Science.gov

Sample records for parallel transport track

  1. Kalman Filter Tracking on Parallel Architectures

    NASA Astrophysics Data System (ADS)

    Cerati, Giuseppe; Elmer, Peter; Lantz, Steven; McDermott, Kevin; Riley, Dan; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2015-12-01

    Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques including Cellular Automata or returning to Hough Transform. The most common track finding techniques in use today are however those based on the Kalman Filter [2]. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust and are exactly those being used today for the design of the tracking system for HL-LHC. Our previous investigations showed that, using optimized data structures, track fitting with Kalman Filter can achieve large speedup both with Intel Xeon and Xeon Phi. We report here our further progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a realistic simulation setup.

  2. Visualization and Tracking of Parallel CFD Simulations

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kremenetsky, Mark

    1995-01-01

    We describe a system for interactive visualization and tracking of a 3-D unsteady computational fluid dynamics (CFD) simulation on a parallel computer. CM/AVS, a distributed, parallel implementation of a visualization environment (AVS) runs on the CM-5 parallel supercomputer. A CFD solver is run as a CM/AVS module on the CM-5. Data communication between the solver, other parallel visualization modules, and a graphics workstation, which is running AVS, are handled by CM/AVS. Partitioning of the visualization task, between CM-5 and the workstation, can be done interactively in the visual programming environment provided by AVS. Flow solver parameters can also be altered by programmable interactive widgets. This system partially removes the requirement of storing large solution files at frequent time steps, a characteristic of the traditional 'simulate (yields) store (yields) visualize' post-processing approach.

  3. Parallel transport on principal bundles over stacks

    NASA Astrophysics Data System (ADS)

    Collier, Brian; Lerman, Eugene; Wolbert, Seth

    2016-09-01

    In this paper we introduce a notion of parallel transport for principal bundles with connections over differentiable stacks. We show that principal bundles with connections over stacks can be recovered from their parallel transport thereby extending the results of Barrett, Caetano and Picken, and Schreiber and Waldorf from manifolds to stacks. In the process of proving our main result we simplify Schreiber and Waldorf's original definition of a transport functor for principal bundles with connections over manifolds and provide a more direct proof of the correspondence between principal bundles with connections and transport functors.

  4. Tracking Connections: An Exercise about Series and Parallel Resistances

    ERIC Educational Resources Information Center

    Jankovic, Srdjan

    2010-01-01

    Unlike many other topics in basic physics, series and parallel resistances are rarely noticed in the real life of an ordinary individual, making it difficult to design a laboratory activity that can simulate something familiar. The activities described here entail minimal costs and are based on a puzzle-like game of tracking wire connections. A…

  5. An optimization-based parallel particle filter for multitarget tracking

    NASA Astrophysics Data System (ADS)

    Sutharsan, S.; Sinha, A.; Kirubarajan, T.; Farooq, M.

    2005-09-01

    Particle filter based estimation is becoming more popular because it has the capability to effectively solve nonlinear and non-Gaussian estimation problems. However, the particle filter has high computational requirements and the problem becomes even more challenging in the case of multitarget tracking. In order to perform data association and estimation jointly, typically an augmented state vector of target dynamics is used. As the number of targets increases, the computation required for each particle increases exponentially. Thus, parallelization is a possibility in order to achieve the real time feasibility in large-scale multitarget tracking applications. In this paper, we present a real-time feasible scheduling algorithm that minimizes the total computation time for the bus connected heterogeneous primary-secondary architecture. This scheduler is capable of selecting the optimal number of processors from a large pool of secondary processors and mapping the particles among the selected processors. Furthermore, we propose a less communication intensive parallel implementation of the particle filter without sacrificing tracking accuracy using an efficient load balancing technique, in which optimal particle migration is ensured. In this paper, we present the mathematical formulations for scheduling the particles as well as for particle migration via load balancing. Simulation results show the tracking performance of our parallel particle filter and the speedup achieved using parallelization.

  6. Parallelization of a Monte Carlo particle transport simulation code

    NASA Astrophysics Data System (ADS)

    Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.

    2010-05-01

    We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.

  7. Tracking Connections: An Exercise about Series and Parallel Resistances

    NASA Astrophysics Data System (ADS)

    Jankovic, Srdjan

    2010-09-01

    Unlike many other topics in basic physics, series and parallel resistances are rarely noticed in the real life of an ordinary individual, making it difficult to design a laboratory activity that can simulate something familiar. The activities described here entail minimal costs and are based on a puzzle-like game of tracking wire connections. A simple resistor-based device is built by students, which enables them to use a common multimeter to track down wire connections in a set of unmarked wires. A similar approach is sometimes used by electricians to identify wire connections.

  8. An experiment in hurricane track prediction using parallel computing methods

    NASA Technical Reports Server (NTRS)

    Song, Chang G.; Jwo, Jung-Sing; Lakshmivarahan, S.; Dhall, S. K.; Lewis, John M.; Velden, Christopher S.

    1994-01-01

    The barotropic model is used to explore the advantages of parallel processing in deterministic forecasting. We apply this model to the track forecasting of hurricane Elena (1985). In this particular application, solutions to systems of elliptic equations are the essence of the computational mechanics. One set of equations is associated with the decomposition of the wind into irrotational and nondivergent components - this determines the initial nondivergent state. Another set is associated with recovery of the streamfunction from the forecasted vorticity. We demonstrate that direct parallel methods based on accelerated block cyclic reduction (BCR) significantly reduce the computational time required to solve the elliptic equations germane to this decomposition and forecast problem. A 72-h track prediction was made using incremental time steps of 16 min on a network of 3000 grid points nominally separated by 100 km. The prediction took 30 sec on the 8-processor Alliant FX/8 computer. This was a speed-up of 3.7 when compared to the one-processor version. The 72-h prediction of Elena's track was made as the storm moved toward Florida's west coast. Approximately 200 km west of Tampa Bay, Elena executed a dramatic recurvature that ultimately changed its course toward the northwest. Although the barotropic track forecast was unable to capture the hurricane's tight cycloidal looping maneuver, the subsequent northwesterly movement was accurately forecasted as was the location and timing of landfall near Mobile Bay.

  9. Parallel transport and defects on nematic shells

    NASA Astrophysics Data System (ADS)

    Rosso, Riccardo; Virga, Epifanio G.; Kralj, Samo

    2012-11-01

    Nematic shells are thin films of nematic liquid crystal deposited on the boundary of colloidal particles, where liquid crystal molecules may freely glide, while remaining tangent to the surface substrate. The surface nematic order is described here by an appropriate tensor field Q, which vanishes wherever a defect occurs in the molecular order. We show how the classical concept of parallel transport on a manifold introduced by Levi-Civita can be adapted to this setting to define the topological charge m of a defect. We arrive at a simple formula to compute m from a generic representation of Q. In a number of separate appendices, we revisit in a unified language several, apparently disparate applications of Levi-Civita's parallel transport.

  10. Nonisothermal multiphase subsurface transport on parallel computers

    SciTech Connect

    Martinez, M.J.; Hopkins, P.L.; Shadid, J.N.

    1997-10-01

    We present a numerical method for nonisothermal, multiphase subsurface transport in heterogeneous porous media. The mathematical model considers nonisothermal two-phase (liquid/gas) flow, including capillary pressure effects, binary diffusion in the gas phase, conductive, latent, and sensible heat transport. The Galerkin finite element method is used for spatial discretization, and temporal integration is accomplished via a predictor/corrector scheme. Message-passing and domain decomposition techniques are used for implementing a scalable algorithm for distributed memory parallel computers. An illustrative application is shown to demonstrate capabilities and performance.

  11. Traditional Tracking with Kalman Filter on Parallel Architectures

    NASA Astrophysics Data System (ADS)

    Cerati, Giuseppe; Elmer, Peter; Lantz, Steven; MacNeill, Ian; McDermott, Kevin; Riley, Dan; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2015-05-01

    Power density constraints are limiting the performance improvements of modern CPUs. To address this, we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The most common track finding techniques in use today are however those based on the Kalman Filter. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. We report the results of our investigations into the potential and limitations of these algorithms on the new parallel hardware.

  12. Monte Carlo radiation transport¶llelism

    SciTech Connect

    Cox, L. J.; Post, S. E.

    2002-01-01

    This talk summarizes the main aspects of the LANL ASCI Eolus project and its major unclassified code project, MCNP. The MCNP code provide a state-of-the-art Monte Carlo radiation transport to approximately 3000 users world-wide. Almost all hardware platforms are supported because we strictly adhere to the FORTRAN-90/95 standard. For parallel processing, MCNP uses a mixture of OpenMp combined with either MPI or PVM (shared and distributed memory). This talk summarizes our experiences on various platforms using MPI with and without OpenMP. These platforms include PC-Windows, Intel-LINUX, BlueMountain, Frost, ASCI-Q and others.

  13. TRAMP. Transport of Metallic Fission Products Along Multiple Parallel Paths

    SciTech Connect

    Hudritsch, W.; Richards, M.

    1991-11-01

    TRAMP is used to calculate the transport of metallic fission products along multiple parallel paths; the primary application is transport in and release from nuclear-grade graphite. The transport mechanisms are concentration-driven diffusion, thermal diffusion, and convection.

  14. Tracking moving radar targets with parallel, velocity-tuned filters

    DOEpatents

    Bickel, Douglas L.; Harmony, David W.; Bielek, Timothy P.; Hollowell, Jeff A.; Murray, Margaret S.; Martinez, Ana

    2013-04-30

    Radar data associated with radar illumination of a movable target is processed to monitor motion of the target. A plurality of filter operations are performed in parallel on the radar data so that each filter operation produces target image information. The filter operations are defined to have respectively corresponding velocity ranges that differ from one another. The target image information produced by one of the filter operations represents the target more accurately than the target image information produced by the remainder of the filter operations when a current velocity of the target is within the velocity range associated with the one filter operation. In response to the current velocity of the target being within the velocity range associated with the one filter operation, motion of the target is tracked based on the target image information produced by the one filter operation.

  15. Beam dynamics calculations and particle tracking using massively parallel processors

    SciTech Connect

    Ryne, R.D.; Habib, S.

    1995-12-31

    During the past decade massively parallel processors (MPPs) have slowly gained acceptance within the scientific community. At present these machines typically contain a few hundred to one thousand off-the-shelf microprocessors and a total memory of up to 32 GBytes. The potential performance of these machines is illustrated by the fact that a month long job on a high end workstation might require only a few hours on an MPP. The acceptance of MPPs has been slow for a variety of reasons. For example, some algorithms are not easily parallelizable. Also, in the past these machines were difficult to program. But in recent years the development of Fortran-like languages such as CM Fortran and High Performance Fortran have made MPPs much easier to use. In the following we will describe how MPPs can be used for beam dynamics calculations and long term particle tracking.

  16. Particle Transport in Parallel-Plate Reactors

    SciTech Connect

    Rader, D.J.; Geller, A.S.

    1999-08-01

    A major cause of semiconductor yield degradation is contaminant particles that deposit on wafers while they reside in processing tools during integrated circuit manufacturing. This report presents numerical models for assessing particle transport and deposition in a parallel-plate geometry characteristic of a wide range of single-wafer processing tools: uniform downward flow exiting a perforated-plate showerhead separated by a gap from a circular wafer resting on a parallel susceptor. Particles are assumed to originate either upstream of the showerhead or from a specified position between the plates. The physical mechanisms controlling particle deposition and transport (inertia, diffusion, fluid drag, and external forces) are reviewed, with an emphasis on conditions encountered in semiconductor process tools (i.e., sub-atmospheric pressures and submicron particles). Isothermal flow is assumed, although small temperature differences are allowed to drive particle thermophoresis. Numerical solutions of the flow field are presented which agree with an analytic, creeping-flow expression for Re < 4. Deposition is quantified by use of a particle collection efficiency, which is defined as the fraction of particles in the reactor that deposit on the wafer. Analytic expressions for collection efficiency are presented for the limiting case where external forces control deposition (i.e., neglecting particle diffusion and inertia). Deposition from simultaneous particle diffusion and external forces is analyzed by an Eulerian formulation; for creeping flow and particles released from a planar trap, the analysis yields an analytic, integral expression for particle deposition based on process and particle properties. Deposition from simultaneous particle inertia and external forces is analyzed by a Lagrangian formulation, which can describe inertia-enhanced deposition resulting from particle acceleration in the showerhead. An approximate analytic expression is derived for particle

  17. Radiation transport on unstructured mesh with parallel computers

    SciTech Connect

    Fan, W.C.; Drumm, C.R.

    2000-07-01

    This paper summarizes the developmental work on a deterministic transport code that provides multidimensional radiation transport capabilities on an unstructured mesh. The second-order form of the Boltzmann transport equation is solved utilizing the discrete ordinates angular differencing and the Galerkin finite element spatial differencing. The discretized system, which couples the spatial-angular dependence, is solved simultaneously using a parallel conjugate-gradient (CG) iterative solver. This approach eliminates the need for the conventional inner iterations over the discrete directions and is well-suited for massively parallel computers.

  18. Parallel heat transport in integrable and chaotic magnetic fields

    SciTech Connect

    Castillo-Negrete, D. del; Chacon, L.

    2012-05-15

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), {chi}{sub ||} , and the perpendicular, {chi}{sub Up-Tack }, conductivities ({chi}{sub ||} /{chi}{sub Up-Tack} may exceed 10{sup 10} in fusion plasmas); (ii) Nonlocal parallel transport in the limit of small collisionality; and (iii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geometry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island), weakly chaotic (Devil's staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local parallel closures, is non-diffusive, thus casting doubts on the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

  19. Shift: A Massively Parallel Monte Carlo Radiation Transport Package

    SciTech Connect

    Pandya, Tara M; Johnson, Seth R; Davidson, Gregory G; Evans, Thomas M; Hamilton, Steven P

    2015-01-01

    This paper discusses the massively-parallel Monte Carlo radiation transport package, Shift, developed at Oak Ridge National Laboratory. It reviews the capabilities, implementation, and parallel performance of this code package. Scaling results demonstrate very good strong and weak scaling behavior of the implemented algorithms. Benchmark results from various reactor problems show that Shift results compare well to other contemporary Monte Carlo codes and experimental results.

  20. Local and nonlocal parallel heat transport in general magnetic fields

    SciTech Connect

    Del-Castillo-Negrete, Diego B; Chacon, Luis

    2011-01-01

    A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.

  1. Parallel heat transport in integrable and chaotic magnetic fields

    SciTech Connect

    Del-Castillo-Negrete, Diego B; Chacon, Luis

    2012-01-01

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly chal- lenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), , and the perpendicular, , conductivities ( / may exceed 1010 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green s function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geom- etry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island chain), weakly chaotic (devil s staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local closures, is non-diffusive, thus casting doubts on the appropriateness of the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

  2. Parallel heat transport in reversed shear magnetic field configurations

    NASA Astrophysics Data System (ADS)

    Blazevski, D.; Del-Castillo-Negrete, D.

    2012-03-01

    Transport in magnetized plasmas is a key problem in controlled fusion, space plasmas, and astrophysics. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), χ, and the perpendicular, χ, conductivities (χ/χ may exceed 10^10 in fusion plasmas); (ii) Magnetic field lines chaos; and (iii) Nonlocal parallel transport. We have recently developed a Lagrangian Green's function (LG) method to solve the local and non-local parallel (χ/χ->∞) transport equation applicable to integrable and chaotic magnetic fields. footnotetext D. del-Castillo-Negrete, L. Chac'on, PRL, 106, 195004 (2011); D. del-Castillo-Negrete, L. Chac'on, Phys. Plasmas, APS Invited paper, submitted (2011). The proposed method overcomes many of the difficulties faced by standard finite different methods related to the three issues mentioned above. Here we apply the LG method to study transport in reversed shear configurations. We focus on the following problems: (i) separatrix reconnection of magnetic islands and transport; (ii) robustness of shearless, q'=0, transport barriers; (iii) leaky barriers and shearless Cantori.

  3. Measures of effectiveness for BMD mid-course tracking on MIMD massively parallel computers

    SciTech Connect

    VanDyke, J.P.; Tomkins, J.L.; Furnish, M.D.

    1995-05-01

    The TRC code, a mid-course tracking code for ballistic missiles, has previously been implemented on a 1024-processor MIMD (Multiple Instruction -- Multiple Data) massively parallel computer. Measures of Effectiveness (MOE) for this algorithm have been developed for this computing environment. The MOE code is run in parallel with the TRC code. Particularly useful MOEs include the number of missed objects (real objects for which the TRC algorithm did not construct a track); of ghost tracks (tracks not corresponding to a real object); of redundant tracks (multiple tracks corresponding to a single real object); and of unresolved objects (multiple objects corresponding to a single track). All of these are expressed as a function of time, and tend to maximize during the time in which real objects are spawned (multiple reentry vehicles per post-boost vehicle). As well, it is possible to measure the track-truth separation as a function of time. A set of calculations is presented illustrating these MOEs as a function of time for a case with 99 post-boost vehicles, each of which spawns 9 reentry vehicles.

  4. CONTAMINANT TRANSPORT IN PARALLEL FRACTURED MEDIA: SUDICKY AND FRIND REVISITED

    EPA Science Inventory

    This paper is concerned with a modified, nondimensional form of the parallel fracture, contaminant transport model of Sudicky and Frind (1982). The modifications include the boundary condition at the fracture wall, expressed by a parameter, and the power-law relationship between...

  5. CONTAMINANT TRANSPORT IN PARALLEL FRACTURED MEDIA: SUDICKY AND FRIND REVISITED

    EPA Science Inventory

    This paper is concerned with a modified, nondimensional form of the parallel fracture, contaminant transport model of Sudicky and Frind (1982). The modifications include the boundary condition at the fracture wall, expressed by a parameter , and the power-law relationship betwe...

  6. A parallel, volume-tracking algorithm for unstructured meshes

    SciTech Connect

    Mosso, S.J.; Swartz, B.K.; Kothe, D.B.; Ferrell, R.C.

    1996-10-01

    Many diverse areas of industry benefit from the use of volume of fluid methods to predict the movement of materials. Casting is a common method of part fabrication. The accurate prediction of the casting process is pivotal to industry. Mold design and casting is currently considered an art by industry. It typically involves many trial mold designs, and the rejection of defective parts is costly. Failure of cast parts, because residual stresses reduce the part`s strength, can be catastrophic. Cast parts should have precise geometric details that reduce or eliminate the need for machining after casting. Volume of fluid codes will help designers predict how the molten metal fills a mold and where ay trapped voids remain. Prediction of defects due to thermal contraction or expansion will eliminate defective, trial mold designs and speed the parts to market with fewer rejections. Increasing the predictability and therefore the accuracy of the casting process will reduce the art that is involved in mold design and parts casting. Here, recent enhancements to multidimensional volume-tracking algorithms are presented. Illustrations in two dimensions are given. The improvements include new, local algorithms for interface normal constructions and a new full remapping algorithm for time integration. These methods are used on structured and unstructured grids.

  7. Transport of parallel momentum by drift-Alfven turbulence

    SciTech Connect

    McDevitt, C. J.; Diamond, P. H.

    2009-01-15

    An electromagnetic gyrokinetic formulation is utilized to calculate the turbulent radial flux of parallel momentum for a strongly magnetized plasma in the large aspect ratio limit. For low-{beta} plasmas, excluding regions of steep density gradients, the level of momentum transport induced by microturbulence is found to be well described within the electrostatic approximation. However, near regions of steep equilibrium profile gradients, strong electromagnetic contributions to the momentum flux are predicted. In particular, for sufficiently steep density gradient, the magnitude of transport induced by the off-diagonal residual stress component of the momentum flux induced by drift wave turbulence can be quenched. This quenching mechanism, which results from shielding of the parallel electric field by the inductive term, is distinct from ExB shear decorrelation, since it allows for the level of off-diagonal turbulent transport to be strongly reduced without extinguishing the underlying microturbulence. In contrast, the level of transport induced by a given Alfvenic branch of the drift-Alfven dispersion relationship typically increases as the density gradient steepens, allowing an alternate channel for momentum transport. A calculation of the momentum transport induced by Alfvenic turbulence in a homogeneous medium suggests that an imbalance in Elsasser populations is required in order to introduce a finite level of off-diagonal momentum transport for the case of the simplified geometry considered.

  8. High-resolution reactive transport: A coupled parallel hydrogeochemical model

    NASA Astrophysics Data System (ADS)

    Beisman, J. J.; Maxwell, R. M.; Steefel, C. I.; Sitchler, A.; Molins, S.

    2013-12-01

    Subsurface hydrogeochemical systems are an especially complex component of the terrestrial environment and play host to a multitude of interactions. Parameterizations of these interactions are perhaps the least understood component of terrestrial systems, presenting uncertainties in the predictive understanding of biogeochemical cycling and transport. Thorough knowledge of biogeochemical transport processes is critical to the quantification of carbon/nutrient fluxes in the subsurface, and to the development of effective contaminant remediation techniques. Here we present a coupled parallel hydrogeochemical model, ParCrunchFlow, as a tool to further our understanding of governing processes and interactions in natural hydrogeochemical systems. ParCrunchFlow is a coupling of the reactive transport simulator CrunchFlow with the hydrologic model ParFlow. CrunchFlow is a multicomponent reactive flow and transport code that can be used to simulate a range of important processes and environments, including reactive contaminant transport, chemical weathering, carbon sequestration, biogeochemical cycling, and water-rock interaction. ParFlow is a parallel, three-dimensional, variably-saturated, coupled surface-subsurface flow and transport code with the ability to simulate complex topography, geology, and heterogeneity. ParCrunchflow takes advantage of the efficient parallelism built into Parflow, allowing the numerical simulation of reactive transport processes in chemically and physically heterogeneous media at high spatial resolutions. This model provides an ability to further examine the interactions and feedbacks between biogeochemical systems and complex subsurface flow fields. In addition to the details of model construction, results will be presented that show floodplain nutrient cycling and the effects of heterogeneity on small-scale mixing reactions at the Department of Energy's Old Rifle Legacy site.

  9. Fast parallel tracking algorithm for the muon detector of the CBM experiment at fair

    NASA Astrophysics Data System (ADS)

    Lebedev, A.; Höhne, C.; Kisel, I.; Ososkov, G.

    2010-07-01

    Particle trajectory recognition is an important and challenging task in the Compressed Baryonic Matter (CBM) experiment at the future FAIR accelerator at Darmstadt. The tracking algorithms have to process terabytes of input data produced in particle collisions. Therefore, the speed of the tracking software is extremely important for data analysis. In this contribution, a fast parallel track reconstruction algorithm which uses available features of modern processors is presented. These features comprise a SIMD instruction set (SSE) and multithreading. The first allows one to pack several data items into one register and to operate on all of them in parallel thus achieving more operations per cycle. The second feature enables the routines to exploit all available CPU cores and hardware threads. This parallel version of the tracking algorithm has been compared to the initial serial scalar version which uses a similar approach for tracking. A speed-up factor of 487 was achieved (from 730 to 1.5 ms/event) for a computer with 2 × Intel Core i7 processors at 2.66 GHz.

  10. New Parallel computing framework for radiation transport codes

    SciTech Connect

    Kostin, M.A.; Mokhov, N.V.; Niita, K.; /JAERI, Tokai

    2010-09-01

    A new parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was integrated with the MARS15 code, and an effort is under way to deploy it in PHITS. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. Several checkpoint files can be merged into one thus combining results of several calculations. The framework also corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.

  11. Efficient parallel algorithm for statistical ion track simulations in crystalline materials

    NASA Astrophysics Data System (ADS)

    Jeon, Byoungseon; Grønbech-Jensen, Niels

    2009-02-01

    We present an efficient parallel algorithm for statistical Molecular Dynamics simulations of ion tracks in solids. The method is based on the Rare Event Enhanced Domain following Molecular Dynamics (REED-MD) algorithm, which has been successfully applied to studies of, e.g., ion implantation into crystalline semiconductor wafers. We discuss the strategies for parallelizing the method, and we settle on a host-client type polling scheme in which a multiple of asynchronous processors are continuously fed to the host, which, in turn, distributes the resulting feed-back information to the clients. This real-time feed-back consists of, e.g., cumulative damage information or statistics updates necessary for the cloning in the rare event algorithm. We finally demonstrate the algorithm for radiation effects in a nuclear oxide fuel, and we show the balanced parallel approach with high parallel efficiency in multiple processor configurations.

  12. Three-degree-of-freedom parallel manipulator to track the sun for concentrated solar power systems

    NASA Astrophysics Data System (ADS)

    Ashith Shyam, R. B.; Ghosal, A.

    2015-07-01

    In concentrated solar power(CSP) generating stations, incident solar energy is reflected from a large number of mirrors or heliostats to a faraway receiver. In typical CSP installations, the mirror needs to be moved about two axes independently using two actuators in series with the mirror effectively mounted at a single point. A three degree-of-freedom parallel manipulator, namely the 3-RPS parallel manipulator, is proposed to track the sun. The proposed 3-RPS parallel manipulator supports the load of the mirror, structure and wind loading at three points resulting in less deflection, and thus a much larger mirror can be moved with the required tracking accuracy and without increasing the weight of the support structure. The kinematics equations to determine motion of the actuated prismatic joints in the 3-RPS parallel manipulator such that the sun's rays are reflected on to a stationary receiver are developed. Using finite element analysis, it is shown that for same sized mirror, wind loading and maximum deflection requirement, the weight of the support structure is between 15% and 60% less with the 3-RPS parallel manipulator when compared to azimuth-elevation or the target-aligned configurations.

  13. Provably optimal parallel transport sweeps on regular grids

    SciTech Connect

    Adams, M. P.; Adams, M. L.; Hawkins, W. D.; Smith, T.; Rauchwerger, L.; Amato, N. M.; Bailey, T. S.; Falgout, R. D.

    2013-07-01

    We have found provably optimal algorithms for full-domain discrete-ordinate transport sweeps on regular grids in 3D Cartesian geometry. We describe these algorithms and sketch a 'proof that they always execute the full eight-octant sweep in the minimum possible number of stages for a given P{sub x} x P{sub y} x P{sub z} partitioning. Computational results demonstrate that our optimal scheduling algorithms execute sweeps in the minimum possible stage count. Observed parallel efficiencies agree well with our performance model. An older version of our PDT transport code achieves almost 80% parallel efficiency on 131,072 cores, on a weak-scaling problem with only one energy group, 80 directions, and 4096 cells/core. A newer version is less efficient at present-we are still improving its implementation - but achieves almost 60% parallel efficiency on 393,216 cores. These results conclusively demonstrate that sweeps can perform with high efficiency on core counts approaching 10{sup 6}. (authors)

  14. Pelegant : a parallel accelerator simulation code for electron generation and tracking.

    SciTech Connect

    Wang, Y.; Borland, M. D.; Accelerator Systems Division

    2006-01-01

    elegant is a general-purpose code for electron accelerator simulation that has a worldwide user base. Recently, many of the time-intensive elements were parallelized using MPI. Development has used modest Linux clusters and the BlueGene/L supercomputer at Argonne National Laboratory. This has provided very good performance for some practical simulations, such as multiparticle tracking with synchrotron radiation and emittance blow-up in the vertical rf kick scheme. The effort began with development of a concept that allowed for gradual parallelization of the code, using the existing beamline-element classification table in elegant. This was crucial as it allowed parallelization without major changes in code structure and without major conflicts with the ongoing evolution of elegant. Because of rounding error and finite machine precision, validating a parallel program against a uniprocessor program with the requirement of bitwise identical results is notoriously difficult. We will report validating simulation results of parallel elegant against those of serial elegant by applying Kahan's algorithm to improve accuracy dramatically for both versions. The quality of random numbers in a parallel implementation is very important for some simulations. Some practical experience with generating parallel random numbers by offsetting the seed of each random sequence according to the processor ID will be reported.

  15. Novel Parallel Numerical Methods for Radiation& Neutron Transport

    SciTech Connect

    Brown, P N

    2001-03-06

    In many of the multiphysics simulations performed at LLNL, transport calculations can take up 30 to 50% of the total run time. If Monte Carlo methods are used, the percentage can be as high as 80%. Thus, a significant core competence in the formulation, software implementation, and solution of the numerical problems arising in transport modeling is essential to Laboratory and DOE research. In this project, we worked on developing scalable solution methods for the equations that model the transport of photons and neutrons through materials. Our goal was to reduce the transport solve time in these simulations by means of more advanced numerical methods and their parallel implementations. These methods must be scalable, that is, the time to solution must remain constant as the problem size grows and additional computer resources are used. For iterative methods, scalability requires that (1) the number of iterations to reach convergence is independent of problem size, and (2) that the computational cost grows linearly with problem size. We focused on deterministic approaches to transport, building on our earlier work in which we performed a new, detailed analysis of some existing transport methods and developed new approaches. The Boltzmann equation (the underlying equation to be solved) and various solution methods have been developed over many years. Consequently, many laboratory codes are based on these methods, which are in some cases decades old. For the transport of x-rays through partially ionized plasmas in local thermodynamic equilibrium, the transport equation is coupled to nonlinear diffusion equations for the electron and ion temperatures via the highly nonlinear Planck function. We investigated the suitability of traditional-solution approaches to transport on terascale architectures and also designed new scalable algorithms; in some cases, we investigated hybrid approaches that combined both.

  16. Nonlinear parallel momentum transport in strong electrostatic turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wen, Tiliang; Diamond, P. H.

    2015-05-01

    Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the nonlinear momentum flux- ⟨ v ˜ r n ˜ u ˜ ∥ ⟩ . However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas 18, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong electrostatic turbulence is calculated by using a three dimensional Hasegawa-Mima equation, which is relevant for tokamak edge turbulence. It is shown that the nonlinear diffusivity is smaller than the quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so may be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.

  17. Parallel Monte Carlo Synthetic Acceleration methods for discrete transport problems

    NASA Astrophysics Data System (ADS)

    Slattery, Stuart R.

    This work researches and develops Monte Carlo Synthetic Acceleration (MCSA) methods as a new class of solution techniques for discrete neutron transport and fluid flow problems. Monte Carlo Synthetic Acceleration methods use a traditional Monte Carlo process to approximate the solution to the discrete problem as a means of accelerating traditional fixed-point methods. To apply these methods to neutronics and fluid flow and determine the feasibility of these methods on modern hardware, three complementary research and development exercises are performed. First, solutions to the SPN discretization of the linear Boltzmann neutron transport equation are obtained using MCSA with a difficult criticality calculation for a light water reactor fuel assembly used as the driving problem. To enable MCSA as a solution technique a group of modern preconditioning strategies are researched. MCSA when compared to conventional Krylov methods demonstrated improved iterative performance over GMRES by converging in fewer iterations when using the same preconditioning. Second, solutions to the compressible Navier-Stokes equations were obtained by developing the Forward-Automated Newton-MCSA (FANM) method for nonlinear systems based on Newton's method. Three difficult fluid benchmark problems in both convective and driven flow regimes were used to drive the research and development of the method. For 8 out of 12 benchmark cases, it was found that FANM had better iterative performance than the Newton-Krylov method by converging the nonlinear residual in fewer linear solver iterations with the same preconditioning. Third, a new domain decomposed algorithm to parallelize MCSA aimed at leveraging leadership-class computing facilities was developed by utilizing parallel strategies from the radiation transport community. The new algorithm utilizes the Multiple-Set Overlapping-Domain strategy in an attempt to reduce parallel overhead and add a natural element of replication to the algorithm. It

  18. Final Report - Ferrographic Tracking of Bacterial Transport

    SciTech Connect

    William P. Johnson

    2002-10-10

    The work performed during the past three years has been extremely productive. Ferrographic capture was utilized in analysis of several thousand field samples collected from arrays of multilevel samplers during three intensive field campaigns conducted at two shallow sandy aquifer sites in Oyster, VA. This work has shown resulted in three important conclusions: (1) Ferrographic capture provides unparalleled low quantitation limits for bacterial cell enumeration (Johnson et al., 2000). (2) The high-resolution analyses provided by ferrographic capture allowed observation of increased bacterial removal rates (from groundwater) that corresponded to increased populations of protozoa in the groundwater (Zhang et al., 2001). This novel data allowed determination of bacterial predation rates by protists in the field, a consideration that will be important for successful bioaugmentation strategies. (3) The high-resolution analyses provided by ferrographic capture allowed observation of detachment of indigenous cells in response to breakthrough of injected cells in groundwater (Johnson et al., 2001). The implication of this unique observation is that bacterial transport, specifically bacterial attachment and detachment, may be much more dynamic than has been indicated by short-term laboratory and field studies. Dynamic attachment and detachment of bacteria in groundwater may lead to greatly increased transport distances over long terms relative to what has been indicated by short-term laboratory and field studies.

  19. Improved parallel solution techniques for the integral transport matrix method

    SciTech Connect

    Zerr, Robert J; Azmy, Yousry Y

    2010-11-23

    Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution by up to {approx}50% when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing case are opticaUy thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block preconditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient preconditioner.

  20. Particle Tracking Model and Abstraction of Transport Processes

    SciTech Connect

    B. Robinson

    2000-04-07

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone.

  1. Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction.

    PubMed

    Ruh, Dominic; Tränkle, Benjamin; Rohrbach, Alexander

    2011-10-24

    Multi-dimensional, correlated particle tracking is a key technology to reveal dynamic processes in living and synthetic soft matter systems. In this paper we present a new method for tracking micron-sized beads in parallel and in all three dimensions - faster and more precise than existing techniques. Using an acousto-optic deflector and two quadrant-photo-diodes, we can track numerous optically trapped beads at up to tens of kHz with a precision of a few nanometers by back-focal plane interferometry. By time-multiplexing the laser focus, we can calibrate individually all traps and all tracking signals in a few seconds and in 3D. We show 3D histograms and calibration constants for nine beads in a quadratic arrangement, although trapping and tracking is easily possible for more beads also in arbitrary 2D arrangements. As an application, we investigate the hydrodynamic coupling and diffusion anomalies of spheres trapped in a 3 × 3 arrangement. PMID:22109012

  2. Time-Dependent, Parallel Neutral Particle Transport Code System.

    Energy Science and Technology Software Center (ESTSC)

    2009-09-10

    Version 00 PARTISN (PARallel, TIme-Dependent SN) is the evolutionary successor to CCC-547/DANTSYS. The PARTISN code package is a modular computer program package designed to solve the time-independent or dependent multigroup discrete ordinates form of the Boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, the Solver Module, and themore » Edit Module, respectively. PARTISN is the evolutionary successor to the DANTSYSTM code system package. The Input and Edit Modules in PARTISN are very similar to those in DANTSYS. However, unlike DANTSYS, the Solver Module in PARTISN contains one, two, and three-dimensional solvers in a single module. In addition to the diamond-differencing method, the Solver Module also has Adaptive Weighted Diamond-Differencing (AWDD), Linear Discontinuous (LD), and Exponential Discontinuous (ED) spatial differencing methods. The spatial mesh may consist of either a standard orthogonal mesh or a block adaptive orthogonal mesh. The Solver Module may be run in parallel for two and three dimensional problems. One can now run 1-D problems in parallel using Energy Domain Decomposition (triggered by Block 5 input keyword npeg>0). EDD can also be used in 2-D/3-D with or without our standard Spatial Domain Decomposition. Both the static (fixed source or eigenvalue) and time-dependent forms of the transport equation are solved in forward or adjoint mode. In addition, PARTISN now has a probabilistic mode for Probability of Initiation (static) and Probability of Survival (dynamic) calculations. Vacuum, reflective, periodic, white, or inhomogeneous boundary conditions are solved. General anisotropic scattering and inhomogeneous sources are permitted. PARTISN solves the transport equation on orthogonal (single level or block-structured AMR) grids in 1-D

  3. Boltzmann Transport Code Update: Parallelization and Integrated Design Updates

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Nealy, J. E.; DeAngelis, G.; Feldman, G. A.; Chokshi, S.

    2003-01-01

    The on going efforts at developing a web site for radiation analysis is expected to result in an increased usage of the High Charge and Energy Transport Code HZETRN. It would be nice to be able to do the requested calculations quickly and efficiently. Therefore the question arose, "Could the implementation of parallel processing speed up the calculations required?" To answer this question two modifications of the HZETRN computer code were created. The first modification selected the shield material of Al(2219) , then polyethylene and then Al(2219). The modified Fortran code was labeled 1SSTRN.F. The second modification considered the shield material of CO2 and Martian regolith. This modified Fortran code was labeled MARSTRN.F.

  4. Parallel Transport Quantum Logic Gates with Trapped Ions.

    PubMed

    de Clercq, Ludwig E; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P

    2016-02-26

    We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity. PMID:26967401

  5. XTP as a transport protocol for distributed parallel processing

    SciTech Connect

    Strayer, W.T.; Lewis, M.J.; Cline, R.E. Jr.

    1994-12-31

    The Xpress Transfer Protocol (XTP) is a flexible transport layer protocol designed to provide efficient service without dictating the communication paradigm or the delivery characteristics that quality the paradigm. XTP provides the tools to build communication services appropriate to the application. Current data delivery solutions for many popular cluster computing environments use TCP and UDP. We examine TCP, UDP, and XTP with respect to the communication characteristics typical of parallel applications. We perform measurements of end-to-end latency for several paradigms important to cluster computing. An implementation of XTP is shown to be comparable to TCP in end-to-end latency on preestablished connections, and does better for paradigms where connections must be constructed on the fly.

  6. Plane parallel radiance transport for global illumination in vegetation

    SciTech Connect

    Max, N.; Mobley, C.; Keating, B.; Wu, E.H.

    1997-01-05

    This paper applies plane parallel radiance transport techniques to scattering from vegetation. The leaves, stems, and branches are represented as a volume density of scattering surfaces, depending only on height and the vertical component of the surface normal. Ordinary differential equations are written for the multiply scattered radiance as a function of the height above the ground, with the sky radiance and ground reflectance as boundary conditions. They are solved using a two-pass integration scheme to unify the two-point boundary conditions, and Fourier series for the dependence on the azimuthal angle. The resulting radiance distribution is used to precompute diffuse and specular `ambient` shading tables, as a function of height and surface normal, to be used in rendering, together with a z-buffer shadow algorithm for direct solar illumination.

  7. Parallel Transport Quantum Logic Gates with Trapped Ions

    NASA Astrophysics Data System (ADS)

    de Clercq, Ludwig E.; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P.

    2016-02-01

    We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity.

  8. Nonlinear parallel momentum transport in strong electrostatic turbulence

    SciTech Connect

    Wang, Lu Wen, Tiliang; Diamond, P. H.

    2015-05-15

    Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the nonlinear momentum flux-〈v{sup ~}{sub r}n{sup ~}u{sup ~}{sub ∥}〉. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas 18, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong electrostatic turbulence is calculated by using a three dimensional Hasegawa-Mima equation, which is relevant for tokamak edge turbulence. It is shown that the nonlinear diffusivity is smaller than the quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so may be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.

  9. PFLOTRAN: Recent Developments Facilitating Massively-Parallel Reactive Biogeochemical Transport

    NASA Astrophysics Data System (ADS)

    Hammond, G. E.

    2015-12-01

    With the recent shift towards modeling carbon and nitrogen cycling in support of climate-related initiatives, emphasis has been placed on incorporating increasingly mechanistic biogeochemistry within Earth system models to more accurately predict the response of terrestrial processes to natural and anthropogenic climate cycles. PFLOTRAN is an open-source subsurface code that is specialized for simulating multiphase flow and multicomponent biogeochemical transport on supercomputers. The object-oriented code was designed with modularity in mind and has been coupled with several third-party simulators (e.g. CLM to simulate land surface processes and E4D for coupled hydrogeophysical inversion). Central to PFLOTRAN's capabilities is its ability to simulate tightly-coupled reactive transport processes. This presentation focuses on recent enhancements to the code that enable the solution of large parameterized biogeochemical reaction networks with numerous chemical species. PFLOTRAN's "reaction sandbox" is described, which facilitates the implementation of user-defined reaction networks without the need for a comprehensive understanding of PFLOTRAN software infrastructure. The reaction sandbox is written in modern Fortran (2003-2008) and leverages encapsulation, inheritance, and polymorphism to provide the researcher with a flexible workspace for prototyping reactions within a massively parallel flow and transport simulation framework. As these prototypical reactions mature into well-accepted implementations, they can be incorporated into PFLOTRAN as native biogeochemistry capability. Users of the reaction sandbox are encouraged to upload their source code to PFLOTRAN's main source code repository, including the addition of simple regression tests to better ensure the long-term code compatibility and validity of simulation results.

  10. OPTIMIZING COLLAGEN TRANSPORT THROUGH TRACK-ETCHED NANOPORES

    PubMed Central

    Bueno, Ericka M.; Ruberti, Jeffrey W.

    2008-01-01

    Polymer transport through nanopores is a potentially powerful tool for separation and organization of molecules in biotechnology applications. Our goal is to produce aligned collagen fibrils by mimicking cell-mediated collagen assembly: driving collagen monomers in solution through the aligned nanopores in track-etched membranes followed by fibrillogenesis at the pore exit. We examined type I atelo-collagen monomer transport in neutral, cold solution through polycarbonate track-etched membranes comprising 80-nm-diameter, 6-μm-long pores at 2% areal fraction. Source concentrations of 1.0, 2.8 and 7.0 mg/ml and pressure differentials of 0, 10 and 20 inH2O were used. Membrane surfaces were hydrophilized via covalent poly(ethylene-glycol) binding to limit solute-membrane interaction. Collagen transport through the nanopores was a non-intuitive process due to the complex behavior of this associating molecule in semi-dilute solution. Nonetheless, a modified open pore model provided reasonable predictions of transport parameters. Transport rates were concentration- and pressure-dependent, with diffusivities across the membrane in semi-dilute solution two-fold those in dilute solution, possibly via cooperative diffusion or polymer entrainment. The most significant enhancement of collagen transport was accomplished by membrane hydrophilization. The highest concentration transported (5.99±2.58 mg/ml) with the highest monomer flux (2.60±0.49 ×103 molecules s-1 pore-1) was observed using 2.8 mg collagen/ml, 10 inH2O and hydrophilic membranes. PMID:21394216

  11. T839 fiber tracking transporter at New Muon Lab

    SciTech Connect

    Krider, J.

    1991-10-23

    A darkbox and its transporter have been designed for T839 fiber tracking tests. The darkbox is 3.35 m {times} 0.76 m {times} 0.25 m (1{center dot}w{center dot}h) and contains a scintillating fiber ribbon suspension system and mechanical hardware to support the readout electronics. The transporter provides 3.0 m of horizontal motion transverse to the beam for linear scans of fiber characteristics. In addition, 70 degrees of rotation about a vertical axis is provided to simulate tracking of particles emanating from a collision point at lab angles in the range 0{degrees}--70{degrees}. The transporter, which is located inside a radiation area, is remotely controlled to permit scanning the fiber array through the region defined by four small stationary triggering scintillators without disabling beam. The transporter rails extend 20 feet to the west beyond a gate in the radiation enclosure fencing. This provides a staging area to work on the apparatus, while the beam is on. 4 figs.

  12. T839 fiber tracking transporter at New Muon Lab

    SciTech Connect

    Krider, J.

    1991-10-23

    A darkbox and its transporter have been designed for T839 fiber tracking tests. The darkbox is 3.35 m {times} 0.76 m {times} 0.25 m (1{center_dot}w{center_dot}h) and contains a scintillating fiber ribbon suspension system and mechanical hardware to support the readout electronics. The transporter provides 3.0 m of horizontal motion transverse to the beam for linear scans of fiber characteristics. In addition, 70 degrees of rotation about a vertical axis is provided to simulate tracking of particles emanating from a collision point at lab angles in the range 0{degrees}--70{degrees}. The transporter, which is located inside a radiation area, is remotely controlled to permit scanning the fiber array through the region defined by four small stationary triggering scintillators without disabling beam. The transporter rails extend 20 feet to the west beyond a gate in the radiation enclosure fencing. This provides a staging area to work on the apparatus, while the beam is on. 4 figs.

  13. Parallelization of a multiregion flow and transport code using software emulated global shared memory and high performance FORTRAN

    SciTech Connect

    D`Azevedo, E.F.; Gwo, Jin-Ping

    1997-02-01

    The objectives of this research are (1) to parallelize a suite of multiregion groundwater flow and solute transport codes that use Galerkin and Lagrangian- Eulerian finite element methods, (2) to test the compatibility of a global shared memory emulation software with a High Performance FORTRAN (HPF) compiler, and (3) to obtain performance characteristics and scalability of the parallel codes. The suite of multiregion flow and transport codes, 3DMURF and 3DMURT, were parallelized using the DOLIB shared memory emulation, in conjunction with the PGI HPF compiler, to run on the Intel Paragons at the Oak Ridge National Laboratory (ORNL) and a network of workstations. The novelty of this effort is first in the use of HPF and global shared memory emulation concurrently to facilitate the conversion of a serial code to a parallel code, and secondly the shared memory library enables efficient implementation of Lagrangian particle tracking along flow characteristics. The latter allows long-time-step-size simulation with particle tracking and dynamic particle redistribution for load balancing, thereby reducing the number of time steps needed for most transient problems. The parallel codes were applied to a pumping well problem to test the efficiency of the domain decomposition and particle tracking algorithms. The full problem domain consists of over 200,000 degrees of freedom with highly nonlinear soil property functions. Relatively good scalability was obtained for a preliminary test run on the Intel Paragons at the Center for Computational Sciences (CCS), ORNL. However, due to the difficulties we encountered in the PGI HPF compiler, as of the writing of this manuscript we are able to report results from 3DMURF only.

  14. Trajectory tracking control of parallel robots in the presence of joint drive flexibility

    NASA Astrophysics Data System (ADS)

    Ider, S. Kemal; Korkmaz, Ozan

    2009-01-01

    Trajectory tracking control of parallel manipulators is aimed in the presence of flexibility at the joint drives. Joint structural damping is also considered in the dynamic model. The system is first converted into an open-tree structure by disconnecting a sufficient number of unactuated joints. The closed loops are then expressed by constraint equations. It is shown that, in a parallel robot with flexible joint drives, the acceleration level inverse dynamics equations are singular because the control torques do not have an instantaneous effect on the end-effector accelerations due to the elastic media. Eliminating the Lagrange multipliers and the intermediate variables, a fourth-order input-output relation is obtained between the actuator torques and the end-effector position variables. The proposed control law decouples and linearizes the system and achieves asymptotic stability by feedback of positions and velocities of the actuated joints and rotors. As a case study, a three degree of freedom, two legged planar parallel manipulator is simulated to illustrate the performance of the method. The end-effector desired trajectory is chosen such that the kinematic and drive singular positions are avoided.

  15. Active catheter tracking using parallel MRI and real-time image reconstruction.

    PubMed

    Bock, Michael; Müller, Sven; Zuehlsdorff, Sven; Speier, Peter; Fink, Christian; Hallscheidt, Peter; Umathum, Reiner; Semmler, Wolfhard

    2006-06-01

    In this work active MR catheter tracking with automatic slice alignment was combined with an autocalibrated parallel imaging technique. Using an optimized generalized autocalibrating partially parallel acquisitions (GRAPPA) algorithm with an acceleration factor of 2, we were able to reduce the acquisition time per image by 34%. To accelerate real-time GRAPPA image reconstruction, the coil sensitivities were updated only after slice reorientation. For a 2D trueFISP acquisition (160 x 256 matrix, 80% phase matrix, half Fourier acquisition, TR = 3.7 ms, GRAPPA factor = 2) real-time image reconstruction was achieved with up to six imaging coils. In a single animal experiment the method was used to steer a catheter from the vena cava through the beating heart into the pulmonary vasculature at an image update rate of about five images per second. Under all slice orientations, parallel image reconstruction was accomplished with only minor image artifacts, and the increased temporal resolution provided a sharp delineation of intracardial structures, such as the papillary muscle. PMID:16683261

  16. The optimization of improved mean shift object tracking in embedded multicore DSP parallel system

    NASA Astrophysics Data System (ADS)

    Tian, Li; Zhou, Fugen; Meng, Cai; Hu, Congliang

    2014-11-01

    This paper proposes a more robust and efficient Mean Shift object tracking algorithm which is optimized for embedded multicore DSP Parallel system. Firstly, the RGB image is transformed into HSV image which is robust in many aspects such as lighting changes. Then, the color histogram model is used in the back projection process to generate the color probability distribution. Secondly, the size and position of search window are initialized in the first frame, and Mean Shift algorithm calculates the center position of the target and adjusts the search window automatically both in size and location, according to the result of the previous frame. Finally, since the multicore DSP system is commonly adopted in the embedded application such as seeker and an optical scout system, we implement the proposed algorithm in the TI multicore DSP system to meet the need of large amount computation. For multicore parallel computing, the explicit IPC based multicore framework is designed which outperforms OpenMP standard. Moreover, the parallelisms of 8 functional units and cross path data fetch capability of C66 core are utilized to accelerate the computation of iteration in Mean Shift algorithm. The experimental results show that the algorithm has good performance in complex scenes such as deformation, scale change and occlusion, simultaneously the proposed optimization method can significantly reduce the computation time.

  17. Kinetic Modelling of Parallel Electron Transport in TdeV.

    NASA Astrophysics Data System (ADS)

    Shoucri, M.; Shkarofsky, I.; Stansfield, B.; Batishchev, O.; Batishcheva, A.; Krasheninnikov, S.; Sigmar

    1996-11-01

    The 1D2V Fokker-Planck code ALLA [1] is used to model parallel electron transport in the SOL of TdeV. Our model uses detached and attached experimental data [2] given by Langmuir probes, Li ablation and He spectroscopy. We obtain the electron distribution function on a precise 257x65x60 non-uniform grid. Strong deviations of hydrogen and carbon excitation rates, and heat conduction coefficient from their Maxwellian values are shown. We compare the calculated variation of the effective temperature at the reciprocating probe position with experimental measurements. We also explain by non-local effects why different experimental techniques show differences in the electron temperature. altaffiltext [1] A.A.Batishcheva et al., Physics of Plasmas 3 (1996) 1634 altaffiltext [2] B.L.Stansfield et al., Proc. 22 Eur.Conf., Bornemouth, 19C pIII-101. *Supported by Government of Canada, Hydro-Québec and INRS. Work performed under USDoE contracts DE-FG02-91-ER-54109 at MIT and DE-FG02-88-ER-53263 at Lodestar.

