uncertainties but no correlations between resonances), the other from Oak Ridge National Laboratory (with smaller uncertainties but full covariance matrix). We have found out that if all (or at least significant part of the) resonance parameters are correlated, the resonance integral uncertainty greatly depends on the level of self-shielding. Second, it was shown that the commonly used 640-group SAND-II representation cannot describe the increase of the resonance integral uncertainty. A much finer energy mesh for the background covariance matrix would have to be used to take the resonance structure into account explicitly, but then the objective of a more compact data representation is lost.

  12. Programmable Analog-To-Digital Converter

    NASA Technical Reports Server (NTRS)

    Kist, Edward H., Jr.

    1993-01-01

    High-speed analog-to-digital converter with programmable voltage steps that can be changed during operation. Allows concentration of converter resolution over specific portion of waveform. Particularly useful in digitizing wind-shear radar and lidar return signals, in digital oscilloscopes, and other applications in which desirable to increase digital resolution over specific area of waveform while accepting lower resolution over rest of waveform. Effective increase in dynamic range achieved without increase in number of analog-to-digital converter bits. Enabling faster analog-to-digital conversion.

  13. Parallel Adaptive Mesh Refinement

    SciTech Connect

    Diachin, L; Hornung, R; Plassmann, P; WIssink, A

    2005-03-04

    As large-scale, parallel computers have become more widely available and numerical models and algorithms have advanced, the range of physical phenomena that can be simulated has expanded dramatically. Many important science and engineering problems exhibit solutions with localized behavior where highly-detailed salient features or large gradients appear in certain regions which are separated by much larger regions where the solution is smooth. Examples include chemically-reacting flows with radiative heat transfer, high Reynolds number flows interacting with solid objects, and combustion problems where the flame front is essentially a two-dimensional sheet occupying a small part of a three-dimensional domain. Modeling such problems numerically requires approximating the governing partial differential equations on a discrete domain, or grid. Grid spacing is an important factor in determining the accuracy and cost of a computation. A fine grid may be needed to resolve key local features while a much coarser grid may suffice elsewhere. Employing a fine grid everywhere may be inefficient at best and, at worst, may make an adequately resolved simulation impractical. Moreover, the location and resolution of fine grid required for an accurate solution is a dynamic property of a problem's transient features and may not be known a priori. Adaptive mesh refinement (AMR) is a technique that can be used with both structured and unstructured meshes to adjust local grid spacing dynamically to capture solution features with an appropriate degree of resolution. Thus, computational resources can be focused where and when they are needed most to efficiently achieve an accurate solution without incurring the cost of a globally-fine grid. Figure 1.1 shows two example computations using AMR; on the left is a structured mesh calculation of a impulsively-sheared contact surface and on the right is the fuselage and volume discretization of an RAH-66 Comanche helicopter [35]. Note the

  14. Monolithic time-to-amplitude converter for photon timing applications

    NASA Astrophysics Data System (ADS)

    Resnati, D.; Rech, I.; Ghioni, M.; Cova, S.

    2009-05-01

    In the last years Time-Correlated Single-Photon Counting (TCSPC) has increasingly been used in many different scientific applications (e.g.: single molecule spectroscopy, fluorescence lifetime imaging, diffuse optical tomography). Many of these applications are calling for new requests on the development of instrumentation that operates at higher and higher conversion rates and that is able to resolve optical signals not only in the time domain, but also in wavelength, polarization and position. To exploit the potential of parallel analysis over multiple acquisition channels, a new generation of TCSPC devices is needed that is characterized by low size and costs. The core block of TCSPC instrumentation is the time-interval measurement section, which can be implemented with a Time-to-Amplitude Converter (TAC); the converter can be integrated on a single chip in order to reduce the overall size and cost of the system. This paper presents a monolithic TAC that has been designed to achieve the high resolution, good differential linearity and fast counting rate required in modern applications. The TAC here described is built on a commercial 0.35 μm CMOS technology, and is characterized by resolution better than 60 ps, differential nonlinearity limited to 0.5% rms and short dead-time of 80 ns. The low area occupation (1.4x1.8 mm) and minimal need for external components allow the realization of very compact instruments with multiple acquisition channels operating simultaneously at very high count rates.

  15. Parallel execution model for Prolog

    SciTech Connect

    Fagin, B.S.

    1987-01-01

    One candidate language for parallel symbolic computing is Prolog. Numerous ways for executing Prolog in parallel have been proposed, but current efforts suffer from several deficiencies. Many cannot support fundamental types of concurrency in Prolog. Other models are of purely theoretical interest, ignoring implementation costs. Detailed simulation studies of execution models are scare; at present little is known about the costs and benefits of executing Prolog in parallel. In this thesis, a new parallel execution model for Prolog is presented: the PPP model or Parallel Prolog Processor. The PPP supports AND-parallelism, OR-parallelism, and intelligent backtracking. An implementation of the PPP is described, through the extension of an existing Prolog abstract machine architecture. Several examples of PPP execution are presented, and compilation to the PPP abstract instruction set is discussed. The performance effects of this model are reported, based on a simulation of a large benchmark set. The implications of these results for parallel Prolog systems are discussed, and directions for future work are indicated.

  16. Reordering computations for parallel execution

    NASA Technical Reports Server (NTRS)

    Adams, L.

    1985-01-01

    The computations are reordered in the SOR algorithm to maintain the same asymptotic rate of convergence as the rowwise ordering to obtain parallelism at different levels. A parallel program is written to illustrate these ideas and actual machines for implementation of this program are discussed.

  17. Parallelizing Monte Carlo with PMC

    SciTech Connect

    Rathkopf, J.A.; Jones, T.R.; Nessett, D.M.; Stanberry, L.C.

    1994-11-01

    PMC (Parallel Monte Carlo) is a system of generic interface routines that allows easy porting of Monte Carlo packages of large-scale physics simulation codes to Massively Parallel Processor (MPP) computers. By loading various versions of PMC, simulation code developers can configure their codes to run in several modes: serial, Monte Carlo runs on the same processor as the rest of the code; parallel, Monte Carlo runs in parallel across many processors of the MPP with the rest of the code running on other MPP processor(s); distributed, Monte Carlo runs in parallel across many processors of the MPP with the rest of the code running on a different machine. This multi-mode approach allows maintenance of a single simulation code source regardless of the target machine. PMC handles passing of messages between nodes on the MPP, passing of messages between a different machine and the MPP, distributing work between nodes, and providing independent, reproducible sequences of random numbers. Several production codes have been parallelized under the PMC system. Excellent parallel efficiency in both the distributed and parallel modes results if sufficient workload is available per processor. Experiences with a Monte Carlo photonics demonstration code and a Monte Carlo neutronics package are described.

  18. Resonator-quantum well infrared photodetectors

    SciTech Connect

    Choi, K. K. Sun, J.; Olver, K.; Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A.

    2013-11-11

    We applied a recent electromagnetic model to design the resonator-quantum well infrared photodetector (R-QWIP). In this design, we used an array of rings as diffractive elements to diffract normal incident light into parallel propagation and used the pixel volume as a resonator to intensify the diffracted light. With a proper pixel size, the detector resonates at certain optical wavelengths and thus yields a high quantum efficiency (QE). To test this detector concept, we fabricated a number of R-QWIPs with different quantum well materials and detector geometries. The experimental result agrees satisfactorily with the prediction, and the highest QE achieved is 71%.

