Science.gov

Sample records for paramagnetic nmr spectroscopy

  1. The dynamic complex of cytochrome c6 and cytochrome f studied with paramagnetic NMR spectroscopy.

    PubMed

    Díaz-Moreno, Irene; Hulsker, Rinske; Skubak, Pavol; Foerster, Johannes M; Cavazzini, Davide; Finiguerra, Michelina G; Díaz-Quintana, Antonio; Moreno-Beltrán, Blas; Rossi, Gian-Luigi; Ullmann, G Matthias; Pannu, Navraj S; De la Rosa, Miguel A; Ubbink, Marcellus

    2014-08-01

    The rapid transfer of electrons in the photosynthetic redox chain is achieved by the formation of short-lived complexes of cytochrome b6f with the electron transfer proteins plastocyanin and cytochrome c6. A balance must exist between fast intermolecular electron transfer and rapid dissociation, which requires the formation of a complex that has limited specificity. The interaction of the soluble fragment of cytochrome f and cytochrome c6 from the cyanobacterium Nostoc sp. PCC 7119 was studied using NMR spectroscopy and X-ray diffraction. The crystal structures of wild type, M58H and M58C cytochrome c6 were determined. The M58C variant is an excellent low potential mimic of the wild type protein and was used in chemical shift perturbation and paramagnetic relaxation NMR experiments to characterize the complex with cytochrome f. The interaction is highly dynamic and can be described as a pure encounter complex, with no dominant stereospecific complex. Ensemble docking calculations and Monte-Carlo simulations suggest a model in which charge-charge interactions pre-orient cytochrome c6 with its haem edge toward cytochrome f to form an ensemble of orientations with extensive contacts between the hydrophobic patches on both cytochromes, bringing the two haem groups sufficiently close to allow for rapid electron transfer. This model of complex formation allows for a gradual increase and decrease of the hydrophobic interactions during association and dissociation, thus avoiding a high transition state barrier that would slow down the dissociation process. PMID:24685428

  2. Structural studies of proteins by paramagnetic solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Jaroniec, Christopher P.

    2015-04-01

    Paramagnetism-based nuclear pseudocontact shifts and spin relaxation enhancements contain a wealth of information in solid-state NMR spectra about electron-nucleus distances on the ?20 length scale, far beyond that normally probed through measurements of nuclear dipolar couplings. Such data are especially vital in the context of structural studies of proteins and other biological molecules that suffer from a sparse number of experimentally-accessible atomic distances constraining their three-dimensional fold or intermolecular interactions. This perspective provides a brief overview of the recent developments and applications of paramagnetic magic-angle spinning NMR to biological systems, with primary focus on the investigations of metalloproteins and natively diamagnetic proteins modified with covalent paramagnetic tags.

  3. Analysis of the solution conformations of T4 lysozyme by paramagnetic NMR spectroscopy.

    PubMed

    Chen, Jia-Liang; Yang, Yin; Zhang, Lin-Lin; Liang, Haobo; Huber, Thomas; Su, Xun-Cheng; Otting, Gottfried

    2016-02-17

    A large number of crystal structures of bacteriophage T4 lysozyme (T4-L) have shown that it contains two subdomains, which can arrange in a compact conformation (closed state) or, in mutants of T4-L, more extended structures (open state). In solution, wild-type T4-L displays only a single set of nuclear magnetic resonance (NMR) signals, masking any conformational heterogeneity. To probe the conformational space of T4-L, we generated a site-specific lanthanide binding site by attaching 4-mercaptomethyl dipicolinic acid via a disulfide bond to Cys44 in the triple-mutant C54T/C97A/S44C of T4-L and measured pseudocontact shifts (PCS) and magnetically induced residual dipolar couplings (RDC). The data indicate that, in solution and in the absence of substrate, the structure of T4-L is on average more open than suggested by the closed conformation of the crystal structure of wild-type T4-L. A slightly improved fit was obtained by assuming a population-weighted two-state model involving an even more open conformation and the closed state, but paramagnetic relaxation enhancements measured with Gd(3+) argue against such a conformational equilibrium. The fit could not be improved by including a third conformation picked from the hundreds of crystal structures available for T4-L mutants. PMID:26680012

  4. High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning.

    PubMed

    Ward, Meaghan E; Wang, Shenlin; Krishnamurthy, Sridevi; Hutchins, Howard; Fey, Michael; Brown, Leonid S; Ladizhansky, Vladimir

    2014-01-01

    Magic angle spinning nuclear magnetic resonance (MAS NMR) is well suited for the study of membrane proteins in membrane mimetic and native membrane environments. These experiments often suffer from low sensitivity, due in part to the long recycle delays required for magnetization and probe recovery, as well as detection of low gamma nuclei. In ultrafast MAS experiments sensitivity can be enhanced through the use of low power sequences combined with paramagnetically enhanced relaxation times to reduce recycle delays, as well as proton detected experiments. In this work we investigate the sensitivity of (13)C and (1)H detected experiments applied to 27 kDa membrane proteins reconstituted in lipids and packed in small 1.3 mm MAS NMR rotors. We demonstrate that spin diffusion is sufficient to uniformly distribute paramagnetic relaxation enhancement provided by either covalently bound or dissolved CuEDTA over 7TM alpha helical membrane proteins. Using paramagnetic enhancement and low power decoupling in carbon detected experiments we can recycle experiments ~13 times faster than under traditional conditions. However, due to the small sample volume the overall sensitivity per unit time is still lower than that seen in the 3.2 mm probe. Proton detected experiments, however, showed increased efficiency and it was found that the 1.3 mm probe could achieve sensitivity comparable to that of the 3.2 mm in a given amount of time. This is an attractive prospect for samples of limited quantity, as this allows for a reduction in the amount of protein that needs to be produced without the necessity for increased experimental time. PMID:24338448

  5. High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal-organic frameworks, STAM-1 and HKUST-1.

    PubMed

    Dawson, Daniel M; Jamieson, Lauren E; Mohideen, M Infas H; McKinlay, Alistair C; Smellie, Iain A; Cadou, Romain; Keddie, Neil S; Morris, Russell E; Ashbrook, Sharon E

    2013-01-21

    Solid-state (13)C magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these MOFs upon activation (dehydration). NMR spectroscopy is an attractive technique for the investigation of these materials, owing to its high sensitivity to local structure, without any requirement for longer-range order. However, interactions between nuclei and unpaired electrons in paramagnetic systems (e.g., Cu(II)-based MOFs) pose a considerable challenge, not only for spectral acquisition, but also in the assignment and interpretation of the spectral resonances. Here, we exploit the rapid T(1) relaxation of these materials to obtain (13)C NMR spectra using a spin-echo pulse sequence at natural abundance levels, and employ frequency-stepped acquisition to ensure uniform excitation of resonances over a wide frequency range. We then utilise selective (13)C isotopic labelling of the organic linker molecules to enable an unambiguous assignment of NMR spectra of both MOFs for the first time. We show that the monomethylated linker can be recovered from STAM-1 intact, demonstrating not only the interesting use of this MOF as a protecting group, but also the ability (for both STAM-1 and HKUST-1) to recover isotopically-enriched linkers, thereby reducing significantly the overall cost of the approach. PMID:23202442

  6. Bioconjugation of proteins with a paramagnetic NMR and fluorescent tag.

    PubMed

    Huang, Feng; Pei, Ying-Ying; Zuo, Hui-Hui; Chen, Jia-Liang; Yang, Yin; Su, Xun-Cheng

    2013-12-01

    Site-specific labeling of proteins with lanthanide ions offers great opportunities for investigating the structure, function, and dynamics of proteins by virtue of the unique properties of lanthanides. Lanthanide-tagged proteins can be studied by NMR, X-ray, fluorescence, and EPR spectroscopy. However, the rigidity of a lanthanide tag in labeling of proteins plays a key role in the determination of protein structures and interactions. Pseudocontact shift (PCS) and paramagnetic relaxation enhancement (PRE) are valuable long-range structure restraints in structural-biology NMR spectroscopy. Generation of these paramagnetic restraints generally relies on site-specific tagging of the target proteins with paramagnetic species. To avoid nonspecific interaction between the target protein and paramagnetic tag and achieve reliable paramagnetic effects, the rigidity, stability, and size of lanthanide tag is highly important in paramagnetic labeling of proteins. Here 4'-mercapto-2,2':6',2''-terpyridine-6,6''-dicarboxylic acid (4MTDA) is introduced as a a rigid paramagnetic and fluorescent tag which can be site-specifically attached to a protein by formation of a disulfide bond. 4MTDA can be readily immobilized by coordination of the protein side chain to the lanthanide ion. Large PCSs and RDCs were observed for 4MTDA-tagged proteins in complexes with paramagnetic lanthanide ions. At an excitation wavelength of 340 nm, the complex formed by protein-4MTDA and Tb(3+) produces high fluorescence with the main emission at 545 nm. These interesting features of 4MTDA make it a very promising tag that can be exploited in NMR, fluorescence, and EPR spectroscopic studies on protein structure, interaction, and dynamics. PMID:24307370

  7. 1,3-Alternate calix[4]arene nitronyl nitroxide tetraradical and diradical: synthesis, X-ray crystallography, paramagnetic NMR spectroscopy, EPR spectroscopy, and magnetic studies

    SciTech Connect

    Rajca, Andrzej; Pink, Maren; Mukherjee, Sumit; Rajca, Suchada; Das, Kausik

    2008-04-02

    Calix[4]arenes constrained to 1,3-alternate conformation and functionalized at the upper rim with four and two nitronyl nitroxides have been synthesized, and characterized by X-ray crystallography, magnetic resonance (EPR and {sup 1}H NMR) spectroscopy, and magnetic studies. Such calix[4]arene tetraradicals and diradicals provide scaffolds for through-bond and through-space intramolecular exchange couplings.

  8. Broadband solid-state MAS NMR of paramagnetic systems.

    PubMed

    Pell, Andrew J; Pintacuda, Guido

    2015-02-01

    The combination of new magnet and probe technology with increasingly sophisticated pulse sequences has resulted in an increase in the number of applications of solid-state nuclear magnetic resonance (NMR) spectroscopy to paramagnetic materials and biomolecules. The interaction between the paramagnetic metal ions and the NMR-active nuclei often yields crucial structural or electronic information about the system. In particular the application of magic-angle spinning (MAS) has been shown to be crucial to obtaining resolution that is sufficiently high for studying complex systems. However such systems are generally extremely difficult to study as the shifts and shift anisotropies resulting from the same paramagnetic interaction broaden the spectrum beyond excitation and detection, and the paramagnetic relaxation enhancement (PRE) shortens the lifetimes of the excited signals considerably. One specific area that has therefore been receiving significant attention in recent years, and for which great improvements have been seen, is the development of broadband NMR sequences. The development of new excitation and inversion sequences for paramagnetic systems under MAS has often made the difference between the spectrum being unobtainable, and a complete NMR study being possible. However the development of the new sequences must explicitly take account of the modulation of the anisotropic shift interactions due to the sample rotation, with the resulting spin dynamics often being complicated considerably. The NMR sequences can either be helped or hindered by MAS, with the efficiency of some pulse schemes being destroyed, and others being greatly enhanced. This review describes the pulse sequences that have recently been proposed for broadband excitation, inversion, and refocussing of the signal components of paramagnetic systems. In doing so we define exactly what is meant by "broadband" under spinning conditions, and what the perfect pulse scheme should deliver. We also give a unified description of the spin dynamics under MAS which highlights the strengths and weaknesses of the various schemes, and which can be used as guidance for future research in this area. All the reviewed pulse schemes are evaluated both with simulations and experimental data obtained on the battery material LiFe(0.5)Mn(0.5)PO(4) which is typical of the complexity of the paramagnetic systems that are currently under study. PMID:25669740

  9. 1,3-Alternate calix[4]arene nitronyl nitroxide tetraradical and diradical: synthesis, X-ray crystallography, paramagnetic NMR spectroscopy, EPR spectroscopy, and magnetic studies

    PubMed Central

    Rajca, Andrzej; Pink, Maren; Mukherjee, Sumit; Rajca, Suchada; Das, Kausik

    2009-01-01

    Calix[4]arenes constrained to 1,3-alternate conformation and functionalized at the upper rim with four and two nitronyl nitroxides have been synthesized, and characterized by X-ray crystallography, magnetic resonance (EPR and 1H NMR) spectroscopy, and magnetic studies. Such calix[4]arene tetraradicals and diradicals provide scaffolds for through-bond and through-space intramolecular exchange couplings. PMID:19568320

  10. Formation of oxo-centered trinuclear chromium carboxylate complexes and hydrolysis of Cr3 as established by paramagnetic (2)H NMR spectroscopy.

    PubMed

    Royer, April C; Russell, Kathryn; Belmore, Ken; Vincent, John B

    2014-02-01

    Paramagnetic (2)H NMR techniques have been utilized to study the mechanism of formation of the oxo-bridged trinuclear Cr(III) carboxylate assembly [Cr3O(O2CCD3)6(H2O)3](+) from [Cr(H2O)6](3+) and d4-acetic acid. These studies reveal a complex mechanism dominated by the involvement of dinuclear intermediates. The oxo-bridged trinuclear Cr(III) carboxylate assembly [Cr3O(O2CCH2CH3)6(H2O)3](+) has been suggested for use as a chromium nutritional supplement and therapeutic agent as it is readily absorbed and has been proposed to enter cells intact. The paramagnetic (2)H NMR technique has been utilized to follow the stability of this Cr(III) carboxylate assembly in biologically relevant media; its stability is consistent with the assembly being able to enter cells intact. PMID:24239908

  11. Installation of a Rigid EDTA-Like Motif into a Protein ?-Helix for Paramagnetic NMR Spectroscopy with Cobalt(II) Ions.

    PubMed

    Swarbrick, James D; Ung, Phuc; Dennis, Matthew L; Lee, Michael D; Chhabra, Sandeep; Graham, Bim

    2016-01-01

    Coupling two copies of an iminodiacetic acid-cysteine hybrid ligand to a pair of cysteine residues positioned in an i, i+4 arrangement within a protein ?-helix leads to generation of an EDTA-like metal ion-binding motif. Rigid binding of a Co(II) ion by this motif produces pseudo-contact shifts suitable for paramagnetic NMR structural studies. PMID:26634335

  12. Paramagnetic interactions in 31P NMR spectroscopy as a probe for short-range order/disorder of flux-grown rare earth element orthophosphate (monazite/xenotime) solid solutions

    NASA Astrophysics Data System (ADS)

    Palke, A. C.; Stebbins, J. F.; Boatner, L. A.

    2013-12-01

    Many models of inorganic solid solutions relevant to earth scientists start with the assumption of a completely random distribution of substitutional species. This is, in large part, due to the difficulty of obtaining robust experimental confirmation of short-range order/disorder using standard diffraction techniques that provide information about long-range order. Solid-state Nuclear Magnetic Resonance (NMR) spectroscopy has long been used in this capacity, as the technique is characteristically sensitive to variations in local atomic structure around specific NMR-active nuclei. NMR studies of geologically important inorganic materials have historically concentrated on diamagnetic systems in which the complicating effects of unpaired electrons from paramagnetic species (most ions of the transition metals or rare-earth elements) can be ignored. In these diamagnetic materials, variations in small-scale atomic structure in the solid state typically cause shifts in the frequencies of NMR peaks of up to a few tens of ppm. However, NMR spectroscopy is increasingly being applied to inorganic solid solutions in which one of the end members is paramagnetic. In many cases, this leads to the observation of parmagnetically-shifted peaks. Paramagnetic interactions can be much stronger than in ordinary diamagnetic materials and these peaks are typically shifted from tens to thousands of ppm. In this study we present the results of a 31P NMR investigation of a series of flux-grown solid solutions of La1-xCexPO4 ('x' between 0.027 and 0.32) having the monoclinic monazite structure, and of Y1-xMxPO4 (M = Vn+, Ce3+, Nd3+, 'x' between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted resonances were observed in the spectra of all samples shifted by up to -204 ppm due to the presence of paramagnetic Vn+, Ce3+, or Nd3+ in the diamagnetic host phase - either LaPO4 or YPO4. Analysis of the spectra and comparison to the crystal structures leads to the assignment of these peaks to PO4 groups having paramagnetic neighbors up to 5.685 or four bond lengths away. Several low-intensity peaks were also seen in most samples and are determined to be caused by PO4 groups having more than one paramagnetic neighbor. An analysis of relative peak areas and comparison with predictions for simple models provides evidence for complete disorder (random distribution) of substitutional species in these solid solutions. The presence of paramagnetic species can lead to increased resolution in the types and proportions of different atomic configurations observed using NMR spectroscopy due to the associated larger frequency shifts and the slightly longer interaction distances involved. The more detailed information available because of these paramagnetic interactions can potentially be used to provide previously inaccessible information concerning short-range ordering in geologically and technologically important inorganic solid solutions.

  13. Paramagnetic NMR probes for characterization of the dynamic conformations and interactions of oligosaccharides.

    PubMed

    Kato, Koichi; Yamaguchi, Takumi

    2015-10-01

    Paramagnetism-assisted nuclear magnetic resonance (NMR) techniques have recently been applied to a wide variety of biomolecular systems, using sophisticated immobilization methods to attach paramagnetic probes, such as spin labels and lanthanide-chelating groups, at specific sites of the target biomolecules. This is also true in the field of carbohydrate NMR spectroscopy. NMR analysis of oligosaccharides is often precluded by peak overlap resulting from the lack of variability of local chemical structures, by the insufficiency of conformational restraints from nuclear Overhauser effect (NOE) data due to low proton density, and moreover, by the inherently flexible nature of carbohydrate chains. Paramagnetic probes attached to the reducing ends of oligosaccharides cause paramagnetic relaxation enhancements (PREs) and/or pseudocontact shifts (PCSs) resolve the peak overlap problem. These spectral perturbations can be sources of long-range atomic distance information, which complements the local conformational information derived from J couplings and NOEs. Furthermore, paramagnetic NMR approaches, in conjunction with computational methods, have opened up possibilities for the description of dynamic conformational ensembles of oligosaccharides in solution. Several applications of paramagnetic NMR techniques are presented to demonstrate their utility for characterizing the conformational dynamics of oligosaccharides and for probing the carbohydrate-recognition modes of proteins. These techniques can be applied to the characterization of transient, non-stoichiometric interactions and will contribute to the visualization of dynamic biomolecular processes involving sugar chains. PMID:26050258

  14. Sensitivity enhancement of multidimensional NMR experiments by paramagnetic relaxation effects.

    PubMed

    Cai, Sheng; Seu, Candace; Kovacs, Zoltan; Sherry, A Dean; Chen, Yuan

    2006-10-18

    One of the main goals of NMR method development is to increase the sensitivity of multidimensional NMR experiments or reduce the required acquisition time. In these experiments, more than 80% of the NMR instrument time is spent on the recycle delay, where the instrument idles to wait for the recovery of proton magnetization. In this study, we report a method of using paramagnetic relaxation effects to shorten the recycle delays required in multidimensional NMR experiments of biological macromolecules. This approach significantly reduces the NMR instrument time required. Ni(2+) ion, complexed with the chelating molecule DO2A, is used to decrease the proton T(1) relaxation time of biological macromolecules without the significant line-broadening effects that are associated with most paramagnetic ions. The Ni(DO2A) also significantly decreases the T(1) relaxation time of water, thus providing additional sensitivity gain by eliminating the saturation of labile amide resonances. PMID:17031960

  15. Paramagnetic relaxation of long-lived coherences in solution NMR.

    PubMed

    Singh, Maninder; Srinivas, Chinthalapalli; Deb, Mayukh; Kurur, Narayanan D

    2013-12-01

    Long-lived coherences (LLCs) are known to have lifetimes much longer than transverse magnetization or single quantum coherences (SQCs). The effect of paramagnetic ions on the relaxation of LLCs is not known. This is particularly important, as LLCs have potential applications in various fields like analytical NMR, in vivo NMR and MR imaging methods. We study here the behaviour of LLCs in the presence of paramagnetic relaxation agents. The stepwise increase in the concentration of the metal ion is followed by measuring various relaxation rates. The effect of paramagnetic ions is analysed in terms of the external random field's contribution to the relaxation of two coupled protons in 2,3,6-trichlorobenzaldehyde. The LLCs relax faster than ordinary SQCs in the presence of paramagnetic ions of varying character. This is explained on the basis of an increase in the contribution of the external random field to relaxation due to a paramagnetic relaxation mechanism. Comparison is also made with ordinary Zeeman relaxation rates like R1, R2, R1? and also with rate of relaxation of long-lived states RLLS which are known to be less sensitive to paramagnetically induced relaxation. Also, the extent of correlation of random fields at two proton sites is studied and is found to be strongly correlated with each other. The obtained correlation constant is found to be independent of the nature of added paramagnetic impurities. PMID:24151221

  16. First Satellite NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    McDowell, A. F.; Conradi, Mark S.; Haase, J.