  18. Geometry of matrix product states: Metric, parallel transport, and curvature

    SciTech Connect

    Haegeman, Jutho Verstraete, Frank; Mariën, Michaël; Osborne, Tobias J.

    2014-02-15

    We study the geometric properties of the manifold of states described as (uniform) matrix product states. Due to the parameter redundancy in the matrix product state representation, matrix product states have the mathematical structure of a (principal) fiber bundle. The total space or bundle space corresponds to the parameter space, i.e., the space of tensors associated to every physical site. The base manifold is embedded in Hilbert space and can be given the structure of a Kähler manifold by inducing the Hilbert space metric. Our main interest is in the states living in the tangent space to the base manifold, which have recently been shown to be interesting in relation to time dependence and elementary excitations. By lifting these tangent vectors to the (tangent space) of the bundle space using a well-chosen prescription (a principal bundle connection), we can define and efficiently compute an inverse metric, and introduce differential geometric concepts such as parallel transport (related to the Levi-Civita connection) and the Riemann curvature tensor.

  19. Particle Tracking Model and Abstraction of Transport Processes

    SciTech Connect

    B. Robinson

    2004-10-21

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.

  20. Instantaneous high-resolution focus tracking and a vibrometery system using parallel phase shift interferometry

    NASA Astrophysics Data System (ADS)

    Ney, Michael; Safrani, Avner; Abdulhlaim, Ibrahim

    2016-09-01

    High resolution fast focus tracking and vibrometery system based on parallel phase shift polarization interferometry using three detectors is presented. The basic design and algorithm are described, followed by an experimental demonstration showing sub nm resolution of different controlled motion profiles instantaneously monitored at a feedback rate of 100 kHz. The fact that the method does not rely on active optical components, potentially allows extremely high vibration rates to be measured; limited only by the detector bandwidth and sampling rate. In addition, the relatively simple design relies only on standard optical equipment, combined with the simple algorithm, makes the task of setting up a high performance vibrometry system cheap and readily available.

  1. Vasculature segmentation using parallel multi-hypothesis template tracking on heterogeneous platforms

    NASA Astrophysics Data System (ADS)

    Zhang, Dong Ping; Howes, Lee

    2013-02-01

    We present a parallel multi-hypothesis template tracking algorithm on heterogeneous platforms using a layered dispatch programming model. The contributions of this work are: an architecture-specific optimised solution for vasculature structure enhancement, an approach to segment the vascular lumen network from volumetric CTA images and a layered dispatch programming model to free the developers from hand-crafting mappings to particularly constrained execution domains on high throughput architecture. This abstraction is demonstrated through a vasculature segmentation application and can also be applied in other real-world applications. Current GPGPU programming models define a grouping concept which may lead to poorly scoped lo­ cal/ shared memory regions and an inconvenient approach to projecting complicated iterations spaces. To improve on this situation, we propose a simpler and more flexible programming model that leads to easier computation projections and hence a more convenient mapping of the same algorithm to a wide range of architectures. We first present an optimised image enhancement solution step- by-step, then solve a separable nonlinear least squares problem using a parallel Levenberg-Marquardt algorithm for template matching, and perform the energy efficiency analysis and performance comparison on a variety of platforms, including multi-core CPUs, discrete GPUs and APUs. We propose and discuss the efficiency of a layered-dispatch programming abstraction for mapping algorithms onto heterogeneous architectures.

  2. Cable-driven elastic parallel humanoid head with face tracking for Autism Spectrum Disorder interventions.

    PubMed

    Su, Hao; Dickstein-Fischer, Laurie; Harrington, Kevin; Fu, Qiushi; Lu, Weina; Huang, Haibo; Cole, Gregory; Fischer, Gregory S

    2010-01-01

    This paper presents the development of new prismatic actuation approach and its application in human-safe humanoid head design. To reduce actuator output impedance and mitigate unexpected external shock, the prismatic actuation method uses cables to drive a piston with preloaded spring. By leveraging the advantages of parallel manipulator and cable-driven mechanism, the developed neck has a parallel manipulator embodiment with two cable-driven limbs embedded with preloaded springs and one passive limb. The eye mechanism is adapted for low-cost webcam with succinct "ball-in-socket" structure. Based on human head anatomy and biomimetics, the neck has 3 degree of freedom (DOF) motion: pan, tilt and one decoupled roll while each eye has independent pan and synchronous tilt motion (3 DOF eyes). A Kalman filter based face tracking algorithm is implemented to interact with the human. This neck and eye structure is translatable to other human-safe humanoid robots. The robot's appearance reflects a non-threatening image of a penguin, which can be translated into a possible therapeutic intervention for children with Autism Spectrum Disorders. PMID:21095653

  3. Tracking lithium transport and electrochemical reactions in nanoparticles.

    PubMed

    Wang, Feng; Yu, Hui-Chia; Chen, Min-Hua; Wu, Lijun; Pereira, Nathalie; Thornton, Katsuyo; Van der Ven, Anton; Zhu, Yimei; Amatucci, Glenn G; Graetz, Jason

    2012-01-01

    Expectations for the next generation of lithium batteries include greater energy and power densities along with a substantial increase in both calendar and cycle life. Developing new materials to meet these goals requires a better understanding of how electrodes function by tracking physical and chemical changes of active components in a working electrode. Here we develop a new, simple in-situ electrochemical cell for the transmission electron microscope and use it to track lithium transport and conversion in FeF(2) nanoparticles by nanoscale imaging, diffraction and spectroscopy. In this system, lithium conversion is initiated at the surface, sweeping rapidly across the FeF(2) particles, followed by a gradual phase transformation in the bulk, resulting in 1-3 nm iron crystallites mixed with amorphous LiF. The real-time imaging reveals a surprisingly fast conversion process in individual particles (complete in a few minutes), with a morphological evolution resembling spinodal decomposition. This work provides new insights into the inter- and intra-particle lithium transport and kinetics of lithium conversion reactions, and may help to pave the way to develop high-energy conversion electrodes for lithium-ion batteries. PMID:23149745

  4. Improvements in fast-response flood modeling: desktop parallel computing and domain tracking

    SciTech Connect

    Judi, David R; Mcpherson, Timothy N; Burian, Steven J

    2009-01-01

    It is becoming increasingly important to have the ability to accurately forecast flooding, as flooding accounts for the most losses due to natural disasters in the world and the United States. Flood inundation modeling has been dominated by one-dimensional approaches. These models are computationally efficient and are considered by many engineers to produce reasonably accurate water surface profiles. However, because the profiles estimated in these models must be superimposed on digital elevation data to create a two-dimensional map, the result may be sensitive to the ability of the elevation data to capture relevant features (e.g. dikes/levees, roads, walls, etc...). Moreover, one-dimensional models do not explicitly represent the complex flow processes present in floodplains and urban environments and because two-dimensional models based on the shallow water equations have significantly greater ability to determine flow velocity and direction, the National Research Council (NRC) has recommended that two-dimensional models be used over one-dimensional models for flood inundation studies. This paper has shown that two-dimensional flood modeling computational time can be greatly reduced through the use of Java multithreading on multi-core computers which effectively provides a means for parallel computing on a desktop computer. In addition, this paper has shown that when desktop parallel computing is coupled with a domain tracking algorithm, significant computation time can be eliminated when computations are completed only on inundated cells. The drastic reduction in computational time shown here enhances the ability of two-dimensional flood inundation models to be used as a near-real time flood forecasting tool, engineering, design tool, or planning tool. Perhaps even of greater significance, the reduction in computation time makes the incorporation of risk and uncertainty/ensemble forecasting more feasible for flood inundation modeling (NRC 2000; Sayers et al

  5. Tracking Vehicle in GSM Network to Support Intelligent Transportation Systems

    NASA Astrophysics Data System (ADS)

    Koppanyi, Z.; Lovas, T.; Barsi, A.; Demeter, H.; Beeharee, A.; Berenyi, A.

    2012-07-01

    The penetration of GSM capable devices is very high, especially in Europe. To exploit the potential of turning these mobile devices into dynamic data acquisition nodes that provides valuable data for Intelligent Transportation Systems (ITS), position information is needed. The paper describes the basic operation principles of the GSM system and provides an overview on the existing methods for deriving location data in the network. A novel positioning solution is presented that rely on handover (HO) zone measurements; the zone geometry properties are also discussed. A new concept of HO zone sequence recognition is introduced that involves application of Probabilistic Deterministic Finite State Automata (PDFA). Both the potential commercial applications and the use of the derived position data in ITS is discussed for tracking vehicles and monitoring traffic flow. As a practical cutting edge example, the integration possibility of the technology in the SafeTRIP platform (developed in an EC FP7 project) is presented.

  6. Effects of parallel electron dynamics on plasma blob transport

    SciTech Connect

    Angus, Justin R.; Krasheninnikov, Sergei I.; Umansky, Maxim V.

    2012-08-15

    The 3D effects on sheath connected plasma blobs that result from parallel electron dynamics are studied by allowing for the variation of blob density and potential along the magnetic field line and using collisional Ohm's law to model the parallel current density. The parallel current density from linear sheath theory, typically used in the 2D model, is implemented as parallel boundary conditions. This model includes electrostatic 3D effects, such as resistive drift waves and blob spinning, while retaining all of the fundamental 2D physics of sheath connected plasma blobs. If the growth time of unstable drift waves is comparable to the 2D advection time scale of the blob, then the blob's density gradient will be depleted resulting in a much more diffusive blob with little radial motion. Furthermore, blob profiles that are initially varying along the field line drive the potential to a Boltzmann relation that spins the blob and thereby acts as an addition sink of the 2D potential. Basic dimensionless parameters are presented to estimate the relative importance of these two 3D effects. The deviation of blob dynamics from that predicted by 2D theory in the appropriate limits of these parameters is demonstrated by a direct comparison of 2D and 3D seeded blob simulations.

  7. A portable, parallel, object-oriented Monte Carlo neutron transport code in C++

    SciTech Connect

    Lee, S.R.; Cummings, J.C.; Nolen, S.D. |

    1997-05-01

    We have developed a multi-group Monte Carlo neutron transport code using C++ and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and {alpha}-eigenvalues and is portable to and runs parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities of MC++ are discussed, along with physics and performance results on a variety of hardware, including all Accelerated Strategic Computing Initiative (ASCI) hardware. Current parallel performance indicates the ability to compute {alpha}-eigenvalues in seconds to minutes rather than hours to days. Future plans and the implementation of a general transport physics framework are also discussed.

  8. Parallel algorithms for 2-D cylindrical transport equations of Eigenvalue problem

    SciTech Connect

    Wei, J.; Yang, S.

    2013-07-01

    In this paper, aimed at the neutron transport equations of eigenvalue problem under 2-D cylindrical geometry on unstructured grid, the discrete scheme of Sn discrete ordinate and discontinuous finite is built, and the parallel computation for the scheme is realized on MPI systems. Numerical experiments indicate that the designed parallel algorithm can reach perfect speedup, it has good practicality and scalability. (authors)

  9. Modeling reactive transport with particle tracking and kernel estimators

    NASA Astrophysics Data System (ADS)

    Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-04-01

    Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.

  10. Solving parallel transport equations in the higher-dimensional Kerr-NUT-(A)dS spacetimes

    SciTech Connect

    Connell, Patrick; Frolov, Valeri P.; Kubiznak, David

    2008-07-15

    We obtain and study the equations describing the parallel transport of orthonormal frames along geodesics in a spacetime admitting a nondegenerate, principal, conformal Killing-Yano tensor h. We demonstrate that the operator F, obtained by a projection of h to a subspace orthogonal to the velocity, has in a generic case eigenspaces of dimension not greater than 2. Each of these eigenspaces is independently parallel propagated. This allows one to reduce the parallel transport equations to a set of first order, ordinary, differential equations for the angles of rotation in the 2D eigenspaces. General analysis is illustrated by studying the equations of the parallel transport in the Kerr-NUT-(A)dS metrics. Examples of three-, four-, and five-dimensional Kerr-NUT-(A)dS are considered, and it is shown that the obtained first order equations can be solved by a separation of variables.

  11. Solving parallel transport equations in the higher-dimensional Kerr-NUT-(A)dS spacetimes

    NASA Astrophysics Data System (ADS)

    Connell, Patrick; Frolov, Valeri P.; Kubizňák, David

    2008-07-01

    We obtain and study the equations describing the parallel transport of orthonormal frames along geodesics in a spacetime admitting a nondegenerate, principal, conformal Killing-Yano tensor h. We demonstrate that the operator F, obtained by a projection of h to a subspace orthogonal to the velocity, has in a generic case eigenspaces of dimension not greater than 2. Each of these eigenspaces is independently parallel propagated. This allows one to reduce the parallel transport equations to a set of first order, ordinary, differential equations for the angles of rotation in the 2D eigenspaces. General analysis is illustrated by studying the equations of the parallel transport in the Kerr-NUT-(A)dS metrics. Examples of three-, four-, and five-dimensional Kerr-NUT-(A)dS are considered, and it is shown that the obtained first order equations can be solved by a separation of variables.

  12. Pangolin v1.0, a conservative 2-D transport model for large scale parallel calculation

    NASA Astrophysics Data System (ADS)

    Praga, A.; Cariolle, D.; Giraud, L.

    2014-07-01

    To exploit the possibilities of parallel computers, we designed a large-scale bidimensional atmospheric transport model named Pangolin. As the basis for a future chemistry-transport model, a finite-volume approach was chosen both for mass preservation and to ease parallelization. To overcome the pole restriction on time-steps for a regular latitude-longitude grid, Pangolin uses a quasi-area-preserving reduced latitude-longitude grid. The features of the regular grid are exploited to improve parallel performances and a custom domain decomposition algorithm is presented. To assess the validity of the transport scheme, its results are compared with state-of-the-art models on analytical test cases. Finally, parallel performances are shown in terms of strong scaling and confirm the efficient scalability up to a few hundred of cores.

  13. 3D multi-scale analysis of coupled heat and moisture transport and its parallel implementation

    NASA Astrophysics Data System (ADS)

    Kruis, Jaroslav

    2016-06-01

    Parallel implementation of two-scale model of coupled heat and moisture transport is described. The coupled heat and moisture transport is based on the Künzel model. Motivation for the two-scale analysis comes from the requirement to describe distribution of the relative humidity and temperature in historical masonry structures.

  14. A massively parallel track-finding system for the LEVEL 2 trigger in the CLAS detector at CEBAF

    SciTech Connect

    Doughty, D.C. Jr.; Collins, P.; Lemon, S. ); Bonneau, P. )

    1994-02-01

    The track segment finding subsystem of the LEVEL 2 trigger in the CLAS detector has been designed and prototyped. Track segments will be found in the 35,076 wires of the drift chambers using a massively parallel array of 768 Xilinx XC-4005 FPGA's. These FPGA's are located on daughter cards attached to the front-end boards distributed around the detector. Each chip is responsible for finding tracks passing through a 4 x 6 slice of an axial superlayer, and reports two segment found bits, one for each pair of cells. The algorithm used finds segments even when one or two layers or cells along the track is missing (this number is programmable), while being highly resistant to false segments arising from noise hits. Adjacent chips share data to find tracks crossing cell and board boundaries. For maximum speed, fully combinatorial logic is used inside each chip, with the result that all segments in the detector are found within 150 ns. Segment collection boards gather track segments from each axial superlayer and pass them via a high speed link to the segment linking subsystem in an additional 400 ns for typical events. The Xilinx chips are ram-based and therefore reprogrammable, allowing for future upgrades and algorithm enhancements.

  15. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing

    SciTech Connect

    Le Crom, Stphane; Schackwitz, Wendy; Pennacchiod, Len; Magnuson, Jon K.; Culley, David E.; Collett, James R.; Martin, Joel X.; Druzhinina, Irina S.; Mathis, Hugues; Monot, Frdric; Seiboth, Bernhard; Cherry, Barbara; Rey, Michael; Berka, Randy; Kubicek, Christian P.; Baker, Scott E.; Margeot, Antoine

    2009-09-22

    Trichoderma reesei (teleomorph Hypocrea jecorina) is the main industrial source of cellulases and hemicellulases harnessed for the hydrolysis of biomass to simple sugars, which can then be converted to biofuels, such as ethanol, and other chemicals. The highly productive strains in use today were generated by classical mutagenesis. To learn how cellulase production was improved by these techniques, we performed massively parallel sequencing to identify mutations in the genomes of two hyperproducing strains (NG14, and its direct improved descendant, RUT C30). We detected a surprisingly high number of mutagenic events: 223 single nucleotides variants, 15 small deletions or insertions and 18 larger deletions leading to the loss of more than 100 kb of genomic DNA. From these events we report previously undocumented non-synonymous mutations in 43 genes that are mainly involved in nuclear transport, mRNA stability, transcription, secretion/vacuolar targeting, and metabolism. This homogeneity of functional categories suggests that multiple changes are necessary to improve cellulase production and not simply a few clear-cut mutagenic events. Phenotype microarrays show that some of these mutations result in strong changes in the carbon assimilation pattern of the two mutants with respect to the wild type strain QM6a. Our analysis provides the first genome-wide insights into the changes induced by classical mutagenesis in a filamentous fungus, and suggests new areas for the generation of enhanced T. reesei strains for industrial applications such as biofuel production.

  16. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing

    PubMed Central

    Le Crom, Stéphane; Schackwitz, Wendy; Pennacchio, Len; Magnuson, Jon K.; Culley, David E.; Collett, James R.; Martin, Joel; Druzhinina, Irina S.; Mathis, Hugues; Monot, Frédéric; Seiboth, Bernhard; Cherry, Barbara; Rey, Michael; Berka, Randy; Kubicek, Christian P.; Baker, Scott E.; Margeot, Antoine

    2009-01-01

    Trichoderma reesei (teleomorph Hypocrea jecorina) is the main industrial source of cellulases and hemicellulases harnessed for the hydrolysis of biomass to simple sugars, which can then be converted to biofuels such as ethanol and other chemicals. The highly productive strains in use today were generated by classical mutagenesis. To learn how cellulase production was improved by these techniques, we performed massively parallel sequencing to identify mutations in the genomes of two hyperproducing strains (NG14, and its direct improved descendant, RUT C30). We detected a surprisingly high number of mutagenic events: 223 single nucleotides variants, 15 small deletions or insertions, and 18 larger deletions, leading to the loss of more than 100 kb of genomic DNA. From these events, we report previously undocumented non-synonymous mutations in 43 genes that are mainly involved in nuclear transport, mRNA stability, transcription, secretion/vacuolar targeting, and metabolism. This homogeneity of functional categories suggests that multiple changes are necessary to improve cellulase production and not simply a few clear-cut mutagenic events. Phenotype microarrays show that some of these mutations result in strong changes in the carbon assimilation pattern of the two mutants with respect to the wild-type strain QM6a. Our analysis provides genome-wide insights into the changes induced by classical mutagenesis in a filamentous fungus and suggests areas for the generation of enhanced T. reesei strains for industrial applications such as biofuel production. PMID:19805272

  17. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing.

    PubMed

    Le Crom, Stéphane; Schackwitz, Wendy; Pennacchio, Len; Magnuson, Jon K; Culley, David E; Collett, James R; Martin, Joel; Druzhinina, Irina S; Mathis, Hugues; Monot, Frédéric; Seiboth, Bernhard; Cherry, Barbara; Rey, Michael; Berka, Randy; Kubicek, Christian P; Baker, Scott E; Margeot, Antoine

    2009-09-22

    Trichoderma reesei (teleomorph Hypocrea jecorina) is the main industrial source of cellulases and hemicellulases harnessed for the hydrolysis of biomass to simple sugars, which can then be converted to biofuels such as ethanol and other chemicals. The highly productive strains in use today were generated by classical mutagenesis. To learn how cellulase production was improved by these techniques, we performed massively parallel sequencing to identify mutations in the genomes of two hyperproducing strains (NG14, and its direct improved descendant, RUT C30). We detected a surprisingly high number of mutagenic events: 223 single nucleotides variants, 15 small deletions or insertions, and 18 larger deletions, leading to the loss of more than 100 kb of genomic DNA. From these events, we report previously undocumented non-synonymous mutations in 43 genes that are mainly involved in nuclear transport, mRNA stability, transcription, secretion/vacuolar targeting, and metabolism. This homogeneity of functional categories suggests that multiple changes are necessary to improve cellulase production and not simply a few clear-cut mutagenic events. Phenotype microarrays show that some of these mutations result in strong changes in the carbon assimilation pattern of the two mutants with respect to the wild-type strain QM6a. Our analysis provides genome-wide insights into the changes induced by classical mutagenesis in a filamentous fungus and suggests areas for the generation of enhanced T. reesei strains for industrial applications such as biofuel production. PMID:19805272

  18. Supersonic Transport Analysis on the IBM Parallel System SP2

    NASA Technical Reports Server (NTRS)

    Jameson, Antony; Cliff, Susan; Thomas, Scott; Baker, Timothy; Cheng, Wu-Sun

    1995-01-01

    Several studies of supersonic transport (SST) configurations have been undertaken by members of the High Speed Aerodynamics branch at NASA Ames. These computational investigations involved the analysis of shapes to study the sonic boom signatures, aerodynamic performance characteristics, as well as studies of nacelle/airframe integration. A variety of different computer codes were employed including both structured and unstructured codes. The AIRPLANE code has been used extensively in these investigations. This computer code solves the Euler equations for inviscid flow by exploiting an explicit finite volume method on a mesh of tetrahedral cells. AIRPLANE is capable of handling complete aircraft configurations including nacelles and diverters. An example of a generic SST configuration is shown and a comparison of computed and experimental force coefficients is presented. Most of the computations in support of the SST investigations have been run on the YMP and C-90 computers currently installed at NASA Ames. Additional information is contained in the original extended abstract.

  19. Parallel processing implementation for the coupled transport of photons and electrons using OpenMP

    NASA Astrophysics Data System (ADS)

    Doerner, Edgardo

    2016-05-01

    In this work the use of OpenMP to implement the parallel processing of the Monte Carlo (MC) simulation of the coupled transport for photons and electrons is presented. This implementation was carried out using a modified EGSnrc platform which enables the use of the Microsoft Visual Studio 2013 (VS2013) environment, together with the developing tools available in the Intel Parallel Studio XE 2015 (XE2015). The performance study of this new implementation was carried out in a desktop PC with a multi-core CPU, taking as a reference the performance of the original platform. The results were satisfactory, both in terms of scalability as parallelization efficiency.

  20. On the adequacy of message-passing parallel supercomputers for solving neutron transport problems

    SciTech Connect

    Azmy, Y.Y.

    1990-01-01

    A coarse-grained, static-scheduling parallelization of the standard iterative scheme used for solving the discrete-ordinates approximation of the neutron transport equation is described. The parallel algorithm is based on a decomposition of the angular domain along the discrete ordinates, thus naturally producing a set of completely uncoupled systems of equations in each iteration. Implementation of the parallel code on Intcl's iPSC/2 hypercube, and solutions to test problems are presented as evidence of the high speedup and efficiency of the parallel code. The performance of the parallel code on the iPSC/2 is analyzed, and a model for the CPU time as a function of the problem size (order of angular quadrature) and the number of participating processors is developed and validated against measured CPU times. The performance model is used to speculate on the potential of massively parallel computers for significantly speeding up real-life transport calculations at acceptable efficiencies. We conclude that parallel computers with a few hundred processors are capable of producing large speedups at very high efficiencies in very large three-dimensional problems. 10 refs., 8 figs.

  1. Evaluation of Baltic Sea transport properties using particle tracking

    NASA Astrophysics Data System (ADS)

    Dargahi, Bijan; Cvetkovic, Vladimir

    2014-05-01

    Particle tracking model (PTM) is an effective tool for quantifying transport properties of large water bodies such as the Baltic Sea. We have applied PTM to our fully calibrated and validated Baltic Sea 3D hydrodynamic model for a 10-years period (2000-9). One hundred particles were released at a constant rate during an initial 10-days period from all the Baltic Sea sub-basins, the major rivers, and the open boundary in the Arkona Basin. In each basin, the particles were released at two different depths corresponding to the deep water and middle water layers. The objectives of the PTM simulations were to analyse the intra-exchange processes between the Baltic Sea basins and to estimate the arrival times and the paths of particles released from the rivers. The novel contribution of this study is determining the paths and arrival times of deeper water masses rather than the surface masses. Advective and diffusive transport processes in the Bornholm and Arkona basins are both driven by the interacting flows of the northern basins of the Baltic Sea and the North Sea. Particles released from Arkona basin flows northwards along the Stople Channel. The Gotland basins are the major contributors to the exchange process in the Baltic Sea. We find high values of the advection ratio, indicative of a forced advective transport process. The Bay of Gdansk is probably the most vulnerable region in the Baltic Sea. This is despite the fact that the main exchanging basins are the Bornholm Sea and the Easter Gotland Basin. The main reason is the intensive supply of the particles from the northern basins that normally take about 3000 days to reach the Bay of Gdansk. The process maintains a high level of particle concentration (90%) along its coastlines even after the 10-years period. Comparing the particle paths in the Western and Eastern Gotland basins two interesting features were found. Particles travelled in all four directions in the former basin and the middle layer particles

  2. Fusion and sorting of two parallel trains of droplets using a railroad-like channel network and guiding tracks.

    PubMed

    Xu, Linfeng; Lee, Hun; Panchapakesan, Rajagopal; Oh, Kwang W

    2012-10-21

    We propose a robust droplet fusion and sorting method for two parallel trains of droplets that is relatively insensitive to frequency and phase mismatch. Conventional methods of droplet fusion require an extremely precise control of aqueous/oil flows for perfect frequency matching between two trains of droplets. In this work, by combining our previous two methods (i.e., droplet synchronization using railroad-like channels and manipulation of shape-dependent droplets using guiding tracks), we realized an error-free droplet fusion/sorting device for the two parallel trains of droplets. If droplet pairs are synchronized through a railroad-like channel, they are electrically fused and the fused droplets transit to a middle guiding track to flow in a middle channel; otherwise non-synchronized non-fused droplets will be discarded into the side waste channels by flowing through their own guiding tracks. The simple droplet synchronization, fusion, and sorting technology will have widespread application in droplet-based chemical or biological experiments, where two trains of the chemically or biologically treated or pre-formed droplets yield a train of 100% one-to-one fused droplets at the desired outlet channel by sorting all the non-synchronized non-fused droplets into waste outlets. PMID:22814673

  3. Modeling of tokamak divertor plasma for weakly collisional parallel electron transport

    NASA Astrophysics Data System (ADS)

    Umansky, M. V.; Dimits, A. M.; Joseph, I.; Omotani, J. T.; Rognlien, T. D.

    2015-08-01

    The parallel electron heat transport in a weakly collisional regime can be represented in the framework of the Landau-fluid model (Hammett et al., 1990). Practical implementation of Landau-fluid transport has become possible due to the recent invention of an efficient non-spectral method for the non-local closure operators (Dimits et al., 2014). Here the implementation of a Landau-fluid based model for the parallel plasma transport is described, and the model is tested for different collisionality regimes against Fokker-Planck simulations. The new method appears to represent the weakly collisional electron transport more accurately than the conventional flux-limiter based models, on the other hand it is computationally efficient enough to be incorporated in comprehensive edge plasma simulations.

  4. Measurement of parallel transport of B+ and Al2+ impurities in a linear He+ plasma

    NASA Astrophysics Data System (ADS)

    Hollmann, E. M.; Umstadter, K. R.; Doerner, R. P.; Munoz, J.; Nishijima, D.; Pigarov, A. Yu.

    2011-08-01

    Laser ablation is used to inject trace quantities (˜1%) of boron or aluminum impurities into steady-state, cylindrical He+ plasmas. The He+ plasmas have an axial flow velocity of about 2 × 103 m/s, corresponding to Mach number M ˜ 0.2. The parallel flow of the resulting B+ or Al2+ impurity ions is measured directly using photomultiplier tubes with line filters. Perpendicular loss of the impurity ions is estimated indirectly from particle conservation. Rapid (<100 μs) entrainment of B+ in the background flow is observed; Al2+ ions appear to accelerate up to perhaps half the background flow velocity in the same time period. Preliminary comparisons with expected transport rates indicate that the observed parallel transport is ≈2-3× faster than expected from classical collisional transport, while perpendicular transport appears slightly slower than expected.

  5. penORNL: a parallel Monte Carlo photon and electron transport package using PENELOPE

    SciTech Connect

    Bekar, Kursat B.; Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.

    2015-01-01

    The parallel Monte Carlo photon and electron transport code package penORNL was developed at Oak Ridge National Laboratory to enable advanced scanning electron microscope (SEM) simulations on high-performance computing systems. This paper discusses the implementations, capabilities and parallel performance of the new code package. penORNL uses PENELOPE for its physics calculations and provides all available PENELOPE features to the users, as well as some new features including source definitions specifically developed for SEM simulations, a pulse-height tally capability for detailed simulations of gamma and x-ray detectors, and a modified interaction forcing mechanism to enable accurate energy deposition calculations. The parallel performance of penORNL was extensively tested with several model problems, and very good linear parallel scaling was observed with up to 512 processors. penORNL, along with its new features, will be available for SEM simulations upon completion of the new pulse-height tally implementation.

  6. Lateral charge transport from heavy-ion tracks in integrated circuit chips

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.

    1988-01-01

    A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.

  7. Tracking the Continuity of Language Comprehension: Computer Mouse Trajectories Suggest Parallel Syntactic Processing

    ERIC Educational Resources Information Center

    Farmer, Thomas A.; Cargill, Sarah A.; Hindy, Nicholas C.; Dale, Rick; Spivey, Michael J.

    2007-01-01

    Although several theories of online syntactic processing assume the parallel activation of multiple syntactic representations, evidence supporting simultaneous activation has been inconclusive. Here, the continuous and non-ballistic properties of computer mouse movements are exploited, by recording their streaming x, y coordinates to procure…

  8. Massively parallel simulation of flow and transport in variably saturated porous and fractured media

    SciTech Connect

    Wu, Yu-Shu; Zhang, Keni; Pruess, Karsten

    2002-01-15

    This paper describes a massively parallel simulation method and its application for modeling multiphase flow and multicomponent transport in porous and fractured reservoirs. The parallel-computing method has been implemented into the TOUGH2 code and its numerical performance is tested on a Cray T3E-900 and IBM SP. The efficiency and robustness of the parallel-computing algorithm are demonstrated by completing two simulations with more than one million gridblocks, using site-specific data obtained from a site-characterization study. The first application involves the development of a three-dimensional numerical model for flow in the unsaturated zone of Yucca Mountain, Nevada. The second application is the study of tracer/radionuclide transport through fracture-matrix rocks for the same site. The parallel-computing technique enhances modeling capabilities by achieving several-orders-of-magnitude speedup for large-scale and high resolution modeling studies. The resulting modeling results provide many new insights into flow and transport processes that could not be obtained from simulations using the single-CPU simulator.

  9. A Novel Algorithm for Solving the Multidimensional Neutron Transport Equation on Massively Parallel Architectures

    SciTech Connect

    Azmy, Yousry

    2014-06-10

    We employ the Integral Transport Matrix Method (ITMM) as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells' fluxes and between the cells' and boundary surfaces' fluxes. The main goals of this work are to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and parallel performance of the developed methods with increasing number of processes, P. The fastest observed parallel solution method, Parallel Gauss-Seidel (PGS), was used in a weak scaling comparison with the PARTISN transport code, which uses the source iteration (SI) scheme parallelized with the Koch-baker-Alcouffe (KBA) method. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method- even without acceleration/preconditioning-is completitive for optically thick problems as P is increased to the tens of thousands range. For the most optically thick cells tested, PGS reduced execution time by an approximate factor of three for problems with more than 130 million computational cells on P = 32,768. Moreover, the SI-DSA execution times's trend rises generally more steeply with increasing P than the PGS trend. Furthermore, the PGS method outperforms SI for the periodic heterogeneous layers (PHL) configuration problems. The PGS method outperforms SI and SI-DSA on as few as P = 16 for PHL problems and reduces execution time by a factor of ten or more for all problems considered with more than 2 million computational cells on P = 4.096.

  10. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE PAGESBeta

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  11. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    SciTech Connect

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.

  12. Massively Parallel, Three-Dimensional Transport Solutions for the k-Eigenvalue Problem

    SciTech Connect

    Davidson, Gregory G; Evans, Thomas M; Jarrell, Joshua J; Pandya, Tara M; Slaybaugh, R

    2014-01-01

    We have implemented a new multilevel parallel decomposition in the Denovo dis- crete ordinates radiation transport code. In concert with Krylov subspace iterative solvers, the multilevel decomposition allows concurrency over energy in addition to space-angle, enabling scalability beyond the limits imposed by the traditional KBA space-angle partitioning. Furthermore, a new Arnoldi-based k-eigenvalue solver has been implemented. The added phase-space concurrency combined with the high- performance Krylov and Arnoldi solvers has enabled weak scaling to O(100K) cores on the Jaguar XK6 supercomputer. The multilevel decomposition provides sucient parallelism to scale to exascale computing and beyond.

  13. Track recognition in 4 [mu]s by a systolic trigger processor using a parallel Hough transform

    SciTech Connect

    Klefenz, F.; Noffz, K.H.; Conen, W.; Zoz, R.; Kugel, A. . Lehrstuhl fuer Informatik V); Maenner, R. . Lehrstuhl fuer Informatik V Univ. Heidelberg . Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen)

    1993-08-01

    A parallel Hough transform processor has been developed that identifies circular particle tracks in a 2D projection of the OPAL jet chamber. The high-speed requirements imposed by the 8 bunch crossing mode of LEP could be fulfilled by computing the starting angle and the radius of curvature for each well defined track in less than 4 [mu]s. The system consists of a Hough transform processor that determines well defined tracks, and a Euler processor that counts their number by applying the Euler relation to the thresholded result of the Hough transform. A prototype of a systolic processor has been built that handles one sector of the jet chamber. It consists of 35 [times] 32 processing elements that were loaded into 21 programmable gate arrays (XILINX). This processor runs at a clock rate of 40 MHz. It has been tested offline with about 1,000 original OPAL events. No deviations from the off-line simulation have been found. A trigger efficiency of 93% has been obtained. The prototype together with the associated drift time measurement unit has been installed at the OPAL detector at LEP and 100k events have been sampled to evaluate the system under detector conditions.

  14. Solution of the within-group multidimensional discrete ordinates transport equations on massively parallel architectures

    NASA Astrophysics Data System (ADS)

    Zerr, Robert Joseph

    2011-12-01

    The integral transport matrix method (ITMM) has been used as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells and between the cells and boundary surfaces. The main goals of this work were to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and performance of the developed methods for increasing number of processes. This project compares the effectiveness of the ITMM with the SI scheme parallelized with the Koch-Baker-Alcouffe (KBA) method. The primary parallel solution method involves a decomposition of the domain into smaller spatial sub-domains, each with their own transport matrices, and coupled together via interface boundary angular fluxes. Each sub-domain has its own set of ITMM operators and represents an independent transport problem. Multiple iterative parallel solution methods have investigated, including parallel block Jacobi (PBJ), parallel red/black Gauss-Seidel (PGS), and parallel GMRES (PGMRES). The fastest observed parallel solution method, PGS, was used in a weak scaling comparison with the PARTISN code. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method without acceleration/preconditioning is not competitive for any problem parameters considered. The best comparisons occur for problems that are difficult for SI DSA, namely highly scattering and optically thick. SI DSA execution time curves are generally steeper than the PGS ones. However, until further testing is performed it cannot be concluded that SI DSA does not outperform the ITMM with PGS even on several thousand or tens of

  15. A Novel Implementation of Massively Parallel Three Dimensional Monte Carlo Radiation Transport

    NASA Astrophysics Data System (ADS)

    Robinson, P. B.; Peterson, J. D. L.

    2005-12-01

    The goal of our summer project was to implement the difference formulation for radiation transport into Cosmos++, a multidimensional, massively parallel, magneto hydrodynamics code for astrophysical applications (Peter Anninos - AX). The difference formulation is a new method for Symbolic Implicit Monte Carlo thermal transport (Brooks and Szöke - PAT). Formerly, simultaneous implementation of fully implicit Monte Carlo radiation transport in multiple dimensions on multiple processors had not been convincingly demonstrated. We found that a combination of the difference formulation and the inherent structure of Cosmos++ makes such an implementation both accurate and straightforward. We developed a "nearly nearest neighbor physics" technique to allow each processor to work independently, even with a fully implicit code. This technique coupled with the increased accuracy of an implicit Monte Carlo solution and the efficiency of parallel computing systems allows us to demonstrate the possibility of massively parallel thermal transport. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

  16. Virtual detector of synchrotron radiation (VDSR) - A C++ parallel code for particle tracking and radiation calculation

    SciTech Connect

    Rykovanov, S. G.; Chen, M.; Geddes, C. G. R.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-12-21

    The Virtual Detector for Synchrotron Radiation (VDSR) is a parallel C++ code developed to calculate the incoherent radiation from a single charged particle or a beam moving in given external electro-magnetic fields. In this proceedings the code structure and features are introduced. An example of radiation generation from the betatron motion of a beam in the focusing fields of the wake in a laser-plasma accelerator is presented.

  17. Effect of collisional temperature isotropisation on ELM parallel transport in a tokamak scrape-off layer

    NASA Astrophysics Data System (ADS)

    Coulette, David; Hirstoaga, Sever A.; Manfredi, Giovanni

    2016-08-01

    We develop a hybrid model to describe the parallel transport in a tokamak scrape-off layer following an edge-localized mode (ELM) event. The parallel dynamics is treated with a kinetic Vlasov–Poisson model, while the evolution of the perpendicular temperature {{T}\\bot} is governed by a fluid equation. The coupling is ensured by isotropising collisions. The model generalises an earlier approach where {{T}\\bot} was constant in space and time (Manfredi et al 2011 Plasma Phys. Control. Fusion 53 015012). Numerical results show that the main effect comes from electron–electron collisions, which limit the decrease of the parallel electron temperature and increase the potential drop in the Debye sheath in front of the surface. Ion–ion collisions have an almost negligible impact. The net effect is an increased peak power load on the target plates.

  18. Ferrographic tracking of bacterial transport in the field at the Narrow Channel focus area, Oyster, VA

    SciTech Connect

    Johnson, William P.; Zhang, Pengfei; Fuller, Mark E.; Scheibe, Timothy D. ); Mailloux, Brian J.; Onstott, Tullis C.; Deflaun, Mary F.; Hubbard, Susan; Radtke, Jon; Kovacic, William P.; Holben, William

    2001-01-01

    The first results from an innovative bacterial tracking technique, ferrographic capture, applied to bacterial transport in groundwater are reported in this paper. Ferrographic capture was used to analyze samples during an October 1999 bacterial injection experiment at the Narrow Channel Focus Area of the South Oyster Site, VA. Data obtained using this method showed that the timing of bacterial breakthrough was controlled by physical (hydraulic conductivity) heterogeneity in the vertical dimension, as opposed to variation in sediment surface or aqueous chemical properties. Ferrographic tracking yielded results that compared well with results from other tracking techniques over a concentration range of eight orders of magnitude, and provided a low detection limit relative to most other bacterial tracking techniques. The low detection limit of this method allowed observation of transport of an adhesion-deficient bacterium over distances greater than 20 m in the fine sand aquifer under lying this site.

  19. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    DOE PAGESBeta

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.

    2015-12-21

    This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000® problems. These benchmark and scaling studies show promising results.« less

  20. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    SciTech Connect

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.

    2015-12-21

    This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Some specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000® problems. These benchmark and scaling studies show promising results.

  1. A parallelization scheme to simulate reactive transport in the subsurface environment with OGS#IPhreeqc

    NASA Astrophysics Data System (ADS)

    He, W.; Beyer, C.; Fleckenstein, J. H.; Jang, E.; Kolditz, O.; Naumov, D.; Kalbacher, T.

    2015-03-01

    This technical paper presents an efficient and performance-oriented method to model reactive mass transport processes in environmental and geotechnical subsurface systems. The open source scientific software packages OpenGeoSys and IPhreeqc have been coupled, to combine their individual strengths and features to simulate thermo-hydro-mechanical-chemical coupled processes in porous and fractured media with simultaneous consideration of aqueous geochemical reactions. Furthermore, a flexible parallelization scheme using MPI (Message Passing Interface) grouping techniques has been implemented, which allows an optimized allocation of computer resources for the node-wise calculation of chemical reactions on the one hand, and the underlying processes such as for groundwater flow or solute transport on the other hand. The coupling interface and parallelization scheme have been tested and verified in terms of precision and performance.

  2. Parallel-burn options for dual-fuel single-stage orbital transports

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1978-01-01

    A parallel-burn version of a single-stage vehicle for transport from the earth to low-earth orbit using two fuels and rocket propulsion is considered. New engine results were incorporated in vehicle performance and design studies. The results indicate that a hydrogen-cooled gas generator cycle engine provides attractive vehicle performance and that there is little incentive for increasing the chamber pressure beyond 27 MPa.

  3. Probabilistic description of particle transport. I. General theory of quasielastic scattering in plane-parallel media

    SciTech Connect

    Goulet, T.; Keszei, E.; Jay-Gerin, J.

    1988-03-15

    We present a three-dimensional probabilistic model of particle transport in a medium where the particles suffer quasielastic collisions. The model accounts for bulk and surface scattering, as well as partial reflections at the boundaries of the medium. We give analytical and numerical methods for the evaluation of the particle transmission probability in the case of a medium with a plane-parallel geometry. The influence of the various parameters of the model on this probability is also discussed.

  4. Stochastic simulation of charged particle transport on the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Earl, James A.

    1988-01-01

    Computations of cosmic-ray transport based upon finite-difference methods are afflicted by instabilities, inaccuracies, and artifacts. To avoid these problems, researchers developed a Monte Carlo formulation which is closely related not only to the finite-difference formulation, but also to the underlying physics of transport phenomena. Implementations of this approach are currently running on the Massively Parallel Processor at Goddard Space Flight Center, whose enormous computing power overcomes the poor statistical accuracy that usually limits the use of stochastic methods. These simulations have progressed to a stage where they provide a useful and realistic picture of solar energetic particle propagation in interplanetary space.

  5. A massively parallel semi-Lagrangian algorithm for solving the transport equation

    SciTech Connect

    Manson, Russell; Wang, Dali

    2010-01-01

    The scalar transport equation underpins many models employed in science, engineering, technology and business. Application areas include, but are not restricted to, pollution transport, weather forecasting, video analysis and encoding (the optical flow equation), options and stock pricing (the Black-Scholes equation) and spatially explicit ecological models. Unfortunately finding numerical solutions to this equation which are fast and accurate is not trivial. Moreover, finding such numerical algorithms that can be implemented on high performance computer architectures efficiently is challenging. In this paper the authors describe a massively parallel algorithm for solving the advection portion of the transport equation. We present an approach here which is different to that used in most transport models and which we have tried and tested for various scenarios. The approach employs an intelligent domain decomposition based on the vector field of the system equations and thus automatically partitions the computational domain into algorithmically autonomous regions. The solution of a classic pure advection transport problem is shown to be conservative, monotonic and highly accurate at large time steps. Additionally we demonstrate that the algorithm is highly efficient for high performance computer architectures and thus offers a route towards massively parallel application.

  6. A parallel computational framework for integrated surface-subsurface flow and transport simulations

    NASA Astrophysics Data System (ADS)

    Park, Y.; Hwang, H.; Sudicky, E. A.

    2010-12-01

    HydroGeoSphere is a 3D control-volume finite element hydrologic model describing fully-integrated surface and subsurface water flow and solute and thermal energy transport. Because the model solves tighly-coupled highly-nonlinear partial differential equations, often applied at regional and continental scales (for example, to analyze the impact of climate change on water resources), high performance computing (HPC) is essential. The target parallelization includes the composition of the Jacobian matrix for the iterative linearization method and the sparse-matrix solver, a preconditioned Bi-CGSTAB. The matrix assembly is parallelized by using a coarse-grained scheme in that the local matrix compositions can be performed independently. The preconditioned Bi-CGSTAB algorithm performs a number of LU substitutions, matrix-vector multiplications, and inner products, where the parallelization of the LU substitution is not trivial. The parallelization of the solver is achieved by partitioning the domain into equal-size subdomains, with an efficient reordering scheme. The computational flow of the Bi-CGSTAB solver is also modified to reduce the parallelization overhead and to be suitable for parallel architectures. The parallelized model is tested on several benchmark simulations which include linear and nonlinear flow problems involving various domain sizes and degrees of hydrologic complexities. The performance is evaluated in terms of computational robustness and efficiency, using standard scaling performance measures. The results of simulation profiling indicate that the efficiency becomes higher with an increasing number of nodes/elements in the mesh, for increasingly nonlinear transient simulations, and with domains of irregular geometry. These characteristics are promising for the large-scale analysis water resources problems involved integrated surface/subsurface flow regimes.

  7. Scale-Dependent Fracture-Matrix Interactions and Their Impact on Radionuclide Transport: Development of efficient particle-tracking methods

    SciTech Connect

    Rajaram, Harihar; Brutz, Michael; Klein, Dylan R; Mallikamas, Wasin

    2014-09-18

    Matrix Diffusion and Adsorption within a rock matrix are important mechanisms for retarding transport of radionuclides in fractured rock. Due to computational limitations and difficulties in characterizing complex subsurface systems, diffusive exchange between a fracture network and surrounding rock matrix is often modeled using simplified conceptual representations. There is significant uncertainty in “effective” parameters used in these models, such as the “effective matrix diffusivity”. Often, these parameters are estimated by fitting sparse breakthrough data, and estimated values fall outside meaningful ranges, because simplified interpretive models do not consider complex three-dimensional flow. There is limited understanding of the relationship between the effective parameters and rock mass characteristics including network structure and matrix properties. There is also evidence for an apparent scale-dependence in “effective matrix diffusion” coefficients. These observations raise questions on whether fracture-matrix interaction parameters estimated from small-scale tracer tests can be used for predicting radionuclide fate and transport at the scale of DOE field sites. High-resolution three-dimensional Discrete-Fracture-Network-Matrix (DFNM) models based on well-defined local scale transport equations can help to address some of these questions. Due to tremendous advances in computational technology over the last 10 years, DFNM modeling in relatively large domains is now feasible. The overarching objective of our research is to use DFNM modeling to improve fundamental understanding of how effective parameters in conceptual models are related to fracture network structure and matrix properties. An advanced three-dimensional DFNM model is being developed, which combines upscaled particle-tracking algorithms for fracture-matrix interaction and a parallel fracture-network flow simulator. The particle-tracking algorithms allow complexity in flow fields

  8. Recent Improvements to the IMPACT-T Parallel Particle TrackingCode

    SciTech Connect

    Qiang, J.; Pogorelov, I.V.; Ryne, R.

    2006-11-16

    The IMPACT-T code is a parallel three-dimensional quasi-static beam dynamics code for modeling high brightness beams in photoinjectors and RF linacs. Developed under the US DOE Scientific Discovery through Advanced Computing (SciDAC) program, it includes several key features including a self-consistent calculation of 3D space-charge forces using a shifted and integrated Green function method, multiple energy bins for beams with large energy spread, and models for treating RF standing wave and traveling wave structures. In this paper, we report on recent improvements to the IMPACT-T code including modeling traveling wave structures, short-range transverse and longitudinal wakefields, and longitudinal coherent synchrotron radiation through bending magnets.

  9. Membrane Transport Processes Analyzed by a Highly Parallel Nanopore Chip System at Single Protein Resolution.

    PubMed

    Urban, Michael; Vor der Brüggen, Marc; Tampé, Robert

    2016-01-01

    Membrane protein transport on the single protein level still evades detailed analysis, if the substrate translocated is non-electrogenic. Considerable efforts have been made in this field, but techniques enabling automated high-throughput transport analysis in combination with solvent-free lipid bilayer techniques required for the analysis of membrane transporters are rare. This class of transporters however is crucial in cell homeostasis and therefore a key target in drug development and methodologies to gain new insights desperately needed. The here presented manuscript describes the establishment and handling of a novel biochip for the analysis of membrane protein mediated transport processes at single transporter resolution. The biochip is composed of microcavities enclosed by nanopores that is highly parallel in its design and can be produced in industrial grade and quantity. Protein-harboring liposomes can directly be applied to the chip surface forming self-assembled pore-spanning lipid bilayers using SSM-techniques (solid supported lipid membranes). Pore-spanning parts of the membrane are freestanding, providing the interface for substrate translocation into or out of the cavity space, which can be followed by multi-spectral fluorescent readout in real-time. The establishment of standard operating procedures (SOPs) allows the straightforward establishment of protein-harboring lipid bilayers on the chip surface of virtually every membrane protein that can be reconstituted functionally. The sole prerequisite is the establishment of a fluorescent read-out system for non-electrogenic transport substrates. High-content screening applications are accomplishable by the use of automated inverted fluorescent microscopes recording multiple chips in parallel. Large data sets can be analyzed using the freely available custom-designed analysis software. Three-color multi spectral fluorescent read-out furthermore allows for unbiased data discrimination into different

  10. Quantum dots for tracking cellular transport of lectin-functionalized nanoparticles

    SciTech Connect

    Gao Xiaoling; Wang Tao; Wu Bingxian; Chen Jun; Chen Jiyao; Yue Yang; Dai Ning; Chen Hongzhuan Jiang Xinguo

    2008-12-05

    Successful drug delivery by functionalized nanocarriers largely depends on their efficient intracellular transport which has not yet been fully understood. We developed a new tracking technique by encapsulating quantum dots into the core of wheat germ agglutinin-conjugated nanoparticles (WGA-NP) to track cellular transport of functionalized nanocarriers. The resulting nanoparticles showed no changes in particle size, zeta potential or biobinding activity, and the loaded probe presented excellent photostability and tracking ability. Taking advantage of these properties, cellular transport profiles of WGA-NP in Caco-2 cells was demonstrated. The cellular uptake begins with binding of WGA to its receptor at the cell surface. The subsequent endocytosis happened in a cytoskeleton-dependent manner and by means of clathrin and caveolae-mediated mechanisms. After endosome creating, transport occurs to both trans-Golgi and lysosome. Our study provides new evidences for quantum dots as a cellular tracking probe of nanocarriers and helps understand intracellular transport profile of lectin-functionalized nanoparticles.

  11. A two-phase thermal model for subsurface transport on massively parallel computers

    SciTech Connect

    Martinez, M.J.; Hopkins, P.L.