  19. Parallel RF force driven by the inhomogeneity of power absorption in magnetized plasma.

    PubMed

    Gao, Zhe; Chen, Jiale; Fisch, Nathaniel J

    2013-06-01

    A nonlinear parallel force can be exerted through the inhomogeneity of rf resonant absorption in a magnetized plasma. While providing no integrated force over a plasma volume, this force can redistribute momentum parallel to the magnetic field. Because flows and currents parallel to the magnetic field encounter different resistances, this redistribution can play a large role, in addition to the role played by the direct absorption of parallel momentum. For nearly perpendicular propagating waves in a tokamak plasma, this additional force is expected to affect significantly the toroidal rf-driven current and the toroidal flow drive. PMID:25167505

  20. The Galley Parallel File System

    NASA Technical Reports Server (NTRS)

    Nieuwejaar, Nils; Kotz, David

    1996-01-01

    Most current multiprocessor file systems are designed to use multiple disks in parallel, using the high aggregate bandwidth to meet the growing I/0 requirements of parallel scientific applications. Many multiprocessor file systems provide applications with a conventional Unix-like interface, allowing the application to access multiple disks transparently. This interface conceals the parallelism within the file system, increasing the ease of programmability, but making it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. In addition to providing an insufficient interface, most current multiprocessor file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic scientific multiprocessor workloads. We discuss Galley's file structure and application interface, as well as the performance advantages offered by that interface.

  1. Parallel contingency statistics with Titan.

    SciTech Connect

    Thompson, David C.; Pebay, Philippe Pierre

    2009-09-01

    This report summarizes existing statistical engines in VTK/Titan and presents the recently parallelized contingency statistics engine. It is a sequel to [PT08] and [BPRT09] which studied the parallel descriptive, correlative, multi-correlative, and principal component analysis engines. The ease of use of this new parallel engines is illustrated by the means of C++ code snippets. Furthermore, this report justifies the design of these engines with parallel scalability in mind; however, the very nature of contingency tables prevent this new engine from exhibiting optimal parallel speed-up as the aforementioned engines do. This report therefore discusses the design trade-offs we made and study performance with up to 200 processors.

  2. The analytical basis for the resonances and anti-resonances of loop antennas and meta-material ring resonators

    NASA Astrophysics Data System (ADS)

    McKinley, A. F.; White, T. P.; Maksymov, I. S.; Catchpole, K. R.

    2012-11-01

    Interest in the electromagnetic properties of loop structures has surged with the recent appearance of split-ring resonator meta-materials (SRRs) and nano-antennas. Understanding the resonances, anti-resonances, and harmonics of these loops is key to understanding their response to a wide range of excitation wavelengths. We present the classical analytical solution for the input impedance of a loop structure with circumference on the order of the wavelength, and we show how to identify these resonances from the function. We transform the classical solution into a new RLC formulation and show that each natural mode of the loop can be represented as a series resonant circuit, such that the full response function can be resolved by placing all of these circuits in parallel. We show how this formulation applies to SRRs.

  3. Efficiency optimization of a thermionic converter array

    NASA Technical Reports Server (NTRS)

    Kuo, Y. S.; Phillips, W. M.

    1979-01-01

    Intensive study of the outer planets of the solar system requires the use of nuclear power for electric propulsion of spacecraft. Among the power conversion devices being considered for this application are thermionic converters. This paper presents the results of computer modeling of thermionic converters to identify the major design variables and select an optimum size for each of the thermionic converters for the power conversion system under consideration. Among the variables investigated were electrical and thermal losses in electrodes, leads and heat chokes. Those elements which minimized the electrical losses tended to increase thermal losses and system weight. Overall mechanical design and relative positioning of components also had impacts on converter efficiency and the power subsystem weight. Numerical calculations were made using the computer heat transfer code SINDA coupled with electrical loss parameters. The results of the computations are presented in this paper.

  4. Rotorcraft convertible engines for the 1980s

    NASA Technical Reports Server (NTRS)

    Eisenberg, J. D.

    1982-01-01

    Two rotorcraft studies were executed. The goal was to identify attractive techniques for implementing convertible powerplants for the ABC, Folded Tilt Rotor, and X-wing type high speed, high-L/D rotorcraft; to determine the DOC and fuel savings benefits achieved thereby; and to define research required to bring these powerplants into existence by the 1990's. These studies are reviewed herein and the different methods of approach are pointed out as well as the key findings. Fan shaft engines using variable inlet guide vanes or torque converters, and turboprop powerplants appear attractive. Savings in DOC and fuel consumption of over 15 percent are predicted in some cases as a result of convertible engine use rather than using separate engines for the thrust and the shaft functions. Areas of required research are fan performance (including noise), integrated engine/rotorcraft control, torque converters, turbine design, airflow for rotorcraft torque control, bleed for lift flow, and transmissions and clutches.

  5. Waveguide mode converter and method using same

    DOEpatents

    Moeller, Charles P.

    1990-01-01

    A waveguide mode converter converts electromagnetic power being transmitted in a TE.sub.0n or a TM.sub.0n mode, where n is an integer, to an HE.sub.11 mode. The conversion process occurs in a single stage without requiring the power to pass through any intermediate modes. The converter comprises a length of circular corrugated waveguide formed in a multiperiod periodic curve. The period of the curve is selected to couple the desired modes and decouple undesired modes. The corrugation depth is selected to control the phase propagation constant, or wavenumbers, of the input and output modes, thereby preventing coherent coupling to competing modes. In one embodiment, both the period and amplitude of the curve may be selectively adjusted, thereby allowing the converter to be tuned to maximize the conversion efficiency.

  6. Plasmonic grating as a nonlinear converter-coupler.

    PubMed

    Talebi, Nahid; Shahabadi, Mahmoud; Khunsin, Worawut; Vogelgesang, Ralf

    2012-01-16

    The paper introduces a wavelength converter composed of a metallic finite 2-dimensional particle grating on top of an optical waveguide. The particles sustain plasmonic resonances which will result in the near-field enhancement and therefore, high conversion efficiency. Due to near-field interaction of the grating field with the propagating modes of the waveguide, the generated third harmonic wave is phase-matched to a propagating mode of the waveguide, while the fundamental frequency component is not coupled into the output waveguide of the structure. The performance of this structure is numerically investigated using a full-wave transmission line method for the linear analysis and a three-dimensional finite-difference time-domain method for the nonlinear analysis. PMID:22274484

  7. EIT in resonator chains: similarities and differences with atomic media

    NASA Technical Reports Server (NTRS)

    Matsko, A. B.; Maleki, L.; Savchenkov, A. A.; Ilchenko, V. S.

    2004-01-01

    We theoretically study a parallel configuration of two interacting whispering gallery mode optical resonators and show a narrow-band modal structure as a basis for a widely tunable delay line. For the optimum coupling configuration the system can possess an unusually narrow spectral feature with a much narrower bandwidth than the loaded bandwidth of each individual resonator.

  8. ANALOG-TO-DIGITAL DATA CONVERTER

    DOEpatents

    Rodgers, G.W.; Althouse, J.E.; Anderson, D.P.; Bussey, G.R.; Minnear, L.H.

    1960-09-01

    Electrical apparatus is described, particularly useful in telemetry work, for converting analog signals into electrical pulses and recording them. An electronic editor commands the taking of signal readings at a frequency which varies according to linearity of the analog signal being converted. Readings of information signals are recorded, along with time base readings and serial numbering, if desired, on magnetic tape and the latter may be used to operate a computer or the like. Magnetic tape data may be transferred to punched cards.

  9. Two-Stage Series-Resonant Inverter

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.