    1996-03-01

    A new NMR spectroscopic method that detects only the /pm 3/2 to /pm 1/2 transitions (i.e., first satellites) of half-integer quadrupolar spins is presented. The technique is based on a central transition signal enhancement method that makes use of adiabatic radiofrequency sweeps. A plot of the enhanced central transition signal versus the stop frequency of the sweep is an integrated version of the first satellite spectrum. To find the quadrupole parameters one can fit this integrated spectrum directly, or differentiate the data to reveal the traditional spectrum (of the first satellites). We demonstrate the technique for ^27Al in Al_2O3 and ^93Nb in LiNbO_3. The advantages of this new spectroscopy are discussed.

  17. Visualizing transient dark states by NMR spectroscopy.

    PubMed

    Anthis, Nicholas J; Clore, G Marius

    2015-02-01

    Myriad biological processes proceed through states that defy characterization by conventional atomic-resolution structural biological methods. The invisibility of these 'dark' states can arise from their transient nature, low equilibrium population, large molecular weight, and/or heterogeneity. Although they are invisible, these dark states underlie a range of processes, acting as encounter complexes between proteins and as intermediates in protein folding and aggregation. New methods have made these states accessible to high-resolution analysis by nuclear magnetic resonance (NMR) spectroscopy, as long as the dark state is in dynamic equilibrium with an NMR-visible species. These methods - paramagnetic NMR, relaxation dispersion, saturation transfer, lifetime line broadening, and hydrogen exchange - allow the exploration of otherwise invisible states in exchange with a visible species over a range of timescales, each taking advantage of some unique property of the dark state to amplify its effect on a particular NMR observable. In this review, we introduce these methods and explore two specific techniques - paramagnetic relaxation enhancement and dark state exchange saturation transfer - in greater detail. PMID:25710841

  18. Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis.

    PubMed

    Yang, Yin; Huang, Feng; Huber, Thomas; Su, Xun-Cheng

    2016-02-01

    Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a protein with 2-vinyl-8-hydroxyquinoline (2V-8HQ). The protein-2V-8HQ adduct forms a stable complex with transition metal ions, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The paramagnetic effects generated by these transition metal ions were evaluated by NMR spectroscopy. We show that 2V-8HQ is a rigid and stable transition metal binding tag. The coordination of the metal ion can be assisted by protein sidechains. More importantly, tunable paramagnetic tensors are simply obtained in an ?-helix that possesses solvent exposed residues in positions i and i+3, where i is the residue to be mutated to cysteine, i+3 is Gln or Glu or i-4 is His. The coordination of a sidechain carboxylate/amide or imidazole to cobalt(II) results in different structural geometries, leading to different paramagnetic tensors as shown by experimental data. PMID:26732873

  19. Two-dimensional NMR spectroscopy

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Written for chemists and biochemists who are not NMR spectroscopists, but who wish to use the new techniques of two-dimensional NMR spectroscopy, this book brings together for the first time much of the practical and experimental data needed. It also serves as information source for industrial, academic, and graduate student researchers who already use NMR spectroscopy, but not yet in two dimensions. The authors describe the use of 2-D NMR in a wide variety of chemical and biochemical fields, among them peptides, steroids, oligo- and poly-saccharides, nucleic acids, natural products (including terpenoids, alkaloids, and coal-derived heterocyclics), and organic synthetic intermediates. They consider throughout the book both the advantages and limitations of using 2-D NMR.

  20. Magnetic couplings in the chemical shift of paramagnetic NMR.

    PubMed

    Vaara, Juha; Rouf, Syed Awais; Mare, Ji?

    2015-10-13

    We apply the Kurland-McGarvey (J. Magn. Reson. 1970, 2, 286) theory for the NMR shielding of paramagnetic molecules, particularly its special case limited to the ground-state multiplet characterized by zero-field splitting (ZFS) interaction of the form SDS. The correct formulation for this problem was recently presented by Soncini and Van den Heuvel (J. Chem. Phys. 2013, 138, 054113). With the effective electron spin quantum number S, the theory involves 2S+1 states, of which all but one are low-lying excited states, between which magnetic couplings take place by Zeeman and hyperfine interactions. We investigate these couplings as a function of temperature, focusing on both the high- and low-temperature behaviors. As has been seen in work by others, the full treatment of magnetic couplings is crucial for a realistic description of the temperature behavior of NMR shielding up to normal measurement temperatures. At high temperatures, depending on the magnitude of ZFS, the effect of magnetic couplings diminishes, and the Zeeman and hyperfine interactions become effectively averaged in the thermally occupied states of the multiplet. At still higher temperatures, the ZFS may be omitted altogether, and the shielding properties may be evaluated using a doublet-like formula, with all the 2S+1 states becoming effectively degenerate at the limit of vanishing magnetic field. We demonstrate these features using first-principles calculations of Ni(II), Co(II), Cr(II), and Cr(III) complexes, which have ZFS of different sizes and signs. A non-monotonic inverse temperature dependence of the hyperfine shift is predicted for axially symmetric integer-spin systems with a positive D parameter of ZFS. This is due to the magnetic coupling terms that are proportional to kT at low temperatures, canceling the Curie-type 1/kT prefactor of the hyperfine shielding in this case. PMID:26574272

  1. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic

  2. Coherent NMR Stark spectroscopy.

    PubMed

    Tarasek, Matthew R; Goldfarb, David J; Kempf, James G

    2012-01-01

    We demonstrate phase-coherent Stark effects from a radiofrequency E field at twice the NMR frequency (2?(0)) of (69)Ga in GaAs. The 2?(0) phase (?(E)) selects component responses from the nuclear quadrupole Hamiltonian (H(Q)). This is possible by synchronizing few-?s 2?(0) pulses with an NMR line-narrowing sequence, which averages the Stark interaction to dominate spectra on a background with 10(3) enhanced resolution. Spectra vs ?(E) reveal relative sizes of tensorial factors in H(Q). Comparative modeling and numerical simulations evaluate spectral features unexplained by average Hamiltonian theory, and suggest improvements for quantitative calibration of individual response components. Application of this approach to bulk samples is of value to define Stark responses that may later be used to interrogate the internal electrostatics of structured samples. PMID:22197485

  3. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  4. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    ERIC Educational Resources Information Center

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  5. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    ERIC Educational Resources Information Center

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess

  6. Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy

    PubMed Central

    Hogg, Neil

    2010-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has been used in a number of ways to study nitric oxide chemistry and biology. As an intrinsically stable and relatively unreactive diatomic free radical, the challenges for detecting this species by EPR are somewhat different than those for transient radical species. This review gives a basic introduction to EPR spectroscopy and discusses its uses to assess and quantify nitric oxide formation in biological systems. PMID:20304044

  7. Work in progress: potential oral and intravenous paramagnetic NMR contrast agents

    SciTech Connect

    Runge, V.M.; Stewart, R.G.; Clanton, J.A.; Jones, M.M.; Lukehart, C.M.; Partain, C.L.; James, A.E. Jr.

    1983-06-01

    The potential use of paramagnetic compounds as nuclear magnetic resonance (NMR) contrast agents was examined in vitro. The T1 relaxation times for serial dilutions of Cu/sup 2 +/, Cr/sup 3 +/, Fe/sup 3 +/, and Mn/sup 2 +/ ions in saline, gadolinium oxalate (a potential oral contrast agent) in suspension, and chromium EDTA (a potential intravenous contrast agent) in solution were determined. The effect on T1 of increasing the concentration of oxygen in solution was also examined. The relative magnitude of the decrease in T1 was, as expected, proportional to both the concentration of the paramagnetic substance and its effective magnetic moment. Thus NMR has the potential to detect differences in tissue oxygenation. By incorporating paramagnetic metal ions into insoluble compounds or stable complexes, toxicity can be dramatically reduced while maintaining a significant paramagnetic effect. Highly insoluble paramagnetic compounds or stable paramagnetic ion complexes can thus be utilized as effective NMR contrast agents with significantly diminished toxicity.

  8. Hyperpolarized 131Xe NMR spectroscopy

    PubMed Central

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249

  9. NMR Spectroscopy and Its Value: A Primer

    ERIC Educational Resources Information Center

    Veeraraghavan, Sudha

    2008-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is widely used by chemists. Furthermore, the use of NMR spectroscopy to solve structures of macromolecules or to examine protein-ligand interactions is popular. Yet, few students entering graduate education in biological sciences have been introduced to this method or its utility. Over the last six

  10. Chiral discrimination in NMR spectroscopy.

    PubMed

    Buckingham, A David

    2015-11-01

    Nuclear magnetic resonance is the most important form of molecular spectroscopy in chemistry and biochemistry but it is normally blind to chirality. It was predicted in 2004 that precessing nuclear spins in chiral molecules in a liquid in a strong magnetic field induce a rotating electric polarization that is of opposite sign for enantiomers. This polarization arises from the distortion of the electronic structure by the nuclear magnetic moment in the presence of the strong magnetic field and is equivalent to the linear effect of an electric field on the nuclear shielding tensor. The polarization is strongly enhanced in dipolar molecules through the partial orientation of the permanent dipole through the antisymmetric part of the nuclear magnetic shielding tensor. Alternatively, an applied electric field will induce a chirally sensitive magnetization perpendicular to the field and to the nuclear spin. Progress towards the experimental realization of chiral discrimination by NMR is assessed. PMID:26537400

  11. Enzyme Dynamics from NMR Spectroscopy

    PubMed Central

    2016-01-01

    Conspectus Biological activities of enzymes, including regulation or coordination of mechanistic stages preceding or following the chemical step, may depend upon kinetic or equilibrium changes in protein conformations. Exchange of more open or flexible conformational states with more closed or constrained states can influence inhibition, allosteric regulation, substrate recognition, formation of the Michaelis complex, side reactions, and product release. NMR spectroscopy has long been applied to the study of conformational dynamic processes in enzymes because these phenomena can be characterized over multiple time scales with atomic site resolution. Laboratory-frame spin-relaxation measurements, sensitive to reorientational motions on picosecondnanosecond time scales, and rotating-frame relaxation-dispersion measurements, sensitive to chemical exchange processes on microsecondmillisecond time scales, provide information on both conformational distributions and kinetics. This Account reviews NMR spin relaxation studies of the enzymes ribonuclease HI from mesophilic (Escherichia coli) and thermophilic (Thermus thermophilus) bacteria, E. coli AlkB, and Saccharomyces cerevisiae triosephosphate isomerase to illustrate the contributions of conformational flexibility and dynamics to diverse steps in enzyme mechanism. Spin relaxation measurements and molecular dynamics (MD) simulations of the bacterial ribonuclease H enzymes show that the handle region, one of three loop regions that interact with substrates, interconverts between two conformations. Comparison of these conformations with the structure of the complex between Homo sapiens ribonuclease H and a DNA:RNA substrate suggests that the more closed state is inhibitory to binding. The large population of the closed conformation in T. thermophilus ribonuclease H contributes to the increased Michaelis constant compared with the E. coli enzyme. NMR spin relaxation and fluorescence spectroscopy have characterized a conformational transition in AlkB between an open state, in which the side chains of methionine residues in the active site are disordered, and a closed state, in which these residues are ordered. The open state is highly populated in the AlkB/Zn(II) complex, and the closed state is highly populated in the AlkB/Zn(II)/2OG/substrate complex, in which 2OG is the 2-oxoglutarate cosubstrate and the substrate is a methylated DNA oligonucleotide. The equilibrium is shifted to approximately equal populations of the two conformations in the AlkB/Zn(II)/2OG complex. The conformational shift induced by 2OG ensures that 2OG binds to AlkB/Zn(II) prior to the substrate. In addition, the opening rate of the closed conformation limits premature release of substrate, preventing generation of toxic side products by reaction with water. Closure of active site loop 6 in triosephosphate isomerase is critical for forming the Michaelis complex, but reopening of the loop after the reaction is (partially) rate limiting. NMR spin relaxation and MD simulations of triosephosphate isomerase in complex with glycerol 3-phosphate demonstrate that closure of loop 6 is a highly correlated rigid-body motion. The MD simulations also indicate that motions of Gly173 in the most flexible region of loop 6 contribute to opening of the active site loop for product release. Considered together, these three enzyme systems illustrate the power of NMR spin relaxation investigations in providing global insights into the role of conformational dynamic processes in the mechanisms of enzymes from initial activation to final product release. PMID:25574774

  12. Communication: Paramagnetic NMR chemical shift in a spin state subject to zero-field splitting

    NASA Astrophysics Data System (ADS)

    Soncini, Alessandro; Van den Heuvel, Willem

    2013-01-01

    We derive a general formula for the paramagnetic NMR nuclear shielding tensor of an open-shell molecule in a pure spin state, subject to a zero-field splitting (ZFS). Our findings are in contradiction with a previous proposal. We present a simple application of the newly derived formula to the case of a triplet ground state split by an easy-plane ZFS spin Hamiltonian. When kT is much smaller than the ZFS gap, thus a single non-degenerate level is thermally populated, our approach correctly predicts a temperature-independent paramagnetic shift, while the previous theory leads to a Curie temperature dependence.

  13. Communication: paramagnetic NMR chemical shift in a spin state subject to zero-field splitting.

    PubMed

    Soncini, Alessandro; Van den Heuvel, Willem

    2013-01-14

    We derive a general formula for the paramagnetic NMR nuclear shielding tensor of an open-shell molecule in a pure spin state, subject to a zero-field splitting (ZFS). Our findings are in contradiction with a previous proposal. We present a simple application of the newly derived formula to the case of a triplet ground state split by an easy-plane ZFS spin Hamiltonian. When kT is much smaller than the ZFS gap, thus a single non-degenerate level is thermally populated, our approach correctly predicts a temperature-independent paramagnetic shift, while the previous theory leads to a Curie temperature dependence. PMID:23320659

  14. Sensitivity and resolution enhanced solid-state NMR for paramagnetic systems and biomolecules under very fast magic angle spinning.

    PubMed

    Parthasarathy, Sudhakar; Nishiyama, Yusuke; Ishii, Yoshitaka

    2013-09-17

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (?ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ?40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ?10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of A? amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the prospects for studying bimolecules using (13)C SSNMR under ultrafast MAS at the spinning speed of ?100 kHz. PMID:23889329

  15. Scalable NMR spectroscopy with semiconductor chips

    PubMed Central

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-01-01

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm2 silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  16. Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).

    PubMed

    Mare, Ji?; Hanni, Matti; Lantto, Perttu; Lounila, Juhani; Vaara, Juha

    2014-04-21

    Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water. PMID:24595457

  17. "Shim pulses" for NMR spectroscopy and imaging.

    PubMed

    Topgaard, Daniel; Martin, Rachel W; Sakellariou, Dimitris; Meriles, Carlos A; Pines, Alexander

    2004-12-21

    A way to use adiabatic radiofrequency pulses and modulated magnetic-field gradient pulses, together constituting a "shim pulse," for NMR spectroscopy and imaging is demonstrated. These pulses capitalize on phase shifts derived from probe gradient coils to compensate for nonlinear intrinsic main magnetic field homogeneity for spectroscopy, as well as for deviations from linear gradients for imaging. This approach opens up the possibility of exploiting cheaper, less-than-perfect magnets and gradient coils for NMR applications. PMID:15591105

  18. Using solution state NMR spectroscopy to probe NMR invisible gelators.

    PubMed

    Wallace, Matthew; Iggo, Jonathan A; Adams, Dave J

    2015-10-21

    Supramolecular hydrogels are formed via the self-assembly of gelator molecules upon application of a suitable trigger. The exact nature of this self-assembly process has been widely investigated as a practical understanding is vital for the informed design of these materials. Solution-state NMR spectroscopy is an excellent non-invasive tool to follow the self-assembly of supramolecular hydrogels. However, in most cases the self-assembled aggregates are silent by conventional (1)H NMR spectroscopy due to the low mobility of the constituent molecules, limiting NMR spectroscopy to following only the initial assembly step(s). Here, we present a new solution-state NMR spectroscopic method which allows the entire self-assembly process of a dipeptide gelator to be followed. This gelator forms transparent hydrogels by a multi-stage assembly process when the pH of an initially alkaline solution is lowered via the hydrolysis of glucono-?-lactone (GdL). Changes in the charge, hydrophobicity and relative arrangement of the supramolecular aggregates can be followed throughout the assembly process by measuring the residual quadrupolar couplings (RQCs) of various molecular probes (here, (14)NH4(+) and isopropanol-d8), along with the NMR relaxation rates of (23)Na(+). The initially-formed aggregates comprise negatively charged fibrils which gradually lose their charge and become increasingly hydrophobic as the pH falls, eventually resulting in a macroscopic contraction of the hydrogel. We also demonstrate that the in situ measurement of pH by NMR spectroscopy is both convenient and accurate, representing a useful tool for the characterisation of self-assembly processes by NMR. PMID:26313637

  19. Solid state 13C and 2H NMR investigations of paramagnetic [Ni(II)(acac)2L2] complexes.

    PubMed

    Lennartson, Anders; Christensen, Lene Ulrikke; McKenzie, Christine J; Nielsen, Ulla Gro

    2014-01-01

    Nine structurally related paramagnetic acetylacetonato nickel(II) complexes: [Ni(acac)2] and trans-[Ni(acac)2(X)2]nH/D2O, X = H2O, D2O, NH3, MeOH, PMePh2, PMe2Ph, or [dppe]1/2, n = 0 or 1, dppe = 1,2-bis(diphenylphosphino)ethane, as well as cis-[Ni(F6-acac)2(D2O)2], F6-acac = hexafluoroacetylonato, have been characterized by solid state (13)C MAS NMR spectroscopy. (2)H MAS NMR was used to probe the local hydrogen bonding network in [Ni(acac)2(D2O)2]D2O and cis-[Ni(F6-acac)2(D2O)2]. The complexes serve to benchmark the paramagnetic shift, which can be associated with the resonances of atoms of the coordinated ligands. The methine (CH) and methyl (CH3) have characteristic combinations of the isotropic shift (?) and anisotropy parameters (d, ?). The size of the anisotropy (d), which is the sum of the chemical shift anisotropy (CSA) and the paramagnetic electron-nuclei dipolar coupling, is much more descriptive than the isotropic shift. Moreover, the CSA is found to constitute up to one-third of the total anisotropy and should be taken into consideration when (13)C anisotropies are used for structure determination of paramagnetic materials. The (13)C MAS NMR spectra of trans-[Ni(acac)2(PMe2Ph)2], trans-[Ni(acac)2(PMePh2)2], and the noncrystallographically characterized trans-[Ni(acac)2(dppe)]n were assigned using these correlations. The complexes with L = H2O, D2O, NH3, and MeOH can be prepared by a series of solid state desorption and sorption reactions. Crystal structures for trans-[Ni(acac)2(NH3)2] and trans-[Ni(acac)2(PMePh2)2] are reported. PMID:24325293

  20. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  1. NMR paramagnetic relaxation enhancement: test of the controlling influence of zfs rhombicity for S = 1.