    1997-12-01

    Many research activities in subsurface transport require the numerical simulation of multiphase flow in porous media. This capability is critical to research in environmental remediation (e.g. contaminations with dense, non-aqueous-phase liquids), nuclear waste management, reservoir engineering, and to the assessment of the future availability of groundwater in many parts of the world. This paper presents an unstructured grid numerical algorithm for subsurface transport in heterogeneous porous media implemented for use on massively parallel (MP) computers. The mathematical model considers nonisothermal two-phase (liquid/gas) flow, including capillary pressure effects, binary diffusion in the gas phase, conductive, latent, and sensible heat transport. The Galerkin finite element method is used for spatial discretization, and temporal integration is accomplished via a predictor/corrector scheme. Message-passing and domain decomposition techniques are used for implementing a scalable algorithm for distributed memory parallel computers. Illustrative applications are shown to demonstrate capabilities and performance, one of which is modeling hydrothermal transport at the Yucca Mountain site for a radioactive waste facility.

  12. Pumpless Transport of Low Surface Tension Liquids in Surface Tension Confined (STC) Tracks

    NASA Astrophysics Data System (ADS)

    Megaridis, Constantine; Schutzius, Thomas; Elsharkawy, Mohamed; Tiwari, Manish

    2012-11-01

    Surfaces with patterned wettability have potential applications in microfluidics, fog capture, pool boiling, etc. With recent fabrication advancements, surfaces with adjacent superhydrophobic and superhydrophilic regions are feasible at a reasonable cost; with properly designed patterns, one can produce microfluidic paths (a.k.a. surface tension confined or STC tracks) where a liquid is confined and transported by surface tension alone. The surface tension of water is relatively high (72 mN/m), as compared with oils (~25 mN/m) and organic solvents (~20 mN/m). This makes the design of STC channels for oils and organic solvents far more difficult. In this study, open STC tracks for pumpless transport of low-surface tension liquids (acetone, ethanol, and hexadecane) on microfluidic chips are fabricated using a large-area, wet-processing technique. Wettable, wax-based, submillimeter-wide tracks are applied by a fountain-pen procedure on superoleophobic, fluoroacrylic carbon nanofiber (CNF) composite coatings. The fabricated anisotropic wetting patterns confine the low-surface tension liquids onto the flow tracks, driving them with meniscus velocities exceeding 3 cm/s. Scaling arguments and Washburn's equation provide estimates of the liquid velocities measured in these tracks, which also act as rails for directional sliding control of mm-sized water droplets. The present facile patterned wettability approach can be extended to deposit micrometer-wide tracks.

  13. Parallel Implementation and Scaling of an Adaptive Mesh Discrete Ordinates Algorithm for Transport

    SciTech Connect

    Howell, L H

    2004-11-29

    Block-structured adaptive mesh refinement (AMR) uses a mesh structure built up out of locally-uniform rectangular grids. In the BoxLib parallel framework used by the Raptor code, each processor operates on one or more of these grids at each refinement level. The decomposition of the mesh into grids and the distribution of these grids among processors may change every few timesteps as a calculation proceeds. Finer grids use smaller timesteps than coarser grids, requiring additional work to keep the system synchronized and ensure conservation between different refinement levels. In a paper for NECDC 2002 I presented preliminary results on implementation of parallel transport sweeps on the AMR mesh, conjugate gradient acceleration, accuracy of the AMR solution, and scalar speedup of the AMR algorithm compared to a uniform fully-refined mesh. This paper continues with a more in-depth examination of the parallel scaling properties of the scheme, both in single-level and multi-level calculations. Both sweeping and setup costs are considered. The algorithm scales with acceptable performance to several hundred processors. Trends suggest, however, that this is the limit for efficient calculations with traditional transport sweeps, and that modifications to the sweep algorithm will be increasingly needed as job sizes in the thousands of processors become common.

  14. Monte Carlo photon transport on vector and parallel supercomputers: Final report

    SciTech Connect

    Martin, W.R.; Nowak, P.F.

    1986-12-01

    The University of Michigan has been investigating the implementation of vectorized and parallelized Monte Carlo algorithms for the analysis of photon transport in an inertially-confined fusion (ICF) plasma. The goal of this work is to develop and test Monte Carlo algorithms for vector/parallel supercomputers such as the Cray X-MP and Cray-2. Previous effort has resulted in the development of a vectorized photon transport code, named VPHOT, and a companion scalar code, named SPHOT, that performs the same analysis and is used for comparative purposes to assess the performance of the vectorized algorithm. A test problem, denoted the ICF test problem, has been created and tested with the VPHOT and SPHOT codes. By comparison with a reference LLNL calculation of the ICF test problem, the VPHOT/SPHOT codes have been verified to predict the correct results. Performance results with VPHOT versus SPHOT and the reference LLNL code have been reported previously and indicate that speedups in the range of 6 to 12 can be achieved with the vectorized algorithm versus the conventional scalar algorithm on the Cray X-MP. This report summarizes the progress made during the last year to continue the investigation of vectorized Monte Carlo (parameter studies, alternative vectorized algorithm, alternative target machines) and to extend the work into the area of parallel processing. 5 refs.

  15. Quantum transport through the system of parallel quantum dots with Majorana bound states

    SciTech Connect

    Wang, Ning; Li, Yuxian; Lv, Shuhui

    2014-02-28

    We study the tunneling transport properties through a system of parallel quantum dots which are coupled to Majorana bound states (MBSs). The conductance and spectral function are computed using the retarded Green's function method based on the equation of motion. The conductance of the system is 2e{sup 2}/h at zero Fermi energy and is robust against the coupling between the MBSs and the quantum dots. The dependence of the Fermi energy on the spectral function is different for the first dot (dot1) than for the second dot (dot2) with fixed dot2-MBSs coupling. The influence of the Majorana bound states on the spectral function was studied for the series and parallel configurations of the system. It was found that when the configuration is in series, the Majorana bound states play an important role, resulting in a spectral function with three peaks. However, the spectral function shows two peaks when the system is in a parallel configuration. The zero Fermi energy spectral function is always 1/2 not only in series but also in the parallel configuration and robust against the coupling between the MBSs and the quantum dots. The phase diagram of the Fermi energy versus the quantum dot energy levels was also investigated.

  16. Modeling nitrogen transport and transformation in aquifers using a particle-tracking approach

    NASA Astrophysics Data System (ADS)

    Cui, Zhengtao; Welty, Claire; Maxwell, Reed M.

    2014-09-01

    We have integrated multispecies biodegradation and geochemical reactions into an existing particle-tracking code to simulate reactive transport in three-dimensional variably saturated media, with a focus on nitrification and denitrification processes. This new numerical model includes reactive air-phase transport so that gases such as N2 and CO2 can be tracked. Although nitrogen biodegradation is the primary problem addressed here, the method presented is also applicable to other reactive multispecies transport problems. We verified the model by comparison with (1) analytical solutions for saturated one- and two-dimensional cases; (2) a finite element model for a one-dimensional unsaturated case; and (3) laboratory observations for a one-dimensional saturated case. Good agreement between the new code and the verification problems is demonstrated. The new model can simulate nitrogen transport and transformation in a heterogeneous permeability field where sharp concentration gradients are present. An example application to nitrogen species biodegradation and transport of a plume emanating from a leaking sewer in a heterogeneous, variably saturated aquifer is presented to illustrate this capability. This example is a novel application of coupling unsaturated/saturated zone transport with nitrogen species biodegradation. The code has the computational advantages of particle-tracking algorithms, including local and global mass conservation and minimal numerical dispersion. We also present new methods for improving particle code efficiency by implementing the concept of tracking surplus/deficit particles and particle recycling in order to control the growth of particle numbers. The new model retains the advantages of the particle tracking approach such as allowing relatively low spatial and temporal resolutions to be used, while incorporating the robustness of grid-based Monod kinetics to simulate biogeochemical reactions.

  17. Parallel transport of long mean-free-path plasma along open magnetic field lines: Parallel heat flux

    SciTech Connect

    Guo Zehua; Tang Xianzhu

    2012-06-15

    In a long mean-free-path plasma where temperature anisotropy can be sustained, the parallel heat flux has two components with one associated with the parallel thermal energy and the other the perpendicular thermal energy. Due to the large deviation of the distribution function from local Maxwellian in an open field line plasma with low collisionality, the conventional perturbative calculation of the parallel heat flux closure in its local or non-local form is no longer applicable. Here, a non-perturbative calculation is presented for a collisionless plasma in a two-dimensional flux expander bounded by absorbing walls. Specifically, closures of previously unfamiliar form are obtained for ions and electrons, which relate two distinct components of the species parallel heat flux to the lower order fluid moments such as density, parallel flow, parallel and perpendicular temperatures, and the field quantities such as the magnetic field strength and the electrostatic potential. The plasma source and boundary condition at the absorbing wall enter explicitly in the closure calculation. Although the closure calculation does not take into account wave-particle interactions, the results based on passing orbits from steady-state collisionless drift-kinetic equation show remarkable agreement with fully kinetic-Maxwell simulations. As an example of the physical implications of the theory, the parallel heat flux closures are found to predict a surprising observation in the kinetic-Maxwell simulation of the 2D magnetic flux expander problem, where the parallel heat flux of the parallel thermal energy flows from low to high parallel temperature region.

  18. 4. Launch closure, concrete apron and tracks at left, transporter/erector ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Launch closure, concrete apron and tracks at left, transporter/erector horizontal at right, view towards northwest - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  19. Making Tracks 1.0: Action Researching an Active Transportation Education Program

    ERIC Educational Resources Information Center

    Robinson, Daniel; Foran, Andrew; Robinson, Ingrid

    2014-01-01

    This paper reports on the results of the first cycle of an action research project. The objective of this action research was to examine the implementation of a school-based active transportation education program (Making Tracks). A two-cycle action research design was employed in which elementary school students' (ages 7-9), middle school…

  20. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    NASA Astrophysics Data System (ADS)

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.

    2016-03-01

    This work discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package authored at Oak Ridge National Laboratory. Shift has been developed to scale well from laptops to small computing clusters to advanced supercomputers and includes features such as support for multiple geometry and physics engines, hybrid capabilities for variance reduction methods such as the Consistent Adjoint-Driven Importance Sampling methodology, advanced parallel decompositions, and tally methods optimized for scalability on supercomputing architectures. The scaling studies presented in this paper demonstrate good weak and strong scaling behavior for the implemented algorithms. Shift has also been validated and verified against various reactor physics benchmarks, including the Consortium for Advanced Simulation of Light Water Reactors' Virtual Environment for Reactor Analysis criticality test suite and several Westinghouse AP1000® problems presented in this paper. These benchmark results compare well to those from other contemporary Monte Carlo codes such as MCNP5 and KENO.

  1. Parallel-Batch Scheduling and Transportation Coordination with Waiting Time Constraint

    PubMed Central

    Gong, Hua; Chen, Daheng; Xu, Ke

    2014-01-01

    This paper addresses a parallel-batch scheduling problem that incorporates transportation of raw materials or semifinished products before processing with waiting time constraint. The orders located at the different suppliers are transported by some vehicles to a manufacturing facility for further processing. One vehicle can load only one order in one shipment. Each order arriving at the facility must be processed in the limited waiting time. The orders are processed in batches on a parallel-batch machine, where a batch contains several orders and the processing time of the batch is the largest processing time of the orders in it. The goal is to find a schedule to minimize the sum of the total flow time and the production cost. We prove that the general problem is NP-hard in the strong sense. We also demonstrate that the problem with equal processing times on the machine is NP-hard. Furthermore, a dynamic programming algorithm in pseudopolynomial time is provided to prove its ordinarily NP-hardness. An optimal algorithm in polynomial time is presented to solve a special case with equal processing times and equal transportation times for each order. PMID:24883385

  2. Parallel transport gates in a mixed-species ion trap processor

    NASA Astrophysics Data System (ADS)

    Home, Jonathan

    Scaled up quantum information processors will require large numbers of parallel gate operations. For ion trap quantum processing, a promising approach is to perform these operations in separated regions of a multi-zone processing chip between which quantum information is transported either by distributed photonic entanglement or by deterministic shuttling of the ions through the array. However scaling the technology for controlling pulsed laser beams which address each of multiple regions appears challenging. I will describe recent work on the control of both beryllium and calcium ions by transporting ions through static laser beams. We have demonstrated both parallel individually addressed operations as well as sequences of operations. Work is in progress towards multi-qubit gates, which requires good control of the ion transport velocity. We have developed a number of techniques for measuring and optimizing velocities in our trap, enabling significant improvements in performance. In addition to direct results, I will give an overview of our multi-species apparatus, including recent results on high fidelity multi-qubit gates. We are grateful for funding from the Swiss National Science Foundation and the ETH Zurich.

  3. Solution of the within-group multidimensional discrete ordinates transport equations on massively parallel architectures

    NASA Astrophysics Data System (ADS)

    Zerr, Robert Joseph

    2011-12-01

    The integral transport matrix method (ITMM) has been used as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells and between the cells and boundary surfaces. The main goals of this work were to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and performance of the developed methods for increasing number of processes. This project compares the effectiveness of the ITMM with the SI scheme parallelized with the Koch-Baker-Alcouffe (KBA) method. The primary parallel solution method involves a decomposition of the domain into smaller spatial sub-domains, each with their own transport matrices, and coupled together via interface boundary angular fluxes. Each sub-domain has its own set of ITMM operators and represents an independent transport problem. Multiple iterative parallel solution methods have investigated, including parallel block Jacobi (PBJ), parallel red/black Gauss-Seidel (PGS), and parallel GMRES (PGMRES). The fastest observed parallel solution method, PGS, was used in a weak scaling comparison with the PARTISN code. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method without acceleration/preconditioning is not competitive for any problem parameters considered. The best comparisons occur for problems that are difficult for SI DSA, namely highly scattering and optically thick. SI DSA execution time curves are generally steeper than the PGS ones. However, until further testing is performed it cannot be concluded that SI DSA does not outperform the ITMM with PGS even on several thousand or tens of

  4. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    PubMed

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can

  5. Hybrid Parallel Programming Models for AMR Neutron Monte-Carlo Transport

    NASA Astrophysics Data System (ADS)

    Dureau, David; Poëtte, Gaël

    2014-06-01

    This paper deals with High Performance Computing (HPC) applied to neutron transport theory on complex geometries, thanks to both an Adaptive Mesh Refinement (AMR) algorithm and a Monte-Carlo (MC) solver. Several Parallelism models are presented and analyzed in this context, among them shared memory and distributed memory ones such as Domain Replication and Domain Decomposition, together with Hybrid strategies. The study is illustrated by weak and strong scalability tests on complex benchmarks on several thousands of cores thanks to the petaflopic supercomputer Tera100.

  6. Alfven wave transport effects in the time evolution of parallel cosmic-ray-modified shocks

    NASA Technical Reports Server (NTRS)

    Jones, T. W.

    1993-01-01

    This paper presents a numerical study of the time evolution of plane, cosmic-ray modified shocks with magnetic field parallel to the shock normal, based on the diffusive shock acceleration formalism and including the effects from the finite propagation speed and energy of Alfven waves responsible for controlling the transport of the cosmic rays. The simulations discussed are based on a three-fluid model for the dynamics, but a more complete formalism is laid out for future work. The results of the simulations confirm earlier steady state analyses that found these Alfven transport effects to be potentially important when the upstream Alfven speed and the gas sound speed are comparable, i.e., when the plasma and magnetic pressures are similar. It is also clear, however, that the impact of Alfven transport effects, which tend to slow shock evolution and reduce the time asymptotic cosmic-ray pressure in the shock, is strongly dependent upon uncertain details in the transport models. Both cosmic-ray advection tied to streaming Alfven waves and dissipation of wave energy are important to include in the models. Further, Alfven transport properties on both sides of the shock are also influential.

  7. Practical Implementation of New Particle Tracking Method to the Real Field of Groundwater Flow and Transport

    PubMed Central

    Suk, Heejun

    2012-01-01

    Abstract In articles published in 2009 and 2010, Suk and Yeh reported the development of an accurate and efficient particle tracking algorithm for simulating a path line under complicated unsteady flow conditions, using a range of elements within finite elements in multidimensions. Here two examples, an aquifer storage and recovery (ASR) example and a landfill leachate migration example, are examined to enhance the practical implementation of the proposed particle tracking method, known as Suk's method, to a real field of groundwater flow and transport. Results obtained by Suk's method are compared with those obtained by Pollock's method. Suk's method produces superior tracking accuracy, which suggests that Suk's method can describe more accurately various advection-dominated transport problems in a real field than existing popular particle tracking methods, such as Pollock's method. To illustrate the wide and practical applicability of Suk's method to random-walk particle tracking (RWPT), the original RWPT has been modified to incorporate Suk's method. Performance of the modified RWPT using Suk's method is compared with the original RWPT scheme by examining the concentration distributions obtained by the modified RWPT and the original RWPT under complicated transient flow systems. PMID:22476629

  8. Investigation of current transport normal and parallel to the tape plane in BSCCO/Ag tapes

    SciTech Connect

    Maley, M.P.; Cho, J.H.; Willis, J.O.; Bulaevskii, L.N.

    1995-07-01

    We have performed transport, resistivity and critical current measurements on Bi-2223/Ag and Bi-2212/Ag tapes with current directions both parallel and perpendicular to the tape plane in magnetic fields up to 7 T and 50transport even along the tape normal in highly textured tapes.

  9. Fourier analysis of parallel inexact Block-Jacobi splitting with transport synthetic acceleration in slab geometry

    SciTech Connect

    Rosa, M.; Warsa, J. S.; Chang, J. H.

    2006-07-01

    A Fourier analysis is conducted for the discrete-ordinates (SN) approximation of the neutron transport problem solved with Richardson iteration (Source Iteration) and Richardson iteration preconditioned with Transport Synthetic Acceleration (TSA), using the Parallel Block-Jacobi (PBJ) algorithm. Both 'traditional' TSA (TTSA) and a 'modified' TSA (MTSA), in which only the scattering in the low order equations is reduced by some non-negative factor {beta} and < 1, are considered. The results for the un-accelerated algorithm show that convergence of the PBJ algorithm can degrade. The PBJ algorithm with TTSA can be effective provided the {beta} parameter is properly tuned for a given scattering ratio c, but is potentially unstable. Compared to TTSA, MTSA is less sensitive to the choice of {beta}, more effective for the same computational effort (c'), and it is unconditionally stable. (authors)

  10. Global restructuring of the CPM-2 transport algorithm for vector and parallel processing

    SciTech Connect

    Vujic, J.L.; Martin, W.R. )

    1989-11-01

    The CPM-2 code is an assembly transport code based on the collision probability (CP) method. It can in principle be applied to global reactor problems, but its excessive computational demands prevent this application. Therefore, a new transport algorithm for CPM-2 has been developed for vector-parallel architectures, which has resulted in an overall factor of 20 speedup (wall clock) on the IBM 3090-600E. This paper presents the detailed results of this effort as well as a brief description of ongoing effort to remove some of the modeling limitations in CPM-2 that inhibit its use for global applications, such as the use of the pure CP treatment and the assumption of isotropic scattering.

  11. Adaptive finite element simulation of flow and transport applications on parallel computers

    NASA Astrophysics Data System (ADS)

    Kirk, Benjamin Shelton

    The subject of this work is the adaptive finite element simulation of problems arising in flow and transport applications on parallel computers. Of particular interest are new contributions to adaptive mesh refinement (AMR) in this parallel high-performance context, including novel work on data structures, treatment of constraints in a parallel setting, generality and extensibility via object-oriented programming, and the design/implementation of a flexible software framework. This technology and software capability then enables more robust, reliable treatment of multiscale--multiphysics problems and specific studies of fine scale interaction such as those in biological chemotaxis (Chapter 4) and high-speed shock physics for compressible flows (Chapter 5). The work begins by presenting an overview of key concepts and data structures employed in AMR simulations. Of particular interest is how these concepts are applied in the physics-independent software framework which is developed here and is the basis for all the numerical simulations performed in this work. This open-source software framework has been adopted by a number of researchers in the U.S. and abroad for use in a wide range of applications. The dynamic nature of adaptive simulations pose particular issues for efficient implementation on distributed-memory parallel architectures. Communication cost, computational load balance, and memory requirements must all be considered when developing adaptive software for this class of machines. Specific extensions to the adaptive data structures to enable implementation on parallel computers is therefore considered in detail. The libMesh framework for performing adaptive finite element simulations on parallel computers is developed to provide a concrete implementation of the above ideas. This physics-independent framework is applied to two distinct flow and transport applications classes in the subsequent application studies to illustrate the flexibility of the

  12. Parallelization and load balancing of a comprehensive atmospheric chemistry transport model

    NASA Astrophysics Data System (ADS)

    Elbern, Hendrik

    Chemistry transport models are generally claimed to be well suited for massively parallel processing on distributed memory architectures since the arithmetic-to-communication ratio is usually high. However, this observation proves insufficient to account for an efficient parallel performance with increasing complexity of the model. The modeling of the local state of the atmosphere ensues very different branches of the modules' code and greater differences in the computational work load and, consequently, runtime of individual processors occur to a much larger extent during a time step than reported for meteorological models. Variable emissions, changes in actinic fluxes, and all processes associated with cloud modeling are highly variable in time and space and are identified to induce large load imbalances which severely affect the parallel efficiency. This is more so, when the model domain encompasses more heterogeneous meteorological or regional regimes, which impinge dissimilarly on simulations of atmospheric chemistry processes. These conditions hold for the EURAD model applied in this study, which covers the European continental scale as integration domain. Based on a master-worker configuration with a horizontal grid partitioning approach, a method is proposed where the integration domain of the individual processors is locally adjusted to accommodate for load imbalances. This ensures a minimal communication volume and data exchange only with the next neighbors. The interior boundary adjustments of the processors are combined with routine boundary exchange which is required each time step anyway. Two dynamic load balancing schemes were implemented and compared against a conventional equal area partition and a static load balancing scheme. The methods are devised for massively parallel distributed memory computers of both, Single and Multiple Instruction stream Multiple Data stream (SIMD, MIMD) types. A midsummer episode of highly elevated ozone concentrations

  13. Random walk particle tracking simulations of non-Fickian transport in heterogeneous media

    SciTech Connect

    Srinivasan, G. Tartakovsky, D.M. Dentz, M. Viswanathan, H.; Berkowitz, B.; Robinson, B.A.

    2010-06-01

    Derivations of continuum nonlocal models of non-Fickian (anomalous) transport require assumptions that might limit their applicability. We present a particle-based algorithm, which obviates the need for many of these assumptions by allowing stochastic processes that represent spatial and temporal random increments to be correlated in space and time, be stationary or non-stationary, and to have arbitrary distributions. The approach treats a particle trajectory as a subordinated stochastic process that is described by a set of Langevin equations, which represent a continuous time random walk (CTRW). Convolution-based particle tracking (CBPT) is used to increase the computational efficiency and accuracy of these particle-based simulations. The combined CTRW-CBPT approach enables one to convert any particle tracking legacy code into a simulator capable of handling non-Fickian transport.

  14. Parallel Monte Carlo transport modeling in the context of a time-dependent, three-dimensional multi-physics code

    SciTech Connect

    Procassini, R.J.

    1997-12-31

    The fine-scale, multi-space resolution that is envisioned for accurate simulations of complex weapons systems in three spatial dimensions implies flop-rate and memory-storage requirements that will only be obtained in the near future through the use of parallel computational techniques. Since the Monte Carlo transport models in these simulations usually stress both of these computational resources, they are prime candidates for parallelization. The MONACO Monte Carlo transport package, which is currently under development at LLNL, will utilize two types of parallelism within the context of a multi-physics design code: decomposition of the spatial domain across processors (spatial parallelism) and distribution of particles in a given spatial subdomain across additional processors (particle parallelism). This implementation of the package will utilize explicit data communication between domains (message passing). Such a parallel implementation of a Monte Carlo transport model will result in non-deterministic communication patterns. The communication of particles between subdomains during a Monte Carlo time step may require a significant level of effort to achieve a high parallel efficiency.

  15. OpenGeoSys-GEMS: Hybrid parallelization of a reactive transport code with MPI and threads

    NASA Astrophysics Data System (ADS)

    Kosakowski, G.; Kulik, D. A.; Shao, H.

    2012-04-01

    OpenGeoSys-GEMS is a generic purpose reactive transport code based on the operator splitting approach. The code couples the Finite-Element groundwater flow and multi-species transport modules of the OpenGeoSys (OGS) project (http://www.ufz.de/index.php?en=18345) with the GEM-Selektor research package to model thermodynamic equilibrium of aquatic (geo)chemical systems utilizing the Gibbs Energy Minimization approach (http://gems.web.psi.ch/). The combination of OGS and the GEM-Selektor kernel (GEMS3K) is highly flexible due to the object-oriented modular code structures and the well defined (memory based) data exchange modules. Like other reactive transport codes, the practical applicability of OGS-GEMS is often hampered by the long calculation time and large memory requirements. • For realistic geochemical systems which might include dozens of mineral phases and several (non-ideal) solid solutions the time needed to solve the chemical system with GEMS3K may increase exceptionally. • The codes are coupled in a sequential non-iterative loop. In order to keep the accuracy, the time step size is restricted. In combination with a fine spatial discretization the time step size may become very small which increases calculation times drastically even for small 1D problems. • The current version of OGS is not optimized for memory use and the MPI version of OGS does not distribute data between nodes. Even for moderately small 2D problems the number of MPI processes that fit into memory of up-to-date workstations or HPC hardware is limited. One strategy to overcome the above mentioned restrictions of OGS-GEMS is to parallelize the coupled code. For OGS a parallelized version already exists. It is based on a domain decomposition method implemented with MPI and provides a parallel solver for fluid and mass transport processes. In the coupled code, after solving fluid flow and solute transport, geochemical calculations are done in form of a central loop over all finite

  16. Assessment of the 2D MOC solver in MPACT: Michigan parallel characteristics transport code

    SciTech Connect

    Collins, B.; Kochunas, B.; Downar, T.

    2013-07-01

    MPACT (Michigan Parallel Characteristics Transport Code) is a new reactor analysis tool being developed by researchers at the University of Michigan as an advanced pin-resolved transport capability within VERA (Virtual Environment for Reactor Analysis). VERA is the end-user reactor simulation tool being developed by the Consortium for the Advanced Simulation of Light Water Reactors (CASL). The MPACT development project is itself unique for the way it is changing how students perform research to achieve the instructional and research goals of an academic institution, while providing immediate value to the industry. One of the major computational pieces in MPACT is the 2D MOC solver. It is critical that the 2D MOC solver provide an efficient, accurate, and robust solution over a broad range of reactor operating conditions. The C5G7 benchmark is first used to test the accuracy of the method with a fixed set of cross-sections. The VERA Core Physics Progression Problems are then used to compare the accuracy of both the 2D transport solver and also the cross-section treatments. (authors)

  17. Overview of development and design of MPACT: Michigan parallel characteristics transport code

    SciTech Connect

    Kochunas, B.; Collins, B.; Jabaay, D.; Downar, T. J.; Martin, W. R.

    2013-07-01

    MPACT (Michigan Parallel Characteristics Transport Code) is a new reactor analysis tool. It is being developed by students and research staff at the University of Michigan to be used for an advanced pin-resolved transport capability within VERA (Virtual Environment for Reactor Analysis). VERA is the end-user reactor simulation tool being produced by the Consortium for the Advanced Simulation of Light Water Reactors (CASL). The MPACT development project is itself unique for the way it is changing how students do research to achieve the instructional and research goals of an academic institution, while providing immediate value to industry. The MPACT code makes use of modern lean/agile software processes and extensive testing to maintain a level of productivity and quality required by CASL. MPACT's design relies heavily on object-oriented programming concepts and design patterns and is programmed in Fortran 2003. These designs are explained and illustrated as to how they can be readily extended to incorporate new capabilities and research ideas in support of academic research objectives. The transport methods currently implemented in MPACT include the 2-D and 3-D method of characteristics (MOC) and 2-D and 3-D method of collision direction probabilities (CDP). For the cross section resonance treatment, presently the subgroup method and the new embedded self-shielding method (ESSM) are implemented within MPACT. (authors)

  18. Regional Atmospheric Transport Code for Hanford Emission Tracking, Version 2(RATCHET2)

    SciTech Connect

    Ramsdell, James V.; Rishel, Jeremy P.

    2006-07-01

    This manual describes the atmospheric model and computer code for the Atmospheric Transport Module within SAC. The Atmospheric Transport Module, called RATCHET2, calculates the time-integrated air concentration and surface deposition of airborne contaminants to the soil. The RATCHET2 code is an adaptation of the Regional Atmospheric Transport Code for Hanford Emissions Tracking (RATCHET). The original RATCHET code was developed to perform the atmospheric transport for the Hanford Environmental Dose Reconstruction Project. Fundamentally, the two sets of codes are identical; no capabilities have been deleted from the original version of RATCHET. Most modifications are generally limited to revision of the run-specification file to streamline the simulation process for SAC.

  19. Transport properties of track-etched membranes having variable effective pore-lengths

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc Hung; Ali, Mubarak; Nasir, Saima; Ensinger, Wolfgang

    2015-12-01

    The transport rate of molecules through polymeric membranes is normally limited because of their micrometer-scale thickness which restricts their suitability for more practical application. To study the effect of effective pore length on the transport behavior, polymer membranes containing cylindrical and asymmetric-shaped nanopores were prepared through a two-step ion track-etching technique. Permeation experiments were performed separately to investigate the transport properties (molecular flux and selectivity) of these track-etched membranes. The permeation data shows that the molecular flux across membranes containing asymmetric nanopores is higher compared to those having cylindrical pores. On the other hand, the cylindrical pore membranes exhibit higher selectivity than asymmetric pores for the permeation of charged molecules across the membrane. Current-voltage (I-V) measurements of single-pore membranes further verify that asymmetric pores exhibit lower resistance for the flow of ions and therefore show higher currents than cylindrical pores. Moreover, unmodified and polyethyleneimine (PEI) modified asymmetric-shaped pore membranes were successfully used for the separation of cationic and anionic analyte molecules from their mixture, respectively. In this study, two distinct effects (pore geometry and pore density, i.e. number of pores cm-2), which mainly influence membrane selectivity and molecular transport rates, were thoroughly investigated in order to optimize the membrane performance. In this context, we believe that membranes with high molecular transport rates could readily find their application in molecular separation and controlled drug delivery processes.

  20. Transport properties of track-etched membranes having variable effective pore-lengths.

    PubMed

    Nguyen, Quoc Hung; Ali, Mubarak; Nasir, Saima; Ensinger, Wolfgang

    2015-12-01

    The transport rate of molecules through polymeric membranes is normally limited because of their micrometer-scale thickness which restricts their suitability for more practical application. To study the effect of effective pore length on the transport behavior, polymer membranes containing cylindrical and asymmetric-shaped nanopores were prepared through a two-step ion track-etching technique. Permeation experiments were performed separately to investigate the transport properties (molecular flux and selectivity) of these track-etched membranes. The permeation data shows that the molecular flux across membranes containing asymmetric nanopores is higher compared to those having cylindrical pores. On the other hand, the cylindrical pore membranes exhibit higher selectivity than asymmetric pores for the permeation of charged molecules across the membrane. Current-voltage (I-V) measurements of single-pore membranes further verify that asymmetric pores exhibit lower resistance for the flow of ions and therefore show higher currents than cylindrical pores. Moreover, unmodified and polyethyleneimine (PEI) modified asymmetric-shaped pore membranes were successfully used for the separation of cationic and anionic analyte molecules from their mixture, respectively. In this study, two distinct effects (pore geometry and pore density, i.e. number of pores cm(-2)), which mainly influence membrane selectivity and molecular transport rates, were thoroughly investigated in order to optimize the membrane performance. In this context, we believe that membranes with high molecular transport rates could readily find their application in molecular separation and controlled drug delivery processes. PMID:26553245

  1. Fano effect dominance over Coulomb blockade in transport properties of parallel coupled quantum dot system

    SciTech Connect

    Brogi, Bharat Bhushan Ahluwalia, P. K.; Chand, Shyam

    2015-06-24

    Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ε + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.

  2. Time-dependent 3-D dterministic transport on parallel architectures using Dantsys/MPI

    SciTech Connect

    Baker, R.S.; Alcouffe, R.E.

    1996-12-31

    In addition to the ability to solve the static transport equation, we have also incorporated time dependence into our parallel 3-D S{sub {ital N}} code DANTSYS/MPI. Using a semi-implicit scheme, DANTSYS/MPI is capable of performing time-dependent calculations for both fissioning and pure source driven problems. We have applied this to various types of problems such as nuclear well logging and prompt fission experiments. This paper describes the form of the time- dependent equations implemented, their solution strategies in DANTSYS/MPI including iteration acceleration, and the strategies used for time-step control. Results are presented for a model nuclear well logging calculation.

  3. Parallel Finite Element Electron-Photon Transport Analysis on 2-D Unstructured Mesh

    SciTech Connect

    Drumm, C.R.

    1999-01-01

    A computer code has been developed to solve the linear Boltzmann transport equation on an unstructured mesh of triangles, from a Pro/E model. An arbitriwy arrangement of distinct material regions is allowed. Energy dependence is handled by solving over an arbitrary number of discrete energy groups. Angular de- pendence is treated by Legendre-polynomial expansion of the particle cross sections and a discrete ordinates treatment of the particle fluence. The resulting linear system is solved in parallel with a preconditioned conjugate-gradients method. The solution method is unique, in that the space-angle dependence is solved si- multaneously, eliminating the need for the usual inner iterations. Electron cross sections are obtained from a Goudsrnit-Saunderson modifed version of the CEPXS code. A one-dimensional version of the code has also been develop@ for testing and development purposes.

  4. Parallel FE Electron-Photon Transport Analysis on 2-D Unstructured Mesh

    SciTech Connect

    Drumm, C.R.; Lorenz, J.

    1999-03-02

    A novel solution method has been developed to solve the coupled electron-photon transport problem on an unstructured triangular mesh. Instead of tackling the first-order form of the linear Boltzmann equation, this approach is based on the second-order form in conjunction with the conventional multi-group discrete-ordinates approximation. The highly forward-peaked electron scattering is modeled with a multigroup Legendre expansion derived from the Goudsmit-Saunderson theory. The finite element method is used to treat the spatial dependence. The solution method is unique in that the space-direction dependence is solved simultaneously, eliminating the need for the conventional inner iterations, a method that is well suited for massively parallel computers.

  5. An object-oriented implementation of a parallel Monte Carlo code for radiation transport

    NASA Astrophysics Data System (ADS)

    Santos, Pedro Duarte; Lani, Andrea

    2016-05-01

    This paper describes the main features of a state-of-the-art Monte Carlo solver for radiation transport which has been implemented within COOLFluiD, a world-class open source object-oriented platform for scientific simulations. The Monte Carlo code makes use of efficient ray tracing algorithms (for 2D, axisymmetric and 3D arbitrary unstructured meshes) which are described in detail. The solver accuracy is first verified in testcases for which analytical solutions are available, then validated for a space re-entry flight experiment (i.e. FIRE II) for which comparisons against both experiments and reference numerical solutions are provided. Through the flexible design of the physical models, ray tracing and parallelization strategy (fully reusing the mesh decomposition inherited by the fluid simulator), the implementation was made efficient and reusable.

  6. A massively parallel method of characteristic neutral particle transport code for GPUs

    SciTech Connect

    Boyd, W. R.; Smith, K.; Forget, B.

    2013-07-01

    Over the past 20 years, parallel computing has enabled computers to grow ever larger and more powerful while scientific applications have advanced in sophistication and resolution. This trend is being challenged, however, as the power consumption for conventional parallel computing architectures has risen to unsustainable levels and memory limitations have come to dominate compute performance. Heterogeneous computing platforms, such as Graphics Processing Units (GPUs), are an increasingly popular paradigm for solving these issues. This paper explores the applicability of GPUs for deterministic neutron transport. A 2D method of characteristics (MOC) code - OpenMOC - has been developed with solvers for both shared memory multi-core platforms as well as GPUs. The multi-threading and memory locality methodologies for the GPU solver are presented. Performance results for the 2D C5G7 benchmark demonstrate 25-35 x speedup for MOC on the GPU. The lessons learned from this case study will provide the basis for further exploration of MOC on GPUs as well as design decisions for hardware vendors exploring technologies for the next generation of machines for scientific computing. (authors)

  7. BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological simulations

    PubMed Central

    Ghaffarizadeh, Ahmadreza; Friedman, Samuel H.; Macklin, Paul

    2016-01-01

    Motivation: Computational models of multicellular systems require solving systems of PDEs for release, uptake, decay and diffusion of multiple substrates in 3D, particularly when incorporating the impact of drugs, growth substrates and signaling factors on cell receptors and subcellular systems biology. Results: We introduce BioFVM, a diffusive transport solver tailored to biological problems. BioFVM can simulate release and uptake of many substrates by cell and bulk sources, diffusion and decay in large 3D domains. It has been parallelized with OpenMP, allowing efficient simulations on desktop workstations or single supercomputer nodes. The code is stable even for large time steps, with linear computational cost scalings. Solutions are first-order accurate in time and second-order accurate in space. The code can be run by itself or as part of a larger simulator. Availability and implementation: BioFVM is written in C ++ with parallelization in OpenMP. It is maintained and available for download at http://BioFVM.MathCancer.org and http://BioFVM.sf.net under the Apache License (v2.0). Contact: paul.macklin@usc.edu. Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26656933

  8. Particle tracking approach for transport in three-dimensional discrete fracture networks

    DOE PAGESBeta

    Makedonska, Nataliia; Painter, Scott L; Bui, Quan M; Gable, Carl; Karra, Satish

    2015-01-01

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. We demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  9. Particle tracking approach for transport in three-dimensional discrete fracture networks

    SciTech Connect

    Makedonska, Nataliia; Painter, Scott L; Bui, Quan M; Gable, Carl; Karra, Satish

    2015-01-01

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. We demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.

  10. Advanced quadratures and periodic boundary conditions in parallel 3D S{sub n} transport

    SciTech Connect

    Manalo, K.; Yi, C.; Huang, M.; Sjoden, G.

    2013-07-01

    Significant updates in numerical quadratures have warranted investigation with 3D Sn discrete ordinates transport. We show new applications of quadrature departing from level symmetric (S{sub 2}o). investigating 3 recently developed quadratures: Even-Odd (EO), Linear-Discontinuous Finite Element - Surface Area (LDFE-SA), and the non-symmetric Icosahedral Quadrature (IC). We discuss implementation changes to 3D Sn codes (applied to Hybrid MOC-Sn TITAN and 3D parallel PENTRAN) that can be performed to accommodate Icosahedral Quadrature, as this quadrature is not 90-degree rotation invariant. In particular, as demonstrated using PENTRAN, the properties of Icosahedral Quadrature are suitable for trivial application using periodic BCs versus that of reflective BCs. In addition to implementing periodic BCs for 3D Sn PENTRAN, we implemented a technique termed 'angular re-sweep' which properly conditions periodic BCs for outer eigenvalue iterative loop convergence. As demonstrated by two simple transport problems (3-group fixed source and 3-group reflected/periodic eigenvalue pin cell), we remark that all of the quadratures we investigated are generally superior to level symmetric quadrature, with Icosahedral Quadrature performing the most efficiently for problems tested. (authors)

  11. Parallel simulation of particle transport in an advection field applied to volcanic explosive eruptions

    NASA Astrophysics Data System (ADS)

    Künzli, Pierre; Tsunematsu, Kae; Albuquerque, Paul; Falcone, Jean-Luc; Chopard, Bastien; Bonadonna, Costanza

    2016-04-01

    Volcanic ash transport and dispersal models typically describe particle motion via a turbulent velocity field. Particles are advected inside this field from the moment they leave the vent of the volcano until they deposit on the ground. Several techniques exist to simulate particles in an advection field such as finite difference Eulerian, Lagrangian-puff or pure Lagrangian techniques. In this paper, we present a new flexible simulation tool called TETRAS (TEphra TRAnsport Simulator) based on a hybrid Eulerian-Lagrangian model. This scheme offers the advantages of being numerically stable with no numerical diffusion and easily parallelizable. It also allows us to output particle atmospheric concentration or ground mass load at any given time. The model is validated using the advection-diffusion analytical equation. We also obtained a good agreement with field observations of the tephra deposit associated with the 2450 BP Pululagua (Ecuador) and the 1996 Ruapehu (New Zealand) eruptions. As this kind of model can lead to computationally intensive simulations, a parallelization on a distributed memory architecture was developed. A related performance model, taking into account load imbalance, is proposed and its accuracy tested.

  12. Transport-parallel cross folds within a mid-crustal Caledonian thrust stack, northern Scotland

    NASA Astrophysics Data System (ADS)

    Alsop, G. I.; Holdsworth, R. E.; Strachan, R. A.

    1996-06-01

    Cross folds are typically associated with zones of anomalous foliation trend that lie at high angles to orogenic strike. This case study concentrates on a region of transport-parallel cross folding developed by buckling during Caledonian ductile thrusting within the Moine and Naver Nappes of northern Scotland. Detailed structural analysis reveals a systematic angular relationship between the trend of tectonic transport, fold axes, and the vergence of minor folds. Large-scale cross folding is considered here to be related to wrench-dominated differential shearing during thrust-sense displacements along an important, possibly out-of-sequence structure, here termed the Ben Blandy Shear Zone. This suggests that patterns of folding within the internal parts of the Caledonian orogen in Scotland are principally controlled by the kinematic constraints imposed by low-angle thrusting. Thus, early, 'main-phase' folding is associated with the initiation and propagation of ductile thrusts, whilst later, secondary structures, including cross folds can be related to the development of flow perturbations during displacement along well-established, regionally important detachments.

  13. A Parallel 3d Model for The Multi-Species Low Energy BeamTransport System of the RIA Prototype ECR Ion Source Venus

    SciTech Connect

    Qiang, J.; Leitner, D.; Todd, D.

    2005-05-16

    The driver linac of the proposed Rare Isotope Accelerator (RIA) requires a great variety of high intensity, high charge state ion beams. In order to design and to optimize the low energy beamline optics of the RIA front end,we have developed a new parallel three-dimensional model to simulate the low energy, multi-species ion beam formation and transport from the ECR ion source extraction region to the focal plane of the analyzing magnet. A multisection overlapped computational domain has been used to break the original transport system into a number of each subsystem, macro-particle tracking is used to obtain the charge density distribution in this subdomain. The three-dimensional Poisson equation is solved within the subdomain and particle tracking is repeated until the solution converges. Two new Poisson solvers based on a combination of the spectral method and the multigrid method have been developed to solve the Poisson equation in cylindrical coordinates for the beam extraction region and in the Frenet-Serret coordinates for the bending magnet region. Some test examples and initial applications will also be presented.

  14. Simulation of Large Parallel Plasma Flows in the Tokamak SOL Driven by Cross-Field Transport Asymmetries

    SciTech Connect

    Pigarov, A Y; Krasheninnikov, S I; LaBombard, B; Rognlien, T D

    2006-06-06

    Large-Mach-number parallel plasma flows in the single-null SOL of different tokamaks are simulated with multi-fluid transport code UEDGE. The key role of poloidal asymmetry of cross-field plasma transport as the driving mechanism for such flows is discussed. The impact of ballooning-like diffusive and convective transport and plasma flows on divertor detachment, material migration, impurity flows, and erosion/deposition profiles is studied. The results on well-balanced double null plasma modeling that are indicative of strong asymmetry of cross-field transport are presented.

  15. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions

    NASA Astrophysics Data System (ADS)

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-01

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.

  16. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions.

    PubMed

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-20

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources. PMID:20701994

  17. A Many-Task Parallel Approach for Multiscale Simulations of Subsurface Flow and Reactive Transport

    SciTech Connect

    Scheibe, Timothy D.; Yang, Xiaofan; Schuchardt, Karen L.; Agarwal, Khushbu; Chase, Jared M.; Palmer, Bruce J.; Tartakovsky, Alexandre M.

    2014-12-16

    Continuum-scale models have long been used to study subsurface flow, transport, and reactions but lack the ability to resolve processes that are governed by pore-scale mixing. Recently, pore-scale models, which explicitly resolve individual pores and soil grains, have been developed to more accurately model pore-scale phenomena, particularly reaction processes that are controlled by local mixing. However, pore-scale models are prohibitively expensive for modeling application-scale domains. This motivates the use of a hybrid multiscale approach in which continuum- and pore-scale codes are coupled either hierarchically or concurrently within an overall simulation domain (time and space). This approach is naturally suited to an adaptive, loosely-coupled many-task methodology with three potential levels of concurrency. Each individual code (pore- and continuum-scale) can be implemented in parallel; multiple semi-independent instances of the pore-scale code are required at each time step providing a second level of concurrency; and Monte Carlo simulations of the overall system to represent uncertainty in material property distributions provide a third level of concurrency. We have developed a hybrid multiscale model of a mixing-controlled reaction in a porous medium wherein the reaction occurs only over a limited portion of the domain. Loose, minimally-invasive coupling of pre-existing parallel continuum- and pore-scale codes has been accomplished by an adaptive script-based workflow implemented in the Swift workflow system. We describe here the methods used to create the model system, adaptively control multiple coupled instances of pore- and continuum-scale simulations, and maximize the scalability of the overall system. We present results of numerical experiments conducted on NERSC supercomputing systems; our results demonstrate that loose many-task coupling provides a scalable solution for multiscale subsurface simulations with minimal overhead.

  18. Development of an expert system for automatic mesh generation for S(N) particle transport method in parallel environment

    NASA Astrophysics Data System (ADS)

    Patchimpattapong, Apisit

    This dissertation develops an expert system for generating an effective spatial mesh distribution for the discrete ordinates particle transport method in a parallel environment. This expert system consists of two main parts: (1) an algorithm for generating an effective mesh distribution in a serial environment, and (2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. The mesh generation algorithm consists of four steps: creation of a geometric model as partitioned into coarse meshes, determination of an approximate flux shape, selection of appropriate differencing schemes, and generation of an effective fine mesh distribution. A geometric model was created using AutoCAD. A parallel code PENFC (Parallel Environment Neutral-Particle First Collision) has been developed to calculate an uncollided flux in a 3-D Cartesian geometry. The appropriate differencing schemes were selected based on the uncollided flux distribution using a least squares methodology. A menu-driven serial code PENXMSH has been developed to generate an effective spatial mesh distribution that preserves problem geometry and physics. The domain decomposition selection process involves evaluation of the four factors that affect parallel performance, which include number of processors and memory available per processor, load balance, granularity, and degree-of-coupling among processors. These factors are used to derive a parallel-performance-index that provides expected performance of a parallel algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems: the VENUS-3 experimental facility and the BWR core shroud.

  19. Microtubule doublets are double-track railways for intraflagellar transport trains.

    PubMed

    Stepanek, Ludek; Pigino, Gaia

    2016-05-01

    The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the function of this doublet geometry has not been understood. We developed a time-resolved correlative fluorescence and three-dimensional electron microscopy approach to investigate the dynamics of intraflagellar transport (IFT) trains, which carry ciliary building blocks along microtubules during the assembly and disassembly of the cilium. Using this method, we showed that each microtubule doublet is used as a bidirectional double-track railway: Anterograde IFT trains move along B-microtubules, and retrograde trains move along A-microtubules. Thus, the microtubule doublet geometry provides direction-specific rails to coordinate bidirectional transport of ciliary components. PMID:27151870

  20. Electrical Transport Through Micro Porous Track Etch Membranes of same Porosity

    NASA Astrophysics Data System (ADS)

    Garg, Ravish; Kumar, Vijay; Kumar, Dinesh; Chakarvarti, S. K.

    2012-12-01

    Porosity, pore size and thickness of membrane are vital factors to influence the transport phenomena through micro porous track etch membranes (TEMs) and affect the various applications like separations, drug release, flow control, bio-sensing and cell size detection etc. based on transport process. Therefore, a better understanding of transport mechanism through TEMs is required for new applications in various thrust areas like biomedical devices and packaging of foods and drugs. Transport studies of electrolytic solutions of potassium chloride, through porous polycarbonate TEMS having cylindrical pores of size 0.2 μm and 0.4 μm with same porosity of 15%, have been carried out using an electrochemical cell. In this technique, the etched filter is sandwiched between two compartments of cell in such a way that the TEM acts as a membrane separating the cell into two chambers. The two chambers are then filled with electrolyte solution (KCl in distilled water). The current voltage characteristics have been drawn by stepping the voltage ranging 0 to 10 V using Keithley 2400 Series Source Measurement Unit. The results indicate that rate of ion transport through cylindrical pores although is independent of pore size of TEMs of same porosity but there seems to be effect of TEM aperture size exposed to the electrolyte used in conducting cell on ion transport magnitude. From the experimental studies, a large deviation in the conduction through TEMs was observed when compared with theoretical consideration which led to the need for modification in the applicability of simple Ohm's law to the conduction through TEMs. It is found that ion transport increases with increase in area of aperture of TEM but much lower than the expected theoretically value.

  1. Toward efficiency in heterogeneous multispecies reactive transport modeling: A particle-tracking solution for first-order network reactions

    NASA Astrophysics Data System (ADS)

    Henri, Christopher; Fernàndez-Garcia, Daniel

    2015-04-01

    Modeling multi-species reactive transport in natural systems with strong heterogeneities and complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction networks commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk particle tracking method is presented. This method is capable of efficiently simulating the motion of particles affected by first-order network reactions in three-dimensional systems, which are represented by spatially variable physical and biochemical coefficients described at high resolution. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and location at a given time will be transformed into and moved to another species and location afterwards. These probabilities are derived from the solution matrix of the spatial moments governing equations. The method is fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demonstrate that the motion of particles follows a standard random walk with time-dependent effective retardation and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of effective parameters develops as a result of differential retardation effects among species. Moreover, explicit analytic solutions of the transition probability matrix and related particle motions are provided for serial reactions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a three-dimensional random porous media shows that the power-law behavior typically observed in conservative tracers breakthrough curves can be largely compromised by the

  2. Toward efficiency in heterogeneous multispecies reactive transport modeling: A particle-tracking solution for first-order network reactions

    NASA Astrophysics Data System (ADS)

    Henri, Christopher V.; Fernández-Garcia, Daniel

    2014-09-01

    Modeling multispecies reactive transport in natural systems with strong heterogeneities and complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction networks commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk particle tracking method is presented. This method is capable of efficiently simulating the motion of particles affected by first-order network reactions in three-dimensional systems, which are represented by spatially variable physical and biochemical coefficients described at high resolution. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and location at a given time will be transformed into and moved to another species and location afterward. These probabilities are derived from the solution matrix of the spatial moments governing equations. The method is fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demonstrate that the motion of particles follows a standard random walk with time-dependent effective retardation and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of effective parameters develops as a result of differential retardation effects among species. Moreover, explicit analytic solutions of the transition probability matrix and related particle motions are provided for serial reactions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a three-dimensional random porous media shows that the power-law behavior typically observed in conservative tracers breakthrough curves can be largely compromised by the

  3. Linear Quadratic Tracking Design for a Generic Transport Aircraft with Structural Load Constraints

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Frost, Susan A.; Taylor, Brian R.