    1994-01-01

    Two-stage inverter includes variable-frequency, voltage-regulating first stage and fixed-frequency second stage. Lightweight circuit provides regulated power and is invulnerable to output short circuits. Does not require large capacitor across ac bus, like parallel resonant designs. Particularly suitable for use in ac-power-distribution system of aircraft.

  10. The study of piezoelectric lateral-electric-field-excited resonator.

    PubMed

    Zaitsev, Boris; Kuznetsova, Iren; Shikhabudinov, Alexander; Teplykh, Andrey; Borodina, Irina

    2014-01-01

    The piezoelectric lateral-electric-field-excited resonator based on an X-cut lithium niobate plate has been investigated. Two rectangular electrodes were applied on one side of the plate so that the lateral electric field components were parallel to the crystallographic Y-axis and excited the longitudinal wave in the gap between the electrodes. The region around the electrodes was covered with a special absorbing varnish to suppress the spurious oscillations. The effect of the absorbing coating width on the resonant frequency and Q-factor of the lateral field-excited resonator was studied in detail with the series and parallel resonances for different width of the gap between the electrodes. As a result, we found experimentally the parameter regions of pure resonances and the boundaries of value variation for resonance frequency, Q-factor, and effective electromechanical coupling coefficient. PMID:24402903

  11. On lossless switched-capacitor power converters

    SciTech Connect

    Tse, C.K.; Wong, S.C.; Chow, M.H.L.

    1995-05-01

    This paper addresses the design of efficient switched-capacitor power converters. The discussion starts with a review of the fundamental limitation of switched-capacitor circuits which shows that the topology of such circuits and the ``forced`` step changes of capacitor voltages are the inherent attributes of power loss. Although the argument follows from a rather trivial result from basic circuit theory, it addresses an important issue on the maximum efficiency achievable in a switched-capacitor converter circuit. Based on the observed topological constraint of switched-capacitor converter circuits, the simplest lossless topology for AC/DC conversion is deduced. Also discussed is a simple version of lossless topology that achieves isolation between the source and the load. Finally, an experimental AC/DC switched-capacitor converter, based on the proposed idea, is presented which demonstrates an improved efficiency over other existing switched-capacitor converters. The proposed AC/DC converter contains no inductors and thus is suitable for custom IC implementation for very low power applications.

  12. Resonance self-shielding methodology in MPACT

    SciTech Connect

    Liu, Y.; Collins, B.; Kochunas, B.; Martin, W.; Kim, K. S.; Williams, M.

    2013-07-01

    The resonance self-shielding methods of the neutron transport code Michigan Parallel Characteristics based Transport (MPACT) are described in this paper. Two resonance-integral table based methods are utilized to resolve the resonance self-shielding effect. The subgroup method is a mature approach used in MPACT as the basic functionality for the resonance calculation. Another new iterative method, named the embedded self-shielding method is also implemented in MPACT. Comparisons of the two methods as well as their numerical verifications are presented. The results show that MPACT is capable of modeling the resonance self-shielding in a variety of PWR benchmarking cases, including difficult fuel lattice cases with poison, control rods or mixed gadolinia fuel rods. (authors)

  13. Parallel processing and expert systems

    NASA Technical Reports Server (NTRS)

    Lau, Sonie; Yan, Jerry C.

    1991-01-01

    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited.

  14. Parallel NPARC: Implementation and Performance

    NASA Technical Reports Server (NTRS)

    Townsend, S. E.

    1996-01-01

    Version 3 of the NPARC Navier-Stokes code includes support for large-grain (block level) parallelism using explicit message passing between a heterogeneous collection of computers. This capability has the potential for significant performance gains, depending upon the block data distribution. The parallel implementation uses a master/worker arrangement of processes. The master process assigns blocks to workers, controls worker actions, and provides remote file access for the workers. The processes communicate via explicit message passing using an interface library which provides portability to a number of message passing libraries, such as PVM (Parallel Virtual Machine). A Bourne shell script is used to simplify the task of selecting hosts, starting processes, retrieving remote files, and terminating a computation. This script also provides a simple form of fault tolerance. An analysis of the computational performance of NPARC is presented, using data sets from an F/A-18 inlet study and a Rocket Based Combined Cycle Engine analysis. Parallel speedup and overall computational efficiency were obtained for various NPARC run parameters on a cluster of IBM RS6000 workstations. The data show that although NPARC performance compares favorably with the estimated potential parallelism, typical data sets used with previous versions of NPARC will often need to be reblocked for optimum parallel performance. In one of the cases studied, reblocking increased peak parallel speedup from 3.2 to 11.8.

  15. Parallel incremental compilation. Doctoral thesis

    SciTech Connect

    Gafter, N.M.

    1990-06-01

    The time it takes to compile a large program has been a bottleneck in the software development process. When an interactive programming environment with an incremental compiler is used, compilation speed becomes even more important, but existing incremental compilers are very slow for some types of program changes. We describe a set of techniques that enable incremental compilation to exploit fine-grained concurrency in a shared-memory multi-processor and achieve asymptotic improvement over sequential algorithms. Because parallel non-incremental compilation is a special case of parallel incremental compilation, the design of a parallel compiler is a corollary of our result. Instead of running the individual phases concurrently, our design specifies compiler phases that are mutually sequential. However, each phase is designed to exploit fine-grained parallelism. By allowing each phase to present its output as a complete structure rather than as a stream of data, we can apply techniques such as parallel prefix and parallel divide-and-conquer, and we can construct applicative data structures to achieve sublinear execution time. Parallel algorithms for each phase of a compiler are presented to demonstrate that a complete incremental compiler can achieve execution time that is asymptotically less than sequential algorithms.

  16. EFFICIENT SCHEDULING OF PARALLEL JOBS ON MASSIVELY PARALLEL SYSTEMS

    SciTech Connect

    F. PETRINI; W. FENG

    1999-09-01

    We present buffered coscheduling, a new methodology to multitask parallel jobs in a message-passing environment and to develop parallel programs that can pave the way to the efficient implementation of a distributed operating system. Buffered coscheduling is based on three innovative techniques: communication buffering, strobing, and non-blocking communication. By leveraging these techniques, we can perform effective optimizations based on the global status of the parallel machine rather than on the limited knowledge available locally to each processor. The advantages of buffered coscheduling include higher resource utilization, reduced communication overhead, efficient implementation of low-control strategies and fault-tolerant protocols, accurate performance modeling, and a simplified yet still expressive parallel programming model. Preliminary experimental results show that buffered coscheduling is very effective in increasing the overall performance in the presence of load imbalance and communication-intensive workloads.

  17. Parallel integer sorting with medium and fine-scale parallelism

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo

    1993-01-01

    Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.

  18. Template based parallel checkpointing in a massively parallel computer system

    DOEpatents

    Archer, Charles Jens; Inglett, Todd Alan

    2009-01-13

    A method and apparatus for a template based parallel checkpoint save for a massively parallel super computer system using a parallel variation of the rsync protocol, and network broadcast. In preferred embodiments, the checkpoint data for each node is compared to a template checkpoint file that resides in the storage and that was previously produced. Embodiments herein greatly decrease the amount of data that must be transmitted and stored for faster checkpointing and increased efficiency of the computer system. Embodiments are directed to a parallel computer system with nodes arranged in a cluster with a high speed interconnect that can perform broadcast communication. The checkpoint contains a set of actual small data blocks with their corresponding checksums from all nodes in the system. The data blocks may be compressed using conventional non-lossy data compression algorithms to further reduce the overall checkpoint size.

  19. Bimodal loop-gap resonator

    NASA Astrophysics Data System (ADS)

    Piasecki, W.; Froncisz, W.; Hyde, James S.