    PubMed

    Miller, J C; Lohr, L L; Sharp, R R

    2001-02-01

    Prior theoretical work has predicted that the NMR paramagnetic relaxation enhancement (NMR-PRE) produced by electron spin S = 1 ions is highly sensitive to orthorhombic terms in the static zero field splitting (zfs) tensor. Zfs orthorhombicity (which implies chemical inequivalence of the three principal directions of the zfs-principal axis system and is described by the zfs E-parameter) is predicted to suppress the NMR-PRE profoundly relative to the reference cylindrical zfs-limit situation. This expectation was tested experimentally by a comparison of the zfs-limit NMR-PRE produced by [Ni(II)(en)(3)](2+) (en = ethylenediamine), a trigonal complex which lacks zfs-rhombicity, with the zfs-limit NMR-PRE produced by two orthorhombic complexes, [Ni(II)(en)(2)(H(2)O)(2)](2+) and [Ni(II)(en)(H(2)O)(4)](2+). As predicted, the zfs-limit NMR-PRE produced by the orthorhombic complexes in the proton resonance of a dioxane probe species in the solvent was strongly suppressed (by factors of approximately 5 and 7, respectively) relative to the comparable measurement on the trigonal complex. The suppression of the NMR-PRE due to the orthorhombic zfs terms is counteracted by an applied Zeeman field, leading to a predicted rise in the NMR-PRE with increasing Zeeman field strength; this rise occurs when the Zeeman energy is comparable to the orthorhombic zfs splitting, 2E. This second prediction of theory was likewise confirmed: the expected rhombicity-induced magnetic field dependence in the NMR-PRE was observed for the orthorhombic complexes but not for the trigonal complex. PMID:11237632

  2. NMR Paramagnetic Relaxation Enhancement: Test of the Controlling Influence of ZFS Rhombicity for S = 1

    NASA Astrophysics Data System (ADS)

    Miller, J. C.; Lohr, L. L.; Sharp, R. R.

    2001-02-01

    Prior theoretical work has predicted that the NMR paramagnetic relaxation enhancement (NMR-PRE) produced by electron spin S = 1 ions is highly sensitive to orthorhombic terms in the static zero field splitting (zfs) tensor. Zfs orthorhombicity (which implies chemical inequivalence of the three principal directions of the zfs-principal axis system and is described by the zfs E-parameter) is predicted to suppress the NMR-PRE profoundly relative to the reference cylindrical zfs-limit situation. This expectation was tested experimentally by a comparison of the zfs-limit NMR-PRE produced by [Ni(II)(en)3]2+ (en = ethylenediamine), a trigonal complex which lacks zfs-rhombicity, with the zfs-limit NMR-PRE produced by two orthorhombic complexes, [Ni(II)(en)2(H2O)2]2+ and [Ni(II)(en)(H2O)4]2+. As predicted, the zfs-limit NMR-PRE produced by the orthorhombic complexes in the proton resonance of a dioxane probe species in the solvent was strongly suppressed (by factors of approximately 5 and 7, respectively) relative to the comparable measurement on the trigonal complex. The suppression of the NMR-PRE due to the orthorhombic zfs terms is counteracted by an applied Zeeman field, leading to a predicted rise in the NMR-PRE with increasing Zeeman field strength; this rise occurs when the Zeeman energy is comparable to the orthorhombic zfs splitting, 2E. This second prediction of theory was likewise confirmed: the expected rhombicity-induced magnetic field dependence in the NMR-PRE was observed for the orthorhombic complexes but not for the trigonal complex.

  3. Two-dimensional NMR measurement and point dipole model prediction of paramagnetic shift tensors in solids.

    PubMed

    Walder, Brennan J; Dey, Krishna K; Davis, Michael C; Baltisberger, Jay H; Grandinetti, Philip J

    2015-01-01

    A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of (2)H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl2?2D2O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the (2)H quadrupolar coupling parameters are ?Cq? = 118.1 kHz and ??q? = 0.88, and the (2)H paramagnetic shift tensor anisotropy parameters are ??P? = - 152.5 ppm and ??P? = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by (?,?,?)=(?2,?2,0). Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory. PMID:25573554

  4. Scalar Relativistic Computations and Localized Orbital Analyses of Nuclear Hyperfine Coupling and Paramagnetic NMR Chemical Shifts

    SciTech Connect

    Aquino, Fredy W.; Pritchard, Ben; Autschbach, Jochen

    2012-02-14

    A method is reported by which calculated hyperfine coupling constants (HFCCs) and paramagnetic NMR (pNMR) chemical shifts can be analyzed in a chemically intuitive way by decomposition into contributions from localized molecular orbitals (LMOs). A new module for density functional calculations with nonhybrid functionals, global hybrids, and range-separated hybrids, utilizing the two-component relativistic zeroth-order regular approximation (ZORA), has been implemented in the parallel open-source NWChem quantum chemistry package. Benchmark results are reported for a test set of few-atom molecules with light and heavy elements. Finite nucleus effects on ??Hg HFCCs are shown to be on the order of -11 to -15%. A proof of concept for the LMO analysis is provided for the metal and fluorine HFCCs of TiF? and NpF?. Calculated pNMR chemical shifts are reported for the 2-methylphenyl-t-butylnitroxide radical and for five cyclopentadienyl (Cp) sandwich complexes with 3d metals. Nickelocene and vanadocene carbon pNMR shifts are analyzed in detail, demonstrating that the large carbon pNMR shifts calculated as +1540 for Ni (exptl.: +1514) and -443 for V (exptl.: -510) are caused by different spin-polarization mechanisms. For Ni, Cp to Ni ? back-donation dominates the result, whereas for vanadocene, V to Cp ? donation with relaxation of the carbon 1s shells can be identified as the dominant mechanism.

  5. QUANTITATIVE 15N NMR SPECTROSCOPY

    EPA Science Inventory

    Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

  6. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  7. Coherence Transfer by Passage Pulses in Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Jeschke, Gunnar; Pribitzer, Stephan; Doll, Andrin

    2015-10-29

    Linear passage pulses provide a simple approach to ultra-wideband electron paramagnetic resonance (EPR) spectroscopy. We show by numerical simulations that the efficiency of inversion of polarization or coherence order on a single transition by idealized passage pulses is an exponential function of critical adiabaticity during passage, which allows for defining an effective flip angle for fast passage. This result is confirmed by experiments on E' centers in Herasil glass. Deviations from the exponential law arise due to relaxation and a distribution of the adiabaticity parameter that comes from inhomogeneity of the irradiation field. Such inhomogeneity effects as well as edge effects in finite sweep bands cause a distribution of dynamic phase shifts, which can be partially refocused in echo experiments. In multilevel systems, passage of several transitions leads to generation of coherence on formally forbidden transitions that can also be described by the concept of an effective flip angle. On the one hand, such transfer to coherence on forbidden transitions is a significant magnetization loss mechanism for dipole-dipole coupled electron spin pairs at distances below about 2 nm. On the other hand, it can potentially be harnessed for electron spin echo envelope modulation (ESEEM) experiments, where matching of the irradiation field strength to the nuclear Zeeman frequency leads to efficient generation of nuclear coherence and efficient back transfer to electron coherence on allowed transitions at high adiabaticity. PMID:25941897

  8. NMR spectroscopy of biofluids and extracts.

    PubMed

    Le Gall, Gwnalle

    2015-01-01

    Metabonomics-based proton nuclear magnetic resonance ((1)H NMR) spectroscopy is a cross-disciplinary science that overlaps with analytical chemistry, biology, and statistical analysis. Applying (1)H NMR on cell extracts provides a rapid and comprehensive screening of the most abundant metabolites allowing the quantitation of typically 20-70 compounds including amino and organic acids, sugars, amines, nucleosides, phenolic compounds, osmolytes, and lipids produced at sublevel millimolar concentrations. The method is particularly suited for high-throughput analysis (up to 100 samples/24 h), and the powerful structural elucidation of NMR is a great asset for the identification of unknown compounds. This chapter describes procedures for recording metabolite profiles using (1)H NMR, depicts the preprocessing steps leading to data analysis, and presents methods of metabolite identification in spectral profiles of extracts from plants, food, microbes, and mammalian systems. PMID:25677144

  9. Tantalum-181 solution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Rehder, Dieter; Basler, Wolf

    The 181Ta NMR spectra of solutions of [Et 4N][TaL 6] (L = Cl -, CO) and K 2[TaF 7] have been obtained. The shift range encompasses 3450 ppm, limited by [TaCl 6] - at the low-field and [Ta(CO) 6] - at the high-field side. The shielding sensitivity of the 181Ta nucleus is about 1.6 times that of 93Nb and 0.6 times that of 183W. Half widths are 4.3 (L = Cl -), 6.7 (L = CO) and 29 kHz ([TaF 7] -).

  10. Picoliter H-1 NMR Spectroscopy

    SciTech Connect

    Minard, Kevin R.); Wind, Robert A.)

    2002-02-01

    A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

  11. An Introduction to Biological NMR Spectroscopy*

    PubMed Central

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  12. An introduction to biological NMR spectroscopy.

    PubMed

    Marion, Dominique

    2013-11-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  13. Two-dimensional NMR measurement and point dipole model prediction of paramagnetic shift tensors in solids

    SciTech Connect

    Walder, Brennan J.; Davis, Michael C.; Grandinetti, Philip J.; Dey, Krishna K.; Baltisberger, Jay H.

    2015-01-07

    A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of {sup 2}H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl{sub 2}⋅2D{sub 2}O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the {sup 2}H quadrupolar coupling parameters are 〈C{sub q}〉 = 118.1 kHz and 〈η{sub q}〉 = 0.88, and the {sup 2}H paramagnetic shift tensor anisotropy parameters are 〈ζ{sub P}〉 = − 152.5 ppm and 〈η{sub P}〉 = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by (α,β,γ)=((π)/2 ,(π)/2 ,0). Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.

  14. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules

    NASA Astrophysics Data System (ADS)

    Martin, Bob; Autschbach, Jochen

    2015-02-01

    Using a recently proposed equation for NMR nuclear magnetic shielding for molecules with unpaired electrons [A. Soncini and W. Van den Heuvel, J. Chem. Phys. 138, 021103 (2013)], equations for the temperature (T) dependent isotropic shielding for multiplets with an effective spin S equal to 1/2, 1, 3/2, 2, and 5/2 in terms of electron paramagnetic resonance spin Hamiltonian parameters are derived and then expanded in powers of 1/T. One simplifying assumption used is that a matrix derived from the zero-field splitting (ZFS) tensor and the Zeeman coupling matrix (g-tensor) share the same principal axis system. The influence of the rhombic ZFS parameter E is only investigated for S = 1. Expressions for paramagnetic contact shielding (from the isotropic part of the hyperfine coupling matrix) and pseudo-contact or dipolar shielding (from the anisotropic part of the hyperfine coupling matrix) are considered separately. The leading order is always 1/T. A temperature dependence of the contact shielding as 1/T and of the dipolar shielding as 1/T2, which is sometimes assumed in the assignment of paramagnetic chemical shifts, is shown to arise only if S ≥ 1 and zero-field splitting is appreciable, and only if the Zeeman coupling matrix is nearly isotropic (Δg = 0). In such situations, an assignment of contact versus dipolar shifts may be possible based only on linear and quadratic fits of measured variable-temperature chemical shifts versus 1/T. Numerical data are provided for nickelocene (S = 1). Even under the assumption of Δg = 0, a different leading order of contact and dipolar shifts in powers of 1/T is not obtained for S = 3/2. When Δg is not very small, dipolar and contact shifts both depend in leading order in 1/T in all cases, with sizable contributions in order 1/Tn with n = 2 and higher.

  15. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules.

    PubMed

    Martin, Bob; Autschbach, Jochen

    2015-02-01

    Using a recently proposed equation for NMR nuclear magnetic shielding for molecules with unpaired electrons [A. Soncini and W. Van den Heuvel, J. Chem. Phys. 138, 021103 (2013)], equations for the temperature (T) dependent isotropic shielding for multiplets with an effective spin S equal to 1/2, 1, 3/2, 2, and 5/2 in terms of electron paramagnetic resonance spin Hamiltonian parameters are derived and then expanded in powers of 1/T. One simplifying assumption used is that a matrix derived from the zero-field splitting (ZFS) tensor and the Zeeman coupling matrix (g-tensor) share the same principal axis system. The influence of the rhombic ZFS parameter E is only investigated for S = 1. Expressions for paramagnetic contact shielding (from the isotropic part of the hyperfine coupling matrix) and pseudo-contact or dipolar shielding (from the anisotropic part of the hyperfine coupling matrix) are considered separately. The leading order is always 1/T. A temperature dependence of the contact shielding as 1/T and of the dipolar shielding as 1/T(2), which is sometimes assumed in the assignment of paramagnetic chemical shifts, is shown to arise only if S ? 1 and zero-field splitting is appreciable, and only if the Zeeman coupling matrix is nearly isotropic (?g = 0). In such situations, an assignment of contact versus dipolar shifts may be possible based only on linear and quadratic fits of measured variable-temperature chemical shifts versus 1/T. Numerical data are provided for nickelocene (S = 1). Even under the assumption of ?g = 0, a different leading order of contact and dipolar shifts in powers of 1/T is not obtained for S = 3/2. When ?g is not very small, dipolar and contact shifts both depend in leading order in 1/T in all cases, with sizable contributions in order 1/T(n) with n = 2 and higher. PMID:25662637

  16. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules

    SciTech Connect

    Martin, Bob; Autschbach, Jochen

    2015-02-07

    Using a recently proposed equation for NMR nuclear magnetic shielding for molecules with unpaired electrons [A. Soncini and W. Van den Heuvel, J. Chem. Phys. 138, 021103 (2013)], equations for the temperature (T) dependent isotropic shielding for multiplets with an effective spin S equal to 1/2, 1, 3/2, 2, and 5/2 in terms of electron paramagnetic resonance spin Hamiltonian parameters are derived and then expanded in powers of 1/T. One simplifying assumption used is that a matrix derived from the zero-field splitting (ZFS) tensor and the Zeeman coupling matrix (g-tensor) share the same principal axis system. The influence of the rhombic ZFS parameter E is only investigated for S = 1. Expressions for paramagnetic contact shielding (from the isotropic part of the hyperfine coupling matrix) and pseudo-contact or dipolar shielding (from the anisotropic part of the hyperfine coupling matrix) are considered separately. The leading order is always 1/T. A temperature dependence of the contact shielding as 1/T and of the dipolar shielding as 1/T{sup 2}, which is sometimes assumed in the assignment of paramagnetic chemical shifts, is shown to arise only if S ≥ 1 and zero-field splitting is appreciable, and only if the Zeeman coupling matrix is nearly isotropic (Δg = 0). In such situations, an assignment of contact versus dipolar shifts may be possible based only on linear and quadratic fits of measured variable-temperature chemical shifts versus 1/T. Numerical data are provided for nickelocene (S = 1). Even under the assumption of Δg = 0, a different leading order of contact and dipolar shifts in powers of 1/T is not obtained for S = 3/2. When Δg is not very small, dipolar and contact shifts both depend in leading order in 1/T in all cases, with sizable contributions in order 1/T{sup n} with n = 2 and higher.

  17. Ligand-driven conformational changes of MurD visualized by paramagnetic NMR

    PubMed Central

    Saio, Tomohide; Ogura, Kenji; Kumeta, Hiroyuki; Kobashigawa, Yoshihiro; Shimizu, Kazumi; Yokochi, Masashi; Kodama, Kota; Yamaguchi, Hiroto; Tsujishita, Hideki; Inagaki, Fuyuhiko

    2015-01-01

    Proteins, especially multi-domain proteins, often undergo drastic conformational changes upon binding to ligands or by post-translational modifications, which is a key step to regulate their function. However, the detailed mechanisms of such dynamic regulation of the functional processes are poorly understood because of the lack of an efficient tool. We here demonstrate detailed characterization of conformational changes of MurD, a 47?kDa protein enzyme consisting of three domains, by the use of solution NMR equipped with paramagnetic lanthanide probe. Quantitative analysis of pseudocontact shifts has identified a novel conformational state of MurD, named semi-closed conformation, which is found to be the key to understand how MurD regulates the binding of the ligands. The modulation of the affinity coupled with conformational changes accentuates the importance of conformational state to be evaluated in drug design. PMID:26582338

  18. Paramagnetic shifts in solid-state NMR of proteins to elicit structural information

    PubMed Central

    Balayssac, Stphane; Bertini, Ivano; Bhaumik, Anusarka; Lelli, Moreno; Luchinat, Claudio

    2008-01-01

    The recent observation of pseudocontact shifts (pcs) in 13C high-resolution solid-state NMR of paramagnetic proteins opens the way to their application as structural restraints. Here, by investigating a microcrystalline sample of cobalt(II)-substituted matrix metalloproteinase 12 [CoMMP-12 (159 AA, 17.5 kDa)], it is shown that a combined strategy of protein labeling and dilution of the paramagnetic species (i.e., 13C-,15N-labeled CoMMP-12 diluted in unlabeled ZnMMP-12, and 13C-,15N-labeled ZnMMP-12 diluted in unlabeled CoMMP-12) allows one to easily separate the pcs contributions originated from the protein internal metal (intramolecular pcs) from those due to the metals in neighboring proteins in the crystal lattice (intermolecular pcs) and that both can be used for structural purposes. It is demonstrated that intramolecular pcs are significant structural restraints helpful in increasing both precision and accuracy of the structure, which is a need in solid-state structural biology nowadays. Furthermore, intermolecular pcs provide unique information on positions and orientations of neighboring protein molecules in the solid phase. PMID:18988744

  19. NMR and paramagnetic- and fluorescent-probe studies on solubilization site in cationic surfactant micelles containing phenoxy groups

    SciTech Connect

    Matsuo, T.; Yudate, K.; Nagamura, T.

    1981-10-01

    In the present work, the solubilization site in cationic surfactant micelles containing phenoxy groups at 3 different positions was investigated by nuclear remanent magnetism (NMR) and paramagnetic- and fluorescent-probe methods. The phenoxy groups aligned in micelles were found to determine the solubilization site of guest molecules. The possibility of controlling the solubilization site by the use of these micelles is discussed.

  20. Interdomain orientation of cardiac Troponin C characterized by paramagnetic relaxation enhancement NMR reveals a compact state

    PubMed Central

    Cordina, Nicole M; Liew, Chu Kong; Gell, David A; Fajer, Piotr G; Mackay, Joel P; Brown, Louise J

    2012-01-01

    Cardiac troponin C (cTnC) is the calcium binding subunit of the troponin complex that triggers the thin filament response to calcium influx into the sarcomere. cTnC consists of two globular EF-hand domains (termed the N- and C-domains) connected by a flexible linker. While the conformation of each domain of cTnC has been thoroughly characterized through NMR studies involving either the isolated N-domain (N-cTnC) or C-domain (C-cTnC), little attention has been paid to the range of interdomain orientations possible in full-length cTnC that arises as a consequence of the flexibility of the domain linker. Flexibility in the domain linker of cTnC is essential for effective regulatory function of troponin. We have therefore utilized paramagnetic relaxation enhancement (PRE) NMR to assess the interdomain orientation of cTnC. Ensemble fitting of our interdomain PRE measurements reveals that isolated cTnC has considerable interdomain flexibility and preferentially adopts a bent conformation in solution, with a defined range of relative domain orientations. PMID:22811351

  1. Gamma-irradiated ExtraVit M nutritive supplement studied by electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Petri?or, Dina; Damian, Grigore; Simon, Simion

    2008-04-01

    An unirradiated and ?-irradiated nutritive supplement named ExtraVit M was studied by electron paramagnetic resonance (EPR) spectroscopy in order to detect stable paramagnetic species following improvement of hygienic quality by ?-radiation. Free radicals were induced by ?-radiation in the studied samples from low absorbed doses, showing a certain sensibility of these samples to the radiation treatment. The EPR spectrum of irradiated ExtraVit M is typical for drugs or nutritive supplements containing high levels of sugars, vitamin C and cellulose.