    2011-01-01

    When designing control laws for systems with constraints added to the tracking performance, control allocation methods can be utilized. Control allocations methods are used when there are more command inputs than controlled variables. Constraints that require allocators are such task as; surface saturation limits, structural load limits, drag reduction constraints or actuator failures. Most transport aircraft have many actuated surfaces compared to the three controlled variables (such as angle of attack, roll rate & angle of side slip). To distribute the control effort among the redundant set of actuators a fixed mixer approach can be utilized or online control allocation techniques. The benefit of an online allocator is that constraints can be considered in the design whereas the fixed mixer cannot. However, an online control allocator mixer has a disadvantage of not guaranteeing a surface schedule, which can then produce ill defined loads on the aircraft. The load uncertainty and complexity has prevented some controller designs from using advanced allocation techniques. This paper considers actuator redundancy management for a class of over actuated systems with real-time structural load limits using linear quadratic tracking applied to the generic transport model. A roll maneuver example of an artificial load limit constraint is shown and compared to the same no load limitation maneuver.

  4. Parallel Algorithms for Monte Carlo Particle Transport Simulation on Exascale Computing Architectures

    NASA Astrophysics Data System (ADS)

    Romano, Paul Kollath

    Monte Carlo particle transport methods are being considered as a viable option for high-fidelity simulation of nuclear reactors. While Monte Carlo methods offer several potential advantages over deterministic methods, there are a number of algorithmic shortcomings that would prevent their immediate adoption for full-core analyses. In this thesis, algorithms are proposed both to ameliorate the degradation in parallel efficiency typically observed for large numbers of processors and to offer a means of decomposing large tally data that will be needed for reactor analysis. A nearest-neighbor fission bank algorithm was proposed and subsequently implemented in the OpenMC Monte Carlo code. A theoretical analysis of the communication pattern shows that the expected cost is O( N ) whereas traditional fission bank algorithms are O(N) at best. The algorithm was tested on two supercomputers, the Intrepid Blue Gene/P and the Titan Cray XK7, and demonstrated nearly linear parallel scaling up to 163,840 processor cores on a full-core benchmark problem. An algorithm for reducing network communication arising from tally reduction was analyzed and implemented in OpenMC. The proposed algorithm groups only particle histories on a single processor into batches for tally purposes---in doing so it prevents all network communication for tallies until the very end of the simulation. The algorithm was tested, again on a full-core benchmark, and shown to reduce network communication substantially. A model was developed to predict the impact of load imbalances on the performance of domain decomposed simulations. The analysis demonstrated that load imbalances in domain decomposed simulations arise from two distinct phenomena: non-uniform particle densities and non-uniform spatial leakage. The dominant performance penalty for domain decomposition was shown to come from these physical effects rather than insufficient network bandwidth or high latency. The model predictions were verified with

  5. Using CO observations from space to track long-range transport of pollution

    NASA Astrophysics Data System (ADS)

    Jacob, D. J.; Kim, S.; Wang, H.; Zoogman, P.

    2012-12-01

    The long and high-quality record of CO observations from satellite sensors provides a unique resource for tracking long-range transport from combustion sources, with many applications for our understanding of air quality and climate forcing. I will discuss some of these applications based on recent and ongoing work at Harvard. I will show how the high density of observations from AIRS and IASI has advanced our knowledge of intercontinental transport of pollution. The new TIR+NIR retrieval from MOPITT provides vertical profile information for CO over continents and I will examine its utility for testing boundary layer ventilation in global models. CO observations from space can be of great value in correlative analyses with other species to isolate the effect of combustion sources and synoptic transport. I will discuss how ozone-CO (OMI+AIRS) and aerosol-CO (MODIS+CALIOP+AIRS) correlations from space can thus provide constraints on ozone sources and on aerosol scavenging. Correlative information from CO observations is also useful in formal data assimilation by effectively reducing the forward model errors on transport and sources. I will discuss the application to CO2 source inversions and to future data assimilation of ozone air quality from geostationary orbit.

  6. An Improved Algorithm and Its Parallel Implementation for Solving a General Blood-Tissue Transport and Metabolism Model

    PubMed Central

    Xie, Dexuan; Dash, Ranjan K.; Beard, Daniel A.

    2009-01-01

    Fast algorithms for simulating mathematical models of coupled blood-tissue transport and metabolism are critical for the analysis of data on transport and reaction in tissues. Here, by combining the method of characteristics with the standard grid discretization technique, a novel algorithm is introduced for solving a general blood-tissue transport and metabolism model governed by a large system of one-dimensional semilinear first order partial differential equations. The key part of the algorithm is to approximate the model as a group of independent ordinary differential equation (ODE) systems such that each ODE system has the same size as the model and can be integrated independently. Thus the method can be easily implemented in parallel on a large scale multiprocessor computer. The accuracy of the algorithm is demonstrated for solving a simple blood-tissue exchange model introduced by Sangren and Sheppard (Bull. Math. Biophys. 15:387–394, 1953), which has an analytical solution. Numerical experiments made on a distributed-memory parallel computer (an HP Linux cluster) and a shared-memory parallel computer (a SGI Origin 2000) demonstrate the parallel efficiency of the algorithm. PMID:20161089

  7. An Improved Algorithm and Its Parallel Implementation for Solving a General Blood-Tissue Transport and Metabolism Model.

    PubMed

    Xie, Dexuan; Dash, Ranjan K; Beard, Daniel A

    2009-11-01

    Fast algorithms for simulating mathematical models of coupled blood-tissue transport and metabolism are critical for the analysis of data on transport and reaction in tissues. Here, by combining the method of characteristics with the standard grid discretization technique, a novel algorithm is introduced for solving a general blood-tissue transport and metabolism model governed by a large system of one-dimensional semilinear first order partial differential equations. The key part of the algorithm is to approximate the model as a group of independent ordinary differential equation (ODE) systems such that each ODE system has the same size as the model and can be integrated independently. Thus the method can be easily implemented in parallel on a large scale multiprocessor computer. The accuracy of the algorithm is demonstrated for solving a simple blood-tissue exchange model introduced by Sangren and Sheppard (Bull. Math. Biophys. 15:387-394, 1953), which has an analytical solution. Numerical experiments made on a distributed-memory parallel computer (an HP Linux cluster) and a shared-memory parallel computer (a SGI Origin 2000) demonstrate the parallel efficiency of the algorithm. PMID:20161089

  8. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    SciTech Connect

    Kostin, Mikhail; Mokhov, Nikolai; Niita, Koji

    2013-09-25

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA and MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.

  9. Implementation of Generalized Coarse-Mesh Rebalance of NEWTRNX for Acceleration of Parallel Block-Jacobi Transport

    SciTech Connect

    Clarno, Kevin T

    2007-01-01

    The NEWTRNX transport module solves the multigroup, discrete-ordinates source-driven or k-eigenvalue transport equation in parallel on a 3-D unstructured tetrahedral mesh using the extended step characteristics (ESC), also known as the slice-balance approach (SBA), spatial discretization. The spatial domains are decomposed using METIS. NEWTRNX is under development for nuclear reactor analysis on computer hardware ranging from clusters to massively parallel machines, like the Cray XT4. Transport methods that rely on full sweeps across the spatial domain have been shown to display poor scaling for thousands of processors. The Parallel Block-Jacobi (PBJ) algorithm allows each spatial partition to sweep over all discrete-ordinate directions and energies independently of all other domains, potentially allowing for much better scaling than possible with full sweeps. The PBJ algorithm has been implemented in NEWTRNX using a Gauss-Seidel iteration in energy and an asynchronous communication by an energy group, such that each partition utilizes the latest boundary solution available for each group before solving the withingroup scattering in a given group. For each energy group, the within-group scattering converges with a generalized minimum residual (GMRES) solver, preconditioned with beta transport synthetic acceleration ({beta}-TSA).

  10. THE EFFECT OF INTERMITTENT GYRO-SCALE SLAB TURBULENCE ON PARALLEL AND PERPENDICULAR COSMIC-RAY TRANSPORT

    SciTech Connect

    Le Roux, J. A.

    2011-12-10

    Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales. In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.

  11. First-principles derivation of reactive transport modeling parameters for particle tracking and PDE approaches

    NASA Astrophysics Data System (ADS)

    Hansen, Scott K.; Scher, Harvey; Berkowitz, Brian

    2014-07-01

    Both Eulerian and Lagrangian reactive transport simulations in natural media require selection of a parameter that controls the “promiscuity” of the reacting particles. In Eulerian models, measurement of this parameter may be difficult because its value will generally differ between natural (diffusion-limited) systems and batch experiments, even though both are modeled by reaction terms of the same form. And in Lagrangian models, there previously has been no a priori way to compute this parameter. In both cases, then, selection is typically done by calibration, or ad hoc. This paper addresses the parameter selection problem for Fickian transport by deriving, from first principles and D (the diffusion constant) the reaction-rate-controlling parameters for particle tracking (PT) codes and for the diffusion-reaction equation (DRE). Using continuous time random walk analysis, exact reaction probabilities are derived for pairs of potentially reactive particles based on D and their probability of reaction provided that they collocate. Simultaneously, a second PT scheme directly employing collocation probabilities is derived. One-to-one correspondence between each of D, the reaction radius specified for a PT scheme, and the DRE decay constant are then developed. These results serve to ground reactive transport simulations in their underlying thermodynamics, and are confirmed by simulations.

  12. Satellite Perspective of Aerosol Intercontinental Transport: From Qualitative Tracking to Quantitative Characterization

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Remer, Lorraine A.; Kahn, Ralph A.; Chin, Mian; Zhang, Yan

    2012-01-01

    Evidence of aerosol intercontinental transport (ICT) is both widespread and compelling. Model simulations suggest that ICT could significantly affect regional air quality and climate, but the broad inter-model spread of results underscores a need of constraining model simulations with measurements. Satellites have inherent advantages over in situ measurements to characterize aerosol ICT, because of their spatial and temporal coverage. Significant progress in satellite remote sensing of aerosol properties during the Earth Observing System (EOS) era offers opportunity to increase quantitative characterization and estimates of aerosol ICT, beyond the capability of pre-EOS era satellites that could only qualitatively track aerosol plumes. EOS satellites also observe emission strengths and injection heights of some aerosols, aerosol precursors, and aerosol-related gases, which can help characterize aerosol ICT. After an overview of these advances, we review how the current generation of satellite measurements have been used to (1) characterize the evolution of aerosol plumes (e.g., both horizontal and vertical transport, and properties) on an episodic basis, (2) understand the seasonal and inter-annual variations of aerosol ICT and their control factors, (3) estimate the export and import fluxes of aerosols, and (4) evaluate and constrain model simulations. Substantial effort is needed to further explore an integrated approach using measurements from on-orbit satellites (e.g., A-Train synergy) for observational characterization and model constraint of aerosol intercontinental transport and to develop advanced sensors for future missions.

  13. The DANTE Boltzmann transport solver: An unstructured mesh, 3-D, spherical harmonics algorithm compatible with parallel computer architectures

    SciTech Connect

    McGhee, J.M.; Roberts, R.M.; Morel, J.E.

    1997-06-01

    A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner for scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.

  14. Modeling bimolecular reactions and transport in porous media via particle tracking

    NASA Astrophysics Data System (ADS)

    Ding, Dong; Benson, David A.; Paster, Amir; Bolster, Diogo

    2013-03-01

    We use a particle-tracking method to simulate several one-dimensional bimolecular reactive transport experiments. In our numerical scheme, the reactants are represented by particles: advection and dispersion dominate the flow, and molecular diffusion dictates, in large part, the reactions. The particle/particle reactions are determined by a combination of two probabilities dictated by the physics of transport and energetics of reaction. The first is that reactant particles occupy the same volume over a short time interval. The second is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing interface between dissimilar waters, and as such lacks empirical parameters except for the user-defined number of particles. This number can be determined analytically from concentration autocovariance, if this type of data is available. The simulations compare favorably to two physical experiments. In one, the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB) from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and aniline (AN), was measured at the outflow of a column filled with glass beads at different times. In the other, the concentration distribution of reactants (CuSO and EDTA) and product (CuEDTA) were quantified by snapshots of light transmitted through a column packed with cryolite sand. These snapshots allow us to estimate concentration statistics and calculate the required number of particles. The experiments differ significantly due to a ˜107 difference in thermodynamic rate coefficients, making the latter experiment effectively instantaneous. When compared to the solution of the advection-dispersion-reaction equation (ADRE) with the well-mixed reaction coefficient, the experiments and the particle-tracking simulations showed on the order of 20-40% less overall product, which is attributed to poor mixing

  15. Modeling Bimolecular Reactions and Transport in Porous Media Via Particle Tracking

    SciTech Connect

    Dong Ding; David Benson; Amir Paster; Diogo Bolster

    2012-01-01

    We use a particle-tracking method to simulate several one-dimensional bimolecular reactive transport experiments. In this numerical method, the reactants are represented by particles: advection and dispersion dominate the flow, and molecular diffusion dictates, in large part, the reactions. The particle/particle reactions are determined by a combination of two probabilities dictated by the physics of transport and energetics of reaction. The first is that reactant particles occupy the same volume over a short time interval. The second is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing displacement front, and as such lacks empirical parameters except for the user-defined number of particles. This number can be determined analytically from concentration autocovariance, if this type of data is available. The simulations compare favorably to two physical experiments. In one, the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB) from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and aniline (AN), was measured at the outflow of a column filled with glass beads at different times. In the other, the concentration distribution of reactants (CuSO_4 and EDTA^{4-}) and products (CuEDTA^{4-}) were quantified by snapshots of transmitted light through a column packed with cryloite sand. The thermodynamic rate coefficient in the latter experiment was 10^7 times greater than the former experiment, making it essentially instantaneous. When compared to the solution of the advection-dispersion-reaction equation (ADRE) with the well-mixed reaction coefficient, the experiments and the particle-tracking simulations showed on the order of 20% to 40% less overall product, which is attributed to poor mixing. The poor mixing also leads to higher product concentrations on the edges of the mixing zones, which the particle

  16. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    NASA Astrophysics Data System (ADS)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  17. QUANTUM DOT SINGLE MOLECULE TRACKING REVEALS A WIDE RANGE OF DIFFUSIVE MOTIONS OF MEMBRANE TRANSPORT PROTEINS.

    PubMed

    Crane, Jonathan M; Haggie, Peter M; Verkman, A S

    2009-03-01

    Single particle tracking (SPT) provides information about the microscopic motions of individual particles in live cells. We applied SPT to study the diffusion of membrane transport proteins in cell plasma membranes in which individual proteins are labeled with quantum dots at engineered extracellular epitopes. Software was created to deduce particle diffusive modes from quantum dot trajectories. SPT of aquaporin (AQP) water channels and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels revealed several types of diffusion. AQP1 was freely mobile in cell membranes, showing rapid, Brownian-type diffusion. The full-length (M1) isoform of AQP4 also diffused rapidly, though the diffusion of a shorter (M23) isoform of AQP4 was highly restricted due to its supermolecular assembly in raft-like orthogonal arrays. CFTR mobility was also highly restricted, in a spring-like potential, due to its tethering to the actin cytoskeleton through PDZ-domain C-terminus interactions. The biological significance of regulated diffusion of membrane transport proteins is a subject of active investigation. PMID:24386532

  18. Quantum dot single molecule tracking reveals a wide range of diffusive motions of membrane transport proteins

    NASA Astrophysics Data System (ADS)

    Crane, Jonathan M.; Haggie, Peter M.; Verkman, A. S.

    2009-02-01

    Single particle tracking (SPT) provides information about the microscopic motions of individual particles in live cells. We applied SPT to study the diffusion of membrane transport proteins in cell plasma membranes in which individual proteins are labeled with quantum dots at engineered extracellular epitopes. Software was created to deduce particle diffusive modes from quantum dot trajectories. SPT of aquaporin (AQP) water channels and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels revealed several types of diffusion. AQP1 was freely mobile in cell membranes, showing rapid, Brownian-type diffusion. The full-length (M1) isoform of AQP4 also diffused rapidly, though the diffusion of a shorter (M23) isoform of AQP4 was highly restricted due to its supermolecular assembly in raft-like orthogonal arrays. CFTR mobility was also highly restricted, in a spring-like potential, due to its tethering to the actin cytoskeleton through PDZ-domain C-terminus interactions. The biological significance of regulated diffusion of membrane transport proteins is a subject of active investigation.

  19. A novel particle tracking scheme for modeling contaminant transport in a dual-continua fractured medium

    NASA Astrophysics Data System (ADS)

    Cadini, F.; Bertoli, I.; de Sanctis, J.; Zio, E.

    2012-10-01

    The estimation of the extent and timing of solute migration in a fractured medium is a fundamental task for verifying the level of protection against contaminant releases (e.g., toxic chemicals or radionuclides) offered by the engineered and natural barriers of a waste repository. In this paper we present a novel approach for modeling solute transport in a fractured medium, based on an extension of the Kolmogorov-Dmitriev theory of stochastic branching processes. The model equations for the expected values of the solute concentration take a form similar to that of classical dual-continua models. On the other hand, the stochastic nature of the modeling approach lends itself to a new particle tracking scheme of resolution, which allows accounting for realistic features of the transport process. The proposed stochastic modeling framework and simulation solution approach are illustrated with reference to the experimental results from a case study of literature. Some of the model parameters are optimally identified by means of a genetic algorithm search aimed at best fitting the experimental data.

  20. Parallelization and Visual Analysis of Multidimensional Fields: Application to Ozone Production, Destruction, and Transport in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Schwan, Karsten; Alyea, Fred; Ribarsky, M. William; Trauner, Mary; Eisenhauer, Greg; Jean, Yves; Gu, Weiming; Wang, Ray; Waldrop, Jeffrey; Schroeder, Beth; Heiner, Jeremy; Kindler, Thomas; Silva, Dilma; Vetter, Jeffrey; Martin, Vernard

    1996-01-01

    The three-dimensional, spectral transport model used in the current project was first successfully integrated over climatological time scales by Dr. Guang Ping Lou for the simulation of atmospheric N2O using the United Kingdom Meteorological Office (UKMO) 4-dimensional, assimilated wind and temperature data set. A non-parallel, FORTRAN version of this integration using a fairly simple N2O chemistry package containing only photo-chemical reactions was used to verify our initial parallel model results. The integrations reproduced the gross features of the observed stratospheric climatological N2O distributions but also simulated the structure of the stratospheric Antarctic vortex and its evolution. Subsequently, Dr. Thomas Kindler, who produced much of the parallel version of our model, enlarged the N2O model chemistry package to include N2O reactions involving O(D-1) and also introduced assimilated wind data from NASA as well as UKMO. Initially, transport calculations without chemistry were run using Carbon-14 as a non-reactive tracer gas with the result that large differences in the transport properties of the two assimilated wind data sets were apparent from the resultant Carbon-14 distributions. Subsequent calculations for N2O, including its chemistry, with the two input winds data sets with verification from UARS satellite observations have refined the transport differences between the two such that the model's steering capabilities could be used to infer the correct climatological vertical velocity fields required to support the N2O observations. During this process, it was also discovered that both the NASA and the UKMO data contained spurious values in some of the higher frequency wave components, leading to incorrect local transport calculations and ultimately affecting the large scale properties of the model's N2O distributions, particularly at tropical latitudes. Subsequent model runs with wind data that had been filtered to remove some of the high

  1. Lateral Variations of Fission-Track Cooling Ages along the Southern Peruvian Coast Reveal Coast-Parallel Extension during the Eocene and Oligocene.

    NASA Astrophysics Data System (ADS)

    Noury, M.; Bernet, M.; Jaillard, E.; Sempere, T.

    2014-12-01

    Proterozoic metamorphic rocks largely crop out between ~14 and ~17°S along the coast of southern Peru. Previous thermochronological studies in this belt focused on the Late Neogene cooling history and yielded Late Paleozoic to mid-Cretaceous zircon U-Th/He and fission-track ages, and Late Cretaceous to Early Paleocene apatite fission-track ages. Our study aims at extending the fission-track database in the ~300 km-long, high-grade metamorphic Atico-Mollendo Block (AMB; 15.8-17.1°S), in order to understand the lateral variations of thermochronologic ages along the Pacific coast of southern Peru. We present new apatite and zircon fission-track ages from the AMB and interpret them along with the previously published dates from this block and its surrounding areas. The apatite fission-track data show a longitudinal variation pattern with two localized shifts from younger (60 Ma) to older (~90 Ma) dates, corresponding to the northwestern and southeastern borders of the AMB. These shifts coincide in the field with two major normal fault zones that strike perpendicular to the coast and bound the AMB, and had been understated until now. Given the offsetted ages, the faults were active after 60 Ma, and tilted the AMB down to the NW. This interpretation is consistent with the fact that the metamorphic grade of the basement increases towards the SE, and with the deposition between ~55 and 30 Ma of forearc continental deposits (Lower Moquegua Group) that exhibit numerous synsedimentary extensional features. The zircon fission-track age pattern is more complicated but can be interpreted either as (i) reflecting a partial reset of the whole area due to burial during the Jurassic and Early Cretaceous, or (ii) as the reactivation of an important Carboniferous detachment fault during the ~100-80 Ma interval. We suggest that this coast-parallel Eocene-Oligocene extension accommodated the counterclockwise block rotation of the southern Peruvian forearc that accompanied the

  2. Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.

    1994-02-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters, and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user`s guide, and a programmer`s guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user`s guide to the model with emphasis on running the code. The user`s guide contains information about the model input and output. The third section is a programmer`s guide to the code. It discusses the hardware and software required to run the code. The programmer`s guide also discusses program structure and each of the program elements.

  3. Bedload transport in a formerly glaciated mountain catchment constrained by particle tracking

    NASA Astrophysics Data System (ADS)

    Dell'Agnese, A.; Brardinoni, F.; Toro, M.; Mao, L.; Engel, M.; Comiti, F.

    2015-11-01

    In formerly glaciated mountain settings, Pleistocene glaciations are responsible for profound spatial reorganization of the landscape structure. By imposing local channel slope and the degree of hillslope-channel connectivity, glacial macro-forms can exert first-order controls on the downstream strength and continuity of the coarse sediment cascade. To estimate quantitatively these controls we trace bedload transport for 3 years along Strimm Creek, Eastern Italian Alps. Specifically, we monitor the travel distance of 490 PIT-tagged particles (b axis: 23-229 mm; weight: 83-6525 g) at two contrasting sites: Upper Strimm Creek (US; 4 km2), which flows through a fluvially dominated hanging valley, and Lower Strimm Creek (LS; 7.5 km2), located downstream, in a relict glacial trough where it experiences periodic colluvial sediment inputs from lateral tributaries. Tracer positioning within the streambed is periodically tracked in the field with a portable antenna in order to assess progressive travel distances, as well as the extent of the channel active layer, in relation to snowmelt and rainfall-driven peak flows. Interestingly, we show that tracer virtual velocities for selected inter-survey periods are independent of tracer weight at both study sites. Cumulatively, tracers in US have travelled across distances (i.e. inner quartiles) shorter than 2 m, which correspond to over 2 orders of magnitude less than what was observed in LS. These figures translate, after calculations of tracer inter-survey virtual velocities, into estimated bedload volumes equal to about 3 m3 in US and 600 m3 in LS, with most of the transport (75 % in US, and 93 % in LS) occurring during snowmelt. A similar contrast in bedload transport rates, even without considering the additional volumes of material mobilized by mass-wasting processes in LS, testifies the extent to which the glacial imprinting can still affect contemporary sediment transfer, and thus postglacial landscape evolution, in

  4. Parallel multigrid solver of radiative transfer equation for photon transport via graphics processing unit.

    PubMed

    Gao, Hao; Phan, Lan; Lin, Yuting

    2012-09-01

    A graphics processing unit-based parallel multigrid solver for a radiative transfer equation with vacuum boundary condition or reflection boundary condition is presented for heterogeneous media with complex geometry based on two-dimensional triangular meshes or three-dimensional tetrahedral meshes. The computational complexity of this parallel solver is linearly proportional to the degrees of freedom in both angular and spatial variables, while the full multigrid method is utilized to minimize the number of iterations. The overall gain of speed is roughly 30 to 300 fold with respect to our prior multigrid solver, which depends on the underlying regime and the parallelization. The numerical validations are presented with the MATLAB codes at https://sites.google.com/site/rtefastsolver/. PMID:23085905

  5. Reactive Transport Modeling of Induced Calcite Precipitation Reaction Fronts in Porous Media Using A Parallel, Fully Coupled, Fully Implicit Approach

    NASA Astrophysics Data System (ADS)

    Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.; Fox, D. T.; Fujita, Y.

    2010-12-01

    Inducing mineral precipitation in the subsurface is one potential strategy for immobilizing trace metal and radionuclide contaminants. Generating mineral precipitates in situ can be achieved by manipulating chemical conditions, typically through injection or in situ generation of reactants. How these reactants transport, mix and react within the medium controls the spatial distribution and composition of the resulting mineral phases. Multiple processes, including fluid flow, dispersive/diffusive transport of reactants, biogeochemical reactions and changes in porosity-permeability, are tightly coupled over a number of scales. Numerical modeling can be used to investigate the nonlinear coupling effects of these processes which are quite challenging to explore experimentally. Many subsurface reactive transport simulators employ a de-coupled or operator-splitting approach where transport equations and batch chemistry reactions are solved sequentially. However, such an approach has limited applicability for biogeochemical systems with fast kinetics and strong coupling between chemical reactions and medium properties. A massively parallel, fully coupled, fully implicit Reactive Transport simulator (referred to as “RAT”) based on a parallel multi-physics object-oriented simulation framework (MOOSE) has been developed at the Idaho National Laboratory. Within this simulator, systems of transport and reaction equations can be solved simultaneously in a fully coupled, fully implicit manner using the Jacobian Free Newton-Krylov (JFNK) method with additional advanced computing capabilities such as (1) physics-based preconditioning for solution convergence acceleration, (2) massively parallel computing and scalability, and (3) adaptive mesh refinements for 2D and 3D structured and unstructured mesh. The simulator was first tested against analytical solutions, then applied to simulating induced calcium carbonate mineral precipitation in 1D columns and 2D flow cells as analogs

  6. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    SciTech Connect

    Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T.; Dilts, Gary A.

    2015-01-26

    We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.

  7. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    DOE PAGESBeta

    Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T.; Dilts, Gary A.

    2015-01-26

    We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstratingmore » the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.« less

  8. Qualitative Simulation of Photon Transport in Free Space Based on Monte Carlo Method and Its Parallel Implementation

    PubMed Central

    Chen, Xueli; Gao, Xinbo; Qu, Xiaochao; Chen, Duofang; Ma, Bin; Wang, Lin; Peng, Kuan; Liang, Jimin; Tian, Jie

    2010-01-01

    During the past decade, Monte Carlo method has obtained wide applications in optical imaging to simulate photon transport process inside tissues. However, this method has not been effectively extended to the simulation of free-space photon transport at present. In this paper, a uniform framework for noncontact optical imaging is proposed based on Monte Carlo method, which consists of the simulation of photon transport both in tissues and in free space. Specifically, the simplification theory of lens system is utilized to model the camera lens equipped in the optical imaging system, and Monte Carlo method is employed to describe the energy transformation from the tissue surface to the CCD camera. Also, the focusing effect of camera lens is considered to establish the relationship of corresponding points between tissue surface and CCD camera. Furthermore, a parallel version of the framework is realized, making the simulation much more convenient and effective. The feasibility of the uniform framework and the effectiveness of the parallel version are demonstrated with a cylindrical phantom based on real experimental results. PMID:20689705

  9. PARALLEL MEASUREMENT AND MODELING OF TRANSPORT IN THE DARHT II BEAMLINE ON ETA II

    SciTech Connect

    Chambers, F W; Raymond, B A; Falabella, S; Lee, B S; Richardson, R A; Weir, J T; Davis, H A; Schultze, M E

    2005-05-31

    To successfully tune the DARHT II transport beamline requires the close coupling of a model of the beam transport and the measurement of the beam observables as the beam conditions and magnet settings are varied. For the ETA II experiment using the DARHT II beamline components this was achieved using the SUICIDE (Simple User Interface Connecting to an Integrated Data Environment) data analysis environment and the FITS (Fully Integrated Transport Simulation) model. The SUICIDE environment has direct access to the experimental beam transport data at acquisition and the FITS predictions of the transport for immediate comparison. The FITS model is coupled into the control system where it can read magnet current settings for real time modeling. We find this integrated coupling is essential for model verification and the successful development of a tuning aid for the efficient convergence on a useable tune. We show the real time comparisons of simulation and experiment and explore the successes and limitations of this close coupled approach.

  10. Transport of nonconductive and conductive droplets in a parallel plate array

    NASA Astrophysics Data System (ADS)

    Chatterjee, Debalina; Hetayothin, Boonta

    2005-03-01

    Electrowetting on dielectric technique is used to actuate conductive liquid droplets on electrodes patterned beneath a dielectric. Nonconductive liquids can be transported electrohydrodynamically inside channels. We show for the first time that it is possible to transport droplets of nonconductive liquids on dielectric surfaces, using modest voltages and frequencies (<100 V, <10 kHz). Ionic liquids, aqueous surfactants, buffers, and organic solutions can also be transported. Although conductive liquids show a significant change in liquid contact angle on application of potential, nonconductive liquids do not, suggesting a different mechanism of transport. The empirical criteria for moving droplets in a two-dimensional array are a liquid dielectric constant >= 4.3 and a molecular dipole moment >= 1.2 D. The transport mechanisms are discussed along with new microfluidic applications that these results suggest are now feasible.

  11. Non-local approach to kinetic effects on parallel transport in fluid models of the scrape-off layer

    NASA Astrophysics Data System (ADS)

    Omotani, J. T.; Dudson, B. D.

    2013-05-01

    Using a non-local model, fluid simulations can capture kinetic effects in the parallel electron heat-flux better than is possible using flux limiters in the usual diffusive models. Non-local and diffusive models are compared using a test case representative of an edge-localized mode crash in the JET scrape-off layer (SOL), simulated in one dimension. The non-local model shows substantially enhanced electron temperature gradients, which cannot be achieved using a flux limiter. The performance of the implementation, in the BOUT++ framework, is also analysed to demonstrate its suitability for application in three-dimensional simulations of turbulent transport in the SOL.

  12. Parallelization in SCALE continuous-energy resonance module GEMINEWTRN and transport module NEWT

    SciTech Connect

    Zhong, Z.; Downar, T. J.; DeHart, M. D.; Williams, M. L.

    2006-07-01

    A new resonance module, GEMINEWTRN, has been developed in SCALE, it can calculate the continuous-energy neutron flux within the whole two-dimensional geometry, providing us a rigorous solution. However, the new code needs tremendously amount of computation and memory for practical problem. To relieve the computational burden and memory requirement, parallelization has been implemented into GEMINEWTRN, both angular and spatial decomposition have been adopted so that both the computation and the memory requirement on each processor can be saved considerably, and this effort makes the new resonance method much feasible for practical use. Because the two-dimensional geometry capability and SN/ESC solver of GEMINEWTRN come from lattice physics code NEWT, the similar parallel technique has also been implemented into NEWT, which can also save the computation considerably. (authors)

  13. Transport of Parallel Momentum Induced by Current-Symmetry Breaking in Toroidal Plasmas

    SciTech Connect

    Camenen, Y.; Peeters, A. G.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Angioni, C.; Strintzi, D.

    2009-03-27

    The symmetry of a physical system strongly impacts on its properties. In toroidal plasmas, the symmetry along a magnetic field line usually constrains the radial flux of parallel momentum to zero in the absence of background flows. By breaking the up-down symmetry of the toroidal currents, this constraint can be relaxed. The parallel asymmetry in the magnetic configuration then leads to an incomplete cancellation of the turbulent momentum flux across a flux surface. The magnitude of the subsequent toroidal rotation increases with the up-down asymmetry and its sign depends on the direction of the toroidal magnetic field and plasma current. Such a mechanism offers new insights in the interpretation and control of the intrinsic toroidal rotation in present day experiments.

  14. Parallel domain decomposition methods in fluid models with Monte Carlo transport

    SciTech Connect

    Alme, H.J.; Rodrigues, G.H.; Zimmerman, G.B.

    1996-12-01

    To examine the domain decomposition code coupled Monte Carlo-finite element calculation, it is important to use a domain decomposition that is suitable for the individual models. We have developed a code that simulates a Monte Carlo calculation ( ) on a massively parallel processor. This code is used to examine the load balancing behavior of three domain decomposition ( ) for a Monte Carlo calculation. Results are presented.

  15. Resolving magnetic field line stochasticity and parallel thermal transport in MHD simulations

    SciTech Connect

    Nishimura, Y.; Callen, J.D.; Hegna, C.C.

    1998-12-31

    Heat transport along braided, or chaotic magnetic field lines is a key to understand the disruptive phase of tokamak operations, both the major disruption and the internal disruption (sawtooth oscillation). Recent sawtooth experimental results in the Tokamak Fusion Test Reactor (TFTR) have inferred that magnetic field line stochasticity in the vicinity of the q = 1 inversion radius plays an important role in rapid changes in the magnetic field structures and resultant thermal transport. In this study, the characteristic Lyapunov exponents and spatial correlation of field line behaviors are calculated to extract the characteristic scale length of the microscopic magnetic field structure (which is important for net radial global transport). These statistical values are used to model the effect of finite thermal transport along magnetic field lines in a physically consistent manner.

  16. Tracking log transport and deposition during a 20-year flood in a wide mountain river

    NASA Astrophysics Data System (ADS)

    Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Ruiz-Villanueva, Virginia; Kaczka, Ryszard; Czech, Wiktoria

    2016-04-01

    Distance of large wood transport during floods and conditions for wood deposition in wide mountain rivers are still insufficiently recognised. Tracking logs tagged with radio transmitters was used to investigate differences in depositional conditions and the length of log displacement during a 20-year flood between channel reaches of different morphology in the Czarny Dunajec River, Polish Carpathians. During a rising limb of the flood, logs were placed into the river at the beginning of an incised reach, close to the beginning of a channelized reach, and 1 km upstream from the beginning of a wide, multi-thread reach. The incised, channelized, and multi-thread reaches retained 12.5%, 33%, and 94% of tagged logs introduced to these reaches, and all the logs retained in the multi-thread reach were deposited in its upstream half. Significant differences in the length of displacement existed between the logs delivered to the river at the three locations, with logs placed into the river at the beginning of the incised reach moved the longest distances and those delivered just upstream from the multi-thread reach the shortest ones. One-fourth of the logs were deposited in a low-flow channel or on channel margin, one-fifth on the floodplain and more than half on gravel bars. After the flood, river cross-sections with deposited logs and a set of cross-sections without wood deposits were surveyed to collect data for one-dimensional modelling of hydraulic conditions at the flood peak. The cross-sections with deposited logs were typified by significantly greater flow width and flow area, and significantly smaller mean flow depth, mean velocity, Froude number, mean bed shear stress and unit stream power. Principal component analysis of the hydraulic parameters in the analysed cross-sections grouped the two types of cross-sections in distinct clusters, indicating that multi-thread cross-sections differed in hydraulic parameters from all the other cross-sections. The experiment

  17. Influence of the parallel nonlinearity on zonal flows and heat transport in global gyrokinetic particle-in-cell simulations

    SciTech Connect

    Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Hatzky, R.; Bottino, A.; Angelino, P.

    2009-07-15

    In this paper, the influence of the parallel nonlinearity on zonal flows and heat transport in global particle-in-cell ion-temperature-gradient simulations is studied. Although this term is in theory orders of magnitude smaller than the others, several authors [L. Villard, P. Angelino, A. Bottino et al., Plasma Phys. Contr. Fusion 46, B51 (2004); L. Villard, S. J. Allfrey, A. Bottino et al., Nucl. Fusion 44, 172 (2004); J. C. Kniep, J. N. G. Leboeuf, and V. C. Decyck, Comput. Phys. Commun. 164, 98 (2004); J. Candy, R. E. Waltz, S. E. Parker et al., Phys. Plasmas 13, 074501 (2006)] found different results on its role. The study is performed using the global gyrokinetic particle-in-cell codes TORB (theta-pinch) [R. Hatzky, T. M. Tran, A. Koenies et al., Phys. Plasmas 9, 898 (2002)] and ORB5 (tokamak geometry) [S. Jolliet, A. Bottino, P. Angelino et al., Comput. Phys. Commun. 177, 409 (2007)]. In particular, it is demonstrated that the parallel nonlinearity, while important for energy conservation, affects the zonal electric field only if the simulation is noise dominated. When a proper convergence is reached, the influence of parallel nonlinearity on the zonal electric field, if any, is shown to be small for both the cases of decaying and driven turbulence.

  18. The conceptual framework of ontogenetic trajectories: parallel transport allows the recognition and visualization of pure deformation patterns.

    PubMed

    Piras, P; Teresi, L; Traversetti, L; Varano, V; Gabriele, S; Kotsakis, T; Raia, P; Puddu, P E; Scalici, M

    2016-05-01

    Ontogeny is usually studied by analyzing a deformation series spanning over juvenile to adult shapes. In geometric morphometrics, this approach implies applying generalized Procrustes analysis coupled with principal component analysis on multiple individuals or multiple species datasets. The trouble with such a procedure is that it mixes intra- and inter-group variation. While MANCOVA models are relevant statistical/mathematical tools to draw inferences about the similarities of trajectories, if one wants to observe and interpret the morphological deformation alone by filtering inter-group variability, a particular tool, namely parallel transport, is necessary. In the context of ontogenetic trajectories, one should firstly perform separate multivariate regressions between shape and size, using regression predictions to estimate within-group deformations relative to the smallest individuals. These deformations are then applied to a common reference (the mean of per-group smallest individuals). The estimation of deformations can be performed on the Riemannian manifold by using sophisticated connection metrics. Nevertheless, parallel transport can be effectively achieved by estimating deformations in the Euclidean space via ordinary Procrustes analysis. This approach proved very useful in comparing ontogenetic trajectories of species presenting large morphological differences at early developmental stages. PMID:27161949

  19. Scalable load balancing for massively parallel distributed Monte Carlo particle transport

    SciTech Connect

    O'Brien, M. J.; Brantley, P. S.; Joy, K. I.

    2013-07-01

    In order to run computer simulations efficiently on massively parallel computers with hundreds of thousands or millions of processors, care must be taken that the calculation is load balanced across the processors. Examining the workload of every processor leads to an unscalable algorithm, with run time at least as large as O(N), where N is the number of processors. We present a scalable load balancing algorithm, with run time 0(log(N)), that involves iterated processor-pair-wise balancing steps, ultimately leading to a globally balanced workload. We demonstrate scalability of the algorithm up to 2 million processors on the Sequoia supercomputer at Lawrence Livermore National Laboratory. (authors)

  20. Generalized parallel heat transport equations in collisional to weakly collisional plasmas

    NASA Astrophysics Data System (ADS)

    Zawaideh, Emad; Kim, N. S.; Najmabadi, Farrokh

    1988-11-01

    A new set of two-fluid heat-transport equations for heat conduction in collisional to weakly collisional plasmas was derived on the basis of gyrokinetic equations in flux coordinates. In these equations, no restrictions on the anisotropy of the ion distribution function or the collisionality are imposed. In the highly collisional limit, these equations reduce to the classical heat conduction equation of Spitzer and Haerm (1953), while in the weakly collisional limit, they describe a saturated heat flux. Numerical examples comparing these equations with conventional heat transport equations are presented.

  1. Modeling Bimolecular Reactions and Transport in Porous Media via Particle Tracking

    NASA Astrophysics Data System (ADS)

    Ding, D.; Benson, D. A.; Paster, A.; Bolster, D.

    2012-12-01

    We use a particle-tracking model to simulate several one-dimensional bi-molecular reactive transport experiments. In this numerical method, the reactants are represented by particles; advection and dispersion dominate the flow of particles, and molecular diffusion dictates, in large part, the reactions. The reactions are determined by a combination of two probabilities; one is that reactant particles occupy the same volume over a short time interval, which is dictated by diffusion; the other is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing displacement front, and as such lacks empirical parameters except for the user-defined number of particles. This number is theoretically correlated to the concentration statistics, which can be estimated from concentration autocovariance in the experiment if concentration data is properly collected. The simulations compare favorably to two physical experiments. In one, Raje and Kapoor (2000) [1] measured the product concentrations at the end of a column at different times (the breakthrough curve). In the other, Gramling et al. [2] measured the distribution of reactants and products within a translucent column (snapshots). In addition, one experiment used reactants with a well-mixed thermodynamic rate coefficient 107 times greater than the other. The higher rate can be considered an essentially instantaneous reaction. When compared to the solution of the classical advection-dispersion-reaction equation with the well-mixed reaction coefficient, both experiments showed on the order of 20% to 40% slower reaction attributed to poor mixing. The Lagrangian model in this study accurately simulated the incomplete mixing for both the breakthrough curves [1] and product concentration profile [2]. In addition to model performance, the advantage is the lack of empirical parameters or assumptions

  2. Tunable spin selective transport and quantum phase transition in parallel double dot system

    NASA Astrophysics Data System (ADS)

    Xiong, Yong-Chen; Wang, Wei-Zhong; Luo, Shi-Jun; Yang, Jun-Tao

    2016-02-01

    We study theoretically the spin selective transport and the quantum phase transition (QPT) in a double dot device by means of the numerical renormalization group technique. When the gate voltage ε is in the Kondo regime and the interdot hopping t is large enough, a first order QPT between local spin singlet and Sz=1 of the triplet is observed as the magnetic field B increases. Beyond the Kondo regime, the QPTs depend closely on ε and t, and perfect spin filter is found, where the effect of spin filtering could easily be manipulated by tuning external parameters. We show that the interplay between the Zeeman effect and the antiferromagnetic interdot hopping, and occupancy switching are responsible for the QPT and the spin selective transport.

  3. libmpdata++ 0.1: a library of parallel MPDATA solvers for systems of generalised transport equations

    NASA Astrophysics Data System (ADS)

    Jaruga, A.; Arabas, S.; Jarecka, D.; Pawlowska, H.; Smolarkiewicz, P. K.; Waruszewski, M.

    2014-11-01

    This paper accompanies first release of libmpdata++, a C++ library implementing the Multidimensional Positive-Definite Advection Transport Algorithm (MPDATA). The library offers basic numerical solvers for systems of generalised transport equations. The solvers are forward-in-time, conservative and non-linearly stable. The libmpdata++ library covers the basic second-order-accurate formulation of MPDATA, its third-order variant, the infinite-gauge option for variable-sign fields and a flux-corrected transport extension to guarantee non-oscillatory solutions. The library is equipped with a non-symmetric variational elliptic solver for implicit evaluation of pressure gradient terms. All solvers offer parallelisation through domain decomposition using shared-memory parallelisation. The paper describes the library programming interface, and serves as a user guide. Supported options are illustrated with benchmarks discussed in the MPDATA literature. Benchmark descriptions include code snippets as well as quantitative representations of simulation results. Examples of applications include: homogeneous transport in one, two and three dimensions in Cartesian and spherical domains; shallow-water system compared with analytical solution (originally derived for a 2-D case); and a buoyant convection problem in an incompressible Boussinesq fluid with interfacial instability. All the examples are implemented out of the library tree. Regardless of the differences in the problem dimensionality, right-hand-side terms, boundary conditions and parallelisation approach, all the examples use the same unmodified library, which is a key goal of libmpdata++ design. The design, based on the principle of separation of concerns, prioritises the user and developer productivity. The libmpdata++ library is implemented in C++, making use of the Blitz++ multi-dimensional array containers, and is released as free/libre and open-source software.

  4. libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations

    NASA Astrophysics Data System (ADS)

    Jaruga, A.; Arabas, S.; Jarecka, D.; Pawlowska, H.; Smolarkiewicz, P. K.; Waruszewski, M.

    2015-04-01

    This paper accompanies the first release of libmpdata++, a C++ library implementing the multi-dimensional positive-definite advection transport algorithm (MPDATA) on regular structured grid. The library offers basic numerical solvers for systems of generalised transport equations. The solvers are forward-in-time, conservative and non-linearly stable. The libmpdata++ library covers the basic second-order-accurate formulation of MPDATA, its third-order variant, the infinite-gauge option for variable-sign fields and a flux-corrected transport extension to guarantee non-oscillatory solutions. The library is equipped with a non-symmetric variational elliptic solver for implicit evaluation of pressure gradient terms. All solvers offer parallelisation through domain decomposition using shared-memory parallelisation. The paper describes the library programming interface, and serves as a user guide. Supported options are illustrated with benchmarks discussed in the MPDATA literature. Benchmark descriptions include code snippets as well as quantitative representations of simulation results. Examples of applications include homogeneous transport in one, two and three dimensions in Cartesian and spherical domains; a shallow-water system compared with analytical solution (originally derived for a 2-D case); and a buoyant convection problem in an incompressible Boussinesq fluid with interfacial instability. All the examples are implemented out of the library tree. Regardless of the differences in the problem dimensionality, right-hand-side terms, boundary conditions and parallelisation approach, all the examples use the same unmodified library, which is a key goal of libmpdata++ design. The design, based on the principle of separation of concerns, prioritises the user and developer productivity. The libmpdata++ library is implemented in C++, making use of the Blitz++ multi-dimensional array containers, and is released as free/libre and open-source software.

  5. Generalized parallel heat transport equations in collisional to weakly collisional plasmas

    SciTech Connect

    Zawaideh, E.; Kim, N.S.; Najmabadi, F.

    1988-11-01

    A new set of two-fluid heat transport equations that is valid from collisional to weakly collisional limits is derived. Starting from gyrokinetic equations in flux coordinates, a set of moment equations describing plasma energy transport along the field lines of a space- and time-dependent magnetic field is derived. No restrictions on the anisotropy of the ion distribution function or collisionality are imposed. In the highly collisional limit, these equations reduce to the classical heat conduction equation (e.g., Spitzer and Haerm or Braginskii), while in the weakly collisional limit, they describe a saturated heat flux (flux limited). Numerical examples comparing these equations with conventional heat transport equations show that in the limit where the ratio of the mean free path lambda to the scale length of the temperature gradient L/sub T/ approaches zero, there is no significant difference between the solutions of the new and conventional heat transport equations. As lambda/L/sub T/..-->..1, the conventional heat conduction equation contains a significantly larger error than (lambda/L/sub T/)/sup 2/. The error is found to be O(lambda/L)/sup 2/, where L is the smallest of the scale lengths of the gradient in the magnetic field, or the macroscopic plasma parameters (e.g., velocity scale length, temperature scale length, and density scale length). The accuracy of the flux-limited model depends significantly on the value of the flux limit parameter which, in general, is not known. The new set of equations shows that the flux-limited parameter is a function of the magnetic field and plasma parameter profiles.

  6. Direct observations of the ACC transport across the Kerguelen Plateau from the 2009-2010 TRACK cruises

    NASA Astrophysics Data System (ADS)

    Hyang Park, Young; Vivier, Frédéric; Roquet, Fabien; Kestenare, Elodie; Sekma, Hela; Durand, Isabelle

    2010-05-01

    The Kerguelen Plateau is considered as a major barrier to the eastward flowing Antarctic Circumpolar Current (ACC), diverting about 2/3 of its transport to the north of the plateau and the remaining transport across the vast plateau developed between the Kerguelen Islands and Antarctica. However, due to the lack of systematic high-quality observations especially across the Fawn Trough, our knowledge of ACC branches and associated transports across the Kerguelen Plateau has been largely indirect and debated, with previous transport estimates ranging from 30 to 100 Sv. In order to fill this knowledge gap, we undertook full-depth CTD and LADCP measurements in the Fawn Trough area and moored three lines of a total of 9 current-meters across the Fawn Trough in February-March 2009 during the TRACK-1 cruise. The TRACK-1 data have permitted us to document for the first time a detailed vertical current structure especially across the Fawn Trough as well as the Deep Western Boundary Current (DWBC) on the eastern flank of the Kerguelen Plateau at 58°S. The Fawn Trough Current appears as a principal across-plateau jet associated with the Southern ACC Front, concentrating the majority (43 Sv) of the eastward transport passing to the south of the Kerguelen Islands (58 Sv), compared to ~92 Sv at the Subantarctic Front as estimated previously to the north of the islands. This yields a total transport of ~150 Sv for the ACC transiting through the Kerguelen longitude, consistent with other independent estimates in the other sectors of the Southern Ocean, but with an up-to-date partition of ~60% of the transport passing to the north of the Kerguelen Plateau and ~40% across the plateau. The DWBC transport at 58°S is estimated as 43 Sv, of which 36 Sv come from the northward turning of the westward flowing Antarctic Slope Current and the rest (7 Sv) originates from the southernmost branch of the ACC passing through the northern Princess Elizabeth Trough. Two other transport branches

  7. Alfven wave transport effects in the time evolution of parallel cosmic-ray modified shocks

    NASA Technical Reports Server (NTRS)

    Jones, T. W.

    1993-01-01

    Some of the issues associated with a more complete treatment of Alfven transport in cosmic ray shocks are explored qualitatively. The treatment is simplified in some important respects, but some new issues are examined and for the first time a nonlinear, time dependent study of plane cosmic ray mediated shocks with both the entropy producing effects of wave dissipation and effects due to the Alfven wave advection of the cosmic ray relative to the gas is included. Examination of the direct consequences of including the pressure and energy of the Alfven waves in the formalism began.