    1996-05-01

    A bimodal loop-gap resonator for use in electron paramagnetic resonance (EPR) spectroscopy at S band is described. It consists of two identical one-loop-one-gap resonators in coaxial juxtaposition. In one mode, the currents in the two loops are parallel and in the other antiparallel. By introducing additional capacitors between the loops, the frequencies of the two modes can be made to coincide. Details are given concerning variable coupling to each mode, tuning of the resonant frequency of one mode to that of the other, and adjustment of the isolation between modes. An equivalent circuit is given and network analysis carried out both experimentally and theoretically. EPR applications are described including (a) probing of the field distributions with DPPH, (b) continuous wave (cw) EPR with a spin-label line sample, (c) cw electron-electron double resonance (ELDOR), (d) modulation of saturation, and (e) saturation-recovery (SR) EPR. Bloch induction experiments can be performed when the sample extends half way through the structure, but microwave signals induced by Mx and My components of magnetization cancel when it extends completely through. This latter situation is particularly favorable for SR, modulation of saturation, and ELDOR experiments, which depend on observing Mz indirectly using a second weak observing microwave source.

  20. Resonantly-enhanced axion-photon regeneration

    SciTech Connect

    Mueller, Guido; Sikivie, Pierre; Tanner, David B.; Bibber, Karl van

    2010-08-30

    A resonantly-enhanced photon-regeneration experiment to search for the axion or axion-like particles is discussed. Photons enter a strong magnetic field and some are converted to axions; the axions can pass through an opaque wall and some may convert back to photons in a second high-field region. The photon regeneration is enhanced by employing matched Fabry-Perot optical cavities, with one cavity within the axion generation magnet and the second within the photon regeneration magnet. The optics for this experiment are discussed, with emphasis on the alignment of the two cavities.

  1. Resonant behavior of dielectric objects (electrostatic resonances).

    PubMed

    Fredkin, D R; Mayergoyz, I D

    2003-12-19

    Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning. PMID:14754117

  2. Acoustic metasurface with hybrid resonances.

    PubMed

    Ma, Guancong; Yang, Min; Xiao, Songwen; Yang, Zhiyu; Sheng, Ping

    2014-09-01

    An impedance-matched surface has the property that an incident wave generates no reflection. Here we demonstrate that by using a simple construction, an acoustically reflecting surface can acquire hybrid resonances and becomes impedance-matched to airborne sound at tunable frequencies, such that no reflection is generated. Each resonant cell of the metasurface is deep-subwavelength in all its spatial dimensions, with its thickness less than the peak absorption wavelength by two orders of magnitude. As there can be no transmission, the impedance-matched acoustic wave is hence either completely absorbed at one or multiple frequencies, or converted into other form(s) of energy, such as an electrical current. A high acoustic-electrical energy conversion efficiency of 23% is achieved. PMID:24880731

  3. Radio-frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  4. Parallel-Plate Electrostatic Dual Mass Oscillator

    SciTech Connect

    Allen, James J.; Dyck, Christopher W.; Huber, Robert J.

    1999-07-22

    A surface-micromachined two-degree-of-freedom system that was driven by parallel-plate actuation at antiresonance was demonstrated. The system consisted of an absorbing mass connected by folded springs to a drive mass. The system demonstrated substantial motion amplification at antiresonance. The absorber mass amplitudes were 0.8-0.85 pm at atmospheric pressure while the drive mass amplitudes were below 0.1 pm. Larger absorber mass amplitudes were not possible because of spring softening in the drive mass springs. Simple theory of the dual-mass oscillator has indicated that the absorber mass may be insensitive to limited variations in strain and damping. This needs experimental verification. Resonant and antiresonant frequencies were measured and compared to the designed values. Resonant frequency measurements were difficult to compare to the design calculations because of time-varying spring softening terms that were caused by the drive configuration. Antiresonant frequency measurements were close to the design value of 5.1 kHz. The antiresonant frequency was not dependent on spring softening. The measured absorber mass displacement at antiresonance was compared to computer simulated results. The measured value was significantly greater, possibly due to neglecting fringe fields in the force expression used in the simulation.

  5. Parallel Architecture For Robotics Computation

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1990-01-01

    Universal Real-Time Robotic Controller and Simulator (URRCS) is highly parallel computing architecture for control and simulation of robot motion. Result of extensive algorithmic study of different kinematic and dynamic computational problems arising in control and simulation of robot motion. Study led to development of class of efficient parallel algorithms for these problems. Represents algorithmically specialized architecture, in sense capable of exploiting common properties of this class of parallel algorithms. System with both MIMD and SIMD capabilities. Regarded as processor attached to bus of external host processor, as part of bus memory.

  6. Multigrid on massively parallel architectures

    SciTech Connect

    Falgout, R D; Jones, J E

    1999-09-17

    The scalable implementation of multigrid methods for machines with several thousands of processors is investigated. Parallel performance models are presented for three different structured-grid multigrid algorithms, and a description is given of how these models can be used to guide implementation. Potential pitfalls are illustrated when moving from moderate-sized parallelism to large-scale parallelism, and results are given from existing multigrid codes to support the discussion. Finally, the use of mixed programming models is investigated for multigrid codes on clusters of SMPs.

  7. Parallel inverse iteration with reorthogonalization

    SciTech Connect

    Fann, G.I.; Littlefield, R.J.

    1993-03-01

    A parallel method for finding orthogonal eigenvectors of real symmetric tridiagonal is described. The method uses inverse iteration with repeated Modified Gram-Schmidt (MGS) reorthogonalization of the unconverged iterates for clustered eigenvalues. This approach is more parallelizable than reorthogonalizing against fully converged eigenvectors, as is done by LAPACK's current DSTEIN routine. The new method is found to provide accuracy and speed comparable to DSTEIN's and to have good parallel scalability even for matrices with large clusters of eigenvalues. We present al results for residual and orthogonality tests, plus timings on IBM RS/6000 (sequential) and Intel Touchstone DELTA (parallel) computers.

  8. Parallel inverse iteration with reorthogonalization

    SciTech Connect

    Fann, G.I.; Littlefield, R.J.

    1993-03-01

    A parallel method for finding orthogonal eigenvectors of real symmetric tridiagonal is described. The method uses inverse iteration with repeated Modified Gram-Schmidt (MGS) reorthogonalization of the unconverged iterates for clustered eigenvalues. This approach is more parallelizable than reorthogonalizing against fully converged eigenvectors, as is done by LAPACK`s current DSTEIN routine. The new method is found to provide accuracy and speed comparable to DSTEIN`s and to have good parallel scalability even for matrices with large clusters of eigenvalues. We present al results for residual and orthogonality tests, plus timings on IBM RS/6000 (sequential) and Intel Touchstone DELTA (parallel) computers.

  9. Experimental and theoretical investigation for the suppression of the plasma arc drop in the thermionic converter

    NASA Technical Reports Server (NTRS)

    Shaw, D. T.; Manikopoulos, C. N.; Chang, T.; Lee, C. H.; Chiu, N.

    1977-01-01

    Ion generation and recombination mechanisms in the cesium plasma as they pertain to the advanced mode thermionic energy converter were studied. The decay of highly ionized cesium plasma was studied in the near afterglow to examine the recombination processes. Very low recombination in such a plasma may prove to be of considerable importance in practical converters. The approaches of external cesium generation were vibrationally excited nitrogen as an energy source of ionization of cesium ion, and microwave power as a means of resonant sustenance of the cesium plasma. Experimental data obtained so far show that all three techniques - i.e., the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave resonant cavity - can produce plasmas with their densities significantly higher than the Richardson density. The implication of these findings as related to Lam's theory is discussed.