  2. Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR

    SciTech Connect

    Tang, Chun; Schwieters, Charles D.; Clore, G. Marius

    2008-09-08

    Large-scale domain rearrangements in proteins have long been recognized to have a critical function in ligand binding and recognition, catalysis and regulation. Crystal structures have provided a static picture of the apo (usually open) and holo (usually closed) states. The general question arises as to whether the apo state exists as a single species in which the closed state is energetically inaccessible and interdomain rearrangement is induced by ligand or substrate binding, or whether the predominantly open form already coexists in rapid equilibrium with a minor closed species. The maltose-binding protein (MBP), a member of the bacterial periplasmic binding protein family, provides a model system for investigating this problem because it has been the subject of extensive studies by crystallography, NMR and other biophysical techniques. Here we show that although paramagnetic relaxation enhancement (PRE) data for the sugar-bound form are consistent with the crystal structure of holo MBP, the PRE data for the apo state are indicative of a rapidly exchanging mixture (ns to {mu}s regime) of a predominantly ({approx}95%) open form (represented by the apo crystal structure) and a minor ({approx}5%) partially closed species. Using ensemble simulated annealing refinement against the PRE data we are able to determine a ensemble average structure of the minor apo species and show that it is distinct from the sugar-bound state.

  3. Magnetism, optical absorbance, and 19F NMR spectra of nafion films with self-assembling paramagnetic networks

    SciTech Connect

    Levin, E. M.; Chen, Q.; Bud'ko, S. L.

    2012-01-15

    Magnetization, optical absorbance, and {sup 19}F NMR spectra of Nafion transparent films as received and doped with Mn{sup 2+}, Co{sup 2+}, Fe{sup 2+}, and Fe{sup 3+} ions with and without treatment in 1H-1,2,4-triazole (trz) have been studied. Doping of Nafion with Fe{sup 2+} and Co{sup 2+} and their bridging to nitrogen of triazole yields a hybrid self-assembling paramagnetic system that exhibits interesting magnetic and optical properties. These include spin crossover phenomena between high-spin (HS) and low-spin (LS) states in Nafion-Fe{sup 2+}-trz and Nafion-Co{sup 2+}-trz accompanied by thermochromic effects in the visible range induced by temperature. A large shift of the magnetization curve induced by a magnetic field in the vicinity of the HS {leftrightarrow} LS, {approx}220 K, observed for Nafion-Fe{sup 2+}-trz has a rate of {approx}6 K/kOe, which is about three orders of magnitude larger than that in bulk spin crossover Fe{sup 2+} materials. Selective response of {sup 19}F NMR signals on doping with paramagnetic ions demonstrates that NMR can be used as spatially resolved method to study Nafion film with paramagnetic network. Both chemical shift and width of {sup 19}F NMR signals show that SO groups of Nafion, Fe or Co ions, and nitrogen of triazole are bonded whereas they form a spin crossover system. Based on a model of nanosize cylinders proposed for Nafion [K. Schmidt-Rohr and Q. Chen, Nat Mater (2008), 75], we suggest that paramagnetic ions are located inside these cylinders, forming self-assembling magnetically and optically active nanoscale networks.

  4. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which spectral

  5. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which spectral…

  6. Structure determination of helical filaments by solid-state NMR spectroscopy.

    PubMed

    He, Lichun; Bardiaux, Benjamin; Ahmed, Mumdooh; Spehr, Johannes; Knig, Renate; Lnsdorf, Heinrich; Rand, Ulfert; Lhrs, Thorsten; Ritter, Christiane

    2016-01-19

    The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVS(CARD) filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers. PMID:26733681

  7. Conformational analysis of morphiceptin by NMR spectroscopy.

    PubMed

    Castiglione-Morelli, M A; Hartrodt, B; Neubert, K; Temussi, P A; Trivellone, E

    1988-04-29

    Three exorphins, beta-casomorphin-5, morphiceptin and its D-Pro4 analog, were studied in DMSO by means of 1H and 13C NMR spectroscopy, with the aim of detecting conformational features of potential biological significance for the mu opioid activity since the presence of two Pro residues restricts the accessible conformational space more than in all other peptides. It is found that the conformational mixtures present in solution contain relevant fractions of folded conformers, a feature that assures the observation of four different Tyr OH signals in the 500 MHz spectrum of morphiceptin. The conformer distribution of (very active) (D-Pro4)-morphiceptin is different from those of its (less active) congeners. PMID:3365236

  8. Spatially resolved spectroscopy using tapered stripline NMR

    NASA Astrophysics Data System (ADS)

    Tijssen, Koen C. H.; Bart, Jacob; Tiggelaar, Roald M.; Janssen, J. W. G. (Hans); Kentgens, Arno P. M.; van Bentum, P. Jan M.

    2016-02-01

    Magnetic field B0 gradients are essential in modern Nuclear Magnetic Resonance spectroscopy and imaging. Although RF/B1 gradients can be used to fulfill a similar role, this is not used in common practice because of practical limitations in the design of B1 gradient coils. Here we present a new method to create B1 gradients using stripline RF coils. The conductor-width of a stripline NMR chip and the strength of its radiofrequency field are correlated, so a stripline chip can be tapered to produce any arbitrary shaped B1 field gradient. Here we show the characterization of this tapered stripline configuration and demonstrate three applications: magnetic resonance imaging on samples with nL-μL volumes, reaction monitoring of fast chemical reactions (10-2-101 s) and the compensation of B0 field gradients to obtain high-resolution spectra in inhomogeneous magnetic fields.

  9. In vivo measurement of tissue oxygen using electron paramagnetic resonance spectroscopy with oxygen-sensitive paramagnetic particle, lithium phthalocyanine.

    PubMed

    Hyodo, F; Matsumoto, S; Hyodo, E; Matsumoto, A; Matsumoto, K; Krishna, M C

    2010-01-01

    The partial pressure of oxygen (pO(2)) plays a determining role in the energy metabolism of aerobic cells. However, low pO(2) level induces pathophysiological conditions such as tumor hypoxia, ischemia or reperfusion injury, and delayed/altered wound healing. Especially, pO(2) level in the tumor is known to be related to tumor progression and effectiveness of radiotherapy. To monitor the pO(2) levels in vivo, continuous wave (CW) and time-domain (TD) electron paramagnetic resonance (EPR) spectroscopy method was used, in which surface coil resonator and Lithium phthalocyanine (LiPc) as oxygen sensor were crucial. Once LiPc particles are embedded in a desired location of organ/tissue, the pO(2) level can be monitored repeatedly and non-invasively. This method is based on the effect of oxygen concentration on the EPR spectra of LiPc which offers several advantages as follows: (1) high sensitivity, (2) minimum invasiveness, (3) repeated measurements, (4) absence of toxicity (non-toxic), and (5) measurement in a local region of the tissue with embedded LiPc. Therefore, in this chapter, we describe the method using CW and TD EPR spectroscopy with oxygen-sensitive particle, LiPc, for in vivo monitoring of oxygen. PMID:20013170

  10. Direct observation of Ca(2+) -induced calmodulin conformational transitions in intact Xenopus laevis oocytes by (19) F?NMR spectroscopy.

    PubMed

    Ye, Yansheng; Liu, Xiaoli; Xu, Guohua; Liu, Maili; Li, Conggang

    2015-04-27

    The Ca(2+) -mediated conformational transition of the protein calmodulin (CaM) is essential to a variety of signal transduction pathways. Whether the transition in living cells is similar to that observed in buffer is not known. Here, we report the direct observation by (19) F?NMR spectroscopy of the transition of the Ca(2+) -free and -bound forms in Xenopus laevis oocytes at different Ca(2+) levels. We find that the Ca(2+) -bound CaM population increased greatly upon binding the target protein myosin light-chain kinase (MLCK) at the same Ca(2+) level. Paramagnetic NMR spectroscopy was also exploited for the first time to obtain long-range structural constraints in cells. Our study shows that (19) F?NMR spectroscopy can be used to obtain long-range structural constraints in living eukaryotic cells and paves the way for quantification of protein binding constants. PMID:25753548

  11. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the

  12. Ligand orientation in a membrane-embedded receptor site revealed by solid-state NMR with paramagnetic relaxation enhancement.

    PubMed

    Whittaker, Christopher A P; Patching, Simon G; Esmann, Mikael; Middleton, David A

    2015-03-01

    NMR relaxation enhancement by paramagnetic metals provides powerful restraints on the three-dimensional structures of proteins in solution, and this approach has recently been utilized in several NMR structural investigations of proteins in the solid-state. Here we utilize paramagnetic relaxation enhancement (PRE) by Mn(2+) with cross-polarization magic-angle spinning (CP-MAS) solid-state NMR to investigate the interaction of a membrane-embedded protein the Na,K-ATPase (NKA) with a cardiotonic steroid inhibitor. The inhibitor, a diacetonide derivate of the cardiac glycoside ouabain, with (13)C labelled acetonide groups in the rhamnose sugar and steroid moieties ([(13)C2]ODA), is 1000-fold less potent than the parent compound. It is shown that the (13)C CP-MAS solid-state NMR spectra of the NKA-[(13)C2]ODA complex exhibit distinct signals for the two (13)C labels of the inhibitor when bound to the ouabain site of membrane-embedded NKA. Recent crystal structures of NKA indicate that the catalytic ?-subunit binds a single Mn(2+) in a transmembrane site close to the high-affinity ouabain site. Here, complexation of NKA with Mn(2+) broadens the resonance line from the rhamnose group substantially more than the steroid peak, indicating that the rhamnose group is closer to the Mn(2+) site than is the steroid group. These observations agree with computational molecular docking simulations and are consistent with ODA adopting an inverted orientation compared to ouabain in the cardiac glycoside site, with the modified rhamnose group drawn toward the transmembrane centre of the protein. This work demonstrates that PRE can provide unique information on the positions and orientations of ligands within their binding pockets of transmembrane proteins. PMID:25582619

  13. Chromatographic NMR Spectroscopy with Hollow Silica Spheres.

    PubMed

    Gonzlez-Garca, Tania; Margola, Tommaso; Silvagni, Adriano; Mancin, Fabrizio; Rastrelli, Federico

    2016-02-01

    The use of micrometric hollow silica spheres is described as a strategy to reduce magnetic field inhomogeneities in the context of NMR chromatography. When employed as a stationary phase, hollow silica microspheres allow the use of common solution-state NMR instruments to measure the diffusion coefficient perturbation induced by the interaction of the analytes with the silica surface. PMID:26809047

  14. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  15. Studies of organic paint binders by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Spyros, A.; Anglos, D.

    2006-06-01

    Nuclear magnetic resonance spectroscopy is applied to the study of aged binding media used in paintings, namely linseed oil, egg tempera and an acrylic medium. High resolution 1D and 2D NMR experiments establish the state of hydrolysis and oxidation of the linseed and egg tempera binders after five years of aging, by determining several markers sensitive to the hydrolytic and oxidative processes of the binder lipid fraction. The composition of the acrylic binder co-polymer is determined by 2D NMR spectroscopy, while the identification of a surfactant, poly(ethylene glycol), found in greater amounts in aged acrylic medium, is reported. The non-destructive nature of the proposed analytical NMR methodology, and minimization of the amount of binder material needed through the use of sophisticated cryoprobes and hyphenated LC-NMR techniques, make NMR attractive for the arts analyst, in view of its rapid nature and experimental simplicity.

  16. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

  17. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and

  18. NMR study of thermally activated paramagnetism in metallic low-silica X zeolite filled with sodium atoms

    NASA Astrophysics Data System (ADS)

    Igarashi, Mutsuo; Nakano, Takehito; Thi, Pham Tan; Nozue, Yasuo; Goto, Atsushi; Hashi, Kenjiro; Ohki, Shinobu; Shimizu, Tadashi; Krajnc, Andra; Jegli?, Peter; Ar?on, Denis

    2013-02-01

    We report a 23Na and 27Al nuclear magnetic resonance (NMR) investigation of low-silica X (LSX) zeolite with chemical formula Na12Al12Si12O48 (Na12-LSX) loaded with n additional guest sodium atoms. Nan/Na12-LSX exhibits an insulator-to-metal transition around n=11.6, which is accompanied by a significant enhancement of bulk magnetic susceptibility. Paramagnetic moments are in the metallic Na12/Na12-LSX thermally activated with an activation energy of around 0.1 eV. Simultaneously a new shifted component appears in the 23Na NMR, whose large and positive NMR shift scales with bulk magnetic susceptibility. Its spin-lattice relaxation rate 1/T1 is governed by the local-field fluctuations characterized by the same activation energy as obtained from the bulk magnetic susceptibility data. The time scale of these fluctuations is typical for atomic motions, which suggest strong electron-phonon coupling, a hallmark of polaron states. The insulator-to-metal transition in Nan/Na12-LSX is thus discussed within a polaron model.

  19. High-resolution NMR spectroscopy in inhomogeneous fields.

    PubMed

    Chen, Zhong; Cai, Shuhui; Huang, Yuqing; Lin, Yulan

    2015-11-01

    High-resolution NMR spectroscopy, providing information on chemical shifts, J coupling constants, multiplet patterns, and relative peak areas, is a mainstream tool for analysis of molecular structures, conformations, compositions, and dynamics. Generally, a homogeneous magnetic field is a prerequisite for obtaining high-resolution NMR information. Magnetic field inhomogeneity, whether from non-ideal experimental conditions or from intrinsic magnetic susceptibility discontinuities in samples, represents a hurdle for applications of high-resolution NMR. Numerous techniques have been proposed for measuring high-resolution NMR spectra free from the influence of inhomogeneous magnetic fields. Besides developments and improvements in NMR instrumentation, various types of experimental approaches have been established for recovering NMR information in inhomogeneous magnetic fields. Three main types are systematically described in this review. In addition, other high-resolution NMR approaches or data processing methods are also briefly described. All high-resolution NMR approaches covered in this review have individual advantages and disadvantages in practical applications, and no one technique is applicable to all practical circumstances. Hence, they are complementary for high-resolution NMR applications in inhomogeneous fields. The underlying mechanisms of these approaches are presented, together with analyses of their applicability and efficiency. PMID:26592943

  20. Characterisation of ?-tricalcium phosphate-based bone substitute materials by electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Matkovi?, Ivo; Maltar-Strme?ki, Nadica; Babi?-Ivan?i?, Vesna; Dutour Sikiri?, Maja; Noethig-Laslo, Vesna

    2012-10-01

    ?-TCP based materials are frequently used as dental implants. Due to their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by ?-irradiation. However, the current literature provides little information about effects of the ?-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this work five different bone graft substitution materials, composed of synthetic beta tricalcium phosphate (?-TCP) and hydroxyapatite (HAP) present in the market were characterized by electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Paramagnetic species Mn2+, Fe3+, trapped H-atoms and CO2- radicals were detected in the biphasic material (60% HAP, 40% ?-TCP), while in ?-TCP materials only Mn2+ andor trapped hydrogen atoms were detected. EPR analysis revealed the details of the structure of these materials at the atomic level. The results have shown that EPR spectroscopy is a method which can be used to improve the quality control of bone graft materials after syntering, processing and sterilization procedure.

  1. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    SciTech Connect

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Hänsel-Ziegler, W.; Freund, H.-J.; Seiler, A.; Bondarchuk, O.

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic species with a density of approximately 5 × 10{sup 11} spins/cm{sup 2}, which is comparable to the limit obtained for the presently available UHV-EPR spectrometer operating at 10 GHz (X-band). Investigation of electron trapped centers in MgO(001) films shows that the increased resolution offered by the experiments at W-band allows to identify new paramagnetic species, that cannot be differentiated with the currently available methodology.

  2. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions--a multipurpose machine to study paramagnetic species on well defined single crystal surfaces.

    PubMed

    Rocker, J; Cornu, D; Kieseritzky, E; Seiler, A; Bondarchuk, O; Hnsel-Ziegler, W; Risse, T; Freund, H-J

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic species with a density of approximately 5 10(11) spins/cm(2), which is comparable to the limit obtained for the presently available UHV-EPR spectrometer operating at 10 GHz (X-band). Investigation of electron trapped centers in MgO(001) films shows that the increased resolution offered by the experiments at W-band allows to identify new paramagnetic species, that cannot be differentiated with the currently available methodology. PMID:25173280

  3. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditionsA multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    NASA Astrophysics Data System (ADS)

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Seiler, A.; Bondarchuk, O.; Hnsel-Ziegler, W.; Risse, T.; Freund, H.-J.

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic species with a density of approximately 5 1011 spins/cm2, which is comparable to the limit obtained for the presently available UHV-EPR spectrometer operating at 10 GHz (X-band). Investigation of electron trapped centers in MgO(001) films shows that the increased resolution offered by the experiments at W-band allows to identify new paramagnetic species, that cannot be differentiated with the currently available methodology.

  4. Nanoparticle size determination by (1)H NMR spectroscopy.

    PubMed

    Gomez, M Victoria; Guerra, Javier; Myers, V Sue; Crooks, Richard M; Velders, Aldrik H

    2009-10-21

    High-resolution solution (1)H NMR spectroscopy has been used to characterize the size of Pd dendrimer-encapsulated nanoparticles (DENs). The Pd nanoparticles measured by this technique contain 55, 147, 200, or 250 atoms, and they are encapsulated within sixth-generation, hydroxyl-terminated poly(amidoamine) PAMAM dendrimers (G6-OH). Detailed analysis of the NMR data shows that signals arising from the innermost protons of G6-OH(Pd(n)) decrease significantly as the size of the encapsulated nanoparticles increase. A mathematical correlation between this decrease in the integral value and the theoretical number of Pd atoms in the nanoparticle is extracted. It enables the elucidation of the size of Pd DENs by (1)H NMR spectroscopy. NMR pulse-field gradient spin-echo experiments demonstrate that G6-OH with and without DENs have identical hydrodynamic radii, which excludes the presence of dendrimer/nanoparticle aggregates. PMID:19785420

  5. Membrane Protein Structure and Dynamics from NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hong, Mei; Zhang, Yuan; Hu, Fanghao

    2012-05-01

    We review the current state of membrane protein structure determination using solid-state nuclear magnetic resonance (NMR) spectroscopy. Multidimensional magic-angle-spinning correlation NMR combined with oriented-sample experiments has made it possible to measure a full panel of structural constraints of membrane proteins directly in lipid bilayers. These constraints include torsion angles, interatomic distances, oligomeric structure, protein dynamics, ligand structure and dynamics, and protein orientation and depth of insertion in the lipid bilayer. Using solid-state NMR, researchers have studied potassium channels, proton channels, Ca2+ pumps, G protein-coupled receptors, bacterial outer membrane proteins, and viral fusion proteins to elucidate their mechanisms of action. Many of these membrane proteins have also been investigated in detergent micelles using solution NMR. Comparison of the solid-state and solution NMR structures provides important insights into the effects of the solubilizing environment on membrane protein structure and dynamics.

  6. Exposing the Moving Parts of Proteins with NMR Spectroscopy

    PubMed Central

    Peng, J.W.