  8. Using Activated Transport in Parallel Nanowires for Energy Harvesting and Hot-Spot Cooling

    NASA Astrophysics Data System (ADS)

    Bosisio, Riccardo; Gorini, Cosimo; Fleury, Geneviève; Pichard, Jean-Louis

    2015-05-01

    We study arrays of parallel doped semiconductor nanowires in a temperature range where the electrons propagate through the nanowires by phonon-assisted hops between localized states. By solving the random-resistor-network problem, we compute the thermopower S , the electrical conductance G , and the electronic thermal conductance Ke of the device. We investigate how those quantities depend on the position—which can be tuned with a back gate—of the nanowire impurity band with respect to the equilibrium electrochemical potential. We show that large power factors can be reached near the band edges, when S self-averages to large values while G is small but scales with the number of wires. Calculating the amount of heat exchanged locally between the electrons inside the nanowires and the phonons of the environment, we show that phonons are mainly absorbed near one electrode and emitted near the other when a charge current is driven through the nanowires near their band edges. This phenomenon could be exploited for a field control of the heat exchange between the phonons and the electrons at submicron scales in electronic circuits. It could be also used for cooling hot spots.

  9. Structural characteristics of the central Ogcheon Belt, South Korea: orogen-parallel tectonic transport model

    NASA Astrophysics Data System (ADS)

    Kihm, You Hong; Kim, Jeong Hwan

    The rocks in the central Ogcheon Belt, South Korea, underwent three deformational phases (D 1, D 2 and D 3) during the Mesozoic Era. In the study area, NW- and NE-trending geological structures such as thrusts and folds are juxtaposed. The NW- and NE-trending folds deform isoclinal folds (F 1) with axial planar slaty cleavage (S 1), and have axial planar crenulation cleavage. All of these folds are overprinted by brittle faults (D 3). It is inferred from field data that the NW- and NE-trending structures are products of a single deformational phase (D 2). A very large-scale inclined NE-vergent isoclinal fold (F 1) produced an irregular boundary of Precambrian basement and a basement promontory, which acted as a structural obstacle against subsequent deformational phases. During the E-vergent phase (D 2), deformation partitioning occurred due to the irregular block boundary, and orogen-parallel and -orthogonal structures were produced. The D 3 phase is recognized as large-scale E-W trending structures including folds and faults. Thus, the structural evolution of the central Ogcheon Belt is related to the clockwise rotation of the maximum compressive stress axis from NE-SW to N-S during the Mesozoic Era. This study shows that the shape of colliding boundary is a very important factor in controlling the structural pattern and evolution in the study area.

  10. Parallelization of the Red-Black Algorithm on Solving the Second-Order PN Transport Equation with the Hybrid Finite Element Method

    SciTech Connect

    Yaqi Wang; Cristian Rabiti; Giuseppe Palmiotti

    2011-06-01

    The Red-Black algorithm has been successfully applied on solving the second-order parity transport equation with the PN approximation in angle and the Hybrid Finite Element Method (HFEM) in space, i.e., the Variational Nodal Method (VNM) [1,2,3,4,5]. Any transport solving techniques, including the Red-Black algorithm, need to be parallelized in order to take the advantage of the development of supercomputers with multiple processors for the advanced modeling and simulation. To our knowledge, an attempt [6] was done to parallelize it, but it was devoted only to the z axis plans in three-dimensional calculations. General parallelization of the Red-Black algorithm with the spatial domain decomposition has not been reported in the literature. In this summary, we present our implementation of the parallelization of the Red-Black algorithm and its efficiency results.

  11. Parallel transport of an organic acid by solid-phase and macropore diffusion in a weakly basic ion exchanger

    SciTech Connect

    Yoshida, Hiroyuki; Takatsuji; Wataru

    2000-04-01

    The parallel transport of an organic acid by solid-phase and macropore diffusion within a porous ion exchanger was studied by measuring equilibrium isotherms and uptake curves for adsorption of acetic acid and lactic acid on a weakly basic ion exchanger, DIAION WA30. Experimental adsorption isotherms were correlated by the Langmuir equation. The Langmuir equilibrium constant of acetic acid was close to that of lactic acid, and the saturation capacity of acetic acid was about 84% that of lactic acid. Intraparticle effective diffusivity D{sub eff} was determined using the homogeneous Fickian diffusion model. The value of D{sub eff} for acetic acid was about 1.5 times lactic acid. Because D{sub eff} increased with linearly increasing bulk phase concentration C{sub 0}, D{sub eff} was separated to the solid-phase diffusivity D{sub s} and the macropore diffusivity D{sub P} by applying the parallel diffusion model. The model agreed well with the experimental curves. The values of D{sub S} and D{sub P} for acetic acid were about 2 and 1.5 times those of lactic acid, respectively. The acetic acid and the lactic acid may be separated by the difference of the diffusion rates.

  12. Toroidal momentum transport in a tokamak caused by symmetry breaking parallel derivatives

    SciTech Connect

    Sung, T.; Buchholz, R.; Grosshauser, S. R.; Hornsby, W. A.; Migliano, P.; Peeters, A. G.; Casson, F. J.; Fable, E.

    2013-04-15

    A new mechanism for toroidal momentum transport in a tokamak is investigated using the gyro-kinetic model. First, an analytic model is developed through the use of the ballooning transform. The terms that generate the momentum transport are then connected with the poloidal derivative of the ballooning envelope, which are one order smaller in the normalised Larmor radius, compared with the derivative of the eikonal. The mechanism, therefore, does not introduce an inhomogeneity in the radial direction, in contrast with the effect of profile shearing. Numerical simulations of the linear ion temperature gradient mode with adiabatic electrons, retaining the finite {rho}{sub *} effects in the E Multiplication-Sign B velocity, the drift, and the gyro-average, are presented. The momentum flux is found to be linear in the normalised Larmor radius ({rho}{sub *}) but is, nevertheless, generating a sizeable counter-current rotation. The total momentum flux scales linear with the aspect ratio of the considered magnetic surface, and increases with increasing magnetic shear, safety factor, and density and temperature gradients.

  13. Parallel transport studies of high-Z impurities in the core of Alcator C-Mod plasmasa)

    NASA Astrophysics Data System (ADS)

    Reinke, M. L.; Hutchinson, I. H.; Rice, J. E.; Greenwald, M.; Howard, N. T.; Hubbard, A.; Hughes, J. W.; Terry, J. L.; Wolfe, S. M.

    2013-05-01

    Measurements of poloidal variation, ñz/⟨nz⟩, in high-Z impurity density have been made using photodiode arrays sensitive to vacuum ultraviolet and soft x-ray emission in Alcator C-Mod plasmas. In/out asymmetries in the range of -0.20, of a flux surface is found to be well described by a combination of centrifugal, poloidal electric field, and ion-impurity friction effects. Up/down asymmetries, -0.050 corresponding to accumulation opposite the ion ∇B drift direction. Measurements of the up/down asymmetry of molybdenum are found to disagree with predictions from recent neoclassical theory in the trace limit, nzZ2/ni≪1. Non-trace levels of impurities are expected to modify the main-ion poloidal flow and thus change friction-driven impurity density asymmetries and impurity poloidal rotation, vθ ,z. Artificially modifying main-ion flow in parallel transport simulations is shown to impact both n˜z/⟨nz⟩ and vθ ,z, but simultaneous agreement between measured and predicted up/down and in/out asymmetry as well as impurity poloidal rotation is not possible for these C-Mod data. This link between poloidal flow and poloidal impurity density variation outlines a more stringent test for parallel neoclassical transport theory than has previously been performed. Measurement and computational techniques specific to the study of poloidal impurity asymmetry physics are discussed as well.

  14. Tracking colloid transport in porous media using discrete flow fields and sensitivity of simulated colloid deposition to space discretization.

    PubMed

    Li, Zhelong; Zhang, Dongxiao; Li, Xiqing

    2010-02-15

    Advances in pore structure characterization and lattice-Boltzmann (LB) simulations of flow fields in pore spaces are making mechanistic simulations of colloid transport in real porous media a realistic goal. The primary challenge to reach this goal may be the computational demand of LB flow simulations in discretized porous medium domains at an assemblage scale. In this work, flow fields in simple cubic and dense packing systems were simulated at different discretization resolutions using the LB method. The simulated flow fields were incorporated into to a three-dimensional particle tracking model to simulate colloid transport in the two systems. The simulated colloid deposition tended to become asymptotic at a critical discretization resolution (voxel-grain size ratio = 0.01) at groundwater flow regimes for colloids down to submicrometer level under favorable conditions and down to around 1 microm under unfavorable conditions. The average simulated fluid velocities near grain surfaces were extracted to explain the sensitivities of simulated depositions to space discretization under both conditions. At the critical discretization resolution, current computation capacity would allow flow simulations and particle tracking in assemblage porous medium domains. In addition, particle tracking simulations revealed that colloids may be retained in flow vortices under conditions both favorable and unfavorable for deposition. Colloid retention in flow vortices has been proposed only very recently. Here we provide a mechanistic confirmation to this novel retention process. PMID:20088544

  15. Analysis of Massively Parallel Discrete-Ordinates Transport Sweep Algorithms with Collisions

    SciTech Connect

    Bailey, T S; Falgout, R D

    2008-10-14

    We present theoretical scaling models for a variety of discrete-ordinates sweep algorithms. In these models, we pay particular attention to the way each algorithm handles collisions. A collision is defined as a processor having multiple angles with ready to be swept during one stage of the sweep. The models also take into account how subdomains are assigned to processors and how angles are grouped during the sweep. We describe a data driven algorithm that resolves collisions efficiently during the sweep as well as other algorithms that have been designed to avoid collisions completely. Our models are validated using the ARGES and AMTRAN transport codes. We then use the models to study and predict scaling trends in all of the sweep algorithms.

  16. Electron Beam-Blip Spectroscopic Diagnostics of the Scrape-off-Layer Parallel Transport in C-2

    NASA Astrophysics Data System (ADS)

    Osin, Dmitry; Thompson, Matthew; Garate, Eusebio; TAE Team

    2015-11-01

    C-2 is a microscopically stable, high-performance field-reversed configuration (FRC), where high plasma temperatures with significant fast ion population and record lifetimes were achieved by a combination of tangential neutral beam injection, electrically biased plasma guns at the ends and wall conditioning. FRC confinement depends on the properties of both the open and closed field lines, therefore, understanding the electron transport in the scrape-of-layer (SOL) is critical. To study parallel heat conduction in SOL, a high-energy pulsed electron beam (e-beam) was injected on-axis into C-2 to produce a heat pulse, which causes a fast rise and slower decay of the electron temperature, Te, in the SOL. The heat-blip was observed by means of He-jet spectroscopy. A small fraction of the total deposited e-beam energy is necessary to explain the measured Te increase. The electron thermal conductivity along the magnetic field lines can be inferred from the Te decay. Experiments suggest that a high energy e-beam pulse can serve as a direct diagnostic of heat transport in the SOL.

  17. Method and apparatus for routing data in an inter-nodal communications lattice of a massively parallel computer system by routing through transporter nodes

    DOEpatents

    Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul

    2010-11-16

    A massively parallel computer system contains an inter-nodal communications network of node-to-node links. An automated routing strategy routes packets through one or more intermediate nodes of the network to reach a destination. Some packets are constrained to be routed through respective designated transporter nodes, the automated routing strategy determining a path from a respective source node to a respective transporter node, and from a respective transporter node to a respective destination node. Preferably, the source node chooses a routing policy from among multiple possible choices, and that policy is followed by all intermediate nodes. The use of transporter nodes allows greater flexibility in routing.

  18. Parallel transport studies of high-Z impurities in the core of Alcator C-Mod plasmas

    SciTech Connect

    Reinke, M. L.; Hutchinson, I. H.; Rice, J. E.; Greenwald, M.; Howard, N. T.; Hubbard, A.; Hughes, J. W.; Terry, J. L.; Wolfe, S. M.

    2013-05-15

    Measurements of poloidal variation, ñ{sub z}/, in high-Z impurity density have been made using photodiode arrays sensitive to vacuum ultraviolet and soft x-ray emission in Alcator C-Mod plasmas. In/out asymmetries in the range of −0.2<0.3 are observed for r/a<0.8, and accumulation on both the high-field side, n{sub z,cos}<0, and low-field side, n{sub z,cos}>0, of a flux surface is found to be well described by a combination of centrifugal, poloidal electric field, and ion-impurity friction effects. Up/down asymmetries, −0.05<0.10, are observed over 0.50 corresponding to accumulation opposite the ion ∇B drift direction. Measurements of the up/down asymmetry of molybdenum are found to disagree with predictions from recent neoclassical theory in the trace limit, n{sub z}Z{sup 2}/n{sub i}≪1. Non-trace levels of impurities are expected to modify the main-ion poloidal flow and thus change friction-driven impurity density asymmetries and impurity poloidal rotation, v{sub θ,z}. Artificially modifying main-ion flow in parallel transport simulations is shown to impact both ñ{sub z}/ and v{sub θ,z}, but simultaneous agreement between measured and predicted up/down and in/out asymmetry as well as impurity poloidal rotation is not possible for these C-Mod data. This link between poloidal flow and poloidal impurity density variation outlines a more stringent test for parallel neoclassical transport theory than has previously been performed. Measurement and computational techniques specific to the study of poloidal impurity asymmetry physics are discussed as well.

  19. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites

    NASA Astrophysics Data System (ADS)

    Naeger, Aaron R.; Gupta, Pawan; Zavodsky, Bradley T.; McGrath, Kevin M.

    2016-06-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean, in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America as the frequent geostationary observations lead to a greater coverage of cloud-free AOD retrievals equatorward of about 35° N, while the polar-orbiting satellites provide a greater coverage of AOD poleward of 35° N. However, we note several areas across the domain of interest from Asia to North America where the GOES-15 and MTSAT-2 retrieval algorithms can introduce significant uncertainties into the new product.

  20. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth retrievals

    NASA Astrophysics Data System (ADS)

    Naeger, A. R.; Gupta, P.; Zavodsky, B.; McGrath, K. M.

    2015-10-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America. However, we identify several areas across the domain of interest from Asia to North America where the new product can encounter significant uncertainties due to the inclusion of the geostationary AOD retrievals. The uncertainties associated with geostationary AOD retrievals are expected to be minimized after the successful launch of the next-generation advanced NOAA GOES-R and recently launched JMA Himawari satellites. Observations from these advanced satellites will ultimately provide an enhanced understanding of the spatial and temporal distribution of aerosols over the Pacific.

  1. Implementation of a cell-wise Block-Gauss-Seidel iterative method for SN transport on a hybrid parallel computer architecture

    SciTech Connect

    Rosa, Massimiliano; Warsa, James S; Perks, Michael

    2010-12-14

    We have implemented a cell-wise, block-Gauss-Seidel (bGS) iterative algorithm, for the solution of the S{sub n} transport equations on the Roadrunner hybrid, parallel computer architecture. A compute node of this massively parallel machine comprises AMD Opteron cores that are linked to a Cell Broadband Engine{trademark} (Cell/B.E.). LAPACK routines have been ported to the Cell/B.E. in order to make use of its parallel Synergistic Processing Elements (SPEs). The bGS algorithm is based on the LU factorization and solution of a linear system that couples the fluxes for all S{sub n} angles and energy groups on a mesh cell. For every cell of a mesh that has been parallel decomposed on the higher-level Opteron processors, a linear system is transferred to the Cell/B.E. and the parallel LAPACK routines are used to compute a solution, which is then transferred back to the Opteron, where the rest of the computations for the S{sub n} transport problem take place. Compared to standard parallel machines, a hundred-fold speedup of the bGS was observed on the hybrid Roadrunner architecture. Numerical experiments with strong and weak parallel scaling demonstrate the bGS method is viable and compares favorably to full parallel sweeps (FPS) on two-dimensional, unstructured meshes when it is applied to optically thick, multi-material problems. As expected, however, it is not as efficient as FPS in optically thin problems.

  2. Controlled change of transport properties of poly(ethylene terephthalate) track membranes by plasma method

    NASA Astrophysics Data System (ADS)

    Kravets, L. I.; Dmitriev, S. N.; Drachev, A. I.; Gilman, A. B.; Lazea, A.; Dinescu, G.

    2007-04-01

    A process of plasma polymerization of dimethylaniline and acrylic acid vapours on the surface of poly(ethylene terephthalate) track membranes has been investigated. The surface and hydrodynamic properties of the composite membranes produced in this case have been studied. It is shown that the water permeability of the obtained polymeric membranes can be controlled by changing the filtrate pH. Membranes with such properties can be used for controllable drug delivery and in sensor control.

  3. Parallel pipelining

    SciTech Connect

    Joseph, D.D.; Bai, R.; Liao, T.Y.; Huang, A.; Hu, H.H.

    1995-09-01

    In this paper the authors introduce the idea of parallel pipelining for water lubricated transportation of oil (or other viscous material). A parallel system can have major advantages over a single pipe with respect to the cost of maintenance and continuous operation of the system, to the pressure gradients required to restart a stopped system and to the reduction and even elimination of the fouling of pipe walls in continuous operation. The authors show that the action of capillarity in small pipes is more favorable for restart than in large pipes. In a parallel pipeline system, they estimate the number of small pipes needed to deliver the same oil flux as in one larger pipe as N = (R/r){sup {alpha}}, where r and R are the radii of the small and large pipes, respectively, and {alpha} = 4 or 19/7 when the lubricating water flow is laminar or turbulent.

  4. Comparison of Global Navigation Satellite System Devices on Speed Tracking in Road (Tran)SPORT Applications.

    PubMed

    Supej, Matej; Cuk, Ivan

    2014-01-01

    Global Navigation Satellite Systems (GNSS) are, in addition to being most widely used vehicle navigation method, becoming popular in sport-related tests. There is a lack of knowledge regarding tracking speed using GNSS, therefore the aims of this study were to examine under dynamic conditions: (1) how accurate technologically different GNSS measure speed and (2) how large is latency in speed measurements in real time applications. Five GNSSs were tested. They were fixed to a car's roof-rack: a  smart phone, a wrist watch, a handheld device, a professional system for testing vehicles and a high-end Real Time Kinematics (RTK) GNSS. The speed data were recorded and analyzed during rapid acceleration and deceleration as well as at steady speed. The study produced four main findings. Higher frequency and high quality GNSS receivers track speed at least at comparable accuracy to a vehicle speedometer. All GNSS systems measured maximum speed and movement at a constant speed well. Acceleration and deceleration have different level of error at different speeds. Low cost GNSS receivers operating at 1 Hz sampling rate had high latency (up to 2.16 s) and are not appropriate for tracking speed in real time, especially during dynamic movements. PMID:25494349

  5. Comparison of Global Navigation Satellite System Devices on Speed Tracking in Road (Tran)SPORT Applications

    PubMed Central

    Supej, Matej; Čuk, Ivan

    2014-01-01

    Global Naavigation Satellite Systems (GNSS) are, in addition to being most widely used vehicle navigation method, becoming popular in sport-related tests. There is a lack of knowledge regarding tracking speed using GNSS, therefore the aims of this study were to examine under dynamic conditions: (1) how accurate technologically different GNSS measure speed and (2) how large is latency in speed measurements in real time applications. Five GNSSs were tested. They were fixed to a car's roof-rack: a smart phone, a wrist watch, a handheld device, a professional system for testing vehicles and a high-end Real Time Kinematics (RTK) GNSS. The speed data were recorded and analyzed during rapid acceleration and deceleration as well as at steady speed. The study produced four main findings. Higher frequency and high quality GNSS receivers track speed at least at comparable accuracy to a vehicle speedometer. All GNSS systems measured maximum speed and movement at a constant speed well. Acceleration and deceleration have different level of error at different speeds. Low cost GNSS receivers operating at 1 Hz sampling rate had high latency (up to 2.16 s) and are not appropriate for tracking speed in real time, especially during dynamic movements. PMID:25494349

  6. Single Particle Tracking Reveals Biphasic Transport During Nanorod Magnetophoresis Through Extracellular Matrix

    PubMed Central

    Mair, L.O.; Superfine, R.

    2014-01-01

    Magnetic drug targeting has been proposed as a means of efficiently targeting drugs to tumors. However, the extracellular matrix (ECM) remains a significant barrier to long-range magnetophoretic transport through the tumor volume. While ensemble measurements of nanoparticle magnetophoresis have been reported, a single particle level understanding of magnetophoretic transport remains at large. We quantify nanorod magnetophoresis through ECM based on single particle observations. We find that smaller diameter particles achieve larger velocities through ECM despite experiencing smaller magnetic forces. Additionally, two interesting dynamics are elucidated. First, 18 nm diameter nanorods experience bimodal stick-slip motion through ECM during static field magnetophoresis, while similar bimodal transport is not observed for 55 nm nor 200 nm diameter nanorods. Second, smaller particles experience larger deviations in their orientation angle with respect to the magnetic field. This work elucidates important dynamics of nanoparticle transport through complex, porous biomaterials that may go unnoticed during ensemble measurements. PMID:24744160

  7. Particle-tracking simulations of anomalous transport in hierarchically fractured rocks

    NASA Astrophysics Data System (ADS)

    Roubinet, Delphine; de Dreuzy, Jean-Raynald; Tartakovsky, Daniel M.

    2013-01-01

    Complex topology of fracture networks and interactions between transport processes in a fracture and the ambient un-fractured rock (matrix) combine to render modeling solute transport in fractured media a challenge. Classical approaches rely on both strong assumptions of either limited or full diffusion of solutes in the matrix and simplified fracture configurations. We analyze fracture-matrix transport in two-dimensional Sierpinski lattice structures, which display a wide range of matrix block sizes. The analysis is conducted in several transport regimes that are limited by either diffusion or block sizes. Our simulation results can be used to validate the simplifying assumptions that underpin classical analytical solutions and to benchmark other numerical methods. They also demonstrate that both hydraulic and structural properties of fractured rocks control the residence time distribution.

  8. Well-to-Wheels Water Consumption: Tracking the Virtual Flow of Water into Transportation

    NASA Astrophysics Data System (ADS)

    Lampert, D. J.; Elgowainy, A.; Hao, C.

    2015-12-01

    Water and energy resources are fundamental to life on Earth and essential for the production of consumer goods and services in the economy. Energy and water resources are heavily interdependent—energy production consumes water, while water treatment and distribution consume energy. One example of this so-called energy-water nexus is the consumption of water associated with the production of transportation fuels. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can be used to compare the environmental impacts of different transportation fuels on a consistent basis. In this presentation, the expansion of GREET to perform life cycle water accounting or the "virtual flow" of water into transportation and other energy sectors and the associated implications will be discussed. The results indicate that increased usage of alternative fuels may increase freshwater resource consumption. The increased water consumption must be weighed against the benefits of decreased greenhouse gas and fossil energy consumption. Our analysis highlights the importance of regionality, co-product allocation, and consistent system boundaries when comparing the water intensity of alternative transportation fuel production pathways such as ethanol, biodiesel, compressed natural gas, hydrogen, and electricity with conventional petroleum-based fuels such as diesel and gasoline.

  9. Development of the 3D Parallel Particle-In-Cell Code IMPACT to Simulate the Ion Beam Transport System of VENUS (Abstract)

    SciTech Connect

    Qiang, J.; Leitner, D.; Todd, D.S.; Ryne, R.D.

    2005-03-15

    The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV.For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.

  10. Development of the 3D Parallel Particle-In-Cell Code IMPACT to Simulate the Ion Beam Transport System of VENUS (Abstract)

    NASA Astrophysics Data System (ADS)

    Qiang, J.; Leitner, D.; Todd, D. S.; Ryne, R. D.

    2005-03-01

    The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV. For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.

  11. Wrong side of the tracks: the neglected human costs of transporting oil and gas.

    PubMed

    Burton, Lloyd; Stretesky, Paul

    2014-01-01

    The connection between human rights and climate change is most evident when examining carbon dioxide emissions that result from burning fossil fuels (e.g., sea level rise and displaced coastal cultures). However, the transport of fossil fuels also has human rights implications for human rights and climate change. This research focuses on the health and safety risks inflicted on those residents who are adjacent to the railways that ship fossil fuels along the US-Canada transportation corridors. Applying sociological and jurisprudential perspectives, we review the environmental/climate justice literature as it pertains to industrial transport corridors, documenting the forms of heightened risk imposed on those living along these transportation paths. Next, we develop an illustrative case study of Canada's worst rail catastrophe. In so doing, we provide evidence of a decades-long failure of US and Canadian regulators to prevent such disasters. We interpret that disaster through a human rights case law suggesting that States have an affirmative duty to protect their citizens from foreseeable disasters. Based on this analysis, we propose specific rail safety regulatory reforms. We argue that if the US and Canadian governments implement these regulations as required under human rights law, they can more effectively honor their obligations to their citizens who are paying a high human cost for the material benefits associated with increased energy production. PMID:25474613

  12. 52Mn Production for PET/MRI Tracking Of Human Stem Cells Expressing Divalent Metal Transporter 1 (DMT1)

    PubMed Central

    Lewis, Christina M.; Graves, Stephen A.; Hernandez, Reinier; Valdovinos, Hector F.; Barnhart, Todd E.; Cai, Weibo; Meyerand, Mary E.; Nickles, Robert J.; Suzuki, Masatoshi

    2015-01-01

    There is a growing demand for long-term in vivo stem cell imaging for assessing cell therapy techniques and guiding therapeutic decisions. This work develops the production of 52Mn and establishes proof of concept for the use of divalent metal transporter 1 (DMT1) as a positron emission tomography (PET) and magnetic resonance imaging (MRI) reporter gene for stem cell tracking in the rat brain. 52Mn was produced via proton irradiation of a natural chromium target. In a comparison of two 52Mn separation methods, solvent-solvent extraction was preferred over ion exchange chromatography because of reduced chromium impurities and higher 52Mn recovery. In vitro uptake of Mn-based PET and MRI contrast agents (52Mn2+ and Mn2+, respectively) was enhanced in DMT1 over-expressing human neural progenitor cells (hNPC-DMT1) compared to wild-type control cells (hNPC-WT). After cell transplantation in the rat striatum, increased uptake of Mn-based contrast agents in grafted hNPC-DMT1 was detected in in vivo manganese-enhanced MRI (MEMRI) and ex vivo PET and autoradiography. These initial studies indicate that this approach holds promise for dual-modality PET/MR tracking of transplanted stem cells in the central nervous system and prompt further investigation into the clinical applicability of this technique. PMID:25553111

  13. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    SciTech Connect

    Kim, Young-Keun; Kim, Kyung-Soo

    2014-10-15

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  14. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    NASA Astrophysics Data System (ADS)

    Kim, Young-Keun; Kim, Kyung-Soo

    2014-10-01

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  15. Tracking aeolian transport patterns across a mega-nourishment using video imagery

    NASA Astrophysics Data System (ADS)

    Wijnberg, Kathelijne; van der Weerd, Lianne; Hulscher, Suzanne

    2014-05-01

    Coastal dune areas protect the hinterland from flooding. In order to maintain the safety level provided by the dunes, it may be necessary to artificially supply the beach-dune system with sand. How to best design these shore nourishments, amongst others with respect to optimal dune growth on the long-term (decadal scale), is not yet clear. One reason for this is that current models for aeolian transport on beaches appear to have limited predictive capabilities regarding annual onshore sediment supply. These limited capabilities may be attributed to the lack of appropriate input data, for instance on moisture content of the beach surface, or shortcomings in process understanding. However, it may also be argued that for the long-term prediction of onshore aeolian sand supply from the beach to the dunes, we may need to develop some aggregated-scale transport equations, because the detailed input data required for the application of process-scale transport equations may never be available in reality. A first step towards the development of such new concepts for aggregated-scale transport equations is to increase phenomenological insight into the characteristics and number of aeolian transport events that account for the annual volume changes of the foredunes. This requires high-frequency, long-term data sets to capture the only intermittently occurring aeolian transport events. Automated video image collection seems a promising way to collect such data. In the present study we describe the movement (direction and speed) of sand patches and aeolian bed forms across a nourished site, using video imagery, to characterize aeolian transport pathways and their variability in time. The study site is a mega-nourishment (21 Mm3 of sand) that was recently constructed at the Dutch coast. This mega-nourishment, also referred to as the Sand Motor, is a pilot project that may potentially replace current practice of more frequently applying small scale nourishments. The mega

  16. Imaging and Quantitation Techniques for Tracking Cargo along Endosome-to-Golgi Transport Pathways

    PubMed Central

    Chia, Pei Zhi Cheryl; Gleeson, Paul A.

    2013-01-01

    Recent improvements in the resolution of light microscopy, coupled with the development of a range of fluorescent-based probes, have provided new approaches to dissecting membrane domains and the regulation of membrane trafficking. Here, we review these advances, as well as highlight developments in quantitative image analysis and novel unbiased analytical approaches to quantitate protein localization. The application of these approaches to endosomal sorting and endosome-to-Golgi transport is discussed. PMID:24709647

  17. Influence of the centrifugal force and parallel dynamics on the toroidal momentum transport due to small scale turbulence in a tokamak

    SciTech Connect

    Peeters, A. G.; Camenen, Y.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Strintzi, D.; Angioni, C.

    2009-04-15

    The paper derives the gyro-kinetic equation in the comoving frame of a toroidally rotating plasma, including both the Coriolis drift effect [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)] as well as the centrifugal force. The relation with the laboratory frame is discussed. A low field side gyro-fluid model is derived from the gyro-kinetic equation and applied to the description of parallel momentum transport. The model includes the effects of the Coriolis and centrifugal force as well as the parallel dynamics. The latter physics effect allows for a consistent description of both the Coriolis drift effect as well as the ExB shear effect [R. R. Dominguez and G. M. Staebler, Phys. Fluids B 5, 3876 (1993)] on the momentum transport. Strong plasma rotation as well as parallel dynamics reduce the Coriolis (inward) pinch of momentum and can lead to a sign reversal generating an outward pinch velocity. Also, the ExB shear effect is, in a similar manner, reduced by the parallel dynamics and stronger rotation.

  18. Modeling of Calcite Precipitation Driven by Bacteria-facilitated Urea Hydrolysis in A Flow Column Using A Fully Coupled, Fully Implicit Parallel Reactive Transport Simulator

    NASA Astrophysics Data System (ADS)

    Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.

    2009-12-01

    One approach for immobilizing subsurface metal contaminants involves stimulating the in situ production of mineral phases that sequester or isolate contaminants. One example is using calcium carbonate to immobilize strontium. The success of such approaches depends on understanding how various processes of flow, transport, reaction and resulting porosity-permeability change couple in subsurface systems. Reactive transport models are often used for such purpose. Current subsurface reactive transport simulators typically involve a de-coupled solution approach, such as operator-splitting, that solves the transport equations for components and batch chemistry sequentially, which has limited applicability for many biogeochemical processes with fast kinetics and strong medium property-reaction interactions. A massively parallel, fully coupled, fully implicit reactive transport simulator has been developed based on a parallel multi-physics object oriented software environment computing framework (MOOSE) developed at the Idaho National Laboratory. Within this simulator, the system of transport and reaction equations is solved simultaneously in a fully coupled manner using the Jacobian Free Newton-Krylov (JFNK) method with preconditioning. The simulator was applied to model reactive transport in a one-dimensional column where conditions that favor calcium carbonate precipitation are generated by urea hydrolysis that is catalyzed by urease enzyme. Simulation results are compared to both laboratory column experiments and those obtained using the reactive transport simulator STOMP in terms of: the spatial and temporal distributions of precipitates and reaction rates and other major species in the reaction system; the changes in porosity and permeability; and the computing efficiency based on wall clock simulation time.

  19. Superconducting transport in single and parallel double InAs quantum dot Josephson junctions with Nb-based superconducting electrodes

    SciTech Connect

    Baba, Shoji Sailer, Juergen; Deacon, Russell S.; Oiwa, Akira; Shibata, Kenji; Hirakawa, Kazuhiko; Tarucha, Seigo

    2015-11-30

    We report conductance and supercurrent measurements for InAs single and parallel double quantum dot Josephson junctions contacted with Nb or NbTiN superconducting electrodes. Large superconducting gap energy, high critical field, and large switching current are observed, all reflecting the features of Nb-based electrodes. For the parallel double dots, we observe an enhanced supercurrent when both dots are on resonance, which may reflect split Cooper pair tunneling.

  20. Suppression of Parallel Transport in Turbulent Magnetized Plasmas and Its Impact on the Non-thermal and Thermal Aspects of Solar Flares

    NASA Astrophysics Data System (ADS)

    Bian, Nicolas H.; Kontar, Eduard P.; Emslie, A. Gordon

    2016-06-01

    The transport of the energy contained in electrons, both thermal and suprathermal, in solar flares plays a key role in our understanding of many aspects of the flare phenomenon, from the spatial distribution of hard X-ray emission to global energetics. Motivated by recent RHESSI observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we here consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We then evaluate the effect of these modified transport coefficients on the flare coronal temperature that can be attained, on the post-impulsive-phase cooling of heated coronal plasma, and on the importance of the beam-neutralizing return current on both ambient heating and the energy loss rate of accelerated electrons. We also discuss the possible ways in which anomalous transport processes have an impact on the required overall energy associated with accelerated electrons in solar flares.

  1. 49 CFR 213.63 - Track surface.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Track surface. 213.63 Section 213.63..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Track Geometry § 213.63 Track surface. Each owner of the track to which this part applies shall maintain the surface of its track within the limits prescribed...

  2. 49 CFR 213.63 - Track surface.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Track surface. 213.63 Section 213.63..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Track Geometry § 213.63 Track surface. Each owner of the track to which this part applies shall maintain the surface of its track within the limits prescribed...

  3. A parallelization scheme to simulate reactive transport in the subsurface environment with OGS#IPhreeqc 5.5.7-3.1.2

    NASA Astrophysics Data System (ADS)

    He, W.; Beyer, C.; Fleckenstein, J. H.; Jang, E.; Kolditz, O.; Naumov, D.; Kalbacher, T.

    2015-10-01

    The open-source scientific software packages OpenGeoSys and IPhreeqc have been coupled to set up and simulate thermo-hydro-mechanical-chemical coupled processes with simultaneous consideration of aqueous geochemical reactions faster and easier on high-performance computers. In combination with the elaborated and extendable chemical database of IPhreeqc, it will be possible to set up a wide range of multiphysics problems with numerous chemical reactions that are known to influence water quality in porous and fractured media. A flexible parallelization scheme using MPI (Message Passing Interface) grouping techniques has been implemented, which allows an optimized allocation of computer resources for the node-wise calculation of chemical reactions on the one hand and the underlying processes such as for groundwater flow or solute transport on the other. This technical paper presents the implementation, verification, and parallelization scheme of the coupling interface, and discusses its performance and precision.

  4. Highly Reduced Forsterite and Enstatite from Stardust Track 61: Implications for Radial Transport of E Asteroid Material

    NASA Technical Reports Server (NTRS)

    Frank, David R.; Zolensky, M. E.; Le, L.; Weisberg, M. K.; Kimura, M.

    2013-01-01

    The Stardust Mission returned a large fraction of high-temperature, crystalline material that was radially transported from the inner solar system to the Kuiper Belt [1,2]. The mineralogical diversity found in this single cometary collection points to an even greater number of source materials than most primitive chondrites. In particular, the type II olivine found in Wild 2 includes the three distinct Fe/Mn ratios found in the matrix and chondrules of carbonaceous chondrites (CCs) and unequilibrated ordinary chondrites (UOCs) [3]. We also find that low-Ca pyroxene is quite variable (approximately Fs3-29) and is usually indistinguishable from CC, UOC, and EH3 pyroxene as well. However, occasional olivine and pyroxene compositions are found in Wild 2 that are inconsistent with chondrites. The Stardust track 61 terminal particle (TP) is one such example and is the focus of this study. It s highly reduced forsterite and enstatite is consistent only with that in Aubrites, in which FeO is essentially absent from these phases (less than approximately 0.1 wt.% FeO) [4].

  5. 49 CFR 213.323 - Track gage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Track gage. 213.323 Section 213.323 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.323 Track gage....

  6. 49 CFR 213.323 - Track gage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Track gage. 213.323 Section 213.323 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.323 Track gage....

  7. Suppression of Parallel Transport in Turbulent Magnetized Plasmas and Its Impact on Non-Thermal and Thermal Aspects of Solar Flares

    NASA Astrophysics Data System (ADS)

    Emslie, A. Gordon; Bian, Nicolas H.; Kontar, Eduard

    2016-05-01

    Motivated by recent RHESSI observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We then evaluate the effect of these modified transport coefficients on several items of interest to the modeling of flares, including: the peak flare coronal temperature that can be attained, the post-impulsive-phase cooling time of heated coronal plasma, and the importance of the beam-neutralizing return current on both ambient heating and the energy loss rate of accelerated electrons. We also discuss the ways in which anomalous transport processes have an impact on the required overall energy content of accelerated electrons in solar flares.

  8. A Focused Transport Approach to SEP acceleration at a Fast Parallel Shock in the Corona Including Self-excitation of Alfvén Waves

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.

    2012-12-01

    It has been argued that the acceleration of SEPS at a quasi-parallel CME-driven shock to GeV energies in the corona only occurs if strong wave-excitation by SEPs ahead of the shock reduces the parallel mean free path upstream, thus boosting the rate of diffusive shock acceleration. To investigate this issue, we modeled SEP acceleration at a fast parallel traveling shock in the corona with an existing time-dependent focused transport model. The model has been expanded recently to also feature time-dependent self-excitation and damping of Alfvén waves by SEP anisotropies ahead of the shock based on standard quasi-linear theory. Alfvén wave propagation near the traveling shock is modeled based on standard theory for wave transport in a slowly varying non-uniform plasma medium. Preliminary results will be shown to illustrate the increase in wave power driven by SEP anisotropies upstream, the effect of the shock wave in shortening the wave length and increasing the wave amplitude of Alfvén waves, and the associated acceleration of SEPs by 1st order Fermi acceleration to high energies. The role of the acceleration of the cross-shock solar wind flow, which was found to create a downstream population of shock pre-heated particles which forms an additional source for injection into 1st order Fermi acceleration, will be discussed in terms of how it affects self-excitation of Alfvén waves and the formation of high-energy SEPs by 1st order Fermi acceleration.

  9. Kalman filter-based fast track reconstruction for charged particles in a Compressed Baryonic Matter experiment using parallel computing on a multicore server at the Laboratory of Information Technologies, Joint Institute for Nuclear Research

    NASA Astrophysics Data System (ADS)

    Ablyazimov, T. O.; Zyzak, M. V.; Ivanov, V. V.; Kisel, P. I.

    2015-05-01

    One of the main goals in the Compressed Baryonic Matter (CBM) experiment (GSI, Germany) is to find parameters of charged particle trajectories. An online full event reconstruction is planned to be carried out in this experiment, thus demanding fast algorithms be developed, which make the most of the capabilities of modern CPU and GPU architectures. This paper presents the results of an analysis of the Kalman filter-based track reconstruction for charged particles implemented by using various code parallelization methods. A multicore server located at the Laboratory of Information Technologies, Joint Institute for Nuclear Research (LIT JINR), with two CPU Intel Xeon X5660 processors and a GPU Nvidia GTX 480 video card is used.

  10. REACTIVE TRANSPORT MODELING USING A PARALLEL FULLY-COUPLED SIMULATOR BASED ON PRECONDITIONED JACOBIAN-FREE NEWTON-KRYLOV

    SciTech Connect

    Luanjing Guo; Chuan Lu; Hai Huang; Derek R. Gaston

    2012-06-01

    Systems of multicomponent reactive transport in porous media that are large, highly nonlinear, and tightly coupled due to complex nonlinear reactions and strong solution-media interactions are often described by a system of coupled nonlinear partial differential algebraic equations (PDAEs). A preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach is applied to solve the PDAEs in a fully coupled, fully implicit manner. The advantage of the JFNK method is that it avoids explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations for computational efficiency considerations. This solution approach is also enhanced by physics-based blocking preconditioning and multigrid algorithm for efficient inversion of preconditioners. Based on the solution approach, we have developed a reactive transport simulator named RAT. Numerical results are presented to demonstrate the efficiency and massive scalability of the simulator for reactive transport problems involving strong solution-mineral interactions and fast kinetics. It has been applied to study the highly nonlinearly coupled reactive transport system of a promising in situ environmental remediation that involves urea hydrolysis and calcium carbonate precipitation.

  11. 49 CFR 213.331 - Track surface.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Track surface. 213.331 Section 213.331... Track surface. (a) For a single deviation in track surface, each track owner shall maintain the surface of its track within the limits prescribed in the following table: Track surface (inches) Class...

  12. 49 CFR 213.331 - Track surface.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Track surface. 213.331 Section 213.331... Track surface. (a) For a single deviation in track surface, each track owner shall maintain the surface of its track within the limits prescribed in the following table: Track surface (inches) Class...

  13. Chemical transport to the seafloor of the equatorial Pacific Ocean across a latitudinal transect at 135°W: Tracking sedimentary major, trace, and rare earth element fluxes at the Equator and the Intertropical Convergence Zone

    NASA Astrophysics Data System (ADS)

    Murray, Richard W.; Leinen, Margaret

    1993-09-01

    We have analyzed the major, trace, and rare earth element composition of surface sediments collected from a transect across the Equator at 135°W longitude in the Pacific Ocean. Comparing the behavior of this suite of elements to the CaCO 3, opal, and C org fluxes (which record sharp maxima at the Equator, previously documented at the same sampling stations) enables us to assess the relative significance of the various pathways by which trace elements are transported to the equatorial Pacific seafloor. The (1) high biogenic source at the Equator, associated with equatorial divergence of surface water and upwelling of nutrient-rich water, and (2) high aluminosilicate flux at 4°N, associated with increased terrigenous input from elevated rainfall at the Intertropical Convergence Zone (ITCZ) of the tradewinds, are the two most important fluxes with which elemental transport is affiliated. The biogenic flux at the Equator transports Ca and Sr structurally bound to carbonate tests and Mn primarily as an adsorbed component. Trace elements such as Cr, As, Pb, and the REEs are also influenced by the biogenic flux at the Equator, although this affiliation is not regionally dominant. Normative calculations suggest that extremely large fluxes of Ba and P at the Equator are carried by only small proportions of barite and apatite phases. The high terrigenous flux at the ITCZ has a profound effect on chemical transport to the seafloor, with elemental fluxes increasing tremendously and in parallel with Ti. Normative calculations, however, indicate that these fluxes are far in excess of what can be supplied by lattice-bound terrigenous phases. The accumulation of Ba is greater than is affiliated with biogenic transport at the Equator, while the P flux at the ITCZ is only 10% less than at the Equator. This challenges the common view that Ba and P are essentially exclusively associated with biogenic fluxes. Many other elements (including Mn, Pb, As, and REEs) also record greater

  14. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit

    SciTech Connect

    Badal, Andreu; Badano, Aldo

    2009-11-15

    Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.

  15. Late Holocene distal mud deposits off the Nakdong delta, SE Korea: evidence for shore-parallel sediment transport in a current-dominated setting

    NASA Astrophysics Data System (ADS)

    Chun, Jong-Hwa; Kim, Yuri; Bahk, Jang-Jun; Kim, Young Jun; Kang, Dong-Hyo; Kim, Yong Hoon; Kim, Gil Young; Ryu, Byong-Jae

    2015-12-01

    The distal mud deposits (DMDs) off the Nakdong delta represent a subaqueous delta on the inner continental shelf aligned parallel to the southeast coast of Korea and displaying a clinoform geometry. Hydrographically, the coast is characterized by a micro-tidal regime, the strong Korean Coastal Current (KCC) and the East Korean Warm Current (EKWC). Age models and sedimentary facies related to the clinoform geometries are based on high-resolution chirp subbottom profile data and have provided information on shore-parallel sediment transport and accumulation during the late Holocene sea-level highstand. The highest sedimentation rates (6.19-9.17 cm/year) produced steep foresets in the central DMDs at water depths of 35-50 m. Here, vertical burrows are repeatedly truncated by laminated mud packages displaying erosional surfaces. This region represents the main depocenter of the Nakdong subaqueous delta. The topset sediments of the southern DMD at ~40 m water depth closer to the river mouth show relatively low sedimentation rates (0.01-0.12 cm/year). Here, the muds have a predominantly mottled character. Similarly, the foreset sediments of the northern DMD at ~71-80 m water depth with sedimentation rates of 0.10-2.03 cm/year are also predominantly characterized by mottled muds. The spatial dispersal pattern of the DMDs is consistent with the coast-parallel front between the KCC and EKWC along the southeast Korean coast. In addition, the depocenter of the Nakdong subaqueous delta clinoform is affected by the near-bed turbulence generated by episodic storm events.

  16. Method and software for using m-sequences to characterize parallel components of higher-order visual tracking behavior in Drosophila.

    PubMed

    Aptekar, Jacob W; Keles, Mehmet F; Mongeau, Jean-Michel; Lu, Patrick M; Frye, Mark A; Shoemaker, Patrick A

    2014-01-01

    A moving visual figure may contain first-order signals defined by variation in mean luminance, as well as second-order signals defined by constant mean luminance and variation in luminance envelope, or higher-order signals that cannot be estimated by taking higher moments of the luminance distribution. Separating these properties of a moving figure to experimentally probe the visual subsystems that encode them is technically challenging and has resulted in debated mechanisms of visual object detection by flies. Our prior work took a white noise systems identification approach using a commercially available electronic display system to characterize the spatial variation in the temporal dynamics of two distinct subsystems for first- and higher-order components of visual figure tracking. The method relied on the use of single pixel displacements of two visual stimuli according to two binary maximum length shift register sequences (m-sequences) and cross-correlation of each m-sequence with time-varying flight steering measurements. The resultant spatio-temporal action fields represent temporal impulse responses parameterized by the azimuthal location of the visual figure, one STAF for first-order and another for higher-order components of compound stimuli. Here we review m-sequence and reverse correlation procedures, then describe our application in detail, provide Matlab code, validate the STAFs, and demonstrate the utility and robustness of STAFs by predicting the results of other published experimental procedures. This method has demonstrated how two relatively modest innovations on classical white noise analysis--the inclusion of space as a way to organize response kernels and the use of linear decoupling to measure the response to two channels of visual information simultaneously--could substantially improve our basic understanding of visual processing in the fly. PMID:25400550

  17. Method and software for using m-sequences to characterize parallel components of higher-order visual tracking behavior in Drosophila

    PubMed Central

    Aptekar, Jacob W.; Keles, Mehmet F.; Mongeau, Jean-Michel; Lu, Patrick M.; Frye, Mark A.; Shoemaker, Patrick A.

    2014-01-01

    A moving visual figure may contain first-order signals defined by variation in mean luminance, as well as second-order signals defined by constant mean luminance and variation in luminance envelope, or higher-order signals that cannot be estimated by taking higher moments of the luminance distribution. Separating these properties of a moving figure to experimentally probe the visual subsystems that encode them is technically challenging and has resulted in debated mechanisms of visual object detection by flies. Our prior work took a white noise systems identification approach using a commercially available electronic display system to characterize the spatial variation in the temporal dynamics of two distinct subsystems for first- and higher-order components of visual figure tracking. The method relied on the use of single pixel displacements of two visual stimuli according to two binary maximum length shift register sequences (m-sequences) and cross-correlation of each m-sequence with time-varying flight steering measurements. The resultant spatio-temporal action fields represent temporal impulse responses parameterized by the azimuthal location of the visual figure, one STAF for first-order and another for higher-order components of compound stimuli. Here we review m-sequence and reverse correlation procedures, then describe our application in detail, provide Matlab code, validate the STAFs, and demonstrate the utility and robustness of STAFs by predicting the results of other published experimental procedures. This method has demonstrated how two relatively modest innovations on classical white noise analysis—the inclusion of space as a way to organize response kernels and the use of linear decoupling to measure the response to two channels of visual information simultaneously—could substantially improve our basic understanding of visual processing in the fly. PMID:25400550

  18. MICADO: Parallel implementation of a 2D-1D iterative algorithm for the 3D neutron transport problem in prismatic geometries

    SciTech Connect

    Fevotte, F.; Lathuiliere, B.

    2013-07-01

    The large increase in computing power over the past few years now makes it possible to consider developing 3D full-core heterogeneous deterministic neutron transport solvers for reference calculations. Among all approaches presented in the literature, the method first introduced in [1] seems very promising. It consists in iterating over resolutions of 2D and ID MOC problems by taking advantage of prismatic geometries without introducing approximations of a low order operator such as diffusion. However, before developing a solver with all industrial options at EDF, several points needed to be clarified. In this work, we first prove the convergence of this iterative process, under some assumptions. We then present our high-performance, parallel implementation of this algorithm in the MICADO solver. Benchmarking the solver against the Takeda case shows that the 2D-1D coupling algorithm does not seem to affect the spatial convergence order of the MOC solver. As for performance issues, our study shows that even though the data distribution is suited to the 2D solver part, the efficiency of the ID part is sufficient to ensure a good parallel efficiency of the global algorithm. After this study, the main remaining difficulty implementation-wise is about the memory requirement of a vector used for initialization. An efficient acceleration operator will also need to be developed. (authors)

  19. Coupled electron-photon radiation transport

    SciTech Connect

    Lorence, L.; Kensek, R.P.; Valdez, G.D.; Drumm, C.R.; Fan, W.C.; Powell, J.L.

    2000-01-17

    Massively-parallel computers allow detailed 3D radiation transport simulations to be performed to analyze the response of complex systems to radiation. This has been recently been demonstrated with the coupled electron-photon Monte Carlo code, ITS. To enable such calculations, the combinatorial geometry capability of ITS was improved. For greater geometrical flexibility, a version of ITS is under development that can track particles in CAD geometries. Deterministic radiation transport codes that utilize an unstructured spatial mesh are also being devised. For electron transport, the authors are investigating second-order forms of the transport equations which, when discretized, yield symmetric positive definite matrices. A novel parallelization strategy, simultaneously solving for spatial and angular unknowns, has been applied to the even- and odd-parity forms of the transport equation on a 2D unstructured spatial mesh. Another second-order form, the self-adjoint angular flux transport equation, also shows promise for electron transport.