  10. Magnonic beam splitter: The building block of parallel magnonic circuitry

    NASA Astrophysics Data System (ADS)

    Sadovnikov, A. V.; Davies, C. S.; Grishin, S. V.; Kruglyak, V. V.; Romanenko, D. V.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2015-05-01

    We demonstrate a magnonic beam splitter that works by inter-converting magnetostatic surface and backward-volume spin waves propagating in orthogonal sections of a T-shaped yttrium iron garnet structure. The inter-conversion is enabled by the overlap of the surface and volume spin wave bands. This overlap results from the demagnetising field induced along the transversely magnetised section(-s) of the structure and the quantization of the transverse wave number of the propagating spin waves (which are therefore better described as waveguide modes). In agreement with numerical micromagnetic simulations, our Brillouin light scattering imaging experiments reveal that, depending on the frequency, the incident fundamental waveguide magnonic modes may also be converted into higher order waveguide modes. The magnonic beam splitter demonstrated here is an important step towards the development of parallel logic circuitry of magnonics.

  11. Magnonic beam splitter: The building block of parallel magnonic circuitry

    SciTech Connect

    Sadovnikov, A. V.; Grishin, S. V. Romanenko, D. V.; Sharaevskii, Yu. P.; Davies, C. S.; Kruglyak, V. V.; Nikitov, S. A.

    2015-05-11

    We demonstrate a magnonic beam splitter that works by inter-converting magnetostatic surface and backward-volume spin waves propagating in orthogonal sections of a T-shaped yttrium iron garnet structure. The inter-conversion is enabled by the overlap of the surface and volume spin wave bands. This overlap results from the demagnetising field induced along the transversely magnetised section(-s) of the structure and the quantization of the transverse wave number of the propagating spin waves (which are therefore better described as waveguide modes). In agreement with numerical micromagnetic simulations, our Brillouin light scattering imaging experiments reveal that, depending on the frequency, the incident fundamental waveguide magnonic modes may also be converted into higher order waveguide modes. The magnonic beam splitter demonstrated here is an important step towards the development of parallel logic circuitry of magnonics.

  12. Plasma generation by dielectric resonator arrays

    NASA Astrophysics Data System (ADS)

    Dennison, Stephen; Chapman, Adam; Luo, Wei; Lanagan, Michael; Hopwood, Jeffrey

    2016-06-01

    Arrays of dielectric resonators—illuminated by an antenna—are used to ignite and sustain multiple microwave plasmas in parallel. Calcium titanate cylindrical resonators were arranged in a linear array with separation distances between 0.5 and 5 mm. The operating frequency was near the HEM111 resonance of 1.1 GHz. Paschen curves of the breakdown field and voltage in argon atmosphere are consistent with parallel plate microwave breakdown except within discharge gaps of 1 mm or less. Sustaining of argon plasma between 0.5 Torr and 1 atm within the array is found to alter the electromagnetic scattering from the dielectric resonators, suggesting applications in plasma-reconfigurable metamaterials and photonic crystals.

  13. Resonance frequency analysis.

    PubMed

    Gupta, Rajiv K; Padmanabhan, Thallam V

    2011-01-01

    Initial stability at the placement and development of osseointegration are two major issues for implant survival. Implant stability is a mechanical phenomenon which is related to the local bone quality and quantity, type of implant, and placement technique used. The application of a simple, clinically applicable, non-invasive test to assess implant stability and osseointegration is considered highly desirable. Resonance frequency analysis (RFA) is one of such techniques which is most frequently used now days. The aim of this paper was to review and analyze critically the current available literature in the field of RFA, and to also discuss based on scientific evidence, the prognostic value of RFA to detect implants at risk of failure. A search was made using the PubMed database to find all the literature published on "Resonance frequency analysis for implant stability" till date. Articles discussed in vivo or in vitro studies comparing RFA with other methods of implant stability measurement and articles discussing its reliability were thoroughly reviewed and discussed. A limited number of clinical reports were found. Various studies have demonstrated the feasibility and predictability of the technique. However, most of these articles are based on retrospective data or uncontrolled cases. Randomized, prospective, parallel-armed longitudinal human trials are based on short-term results and long-term follow up are still scarce in this field. Nonetheless, from available literature, it may be concluded that RFA technique evaluates implant stability as a function of stiffness of the implant bone interface and is influenced by factors such as bone type, exposed implant height above the alveolar crest. Resonance frequency analysis could serve as a non-invasive diagnostic tool for detecting the implant stability of dental implants during the healing stages and in subsequent routine follow up care after treatment. Future studies, preferably randomized, prospective

  14. Simulations for the future converter of the e-linac for the TRIUMF ARIEL facility

    NASA Astrophysics Data System (ADS)

    Lebois, M.; Bricault, P.

    2011-09-01

    In the next years, TRIUMF activity will be focused on building a new facility to produce very intense neutron rich radioactive ion beams. Unlike others ISOL facilities, the e-linac primary beam, that will induce the fission, is an intense electron beam (50 MeV energy and 10 mA intensity). This challenging choice, which make this installation unique, despite the ALTO facility, makes an average fission rate of 1013-14fissions/s in the target.This beam is sent on an uranium carbide target (UCx), but due to its power, it is essential to insert a "converter" on the beam path to avoid a target overheating. The purpose of this converter is to convert electrons into Bremsstralhung radiation. The γ rays produce excite the dipole resonance of 23892U (15 MeV) inducing fission. Energy deposition, fission rate and thermal behavior were simulated using Monte Carlo techniques are presented in this paper

  15. A mathematical model of the class D converter for compact fluorescent ballasts

    SciTech Connect

    Nerone, L.R.

    1995-11-01

    The time-harmonic analysis is often used to design the class D converter. Since the Q of the resonant network is often low, this analysis, in the form of the sinusoidal approximation, begins to lose accuracy. This paper explores an improved method of designing compact fluorescent ballasts via the square wave approximation (SWA), where the time domain equations are solved for the general case of arbitrary Q, duty ratio, and frequency. A precise mathematical model of the Class D converter is developed that predicts the currents and voltages of the converter and these solutions are compared with computer simulation. Nonlinear programming (NLP) is introduced as a means to design the ballast for the lowest conduction losses. The equations developed in the mathematical model are formulated into a NLP format that includes the self-oscillating case.

  16. High Efficiency Single Output ZVS-ZCS Voltage Doubled Flyback Converter

    NASA Astrophysics Data System (ADS)

    Kaliyaperumal, Deepa; Saju, Hridya Merin; Kumar, M. Vijaya

    2016-06-01

    A switch operating at high switching frequency increases the switching losses of the converter resulting in lesser efficiency. Hence this paper proposes a new topology which has resonant switches [zero voltage switching (ZVS)] in the primary circuit to eliminate the above said disadvantages, and voltage doubler zero current switching (ZCS) circuit in the secondary to double the output voltage, and hence the output power, power density and efficiency. The design aspects of the proposed topology for a single output of 5 V at 50 kHz, its simulation and hardware results are discussed in detail. The analysis of the results obtained from a 2.5 W converter reveals the superiority of the proposed converter.

  17. Appendix E: Parallel Pascal development system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Parallel Pascal Development System enables Parallel Pascal programs to be developed and tested on a conventional computer. It consists of several system programs, including a Parallel Pascal to standard Pascal translator, and a library of Parallel Pascal subprograms. The library includes subprograms for using Parallel Pascal on a parallel system with a fixed degree of parallelism, such as the Massively Parallel Processor, to conveniently manipulate arrays which have dimensions than the hardware. Programs can be conveninetly tested with small sized arrays on the conventional computer before attempting to run on a parallel system.