    2012-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful tool for investigating the dynamics of biomolecules since it provides a description of motion that is comprehensive, site-specific, and relatively non-invasive. In particular, the study of protein dynamics has benefited from sustained methodological advances in NMR that have expanded the scope and time scales of accessible motion. Yet, many of these advances may not be well known to the more general physical chemistry community. Accordingly, this Perspective provides a glimpse of some of the more powerful methods in liquid state NMR that are helping reshape our understanding of functional motions of proteins. PMID:22545175

  7. Metabolite analysis of Cannabis sativa L. by NMR spectroscopy.

    PubMed

    Flores-Sanchez, Isvett Josefina; Choi, Young Hae; Verpoorte, Robert

    2012-01-01

    NMR-based metabolomics is an analytical platform, which has been used to classify and analyze Cannabis sativa L. cell suspension cultures and plants. Diverse groups of primary and secondary metabolites were identified by comparing NMR data with reference compounds and/or by structure elucidation using H-NMR, J-resolved, H-H COSY, and H-C HMBC spectroscopy. The direct extraction and the extraction by indirect fractionation are two suitable methods for the C. sativa sample preparation. Quantitative analyses could be performed without requiring fractionation or isolation procedures. PMID:22131005

  8. Solid-state 73Ge NMR spectroscopy of simple organogermanes.

    PubMed

    Hanson, Margaret A; Sutrisno, Andre; Terskikh, Victor V; Baines, Kim M; Huang, Yining

    2012-10-22

    Germanium-73 is an extremely challenging nucleus to examine by NMR spectroscopy due to its unfavorable NMR properties. Through the use of an ultrahigh (21.1 T) magnetic field, a systematic study of a series of simple organogermanes was carried out. In those cases for which X-ray structural data were available, correlations were drawn between the NMR parameters and structural metrics. These data were combined with DFT calculations to obtain insight into the structures of several compounds with unknown crystal structures. PMID:23023927

  9. New Views of Functionally Dynamic Proteins by Solution NMR Spectroscopy.

    PubMed

    Kay, Lewis E

    2016-01-29

    In the past several decades solution NMR spectroscopy has emerged as a powerful technique for the study of the structure and dynamics of proteins, providing detailed insights into biomolecular function. Herein, I provide a summary of two important areas of application, focusing on NMR studies of (i) supramolecular systems with aggregate molecular masses in the hundreds of kilodaltons and of (ii) sparsely populated and transiently formed protein states that are thermally accessible from populated ground-state conformers. The critical role of molecular dynamics in function is emphasized, highlighting the utility of the NMR technique in providing such often elusive information. PMID:26707200

  10. Nanoscale NMR spectroscopy and imaging of multiple nuclear species.

    PubMed

    DeVience, Stephen J; Pham, Linh M; Lovchinsky, Igor; Sushkov, Alexander O; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1?T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ?100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species ((1)H, (19)F, (31)P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (?20?mT) using two complementary sensor modalities. PMID:25559712

  11. Multinuclear NMR spectroscopy in the gas phase

    NASA Astrophysics Data System (ADS)

    Jackowski, K.

    2006-04-01

    Nuclear magnetic resonance (NMR) of some nuclei (e.g. 1H, 13C, 19F, 29Si or 31P, I=1/2) gives strong signals which allow analytical studies of gaseous compounds. The other magnetic nuclei have low natural abundance or/and contain an electric quadrupole moment and their NMR signals are rather weak. In our laboratory we have developed new experimental techniques, which permit us to monitor several micrograms of chemical compounds in gaseous matrices. Applying this approach we have observed magnetic shielding of various nuclei, including 17O and 33S at the natural abundance, in the gas phase as a function of density. Density-dependent spin-spin couplings were also found for many chemical compounds. It has been shown that NMR gas-phase studies can easily be extended on molecules, which exhibit strong intermolecular interactions and are liquids at room temperature. All the latter NMR experimental results obtained for gaseous matrices are reviewed in this paper.

  12. SEAL by NMR: glyco-based selenium-labeled affinity ligands detected by NMR spectroscopy.

    PubMed

    Hamark, Christoffer; Landstrm, Jens; Widmalm, Gran

    2014-10-20

    We report a method for the screening of interactions between proteins and selenium-labeled carbohydrate ligands. SEAL by NMR is demonstrated with selenoglycosides binding to lectins where the selenium nucleus serves as an NMR-active handle and reports on binding through (77)Se NMR spectroscopy. In terms of overall sensitivity, this nucleus is comparable to (13)C?NMR, while the NMR spectral width is ten times larger, yielding little overlap in (77)Se NMR spectroscopy, even for similar compounds. The studied ligands are singly selenated bioisosteres of methyl glycosides for which straightforward preparation methods are at hand and libraries can readily be generated. The strength of the approach lies in its simplicity, sensitivity to binding events, the tolerance to additives and the possibility of having several ligands in the assay. This study extends the increasing potential of selenium in structure biology and medicinal chemistry. We anticipate that SEAL by NMR will be a beneficial tool for the development of selenium-based bioactive compounds, such as glycomimetic drug candidates. PMID:25196366

  13. Two-dimensional NMR spectroscopy. Applications for chemists and biochemists

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear.

  14. Paramagnetic cobalt and nickel derivatives of Alcaligenes denitrificans azurin and its M121Q mutant. A 1H NMR study.

    PubMed

    Salgado, J; Jimnez, H R; Moratal, J M; Kroes, S; Warmerdam, G C; Canters, G W

    1996-02-13

    Using cobalt or nickel to replace copper in native azurin allows one to fingerprint the metal coordination site of the protein. The metal sites of wild type Alcaligenes denitrificans azurin and its M121Q mutant are clearly distinguishable through the paramagnetic 1H NMR spectra of the Ni(II) and Co(II) derivatives. In the wild type azurin, Gly45 coordinates to nickel or cobalt, while Met121 appears as a weak metal ligand. On the contrary, in the M121Q azurin mutant, the metal exhibits a clear preference for the Gln121, which coordinates through the side chain carbonyl oxygen, and Gly45 is not a ligand. Changes in the isotropic shifts and relaxation properties of signals from the Cys112, His46, and His117 metal ligands suggest a movement of the metal ion out of the equatorial plane, indicating that the metal site is tetrahedral. These effects are less pronounced in the Ni(II) M121Q azurin than in the Co(II) metalloderivative. The similarity between the NMR spectra of the Co(II) derivatives of stellacyanin and the M121Q azurin is in agreement with a very similar metal site in both proteins and supports the existence of a coordinated Gln in stellacyanin. PMID:8639662

  15. Density functional calculations of NMR shielding tensors for paramagnetic systems with arbitrary spin multiplicity: Validation on 3d metallocenes

    NASA Astrophysics Data System (ADS)

    Hrobrik, Peter; Reviakine, Roman; Arbuznikov, Alexei V.; Malkina, Olga L.; Malkin, Vladimir G.; Khler, Frank H.; Kaupp, Martin

    2007-01-01

    The calculation of nuclear shieldings for paramagnetic molecules has been implemented in the ReSpect program, which allows the use of modern density functional methods with accurate treatments of spin-orbit effects for all relevant terms up to order O(?4) in the fine structure constant. Compared to previous implementations, the methodology has been extended to compounds of arbitrary spin multiplicity. Effects of zero-field splittings in high-spin systems are approximately accounted for. Validation of the new implementation is carried out for the C13 and H1 NMR signal shifts of the 3d metallocenes V4Cp2, Cr3Cp2, Mn2Cp2, Mn6Cp2, Co2Cp2, and Ni3Cp2. Zero-field splitting effects on isotropic shifts tend to be small or negligible. Agreement with experimental isotropic shifts is already good with the BP86 gradient-corrected functional and is further improved by admixture of Hartree-Fock exchange in hybrid functionals. Decomposition of the shieldings confirms the dominant importance of the Fermi-contact shifts, but contributions from spin-orbit dependent terms are frequently also non-negligible. Agreement with C13 NMR shift tensors from solid-state experiments is of similar quality as for isotropic shifts.

  16. CHARACTERIZATION OF METABOLITES IN SMALL FISH BIOFLUIDS AND TISSUES BY NMR SPECTROSCOPY

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized for assessing ecotoxicity in small fish models by means of metabolomics. Two fundamental challenges of NMR-based metabolomics are the detection limit and characterization of metabolites (or NMR resonance assignments...

  17. Protein folding on the ribosome studied using NMR spectroscopy

    PubMed Central

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  18. High-resolution NMR spectroscopy under the fume hood.

    PubMed

    Kster, Simon K; Danieli, Ernesto; Blmich, Bernhard; Casanova, Federico

    2011-08-01

    This work reports the possibility to acquire high-resolution (1)H NMR spectra with a fist-sized NMR magnet directly installed under the fume hood. The small NMR sensor based on permanent magnets was used to monitor the trimerization of propionaldehyde catalyzed by indium trichloride in real time by continuously circulating the reaction mixture through the magnet bore in a closed loop with the help of a peristaltic pump. Thanks to the chemical selectivity of NMR spectroscopy the progress of the reaction can be monitored on-line by determining the concentrations of both reactant and product from the area under their respective lines in the NMR spectra as a function of time. This in situ measurement demonstrates that NMR probes can be used in chemistry laboratories, e.g. for reaction optimization, or installed at specific points of interest along industrial process lines. Therefore, it will open the door for the implementation of feedback control based on spectroscopic NMR data. PMID:21698335

  19. MULTIVARIATE CURVE RESOLUTION OF NMR SPECTROSCOPY METABONOMIC DATA

    EPA Science Inventory

    Sandia National Laboratories is working with the EPA to evaluate and develop mathematical tools for analysis of the collected NMR spectroscopy data. Initially, we have focused on the use of Multivariate Curve Resolution (MCR) also known as molecular factor analysis (MFA), a tech...

  20. NMR-paramagnetic relaxation due to the high-spin d3 electron configuration: Cr(III)-TSPP.

    PubMed

    Schaefle, Nathaniel; Sharp, Robert

    2005-04-21

    Sulfonated metalloporphyrins (Me-TSPP, where Me = Cr(III), Mn(III), Fe(III), and Mn(II)) comprise a well-characterized series of water-soluble paramagnetic complexes with electron spins of S = 3/2, 2, 5/2, and 5/2, respectively, which provide important model systems for mechanistic studies of paramagnetic NMR relaxation in solution. Previous studies of Mn(III), Fe(III), and Mn(II)-TSPP have uncovered relaxation mechanisms which differ qualitatively from each other and exhibit numerous unexpected features. In this study, Cr(III)-TSPP was examined as a model system for the d3 S = 3/2 electron configuration. Magnetic relaxation dispersion (MRD) profiles of the water proton R1 were measured as a function of pH between pH 1 and pH 9. In acid samples, R1 results from acid-catalyzed prototropic chemical exchange involving the Cr(III)-TSPP x 2 H2O. In neutral and basic solution, this species deprotonates, and base-catalyzed prototropic exchange becomes important. The pH 1 data were analyzed quantitatively using theory that accounts for the role of the permanent zero field splitting (zfs) tensor and for the effects of Brownian reorientation. Two levels of theory were employed: (1) spin dynamics simulation, which accurately describes the effects of Brownian reorientation on the spin wave functions, and (2) the "constant H(S)" approximation, which incorporates the effects of multiexponential electron spin relaxation and facilitates the physical interpretation of the relaxation mechanism. It was found that neither level of theory alone provides a fully satisfactory quantitative description of the data due to the fact that both reorientational modulation of the spin wave functions and multiexponential electron spin relaxation are important. The zero field splitting parameter, D = 0.27 cm(-1), is well defined by the data and was measured. PMID:16833660

  1. 31P MAS-NMR study of flux-grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: Evidence of random cation distribution from paramagnetically shifted NMR resonances

    SciTech Connect

    Palke, A. C.; Stebbins, J. F.; Boatner, Lynn A

    2013-01-01

    We present 31P magic angle spinning nuclear magnetic resonance (MAS-NMR) spectra of flux-grown solid solutions of La1-xCexPO4 ( x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y1-xMxPO4 (M = Vn+, Ce3+, Nd3+, x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic Vn+, Ce3+, and Nd3+ in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensity of these peaks is related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La3+ or Y3+ with the paramagnetic substitutional species Ce3+ and Nd3+. The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the 31P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii.

  2. Electron paramagnetic resonance (EPR) spectroscopy characterization of wheat grains from plants of different water stress tolerance.

    PubMed

    ?abanowska, Maria; Filek, Maria; Kurdziel, Magdalena; Bednarska, El?bieta; D?ubacz, Aleksandra; Hartikainen, Helina

    2012-09-01

    Grains of five genotypes of wheat (four Polish and one Finnish), differing in their tolerance to drought stress were chosen for this investigation. Electron paramagnetic resonance spectroscopy allowed observation of transition metal ions (Mn, Fe, Cu) and different types of stable radicals, including semiquinone centers, present in seed coats, as well as several types of carbohydrate radicals found mainly in the inner parts of grains. The content of paramagnetic metal centers was higher in sensitive genotypes (Radunia, Raweta) than in tolerant ones (Parabola, Nawra), whereas the Finnish genotype (Manu) exhibited intermediate amounts. Similarly, the concentrations of both types of radicals, carbohydrates and semiquinone were significantly higher in the grains originating from more sensitive wheat genotypes. The nature of carbohydrate radicals and their concentrations were confronted with the kinds and amounts of sugars found by the biochemical analyses and microscopy observations. It is suggested that some long lived radicals (semiquinone and starch radicals) occurring in grains could be indicators of stress resistance of wheat plants. PMID:22840996

  3. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  4. Investigation of glycofullerene dynamics by NMR spectroscopy.

    PubMed

    Engstrm, Olof; Muoz, Antonio; Illescas, Beatriz M; Martn, Nazario; Ribeiro-Viana, Renato; Rojo, Javier; Widmalm, Gran

    2015-08-28

    Glycofullerenes, in which carbohydrate molecules are attached via a linker to a [60]fullerene core, facilitate spherical presentation of glyco-based epitopes. We herein investigate the dynamics of two glycofullerenes, having 12 and 36 mannose residues at their periphery, by NMR translational diffusion and quantitative (13)C relaxation studies employing a model-free approach for their interpretation. The sugar residues are shown to be highly flexible entities with S(2) < 0.2 in both compounds. Notably, the larger glycofullerene with longer linkers shows faster internal dynamics and higher flexibility than its smaller counterpart. The dynamics and flexibility as well as the slower translational diffusion of the larger glycofullerene, thereby favoring rebinding to a receptor, may together with its spatial extension explain why it is better than the smaller one at blocking the DC-SIGN receptor and inhibiting the infection by pseudotyped Ebola virus particles. PMID:26186577

  5. Double Quantum Filtered NMR Spectroscopy and Imaging

    NASA Astrophysics Data System (ADS)

    Navon, Gil

    2007-03-01

    As a result of the anisotropic motion of water molecules interacting with ordered biological tissues the proton-proton dipolar interaction and the deuteron quadrupolar interaction do not average to zero leaving some residual splittings. The technique of double quantum filtered (DQF) NMR capitalizes on this phenomenon, opening new possibilities to probe biological processes and to obtain a new kind of contrast in MRI. In the talk new applications of the DQF pulse sequences to the study of nerves, enabling the measurement of intercompartmental water exchange in sciatic and optic nerves, the study of the fiber architecture in cartilage under normal, compressed and diseased conditions and the imaging of tendons, enabling the monitoring their healing process following injury.

  6. Electron-spin relaxation phenomena in irradiated saccharides detected by pulsed electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kikuchi, Masahiro; Kameya, Hiromi; Shimoyama, Yuhei; Ukai, Mitsuko; Kobayashi, Yasuhiko

    2012-10-01

    We measured the relaxation times of radicals in saccharides upon ?-irradiation by means of X-band pulsed electron paramagnetic resonance (EPR) spectroscopy. We found that the field-swept signal of irradiated fructose by pulsed EPR showed three to four peaks depending on the dose. The relaxation times (T1 and T2) of the side peaks were longer than those of the main peak(s) from each irradiation, indicating that the radicals showing side peaks interact less with the surrounding environment. From relaxation time measurements of several irradiated saccharides, we conclude that T2 relaxation times decrease with the increasing irradiation dose. In contrast, T1 relaxation times show no correlation with the irradiation dose.

  7. Electronic structure of polycrystalline polyamine copper dinitrate complexes investigated by photoacoustic and electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Guskos, N.; Papadopoulos, G. J.; Likodimos, V.; Majszczyk, J.; Typek, J.; Wabia, M.; Grech, E.; Dziembowska, T.; Perkowska, A.; Aidinis, K.

    2001-08-01

    Photoacoustic and electron paramagnetic resonance (EPR) spectroscopies have been applied to resolve the electronic structure in powder polycrystalline samples of three biogenic polyamine copper complexes, spermine copper dinitrate, aqua norspermine copper dinitrate, and homospermine copper dinitrate. The fine structure of the intense absorption band in the photoacoustic spectra is assigned to the d-d transitions between the crystal field split levels of copper ions, that cannot be discriminated in the UV/vis solution absorption spectra. Combination with the EPR results allows one to probe the variation of the electronic properties and bonding interaction at the copper site, consistent with the structural data for the crystalline complexes and further supports the reliability of the photoacoustic method to resolve the d-d transition band. A dominant contribution of the in-plane ligand field due to equatorial nitrogen atoms is deduced for the complexes of polyamines with copper salts.

  8. 31P magic angle spinning NMR study of flux-grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: evidence of random cation distribution from paramagnetically shifted NMR resonances.

    PubMed

    Palke, Aaron C; Stebbins, Jonathan F; Boatner, Lynn A

    2013-11-01

    We present (31)P magic angle spinning nuclear magnetic resonance spectra of flux-grown solid solutions of La(1-x)Ce(x)PO4 (x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y(1-x)M(x)PO4 (M = V(n+), Ce(3+), Nd(3+), x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic V(n+), Ce(3+), and Nd(3+) in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensities of these peaks are related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La(3+) or Y(3+) with the paramagnetic substitutional species Ce(3+) and Nd(3+). The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the (31)P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii. PMID:24131129

  9. The mechanism of paramagnetic NMR relaxation produced by Mn(II): Role of orthorhombic and fourth-order zero field splitting terms

    NASA Astrophysics Data System (ADS)

    Sharp, Robert

    2008-10-01

    Mn(II) is a spin-5/2 paramagnetic ion that mediates a characteristically large NMR paramagnetic relaxation enhancement (NMR-PRE) of nuclear spins in solution. In the range of high magnetic field strengths (above about 0.3 T), where the electronic Zeeman interaction provides the largest term of the electron spin Hamiltonian, NMR relaxation mechanism is well understood. In the lower field range, the physical picture is more complex because of the presence in the spin Hamiltonian of zero field splitting (ZFS) terms that are comparable to or greater than the Zeeman term. This work describes a systematic study of the relaxation mechanism in the low field range, particularly aspects involving the dependence of NMR-PRE on the orthorhombic (E) and fourth-order (aq(4), q =0,2,4) ZFS tensor components. It is shown that the fourfold (a4(4)) and twofold (a2(4)) fourth-order components exert large orientation-dependent influences on the NMR-PRE. Thus, fourth-order terms with magnitudes equal to only a few percent of the quadratic ZFS terms (D,E) produce large changes in the shape of the magnetic field profile of the PRE. Effects arising from the orthorhombic quadratic ZFS term (E) are much smaller than those of the fourth-order terms and can in most cases be neglected. However, effects due to a4(4) and a2(4) need to be included in simulations of low field data.

  10. RNA structure determination by solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Marchanka, Alexander; Simon, Bernd; Althoff-Ospelt, Gerhard; Carlomagno, Teresa

    2015-05-01

    Knowledge of the RNA three-dimensional structure, either in isolation or as part of RNP complexes, is fundamental to understand the mechanism of numerous cellular processes. Because of its flexibility, RNA represents a challenge for crystallization, while the large size of cellular complexes brings solution-state NMR to its limits. Here, we demonstrate an alternative approach on the basis of solid-state NMR spectroscopy. We develop a suite of experiments and RNA labeling schemes and demonstrate for the first time that ssNMR can yield a RNA structure at high-resolution. This methodology allows structural analysis of segmentally labelled RNA stretches in high-molecular weight cellular machines--independent of their ability to crystallize-- and opens the way to mechanistic studies of currently difficult-to-access RNA-protein assemblies.