  20. Fission track evidence for tilting of the Peninsular Ranges batholith of southern California: An alternative to long-distance northward transport

    SciTech Connect

    George, P.G.; Dokka, R.K. . Dept. of Geology and Geophysics)

    1992-01-01

    Paleomagnetic directions of Mesozoic plutonic rocks from the Peninsular Ranges batholith in southern California and Baja California are discordant with the expected Cretaceous magnetic field direction. The difference between expected and observed directions suggests ca 25[degree] of clockwise tectonic rotation and ca 11[degree] northward translation of peninsular California with respect to cratonic North America. Lithologic correlations between peninsular California and Sonora, however, support only 300 [+-] 10 km of north-northwest translation along the San Andreas transform system. Southwest tilting of the batholith about an axis subparallel to its trend has been proposed in order to explain the discordant paleomagnetic directions, thereby eliminating the need for long-distance transport. The distribution of zircon and apatite fission-track ages across the western half of the batholith between Palomar Mountain and Escondido, California support this proposal. In the northeastern part of the study area apatite and zircon fission-track ages of Early Cretaceous tonalities and granodiorites range from 73.9 to 81.9 Ma and 74.8 to 79.9 Ma, respectively. The show no systematic increase or decrease with changes in elevation or distance along the ca N37E line of sampling. Towards the southwest, however, apatite and zircon fission-track ages increase progressively from 82 to 96 Ma and 83 to 93 Ma, respectively. The author interprets these results as indicating rapid, episodic uplift of the study area during Late Cretaceous time followed by regional tilting of the batholith and its fission-track age surfaces to the southwest. The amount of tilt estimated from the distribution of the fission-track ages is compatible with those based on geobarometry data and the distribution of U-Pb and K-Ar ages.

  1. Combining node-centered parallel radiation transport and higher-order multi-material cell-centered hydrodynamics methods in three-temperature radiation hydrodynamics code TRHD

    NASA Astrophysics Data System (ADS)

    Sijoy, C. D.; Chaturvedi, S.

    2016-06-01

    Higher-order cell-centered multi-material hydrodynamics (HD) and parallel node-centered radiation transport (RT) schemes are combined self-consistently in three-temperature (3T) radiation hydrodynamics (RHD) code TRHD (Sijoy and Chaturvedi, 2015) developed for the simulation of intense thermal radiation or high-power laser driven RHD. For RT, a node-centered gray model implemented in a popular RHD code MULTI2D (Ramis et al., 2009) is used. This scheme, in principle, can handle RT in both optically thick and thin materials. The RT module has been parallelized using message passing interface (MPI) for parallel computation. Presently, for multi-material HD, we have used a simple and robust closure model in which common strain rates to all materials in a mixed cell is assumed. The closure model has been further generalized to allow different temperatures for the electrons and ions. In addition to this, electron and radiation temperatures are assumed to be in non-equilibrium. Therefore, the thermal relaxation between the electrons and ions and the coupling between the radiation and matter energies are required to be computed self-consistently. This has been achieved by using a node-centered symmetric-semi-implicit (SSI) integration scheme. The electron thermal conduction is calculated using a cell-centered, monotonic, non-linear finite volume scheme (NLFV) suitable for unstructured meshes. In this paper, we have described the details of the 2D, 3T, non-equilibrium, multi-material RHD code developed with a special attention to the coupling of various cell-centered and node-centered formulations along with a suite of validation test problems to demonstrate the accuracy and performance of the algorithms. We also report the parallel performance of RT module. Finally, in order to demonstrate the full capability of the code implementation, we have presented the simulation of laser driven shock propagation in a layered thin foil. The simulation results are found to be in good

  2. Combining node-centered parallel radiation transport and higher-order multi-material cell-centered hydrodynamics methods in three-temperature radiation hydrodynamics code TRHD

    NASA Astrophysics Data System (ADS)

    Sijoy, C. D.; Chaturvedi, S.

    2016-06-01

    Higher-order cell-centered multi-material hydrodynamics (HD) and parallel node-centered radiation transport (RT) schemes are combined self-consistently in three-temperature (3T) radiation hydrodynamics (RHD) code TRHD (Sijoy and Chaturvedi, 2015) developed for the simulation of intense thermal radiation or high-power laser driven RHD. For RT, a node-centered gray model implemented in a popular RHD code MULTI2D (Ramis et al., 2009) is used. This scheme, in principle, can handle RT in both optically thick and thin materials. The RT module has been parallelized using message passing interface (MPI) for parallel computation. Presently, for multi-material HD, we have used a simple and robust closure model in which common strain rates to all materials in a mixed cell is assumed. The closure model has been further generalized to allow different temperatures for the electrons and ions. In addition to this, electron and radiation temperatures are assumed to be in non-equilibrium. Therefore, the thermal relaxation between the electrons and ions and the coupling between the radiation and matter energies are required to be computed self-consistently. This has been achieved by using a node-centered symmetric-semi-implicit (SSI) integration scheme. The electron thermal conduction is calculated using a cell-centered, monotonic, non-linear finite volume scheme (NLFV) suitable for unstructured meshes. In this paper, we have described the details of the 2D, 3T, non-equilibrium, multi-material RHD code developed with a special attention to the coupling of various cell-centered and node-centered formulations along with a suite of validation test problems to demonstrate the accuracy and performance of the algorithms. We also report the parallel performance of RT module. Finally, in order to demonstrate the full capability of the code implementation, we have presented the simulation of laser driven shock propagation in a layered thin foil. The simulation results are found to be in good

  3. A Parallel, Fully Coupled, Fully Implicit Solution to Reactive Transport in Porous Media Using the Preconditioned Jacobian-Free Newton-Krylov Method

    SciTech Connect

    Luanjing Guo; Hai Huang; Derek Gaston; Cody Permann; David Andrs; George Redden; Chuan Lu; Don Fox; Yoshiko Fujita

    2013-03-01

    Modeling large multicomponent reactive transport systems in porous media is particularly challenging when the governing partial differential algebraic equations (PDAEs) are highly nonlinear and tightly coupled due to complex nonlinear reactions and strong solution-media interactions. Here we present a preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach to solve the governing PDAEs in a fully coupled and fully implicit manner. A well-known advantage of the JFNK method is that it does not require explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations. Our approach further enhances the JFNK method by utilizing physics-based, block preconditioning and a multigrid algorithm for efficient inversion of the preconditioner. This preconditioning strategy accounts for self- and optionally, cross-coupling between primary variables using diagonal and off-diagonal blocks of an approximate Jacobian, respectively. Numerical results are presented demonstrating the efficiency and massive scalability of the solution strategy for reactive transport problems involving strong solution-mineral interactions and fast kinetics. We found that the physics-based, block preconditioner significantly decreases the number of linear iterations, directly reducing computational cost; and the strongly scalable algebraic multigrid algorithm for approximate inversion of the preconditioner leads to excellent parallel scaling performance.

  4. Massively parallel multiple interacting continua formulation for modeling flow in fractured porous media using the subsurface reactive flow and transport code PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Mills, R. T.; Lichtner, P. C.; Hammond, G. E.

    2010-12-01

    Fracture dominated flows occur in numerous subsurface geochemical processes and at many different scales in rock pore structures, micro-fractures, fracture networks and faults. Fractured porous media can be modeled as multiple interacting continua which are connected to each other through transfer terms that capture the flow of mass and energy in response to pressure, temperature and concentration gradients. However, the analysis of large-scale transient problems using the multiple interacting continuum approach presents an algorithmic and computational challenge for problems with very large numbers of degrees of freedom. A generalized dual porosity model based on the Dual Continuum Disconnected Matrix approach has been implemented within a massively parallel multiphysics-multicomponent-multiphase subsurface reactive flow and transport code PFLOTRAN. Developed as part of the Department of Energy's SciDAC-2 program, PFLOTRAN provides subsurface simulation capabilities that can scale from laptops to ultrascale supercomputers, and utilizes the PETSc framework to solve the large, sparse algebraic systems that arises in complex subsurface reactive flow and transport problems. It has been successfully applied to the solution of problems composed of more than two billions degrees of freedom, utilizing up to 131,072 processor cores on Jaguar, the Cray XT5 system at Oak Ridge National Laboratory that is the world’s fastest supercomputer. Building upon the capabilities and computational efficiency of PFLOTRAN, we will present an implementation of the multiple interacting continua formulation for fractured porous media along with an application case study.

  5. Single-particle tracking uncovers dynamics of glutamate-induced retrograde transport of NF-κB p65 in living neurons.

    PubMed

    Widera, Darius; Klenke, Christin; Nair, Deepak; Heidbreder, Meike; Malkusch, Sebastian; Sibarita, Jean-Baptiste; Choquet, Daniel; Kaltschmidt, Barbara; Heilemann, Mike; Kaltschmidt, Christian

    2016-10-01

    Retrograde transport of NF-κB from the synapse to the nucleus in neurons is mediated by the dynein/dynactin motor complex and can be triggered by synaptic activation. The caliber of axons is highly variable ranging down to 100 nm, aggravating the investigation of transport processes in neurites of living neurons using conventional light microscopy. We quantified for the first time the transport of the NF-κB subunit p65 using high-density single-particle tracking in combination with photoactivatable fluorescent proteins in living mouse hippocampal neurons. We detected an increase of the mean diffusion coefficient ([Formula: see text]) in neurites from [Formula: see text] to [Formula: see text] after stimulation with glutamate. We further observed that the relative amount of retrogradely transported p65 molecules is increased after stimulation. Glutamate treatment resulted in an increase of the mean retrograde velocity from [Formula: see text] to [Formula: see text], whereas a velocity increase from [Formula: see text] to [Formula: see text] was observed for anterogradely transported p65. This study demonstrates for the first time that glutamate stimulation leads to an increased mobility of single NF-κB p65 molecules in neurites of living hippocampal neurons. PMID:27226975

  6. Parallel rendering

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1995-01-01

    This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.

  7. 49 CFR 213.331 - Track surface.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Track surface. 213.331 Section 213.331... Track surface. (a) For a single deviation in track surface, each owner of the track to which this subpart applies shall maintain the surface of its track within the limits prescribed in the...

  8. 49 CFR 213.331 - Track surface.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Track surface. 213.331 Section 213.331... Track surface. (a) For a single deviation in track surface, each owner of the track to which this subpart applies shall maintain the surface of its track within the limits prescribed in the...

  9. 49 CFR 236.726 - Circuit, track.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Circuit, track. 236.726 Section 236.726 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, track. An electrical circuit of which the rails of the track form a part....

  10. 49 CFR 236.726 - Circuit, track.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Circuit, track. 236.726 Section 236.726 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, track. An electrical circuit of which the rails of the track form a part....

  11. 49 CFR 236.726 - Circuit, track.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Circuit, track. 236.726 Section 236.726 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, track. An electrical circuit of which the rails of the track form a part....

  12. 49 CFR 236.726 - Circuit, track.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Circuit, track. 236.726 Section 236.726 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, track. An electrical circuit of which the rails of the track form a part....

  13. 49 CFR 236.726 - Circuit, track.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, track. 236.726 Section 236.726 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, track. An electrical circuit of which the rails of the track form a part....

  14. The role of parallel heat transport in the relation between upstream scrape-off layer widths and target heat flux width in H-mode plasmas of NSTX.

    SciTech Connect

    Ahn, J W; Boedo, J A; Maingi, R; Soukhanovskii, V A

    2009-01-05

    The physics of parallel heat transport was tested in the Scrape-off Layer (SOL) plasma of the National Spherical Torus Experiment (NSTX) [M. Ono, et al., Nucl. Fusion 40, 557 (2000) and S. M. Kaye, et al., Nucl. Fusion 45, S168 (2005)] tokamak by comparing the upstream electron temperature (T{sub e}) and density (n{sub e}) profiles measured by the mid-plane reciprocating probe to the heat flux (q{sub {perpendicular}}) profile at the divertor plate measured by an infrared (IR) camera. It is found that electron conduction explains the near SOL width data reasonably well while the far SOL, which is in the sheath limited regime, requires an ion heat flux profile broader than the electron one to be consistent with the experimental data. The measured plasma parameters indicate that the SOL energy transport should be in the conduction-limited regime for R-R{sub sep} (radial distance from the separatrix location) < 2-3 cm. The SOL energy transport should transition to the sheath-limited regime for R-R{sub sep} > 2-3cm. The T{sub e}, n{sub e}, and q{sub {perpendicular}} profiles are better described by an offset exponential function instead of a simple exponential. The conventional relation between mid plane electron temperature decay length ({lambda}{sub Te}) and target heat flux decay length ({lambda}{sub q}) is {lambda}{sub Te} = 7/2{lambda}{sub q}, whereas the newly-derived relation, assuming offset exponential functional forms, implies {lambda}{sub Te} = (2-2.5){lambda}{sub q}. The measured values of {lambda}{sub Te}/{lambda}{sub q} differ from the new prediction by 25-30%. The measured {lambda}{sub q} values in the far SOL (R-R{sub sep} > 2-3cm) are 9-10cm, while the expected values are 2.7 < {lambda}{sub q} < 4.9 cm (for sheath-limited regime). We propose that the ion heat flux profile is substantially broader than the electron heat flux profile as an explanation for this discrepancy in the far SOL.

  15. Massively parallel visualization: Parallel rendering

    SciTech Connect

    Hansen, C.D.; Krogh, M.; White, W.

    1995-12-01

    This paper presents rendering algorithms, developed for massively parallel processors (MPPs), for polygonal, spheres, and volumetric data. The polygon algorithm uses a data parallel approach whereas the sphere and volume renderer use a MIMD approach. Implementations for these algorithms are presented for the Thinking Machines Corporation CM-5 MPP.

  16. Back-trajectory modelling and DNA-based species-specific detection methods allow tracking of fungal spore transport in air masses.

    PubMed

    Grinn-Gofroń, Agnieszka; Sadyś, Magdalena; Kaczmarek, Joanna; Bednarz, Aleksandra; Pawłowska, Sylwia; Jedryczka, Malgorzata

    2016-11-15

    Recent advances in molecular detection of living organisms facilitate the introduction of novel methods to studies of the transport of fungal spores over large distances. Monitoring the migration of airborne fungi using microscope based spore identification is limited when different species produce very similar spores. In our study, DNA-based monitoring with the use of species-specific probes allowed us to track the aerial movements of two important fungal pathogens of oilseed rape (Brassica napus L.), i.e., Leptosphaeria maculans and Leptosphaeria biglobosa, which have identical spore shape and size. The fungi were identified using dual-labelled fluorescent probes that were targeted to a β-tubulin gene fragment of either Leptosphaeria species. Spore identification by Real-Time PCR techniques capable of detecting minute amounts of DNA of selected fungal species was combined with back-trajectory analysis, allowing the tracking of past movements of air masses using the Hybrid Single Particle Lagrangian Integrated Trajectory model. Over a study period spanning the previous decade (2006-2015) we investigated two specific events relating to the long distance transport of Leptosphaeria spp. spores to Szczecin in North-West Poland. Based on the above mentioned methods and the results obtained with the additional spore sampler located in nearby Szczecin, and operating at the ground level in an oilseed rape field, we have demonstrated that on both occasions the L. biglobosa spores originated from the Jutland Peninsula. This is the first successful attempt to combine analysis of back-trajectories of air masses with DNA-based identification of economically important pathogens of oilseed rape in Europe. In our studies, the timing of L. biglobosa ascospore dispersal in the air was unlikely to result in the infection of winter oilseed rape grown as a crop plant. However, the fungus could infect other host plants, such as vegetable brassicas, cruciferous weeds, spring rapeseed

  17. Parallel machines: Parallel machine languages

    SciTech Connect

    Iannucci, R.A. )

    1990-01-01

    This book presents a framework for understanding the tradeoffs between the conventional view and the dataflow view with the objective of discovering the critical hardware structures which must be present in any scalable, general-purpose parallel computer to effectively tolerate latency and synchronization costs. The author presents an approach to scalable general purpose parallel computation. Linguistic Concerns, Compiling Issues, Intermediate Language Issues, and hardware/technological constraints are presented as a combined approach to architectural Develoement. This book presents the notion of a parallel machine language.

  18. Tracking of magnetic flux concentrations over a five-day observation, and an insight into surface magnetic flux transport

    NASA Astrophysics Data System (ADS)

    Iida, Yusuke

    2016-06-01

    The solar dynamo problem is the question of how the cyclic variation in the solar magnetic field is maintained. One of the important processes is the transport of magnetic flux by surface convection. To reveal this process, the dependence of the squared displacement of magnetic flux concentrations on the elapsed time is investigated in this paper via a feature-recognition technique and a continual five-day magnetogram. This represents the longest time scale over which a satellite observation has ever been performed for this problem. The dependence is found to follow a power law and differ significantly from that of diffusion transport. Furthermore, there is a change in the behavior at a spatial scale of 103.8 km. A super-diffusion behavior with an index of 1.4 is found at smaller scales, while changing to a sub-diffusion behavior with an index of 0.6 on larger ones. We interpret this difference in the transport regime as coming from the network-flow pattern.

  19. Ex-vessel neutron dosimetry analysis for westinghouse 4-loop XL pressurized water reactor plant using the RadTrack{sup TM} Code System with the 3D parallel discrete ordinates code RAPTOR-M3G

    SciTech Connect

    Chen, J.; Alpan, F. A.; Fischer, G.A.; Fero, A.H.

    2011-07-01

    Traditional two-dimensional (2D)/one-dimensional (1D) SYNTHESIS methodology has been widely used to calculate fast neutron (>1.0 MeV) fluence exposure to reactor pressure vessel in the belt-line region. However, it is expected that this methodology cannot provide accurate fast neutron fluence calculation at elevations far above or below the active core region. A three-dimensional (3D) parallel discrete ordinates calculation for ex-vessel neutron dosimetry on a Westinghouse 4-Loop XL Pressurized Water Reactor has been done. It shows good agreement between the calculated results and measured results. Furthermore, the results show very different fast neutron flux values at some of the former plate locations and elevations above and below an active core than those calculated by a 2D/1D SYNTHESIS method. This indicates that for certain irregular reactor internal structures, where the fast neutron flux has a very strong local effect, it is required to use a 3D transport method to calculate accurate fast neutron exposure. (authors)

  20. Homology, convergence and parallelism.

    PubMed

    Ghiselin, Michael T

    2016-01-01

    Homology is a relation of correspondence between parts of parts of larger wholes. It is used when tracking objects of interest through space and time and in the context of explanatory historical narratives. Homologues can be traced through a genealogical nexus back to a common ancestral precursor. Homology being a transitive relation, homologues remain homologous however much they may come to differ. Analogy is a relationship of correspondence between parts of members of classes having no relationship of common ancestry. Although homology is often treated as an alternative to convergence, the latter is not a kind of correspondence: rather, it is one of a class of processes that also includes divergence and parallelism. These often give rise to misleading appearances (homoplasies). Parallelism can be particularly hard to detect, especially when not accompanied by divergences in some parts of the body. PMID:26598721

  1. A New Method for Transport Analysis: Lagrangian Tracking of Pollution Plumes Using Combined Forward and Backward Model Simulations

    NASA Astrophysics Data System (ADS)

    Owen, R. C.; Honrath, R. E.; Val Martin, M.; Lapina, K.

    2006-12-01

    The Lagrangian transport model FLEXPART has been proven to be a useful tool for the analysis of atmospheric trace gas measurements. In particular, backward simulations, which produce a retroplume product analogous to backward trajectories, have proven to be particularly flexible. While trajectories account for advection, retroplumes can also account for turbulence, convection and deformation of an air parcel. Furthermore, when considering tracers or species with only first-order removal processes, retroplumes can be used to calculate source-receptor relationships. In this work, we present techniques for using retroplumes in conjunction with forward model results to determine transport characteristics for specific species and sources. When these two standard products are combined, information about the distribution, dilution, mixing, and removal of a modeled species en route to a receptor can be determined. We apply these methods in conjunction with measurements of CO, ozone, and nitrogen oxides from the PICO-NARE station, a mountain top observatory in the free troposphere, located in the Azores Islands in the central North Atlantic Ocean.

  2. SPINK, A Thin Elements Spin Tracking Code

    SciTech Connect

    Luccio, Alfredo U.

    2009-08-04

    Spink is a spin tracking code for spin polarized particles. The code tracks both trajectories in 3D and spin. It works using thick element modeling from MAD and thin element modeling based on the BMT equation to track spin. The code is written in Fortran and typically runs on a Linux platform, either sequentially or MPI-parallel.

  3. Data parallelism

    SciTech Connect

    Gorda, B.C.

    1992-09-01

    Data locality is fundamental to performance on distributed memory parallel architectures. Application programmers know this well and go to great pains to arrange data for optimal performance. Data Parallelism, a model from the Single Instruction Multiple Data (SIMD) architecture, is finding a new home on the Multiple Instruction Multiple Data (MIMD) architectures. This style of programming, distinguished by taking the computation to the data, is what programmers have been doing by hand for a long time. Recent work in this area holds the promise of making the programmer's task easier.

  4. Data parallelism

    SciTech Connect

    Gorda, B.C.

    1992-09-01

    Data locality is fundamental to performance on distributed memory parallel architectures. Application programmers know this well and go to great pains to arrange data for optimal performance. Data Parallelism, a model from the Single Instruction Multiple Data (SIMD) architecture, is finding a new home on the Multiple Instruction Multiple Data (MIMD) architectures. This style of programming, distinguished by taking the computation to the data, is what programmers have been doing by hand for a long time. Recent work in this area holds the promise of making the programmer`s task easier.

  5. Scalable parallel communications

    NASA Technical Reports Server (NTRS)

    Maly, K.; Khanna, S.; Overstreet, C. M.; Mukkamala, R.; Zubair, M.; Sekhar, Y. S.; Foudriat, E. C.

    1992-01-01

    Coarse-grain parallelism in networking (that is, the use of multiple protocol processors running replicated software sending over several physical channels) can be used to provide gigabit communications for a single application. Since parallel network performance is highly dependent on real issues such as hardware properties (e.g., memory speeds and cache hit rates), operating system overhead (e.g., interrupt handling), and protocol performance (e.g., effect of timeouts), we have performed detailed simulations studies of both a bus-based multiprocessor workstation node (based on the Sun Galaxy MP multiprocessor) and a distributed-memory parallel computer node (based on the Touchstone DELTA) to evaluate the behavior of coarse-grain parallelism. Our results indicate: (1) coarse-grain parallelism can deliver multiple 100 Mbps with currently available hardware platforms and existing networking protocols (such as Transmission Control Protocol/Internet Protocol (TCP/IP) and parallel Fiber Distributed Data Interface (FDDI) rings); (2) scale-up is near linear in n, the number of protocol processors, and channels (for small n and up to a few hundred Mbps); and (3) since these results are based on existing hardware without specialized devices (except perhaps for some simple modifications of the FDDI boards), this is a low cost solution to providing multiple 100 Mbps on current machines. In addition, from both the performance analysis and the properties of these architectures, we conclude: (1) multiple processors providing identical services and the use of space division multiplexing for the physical channels can provide better reliability than monolithic approaches (it also provides graceful degradation and low-cost load balancing); (2) coarse-grain parallelism supports running several transport protocols in parallel to provide different types of service (for example, one TCP handles small messages for many users, other TCP's running in parallel provide high bandwidth

  6. Tracking suspended particle transport via radium isotopes ((226)Ra and (228)Ra) through the Apalachicola-Chattahoochee-Flint River system.

    PubMed

    Peterson, Richard N; Burnett, William C; Opsahl, Stephen P; Santos, Isaac R; Misra, Sambuddha; Froelich, Philip N

    2013-02-01

    Suspended particles in rivers can carry metals, nutrients, and pollutants downstream which can become bioactive in estuaries and coastal marine waters. In river systems with multiple sources of both suspended particles and contamination sources, it is important to assess the hydrologic conditions under which contaminated particles can be delivered to downstream ecosystems. The Apalachicola-Chattahoochee-Flint (ACF) River system in the southeastern United States represents an ideal system to study these hydrologic impacts on particle transport through a heavily-impacted river (the Chattahoochee River) and one much less impacted by anthropogenic activities (the Flint River). We demonstrate here the utility of natural radioisotopes as tracers of suspended particles through the ACF system, where particles contaminated with arsenic (As) and antimony (Sb) have been shown to be contributed from coal-fired power plants along the Chattahoochee River, and have elevated concentrations in the surficial sediments of the Apalachicola Bay Delta. Radium isotopes ((228)Ra and (226)Ra) on suspended particles should vary throughout the different geologic provinces of this river system, allowing differentiation of the relative contributions of the Chattahoochee and Flint Rivers to the suspended load delivered to Lake Seminole, the Apalachicola River, and ultimately to Apalachicola Bay. We also use various geochemical proxies ((40)K, organic carbon, and calcium) to assess the relative composition of suspended particles (lithogenic, organic, and carbonate fractions, respectively) under a range of hydrologic conditions. During low (base) flow conditions, the Flint River contributed 70% of the suspended particle load to both the Apalachicola River and the bay, whereas the Chattahoochee River became the dominant source during higher discharge, contributing 80% of the suspended load to the Apalachicola River and 62% of the particles entering the estuary. Neither of these hydrologic

  7. 49 CFR 212.205 - Apprentice track inspector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (b) An apprentice track inspector shall demonstrate basic knowledge of track inspection techniques... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STATE SAFETY PARTICIPATION REGULATIONS State Inspection...

  8. 49 CFR 212.205 - Apprentice track inspector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (b) An apprentice track inspector shall demonstrate basic knowledge of track inspection techniques... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STATE SAFETY PARTICIPATION REGULATIONS State Inspection...

  9. 49 CFR 212.205 - Apprentice track inspector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (b) An apprentice track inspector shall demonstrate basic knowledge of track inspection techniques... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STATE SAFETY PARTICIPATION REGULATIONS State Inspection...

  10. 49 CFR 212.205 - Apprentice track inspector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (b) An apprentice track inspector shall demonstrate basic knowledge of track inspection techniques... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STATE SAFETY PARTICIPATION REGULATIONS State Inspection...

  11. 49 CFR 212.205 - Apprentice track inspector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (b) An apprentice track inspector shall demonstrate basic knowledge of track inspection techniques... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STATE SAFETY PARTICIPATION REGULATIONS State Inspection...

  12. 49 CFR 213.4 - Excepted track.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... required to be placarded by the Hazardous Materials Regulations (49 CFR part 172), are moved over the track... be placarded by the Hazardous Materials Regulations (49 CFR part 172); and (4) The gage on excepted... TRANSPORTATION TRACK SAFETY STANDARDS General § 213.4 Excepted track. A track owner may designate a segment...

  13. 49 CFR 213.4 - Excepted track.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... required to be placarded by the Hazardous Materials Regulations (49 CFR part 172), are moved over the track... be placarded by the Hazardous Materials Regulations (49 CFR part 172); and (4) The gage on excepted... TRANSPORTATION TRACK SAFETY STANDARDS General § 213.4 Excepted track. A track owner may designate a segment...

  14. 49 CFR 213.4 - Excepted track.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... required to be placarded by the Hazardous Materials Regulations (49 CFR part 172), are moved over the track... be placarded by the Hazardous Materials Regulations (49 CFR part 172); and (4) The gage on excepted... TRANSPORTATION TRACK SAFETY STANDARDS General § 213.4 Excepted track. A track owner may designate a segment...

  15. 49 CFR 213.359 - Track stiffness.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.359 Track stiffness. (a) Track shall have a sufficient vertical strength to withstand the maximum vehicle loads generated at maximum permissible train speeds, cant deficiencies and surface defects. For...

  16. 49 CFR 213.359 - Track stiffness.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.359 Track stiffness. (a) Track shall have a sufficient vertical strength to withstand the maximum vehicle loads generated at maximum permissible train speeds, cant deficiencies and surface defects. For...

  17. 49 CFR 213.359 - Track stiffness.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.359 Track stiffness. (a) Track shall have a sufficient vertical strength to withstand the maximum vehicle loads generated at maximum permissible train speeds, cant deficiencies and surface defects. For...

  18. 49 CFR 213.359 - Track stiffness.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.359 Track stiffness. (a) Track shall have a sufficient vertical strength to withstand the maximum vehicle loads generated at maximum permissible train speeds, cant deficiencies and surface defects. For...

  19. 49 CFR 213.359 - Track stiffness.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.359 Track stiffness. (a) Track shall have a sufficient vertical strength to withstand the maximum vehicle loads generated at maximum permissible train speeds, cant deficiencies and surface defects. For...

  20. Parallelization of KENO-Va Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Ramón, Javier; Peña, Jorge

    1995-07-01

    KENO-Va is a code integrated within the SCALE system developed by Oak Ridge that solves the transport equation through the Monte Carlo Method. It is being used at the Consejo de Seguridad Nuclear (CSN) to perform criticality calculations for fuel storage pools and shipping casks. Two parallel versions of the code: one for shared memory machines and other for distributed memory systems using the message-passing interface PVM have been generated. In both versions the neutrons of each generation are tracked in parallel. In order to preserve the reproducibility of the results in both versions, advanced seeds for random numbers were used. The CONVEX C3440 with four processors and shared memory at CSN was used to implement the shared memory version. A FDDI network of 6 HP9000/735 was employed to implement the message-passing version using proprietary PVM. The speedup obtained was 3.6 in both cases.

  1. Track-to-track association in decentralized tracking systems with feedback

    NASA Astrophysics Data System (ADS)

    Malmberg, Anders; Karlsson, Mathias

    2000-07-01

    In air combat, information advantage over the opponent is vital for the success of the operation. For that reason, modern fighter aircraft have extensive sensor suites to track other objects. In order to form a unified picture of the vicinity; all sensor information is fused. Since system modularity and high computational performance are key issues in the application, a decentralized tracking approach, where the information from the decentralized trackers is fused in a central node, is preferable. Furthermore, in order to improve the sensor tracking performance, it is often desired to feed back information to the sensors from the central node. In this paper, track-to-track association in such a decentralized tracking system with feedback is addressed. The central fusion node has to associate the sensor tracks to each other to be able to fuse them. In a system without feedback, the track-to-track association algorithm bases its conclusions on the assumption that the estimation errors of the tracks from different local trackers are not correlated. However, when information is fed back to the local trackers, this assumption is not valid, since the sensor tracks then consist of common information. System configurations that deal with this problem are proposed and tested in a fighter aircraft application. One approach is to extract the uncorrelated information from the sensor data and use that in the association process. Another approach is to keep parallel trackers in the sensors that only contain the local sensor information. Both approaches produce sensor tracks that contain the same information as the sensor tracks in a system without feedback. Also, a track-to-track association algorithm that recursively uses information from multiple time steps is proposed. The use of multiple time step data separates it from conventional track-to-track association algorithms that mostly use only current information. The result is an algorithm that improves the performance and

  2. Tracking Transport and Transformation of Aerosols using C and O-triple Isotopic Composition of Carbonates: CSI La Jolla

    NASA Astrophysics Data System (ADS)

    Thiemens, M. H.; Shaheen, R.; Chong, K.; Hill, A.; Wong, J.; Zhang, Z.; Dominguez, G.

    2012-12-01

    Aerosols affect climate in numerous ways, including change in the earth's energy balance by absorbing and scattering solar radiations, alteration of the hydrological cycle by serving as cloud condensation nuclei, change in biogeochemical cycles by providing nutrients. Another significant process is the effect on the chemical composition of the atmosphere by providing surfaces for heterogeneous chemical reactions. Fine particles of aerodynamic diameter less than 2.5μm (PM2.5) also impinge upon human health by admission to the respiratory system causing a range of cardiopulmonary diseases. Both climate and public health aspects depend on their physical and chemical properties, therefore, understanding physico-chemical and photochemical transformations on aerosol surfaces is important for predicting their effects on climate change, atmospheric chemistry and human health. Here we present initial findings on the processes occurring on aerosol surfaces using isotopes to delineate day and night time chemistry, thus resolving photochemistry effects, and to identify their sources by way of the carbon isotopes. Aerosols were collected on filter papers for 12h during the day and at night time from June-Dec. 2011in La Jolla, CA., using high volume, multi stage cascade impactors. CO2 released after treating these filter papers with 100% phosphoric acid at 27oC was collected, purified chromatographically and analyzed for both C and O isotopes. Our data indicate that both C and O isotopes can be used to distinguish between heterogeneous and photochemical transformations. Aerosol carbonates collected during the day time were depleted in δ13Cday = -23 to -28‰ and δ18Oday = +3 to +10‰ and were isotopically distinct from the carbonates collected at night time δ13Cnight = 0 to -12‰, δ18Onightnight = +23 to +32‰. Higher chloride concentration in the samples collected at night time indicated the transport of marine air masses whereas higher nitrate and sulfate concentration

  3. Transportation.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with transportation and energy use. Its objective is for the student to be able to discuss the implication of energy usage as it applies to the area of transportation. Some topics covered are efficiencies of various transportation…

  4. 49 CFR 213.59 - Elevation of curved track; runoff.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Elevation of curved track; runoff. 213.59 Section 213.59 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Track Geometry § 213.59 Elevation of...

  5. 49 CFR 213.13 - Measuring track not under load.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Measuring track not under load. 213.13 Section 213.13 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS General § 213.13 Measuring track not...

  6. Remote sensing of water tracks

    NASA Astrophysics Data System (ADS)

    Trochim, E. D.; Prakash, A.; Kane, D. L.; Romanovsky, V. E.

    2016-03-01

    Water tracks are an intrinsic part of the surficial drainage network in the foothills of the Brooks Range, Alaska. They preferentially transport water off hillslopes and represent the interplay between hydrology, vegetation, geomorphology, and permafrost characteristics. This research on mapping the location of water tracks builds on previous work which demonstrated that different types of water tracks exist due to difference primarily driven by geomorphology. We used a combination method where spectral classifications, texture, and topography were fed into random forests to identify the water track classes. The most accurate distributions were obtained for the organic-rich and wide water track classes. The distinct linear shapes of the water tracks could also be visualized for many of the classes, especially in areas where the water tracks were particularly discrete. The biggest challenges to mapping the water tracks were due to class imbalances and high variability within and overlapping between classes. This research presents a significant step forward in understanding periglacial landscape dynamics.

  7. An Overview of High-performance Parallel Big Data transfers over multiple network channels with Transport Layer Security (TLS) and TLS plus Perfect Forward Secrecy (PFS)

    SciTech Connect

    Fang, Chin; Corttrell, R. A.

    2015-05-06

    This Technical Note provides an overview of high-performance parallel Big Data transfers with and without encryption for data in-transit over multiple network channels. It shows that with the parallel approach, it is feasible to carry out high-performance parallel "encrypted" Big Data transfers without serious impact to throughput. But other impacts, e.g. the energy-consumption part should be investigated. It also explains our rationales of using a statistics-based approach for gaining understanding from test results and for improving the system. The presentation is of high-level nature. Nevertheless, at the end we will pose some questions and identify potentially fruitful directions for future work.

  8. Parallel hierarchical global illumination

    SciTech Connect

    Snell, Q.O.

    1997-10-08

    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.

  9. Parallel Information Processing.

    ERIC Educational Resources Information Center

    Rasmussen, Edie M.

    1992-01-01

    Examines parallel computer architecture and the use of parallel processors for text. Topics discussed include parallel algorithms; performance evaluation; parallel information processing; parallel access methods for text; parallel and distributed information retrieval systems; parallel hardware for text; and network models for information…

  10. Tracking particles by passing messages between images

    SciTech Connect

    Chertkov, Michael; Kroc, Lukas; Zdeborova, Lenka; Krakala, Florent; Vergassola, M

    2009-01-01

    Methods to extract information from the tracking of mobile objects/particles have broad interest in biological and physical sciences. Techniques based on the simple criterion of proximity in time-consecutive snapshots are useful to identify the trajectories of the particles. However, they become problematic as the motility and/or the density of the particles increases because of the uncertainties on the trajectories that particles have followed during the acquisition time of the images. Here, we report efficient methods for learning parameters of the dynamics of the particles from their positions in time-consecutive images. Our algorithm belongs to the class of message-passing algorithms, also known in computer science, information theory and statistical physics under the name of Belief Propagation (BP). The algorithm is distributed, thus allowing parallel implementation suitable for computations on multiple machines without significant inter-machine overhead. We test our method on the model example of particle tracking in turbulent flows, which is particularly challenging due to the strong transport that those flows produce. Our numerical experiments show that the BP algorithm compares in quality with exact Markov Chain Monte-Carlo algorithms, yet BP is far superior in speed. We also suggest and analyze a random-distance model that provides theoretical justification for BP accuracy. Methods developed here systematically formulate the problem of particle tracking and provide fast and reliable tools for its extensive range of applications.

  11. An investigation into the accuracy, stability and parallel performance of a highly stable explicit technique for stiff reaction-transport PDEs

    SciTech Connect

    Franz, A., LLNL

    1998-02-17

    The numerical simulation of chemically reacting flows is a topic, that has attracted a great deal of current research At the heart of numerical reactive flow simulations are large sets of coupled, nonlinear Partial Differential Equations (PDES). Due to the stiffness that is usually present, explicit time differencing schemes are not used despite their inherent simplicity and efficiency on parallel and vector machines, since these schemes require prohibitively small numerical stepsizes. Implicit time differencing schemes, although possessing good stability characteristics, introduce a great deal of computational overhead necessary to solve the simultaneous algebraic system at each timestep. This thesis examines an algorithm based on a preconditioned time differencing scheme. The algorithm is explicit and permits a large stable time step. An investigation of the algorithm`s accuracy, stability and performance on a parallel architecture is presented

  12. Tracking long-range transported upper-tropospheric pollution layers with a newly developed airborne Hyperspectral Sun/Sky spectrometer (4STAR): Results from the TCAP 2012 campaign

    NASA Astrophysics Data System (ADS)

    Segal-Rosenhaimer, M.; Russell, P. B.; Schmid, B.; Redemann, J.; Livingston, J. M.; Flynn, C. J.; Johnson, R.; Dunagan, S.; Shinozuka, Y.; Herman, J. R.; Cede, A.; Abuhassan, N.; Comstock, J. M.; Hubbe, J.

    2013-12-01

    TCAP, the Two Column Aerosol Project, was aimed at providing a detailed set of observations to investigate topics related to radiation and aerosol-cloud interactions, and to learn about aging and transport of atmospheric aerosols and gaseous constituents that are related to tropospheric pollution events. During the year-long campaign, an intensive airborne deployment was held in the summer of 2012 based at the Hyannis airport, Cape-Cod, MA. In the course of the campaign, the newly developed Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) flew onboard the DOE Gulfstream 1 (G-1) aircraft, together with a suite of in-situ instruments to measure atmospheric state parameters and aerosol and cloud characteristics. One of the unique features of the 4STAR instrument, stemming from its design using grating spectrometers that cover the UV-VIS-SWIR spectral range (i.e. 350-1700nm), is its capability to measure atmospheric trace gases such as water vapor, O3 and NO2 concurrently with spectrally resolved aerosol optical depth (AOD). Here, we utilize the 4STAR measurements above the planetary boundary layer (PBL) (i.e. above 3000 meters) to investigate atmospheric composition of elevated pollution layers transported from the continental US and Canada during the TCAP summer phase. The 4STAR-retrieved values of AOD at 500 nm, Ångstrom exponent (AE) at 500 nm, columnar water vapor (CWV), and NO2 are used as variables in a k-means clustering algorithm to determine the atmospheric composition characteristics of the observed elevated polluted layers during the July flights. We found that, compared to AOD, NO2 displays less variability in plumes that are related to biomass-burning (BB) emissions over the course of several days. HYSPLIT back-trajectory analysis has confirmed our clustering results of two major air-mass sources: a relatively dry and clean upper tropospheric source and a humid, polluted one. Our clustering analysis, resulting in different ocean

  13. Continuation of the Application of Parallel PIC Simulations to Laser and Electron Transport Through Plasmas Under Conditions Relevant to ICF and SBSS

    SciTech Connect

    Warren B. Mori

    2007-04-20

    One of the important research questions in high energy density science (HEDS) is how intense laser and electron beams penetrate into and interact with matter. At high beam intensities the self-fields of the laser and particle beams can fully ionize matter so that beam -matter interactions become beam-plasma interactions. These interactions involve a disparity of length and time scales, and they involve interactions between particles, between particles and waves, and between waves and waves. In a plasma what happens in one region can significantly impact another because the particles are free to move and many types of waves can be excited. Therefore, simulating these interactions requires tools that include wave particle interactions and that include wave nonlinearities. One methodology for studying such interactions is particle-in-cell (PIC) simulations. While PIC codes include most of the relevant physics they are also the most computer intensive. However, with the development of sophisticated software and the use of massively parallel computers, PIC codes can now be used to accurately study a wide range of problems in HEDS. The research in this project involved building, maintaining, and using the UCLA parallel computing infrastructure. This infrastructure includes the codes OSIRIS and UPIC which have been improved or developed during this grant period. Specifically, we used this PIC infrastructure to study laser-plasma interactions relevant to future NIF experiments and high-intensity laser and beam plasma interactions relevant to fast ignition fusion. The research has led to fundamental knowledge in how to write parallel PIC codes and use parallel PIC simulations, as well as increased the fundamental knowledge of HEDS. This fundamental knowledge will not only impact Inertial Confinement Fusion but other fields such as plasma-based acceleration and astrophysics.

  14. 49 CFR 236.51 - Track circuit requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Track circuit requirements. 236.51 Section 236.51...: All Systems Track Circuits § 236.51 Track circuit requirements. Track relay controlling home signals... shall be in its most restrictive state, and the track circuit of an automatic train stop, train...

  15. 49 CFR 236.54 - Minimum length of track circuit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Minimum length of track circuit. 236.54 Section... Instructions: All Systems Track Circuits § 236.54 Minimum length of track circuit. When a track circuit shorter than maximum inner wheelbase of any locomotive or car operated over such track circuit is used...

  16. 49 CFR 236.54 - Minimum length of track circuit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Minimum length of track circuit. 236.54 Section... Instructions: All Systems Track Circuits § 236.54 Minimum length of track circuit. When a track circuit shorter than maximum inner wheelbase of any locomotive or car operated over such track circuit is used...

  17. Antenna-array, phase quadrature tracking system

    NASA Technical Reports Server (NTRS)

    Cubley, H. D.

    1970-01-01

    Phase relationship between input signals appearing on widely-spaced parallel connected antenna elements in array is automatically adjusted in phase quadrature tracking system. Compact and lightweight design permit use in wide variety of airborne communications networks.

  18. 49 CFR 236.302 - Track circuits and route locking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Track circuits and route locking. 236.302 Section 236.302 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Standards § 236.302 Track circuits and route locking. Track circuits and route locking shall be provided...

  19. 49 CFR 236.727 - Circuit, track; coded.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, track; coded. 236.727 Section 236.727 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, track; coded. A track circuit in which the energy is varied or interrupted periodically....

  20. 49 CFR 213.311 - Measuring track not under load.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Measuring track not under load. 213.311 Section 213.311 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Higher § 213.311 Measuring track not under load. When unloaded track is measured to determine...

  1. Derailing Tracking.

    ERIC Educational Resources Information Center

    Black, Susan

    1993-01-01

    Reviews recent research on student achievement, self-concept, and curriculum and instruction showing the ineffectiveness of tracking and ability grouping. Certain court rulings show that tracking violates the equal protection clause of the Fourteenth Amendment. Innovative alternatives include cooperative learning, mastery learning, peer tutoring,…

  2. Beyond Tracking.

    ERIC Educational Resources Information Center

    Bates, Percy; And Others

    1992-01-01

    On the surface, educational tracking may seem like a useful tool for allowing students to work at their own pace, and to avoid discouraging competition, but abuses of the tracking idea have arisen through biased placement practices that have denied equal access to education for minority students. The articles in this issue explore a number of…

  3. Hazardous waste tracking issues

    SciTech Connect

    Marvin, R. )

    1993-08-01

    The concept of cradle-to-grave oversight of hazardous waste was established in 1976 under RCRA. Since then, the multicopy Uniform Hazardous Waste Manifest has been a key component in the federal tracking system. The manifests ensure that generators, transporters and TSDFs maintain documentation of hazardous waste shipments. To a large extent, the tracking system has served its intended purpose; nevertheless, certain shortcomings exist. Anyone involved in shipping hazardous waste should be aware of the system's weaknesses and take appropriate measures to compensate for them.

  4. A survey of parallel programming tools

    NASA Technical Reports Server (NTRS)

    Cheng, Doreen Y.

    1991-01-01

    This survey examines 39 parallel programming tools. Focus is placed on those tool capabilites needed for parallel scientific programming rather than for general computer science. The tools are classified with current and future needs of Numerical Aerodynamic Simulator (NAS) in mind: existing and anticipated NAS supercomputers and workstations; operating systems; programming languages; and applications. They are divided into four categories: suggested acquisitions, tools already brought in; tools worth tracking; and tools eliminated from further consideration at this time.

  5. Rover tracks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Tracks made by the Sojourner rover are visible in this image, taken by one of the cameras aboard Sojourner on Sol 3. The tracks represent the rover maneuvering towards the rock dubbed 'Barnacle Bill.' The rover, having exited the lander via the rear ramp, first traveled towards the right portion of the image, and then moved forward towards the left where Barnacle Bill sits. The fact that the rover was making defined tracks indicates that the soil is made up of particles on a micron scale.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration.

  6. Electron-ion recombination in nuclear recoils tracks in nonpolar liquids. Calculation of the effect of external electric field on the escape probability

    NASA Astrophysics Data System (ADS)

    Mateja, Piotr; Wojcik, Mariusz

    2016-07-01

    A computer simulation method is applied to study electron-ion recombination in tracks of low-energy nuclear recoils in nonpolar liquids in which the electron transport can be described as ideal diffusion. The electron escape probability is calculated as a function of applied electric field, both for the field parallel to the track and for the field perpendicular to the track. The dependence of escape probability on the field direction is the stronger, the longer the ionization track, with a significant effect being found already for tracks of ~100 nm length. The results are discussed in the context of possible applications of nonpolar molecular liquids as target media in directional dark matter detectors.

  7. TRACKING CODE DEVELOPMENT FOR BEAM DYNAMICS OPTIMIZATION

    SciTech Connect

    Yang, L.

    2011-03-28

    Dynamic aperture (DA) optimization with direct particle tracking is a straight forward approach when the computing power is permitted. It can have various realistic errors included and is more close than theoretical estimations. In this approach, a fast and parallel tracking code could be very helpful. In this presentation, we describe an implementation of storage ring particle tracking code TESLA for beam dynamics optimization. It supports MPI based parallel computing and is robust as DA calculation engine. This code has been used in the NSLS-II dynamics optimizations and obtained promising performance.

  8. Calculs Monte Carlo en transport d'energie pour le calcul de la dose en radiotherapie sur plateforme graphique hautement parallele

    NASA Astrophysics Data System (ADS)

    Hissoiny, Sami

    Dose calculation is a central part of treatment planning. The dose calculation must be 1) accurate so that the medical physicists and the radio-oncologists can make a decision based on results close to reality and 2) fast enough to allow a routine use of dose calculation. The compromise between these two factors in opposition gave way to the creation of several dose calculation algorithms, from the most approximate and fast to the most accurate and slow. The most accurate of these algorithms is the Monte Carlo method, since it is based on basic physical principles. Since 2007, a new computing platform gains popularity in the scientific computing community: the graphics processor unit (GPU). The hardware platform exists since before 2007 and certain scientific computations were already carried out on the GPU. Year 2007, on the other hand, marks the arrival of the CUDA programming language which makes it possible to disregard graphic contexts to program the GPU. The GPU is a massively parallel computing platform and is adapted to data parallel algorithms. This thesis aims at knowing how to maximize the use of a graphics processing unit (GPU) to speed up the execution of a Monte Carlo simulation for radiotherapy dose calculation. To answer this question, the GPUMCD platform was developed. GPUMCD implements the simulation of a coupled photon-electron Monte Carlo simulation and is carried out completely on the GPU. The first objective of this thesis is to evaluate this method for a calculation in external radiotherapy. Simple monoenergetic sources and phantoms in layers are used. A comparison with the EGSnrc platform and DPM is carried out. GPUMCD is within a gamma criteria of 2%-2mm against EGSnrc while being at least 1200x faster than EGSnrc and 250x faster than DPM. The second objective consists in the evaluation of the platform for brachytherapy calculation. Complex sources based on the geometry and the energy spectrum of real sources are used inside a TG-43

  9. 49 CFR 231.22 - Operation of track motor cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Operation of track motor cars. 231.22 Section 231.22 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.22 Operation of track motor cars. On and after August 1, 1963, it...

  10. Special parallel processing workshop

    SciTech Connect

    1994-12-01

    This report contains viewgraphs from the Special Parallel Processing Workshop. These viewgraphs deal with topics such as parallel processing performance, message passing, queue structure, and other basic concept detailing with parallel processing.

  11. 2. View of Mainline elevated structure, parallel to Washington Street, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of Mainline elevated structure, parallel to Washington Street, crossing over the Massachusetts Turnpike and the B&A R.R. tracks - looking North. - Boston Elevated Railway, Elevated Mainline, Washington Street, Boston, Suffolk County, MA

  12. North elevation, looking southeast. Market Street runs parallel to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North elevation, looking southeast. Market Street runs parallel to the tracks; 63rd street is perpendicular to them. - Market Street Elevated Railway, 63rd Street Station, Intersection of Market & Sixty-third Streets, Philadelphia, Philadelphia County, PA

  13. Parallel Volunteer Learning during Youth Programs

    ERIC Educational Resources Information Center

    Lesmeister, Marilyn K.; Green, Jeremy; Derby, Amy; Bothum, Candi

    2012-01-01

    Lack of time is a hindrance for volunteers to participate in educational opportunities, yet volunteer success in an organization is tied to the orientation and education they receive. Meeting diverse educational needs of volunteers can be a challenge for program managers. Scheduling a Volunteer Learning Track for chaperones that is parallel to a…

  14. Parallel rendering techniques for massively parallel visualization

    SciTech Connect

    Hansen, C.; Krogh, M.; Painter, J.

    1995-07-01

    As the resolution of simulation models increases, scientific visualization algorithms which take advantage of the large memory. and parallelism of Massively Parallel Processors (MPPs) are becoming increasingly important. For large applications rendering on the MPP tends to be preferable to rendering on a graphics workstation due to the MPP`s abundant resources: memory, disk, and numerous processors. The challenge becomes developing algorithms that can exploit these resources while minimizing overhead, typically communication costs. This paper will describe recent efforts in parallel rendering for polygonal primitives as well as parallel volumetric techniques. This paper presents rendering algorithms, developed for massively parallel processors (MPPs), for polygonal, spheres, and volumetric data. The polygon algorithm uses a data parallel approach whereas the sphere and volume render use a MIMD approach. Implementations for these algorithms are presented for the Thinking Ma.chines Corporation CM-5 MPP.