  18. Steady-state and dynamic characteristics of a 20-kHz spacecraft power system - Control of harmonic resonance

    NASA Technical Reports Server (NTRS)

    Wasynczuk, O.; Krause, P. C.; Biess, J. J.; Kapustka, R.

    1990-01-01

    A detailed computer simulation was used to illustrate the steady-state and dynamic operating characteristics of a 20-kHz resonant spacecraft power system. The simulated system consists of a parallel-connected set of DC-inductor resonant inverters (drivers), a 440-V cable, a node transformer, a 220-V cable, and a transformer-rectifier-filter (TRF) AC-to-DC receiver load. Also included in the system are a 1-kW 0.8-pf RL load and a double-LC filter connected at the receiving end of the 20-kHz AC system. The detailed computer simulation was used to illustrate the normal steady-state operating characteristics and the dynamic system performance following, for example, TRF startup. It is shown that without any filtering the given system exhibits harmonic resonances due to an interaction between the switching of the source and/or load converters and the AC system. However, the double-LC filter at the receiving-end of the AC system and harmonic traps connected in series with each of the drivers significantly reduce the harmonic distortion of the 20-kHz bus voltage. Significant additional improvement in the waveform quality can be achieved by including a double-LC filter with each driver.

  19. Studies in optical parallel processing. [All optical and electro-optic approaches

    NASA Technical Reports Server (NTRS)

    Lee, S. H.

    1978-01-01

    Threshold and A/D devices for converting a gray scale image into a binary one were investigated for all-optical and opto-electronic approaches to parallel processing. Integrated optical logic circuits (IOC) and optical parallel logic devices (OPA) were studied as an approach to processing optical binary signals. In the IOC logic scheme, a single row of an optical image is coupled into the IOC substrate at a time through an array of optical fibers. Parallel processing is carried out out, on each image element of these rows, in the IOC substrate and the resulting output exits via a second array of optical fibers. The OPAL system for parallel processing which uses a Fabry-Perot interferometer for image thresholding and analog-to-digital conversion, achieves a higher degree of parallel processing than is possible with IOC.

  20. New NAS Parallel Benchmarks Results

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Saphir, William; VanderWijngaart, Rob; Woo, Alex; Kutler, Paul (Technical Monitor)

    1997-01-01

    NPB2 (NAS (NASA Advanced Supercomputing) Parallel Benchmarks 2) is an implementation, based on Fortran and the MPI (message passing interface) message passing standard, of the original NAS Parallel Benchmark specifications. NPB2 programs are run with little or no tuning, in contrast to NPB vendor implementations, which are highly optimized for specific architectures. NPB2 results complement, rather than replace, NPB results. Because they have not been optimized by vendors, NPB2 implementations approximate the performance a typical user can expect for a portable parallel program on distributed memory parallel computers. Together these results provide an insightful comparison of the real-world performance of high-performance computers. New NPB2 features: New implementation (CG), new workstation class problem sizes, new serial sample versions, more performance statistics.

  1. Turbomachinery CFD on parallel computers

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.; Milner, Edward J.; Quealy, Angela; Townsend, Scott E.

    1992-01-01

    The role of multistage turbomachinery simulation in the development of propulsion system models is discussed. Particularly, the need for simulations with higher fidelity and faster turnaround time is highlighted. It is shown how such fast simulations can be used in engineering-oriented environments. The use of parallel processing to achieve the required turnaround times is discussed. Current work by several researchers in this area is summarized. Parallel turbomachinery CFD research at the NASA Lewis Research Center is then highlighted. These efforts are focused on implementing the average-passage turbomachinery model on MIMD, distributed memory parallel computers. Performance results are given for inviscid, single blade row and viscous, multistage applications on several parallel computers, including networked workstations.

  2. Predicting performance of parallel computations

    NASA Technical Reports Server (NTRS)

    Mak, Victor W.; Lundstrom, Stephen F.

    1990-01-01

    An accurate and computationally efficient method for predicting the performance of a class of parallel computations running on concurrent systems is described. A parallel computation is modeled as a task system with precedence relationships expressed as a series-parallel directed acyclic graph. Resources in a concurrent system are modeled as service centers in a queuing network model. Using these two models as inputs, the method outputs predictions of expected execution time of the parallel computation and the concurrent system utilization. The method is validated against both detailed simulation and actual execution on a commercial multiprocessor. Using 100 test cases, the average error of the prediction when compared to simulation statistics is 1.7 percent, with a standard deviation of 1.5 percent; the maximum error is about 10 percent.

  3. Parallel hierarchical method in networks

    NASA Astrophysics Data System (ADS)

    Malinochka, Olha; Tymchenko, Leonid

    2007-09-01

    This method of parallel-hierarchical Q-transformation offers new approach to the creation of computing medium - of parallel -hierarchical (PH) networks, being investigated in the form of model of neurolike scheme of data processing [1-5]. The approach has a number of advantages as compared with other methods of formation of neurolike media (for example, already known methods of formation of artificial neural networks). The main advantage of the approach is the usage of multilevel parallel interaction dynamics of information signals at different hierarchy levels of computer networks, that enables to use such known natural features of computations organization as: topographic nature of mapping, simultaneity (parallelism) of signals operation, inlaid cortex, structure, rough hierarchy of the cortex, spatially correlated in time mechanism of perception and training [5].

  4. "Feeling" Series and Parallel Resistances.

    ERIC Educational Resources Information Center

    Morse, Robert A.

    1993-01-01

    Equipped with drinking straws and stirring straws, a teacher can help students understand how resistances in electric circuits combine in series and in parallel. Follow-up suggestions are provided. (ZWH)

  5. Demonstrating Forces between Parallel Wires.

    ERIC Educational Resources Information Center

    Baker, Blane

    2000-01-01

    Describes a physics demonstration that dramatically illustrates the mutual repulsion (attraction) between parallel conductors using insulated copper wire, wooden dowels, a high direct current power supply, electrical tape, and an overhead projector. (WRM)

  6. Parallel computation using limited resources

    SciTech Connect

    Sugla, B.

    1985-01-01

    This thesis addresses itself to the task of designing and analyzing parallel algorithms when the resources of processors, communication, and time are limited. The two parts of this thesis deal with multiprocessor systems and VLSI - the two important parallel processing environments that are prevalent today. In the first part a time-processor-communication tradeoff analysis is conducted for two kinds of problems - N input, 1 output, and N input, N output computations. In the class of problems of the second kind, the problem of prefix computation, an important problem due to the number of naturally occurring computations it can model, is studied. Finally, a general methodology is given for design of parallel algorithms that can be used to optimize a given design to a wide set of architectural variations. The second part of the thesis considers the design of parallel algorithms for the VLSI model of computation when the resource of time is severely restricted.

  7. Parallel algorithms for message decomposition

    SciTech Connect

    Teng, S.H.; Wang, B.

    1987-06-01

    The authors consider the deterministic and random parallel complexity (time and processor) of message decoding: an essential problem in communications systems and translation systems. They present an optimal parallel algorithm to decompose prefix-coded messages and uniquely decipherable-coded messages in O(n/P) time, using O(P) processors (for all P:1 less than or equal toPless than or equal ton/log n) deterministically as well as randomly on the weakest version of parallel random access machines in which concurrent read and concurrent write to a cell in the common memory are not allowed. This is done by reducing decoding to parallel finite-state automata simulation and the prefix sums.