  11. RNA structure determination by solid-state NMR spectroscopy

    PubMed Central

    Marchanka, Alexander; Simon, Bernd; Althoff-Ospelt, Gerhard; Carlomagno, Teresa

    2015-01-01

    Knowledge of the RNA three-dimensional structure, either in isolation or as part of RNP complexes, is fundamental to understand the mechanism of numerous cellular processes. Because of its flexibility, RNA represents a challenge for crystallization, while the large size of cellular complexes brings solution-state NMR to its limits. Here, we demonstrate an alternative approach on the basis of solid-state NMR spectroscopy. We develop a suite of experiments and RNA labeling schemes and demonstrate for the first time that ssNMR can yield a RNA structure at high-resolution. This methodology allows structural analysis of segmentally labelled RNA stretches in high-molecular weight cellular machinesindependent of their ability to crystallize and opens the way to mechanistic studies of currently difficult-to-access RNA-protein assemblies. PMID:25960310

  12. Mitochondria-targeted antioxidant promotes recovery of skeletal muscle mitochondrial function after burn trauma assessed by in vivo 31P nuclear magnetic resonance and electron paramagnetic resonance spectroscopy

    PubMed Central

    Righi, Valeria; Constantinou, Caterina; Mintzopoulos, Dionyssios; Khan, Nadeem; Mupparaju, S. P.; Rahme, Laurence G.; Swartz, Harold M.; Szeto, Hazel H.; Tompkins, Ronald G.; Tzika, A. Aria

    2013-01-01

    Burn injury causes a major systemic catabolic response that is associated with mitochondrial dysfunction in skeletal muscle. We investigated the effects of the mitochondria-targeted peptide antioxidant Szeto-Schiller 31 (SS-31) on skeletal muscle in a mouse burn model using in vivo phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy to noninvasively measure high-energy phosphate levels; mitochondrial aconitase activity measurements that directly correlate with TCA cycle flux, as measured by gas chromatography mass spectrometry (GC-MS); and electron paramagnetic resonance (EPR) to assess oxidative stress. At 6 h postburn, the oxidative ATP synthesis rate was increased 5-fold in burned mice given a single dose of SS-31 relative to untreated burned mice (P=0.002). Furthermore, SS-31 administration in burned animals decreased mitochondrial aconitase activity back to control levels. EPR revealed a recovery in redox status of the SS-31-treated burn group compared to the untreated burn group (P<0.05). Our multidisciplinary convergent results suggest that SS-31 promotes recovery of mitochondrial function after burn injury by increasing ATP synthesis rate, improving mitochondrial redox status, and restoring mitochondrial coupling. These findings suggest use of noninvasive in vivo NMR and complementary EPR offers an approach to monitor the effectiveness of mitochondrial protective agents in alleviating burn injury symptoms.Righi, V., Constantinou, C., Mintzopoulos, D., Khan, N., Mupparaju, S. P., Rahme, L. G., Swartz, H. M., Szeto, H. H., Tompkins, R. G., and Tzika, A. A. Mitochondria-targeted antioxidant promotes recovery of skeletal muscle mitochondrial function after burn trauma assessed by in vivo 31P nuclear magnetic resonance and electron paramagnetic resonance spectroscopy. PMID:23482635

  13. Observation of 1H-13C and 1H-1H proximities in a paramagnetic solid by NMR at high magnetic field under ultra-fast MAS

    NASA Astrophysics Data System (ADS)

    Li, Shenhui; Trbosc, Julien; Lafon, Olivier; Zhou, Lei; Shen, Ming; Pourpoint, Frdrique; Amoureux, Jean-Paul; Deng, Feng

    2015-02-01

    The assignment of NMR signals in paramagnetic solids is often challenging since: (i) the large paramagnetic shifts often mask the diamagnetic shifts specific to the local chemical environment, and (ii) the hyperfine interactions with unpaired electrons broaden the NMR spectra and decrease the coherence lifetime, thus reducing the efficiency of usual homo- and hetero-nuclear NMR correlation experiments. Here we show that the assignment of 1H and 13C signals in isotopically unmodified paramagnetic compounds with moderate hyperfine interactions can be facilitated by the use of two two-dimensional (2D) experiments: (i) 1H-13C correlations with 1H detection and (ii) 1H-1H double-quantum ? single-quantum correlations. These methods are experimentally demonstrated on isotopically unmodified copper (II) complex of L-alanine at high magnetic field (18.8 T) and ultra-fast Magic Angle Spinning (MAS) frequency of 62.5 kHz. Compared to 13C detection, we show that 1H detection leads to a 3-fold enhancement in sensitivity for 1H-13C 2D correlation experiments. By combining 1H-13C and 1H-1H 2D correlation experiments with the analysis of 13C longitudinal relaxation times, we have been able to assign the 1H and 13C signals of each L-alanine ligand.

  14. 103Rh NMR spectroscopy and its application to rhodium chemistry.

    PubMed

    Ernsting, Jan Meine; Gaemers, Sander; Elsevier, Cornelis J

    2004-09-01

    Rhodium is used for a number of large processes that rely on homogeneous rhodium-catalyzed reactions, for instance rhodium-catalyzed hydroformylation of alkenes, carbonylation of methanol to acetic acid and hydrodesulfurization of thiophene derivatives (in crude oil). Many laboratory applications in organometallic chemistry and catalysis involve organorhodium chemistry and a wealth of rhodium coordination compounds is known. For these and other areas, 103Rh NMR spectroscopy appears to be a very useful analytical tool. In this review, most of the literature concerning 103Rh NMR spectroscopy published from 1989 up to and including 2003 has been covered. After an introduction to several experimental methods for the detection of the insensitive 103Rh nucleus, a discussion of factors affecting the transition metal chemical shift is given. Computational aspects and calculations of chemical shifts are also briefly addressed. Next, the application of 103Rh NMR in coordination and organometallic chemistry is elaborated in more detail by highlighting recent developments in measurement and interpretation of 103Rh NMR data, in relation to rhodium-assisted reactions and homogeneous catalysis. The dependence of the 103Rh chemical shift on the ligands at rhodium in the first coordination sphere, on the complex geometry, oxidation state, temperature, solvent and concentration is treated. Several classes of compounds and special cases such as chiral rhodium compounds are reviewed. Finally, a section on scalar coupling to rhodium is provided. PMID:15307053

  15. In-cell NMR and EPR spectroscopy of biomacromolecules.

    PubMed

    Hnsel, Robert; Luh, Laura M; Corbeski, Ivan; Trantirek, Luk; Dtsch, Volker

    2014-09-22

    The dream of cell biologists is to be able to watch biological macromolecules perform their duties in the intracellular environment of live cells. Ideally, the observation of both the location and the conformation of these macromolecules with biophysical techniques is desired. The development of many fluorescence techniques, including superresolution fluorescence microscopy, has significantly enhanced our ability to spot proteins and other molecules in the crowded cellular environment. However, the observation of their structure and conformational changes while they attend their business is still very challenging. In principle, NMR and EPR spectroscopy can be used to investigate the conformation and dynamics of biological macromolecules in living cells. The development of in-cell magnetic resonance techniques has demonstrated the feasibility of this approach. Herein we review the different techniques with a focus on liquid-state in-cell NMR spectroscopy, provide an overview of applications, and discuss the challenges that lie ahead. PMID:25070284

  16. Observing asphaltene aggregation by NMR spectroscopy and relaxation

    NASA Astrophysics Data System (ADS)

    Song, Yi-Qiao; Pomerantz, Andrew; Ladavac, Kosta; Sen, Pabitra

    2007-03-01

    Asphaltenes are a class of molecules commonly found in the oilfield and defined by their simultaneous solubility in toluene and insolubility in hexanes. The aggregation dynamics of asphaltenes is currently poorly understood but presents a serious problem to the oil industry because aggregation can clog flow though pipelines and the oil-bearing rocks. Recently, aggregation dynamics of asphaltenes at very low concentration was measured by nuclear magnetic resonance (NMR) of spin-spin relaxation and diffusion, and fluorescence correlation spectroscopy (FCS). Here, asphaltene aggregation at higher concentrations is observed by monitoring the NMR spectroscopy and longitudinal relaxation times (T1) of the solvent protons. These measurements shed new light on the dynamics of aggregation.

  17. Characterization of radiation-induced damage in high performance polymers by electron paramagnetic resonance imaging spectroscopy

    NASA Technical Reports Server (NTRS)

    Suleman, Naushadalli K.

    1992-01-01

    The potential for long-term human activity beyond the Earth's protective magnetosphere is limited in part by the lack of detailed information on the effectiveness and performance of existing structural materials to shield the crew and spacecraft from highly penetrating space radiations. The two radiations of greatest concern are high energy protons emitted during solar flares and galactic cosmic rays which are energetic ions ranging from protons to highly oxidized iron. Although the interactions of such high-energy radiations with matter are not completely understood at this time, the effects of the incident radiation are clearly expected to include the formation of paramagnetic spin centers via ionization and bond-scission reactions in the molecular matrices of structural materials. Since this type of radiation damage is readily characterized by Electron Paramagnetic Resonance (EPR) spectroscopy, the NASA Langley Research Center EPR system was repaired and brought on-line during the 1991 ASEE term. A major goal of the 1992 ASEE term was to adapt the existing core of the LaRC EPR system to meet the requirements for EPR Imaging--a powerful new technique which provides detailed information on the internal structure of materials by mapping the spatial distribution of unpaired spin density in bulk media. Major impetus for this adaptation arises from the fact that information derived from EPRI complements other methods such as scanning electron microscopy which primarily characterize surface phenomena. The modification of the EPR system has been initiated by the construction of specially designed, counterwound Helmholtz coils which will be mounted on the main EPR electromagnet. The specifications of the coils have been set to achieve a static linear magnetic field gradient of 10 gauss/mm/amp along the principal (Z) axis of the Zeeman field. Construction is also in progress of a paramagnetic standard in which the spin distribution is known in all three dimensions. This sample will be used to assess the linearity of the magnetic field gradient and to ensure authentic image reconstruction. A second major task was to secure the computer capability to enable image reconstruction from projection data generated by the magnetic field gradients. To this end, commercially available and public domain software packages which perform inverse Fourier Transform and convoluted (filtered) back projection functions are being integrated into the existing EPR data processing system.

  18. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    PubMed Central

    Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.

    2014-01-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 ?M of Mg2+ doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 ? coaxial input. Agreement between simulated and experimental results is shown. PMID:25362434

  19. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    PubMed

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 ?M of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 ? coaxial input. Agreement between simulated and experimental results is shown. PMID:25362434

  20. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    SciTech Connect

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  1. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    NASA Astrophysics Data System (ADS)

    Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg2+ doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  2. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  3. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  4. Characterization of the Iron-Sulfur Clusters in Xanthine Dehydrogenase Using Electron Paramagnetic Resonance Spectroscopy and Magnetic Coupling Interactions

    SciTech Connect

    Scott, J. Robert

    2004-02-04

    Xanthine dehydrogenase is a metalloenzyme that is present in numerous eukaryotic and prokaryotic organisms. It contains molybdenum, two different iron-sulfur clusters, and flavin. While the structures of both iron-sulfur clusters were known, it was unclear as to which structure was in which location. Electron paramagnetic resonance spectroscopy probes the paramagnetic qualities of molecules or ions. With this technology we wished to understand which EPR spectrum was associated with which iron-sulfur cluster by looking at magnetic coupling between the paramagnetic Mo(V) oxidation state and the reduced iron-sulfur clusters. We then assigned the clusters to their corresponding locations. The spin-spin interactions observed between Mo(V) and Fe-S I in xanthine dehydrogenase at low temperature show that Fe-S I is the closer site in contrast to Fe-S II.

  5. 33S NMR spectroscopy 3. Substituent effects on 33S NMR parameters in 2-substituted ethanesulfonates.

    PubMed

    Musio, Roberta; Sciacovelli, Oronzo

    2006-08-01

    33S NMR parameters (chemical shifts and linewidths) in 2-substituted sodium ethanesulfonates, XCH2CH2SO3Na (X = H, CH3, OH, SH, NH2, Cl, Br, NH3+) depend upon the electronic properties of substituents. To explain experimental results and obtain additional information on the origin of the observed substituent effect (SE), sulfur isotropic absolute shielding constants have been calculated at DFT level of theory (B3LYP/6-311++G(2d,p)) by gauge-including atomic orbitals (GIAO) method. Data have been interpreted with the aid of natural bond orbital (NBO) method and natural chemical shielding (NCS) analysis. It has been demonstrated that in the class of compounds considered the diamagnetic contribution to sulfur-shielding constant is constant and the observed upfield shift of 33S resonance induced by electron-withdrawing substituents (reverse chemical shift effect) can be related to variations of the paramagnetic contribution. Substituents with different electronic properties cause variations in the polarization of S-C and S-O bonds of the -C-SO3- moiety thus determining changes of the electron density at sulfur nucleus and consequently the expansion or contraction of 3p sulfur orbitals. Also oxygen lone-pairs and sulfur core 2p electrons can play an active role in determining the paramagnetic contribution to sulfur shielding. With regard to linewidth variations, they can be ascribed primarily to changes in the nuclear quadrupole coupling constant values. B3LYP/6-311++G(2d,p) method allows obtaining a good reproducibility of SE on the electric field gradient (EFG) at sulfur, although its values tend to be underestimated significantly. Moreover, 17O shielding constants have been calculated. PMID:16741982

  6. Comprehensive multiphase NMR spectroscopy of intact C-labeled seeds.

    PubMed

    Lam, Leayen; Soong, Ronald; Sutrisno, Andre; de Visser, Ries; Simpson, Myrna J; Wheeler, Heather L; Campbell, Malcolm; Maas, Werner E; Fey, Michael; Gorissen, Antonie; Hutchins, Howard; Andrew, Brian; Struppe, Jochem; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Hume, Alan; Simpson, Andr J

    2014-01-01

    Seeds are complex entities composed of liquids, gels, and solids. NMR spectroscopy is a powerful tool for studying molecular structure but has evolved into two fields, solution and solid state. Comprehensive multiphase (CMP) NMR spectroscopy is capable of liquid-, gel-, and solid-state experiments for studying intact samples where all organic components are studied and differentiated in situ. Herein, intact (13)C-labeled seeds were studied by a variety of 1D/2D (1)H/(13)C experiments. In the mobile phase, an assortment of metabolites in a single (13)C-labeled wheat seed were identified; the gel phase was dominated by triacylglycerides; the semisolid phase was composed largely of carbohydrate biopolymers, and the solid phase was greatly influenced by starchy endosperm signals. Subsequently, the seeds were compared and relative similarities and differences between seed types discussed. This study represents the first application of CMP-NMR to food chemistry and demonstrates its general utility and feasibility for studying intact heterogeneous samples. PMID:24354469

  7. Encoded loop-lanthanide-binding tags for long-range distance measurements in proteins by NMR and EPR spectroscopy.

    PubMed

    Barthelmes, Dominic; Grnz, Markus; Barthelmes, Katja; Allen, Karen N; Imperiali, Barbara; Prisner, Thomas; Schwalbe, Harald

    2015-11-01

    We recently engineered encodable lanthanide binding tags (LBTs) into proteins and demonstrated their applicability in Nuclear Magnetic Resonance (NMR) spectroscopy, X-ray crystallography and luminescence studies. Here, we engineered two-loop-LBTs into the model protein interleukin-1? (IL1?) and measured (1)H, (15)N-pseudocontact shifts (PCSs) by NMR spectroscopy. We determined the ??-tensors associated with each Tm(3+)-loaded loop-LBT and show that the experimental PCSs yield structural information at the interface between the two metal ion centers at atomic resolution. Such information is very valuable for the determination of the sites of interfaces in protein-protein-complexes. Combining the experimental PCSs of the two-loop-LBT construct IL1?-S2R2 and the respective single-loop-LBT constructs IL1?-S2, IL1?-R2 we additionally determined the distance between the metal ion centers. Further, we explore the use of two-loop LBTs loaded with Gd(3+) as a novel tool for distance determination by Electron Paramagnetic Resonance spectroscopy and show the NMR-derived distances to be remarkably consistent with distances derived from Pulsed Electron-Electron Dipolar Resonance. PMID:26341230

  8. Disulfide-Linked Dinitroxides for Monitoring Cellular Thiol Redox Status through Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Legenzov, Eric A; Sims, Stephen J; Dirda, Nathaniel D A; Rosen, Gerald M; Kao, Joseph P Y

    2015-12-01

    Intracellular thiol-disulfide redox balance is crucial to cell health, and may be a key determinant of a cancer's response to chemotherapy and radiation therapy. The ability to assess intracellular thiol-disulfide balance may thus be useful not only in predicting responsiveness of cancers to therapy, but in assessing predisposition to disease. Assays of thiols in biology have relied on colorimetry or fluorimetry, both of which require UV-visible photons, which do not penetrate the body. Low-frequency electron paramagnetic resonance imaging (EPRI) is an emerging magnetic imaging technique that uses radio waves, which penetrate the body well. Therefore, in combination with tailored imaging agents, EPRI affords the opportunity to image physiology within the body. In this study, we have prepared water-soluble and membrane-permeant disulfide-linked dinitroxides, at natural isotopic abundance, and with D,(15)N-substitution. Thiols such as glutathione cleave the disulfides, with simple bimolecular kinetics, to yield the monomeric nitroxide species, with distinctive changes in the EPR spectrum. Using the D,(15)N-substituted disulfide-dinitroxide and EPR spectroscopy, we have obtained quantitative estimates of accessible intracellular thiol in cultured human lymphocytes. Our estimates are in good agreement with published measurements. This suggests that in vivo EPRI of thiol-disulfide balance is feasible. Finally, we discuss the constraints on the design of probe molecules that would be useful for in vivo EPRI of thiol redox status. PMID:26523485

  9. Analyzing Xanthine Dehydrogenase Iron-Sulfur Clusters Using Electron Paramagnetic Resonance Spectroscopy

    SciTech Connect

    Hodson, R.

    2004-02-05

    Xanthine dehydrogenase is a metalloenzyme that is present in a variety of eukaryotic and prokaryotic organisms. The oxidation of the xanthine occurs at the molybdenum site, and the catalytic cycle is completed by electron transfer to the iron-sulfur (Fe/S) clusters and finally the flavin, where they are accepted by nicotinamide adenine dinucleotide (NAD). Since the site giving rise to the Fe/S I electron paramagnetic resonance (EPR) signal is thought to be the initial recipient of the electrons from the Mo, we wish to understand which EPR signal is associated with which Fe/S cluster in the structure in order to develop an understanding of the electron flow within the molecule. Samples of xanthine dehydrogenase wild-type and mutant forms were analyzed with EPR spectroscopy techniques at low and high temperatures. The results showed an altered Fe/S I signal along with an unaltered Fe/S II signal. The converted Cysteine, in the mutant, did affect the Fe/S cluster immediately adjacent to it. Therefore, the Fe/S I signal arises from the Fe/S cluster closest to the Mo and immediately adjacent to the mutated amino acid, and the Fe/S II signal must arise from the more distant Fe/S cluster.

  10. Exploring intrinsically disordered proteins using site-directed spin labeling electron paramagnetic resonance spectroscopy

    PubMed Central

    Le Breton, Nolwenn; Martinho, Marlène; Mileo, Elisabetta; Etienne, Emilien; Gerbaud, Guillaume; Guigliarelli, Bruno; Belle, Valérie

    2015-01-01

    Proteins are highly variable biological systems, not only in their structures but also in their dynamics. The most extreme example of dynamics is encountered within the family of Intrinsically Disordered Proteins (IDPs), which are proteins lacking a well-defined 3D structure under physiological conditions. Among the biophysical techniques well-suited to study such highly flexible proteins, Site-Directed Spin Labeling combined with EPR spectroscopy (SDSL-EPR) is one of the most powerful, being able to reveal, at the residue level, structural transitions such as folding events. SDSL-EPR is based on selective grafting of a paramagnetic label on the protein under study and is limited neither by the size nor by the complexity of the system. The objective of this mini-review is to describe the basic strategy of SDSL-EPR and to illustrate how it can be successfully applied to characterize the structural behavior of IDPs. Recent developments aimed at enlarging the panoply of SDSL-EPR approaches are presented in particular newly synthesized spin labels that allow the limitations of the classical ones to be overcome. The potentialities of these new spin labels will be demonstrated on different examples of IDPs. PMID:26042221

  11. Anthocyanin composition of wild Colombian fruits and antioxidant capacity measurement by electron paramagnetic resonance spectroscopy.