  15. 15. ELEVATED CAMERA STAND, SHOWING LINE OF CAMERA STANDS PARALLEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. ELEVATED CAMERA STAND, SHOWING LINE OF CAMERA STANDS PARALLEL TO SLED TRACK. Looking west southwest down Camera Road. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  16. The effect of modafinil on the rat dopamine transporter and dopamine receptors D1–D3 paralleling cognitive enhancement in the radial arm maze

    PubMed Central

    Karabacak, Yasemin; Sase, Sunetra; Aher, Yogesh D.; Sase, Ajinkya; Saroja, Sivaprakasam R.; Cicvaric, Ana; Höger, Harald; Berger, Michael; Bakulev, Vasiliy; Sitte, Harald H.; Leban, Johann; Monje, Francisco J.; Lubec, Gert

    2015-01-01

    A series of drugs have been reported to increase memory performance modulating the dopaminergic system and herein modafinil was tested for its working memory (WM) enhancing properties. Reuptake inhibition of dopamine, serotonin (SERT) and norepinephrine (NET) by modafinil was tested. Sixty male Sprague–Dawley rats were divided into six groups (modafinil-treated 1–5–10 mg/kg body weight, trained and untrained and vehicle treated trained and untrained rats; daily injected intraperitoneally for a period of 10 days) and tested in a radial arm maze (RAM), a paradigm for testing spatial WM. Hippocampi were taken 6 h following the last day of training and complexes containing the unphosphorylated or phosphorylated dopamine transporter (DAT-CC and pDAT-CC) and complexes containing the D1–3 dopamine receptor subunits (D1–D3-CC) were determined. Modafinil was binding to the DAT but insignificantly to SERT or NET and dopamine reuptake was blocked specifically (IC50 = 11.11 μM; SERT 1547 μM; NET 182 μM). From day 8 (day 9 for 1 mg/kg body weight) modafinil was decreasing WM errors (WMEs) in the RAM significantly and remarkably at all doses tested as compared to the vehicle controls. WMEs were linked to the D2R-CC and the pDAT-CC. pDAT and D1–D3-CC levels were modulated significantly and modafinil was shown to enhance spatial WM in the rat in a well-documented paradigm at all the three doses and dopamine reuptake inhibition with subsequent modulation of D1–3-CC is proposed as a possible mechanism of action. PMID:26347626

  17. The effect of modafinil on the rat dopamine transporter and dopamine receptors D1-D3 paralleling cognitive enhancement in the radial arm maze.

    PubMed

    Karabacak, Yasemin; Sase, Sunetra; Aher, Yogesh D; Sase, Ajinkya; Saroja, Sivaprakasam R; Cicvaric, Ana; Höger, Harald; Berger, Michael; Bakulev, Vasiliy; Sitte, Harald H; Leban, Johann; Monje, Francisco J; Lubec, Gert

    2015-01-01

    A series of drugs have been reported to increase memory performance modulating the dopaminergic system and herein modafinil was tested for its working memory (WM) enhancing properties. Reuptake inhibition of dopamine, serotonin (SERT) and norepinephrine (NET) by modafinil was tested. Sixty male Sprague-Dawley rats were divided into six groups (modafinil-treated 1-5-10 mg/kg body weight, trained and untrained and vehicle treated trained and untrained rats; daily injected intraperitoneally for a period of 10 days) and tested in a radial arm maze (RAM), a paradigm for testing spatial WM. Hippocampi were taken 6 h following the last day of training and complexes containing the unphosphorylated or phosphorylated dopamine transporter (DAT-CC and pDAT-CC) and complexes containing the D1-3 dopamine receptor subunits (D1-D3-CC) were determined. Modafinil was binding to the DAT but insignificantly to SERT or NET and dopamine reuptake was blocked specifically (IC50 = 11.11 μM; SERT 1547 μM; NET 182 μM). From day 8 (day 9 for 1 mg/kg body weight) modafinil was decreasing WM errors (WMEs) in the RAM significantly and remarkably at all doses tested as compared to the vehicle controls. WMEs were linked to the D2R-CC and the pDAT-CC. pDAT and D1-D3-CC levels were modulated significantly and modafinil was shown to enhance spatial WM in the rat in a well-documented paradigm at all the three doses and dopamine reuptake inhibition with subsequent modulation of D1-3-CC is proposed as a possible mechanism of action. PMID:26347626

  18. Parallel algorithms and architectures

    SciTech Connect

    Albrecht, A.; Jung, H.; Mehlhorn, K.

    1987-01-01

    Contents of this book are the following: Preparata: Deterministic simulation of idealized parallel computers on more realistic ones; Convex hull of randomly chosen points from a polytope; Dataflow computing; Parallel in sequence; Towards the architecture of an elementary cortical processor; Parallel algorithms and static analysis of parallel programs; Parallel processing of combinatorial search; Communications; An O(nlogn) cost parallel algorithms for the single function coarsest partition problem; Systolic algorithms for computing the visibility polygon and triangulation of a polygonal region; and RELACS - A recursive layout computing system. Parallel linear conflict-free subtree access.

  19. Linearly exact parallel closures for slab geometry

    SciTech Connect

    Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun

    2013-08-15

    Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients)

  20. Linearly exact parallel closures for slab geometry

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun

    2013-08-01

    Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).

  1. 49 CFR 214.321 - Exclusive track occupancy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.321 Exclusive track... communication, to the roadway worker by the train dispatcher or control operator in charge of the track....

  2. Bayer image parallel decoding based on GPU

    NASA Astrophysics Data System (ADS)

    Hu, Rihui; Xu, Zhiyong; Wei, Yuxing; Sun, Shaohua

    2012-11-01

    In the photoelectrical tracking system, Bayer image is decompressed in traditional method, which is CPU-based. However, it is too slow when the images become large, for example, 2K×2K×16bit. In order to accelerate the Bayer image decoding, this paper introduces a parallel speedup method for NVIDA's Graphics Processor Unit (GPU) which supports CUDA architecture. The decoding procedure can be divided into three parts: the first is serial part, the second is task-parallelism part, and the last is data-parallelism part including inverse quantization, inverse discrete wavelet transform (IDWT) as well as image post-processing part. For reducing the execution time, the task-parallelism part is optimized by OpenMP techniques. The data-parallelism part could advance its efficiency through executing on the GPU as CUDA parallel program. The optimization techniques include instruction optimization, shared memory access optimization, the access memory coalesced optimization and texture memory optimization. In particular, it can significantly speed up the IDWT by rewriting the 2D (Tow-dimensional) serial IDWT into 1D parallel IDWT. Through experimenting with 1K×1K×16bit Bayer image, data-parallelism part is 10 more times faster than CPU-based implementation. Finally, a CPU+GPU heterogeneous decompression system was designed. The experimental result shows that it could achieve 3 to 5 times speed increase compared to the CPU serial method.

  3. Doppler tracking

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher Jacob

    This study addresses the development of a methodology using the Doppler Effect for high-resolution, short-range tracking of small projectiles and vehicles. Minimal impact on the design of the moving object is achieved by incorporating only a transmitter in it and using ground stations for all other components. This is particularly useful for tracking objects such as sports balls that have configurations and materials that are not conducive to housing onboard instrumentation. The methodology developed here uses four or more receivers to monitor a constant frequency signal emitted by the object. Efficient and accurate schemes for filtering the raw signals, determining the instantaneous frequencies, time synching the frequencies from each receiver, smoothing the synced frequencies, determining the relative velocity and radius of the object and solving the nonlinear system of equations for object position in three dimensions as a function of time are developed and described here.

  4. An intelligent multi-target tracking system

    NASA Astrophysics Data System (ADS)

    Heyerdahl, E.

    1987-07-01

    An implementation of a general tracking system, integrating the target acquisition and tracking subsystems, was developed. It is based on image analysis and extensive use of models. The system permits improvements compared to in-service trackers in the sense that it enables multi-target tracking, automatic acquisition also during tracking and tracking through obscurations. The system is an implementation of a general tracking system. This system produces alternative estimates of a target and projects the corresponding objects into the image plane. To do this estimates of the projecting function are used. The different projections are synthesized through a thresholding process. The implemented system uses parallel Kalman filters to produce the object estimates and estimates the sensor position through a model of sensor dynamics and measurements of sensor angle velocity. Results, produced by the implemented system from IR imagery of a moving target in field are presented.

  5. TAUOVERSUPERMON: LOW-OVERHEAD ONLINE PARALLEL PERFORMANCE MONITORING

    SciTech Connect

    SOTTILE, MATTHEW JOSEPH; NATARAJ, AROON; MALONY, ALLEN; MORRIS, ALAN; SHENDE, SAMEER

    2007-01-30

    Online or Real-time application performance monitoring allows tracking performance characteristics during execution as opposed to doing so post-mortem. This opens up several possibilities otherwise unavailable such as real-time visualization and application performance steering that can be useful in the context of long-running applications. Two fundamental components that constitute such a performance monitor are the measurement and transport systems. The former captures performance metrics of individual contexts (processes, threads). The latter enables querying the parallel/distributed state from the different contexts and also allows measurement control. As HPC systems grow in size and complexity, the key challenge is to keep the online performance monitor scalable and low overhead while still providing a useful performance reporting capability. We adapt and combine two existing, mature systems - Tuning and Analysis Utility (TAU) and Supermon - to address this problem. Tau performs the measurement while Supermon is used to collect the distributed measurement state. Our experiments show that this novel approach of using a cluster-monitor, Supermon, as the transport for online performance data from Tau leads to very low-overhead application monitoring as well as other beneits unavailable from using a traditional transport such as NFS.

  6. MPP parallel forth

    NASA Technical Reports Server (NTRS)

    Dorband, John E.

    1987-01-01

    Massively Parallel Processor (MPP) Parallel FORTH is a derivative of FORTH-83 and Unified Software Systems' Uni-FORTH. The extension of FORTH into the realm of parallel processing on the MPP is described. With few exceptions, Parallel FORTH was made to follow the description of Uni-FORTH as closely as possible. Likewise, the parallel FORTH extensions were designed as philosophically similar to serial FORTH as possible. The MPP hardware characteristics, as viewed by the FORTH programmer, is discussed. Then a description is presented of how parallel FORTH is implemented on the MPP.

  7. 40 CFR 279.46 - Tracking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... THE MANAGEMENT OF USED OIL Standards for Used Oil Transporter and Transfer Facilities § 279.46 Tracking. (a) Acceptance. Used oil transporters must keep a record of each used oil shipment accepted for..., or processor/re-refiner who provided the used oil for transport; (2) The EPA identification...

  8. 40 CFR 279.46 - Tracking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... THE MANAGEMENT OF USED OIL Standards for Used Oil Transporter and Transfer Facilities § 279.46 Tracking. (a) Acceptance. Used oil transporters must keep a record of each used oil shipment accepted for..., or processor/re-refiner who provided the used oil for transport; (2) The EPA identification...

  9. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  10. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  11. 49 CFR 236.311 - Signal control circuits, selection through track relays or devices functioning as track relays...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Signal control circuits, selection through track relays or devices functioning as track relays and through signal mechanism contacts and time releases at automatic interlocking. 236.311 Section 236.311 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  12. 49 CFR 236.311 - Signal control circuits, selection through track relays or devices functioning as track relays...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Signal control circuits, selection through track relays or devices functioning as track relays and through signal mechanism contacts and time releases at automatic interlocking. 236.311 Section 236.311 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  13. 49 CFR 236.311 - Signal control circuits, selection through track relays or devices functioning as track relays...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Signal control circuits, selection through track relays or devices functioning as track relays and through signal mechanism contacts and time releases at automatic interlocking. 236.311 Section 236.311 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  14. 49 CFR 236.311 - Signal control circuits, selection through track relays or devices functioning as track relays...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Signal control circuits, selection through track relays or devices functioning as track relays and through signal mechanism contacts and time releases at automatic interlocking. 236.311 Section 236.311 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  15. 49 CFR 236.311 - Signal control circuits, selection through track relays or devices functioning as track relays...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Signal control circuits, selection through track relays or devices functioning as track relays and through signal mechanism contacts and time releases at automatic interlocking. 236.311 Section 236.311 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  16. Inference in particle tracking experiments by passing messages between images.

    PubMed

    Chertkov, M; Kroc, L; Krzakala, F; Vergassola, M; Zdeborová, L

    2010-04-27

    Methods to extract information from the tracking of mobile objects/particles have broad interest in biological and physical sciences. Techniques based on simple criteria of proximity in time-consecutive snapshots are useful to identify the trajectories of the particles. However, they become problematic as the motility and/or the density of the particles increases due to uncertainties on the trajectories that particles followed during the images' acquisition time. Here, we report an efficient method for learning parameters of the dynamics of the particles from their positions in time-consecutive images. Our algorithm belongs to the class of message-passing algorithms, known in computer science, information theory, and statistical physics as belief propagation (BP). The algorithm is distributed, thus allowing parallel implementation suitable for computations on multiple machines without significant intermachine overhead. We test our method on the model example of particle tracking in turbulent flows, which is particularly challenging due to the strong transport that those flows produce. Our numerical experiments show that the BP algorithm compares in quality with exact Markov Chain Monte Carlo algorithms, yet BP is far superior in speed. We also suggest and analyze a random distance model that provides theoretical justification for BP accuracy. Methods developed here systematically formulate the problem of particle tracking and provide fast and reliable tools for the model's extensive range of applications. PMID:20368454

  17. Users manual for the Chameleon parallel programming tools

    SciTech Connect

    Gropp, W.; Smith, B.

    1993-06-01

    Message passing is a common method for writing programs for distributed-memory parallel computers. Unfortunately, the lack of a standard for message passing has hampered the construction of portable and efficient parallel programs. In an attempt to remedy this problem, a number of groups have developed their own message-passing systems, each with its own strengths and weaknesses. Chameleon is a second-generation system of this type. Rather than replacing these existing systems, Chameleon is meant to supplement them by providing a uniform way to access many of these systems. Chameleon`s goals are to (a) be very lightweight (low over-head), (b) be highly portable, and (c) help standardize program startup and the use of emerging message-passing operations such as collective operations on subsets of processors. Chameleon also provides a way to port programs written using PICL or Intel NX message passing to other systems, including collections of workstations. Chameleon is tracking the Message-Passing Interface (MPI) draft standard and will provide both an MPI implementation and an MPI transport layer. Chameleon provides support for heterogeneous computing by using p4 and PVM. Chameleon`s support for homogeneous computing includes the portable libraries p4, PICL, and PVM and vendor-specific implementation for Intel NX, IBM EUI (SP-1), and Thinking Machines CMMD (CM-5). Support for Ncube and PVM 3.x is also under development.

  18. Microencapsulated cell tracking

    PubMed Central

    Arifin, Dian R.; Kedziorek, Dorota A.; Fu, Yingli; Chan, Kannie W. Y.; McMahon, Michael T.; Weiss, Clifford R.; Kraitchman, Dara L.; Bulte, Jeff W. M.

    2013-01-01

    Microencapsulation of therapeutic cells has been widely pursued to achieve cellular immunoprotection following transplantation. Initial clinical studies have shown the potential of microencapsulation using semi-permeable alginate layers, but much needs to be learned about the optimal delivery route, in vivo pattern of engraftment, and microcapsule stability over time. In parallel with noninvasive imaging techniques for ‘naked’ (i.e. unencapsulated) cell tracking, microcapsules have now been endowed with contrast agents that can be visualized by 1H MRI, 19F MRI, X-ray/computed tomography and ultrasound imaging. By placing the contrast agent formulation in the extracellular space of the hydrogel, large amounts of contrast agents can be incorporated with negligible toxicity. This has led to a new generation of imaging biomaterials that can render cells visible with multiple imaging modalities. PMID:23225358

  19. Parallel simulation today

    NASA Technical Reports Server (NTRS)

    Nicol, David; Fujimoto, Richard

    1992-01-01

    This paper surveys topics that presently define the state of the art in parallel simulation. Included in the tutorial are discussions on new protocols, mathematical performance analysis, time parallelism, hardware support for parallel simulation, load balancing algorithms, and dynamic memory management for optimistic synchronization.

  20. 49 CFR 212.203 - Track inspector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CFR part 213), to make reports of those inspections, and to recommend the institution of enforcement...: (i) Track maintenance standards accepted in the industry; and (ii) The Track Safety Standards (49 CFR..., DEPARTMENT OF TRANSPORTATION STATE SAFETY PARTICIPATION REGULATIONS State Inspection Personnel §...

  1. 49 CFR 212.203 - Track inspector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CFR part 213), to make reports of those inspections, and to recommend the institution of enforcement...: (i) Track maintenance standards accepted in the industry; and (ii) The Track Safety Standards (49 CFR..., DEPARTMENT OF TRANSPORTATION STATE SAFETY PARTICIPATION REGULATIONS State Inspection Personnel §...

  2. 14 CFR 437.37 - Tracking.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Requirements to Obtain an Experimental Permit Operational Safety Documentation § 437.37 Tracking. An applicant must identify and describe each method or system used to meet...

  3. 14 CFR 437.37 - Tracking.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Requirements to Obtain an Experimental Permit Operational Safety Documentation § 437.37 Tracking. An applicant must identify and describe each method or system used to meet...

  4. Eclipse Parallel Tools Platform

    SciTech Connect

    Watson, Gregory; DeBardeleben, Nathan; Rasmussen, Craig

    2005-02-18

    Designing and developing parallel programs is an inherently complex task. Developers must choose from the many parallel architectures and programming paradigms that are available, and face a plethora of tools that are required to execute, debug, and analyze parallel programs i these environments. Few, if any, of these tools provide any degree of integration, or indeed any commonality in their user interfaces at all. This further complicates the parallel developer's task, hampering software engineering practices, and ultimately reducing productivity. One consequence of this complexity is that best practice in parallel application development has not advanced to the same degree as more traditional programming methodologies. The result is that there is currently no open-source, industry-strength platform that provides a highly integrated environment specifically designed for parallel application development. Eclipse is a universal tool-hosting platform that is designed to providing a robust, full-featured, commercial-quality, industry platform for the development of highly integrated tools. It provides a wide range of core services for tool integration that allow tool producers to concentrate on their tool technology rather than on platform specific issues. The Eclipse Integrated Development Environment is an open-source project that is supported by over 70 organizations, including IBM, Intel and HP. The Eclipse Parallel Tools Platform (PTP) plug-in extends the Eclipse framwork by providing support for a rich set of parallel programming languages and paradigms, and a core infrastructure for the integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration, support for a small number of parallel architectures, and basis

  5. Parallel, Distributed Scripting with Python

    SciTech Connect

    Miller, P J

    2002-05-24

    Parallel computers used to be, for the most part, one-of-a-kind systems which were extremely difficult to program portably. With SMP architectures, the advent of the POSIX thread API and OpenMP gave developers ways to portably exploit on-the-box shared memory parallelism. Since these architectures didn't scale cost-effectively, distributed memory clusters were developed. The associated MPI message passing libraries gave these systems a portable paradigm too. Having programmers effectively use this paradigm is a somewhat different question. Distributed data has to be explicitly transported via the messaging system in order for it to be useful. In high level languages, the MPI library gives access to data distribution routines in C, C++, and FORTRAN. But we need more than that. Many reasonable and common tasks are best done in (or as extensions to) scripting languages. Consider sysadm tools such as password crackers, file purgers, etc ... These are simple to write in a scripting language such as Python (an open source, portable, and freely available interpreter). But these tasks beg to be done in parallel. Consider the a password checker that checks an encrypted password against a 25,000 word dictionary. This can take around 10 seconds in Python (6 seconds in C). It is trivial to parallelize if you can distribute the information and co-ordinate the work.

  6. LDV Measurement of Confined Parallel Jet Mixing

    SciTech Connect

    R.F. Kunz; S.W. D'Amico; P.F. Vassallo; M.A. Zaccaria

    2001-01-31

    Laser Doppler Velocimetry (LDV) measurements were taken in a confinement, bounded by two parallel walls, into which issues a row of parallel jets. Two-component measurements were taken of two mean velocity components and three Reynolds stress components. As observed in isolated three dimensional wall bounded jets, the transverse diffusion of the jets is quite large. The data indicate that this rapid mixing process is due to strong secondary flows, transport of large inlet intensities and Reynolds stress anisotropy effects.

  7. Single-quantum-dot tracking reveals altered membrane dynamics of an attention-deficit/hyperactivity-disorder-derived dopamine transporter coding variant.

    PubMed

    Kovtun, Oleg; Sakrikar, Dhananjay; Tomlinson, Ian D; Chang, Jerry C; Arzeta-Ferrer, Xochitl; Blakely, Randy D; Rosenthal, Sandra J

    2015-04-15

    The presynaptic, cocaine- and amphetamine-sensitive dopamine (DA) transporter (DAT, SLC6A3) controls the intensity and duration of synaptic dopamine signals by rapid clearance of DA back into presynaptic nerve terminals. Abnormalities in DAT-mediated DA clearance have been linked to a variety of neuropsychiatric disorders, including addiction, autism, and attention deficit/hyperactivity disorder (ADHD). Membrane trafficking of DAT appears to be an important, albeit incompletely understood, post-translational regulatory mechanism; its dysregulation has been recently proposed as a potential risk determinant of these disorders. In this study, we demonstrate a link between an ADHD-associated DAT mutation (Arg615Cys, R615C) and variation on DAT transporter cell surface dynamics, a combination only previously studied with ensemble biochemical and optical approaches that featured limited spatiotemporal resolution. Here, we utilize high-affinity, DAT-specific antagonist-conjugated quantum dot (QD) probes to establish the dynamic mobility of wild-type and mutant DATs at the plasma membrane of living cells. Single DAT-QD complex trajectory analysis revealed that the DAT 615C variant exhibited increased membrane mobility relative to DAT 615R, with diffusion rates comparable to those observed after lipid raft disruption. This phenomenon was accompanied by a loss of transporter mobilization triggered by amphetamine, a common component of ADHD medications. Together, our data provides the first dynamic imaging of single DAT proteins, providing new insights into the relationship between surface dynamics and trafficking of both wild-type and disease-associated transporters. Our approach should be generalizable to future studies that explore the possibilities of perturbed surface DAT dynamics that may arise as a consequence of genetic alterations, regulatory changes, and drug use that contribute to the etiology or treatment of neuropsychiatric disorders. PMID:25747272

  8. Pore-scale simulation of coupled reactive transport and dissolution in fractures and porous media using the level set interface tracking method

    SciTech Connect

    Hai Huang; Xiaoyi Li

    2011-01-01

    A level set simulation methodology developed for modeling coupled reactive transport and structure evolution has been applied to dissolution in fracture apertures and porous media. The coupled processes such as fluid flow, reactant transport and dissolution at the solid-liquid interfaces are handled simultaneously. The reaction-induced evolution of solid-liquid interfaces is captured using the level set method, with the advantage of representing the interface with sub-grid scale resolution. The coupled processes are simulated for several geometric models of fractures and porous media under various flow conditions and reaction rates. Quantitative relationships between permeability and porosity are obtained from some of the simulation results and compared with analytical constitutive relations (i.e., the conventional cubic law and the Carman-Kozeny law) based on simplified pore space geometries and reaction induced geometric evolutions. The drastic deviation of the simulation results from these analytical theories is explained by the development of large local concentration gradients of reactants within fracture apertures and individual pores observed in the simulation results and consequently the complex geometric evolution patterns of fracture apertures and pores due to mineral dissolution. The simulation results support the argument that traditional constitutive relations based on simplified geometries and conditions have limited applicability in predicting field scale reactive transport and that incorporation of micro-scale physics is necessary.

  9. Parallel Atomistic Simulations

    SciTech Connect

    HEFFELFINGER,GRANT S.

    2000-01-18

    Algorithms developed to enable the use of atomistic molecular simulation methods with parallel computers are reviewed. Methods appropriate for bonded as well as non-bonded (and charged) interactions are included. While strategies for obtaining parallel molecular simulations have been developed for the full variety of atomistic simulation methods, molecular dynamics and Monte Carlo have received the most attention. Three main types of parallel molecular dynamics simulations have been developed, the replicated data decomposition, the spatial decomposition, and the force decomposition. For Monte Carlo simulations, parallel algorithms have been developed which can be divided into two categories, those which require a modified Markov chain and those which do not. Parallel algorithms developed for other simulation methods such as Gibbs ensemble Monte Carlo, grand canonical molecular dynamics, and Monte Carlo methods for protein structure determination are also reviewed and issues such as how to measure parallel efficiency, especially in the case of parallel Monte Carlo algorithms with modified Markov chains are discussed.

  10. Evolution of the SOFIA tracking control system

    NASA Astrophysics Data System (ADS)

    Fiebig, Norbert; Jakob, Holger; Pfüller, Enrico; Röser, Hans-Peter; Wiedemann, Manuel; Wolf, Jürgen

    2014-07-01

    The airborne observatory SOFIA (Stratospheric Observatory for Infrared Astronomy) is undergoing a modernization of its tracking system. This included new, highly sensitive tracking cameras, control computers, filter wheels and other equipment, as well as a major redesign of the control software. The experiences along the migration path from an aged 19" VMbus based control system to the application of modern industrial PCs, from VxWorks real-time operating system to embedded Linux and a state of the art software architecture are presented. Further, the concept is presented to operate the new camera also as a scientific instrument, in parallel to tracking.

  11. Adaptive track scheduling to optimize concurrency and vectorization in GeantV

    NASA Astrophysics Data System (ADS)

    Apostolakis, J.; Bandieramonte, M.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; De Fine Licht, J. C.; Duhem, L.; Elvira, V. D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Sehgal, R.; Shadura, O.; Wenzel, S.

    2015-05-01

    The GeantV project is focused on the R&D of new particle transport techniques to maximize parallelism on multiple levels, profiting from the use of both SIMD instructions and co-processors for the CPU-intensive calculations specific to this type of applications. In our approach, vectors of tracks belonging to multiple events and matching different locality criteria must be gathered and dispatched to algorithms having vector signatures. While the transport propagates tracks and changes their individual states, data locality becomes harder to maintain. The scheduling policy has to be changed to maintain efficient vectors while keeping an optimal level of concurrency. The model has complex dynamics requiring tuning the thresholds to switch between the normal regime and special modes, i.e. prioritizing events to allow flushing memory, adding new events in the transport pipeline to boost locality, dynamically adjusting the particle vector size or switching between vector to single track mode when vectorization causes only overhead. This work requires a comprehensive study for optimizing these parameters to make the behaviour of the scheduler self-adapting, presenting here its initial results.

  12. STS-30 deorbit and reentry ground track

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Rockwell International (RI) supplied artist concept titled 'STS-30 Deorbit and Reentry Track' shows Atlantis, Orbiter Vehicle (OV) 104, deorbit and reentry ground track. Ground track and map portray OV-104's deorbit over Madagascar, atmospheric reentry maneuvers, approach to the California coast, and landing at Edwards Air Force Base (EAFB), California. the transport trailer of the Payload Environmental Transportation System (PETS). Magellan, destined for unprecedented studies of Venusian topographic features, will be deployed by the crew of NASA's STS-30 mission in April 1989. View provided by KSC with alternate number KSC-88PC-1086.

  13. Particle Tracking-Based Strategies For Simulating Transport in a Transient Groundwater Flow Field at Yucca Flat, Nevada Test Site, USA

    NASA Astrophysics Data System (ADS)

    Keating, E. H.; Srinivasan, G.; Kang, Q.; Li, C.; Dash, Z.; Kwicklis, E. M.

    2009-12-01

    Developing probabilistic-based calculations of contaminant concentrations over the next 1000 years at Yucca Flat, Nevada Test site, require tremendous computational effort in this highly complex hydrogeologic surface environment. The sources of contamination, underground nuclear tests conducted between 1951 and 1992, not only released radionuclides to the subsurface but also created abrupt, significant changes in rock properties and caused large transients in the measured hydraulic gradients. To efficiently model contaminant migration from these sources we use a particle-based approach within a transient flow field. Here, we present results using two methods; first, an explicit representation of time-varying sources using large numbers of particles introduced at source-specific rates over time, each representing a unique mass of solute. This method provides good results, but is computationally expensive since sensitivity to uncertainty in source term and transport parameters can only be explored with discrete process-model runs. The second method employs a convolution method (PLUMECALC) which can efficiently consider a large number of variations in the source terms and in certain transport parameters with a single process-model run. Implementation of this second approach required extension of the existing methodology to conditions of transient flow. We find very good comparison between the two methods on small test problems and excellent computational advantages when applying the convolution method in the NTS application

  14. Parallel digital forensics infrastructure.

    SciTech Connect

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexico Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.

  15. Track Construction Manual.

    ERIC Educational Resources Information Center

    Banke, Ron; Di Gennaro, Guy; Ediger, Rick; Garner, Lanny; Hersom, Steve; Miller, Jack; Nemeth, Ron; Petrucelli, Jim; Sierks, Donna; Smith, Don; Swank, Kevin; West, Kevin

    This book establishes guidelines for the construction and maintenance of tracks by providing information for building new tracks or upgrading existing tracks. Subjects covered include running track planning and construction, physical layout, available surfaces, and maintenance. General track requirements and construction specifications are…

  16. On the Right Track.

    ERIC Educational Resources Information Center

    Bieber, Ed

    1983-01-01

    Suggests thinking of "tracks" as clues and using them as the focus of outdoor activities in the urban environment. Provides 24 examples of possible track activities, including: seeds on the ground (track of a nearby tree), litter (track of a litterbug), and peeling paint (track of weathering forces). (JN)

  17. Parallel MR Imaging

    PubMed Central

    Deshmane, Anagha; Gulani, Vikas; Griswold, Mark A.; Seiberlich, Nicole

    2015-01-01

    Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the under-sampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed. PMID:22696125

  18. PCLIPS: Parallel CLIPS

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.; Bennett, Bonnie H.; Tello, Ivan

    1994-01-01

    A parallel version of CLIPS 5.1 has been developed to run on Intel Hypercubes. The user interface is the same as that for CLIPS with some added commands to allow for parallel calls. A complete version of CLIPS runs on each node of the hypercube. The system has been instrumented to display the time spent in the match, recognize, and act cycles on each node. Only rule-level parallelism is supported. Parallel commands enable the assertion and retraction of facts to/from remote nodes working memory. Parallel CLIPS was used to implement a knowledge-based command, control, communications, and intelligence (C(sup 3)I) system to demonstrate the fusion of high-level, disparate sources. We discuss the nature of the information fusion problem, our approach, and implementation. Parallel CLIPS has also be used to run several benchmark parallel knowledge bases such as one to set up a cafeteria. Results show from running Parallel CLIPS with parallel knowledge base partitions indicate that significant speed increases, including superlinear in some cases, are possible.

  19. Xyce parallel electronic simulator design.

    SciTech Connect

    Thornquist, Heidi K.; Rankin, Eric Lamont; Mei, Ting; Schiek, Richard Louis; Keiter, Eric Richard; Russo, Thomas V.

    2010-09-01

    This document is the Xyce Circuit Simulator developer guide. Xyce has been designed from the 'ground up' to be a SPICE-compatible, distributed memory parallel circuit simulator. While it is in many respects a research code, Xyce is intended to be a production simulator. As such, having software quality engineering (SQE) procedures in place to insure a high level of code quality and robustness are essential. Version control, issue tracking customer support, C++ style guildlines and the Xyce release process are all described. The Xyce Parallel Electronic Simulator has been under development at Sandia since 1999. Historically, Xyce has mostly been funded by ASC, the original focus of Xyce development has primarily been related to circuits for nuclear weapons. However, this has not been the only focus and it is expected that the project will diversify. Like many ASC projects, Xyce is a group development effort, which involves a number of researchers, engineers, scientists, mathmaticians and computer scientists. In addition to diversity of background, it is to be expected on long term projects for there to be a certain amount of staff turnover, as people move on to different projects. As a result, it is very important that the project maintain high software quality standards. The point of this document is to formally document a number of the software quality practices followed by the Xyce team in one place. Also, it is hoped that this document will be a good source of information for new developers.

  20. Eclipse Parallel Tools Platform

    Energy Science and Technology Software Center (ESTSC)

    2005-02-18

    Designing and developing parallel programs is an inherently complex task. Developers must choose from the many parallel architectures and programming paradigms that are available, and face a plethora of tools that are required to execute, debug, and analyze parallel programs i these environments. Few, if any, of these tools provide any degree of integration, or indeed any commonality in their user interfaces at all. This further complicates the parallel developer's task, hampering software engineering practices,more » and ultimately reducing productivity. One consequence of this complexity is that best practice in parallel application development has not advanced to the same degree as more traditional programming methodologies. The result is that there is currently no open-source, industry-strength platform that provides a highly integrated environment specifically designed for parallel application development. Eclipse is a universal tool-hosting platform that is designed to providing a robust, full-featured, commercial-quality, industry platform for the development of highly integrated tools. It provides a wide range of core services for tool integration that allow tool producers to concentrate on their tool technology rather than on platform specific issues. The Eclipse Integrated Development Environment is an open-source project that is supported by over 70 organizations, including IBM, Intel and HP. The Eclipse Parallel Tools Platform (PTP) plug-in extends the Eclipse framwork by providing support for a rich set of parallel programming languages and paradigms, and a core infrastructure for the integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration, support for a small number of parallel architectures

  1. Radio tracking system

    NASA Technical Reports Server (NTRS)

    Breidenthal, J. C.; Komarek, T. A.

    1982-01-01

    The principles and techniques of deep space radio tracking are described along with the uses of tracking data in navigation and radio science. Emphasis is placed on the measurement functions of radio tracking.

  2. Tracking sources of severe haze episodes and their physicochemical and hygroscopic properties under Asian continental outflow: Long-range transport pollution, postharvest biomass burning, and Asian dust

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Kim, Young J.

    2011-01-01

    Aerosol physicochemical and hygroscopic properties were measured from 12 October to 21 November 2005 at a downwind area of the Asian continental outflow (Gwangju, Korea) to characterize severe haze episodes. Using optically measured elemental carbon (EC) at 660 nm (Opt.EC) and 880 nm (BC) wavelengths and Mie theory, it was estimated that the higher BC/Opt.EC ratio during the cloudy day of the long-range transport (LTP) period was mainly due to EC particle growth from in-cloud processing with secondary aerosols such as sulfate and organic aerosols. Single scattering albedo (SSA) of biomass burning (BB) aerosol increased sharply from 0.89 to 0.94 under a relative humidity >70%, suggesting that organic aerosols emitted from rice straw burning contained high amounts of hydrophilic compounds. The contribution of aerosol water content to the total light extinction coefficient (bext) was determined as 51.4% and 68.4% during the BB and BB + LTP periods, respectively, indicating that the haze episodes were highly enhanced by an increase in aerosol water content. The Asian dust event was characterized by the highest SSA (0.92 ± 0.02), the lowest mass scattering efficiency of fine particles (2.5 ± 1.0 m2 g-1), and the lowest hygroscopic nature (humidity-dependent light scattering enhancement factor, f(80%), which is defined by the ratio of light scattering coefficient at 80% relative humidity to that at dry condition, = ˜1.37). Based on the Ångström exponent (α) values observed at the source region of the Asian continent and the downwind area of South Korea during the BB + LTP period, it was found that the α value of urban aerosols decreased ˜11% for 1-2 days of the transport, probably due to the increase in particle size through water uptake. Increasing rates of surface PM10 mass concentrations at western coastal areas of the South Korean peninsula were in the range 2.4-14.4 μgm-3 h-1 at the beginning of the BB + LTP period (24 October 2005, 0700-2300 LT). Based on

  3. Design of a real-time system of moving ship tracking on-board based on FPGA in remote sensing images

    NASA Astrophysics Data System (ADS)

    Yang, Tie-jun; Zhang, Shen; Zhou, Guo-qing; Jiang, Chuan-xian

    2015-12-01

    With the broad attention of countries in the areas of sea transportation and trade safety, the requirements of efficiency and accuracy of moving ship tracking are becoming higher. Therefore, a systematic design of moving ship tracking onboard based on FPGA is proposed, which uses the Adaptive Inter Frame Difference (AIFD) method to track a ship with different speed. For the Frame Difference method (FD) is simple but the amount of computation is very large, it is suitable for the use of FPGA to implement in parallel. But Frame Intervals (FIs) of the traditional FD method are fixed, and in remote sensing images, a ship looks very small (depicted by only dozens of pixels) and moves slowly. By applying invariant FIs, the accuracy of FD for moving ship tracking is not satisfactory and the calculation is highly redundant. So we use the adaptation of FD based on adaptive extraction of key frames for moving ship tracking. A FPGA development board of Xilinx Kintex-7 series is used for simulation. The experiments show that compared with the traditional FD method, the proposed one can achieve higher accuracy of moving ship tracking, and can meet the requirement of real-time tracking in high image resolution.

  4. Parallel scheduling algorithms

    SciTech Connect

    Dekel, E.; Sahni, S.

    1983-01-01

    Parallel algorithms are given for scheduling problems such as scheduling to minimize the number of tardy jobs, job sequencing with deadlines, scheduling to minimize earliness and tardiness penalties, channel assignment, and minimizing the mean finish time. The shared memory model of parallel computers is used to obtain fast algorithms. 26 references.

  5. 49 CFR 218.27 - Workers on track other than main track.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD OPERATING PRACTICES Blue Signal Protection of Workers § 218... on track other than main track— (a) A blue signal must be displayed at or near each manually operated... blue signal protection as provided for in this section is on a track equipped with one or...

  6. 49 CFR 218.27 - Workers on track other than main track.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD OPERATING PRACTICES Blue Signal Protection of Workers § 218... on track other than main track— (a) A blue signal must be displayed at or near each manually operated... blue signal protection as provided for in this section is on a track equipped with one or...

  7. The Majorana Parts Tracking Database

    DOE PAGESBeta

    Abgrall, N.

    2015-01-16

    The Majorana Demonstrator is an ultra-low background physics experiment searching for the neutrinoless double beta decay of 76Ge. The Majorana Parts Tracking Database is used to record the history of components used in the construction of the Demonstrator. The tracking implementation takes a novel approach based on the schema-free database technology CouchDB. Transportation, storage, and processes undergone by parts such as machining or cleaning are linked to part records. Tracking parts provides a great logistics benefit and an important quality assurance reference during construction. In addition, the location history of parts provides an estimate of their exposure to cosmic radiation.more » In summary, a web application for data entry and a radiation exposure calculator have been developed as tools for achieving the extreme radio-purity required for this rare decay search.« less

  8. The Majorana Parts Tracking Database

    SciTech Connect

    Abgrall, N.

    2015-01-16

    The Majorana Demonstrator is an ultra-low background physics experiment searching for the neutrinoless double beta decay of 76Ge. The Majorana Parts Tracking Database is used to record the history of components used in the construction of the Demonstrator. The tracking implementation takes a novel approach based on the schema-free database technology CouchDB. Transportation, storage, and processes undergone by parts such as machining or cleaning are linked to part records. Tracking parts provides a great logistics benefit and an important quality assurance reference during construction. In addition, the location history of parts provides an estimate of their exposure to cosmic radiation. In summary, a web application for data entry and a radiation exposure calculator have been developed as tools for achieving the extreme radio-purity required for this rare decay search.

  9. The MAJORANA Parts Tracking Database

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Esterline, J.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J. Diaz; Leviner, L. E.; Loach, J. C.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Mertens, S.; Miller, M. L.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; O`Shaughnessy, C.; Overman, N. R.; Petersburg, R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Soin, A.; Suriano, A. M.; Tedeschi, D.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.

    2015-04-01

    The MAJORANA DEMONSTRATOR is an ultra-low background physics experiment searching for the neutrinoless double beta decay of 76Ge. The MAJORANA Parts Tracking Database is used to record the history of components used in the construction of the DEMONSTRATOR. The tracking implementation takes a novel approach based on the schema-free database technology CouchDB. Transportation, storage, and processes undergone by parts such as machining or cleaning are linked to part records. Tracking parts provide a great logistics benefit and an important quality assurance reference during construction. In addition, the location history of parts provides an estimate of their exposure to cosmic radiation. A web application for data entry and a radiation exposure calculator have been developed as tools for achieving the extreme radio-purity required for this rare decay search.

  10. Massively parallel mathematical sieves

    SciTech Connect

    Montry, G.R.

    1989-01-01

    The Sieve of Eratosthenes is a well-known algorithm for finding all prime numbers in a given subset of integers. A parallel version of the Sieve is described that produces computational speedups over 800 on a hypercube with 1,024 processing elements for problems of fixed size. Computational speedups as high as 980 are achieved when the problem size per processor is fixed. The method of parallelization generalizes to other sieves and will be efficient on any ensemble architecture. We investigate two highly parallel sieves using scattered decomposition and compare their performance on a hypercube multiprocessor. A comparison of different parallelization techniques for the sieve illustrates the trade-offs necessary in the design and implementation of massively parallel algorithms for large ensemble computers.

  11. Parallel computing works

    SciTech Connect

    Not Available

    1991-10-23

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of many computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.

  12. Optimization of the LHCb track reconstruction

    NASA Astrophysics Data System (ADS)

    Storaci, Barbara

    2015-12-01

    The LHCb track reconstruction uses sophisticated pattern recognition algorithms to reconstruct trajectories of charged particles. Their main feature is the use of a Hough- transform like approach to connect track segments from different sub-detectors, allowing for having no tracking stations in the magnet of LHCb. While yielding a high efficiency, the track reconstruction is a major contributor to the overall timing budget of the software trigger of LHCb, and will continue to be so in the light of the higher track multiplicity expected from Run II of the LHC. In view of this fact, key parts of the pattern recognition have been revised and redesigned. In this document the main features which were studied are presented. A staged approach strategy for the track reconstruction in the software trigger was investigated: it allows unifying complementary sets of tracks coming from the different stages of the high level trigger, resulting in a more flexible trigger strategy and a better overlap between online and offline reconstructed tracks. Furthermore the use of parallelism was investigated, using SIMD instructions for time-critical parts of the software.

  13. The parallel virtual file system for portals.

    SciTech Connect

    Schutt, James Alan

    2004-04-01

    This report presents the result of an effort to re-implement the Parallel Virtual File System (PVFS) using Portals as the transport. This report provides short overviews of PVFS and Portals, and describes the design and implementation of PVFS over Portals. Finally, the results of performance testing of both stock PVFS and PVFS over Portals are presented.

  14. Basolateral membrane H/OH/HCO3 transport in the rat cortical thick ascending limb. Evidence for an electrogenic Na/HCO3 cotransporter in parallel with a Na/H antiporter.

    PubMed Central

    Krapf, R

    1988-01-01

    Mechanisms involved in basolateral H/OH/HCO3 transport in the in vitro microperfused rat cortical thick ascending limb were examined by the microfluorometric determination of cell pH using (2',7')-bis-(carboxyethyl)-(5,6)-carboxyfluorescein. The mean cell pH in this segment perfused with 147 mM sodium and 25 mM HCO3 at pH 7.4 was 7.13 +/- 0.02 (n = 30). Lowering bath HCO3 from 25 to 5 mM (constant PCO2 of 40 mmHg) acidified the cells by 0.31 +/- 0.02 pH units at a rate of 0.56 +/- 0.08 pH units/min. Removal of bath sodium acidified the cells by 0.28 +/- 0.03 pH units at a rate of 0.33 +/- 0.04 pH units/min. The cell acidification was stilbene inhibitable and independent of chloride. There was no effect of bath sodium removal on cell pH in the absence of CO2/HCO3. Depolarization of the basolateral membrane (step increase in bath potassium) independent of the presence of chloride. Cell acidification induced by bath sodium removal persisted when the basolateral membrane was voltage clamped by high potassium/valinomycin. Although these results are consistent with a Na/(HCO3)n greater than 1 cotransporter, a Na/H antiporter was also suggested: 1 mM bath amiloride inhibited the cell pH defense against an acid load (rapid ammonia washout), both in the presence and absence of CO2/HCO3, and inhibited the cell acidification induced by bath sodium reduction from 50 to 0 mM. In conclusion, an electrogenic Na/(HCO3)n greater than 1 cotransporter in parallel with a Na/H antiporter exist on the basolateral membrane of the rat cortical thick ascending limb. PMID:2839547

  15. Dynamic grid refinement for partial differential equations on parallel computers

    NASA Technical Reports Server (NTRS)

    Mccormick, S.; Quinlan, D.

    1989-01-01

    The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids to provide adaptive resolution and fast solution of PDEs. An asynchronous version of FAC, called AFAC, that completely eliminates the bottleneck to parallelism is presented. This paper describes the advantage that this algorithm has in adaptive refinement for moving singularities on multiprocessor computers. This work is applicable to the parallel solution of two- and three-dimensional shock tracking problems.

  16. GPU COMPUTING FOR PARTICLE TRACKING

    SciTech Connect

    Nishimura, Hiroshi; Song, Kai; Muriki, Krishna; Sun, Changchun; James, Susan; Qin, Yong

    2011-03-25

    This is a feasibility study of using a modern Graphics Processing Unit (GPU) to parallelize the accelerator particle tracking code. To demonstrate the massive parallelization features provided by GPU computing, a simplified TracyGPU program is developed for dynamic aperture calculation. Performances, issues, and challenges from introducing GPU are also discussed. General purpose Computation on Graphics Processing Units (GPGPU) bring massive parallel computing capabilities to numerical calculation. However, the unique architecture of GPU requires a comprehensive understanding of the hardware and programming model to be able to well optimize existing applications. In the field of accelerator physics, the dynamic aperture calculation of a storage ring, which is often the most time consuming part of the accelerator modeling and simulation, can benefit from GPU due to its embarrassingly parallel feature, which fits well with the GPU programming model. In this paper, we use the Tesla C2050 GPU which consists of 14 multi-processois (MP) with 32 cores on each MP, therefore a total of 448 cores, to host thousands ot threads dynamically. Thread is a logical execution unit of the program on GPU. In the GPU programming model, threads are grouped into a collection of blocks Within each block, multiple threads share the same code, and up to 48 KB of shared memory. Multiple thread blocks form a grid, which is executed as a GPU kernel. A simplified code that is a subset of Tracy++ [2] is developed to demonstrate the possibility of using GPU to speed up the dynamic aperture calculation by having each thread track a particle.

  17. Parallel nearest neighbor calculations

    NASA Astrophysics Data System (ADS)

    Trease, Harold

    We are just starting to parallelize the nearest neighbor portion of our free-Lagrange code. Our implementation of the nearest neighbor reconnection algorithm has not been parallelizable (i.e., we just flip one connection at a time). In this paper we consider what sort of nearest neighbor algorithms lend themselves to being parallelized. For example, the construction of the Voronoi mesh can be parallelized, but the construction of the Delaunay mesh (dual to the Voronoi mesh) cannot because of degenerate connections. We will show our most recent attempt to tessellate space with triangles or tetrahedrons with a new nearest neighbor construction algorithm called DAM (Dial-A-Mesh). This method has the characteristics of a parallel algorithm and produces a better tessellation of space than the Delaunay mesh. Parallel processing is becoming an everyday reality for us at Los Alamos. Our current production machines are Cray YMPs with 8 processors that can run independently or combined to work on one job. We are also exploring massive parallelism through the use of two 64K processor Connection Machines (CM2), where all the processors run in lock step mode. The effective application of 3-D computer models requires the use of parallel processing to achieve reasonable "turn around" times for our calculations.

  18. Bilingual parallel programming

    SciTech Connect

    Foster, I.; Overbeek, R.

    1990-01-01

    Numerous experiments have demonstrated that computationally intensive algorithms support adequate parallelism to exploit the potential of large parallel machines. Yet successful parallel implementations of serious applications are rare. The limiting factor is clearly programming technology. None of the approaches to parallel programming that have been proposed to date -- whether parallelizing compilers, language extensions, or new concurrent languages -- seem to adequately address the central problems of portability, expressiveness, efficiency, and compatibility with existing software. In this paper, we advocate an alternative approach to parallel programming based on what we call bilingual programming. We present evidence that this approach provides and effective solution to parallel programming problems. The key idea in bilingual programming is to construct the upper levels of applications in a high-level language while coding selected low-level components in low-level languages. This approach permits the advantages of a high-level notation (expressiveness, elegance, conciseness) to be obtained without the cost in performance normally associated with high-level approaches. In addition, it provides a natural framework for reusing existing code.

  19. Storm tracks near marginal stability

    NASA Astrophysics Data System (ADS)

    Ambaum, Maarten; Novak, Lenka

    2015-04-01

    The variance of atmospheric storm tracks is characterised by intermittent bursts of activity interspersed with relatively quiescent periods. Most of the poleward heat transport by storm tracks is due to a limited number of strong heat flux events, which occur in a quasi-periodic fashion. This behaviour is in contradiction with the usual conceptual model of the storm tracks, which relies on high growth rate background flows which then spawn weather systems that grow in an exponential or non-normal fashion. Here we present a different conceptual model of the atmospheric storm tracks which is built on the observation that, when including diabatic and other dissipative effects, the storm track region is in fact most of the time marginally stable. The ensuing model is a nonlinear oscillator, very similar to Volterra-Lotka predator-prey models. We demonstrate the extensions of this model to a stochastically driven nonlinear oscillator. The model produces quasi-periodic behaviour dominated by intermittent heat flux events. Perhaps most surprisingly, we will show strong evidence from re-analysis data for our conceptual model: the re-analysis data produces a phase-space plot that is very similar indeed to the phase-space plot for our nonlinear oscillator model.

  20. Parallel system simulation

    SciTech Connect

    Tai, H.M.; Saeks, R.

    1984-03-01

    A relaxation algorithm for solving large-scale system simulation problems in parallel is proposed. The algorithm, which is composed of both a time-step parallel algorithm and a component-wise parallel algorithm, is described. The interconnected nature of the system, which is characterized by the component connection model, is fully exploited by this approach. A technique for finding an optimal number of the time steps is also described. Finally, this algorithm is illustrated via several examples in which the possible trade-offs between the speed-up ratio, efficiency, and waiting time are analyzed.

  1. The NAS parallel benchmarks

    NASA Technical Reports Server (NTRS)

    Bailey, David (Editor); Barton, John (Editor); Lasinski, Thomas (Editor); Simon, Horst (Editor)

    1993-01-01

    A new set of benchmarks was developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of a set of kernels, the 'Parallel Kernels,' and a simulated application benchmark. Together they mimic the computation and data movement characteristics of large scale computational fluid dynamics (CFD) applications. The principal distinguishing feature of these benchmarks is their 'pencil and paper' specification - all details of these benchmarks are specified only algorithmically. In this way many of the difficulties associated with conventional benchmarking approaches on highly parallel systems are avoided.