  8. Terahertz microfluidic sensing using a parallel-plate waveguide sensor.

    PubMed

    Astley, Victoria; Reichel, Kimberly; Mendis, Rajind; Mittleman, Daniel M

    2012-01-01

    Refractive index (RI) sensing is a powerful noninvasive and label-free sensing technique for the identification, detection and monitoring of microfluidic samples with a wide range of possible sensor designs such as interferometers and resonators. Most of the existing RI sensing applications focus on biological materials in aqueous solutions in visible and IR frequencies, such as DNA hybridization and genome sequencing. At terahertz frequencies, applications include quality control, monitoring of industrial processes and sensing and detection applications involving nonpolar materials. Several potential designs for refractive index sensors in the terahertz regime exist, including photonic crystal waveguides, asymmetric split-ring resonators, and photonic band gap structures integrated into parallel-plate waveguides. Many of these designs are based on optical resonators such as rings or cavities. The resonant frequencies of these structures are dependent on the refractive index of the material in or around the resonator. By monitoring the shifts in resonant frequency the refractive index of a sample can be accurately measured and this in turn can be used to identify a material, monitor contamination or dilution, etc. The sensor design we use here is based on a simple parallel-plate waveguide. A rectangular groove machined into one face acts as a resonant cavity (Figures 1 and 2). When terahertz radiation is coupled into the waveguide and propagates in the lowest-order transverse-electric (TE1) mode, the result is a single strong resonant feature with a tunable resonant frequency that is dependent on the geometry of the groove. This groove can be filled with nonpolar liquid microfluidic samples which cause a shift in the observed resonant frequency that depends on the amount of liquid in the groove and its refractive index. Our technique has an advantage over other terahertz techniques in its simplicity, both in fabrication and implementation, since the procedure can

  9. Visuomotor resonance in autism spectrum disorders.

    PubMed

    Becchio, Cristina; Castiello, Umberto

    2012-01-01

    When we observe the actions performed by others, our motor system "resonates" along with that of the observed agent. Is a similar visuomotor resonant response observed in autism spectrum disorders (ASD)? Studies investigating action observation in ASD have yielded inconsistent findings. In this perspective article we examine behavioral and neuroscientific evidence in favor of visuomotor resonance in ASD, and consider the possible role of action-perception coupling in social cognition. We distinguish between different aspects of visuomotor resonance and conclude that while some aspects may be preserved in ASD, abnormalities exist in the way individuals with ASD convert visual information from observed actions into a program for motor execution. Such abnormalities, we surmise, may contribute to but also depend on the difficulties that individuals with ASD encounter during social interaction. PMID:23189045

  10. HEATR project: ATR algorithm parallelization

    NASA Astrophysics Data System (ADS)

    Deardorf, Catherine E.

    1998-09-01

    High Performance Computing (HPC) Embedded Application for Target Recognition (HEATR) is a project funded by the High Performance Computing Modernization Office through the Common HPC Software Support Initiative (CHSSI). The goal of CHSSI is to produce portable, parallel, multi-purpose, freely distributable, support software to exploit emerging parallel computing technologies and enable application of scalable HPC's for various critical DoD applications. Specifically, the CHSSI goal for HEATR is to provide portable, parallel versions of several existing ATR detection and classification algorithms to the ATR-user community to achieve near real-time capability. The HEATR project will create parallel versions of existing automatic target recognition (ATR) detection and classification algorithms and generate reusable code that will support porting and software development process for ATR HPC software. The HEATR Team has selected detection/classification algorithms from both the model- based and training-based (template-based) arena in order to consider the parallelization requirements for detection/classification algorithms across ATR technology. This would allow the Team to assess the impact that parallelization would have on detection/classification performance across ATR technology. A field demo is included in this project. Finally, any parallel tools produced to support the project will be refined and returned to the ATR user community along with the parallel ATR algorithms. This paper will review: (1) HPCMP structure as it relates to HEATR, (2) Overall structure of the HEATR project, (3) Preliminary results for the first algorithm Alpha Test, (4) CHSSI requirements for HEATR, and (5) Project management issues and lessons learned.

  11. Sucrose and KF quenching system for solution phase parallel synthesis.

    PubMed

    Chavan, Sunil; Watpade, Rahul; Toche, Raghunath

    2016-01-01

    The KF, sucrose (table sugar) exploited as quenching system in solution phase parallel synthesis. Excess of electrophiles were covalently trapped with hydroxyl functionality of sucrose and due to polar nature of sucrose derivative was solubilize in water. Potassium fluoride used to convert various excess electrophilic reagents such as acid chlorides, sulfonyl chlorides, isocyanates to corresponding fluorides, which are less susceptible for hydrolysis and subsequently sucrose traps these fluorides and dissolves them in water thus removing them from reaction mixture. Various excess electrophilic reagents such as acid chlorides, sulfonyl chlorides, and isocyanates were quenched successfully to give pure products in excellent yields. PMID:27462506

  12. Materials technology for Stirling space power converters

    NASA Technical Reports Server (NTRS)

    Baggenstoss, William; Mittendorf, Donald

    1992-01-01

    This program was conducted in support of the NASA LeRC development of the Stirling power converter (SPC) for space power applications. The objectives of this contract were: (1) to perform a technology review and analyses to support the evaluation of materials issues for the SPC; (2) to evaluate liquid metal compatibility issues of the SPC; (3) to evaluate and define a transient liquid phase diffusion bonding (TLPDB) process for the SPC joints to the Udimet 720 heater head; and (4) to evaluate alternative (to the TLPDB) joining techniques. In the technology review, several aspects of the current Stirling design were examined including the power converter assembly process, materials joining, gas bearings, and heat exchangers. The supporting analyses included GLIMPS power converter simulation in support of the materials studies, and system level analysis in support of the technology review. The liquid metal compatibility study evaluated process parameters for use in the Stirling power converter. The alternative joining techniques study looked at the applicability of various joining techniques to the Stirling power converter requirements.

  13. Reactor core length, externally configured thermionic converter.

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Rouklove, P.

    1971-01-01

    Results of testing a converter having an external emitter configuration for 190 hours using RF induction heating. The converter was assembled with a rhenium emitter, 25.4 cm long, having a 91.2 sq cm emitting area, and a niobium collector with a molybdenum coating to improve its electronic property. The collector was water-cooled. The test included: static power output measurements, dynamic characteristics, and the effects of the temperature distribution along the emitter. The maximum power output achieved from the converter at an emitter temperature of 1942 K was 178 W at 0.48 V output, with a power density of 1.95 W/sq cm and an efficiency of 5.5%. The static characteristics also indicated that, with a constant power input, the converter power output does not vary with the output voltage as a result of self-adjustment of the emitter temperature. An investigation of the effects of the temperature distribution along the emitter length showed a 33% improvement in the converter output power with a flattening of the emitter temperature.

  14. Fabrication and life testing of thermionic converters

    NASA Technical Reports Server (NTRS)

    Yang, L.; Bruce, R.