    PubMed

    Santacruz, Liliana; Carriazo, Jos G; Almanza, Ovidio; Osorio, Coralia

    2012-02-15

    The qualitative and quantitative anthocyanin composition of four wild tropical fruits from Colombia was studied. Compounds of "mora pequea" ( Rubus megalococcus Focke.), "uva de rbol" ( Myrciaria aff. cauliflora O. Berg), coral, and motiln ( Hyeronima macrocarpa Mull. Arg.) fruits were separately extracted with methanol-acetic acid (95:5, v/v). The anthocyanin-rich extracts (AREs) were obtained by selective adsorption on Amberlite XAD-7. Each extract was analyzed by HPLC-PDA and HPLC-HRESI-MS(n) with LCMS-IT-TOF equipment in order to characterize the anthocyanin pigments and the coinjection in HPLC using standards allowed identifying the major constituents in each extract. The antioxidant activity was measured by electron paramagnetic resonance (EPR) and UV-vis spectroscopy, using ABTS and DPPH free radicals. The ARE of motiln ( H. macrocarpa Mll. Arg) exhibited the highest radical scavenging activity in comparison to the other extracts. A second-order kinetic model was followed in all of the cases. These results suggested that the studied fruits are promising not only as source of natural pigments but also as antioxidant materials for food industry. PMID:22242913

  12. Novel antioxidant capacity assay for lipophilic compounds using electron paramagnetic resonance spectroscopy

    PubMed Central

    Takahashi, Yushi; Ichimori, Kohji; Okano, Masahito; Goto, Hirofumi

    2015-01-01

    A novel antioxidant capacity assay for lipophilic compounds was developed using electron paramagnetic resonance (EPR) spectroscopy. The assay is based on antioxidants scavenging ability against the tert-butoxyl radical generated photolytically from di-tert-butyl peroxide in ethyl acetate, and named the tert-butoxyl-based antioxidant capacity (BAC) assay. The radical was trapped by spin trap, 5,5-dimethyl-1-pyrroline-N-oxide, and EPR signal intensity of the spin adduct was used as a quantitative marker of radical levels. Signal intensity decreased in a dose-dependent manner in the presence of an antioxidant that competitively reacts with the radical, which was utilized to evaluate BAC values. The BAC method enabled the accurate estimation of antioxidant capacity for lipophilic materials that may counteract lipid peroxidation in biological membranes. The BAC values for quercetin and caffeic acid are 0.6390.020 and 0.1180.012 trolox equivalents, respectively, which are much smaller than values obtained by other aqueous methods such as H-ORAC and ORAC-EPR. Thus, antioxidants present in a non-aqueous environment should be evaluated using a non-aqueous system. In combination with in situ ascorbate reduction, the BAC method was capable of accurately determining the antioxidant capacity of water-insoluble materials that may be reduced in living cells. PMID:25759515

  13. NMR spectroscopy of saccharide-doped PAGAT dosimeters

    NASA Astrophysics Data System (ADS)

    Skyt, P. S.; Berndt, B.; Holloway, L.; Hill, R.; De Deene, Y.

    2015-01-01

    The aim of this study was to investigate the chemistry of the PAGAT dosimeters when doped with saccharides and irradiated' using NMR spectroscopy. Three batches of PAGAT gel dosimeters were manufactured. Two of them were doped with 20 % glucose and sucrose' respectively. For each batch' one sample was left unirradiated while the remaining samples were irradiated to different doses. After irradiation' NMR spectra were obtained which clearly showed the composition of the dosimeter and the change in monomer concentration caused by irradiation. In addition' it revealed that the saccharides did not directly participate in the chemical process before and during irradiation but the addition of saccharides resulted in a higher consumption rate of the monomers.

  14. Recombinant Kinase Production and Fragment Screening by NMR Spectroscopy.

    PubMed

    Han, Byeonggu; Ahn, Hee-Chul

    2016-01-01

    During the past decade fragment-based drug discovery (FBDD) has rapidly evolved and several drugs or drug candidates developed by FBDD approach are clinically in use or in clinical trials. For example, vemurafenib, a V600E mutated BRAF inhibitor, was developed by utilizing FBDD approach and approved by FDA in 2011. In FBDD, screening of fragments is the starting step for identification of hits and lead generation. Fragment screening usually relies on biophysical techniques by which the protein-bound small molecules can be detected. NMR spectroscopy has been extensively used to study the molecular interaction between the protein and the ligand, and has many advantages in fragment screening over other biophysical techniques. This chapter describes the practical aspects of fragment screening by saturation transfer difference NMR. PMID:26501900

  15. Perspectives on DNP-enhanced NMR spectroscopy in solutions

    NASA Astrophysics Data System (ADS)

    van Bentum, Jan; van Meerten, Bas; Sharma, Manvendra; Kentgens, Arno

    2016-03-01

    More than 60 years after the seminal work of Albert Overhauser on dynamic nuclear polarization by dynamic cross relaxation of coupled electron-nuclear spin systems, the quest for sensitivity enhancement in NMR spectroscopy is as pressing as ever. In this contribution we will review the status and perspectives for dynamic nuclear polarization in the liquid state. An appealing approach seems to be the use of supercritical solvents that may allow an extension of the Overhauser mechanism towards common high magnetic fields. A complementary approach is the use of solid state DNP on frozen solutions, followed by a rapid dissolution or in-situ melting step and NMR detection with substantially enhanced polarization levels in the liquid state. We will review recent developments in the field and discuss perspectives for the near future.

  16. 57Fe Mssbauer spectroscopy and electron paramagnetic resonance studies of human liver ferritin, Ferrum Lek and Maltofer

    NASA Astrophysics Data System (ADS)

    Alenkina, I. V.; Oshtrakh, M. I.; Klencsr, Z.; Kuzmann, E.; Chukin, A. V.; Semionkin, V. A.

    2014-09-01

    A human liver ferritin, commercial Ferrum Lek and Maltofer samples were studied using Mssbauer spectroscopy and electron paramagnetic resonance. Two Mssbauer spectrometers have been used: (i) a high velocity resolution (4096 channels) at 90 and 295 K, (ii) and a low velocity resolution (250 channels) at 20 and 40 K. It is shown that the three studied materials have different superparamagnetic features at various temperatures. This may be caused by different magnetic anisotropy energy barriers, sizes (volume), structures and compositions of the iron cores. The electron paramagnetic resonance spectra of the ferritin, Ferrum Lek and Maltofer were decomposed into multiple spectral components demonstrating the presence of minor ferro- or ferrimagnetic phases along with revealing marked differences among the studied substances. Mssbauer spectroscopy provides evidences on several components in the measured spectra which could be related to different regions, layers, nanocrystallites, etc. in the iron cores that coincides with heterogeneous and multiphase models for the ferritin iron cores.

  17. 57Fe Mssbauer spectroscopy and electron paramagnetic resonance studies of human liver ferritin, Ferrum Lek and Maltofer.

    PubMed

    Alenkina, I V; Oshtrakh, M I; Klencsr, Z; Kuzmann, E; Chukin, A V; Semionkin, V A

    2014-09-15

    A human liver ferritin, commercial Ferrum Lek and Maltofer samples were studied using Mssbauer spectroscopy and electron paramagnetic resonance. Two Mssbauer spectrometers have been used: (i) a high velocity resolution (4096 channels) at 90 and 295K, (ii) and a low velocity resolution (250 channels) at 20 and 40 K. It is shown that the three studied materials have different superparamagnetic features at various temperatures. This may be caused by different magnetic anisotropy energy barriers, sizes (volume), structures and compositions of the iron cores. The electron paramagnetic resonance spectra of the ferritin, Ferrum Lek and Maltofer were decomposed into multiple spectral components demonstrating the presence of minor ferro- or ferrimagnetic phases along with revealing marked differences among the studied substances. Mssbauer spectroscopy provides evidences on several components in the measured spectra which could be related to different regions, layers, nanocrystallites, etc. in the iron cores that coincides with heterogeneous and multiphase models for the ferritin iron cores. PMID:24762570

  18. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  19. Biophysical Characterisation of Globins and Multi-Heme Cytochromes Using Electron Paramagnetic Resonance and Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Desmet, Filip

    Heme proteins of different families were investigated in this work, using a combination of pulsed and continuous-wave electron paramagnetic resonance (EPR) spectroscopy, optical absorption spectroscopy, resonance Raman spectroscopy and laser flash photolysis. The first class of proteins that were investigated, were the globins. The globin-domain of the globin-coupled sensor of the bacterium Geobacter sulfurreducens was studied in detail using different pulsed EPR techniques (HYSCORE and Mims ENDOR). The results of this pulsed EPR study are compared with the results of the optical investigation and the crystal structure of the protein. The second globin, which was studied, is the Protoglobin of Methanosarcina acetivorans, various mutants of this protein were studied using laser flash photolysis and Raman spectroscopy to unravel the link between this protein's unusual structure and its ligand-binding kinetics. In addition to this, the CN -bound form of this protein was investigated using EPR and the influence of the strong deformation of the heme on the unusual low gz values is discussed. Finally, the neuroglobins of three species of fishes, Danio rerio, Dissostichus mawsoni and Chaenocephalus aceratus are studied. The influence of the presence or absence of two cysteine residues in the C-D and D-region of the protein on the EPR spectrum, and the possible formation of a disulfide bond is studied. The second group of proteins that were studied in this thesis belong to the family of the cytochromes. First the Mouse tumor suppressor cytochrome b561 was studied, the results of a Raman and EPR investigation are compared to the Human orthologue of the protein. Secondly, the tonoplast cytochrome b561 of Arabidopsis was investigated in its natural form and in two double-mutant forms, in which the heme at the extravesicular side was removed. The results of this investigation are then compared with two models in literature that predict the localisation of the hemes in this family of cytochromes. Finally the preliminary results of a detailed HYSCORE study of the four hemes in the cytochrome c3 of Desulfovibrio desulfuricans ATCC 27774 are presented.

  20. Quantum-chemical analysis of paramagnetic 13C NMR shifts of iron-bound cyanide ions in heme-protein environments

    NASA Astrophysics Data System (ADS)

    Yamaki, Daisuke; Hada, Masahiko

    2012-12-01

    Paramagnetic 13C NMR chemical shifts of iron-bound cyanide ions located in biological environments such as heme-proteins are significantly sensitive to the environments. These chemical shifts are due to negative spin density at 13C induced by the open-shell iron center. In order to examine the environments effects on the electronic states around heme parts, ab initio calculations were performed for model systems of heme-proteins. The proximal residues in proteinparts of cytochrome c, hemoglobin, myoglobin and horseradish peroxidase were included in the model systems with the common active site (cyanide imidazole porphyrinato iron(III)) to take account of the environments effects. The calculated paramagnetic shifts of model systems reproduce the experimental trend of corresponding heme-proteins. It is found that the effects of proximal residues on the electronic states of the heme-parts are significant for these hemeproteins. In this abstract we focused on the calculations and analysis of cytochrome c.

  1. The mechanism of paramagnetic NMR relaxation produced by Mn(II): role of orthorhombic and fourth-order zero field splitting terms.

    PubMed

    Sharp, Robert

    2008-10-14

    Mn(II) is a spin-5/2 paramagnetic ion that mediates a characteristically large NMR paramagnetic relaxation enhancement (NMR-PRE) of nuclear spins in solution. In the range of high magnetic field strengths (above about 0.3 T), where the electronic Zeeman interaction provides the largest term of the electron spin Hamiltonian, NMR relaxation mechanism is well understood. In the lower field range, the physical picture is more complex because of the presence in the spin Hamiltonian of zero field splitting (ZFS) terms that are comparable to or greater than the Zeeman term. This work describes a systematic study of the relaxation mechanism in the low field range, particularly aspects involving the dependence of NMR-PRE on the orthorhombic (E) and fourth-order (a(q)(4), q=0,2,4) ZFS tensor components. It is shown that the fourfold (a(4)(4)) and twofold (a(2)(4)) fourth-order components exert large orientation-dependent influences on the NMR-PRE. Thus, fourth-order terms with magnitudes equal to only a few percent of the quadratic ZFS terms (D,E) produce large changes in the shape of the magnetic field profile of the PRE. Effects arising from the orthorhombic quadratic ZFS term (E) are much smaller than those of the fourth-order terms and can in most cases be neglected. However, effects due to a(4)(4) and a(2)(4) need to be included in simulations of low field data. PMID:19045147

  2. Frontispiece: (19) F Paramagnetic Relaxation Enhancement: A Valuable Tool for Distance Measurements in Proteins.

    PubMed

    Matei, Elena; Gronenborn, Angela M

    2016-01-01

    NMR Spectroscopy. (19) F?NMR paramagnetic relaxation enhancements that were evaluated for extracting distance information in a selectively (19) F-labeled protein are reported by A.?M. Gronenborn and E. Matei in their Communication on page?150?ff. PMID:26768825

  3. Linking local environments and hyperfine shifts: a combined experimental and theoretical (31)P and (7)Li solid-state NMR study of paramagnetic Fe(III) phosphates.

    PubMed

    Kim, Jongsik; Middlemiss, Derek S; Chernova, Natasha A; Zhu, Ben Y X; Masquelier, Christian; Grey, Clare P

    2010-12-01

    Iron phosphates (FePO(4)) are among the most promising candidate materials for advanced Li-ion battery cathodes. This work reports upon a combined nuclear magnetic resonance (NMR) experimental and periodic density functional theory (DFT) computational study of the environments and electronic structures occurring in a range of paramagnetic Fe(III) phosphates comprising FePO(4) (heterosite), monoclinic Li(3)Fe(2)(PO(4))(3) (anti-NASICON A type), rhombohedral Li(3)Fe(2)(PO(4))(3) (NASICON B type), LiFeP(2)O(7), orthorhombic FePO(4)·2H(2)O (strengite), monoclinic FePO(4)·2H(2)O (phosphosiderite), and the dehydrated forms of the latter two phases. Many of these materials serve as model compounds relevant to battery chemistry. The (31)P spin-echo mapping and (7)Li magic angle spinning NMR techniques yield the hyperfine shifts of the species of interest, complemented by periodic hybrid functional DFT calculations of the respective hyperfine and quadrupolar tensors. A Curie-Weiss-based magnetic model scaling the DFT-calculated hyperfine parameters from the ferromagnetic into the experimentally relevant paramagnetic state is derived and applied, providing quantitative finite temperature values for each phase. The sensitivity of the hyperfine parameters to the composition of the DFT exchange functional is characterized by the application of hybrid Hamiltonians containing admixtures 0%, 20%, and 35% of Fock exchange. Good agreement between experimental and calculated values is obtained, provided that the residual magnetic couplings persisting in the paramagnetic state are included. The potential applications of a similar combined experimental and theoretical NMR approach to a wider range of cathode materials are discussed. PMID:21053901

  4. (13)C NMR spectroscopy applications to brain energy metabolism.

    PubMed

    Rodrigues, Tiago B; Valette, Julien; Bouzier-Sore, Anne-Karine

    2013-01-01

    (13)C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying brain metabolism. Indeed, the most convincing data obtained to decipher metabolic exchanges between neurons and astrocytes have been obtained using this technique, thus illustrating its power. It may be difficult for non-specialists, however, to grasp thefull implication of data presented in articles written by spectroscopists. The aim of the review is, therefore, to provide a fundamental understanding of this topic to facilitate the non-specialists in their reading of this literature. In the first part of this review, we present the metabolic fate of (13)C-labeled substrates in the brain in a detailed way, including an overview of some general neurochemical principles. We also address and compare the various spectroscopic strategies that can be used to study brain metabolism. Then, we provide an overview of the (13)C NMR experiments performed to analyze both intracellular and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy substrate for neurons is discussed in the light of (13)C NMR data. Finally, new perspectives and applications offered by (13)C hyperpolarization are described. PMID:24367329

  5. Urinary metabolite quantification employing 2D NMR spectroscopy.

    PubMed

    Gronwald, Wolfram; Klein, Matthias S; Kaspar, Hannelore; Fagerer, Stephan R; Nürnberger, Nadine; Dettmer, Katja; Bertsch, Thomas; Oefner, Peter J

    2008-12-01

    Two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy is a fairly novel method for the quantification of metabolites in biological fluids and tissue extracts. We show in this contribution that, compared to 1D 1H spectra, superior quantification of human urinary metabolites is obtained from 2D 1H-13C heteronuclear single-quantum correlation (HSQC) spectra measured at natural abundance. This was accomplished by the generation of separate calibration curves for the different 2D HSQC signals of each metabolite. Lower limits of detection were in the low to mid micromolar range and were generally the lower the greater the number of methyl groups contained in an analyte. The quantitative 2D NMR data obtained for a selected set of 17 urinary metabolites were compared to those obtained independently by means of gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry of amino acids and hippurate as well as enzymatic and colorimetric measurements of creatinine. As a typical application, 2D-NMR was used for the investigation of urine from patients with inborn errors of metabolism. PMID:19551947

  6. Electron paramagnetic resonance spectroscopy using a direct current-SQUID magnetometer directly coupled to an electron spin ensemble

    NASA Astrophysics Data System (ADS)

    Toida, Hiraku; Matsuzaki, Yuichiro; Kakuyanagi, Kosuke; Zhu, Xiaobo; Munro, William J.; Nemoto, Kae; Yamaguchi, Hiroshi; Saito, Shiro

    2016-02-01

    We demonstrate electron spin polarization detection and electron paramagnetic resonance (EPR) spectroscopy using a direct current superconducting quantum interference device (dc-SQUID) magnetometer. Our target electron spin ensemble is directly bonded to the dc-SQUID magnetometer that detects electron spin polarization induced by an external magnetic field or EPR in a micrometer-sized area. The minimum distinguishable number of polarized spins and sensing volume of the electron spin polarization detection and the EPR spectroscopy are estimated to be ˜106 and ˜10-10 cm3 (˜0.1 pl), respectively.

  7. Characterization of iron, manganese, and copper synthetic hydroxyapatites by electron paramagnetic resonance spectroscopy

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Wasowicz, T.; Howard, T.; Hossner, L. R.; Ming, D. W.

    2002-01-01

    The incorporation of micronutrients (e.g., Fe, Mn, Cu) into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in NASA's Advanced Life Support (ALS) program for long-duration space missions. Separate Fe3+ (Fe-SHA), Mn2+ (Mn-SHA), and Cu2+ (Cu-SHA) containing SHA materials were synthesized by a precipitation method. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the location of Fe3+, Mn2+, and Cu2+ ions in the SHA structure and to identify other Fe(3+)-, Mn(2+)-, and Cu(2+)-containing phases that formed during precipitation. The EPR parameters for Fe3+ (g=4.20 and 8.93) and for Mn2+ (g=2.01, A=9.4 mT, D=39.0 mT and E=10.5 mT) indicated that Fe3+ and Mn2+ possessed rhombic ion crystal fields within the SHA structure. The Cu2+ EPR parameters (g(z)=2.488, A(z)=5.2 mT) indicated that Cu2+ was coordinated to more than six oxygens. The rhombic environments of Fe3+ and Mn2+ along with the unique Cu2+ environment suggested that these metals substituted for the 7 or 9 coordinate Ca2+ in SHA. The EPR analyses also detected poorly crystalline metal oxyhydroxides or metal-phosphates associated with SHA. The Fe-, Mn-, and Cu-SHA materials are potential slow release sources of Fe, Mn, and Cu for ALS and terrestrial cropping systems.