  2. Track geometry estimation from car-body vibration

    NASA Astrophysics Data System (ADS)

    Tsunashima, Hitoshi; Naganuma, Yasukuni; Kobayashi, Takahito

    2014-05-01

    Track maintenance works based on track geometry recordings are essential to enhance the safety and comfort of railway transportation. The track condition monitoring system is mainly used for the choice of area needing track tamping works for the purpose of the good riding comfort. An advantage of car-body acceleration measurement devices is their simple structures, which make it easier to carry out maintenance. However, the car-body acceleration waveform is considerably different from track geometry. This paper demonstrates the possibility to estimate the track geometry of Shinkansen tracks using car-body motions only. In an inverse problem to estimate track irregularity from car-body motions, a Kalman Filter (KF) was applied to solve the problem. Estimation results showed that track irregularity estimation in vertical direction is possible with acceptable accuracy for real use.

  3. 49 CFR 214.335 - On-track safety procedures for roadway work groups.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false On-track safety procedures for roadway work groups. 214.335 Section 214.335 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.335 On-track safety...

  4. Solar tracking system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  5. The 2nd Symposium on the Frontiers of Massively Parallel Computations

    NASA Technical Reports Server (NTRS)

    Mills, Ronnie (Editor)

    1988-01-01

    Programming languages, computer graphics, neural networks, massively parallel computers, SIMD architecture, algorithms, digital terrain models, sort computation, simulation of charged particle transport on the massively parallel processor and image processing are among the topics discussed.

  6. Parallel programming with PCN

    SciTech Connect

    Foster, I.; Tuecke, S.

    1991-12-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, tools for developing and debugging programs in this language, and interfaces to Fortran and C that allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. In includes both tutorial and reference material. It also presents the basic concepts that underly PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous FTP from Argonne National Laboratory in the directory pub/pcn at info.mcs.anl.gov (c.f. Appendix A).

  7. Parallels with nature

    NASA Astrophysics Data System (ADS)

    2014-10-01

    Adam Nelson and Stuart Warriner, from the University of Leeds, talk with Nature Chemistry about their work to develop viable synthetic strategies for preparing new chemical structures in parallel with the identification of desirable biological activity.

  8. The Parallel Axiom

    ERIC Educational Resources Information Center

    Rogers, Pat

    1972-01-01

    Criteria for a reasonable axiomatic system are discussed. A discussion of the historical attempts to prove the independence of Euclids parallel postulate introduces non-Euclidean geometries. Poincare's model for a non-Euclidean geometry is defined and analyzed. (LS)

  9. Simplified Parallel Domain Traversal

    SciTech Connect

    Erickson III, David J

    2011-01-01

    Many data-intensive scientific analysis techniques require global domain traversal, which over the years has been a bottleneck for efficient parallelization across distributed-memory architectures. Inspired by MapReduce and other simplified parallel programming approaches, we have designed DStep, a flexible system that greatly simplifies efficient parallelization of domain traversal techniques at scale. In order to deliver both simplicity to users as well as scalability on HPC platforms, we introduce a novel two-tiered communication architecture for managing and exploiting asynchronous communication loads. We also integrate our design with advanced parallel I/O techniques that operate directly on native simulation output. We demonstrate DStep by performing teleconnection analysis across ensemble runs of terascale atmospheric CO{sub 2} and climate data, and we show scalability results on up to 65,536 IBM BlueGene/P cores.

  10. Partitioning and parallel radiosity

    NASA Astrophysics Data System (ADS)

    Merzouk, S.; Winkler, C.; Paul, J. C.

    1996-03-01

    This paper proposes a theoretical framework, based on domain subdivision for parallel radiosity. Moreover, three various implementation approaches, taking advantage of partitioning algorithms and global shared memory architecture, are presented.

  11. Parallel image compression

    NASA Technical Reports Server (NTRS)

    Reif, John H.

    1987-01-01

    A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.

  12. Continuous parallel coordinates.

    PubMed

    Heinrich, Julian; Weiskopf, Daniel

    2009-01-01

    Typical scientific data is represented on a grid with appropriate interpolation or approximation schemes,defined on a continuous domain. The visualization of such data in parallel coordinates may reveal patterns latently contained in the data and thus can improve the understanding of multidimensional relations. In this paper, we adopt the concept of continuous scatterplots for the visualization of spatially continuous input data to derive a density model for parallel coordinates. Based on the point-line duality between scatterplots and parallel coordinates, we propose a mathematical model that maps density from a continuous scatterplot to parallel coordinates and present different algorithms for both numerical and analytical computation of the resulting density field. In addition, we show how the 2-D model can be used to successively construct continuous parallel coordinates with an arbitrary number of dimensions. Since continuous parallel coordinates interpolate data values within grid cells, a scalable and dense visualization is achieved, which will be demonstrated for typical multi-variate scientific data. PMID:19834230

  13. TECA: A Parallel Toolkit for Extreme Climate Analysis

    SciTech Connect

    Prabhat, Mr; Ruebel, Oliver; Byna, Surendra; Wu, Kesheng; Li, Fuyu; Wehner, Michael; Bethel, E. Wes

    2012-03-12

    We present TECA, a parallel toolkit for detecting extreme events in large climate datasets. Modern climate datasets expose parallelism across a number of dimensions: spatial locations, timesteps and ensemble members. We design TECA to exploit these modes of parallelism and demonstrate a prototype implementation for detecting and tracking three classes of extreme events: tropical cyclones, extra-tropical cyclones and atmospheric rivers. We process a modern TB-sized CAM5 simulation dataset with TECA, and demonstrate good runtime performance for the three case studies.

  14. An optical tracking system for virtual reality

    NASA Astrophysics Data System (ADS)

    Hrimech, Hamid; Merienne, Frederic

    2009-03-01

    In this paper we present a low-cost 3D tracking system which we have developed and tested in order to move away from traditional 2D interaction techniques (keyboard and mouse) in an attempt to improve user's experience while using a CVE. Such a tracking system is used to implement 3D interaction techniques that augment user experience, promote user's sense of transportation in the virtual world as well as user's awareness of their partners. The tracking system is a passive optical tracking system using stereoscopy a technique allowing the reconstruction of three-dimensional information from a couple of images. We have currently deployed our 3D tracking system on a collaborative research platform for investigating 3D interaction techniques in CVEs.

  15. NASA satellite to track North Pole expedition

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The proposed expedition of a lone explorer and the use of Nimbus 6 (NASA meteorological research satellite) to track his journey is reported. The journey is scheduled to start March 4, 1978, and will cover a distance of 6.000 Km (3,728 miles) from northern Canada to the North Pole and return, traveling the length of Greenland's isolated interior. The mode of transportation for the explorer will be by dog sled. Instrumentation and tracking techniques are discussed.

  16. TrackEye tracking algorithm characterization

    NASA Astrophysics Data System (ADS)

    Valley, Michael T.; Shields, Robert W.; Reed, Jack M.

    2004-10-01

    TrackEye is a film digitization and target tracking system that offers the potential for quantitatively measuring the dynamic state variables (e.g., absolute and relative position, orientation, linear and angular velocity/acceleration, spin rate, trajectory, angle of attack, etc.) for moving objects using captured single or dual view image sequences. At the heart of the system is a set of tracking algorithms that automatically find and quantify the location of user selected image details such as natural test article features or passive fiducials that have been applied to cooperative test articles. This image position data is converted into real world coordinates and rates with user specified information such as the image scale and frame rate. Though tracking methods such as correlation algorithms are typically robust by nature, the accuracy and suitability of each TrackEye tracking algorithm is in general unknown even under good imaging conditions. The challenges of optimal algorithm selection and algorithm performance/measurement uncertainty are even more significant for long range tracking of high-speed targets where temporally varying atmospheric effects degrade the imagery. This paper will present the preliminary results from a controlled test sequence used to characterize the performance of the TrackEye tracking algorithm suite.

  17. TrackEye tracking algorithm characterization.

    SciTech Connect

    Reed, Jack W.; Shields, Rob W; Valley, Michael T.

    2004-08-01

    TrackEye is a film digitization and target tracking system that offers the potential for quantitatively measuring the dynamic state variables (e.g., absolute and relative position, orientation, linear and angular velocity/acceleration, spin rate, trajectory, angle of attack, etc.) for moving objects using captured single or dual view image sequences. At the heart of the system is a set of tracking algorithms that automatically find and quantify the location of user selected image details such as natural test article features or passive fiducials that have been applied to cooperative test articles. This image position data is converted into real world coordinates and rates with user specified information such as the image scale and frame rate. Though tracking methods such as correlation algorithms are typically robust by nature, the accuracy and suitability of each TrackEye tracking algorithm is in general unknown even under good imaging conditions. The challenges of optimal algorithm selection and algorithm performance/measurement uncertainty are even more significant for long range tracking of high-speed targets where temporally varying atmospheric effects degrade the imagery. This paper will present the preliminary results from a controlled test sequence used to characterize the performance of the TrackEye tracking algorithm suite.

  18. Tracking filter algorithm for automatic video tracking

    NASA Astrophysics Data System (ADS)

    McEver, Mark A.; Kimbrell, James E.

    2006-05-01

    In addition to servo control and power amplification, motion control systems for optical tracking pedestals feature capabilities such as electro-optical tracking using an integrated Automatic Video Tracker (AVT) card. An electro-optical system tracking loop is comprised of sensors mounted on a pointing pedestal, an AVT that detects a target in the sensor imagery, and a tracking filter algorithm that commands the pedestal to follow the target. The tracking filter algorithm receives the target boresight error from the AVT and calculates motion demands for the pedestal servo controller. This paper presents a tracking algorithm based on target state estimation using a Kalman filter. The servo demands are based on calculating the Kalman filter state estimate from absolute line-of-sight angles to the target. Simulations are used to compare its performance to tracking loops without tracking filters, and to other tracking filter algorithms, such as rate feedback loops closed around boresight error. Issues such as data latency and sensor alignment error are discussed.

  19. 49 CFR 213.309 - Restoration or renewal of track under traffic conditions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Restoration or renewal of track under traffic... Track Classes 6 and Higher § 213.309 Restoration or renewal of track under traffic conditions. (a) Restoration or renewal of track under traffic conditions is limited to the replacement of worn, broken,...

  20. 49 CFR 213.309 - Restoration or renewal of track under traffic conditions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Restoration or renewal of track under traffic... Track Classes 6 and Higher § 213.309 Restoration or renewal of track under traffic conditions. (a) Restoration or renewal of track under traffic conditions is limited to the replacement of worn, broken,...

  1. 49 CFR 213.309 - Restoration or renewal of track under traffic conditions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Restoration or renewal of track under traffic... Track Classes 6 and Higher § 213.309 Restoration or renewal of track under traffic conditions. (a) Restoration or renewal of track under traffic conditions is limited to the replacement of worn, broken,...

  2. 49 CFR 213.309 - Restoration or renewal of track under traffic conditions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Restoration or renewal of track under traffic... Track Classes 6 and Higher § 213.309 Restoration or renewal of track under traffic conditions. (a) Restoration or renewal of track under traffic conditions is limited to the replacement of worn, broken,...

  3. 49 CFR 213.309 - Restoration or renewal of track under traffic conditions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Restoration or renewal of track under traffic... Track Classes 6 and Higher § 213.309 Restoration or renewal of track under traffic conditions. (a) Restoration or renewal of track under traffic conditions is limited to the replacement of worn, broken,...

  4. 49 CFR 236.53 - Track circuit feed at grade crossing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Track circuit feed at grade crossing. 236.53... Instructions: All Systems Track Circuits § 236.53 Track circuit feed at grade crossing. At grade crossing with... current track circuit shall feed away from the crossing....

  5. 49 CFR 213.234 - Automated inspection of track constructed with concrete crossties.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... concrete crossties. 213.234 Section 213.234 Transportation Other Regulations Relating to Transportation... § 213.234 Automated inspection of track constructed with concrete crossties. Link to an amendment... track inspection required under § 213.233, for Class 3 main track constructed with concrete...

  6. 49 CFR 214.309 - On-track safety program documents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false On-track safety program documents. 214.309 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.309 On-track safety program documents. Rules and operating procedures governing track occupancy and...

  7. 49 CFR 214.309 - On-track safety program documents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false On-track safety program documents. 214.309 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.309 On-track safety program documents. Rules and operating procedures governing track occupancy and...

  8. 49 CFR 214.309 - On-track safety program documents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false On-track safety program documents. 214.309 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.309 On-track safety program documents. Rules and operating procedures governing track occupancy and...

  9. 49 CFR 214.309 - On-track safety program documents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false On-track safety program documents. 214.309 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.309 On-track safety program documents. Rules and operating procedures governing track occupancy and...

  10. 49 CFR 214.309 - On-track safety program documents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false On-track safety program documents. 214.309 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.309 On-track safety program documents. Rules and operating procedures governing track occupancy and...

  11. Interactions between flames on parallel solid surfaces

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    1995-01-01

    The interactions between flames spreading over parallel solid sheets of paper are being studied in normal gravity and in microgravity. This geometry is of practical importance since in most heterogeneous combustion systems, the condensed phase is non-continuous and spatially distributed. This spatial distribution can strongly affect burning and/or spread rate. This is due to radiant and diffusive interactions between the surface and the flames above the surfaces. Tests were conducted over a variety of pressures and separation distances to expose the influence of the parallel sheets on oxidizer transport and on radiative feedback.

  12. Stable imaging tracking method based on learning online for ground moving target with multi-DSP processing

    NASA Astrophysics Data System (ADS)

    Li, Yun; Zhong, Sheng

    2011-11-01

    A stable imaging tracking method based on learning online for ground moving target with multi-DSP processing is presented in this paper. Background window is set to track and predict the background image and supervise the intruder. The target learning online based on background prediction revises the accumulated tracking error. Different tracking strategy during different tracking states and risk level of intruder improves the stability and accuracy of tracking system especially in a long time of continual tracking. The parallel processing based on multiple DSP makes a real-time tracking system be possible.

  13. Hardware packet pacing using a DMA in a parallel computer

    DOEpatents

    Chen, Dong; Heidelberger, Phillip; Vranas, Pavlos

    2013-08-13

    Method and system for hardware packet pacing using a direct memory access controller in a parallel computer which, in one aspect, keeps track of a total number of bytes put on the network as a result of a remote get operation, using a hardware token counter.

  14. Parallel time integration software

    Energy Science and Technology Software Center (ESTSC)

    2014-07-01

    This package implements an optimal-scaling multigrid solver for the (non) linear systems that arise from the discretization of problems with evolutionary behavior. Typically, solution algorithms for evolution equations are based on a time-marching approach, solving sequentially for one time step after the other. Parallelism in these traditional time-integrarion techniques is limited to spatial parallelism. However, current trends in computer architectures are leading twards system with more, but not faster. processors. Therefore, faster compute speeds mustmore » come from greater parallelism. One approach to achieve parallelism in time is with multigrid, but extending classical multigrid methods for elliptic poerators to this setting is a significant achievement. In this software, we implement a non-intrusive, optimal-scaling time-parallel method based on multigrid reduction techniques. The examples in the package demonstrate optimality of our multigrid-reduction-in-time algorithm (MGRIT) for solving a variety of parabolic equations in two and three sparial dimensions. These examples can also be used to show that MGRIT can achieve significant speedup in comparison to sequential time marching on modern architectures.« less

  15. Parallel time integration software

    SciTech Connect

    2014-07-01

    This package implements an optimal-scaling multigrid solver for the (non) linear systems that arise from the discretization of problems with evolutionary behavior. Typically, solution algorithms for evolution equations are based on a time-marching approach, solving sequentially for one time step after the other. Parallelism in these traditional time-integrarion techniques is limited to spatial parallelism. However, current trends in computer architectures are leading twards system with more, but not faster. processors. Therefore, faster compute speeds must come from greater parallelism. One approach to achieve parallelism in time is with multigrid, but extending classical multigrid methods for elliptic poerators to this setting is a significant achievement. In this software, we implement a non-intrusive, optimal-scaling time-parallel method based on multigrid reduction techniques. The examples in the package demonstrate optimality of our multigrid-reduction-in-time algorithm (MGRIT) for solving a variety of parabolic equations in two and three sparial dimensions. These examples can also be used to show that MGRIT can achieve significant speedup in comparison to sequential time marching on modern architectures.

  16. To Track or Not to Track?

    ERIC Educational Resources Information Center

    Hesson, Heather

    2010-01-01

    Background: This paper was written for a graduate level action research course at Muskingum University, located in New Concord, OH. Purpose: The purpose of this research was to determine which method of instruction best serves ALL high school students. Is it more advantageous to track ("ability group") students or not to track students in high…

  17. Calculating track thrust with track functions

    NASA Astrophysics Data System (ADS)

    Chang, Hsi-Ming; Procura, Massimiliano; Thaler, Jesse; Waalewijn, Wouter J.

    2013-08-01

    In e+e- event shapes studies at LEP, two different measurements were sometimes performed: a “calorimetric” measurement using both charged and neutral particles and a “track-based” measurement using just charged particles. Whereas calorimetric measurements are infrared and collinear safe, and therefore calculable in perturbative QCD, track-based measurements necessarily depend on nonperturbative hadronization effects. On the other hand, track-based measurements typically have smaller experimental uncertainties. In this paper, we present the first calculation of the event shape “track thrust” and compare to measurements performed at ALEPH and DELPHI. This calculation is made possible through the recently developed formalism of track functions, which are nonperturbative objects describing how energetic partons fragment into charged hadrons. By incorporating track functions into soft-collinear effective theory, we calculate the distribution for track thrust with next-to-leading logarithmic resummation. Due to a partial cancellation between nonperturbative parameters, the distributions for calorimeter thrust and track thrust are remarkably similar, a feature also seen in LEP data.

  18. Parallel optical sampler

    SciTech Connect

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

    2014-05-20

    An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCs convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.

  19. Vectoring of parallel synthetic jets

    NASA Astrophysics Data System (ADS)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  20. The NAS Parallel Benchmarks

    SciTech Connect

    Bailey, David H.

    2009-11-15

    The NAS Parallel Benchmarks (NPB) are a suite of parallel computer performance benchmarks. They were originally developed at the NASA Ames Research Center in 1991 to assess high-end parallel supercomputers. Although they are no longer used as widely as they once were for comparing high-end system performance, they continue to be studied and analyzed a great deal in the high-performance computing community. The acronym 'NAS' originally stood for the Numerical Aeronautical Simulation Program at NASA Ames. The name of this organization was subsequently changed to the Numerical Aerospace Simulation Program, and more recently to the NASA Advanced Supercomputing Center, although the acronym remains 'NAS.' The developers of the original NPB suite were David H. Bailey, Eric Barszcz, John Barton, David Browning, Russell Carter, LeoDagum, Rod Fatoohi, Samuel Fineberg, Paul Frederickson, Thomas Lasinski, Rob Schreiber, Horst Simon, V. Venkatakrishnan and Sisira Weeratunga. The original NAS Parallel Benchmarks consisted of eight individual benchmark problems, each of which focused on some aspect of scientific computing. The principal focus was in computational aerophysics, although most of these benchmarks have much broader relevance, since in a much larger sense they are typical of many real-world scientific computing applications. The NPB suite grew out of the need for a more rational procedure to select new supercomputers for acquisition by NASA. The emergence of commercially available highly parallel computer systems in the late 1980s offered an attractive alternative to parallel vector supercomputers that had been the mainstay of high-end scientific computing. However, the introduction of highly parallel systems was accompanied by a regrettable level of hype, not only on the part of the commercial vendors but even, in some cases, by scientists using the systems. As a result, it was difficult to discern whether the new systems offered any fundamental performance advantage

  1. Adaptive parallel logic networks

    NASA Technical Reports Server (NTRS)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  2. Speeding up parallel processing

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    In 1967 Amdahl expressed doubts about the ultimate utility of multiprocessors. The formulation, now called Amdahl's law, became part of the computing folklore and has inspired much skepticism about the ability of the current generation of massively parallel processors to efficiently deliver all their computing power to programs. The widely publicized recent results of a group at Sandia National Laboratory, which showed speedup on a 1024 node hypercube of over 500 for three fixed size problems and over 1000 for three scalable problems, have convincingly challenged this bit of folklore and have given new impetus to parallel scientific computing.

  3. Programming parallel vision algorithms

    SciTech Connect

    Shapiro, L.G.

    1988-01-01

    Computer vision requires the processing of large volumes of data and requires parallel architectures and algorithms to be useful in real-time, industrial applications. The INSIGHT dataflow language was designed to allow encoding of vision algorithms at all levels of the computer vision paradigm. INSIGHT programs, which are relational in nature, can be translated into a graph structure that represents an architecture for solving a particular vision problem or a configuration of a reconfigurable computational network. The authors consider here INSIGHT programs that produce a parallel net architecture for solving low-, mid-, and high-level vision tasks.

  4. Highly parallel computation

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.; Tichy, Walter F.

    1990-01-01

    Among the highly parallel computing architectures required for advanced scientific computation, those designated 'MIMD' and 'SIMD' have yielded the best results to date. The present development status evaluation of such architectures shown neither to have attained a decisive advantage in most near-homogeneous problems' treatment; in the cases of problems involving numerous dissimilar parts, however, such currently speculative architectures as 'neural networks' or 'data flow' machines may be entailed. Data flow computers are the most practical form of MIMD fine-grained parallel computers yet conceived; they automatically solve the problem of assigning virtual processors to the real processors in the machine.

  5. Coarrars for Parallel Processing

    NASA Technical Reports Server (NTRS)

    Snyder, W. Van

    2011-01-01

    The design of the Coarray feature of Fortran 2008 was guided by answering the question "What is the smallest change required to convert Fortran to a robust and efficient parallel language." Two fundamental issues that any parallel programming model must address are work distribution and data distribution. In order to coordinate work distribution and data distribution, methods for communication and synchronization must be provided. Although originally designed for Fortran, the Coarray paradigm has stimulated development in other languages. X10, Chapel, UPC, Titanium, and class libraries being developed for C++ have the same conceptual framework.

  6. The parallel I/O architecture of the high performance storage system (HPSS). Revision 1

    SciTech Connect

    Watson, R.W.; Coyne, R.A.

    1995-04-01

    Datasets up to terabyte size and petabyte capacities have created a serious imbalance between I/O and storage system performance and system functionality. One promising approach is the use of parallel data transfer techniques for client access to storage, peripheral-to-peripheral transfers, and remote file transfers. This paper describes the parallel I/O architecture and mechanisms, Parallel Transport Protocol (PTP), parallel FTP, and parallel client Application Programming Interface (API) used by the High Performance Storage System (HPSS). Parallel storage integration issues with a local parallel file system are also discussed.

  7. Parallel Total Energy

    Energy Science and Technology Software Center (ESTSC)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  8. NAS Parallel Benchmarks Results

    NASA Technical Reports Server (NTRS)

    Subhash, Saini; Bailey, David H.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    The NAS Parallel Benchmarks (NPB) were developed in 1991 at NASA Ames Research Center to study the performance of parallel supercomputers. The eight benchmark problems are specified in a pencil and paper fashion i.e. the complete details of the problem to be solved are given in a technical document, and except for a few restrictions, benchmarkers are free to select the language constructs and implementation techniques best suited for a particular system. In this paper, we present new NPB performance results for the following systems: (a) Parallel-Vector Processors: Cray C90, Cray T'90 and Fujitsu VPP500; (b) Highly Parallel Processors: Cray T3D, IBM SP2 and IBM SP-TN2 (Thin Nodes 2); (c) Symmetric Multiprocessing Processors: Convex Exemplar SPP1000, Cray J90, DEC Alpha Server 8400 5/300, and SGI Power Challenge XL. We also present sustained performance per dollar for Class B LU, SP and BT benchmarks. We also mention NAS future plans of NPB.

  9. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  10. Parallel programming with PCN

    SciTech Connect

    Foster, I.; Tuecke, S.

    1993-01-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, tools for developing and debugging programs in this language, and interfaces to Fortran and Cthat allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. It includes both tutorial and reference material. It also presents the basic concepts that underlie PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous ftp from Argonne National Laboratory in the directory pub/pcn at info.mcs. ani.gov (cf. Appendix A). This version of this document describes PCN version 2.0, a major revision of the PCN programming system. It supersedes earlier versions of this report.

  11. Parallel Multigrid Equation Solver

    Energy Science and Technology Software Center (ESTSC)

    2001-09-07

    Prometheus is a fully parallel multigrid equation solver for matrices that arise in unstructured grid finite element applications. It includes a geometric and an algebraic multigrid method and has solved problems of up to 76 mullion degrees of feedom, problems in linear elasticity on the ASCI blue pacific and ASCI red machines.

  12. Parallel Dislocation Simulator

    Energy Science and Technology Software Center (ESTSC)

    2006-10-30

    ParaDiS is software capable of simulating the motion, evolution, and interaction of dislocation networks in single crystals using massively parallel computer architectures. The software is capable of outputting the stress-strain response of a single crystal whose plastic deformation is controlled by the dislocation processes.

  13. Optical parallel selectionist systems

    NASA Astrophysics Data System (ADS)

    Caulfield, H. John

    1993-01-01

    There are at least two major classes of computers in nature and technology: connectionist and selectionist. A subset of connectionist systems (Turing Machines) dominates modern computing, although another subset (Neural Networks) is growing rapidly. Selectionist machines have unique capabilities which should allow them to do truly creative operations. It is possible to make a parallel optical selectionist system using methods describes in this paper.

  14. Parallel fast gauss transform

    SciTech Connect

    Sampath, Rahul S; Sundar, Hari; Veerapaneni, Shravan

    2010-01-01

    We present fast adaptive parallel algorithms to compute the sum of N Gaussians at N points. Direct sequential computation of this sum would take O(N{sup 2}) time. The parallel time complexity estimates for our algorithms are O(N/n{sub p}) for uniform point distributions and O( (N/n{sub p}) log (N/n{sub p}) + n{sub p}log n{sub p}) for non-uniform distributions using n{sub p} CPUs. We incorporate a plane-wave representation of the Gaussian kernel which permits 'diagonal translation'. We use parallel octrees and a new scheme for translating the plane-waves to efficiently handle non-uniform distributions. Computing the transform to six-digit accuracy at 120 billion points took approximately 140 seconds using 4096 cores on the Jaguar supercomputer. Our implementation is 'kernel-independent' and can handle other 'Gaussian-type' kernels even when explicit analytic expression for the kernel is not known. These algorithms form a new class of core computational machinery for solving parabolic PDEs on massively parallel architectures.

  15. Parallel hierarchical radiosity rendering

    SciTech Connect

    Carter, M.

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  16. Large-scale parallel lattice Boltzmann-cellular automaton model of two-dimensional dendritic growth

    NASA Astrophysics Data System (ADS)

    Jelinek, Bohumir; Eshraghi, Mohsen; Felicelli, Sergio; Peters, John F.

    2014-03-01

    An extremely scalable lattice Boltzmann (LB)-cellular automaton (CA) model for simulations of two-dimensional (2D) dendritic solidification under forced convection is presented. The model incorporates effects of phase change, solute diffusion, melt convection, and heat transport. The LB model represents the diffusion, convection, and heat transfer phenomena. The dendrite growth is driven by a difference between actual and equilibrium liquid composition at the solid-liquid interface. The CA technique is deployed to track the new interface cells. The computer program was parallelized using the Message Passing Interface (MPI) technique. Parallel scaling of the algorithm was studied and major scalability bottlenecks were identified. Efficiency loss attributable to the high memory bandwidth requirement of the algorithm was observed when using multiple cores per processor. Parallel writing of the output variables of interest was implemented in the binary Hierarchical Data Format 5 (HDF5) to improve the output performance, and to simplify visualization. Calculations were carried out in single precision arithmetic without significant loss in accuracy, resulting in 50% reduction of memory and computational time requirements. The presented solidification model shows a very good scalability up to centimeter size domains, including more than ten million of dendrites. Catalogue identifier: AEQZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEQZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 29,767 No. of bytes in distributed program, including test data, etc.: 3131,367 Distribution format: tar.gz Programming language: Fortran 90. Computer: Linux PC and clusters. Operating system: Linux. Has the code been vectorized or parallelized?: Yes. Program is parallelized using MPI

  17. Photographing Track Meets.

    ERIC Educational Resources Information Center

    Palmer, Erik

    2001-01-01

    Argues that the sport of track and field, because of the sport itself and its relatively easy access to photographers, is an obvious target for cameras. Discusses rules of the track that photographers must follow; picking a location; and equipment. Discusses shooting four specific track and field events and offers behind the scenes photos. (SR)

  18. Solar tracking apparatus

    DOEpatents

    Hammons, Burrell E.

    1980-01-01

    The invention relates to a solar tracking device which tracks the position of the sun using paired, partially-shaded photocells. Auxiliary photocells are used for initial acquisition of the sun and for the suppression of false tracking when the sun is obscured by clouds.

  19. Solar tracking apparatus

    DOEpatents

    Hammons, B.E.

    The invention relates to a solar tracking device which tracks the position of the sun using paired, partially-shaded photocells. Auxilliary photocells are used for initial acquisition of the sun and for the suppression of false tracking when the sun is obscured by clouds.

  20. Track and Field Facilities.

    ERIC Educational Resources Information Center

    Wood, Tony

    2001-01-01

    Discusses planning and design tips that help ensure track and field facilities are successful and well-suited to both school and community use. Examines approaches to determining the best track surface and ways to maximize track and field flexibility with limited space. (GR)

  1. The Majorana Parts Tracking Database

    SciTech Connect

    Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Esterline, J.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J. Diaz; Leviner, L. E.; Loach, J. C.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Mertens, S.; Miller, M. L.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; O׳Shaughnessy, C.; Overman, N. R.; Petersburg, R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Soin, A.; Suriano, A. M.; Tedeschi, D.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C. -H.; Yumatov, V.; Zhitnikov, I.

    2015-04-01

    The MAJORANA DEMONSTRATOR is an ultra-low background physics experiment searching for the neutrinoless double beta decay of 76Ge. The MAJORANA Parts Tracking Database is used to record the history of components used in the construction of the DEMONSTRATOR. Transportation, storage, and processes undergone by parts such as machining or cleaning are linked to part records. Tracking parts provides a great logistics benefit and an important quality assurance reference during construction. In addition, the location history of parts provides an estimate of their exposure to cosmic radiation. A web application for data entry and a radiation exposure calculator have been developed as tools for achieving the extreme radiopurity required for this rare decay search.

  2. Double Take: Parallel Processing by the Cerebral Hemispheres Reduces Attentional Blink

    ERIC Educational Resources Information Center

    Scalf, Paige E.; Banich, Marie T.; Kramer, Arthur F.; Narechania, Kunjan; Simon, Clarissa D.

    2007-01-01

    Recent data have shown that parallel processing by the cerebral hemispheres can expand the capacity of visual working memory for spatial locations (J. F. Delvenne, 2005) and attentional tracking (G. A. Alvarez & P. Cavanagh, 2005). Evidence that parallel processing by the cerebral hemispheres can improve item identification has remained elusive.…

  3. Developments in strong shock wave position tracking

    NASA Astrophysics Data System (ADS)

    Rae, Philip; Glover, Brain; Perry, Lee; WX-6; WX-7 Team

    2011-06-01

    This poster will highlight several modified techniques to allow the position vs. time to be tracked in strong shock situations (such as detonation). Each is a modification or improvement of existing ideas either making use of advances in specialist materials availability or recent advances in electronics.) Shorting embedded mini-coaxial cable with a standing microwave pattern. This technique is a modified version of an old LANL method of shock position tracking making use of a traveling short imposed in an embedded coaxial cable. A high frequency standing wave (3-8GHz) is present in the cable and the moving short position can be tracked by monitoring the output voltage envelope as a function of time. A diode detector is used to allow the envelope voltage to be monitored on a regular low frequency digitizer significantly reducing the cost. The small and cheap high frequency voltage generators now available allow much greater spatial resolution than possible previously. 2) Very thin shorting resistance track gauges. Parallel tracks of constantan resistance material are etched on a thin dielectric substrate. The gauges are less than 0.2 mm thick. The ionized gas present in a detonation front sweeps up the tracks lowering the measured resistance. A potential divider circuit allows the shock position vs. time to be monitored on a regular digitizer after easy calibration. The novel feature is the thin section of the gauge producing minimal perturbation in the detonation front.

  4. Simulation framework for intelligent transportation systems

    SciTech Connect

    Ewing, T.; Doss, E.; Hanebutte, U.; Tentner, A.

    1996-10-01

    A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System (ITS). The simulator is designed for running on parallel computers and distributed (networked) computer systems, but can run on standalone workstations for smaller simulations. The simulator currently models instrumented smart vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide two-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. Realistic modeling of variations of the posted driving speed are based on human factors studies that take into consideration weather, road conditions, driver personality and behavior, and vehicle type. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on parallel computers, such as ANL`s IBM SP-2, for large-scale problems. A novel feature of the approach is that vehicles are represented by autonomous computer processes which exchange messages with other processes. The vehicles have a behavior model which governs route selection and driving behavior, and can react to external traffic events much like real vehicles. With this approach, the simulation is scaleable to take advantage of emerging massively parallel processor (MPP) systems.

  5. Finite resolution multitarget tracking

    NASA Astrophysics Data System (ADS)

    Mušicki, Darko; Morelande, Mark R.

    2005-09-01

    Target tracking algorithms have to operate in an environment of uncertain measurement origin, due to the presence of randomly detected target measurements as well as clutter measurements from unwanted random scatterers. A majority of Bayesian multi-target tracking algorithms suffer from computational complexity which is exponential in the number of tracks and the number of shared measurements. The Linear Multi-target (LM) tracking procedure is a Bayesian multi-target tracking approximation with complexity which is linear in the number of tracks and the number of shared measurements. It also has a much simpler structure than the "optimal" Bayesian multi-target tracking, with apparently negligible decrease in performance. A vast majority of target tracking algorithms have been developed with the assumption of infinite sensor resolution, where a measurement can have only one source. This assumption is not valid for real sensors, such as radars. This paper presents a multi-target tracking algorithm which removes this restriction. The procedure utilizes a simple structure of LM tracking procedure to obtain a LM Finite Resolution (LMfr) tracking procedure which is much simpler than the previously published efforts. Instead of calculating the probability of measurement merging for each combination of potentially merging targets, we evaluate only one merging hypotheses for each measurement and each track. A simulation study is presented which compares LMfr-IPDA with LM-IPDA and IPDA target tracking in a cluttered environment utilizing a finite resolution sensor with five crossing targets. The study concentrates on the false track discrimination performance and the track retention capabilities.

  6. 49 CFR 213.11 - Restoration or renewal of track under traffic conditions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Restoration or renewal of track under traffic conditions. 213.11 Section 213.11 Transportation Other Regulations Relating to Transportation (Continued... Restoration or renewal of track under traffic conditions. If during a period of restoration or renewal,...

  7. 49 CFR 213.11 - Restoration or renewal of track under traffic conditions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Restoration or renewal of track under traffic conditions. 213.11 Section 213.11 Transportation Other Regulations Relating to Transportation (Continued... Restoration or renewal of track under traffic conditions. If during a period of restoration or renewal,...

  8. 49 CFR 213.11 - Restoration or renewal of track under traffic conditions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Restoration or renewal of track under traffic conditions. 213.11 Section 213.11 Transportation Other Regulations Relating to Transportation (Continued... Restoration or renewal of track under traffic conditions. If during a period of restoration or renewal,...

  9. 49 CFR 213.11 - Restoration or renewal of track under traffic conditions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Restoration or renewal of track under traffic conditions. 213.11 Section 213.11 Transportation Other Regulations Relating to Transportation (Continued... Restoration or renewal of track under traffic conditions. If during a period of restoration or renewal,...

  10. 49 CFR 213.11 - Restoration or renewal of track under traffic conditions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Restoration or renewal of track under traffic conditions. 213.11 Section 213.11 Transportation Other Regulations Relating to Transportation (Continued... Restoration or renewal of track under traffic conditions. If during a period of restoration or renewal,...

  11. 49 CFR 234.271 - Insulated rail joints, bond wires, and track connections.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Insulated rail joints, bond wires, and track connections. 234.271 Section 234.271 Transportation Other Regulations Relating to Transportation (Continued... Inspections and Tests § 234.271 Insulated rail joints, bond wires, and track connections. Insulated...

  12. 49 CFR 234.271 - Insulated rail joints, bond wires, and track connections.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Insulated rail joints, bond wires, and track connections. 234.271 Section 234.271 Transportation Other Regulations Relating to Transportation (Continued... Inspections and Tests § 234.271 Insulated rail joints, bond wires, and track connections. Insulated...

  13. Online track processor for the CDF upgrade

    SciTech Connect

    E. J. Thomson et al.

    2002-07-17

    A trigger track processor, called the eXtremely Fast Tracker (XFT), has been designed for the CDF upgrade. This processor identifies high transverse momentum (> 1.5 GeV/c) charged particles in the new central outer tracking chamber for CDF II. The XFT design is highly parallel to handle the input rate of 183 Gbits/s and output rate of 44 Gbits/s. The processor is pipelined and reports the result for a new event every 132 ns. The processor uses three stages: hit classification, segment finding, and segment linking. The pattern recognition algorithms for the three stages are implemented in programmable logic devices (PLDs) which allow in-situ modification of the algorithm at any time. The PLDs reside on three different types of modules. The complete system has been installed and commissioned at CDF II. An overview of the track processor and performance in CDF Run II are presented.

  14. Object tracking with stereo vision

    NASA Technical Reports Server (NTRS)

    Huber, Eric

    1994-01-01

    A real-time active stereo vision system incorporating gaze control and task directed vision is described. Emphasis is placed on object tracking and object size and shape determination. Techniques include motion-centroid tracking, depth tracking, and contour tracking.

  15. Vehicle track loading simulation

    NASA Astrophysics Data System (ADS)

    Chalupa, Milan; Severa, Libor; Vlach, Radek

    2011-12-01

    The paper describes possible design of the vehicle track computational model and basic testing procedure of the track dynamic loading simulation. The proposed approach leads to an improvement of track vehicle course stability. The computational model is built for MSC. ADAMS, AVT computational simulating system. Model, which is intended for MSC computational system, is built from two basic parts. The first one is represented by geometrical part, while the second one by contact computational part of the model. The aim of the simulating calculation consist in determination of change influence of specific vehicle track constructive parameters on changes of examined qualities of the vehicle track link and changes of track vehicle course stability. The work quantifies the influence of changes of track preloading values on the demanded torque changes of driving sprocket. Further research possibilities and potential are also presented.

  16. Parallel Subconvolution Filtering Architectures

    NASA Technical Reports Server (NTRS)

    Gray, Andrew A.

    2003-01-01

    These architectures are based on methods of vector processing and the discrete-Fourier-transform/inverse-discrete- Fourier-transform (DFT-IDFT) overlap-and-save method, combined with time-block separation of digital filters into frequency-domain subfilters implemented by use of sub-convolutions. The parallel-processing method implemented in these architectures enables the use of relatively small DFT-IDFT pairs, while filter tap lengths are theoretically unlimited. The size of a DFT-IDFT pair is determined by the desired reduction in processing rate, rather than on the order of the filter that one seeks to implement. The emphasis in this report is on those aspects of the underlying theory and design rules that promote computational efficiency, parallel processing at reduced data rates, and simplification of the designs of very-large-scale integrated (VLSI) circuits needed to implement high-order filters and correlators.

  17. Parallel Anisotropic Tetrahedral Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.

  18. Parallel grid population

    DOEpatents

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  19. Seeing in parallel

    SciTech Connect

    Little, J.J.; Poggio, T.; Gamble, E.B. Jr.

    1988-01-01

    Computer algorithms have been developed for early vision processes that give separate cues to the distance from the viewer of three-dimensional surfaces, their shape, and their material properties. The MIT Vision Machine is a computer system that integrates several early vision modules to achieve high-performance recognition and navigation in unstructured environments. It is also an experimental environment for theoretical progress in early vision algorithms, their parallel implementation, and their integration. The Vision Machine consists of a movable, two-camera Eye-Head input device and an 8K Connection Machine. The authors have developed and implemented several parallel early vision algorithms that compute edge detection, stereopsis, motion, texture, and surface color in close to real time. The integration stage, based on coupled Markov random field models, leads to a cartoon-like map of the discontinuities in the scene, with partial labeling of the brightness edges in terms of their physical origin.

  20. Ultrascalable petaflop parallel supercomputer

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Chiu, George; Cipolla, Thomas M.; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Hall, Shawn; Haring, Rudolf A.; Heidelberger, Philip; Kopcsay, Gerard V.; Ohmacht, Martin; Salapura, Valentina; Sugavanam, Krishnan; Takken, Todd

    2010-07-20

    A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.

  1. PCLIPS: Parallel CLIPS

    NASA Technical Reports Server (NTRS)

    Gryphon, Coranth D.; Miller, Mark D.

    1991-01-01

    PCLIPS (Parallel CLIPS) is a set of extensions to the C Language Integrated Production System (CLIPS) expert system language. PCLIPS is intended to provide an environment for the development of more complex, extensive expert systems. Multiple CLIPS expert systems are now capable of running simultaneously on separate processors, or separate machines, thus dramatically increasing the scope of solvable tasks within the expert systems. As a tool for parallel processing, PCLIPS allows for an expert system to add to its fact-base information generated by other expert systems, thus allowing systems to assist each other in solving a complex problem. This allows individual expert systems to be more compact and efficient, and thus run faster or on smaller machines.

  2. Parallel multilevel preconditioners

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Xu, Jinchao.

    1989-01-01

    In this paper, we shall report on some techniques for the development of preconditioners for the discrete systems which arise in the approximation of solutions to elliptic boundary value problems. Here we shall only state the resulting theorems. It has been demonstrated that preconditioned iteration techniques often lead to the most computationally effective algorithms for the solution of the large algebraic systems corresponding to boundary value problems in two and three dimensional Euclidean space. The use of preconditioned iteration will become even more important on computers with parallel architecture. This paper discusses an approach for developing completely parallel multilevel preconditioners. In order to illustrate the resulting algorithms, we shall describe the simplest application of the technique to a model elliptic problem.

  3. Parallel sphere rendering

    SciTech Connect

    Krogh, M.; Painter, J.; Hansen, C.

    1996-10-01

    Sphere rendering is an important method for visualizing molecular dynamics data. This paper presents a parallel algorithm that is almost 90 times faster than current graphics workstations. To render extremely large data sets and large images, the algorithm uses the MIMD features of the supercomputers to divide up the data, render independent partial images, and then finally composite the multiple partial images using an optimal method. The algorithm and performance results are presented for the CM-5 and the M.

  4. Xyce parallel electronic simulator.

    SciTech Connect

    Keiter, Eric Richard; Mei, Ting; Russo, Thomas V.; Rankin, Eric Lamont; Schiek, Richard Louis; Thornquist, Heidi K.; Fixel, Deborah A.; Coffey, Todd Stirling; Pawlowski, Roger Patrick; Santarelli, Keith R.

    2010-05-01

    This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.

  5. ASSEMBLY OF PARALLEL PLATES

    DOEpatents

    Groh, E.F.; Lennox, D.H.

    1963-04-23

    This invention is concerned with a rigid assembly of parallel plates in which keyways are stamped out along the edges of the plates and a self-retaining key is inserted into aligned keyways. Spacers having similar keyways are included between adjacent plates. The entire assembly is locked into a rigid structure by fastening only the outermost plates to the ends of the keys. (AEC)

  6. The tracking of high level waste shipments-TRANSCOM system

    SciTech Connect

    Johnson, P.E.; Joy, D.S.; Pope, R.B.

    1995-12-31

    The TRANSCOM (transportation tracking and communication) system is the U.S. Department of Energy`s (DOE`s) real-time system for tracking shipments of spent fuel, high-level wastes, and other high-visibility shipments of radioactive material. The TRANSCOM system has been operational since 1988. The system was used during FY1993 to track almost 100 shipments within the US.DOE complex, and it is accessed weekly by 10 to 20 users.

  7. Adaptive parallel logic networks

    SciTech Connect

    Martinez, T.R.; Vidal, J.J.

    1988-02-01

    This paper presents a novel class of special purpose processors referred to as ASOCS (adaptive self-organizing concurrent systems). Intended applications include adaptive logic devices, robotics, process control, system malfunction management, and in general, applications of logic reasoning. ASOCS combines massive parallelism with self-organization to attain a distributed mechanism for adaptation. The ASOCS approach is based on an adaptive network composed of many simple computing elements (nodes) which operate in a combinational and asynchronous fashion. Problem specification (programming) is obtained by presenting to the system if-then rules expressed as Boolean conjunctions. New rules are added incrementally. In the current model, when conflicts occur, precedence is given to the most recent inputs. With each rule, desired network response is simply presented to the system, following which the network adjusts itself to maintain consistency and parsimony of representation. Data processing and adaptation form two separate phases of operation. During processing, the network acts as a parallel hardware circuit. Control of the adaptive process is distributed among the network nodes and efficiently exploits parallelism.

  8. 49 CFR 213.235 - Inspection of switches, track crossings, and lift rail assemblies or other transition devices on...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Inspection of switches, track crossings, and lift rail assemblies or other transition devices on moveable bridges. 213.235 Section 213.235 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY...

  9. 49 CFR 213.235 - Inspection of switches, track crossings, and lift rail assemblies or other transition devices on...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Inspection of switches, track crossings, and lift rail assemblies or other transition devices on moveable bridges. 213.235 Section 213.235 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY...

  10. 40 CFR 279.56 - Tracking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279.56 Tracking. (a) Acceptance. Used oil processors/re-refiners must keep a record of each used oil shipment accepted for... address of the transporter who delivered the used oil to the processor/re-refiner; (2) The name...

  11. A motor relay on ciliary tracks

    PubMed Central

    O’Hagan, Robert; Barr, Maureen M.

    2016-01-01

    A powerful combination of two-color imaging in vivo, fourier-filtered kymography, and simulations provides high-resolution view of kinesin-2 transport dynamics in cilia. This study reveals heterotrimeric kinesin-II as an obstacle course runner, homodimeric OSM-3/KIF17 as a long distance runner, and the baton handoff between these two motors on the microtubule track. PMID:26612573

  12. Parallel learning in an autoshaping paradigm.

    PubMed

    Naeem, Maliha; White, Norman M

    2016-08-01

    In an autoshaping task, a single conditioned stimulus (CS; lever insertion) was repeatedly followed by the delivery of an unconditioned stimulus (US; food pellet into an adjacent food magazine) irrespective of the rats' behavior. After repeated training trials, some rats responded to the onset of the CS by approaching and pressing the lever (sign-trackers). Lesions of dorsolateral striatum almost completely eliminated responding to the lever CS while facilitating responding to the food magazine (US). Lesions of the dorsomedial striatum attenuated but did not eliminate responding to the lever CS. Lesions of the basolateral or central nucleus of the amygdala had no significant effects on sign-tracking, but combined lesions of the 2 structures impaired sign-tracking by significantly increasing latency to the first lever press without affecting the number of lever presses. Lesions of the dorsal hippocampus had no effect on any of the behavioral measures. The findings suggest that sign-tracking with a single lever insertion as the CS may consist of 2 separate behaviors learned in parallel: An amygdala-mediated conditioned orienting and approach response and a dorsal striatum-mediated instrumental response. (PsycINFO Database Record PMID:27454485

  13. Tracking dynamic team activity

    SciTech Connect

    Tambe, M.

    1996-12-31

    AI researchers are striving to build complex multi-agent worlds with intended applications ranging from the RoboCup robotic soccer tournaments, to interactive virtual theatre, to large-scale real-world battlefield simulations. Agent tracking - monitoring other agent`s actions and inferring their higher-level goals and intentions - is a central requirement in such worlds. While previous work has mostly focused on tracking individual agents, this paper goes beyond by focusing on agent teams. Team tracking poses the challenge of tracking a team`s joint goals and plans. Dynamic, real-time environments add to the challenge, as ambiguities have to be resolved in real-time. The central hypothesis underlying the present work is that an explicit team-oriented perspective enables effective team tracking. This hypothesis is instantiated using the model tracing technology employed in tracking individual agents. Thus, to track team activities, team models are put to service. Team models are a concrete application of the joint intentions framework and enable an agent to track team activities, regardless of the agent`s being a collaborative participant or a non-participant in the team. To facilitate real-time ambiguity resolution with team models: (i) aspects of tracking are cast as constraint satisfaction problems to exploit constraint propagation techniques; and (ii) a cost minimality criterion is applied to constrain tracking search. Empirical results from two separate tasks in real-world, dynamic environments one collaborative and one competitive - are provided.

  14. 49 CFR 231.22 - Operation of track motor cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Operation of track motor cars. 231.22 Section 231... motor cars. On and after August 1, 1963, it shall be unlawful for any railroad subject to the requirements of the Safety Appliance Acts to operate or permit to be operated on its line track motor cars...

  15. 49 CFR 231.22 - Operation of track motor cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Operation of track motor cars. 231.22 Section 231... motor cars. On and after August 1, 1963, it shall be unlawful for any railroad subject to the requirements of the Safety Appliance Acts to operate or permit to be operated on its line track motor cars...

  16. 49 CFR 231.22 - Operation of track motor cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Operation of track motor cars. 231.22 Section 231... motor cars. On and after August 1, 1963, it shall be unlawful for any railroad subject to the requirements of the Safety Appliance Acts to operate or permit to be operated on its line track motor cars...

  17. 49 CFR 231.22 - Operation of track motor cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Operation of track motor cars. 231.22 Section 231... motor cars. On and after August 1, 1963, it shall be unlawful for any railroad subject to the requirements of the Safety Appliance Acts to operate or permit to be operated on its line track motor cars...

  18. 49 CFR 218.25 - Workers on a main track.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD OPERATING PRACTICES Blue Signal Protection of Workers § 218.25 Workers on a main track. When workers are on, under, or between rolling equipment on a main track: (a) A blue... protected includes one or more locomotives, a blue signal must be attached to the controlling locomotive...

  19. 49 CFR 218.25 - Workers on a main track.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD OPERATING PRACTICES Blue Signal Protection of Workers § 218.25 Workers on a main track. When workers are on, under, or between rolling equipment on a main track: (a) A blue... protected includes one or more locomotives, a blue signal must be attached to the controlling locomotive...

  20. 49 CFR 106.45 - Tracking rulemaking actions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tracking rulemaking actions. 106.45 Section 106.45... PHMSA Rulemaking Documents § 106.45 Tracking rulemaking actions. The following identifying numbers allow... Management System (“DMS”) for information on particular rulemaking proceedings—including notices of...