    1973-01-01

    An unfueled converter containing a chloride-fluoride duplex tungsten emitter of 4.78 eV vacuum work function was tested for 46,647 hours at an emitter temperature of 1973 K and an electrode power output of about 8 watts/sq cm. The test demonstrated the superior and stable performance of the (110) oriented tungsten emitter at high temperatures. Three 90 UC-10 ZrC(C/U = 1.04, tungsten additive = 4 wt %) fueled converters were fabricated and tested at an emitter temperature of 1873 K. Converter containing chloride-arc-cast duplex tungsten cladding showed temperature thermionic performance and slower rate of performance drop than converter containing chloride-fluoride duplex tungsten cladding. This is believed to be due to the superior fuel component diffusion resistance of the arc-cast tungsten substrate used in the fuel cladding. It was shown that a converter containing a carbide fueled chloride-arc-cast duplex tungsten emitter with an initial electrode power output of 6.80 watts/sq cm could still deliver an electrode power output of 6.16 watts/sq cm after 18,632 hours of operation at an emitter temperature of 1873 K.

  15. Ac-dc converter firing error detection

    SciTech Connect

    Gould, O.L.

    1996-07-15

    Each of the twelve Booster Main Magnet Power Supply modules consist of two three-phase, full-wave rectifier bridges in series to provide a 560 VDC maximum output. The harmonic contents of the twelve-pulse ac-dc converter output are multiples of the 60 Hz ac power input, with a predominant 720 Hz signal greater than 14 dB in magnitude above the closest harmonic components at maximum output. The 720 Hz harmonic is typically greater than 20 dB below the 500 VDC output signal under normal operation. Extracting specific harmonics from the rectifier output signal of a 6, 12, or 24 pulse ac-dc converter allows the detection of SCR firing angle errors or complete misfires. A bandpass filter provides the input signal to a frequency-to-voltage converter. Comparing the output of the frequency-to-voltage converter to a reference voltage level provides an indication of the magnitude of the harmonics in the ac-dc converter output signal.

  16. Architectures for reasoning in parallel

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.

    1989-01-01

    The research conducted has dealt with rule-based expert systems. The algorithms that may lead to effective parallelization of them were investigated. Both the forward and backward chained control paradigms were investigated in the course of this work. The best computer architecture for the developed and investigated algorithms has been researched. Two experimental vehicles were developed to facilitate this research. They are Backpac, a parallel backward chained rule-based reasoning system and Datapac, a parallel forward chained rule-based reasoning system. Both systems have been written in Multilisp, a version of Lisp which contains the parallel construct, future. Applying the future function to a function causes the function to become a task parallel to the spawning task. Additionally, Backpac and Datapac have been run on several disparate parallel processors. The machines are an Encore Multimax with 10 processors, the Concert Multiprocessor with 64 processors, and a 32 processor BBN GP1000. Both the Concert and the GP1000 are switch-based machines. The Multimax has all its processors hung off a common bus. All are shared memory machines, but have different schemes for sharing the memory and different locales for the shared memory. The main results of the investigations come from experiments on the 10 processor Encore and the Concert with partitions of 32 or less processors. Additionally, experiments have been run with a stripped down version of EMYCIN.

  17. Efficiency of parallel direct optimization

    NASA Technical Reports Server (NTRS)

    Janies, D. A.; Wheeler, W. C.

    2001-01-01

    Tremendous progress has been made at the level of sequential computation in phylogenetics. However, little attention has been paid to parallel computation. Parallel computing is particularly suited to phylogenetics because of the many ways large computational problems can be broken into parts that can be analyzed concurrently. In this paper, we investigate the scaling factors and efficiency of random addition and tree refinement strategies using the direct optimization software, POY, on a small (10 slave processors) and a large (256 slave processors) cluster of networked PCs running LINUX. These algorithms were tested on several data sets composed of DNA and morphology ranging from 40 to 500 taxa. Various algorithms in POY show fundamentally different properties within and between clusters. All algorithms are efficient on the small cluster for the 40-taxon data set. On the large cluster, multibuilding exhibits excellent parallel efficiency, whereas parallel building is inefficient. These results are independent of data set size. Branch swapping in parallel shows excellent speed-up for 16 slave processors on the large cluster. However, there is no appreciable speed-up for branch swapping with the further addition of slave processors (>16). This result is independent of data set size. Ratcheting in parallel is efficient with the addition of up to 32 processors in the large cluster. This result is independent of data set size. c2001 The Willi Hennig Society.

  18. Efficiency of parallel direct optimization.

    PubMed

    Janies, D A; Wheeler, W C

    2001-03-01

    Tremendous progress has been made at the level of sequential computation in phylogenetics. However, little attention has been paid to parallel computation. Parallel computing is particularly suited to phylogenetics because of the many ways large computational problems can be broken into parts that can be analyzed concurrently. In this paper, we investigate the scaling factors and efficiency of random addition and tree refinement strategies using the direct optimization software, POY, on a small (10 slave processors) and a large (256 slave processors) cluster of networked PCs running LINUX. These algorithms were tested on several data sets composed of DNA and morphology ranging from 40 to 500 taxa. Various algorithms in POY show fundamentally different properties within and between clusters. All algorithms are efficient on the small cluster for the 40-taxon data set. On the large cluster, multibuilding exhibits excellent parallel efficiency, whereas parallel building is inefficient. These results are independent of data set size. Branch swapping in parallel shows excellent speed-up for 16 slave processors on the large cluster. However, there is no appreciable speed-up for branch swapping with the further addition of slave processors (>16). This result is independent of data set size. Ratcheting in parallel is efficient with the addition of up to 32 processors in the large cluster. This result is independent of data set size. PMID:12240679

  19. The NICMOS Parallel Observing Program

    NASA Astrophysics Data System (ADS)

    McCarthy, Patrick

    2002-07-01

    We propose to manage the default set of pure parallels with NICMOS. Our experience with both our GO NICMOS parallel program and the public parallel NICMOS programs in cycle 7 prepared us to make optimal use of the parallel opportunities. The NICMOS G141 grism remains the most powerful survey tool for HAlpha emission-line galaxies at cosmologically interesting redshifts. It is particularly well suited to addressing two key uncertainties regarding the global history of star formation: the peak rate of star formation in the relatively unexplored but critical 1<= z <= 2 epoch, and the amount of star formation missing from UV continuum-based estimates due to high extinction. Our proposed deep G141 exposures will increase the sample of known HAlpha emission- line objects at z ~ 1.3 by roughly an order of magnitude. We will also obtain a mix of F110W and F160W images along random sight-lines to examine the space density and morphologies of the reddest galaxies. The nature of the extremely red galaxies remains unclear and our program of imaging and grism spectroscopy provides unique information regarding both the incidence of obscured star bursts and the build up of stellar mass at intermediate redshifts. In addition to carrying out the parallel program we will populate a public database with calibrated spectra and images, and provide limited ground- based optical and near-IR data for the deepest parallel fields.

  20. Multiple-band reflective polarization converter using U-shaped metamaterial

    NASA Astrophysics Data System (ADS)

    Huang, Xiaojun; Yang, Dong; Yang, Helin

    2014-03-01

    A multiple-band metamaterial reflective polarization converter (RPC) is proposed, which is composed of the dielectric substrate sandwiched with U-shaped metallic patterns and continuous metal film. The proposed U-shaped metamaterial RPC (UMM-RPC) can convert a linearly polarized wave to its cross polarized wave at the three resonant frequencies, which also can convert the linearly polarized wave to circularly polarized wave at other three resonant frequencies. Furthermore, the proposed UMM-RPC can maintain the same conversional direction at the three resonant frequencies when incident on a circularly polarized wave. The simulated and measured results are in agreement in the entire frequency range, and the polarization conversion ratio is over 90% for both linear and circular polarizations. The surface current distributions of the UMM-RPC are discussed to look into the physical mechanism. The proposed UMM-RPC has simple geometry but more operating frequency bands compared to the previous designs and can be used in applications such as antenna radome, remote sensors, and radiometer.