  8. Study of nanostructural organization of ionic liquids by electron paramagnetic resonance spectroscopy.

    PubMed

    Merunka, Dalibor; Peric, Mirna; Peric, Miroslav

    2015-02-19

    The X-band electron paramagnetic resonance spectroscopy (EPR) of a stable, spherical nitroxide spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDTO) has been used to study the nanostructural organization of a series of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids (ILs) with alkyl chain lengths from two to eight carbons. By employing nonlinear least-squares fitting of the EPR spectra, we have obtained values of the rotational correlation time and hyperfine coupling splitting of pDTO to high precision. The rotational correlation time of pDTO in ILs and squalane, a viscous alkane, can be fit very well to a power law functionality with a singular temperature, which often describes a number of physical quantities measured in supercooled liquids. The viscosity of the ILs and squalane, taken from the literature, can also be fit to the same power law expression, which means that the rotational correlation times and the ionic liquid viscosities have similar functional dependence on temperature. The apparent activation energy of both the rotational correlation time of pDTO and the viscous flow of ILs and squalane increases with decreasing temperature; in other words, they exhibit strong non-Arrhenius behavior. The rotational correlation time of pDTO as a function of η/T, where η is the shear viscosity and T is the temperature, is well described by the Stokes-Einstein-Debye (SED) law, while the hydrodynamic probe radii are solvent dependent and are smaller than the geometric radius of the probe. The temperature dependence of hyperfine coupling splitting is the same in all four ionic liquids. The value of the hyperfine coupling splitting starts decreasing with increasing alkyl chain length in the ionic liquids in which the number of carbons in the alkyl chain is greater than four. This decrease together with the decrease in the hydrodynamic radius of the probe indicates a possible existence of nonpolar nanodomains. PMID:25594422

  9. Report on neptunium speciation by NMR and optical spectroscopies

    SciTech Connect

    Tait, C.D.; Palmer, P.D.; Ekberg, S.A.; Clark, D.L.

    1995-11-01

    Hydrolysis and carbonate complexation reactions were examined for NpO{sub 2}{sup 2+} and NpO{sub 2}{sup +} ions by a variety of techniques including potentiometric titration, UV-Vis-NIR and NMR spectroscopy. The equilibrium constant for the reaction 3NpO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} + 3H{sup +} {rightleftharpoons} (NpO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} + 3HCO{sub 3}{sup {minus}} was determined to be logK = 19.7 ({plus_minus} 0.8) (I = 2.5 m). {sup 17}O NMR spectroscopy of NpO{sub 2}{sup n+} ions (n = 1,2) reveals a readily observable {sup 17}O resonance for n = 2, but not for n = 1. The first hydrolysis constant for NpO{sub 2}{sup +} was studied as a function of temperature, and the functional form for the temperature-dependent equilibrium constant for the reaction written as NpO{sub 2}{sup +} + H{sub 2}O {rightleftharpoons} NpO{sub 2}OH + H{sup +} was found to be logK = 2.28 {minus} 3780/T, where T is in {degree}K. Finally, the temperature dependence of neptunium(V) carbonate complexation constants was studied. For the first carbonate complexation constant, the appropriate functional form was found to be log{beta}{sub 01} = 1.47 + 786/T.

  10. In vivo two-dimensional NMR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraft, Robert A.

    1999-10-01

    The poor resolution of in-vivo one- dimensional nuclear magnetic resonance spectroscopy (NMR) has limited its clinical potential. Currently, only the large singlet methyl resonances arising from N-acetyl aspartate (NAA), choline, and creatine are quantitated in a clinical setting. Other metabolites such as myo- inositol, glutamine, glutamate, lactate, and ?- amino butyric acid (GABA) are of clinical interest but quantitation is difficult due to the overlapping resonances and limited spectral resolution. To improve the spectral resolution and distinguish between overlapping resonances, a series of two- dimensional chemical shift correlation spectroscopy experiments were developed for a 1.5 Tesla clinical imaging magnet. Two-dimensional methods are attractive for in vivo spectroscopy due to their ability to unravel overlapping resonances with the second dimension, simplifying the interpretation and quantitation of low field NMR spectra. Two-dimensional experiments acquired with mix-mode line shape negate the advantages of the second dimension. For this reason, a new experiment, REVOLT, was developed to achieve absorptive mode line shape in both dimensions. Absorptive mode experiments were compared to mixed mode experiments with respect to sensitivity, resolution, and water suppression. Detailed theoretical and experimental calculations of the optimum spin lock and radio frequency power deposition were performed. Two-dimensional spectra were acquired from human bone marrow and human brain tissue. The human brain tissue spectra clearly reveal correlations among the coupled spins of NAA, glutamine, glutamate, lactate, GABA, aspartate and myo-inositol obtained from a single experiment of 23 minutes from a volume of 59 mL. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  11. Structural characterization of titania by X-ray diffraction, photoacoustic, Raman spectroscopy and electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kadam, R. M.; Rajeswari, B.; Sengupta, Arijit; Achary, S. N.; Kshirsagar, R. J.; Natarajan, V.

    2015-02-01

    A titania mineral (obtained from East coast, Orissa, India) was investigated by X-ray diffraction (XRD), photoacoustic spectroscopy (PAS), Raman and Electron Paramagnetic Resonance (EPR) studies. XRD studies indicated the presence of rutile (91%) and anatase (9%) phases in the mineral. Raman investigation supported this information. Both rutile and anatase phases have tetragonal structure (rutile: space group P42/mnm, a = 4.5946(1) , c = 2.9597(1) , V = 62.48(1) ()3, Z = 2; anatase: space group I41/amd, 3.7848(2) , 9.5098(11) , V = 136.22(2) ()3, Z = 4). The deconvoluted PAS spectrum showed nine peaks around 335, 370, 415,485, 555, 605, 659, 690,730 and 785 nm and according to the ligand field theory, these peaks were attributed to the presence of V4+, Cr3+, Mn4+ and Fe3+ species. EPR studies revealed the presence of transition metal ions V4+(d1), Cr3+(d3), Mn4+(d3) and Fe3+(d5) at Ti4+ sites. The EPR spectra are characterized by very large crystal filed splitting (D term) and orthorhombic distortion term (E term) for multiple electron system (s > 1) suggesting that the transition metal ions substitute the Ti4+ in the lattice which is situated in distorted octahedral coordination of oxygen. The possible reasons for observation of unusually large D and E term in the EPR spectra of transition metal ions (S = 3/2 and 5/2) are discussed.

  12. Spin-Noise-Detected Two-Dimensional Fourier-Transform NMR Spectroscopy

    PubMed Central

    2013-01-01

    We introduce two-dimensional NMR spectroscopy detected by recording and processing the noise originating from nuclei that have not been subjected to any radio frequency excitation. The method relies on cross-correlation of two noise blocks that bracket the evolution and mixing periods. While the sensitivity of the experiment is low in conventional NMR setups, spin-noise-detected NMR spectroscopy has great potential for use with extremely small numbers of spins, thereby opening a way to nanoscale multidimensional NMR spectroscopy. PMID:24294412

  13. Paramagnetic electrodes and bulk magnetic susceptibility effects in the in situ NMR studies of batteries: application to Li1.08Mn1.92O4 spinels.

    PubMed

    Zhou, Lina; Leskes, Michal; Ilott, Andrew J; Trease, Nicole M; Grey, Clare P

    2013-09-01

    To date, in situ nuclear magnetic resonance (NMR) studies of working batteries have been performed in static mode, i.e., in the absence of magic angle spinning (MAS). Thus, it is extremely challenging to apply the method to paramagnetic systems such as the cathodes spinels Li(1+x)Mn(2-x)O4 primarily due to three factors: (1) the resonance lines are broadened severely; (2) spectral analysis is made more complicated by bulk magnetic susceptibility (BMS) effects, which depend on the orientation and shape of the object under investigation; (3) the difficulty in untangling the BMS effects induced by the paramagnetic and metallic components on other (often diamagnetic) components in the system, which result in additional shifts and line broadening. Here we evaluate the orientation-dependence of the BMS effect of Li1.08Mn1.92O4, analyzing the experimental results by using a simple long-distance Li-electron dipolar coupling model. In addition, we discuss the shape and packing density dependence of the BMS effect and its influence on the observed frequencies of other components, such as the Li metal and the electrolyte in the battery. Finally, we show that by taking these effects into account we are able to minimize the BMS induced shift by orienting the cell at a rotation angle, ?i=54.7 which facilitates the interpretation of the in situ NMR spectra of a working battery with the paramagnetic Li1.08Mn1.92O4 cathode. PMID:23838525

  14. Membrane topology of NS2B of dengue virus revealed by NMR spectroscopy.

    PubMed

    Li, Yan; Li, Qingxin; Wong, Ying Lei; Liew, Lynette Sin Yee; Kang, CongBao

    2015-10-01

    Non-structural (NS) proteins of dengue virus (DENV) are important for viral replication. There are four membrane proteins that are coded by viral genome. NS2B was shown to be one of the membrane proteins and its main function was confirmed to regulate viral protease activity. Its membrane topology is still not known because only few studies have been conducted to understand its structure. Here we report the determination of membrane topology of NS2B from DENV serotype 4 using NMR spectroscopy. NS2B of DENV4 was expressed and purified in detergent micelles. The secondary structure of NS2B was first defined based on backbone chemical resonance assignment. Four helices were identified in NS2B. The membrane topology of NS2B was defined based on relaxation analysis and paramagnetic relaxation enhancement experiments. The last three helices were shown to be more stable than the first helix. The NS3 protease cofactor region between ?2 and ?3 is highly dynamic. Our results will be useful for further structural and functional analysis of NS2B. PMID:26072288

  15. An Oil Spill in a Tube: An Accessible Approach for Teaching Environmental NMR Spectroscopy

    ERIC Educational Resources Information Center

    Simpson, Andre´ J.; Mitchell, Perry J.; Masoom, Hussain; Mobarhan, Yalda Liaghati; Adamo, Antonio; Dicks, Andrew P.

    2015-01-01

    NMR spectroscopy has great potential as an instrumental method for environmental chemistry research and monitoring but may be underused in teaching laboratories because of its complexity and the level of expertise required in operating the instrument and interpreting data. This laboratory experiment introduces environmental NMR spectroscopy to…

  16. An Oil Spill in a Tube: An Accessible Approach for Teaching Environmental NMR Spectroscopy

    ERIC Educational Resources Information Center

    Simpson, Andre J.; Mitchell, Perry J.; Masoom, Hussain; Mobarhan, Yalda Liaghati; Adamo, Antonio; Dicks, Andrew P.

    2015-01-01

    NMR spectroscopy has great potential as an instrumental method for environmental chemistry research and monitoring but may be underused in teaching laboratories because of its complexity and the level of expertise required in operating the instrument and interpreting data. This laboratory experiment introduces environmental NMR spectroscopy to

  17. Metabolomic insight into soy sauce through (1)H NMR spectroscopy.

    PubMed

    Ko, Bong-Kuk; Ahn, Hyuk-Jin; van den Berg, Frans; Lee, Cherl-Ho; Hong, Young-Shick

    2009-08-12

    Soy sauce, a well-known seasoning in Asia and throughout the world, consists of many metabolites that are produced during fermentation or aging and that have various health benefits. However, their comprehensive assessment has been limited due to targeted or instrumentally specific analysis. This paper presents for the first time a metabolic characterization of soy sauce, especially that aged up to 12 years, to obtain a global understanding of the metabolic variations through (1)H NMR spectroscopy coupled with multivariate pattern recognition techniques. Elevated amino acids and organic acids and the consumption of carbohydrate were associated with continuous involvement of microflora in aging for 12 years. In particular, continuous increases in the levels of betaine were found during aging for up to 12 years, demonstrating that microbial- or enzyme-related metabolites were also coupled with osmotolerant or halophilic bacteria present during aging. This work provides global insights into soy sauce through a (1)H NMR-based metabolomic approach that enhances the current understanding of the holistic metabolome and allows assessment of soy sauce quality. PMID:19591484

  18. Multiplicative or t1 Noise in NMR Spectroscopy

    SciTech Connect

    Granwehr, Josef

    2005-01-25

    The signal in an NMR experiment is highly sensitive to fluctuations of the environment of the sample. If, for example, the static magnetic field B{sub 0}, the amplitude and phase of radio frequency (rf) pulses, or the resonant frequency of the detection circuit are not perfectly stable and reproducible, the magnetic moment of the spins is altered and becomes a noisy quantity itself. This kind of noise not only depends on the presence of a signal, it is in fact proportional to it. Since all the spins at a particular location in a sample experience the same environment at any given time, this noise primarily affects the reproducibility of an experiment, which is mainly of importance in the indirect dimensions of a multidimensional experiment, when intense lines are suppressed with a phase cycle, or for difference spectroscopy techniques. Equivalently, experiments which are known to be problematic with regard to their reproducibility, like flow experiments or experiments with a mobile target, tend to be affected stronger by multiplicative noise. In this article it is demonstrated how multiplicative noise can be identified and characterized using very simple, repetitive experiments. An error estimation approach is developed to give an intuitive, yet quantitative understanding of its properties. The consequences for multidimensional NMR experiments are outlined, implications for data analysis are shown, and strategies for the optimization of experiments are summarized.

  19. Regularized Partial Least Squares with an Application to NMR Spectroscopy

    PubMed Central

    Allen, Genevera I.; Peterson, Christine; Vannucci, Marina; Maleti?-Savati?, Mirjana

    2014-01-01

    High-dimensional data common in genomics, proteomics, and chemometrics often contains complicated correlation structures. Recently, partial least squares (PLS) and Sparse PLS methods have gained attention in these areas as dimension reduction techniques in the context of supervised data analysis. We introduce a framework for Regularized PLS by solving a relaxation of the SIMPLS optimization problem with penalties on the PLS loadings vectors. Our approach enjoys many advantages including flexibility, general penalties, easy interpretation of results, and fast computation in high-dimensional settings. We also outline extensions of our methods leading to novel methods for non-negative PLS and generalized PLS, an adoption of PLS for structured data. We demonstrate the utility of our methods through simulations and a case study on proton Nuclear Magnetic Resonance (NMR) spectroscopy data. PMID:24511361

  20. Structure determination of uniformly (13)C, (15)N labeled protein using qualitative distance restraints from MAS solid-state (13)C-NMR observed paramagnetic relaxation enhancement.

    PubMed

    Tamaki, Hajime; Egawa, Ayako; Kido, Kouki; Kameda, Tomoshi; Kamiya, Masakatsu; Kikukawa, Takashi; Aizawa, Tomoyasu; Fujiwara, Toshimichi; Demura, Makoto

    2016-01-01

    Magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is a powerful method for structure determination of insoluble biomolecules. However, structure determination by MAS solid-state NMR remains challenging because it is difficult to obtain a sufficient amount of distance restraints owing to spectral complexity. Collection of distance restraints from paramagnetic relaxation enhancement (PRE) is a promising approach to alleviate this barrier. However, the precision of distance restraints provided by PRE is limited in solid-state NMR because of incomplete averaged interactions and intermolecular PREs. In this report, the backbone structure of the B1 domain of streptococcal protein G (GB1) has been successfully determined by combining the CS-Rosetta protocol and qualitative PRE restraints. The derived structure has a Cα RMSD of 1.49 Å relative to the X-ray structure. It is noteworthy that our protocol can determine the correct structure from only three cysteine-EDTA-Mn(2+) mutants because this number of PRE sites is insufficient when using a conventional structure calculation method based on restrained molecular dynamics and simulated annealing. This study shows that qualitative PRE restraints can be employed effectively for protein structure determination from a limited conformational sampling space using a protein fragment library. PMID:26728076

  1. Detection of Taurine in Biological Tissues by 33S NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Musio, Roberta; Sciacovelli, Oronzo

    2001-12-01

    The potential of 33S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that 33S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. 33S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the 33S NMR spectra of biological tissues.

  2. Applications of Diffusion Ordered Spectroscopy (DOSY-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion-ordered NMR (DOSY-NMR) is a powerful, but under-utilized, technique for the investigation of mixtures based on translational diffusion rates. DOSY spectra allow for determination by NMR of components that may differ in molecular weight, geometry or complexation. Typical applications coul...

  3. The Local Structural State of Aluminosilicate Garnet Solid Solutions: An Investigation of Grospydite Garnet from the Roberts Victor Kimberlite Using Paramagnetically Shifted 27Al and 29Si MAS NMR Resonances

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Palke, A. C.; Stebbins, J. F.

    2014-12-01

    Most rock-forming silicates are substitutional solid solutions. Over the years extensive research has been done to determine their structural and crystal chemical properties. Here, the distribution of cations, or order-disorder behavior, is of central importance. In the case of aluminosilicate garnet solid solutions (X3Al2Si3O12 with X = Mg, Fe2+, Mn2+ and Ca) it has been shown that both synthetic and natural crystals have random long-range X-cation disorder in space group Ia-3d, as given by X-ray single-crystal diffraction measurements. However, the structural state of natural garnets at the local scale is not known. Garnet from a grospydite xenolith from the Roberts Victor kimberlite, South Africa, was studied by 27Al and 29Si MAS NMR spectroscopy. The research thrust was placed on measuring and analyzing paramagnetically shifted resonances to determine the local (short range) structural state of the X-cations in a grossular-rich ternary aluminosilicate garnet solid solution. The garnet crystals are compositionally homogeneous based on microprobe analysis, showing no measurable zoning, and have the formula Grs46.7Prp30.0Alm23.3. The garnet is cubic with the standard garnet space group Ia-3d. The 27Al MAS NMR spectrum shows a very broad asymmetric resonance located between about 100 and -50 ppm. It consists of a number of individual overlapping paramagnetically shifted resonances, which are difficult to analyze quantitatively. The 29Si MAS NMR spectrum, showing better resolution, has two observable resonances termed S0 and S4. S0 is located between about -60 ppm and -160 ppm and S4 is centered at roughly 95 ppm. Both S0 and S4 are composite resonances in nature containing many overlapping individual peaks. S0 contains information on local cation configurations whereby an isolated SiO4 group in the garnet structure does not have an edge-shared Fe2+-containing dodecahedron. S4 involves local configurations where there is one edge-shared dodecahedron containing Fe2+. The measured intensity of the resonances S0 and S4 are roughly similar to calculated intensities assuming random cation mixing. These first results do not indicate any overt short-range cation order in grossular-rich grospydite garnet.

  4. Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase; pertinence for determining magnetic axes in paramagnetic substrate complexes

    PubMed Central

    Du, Zhenming; Unno, Masaki; Matsui, Toshitaka; Ikeda-Saito, Masao; La Mar, Gerd N.

    2010-01-01

    Proton 2D NMR was used to confirm in solution a highly conserved portion of the molecular structure upon substrate loss for the heme oxygenase from the pathogenic bacterium Corynebacterium diphtheriae, HmuO. The chemical shifts for the conserved portion of the structure are assessed as references for the dipolar shifts needed to determine the orientation of the paramagnetic susceptibility tensor, ?, in paramagnetic substrate complexes of HmuO. It is shown that the chemical shifts for the structurally conserved portion of substrate-free HmuO serve as excellent references for residues with only small to moderate sized dipolar shifts in the cyanide-inhibited substrate complex of HmuO, yielding an orientation of ? that is essentially the same as conventionally obtained from large dipolar shifts based on empirical estimates of the diamagnetic reference. The implications of these diamagnetic chemical shifts for characterizing the hydrogen bonding in the physiologically relevant, resting-state, high-spin aquo complex are discussed. The pattern of labile proton exchange in the distal H-bond network of substrate-free HmuO allowed comparison of changes in dynamic stability of tertiary contacts in the substrate-free and substrate-bound HmuO and with the same complexes of human heme oxygenase. PMID:20655112

  5. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy.

    PubMed

    Kozik, Violetta; Jarzembek, Krystyna; J?drzejowska, Agnieszka; B?k, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna

    2015-01-01

    Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 ?mol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05). PMID:26268964

  6. Solid phase extraction chromatography and NMR spectroscopy (SPEC-NMR) for the rapid identification of drug metabolites in urine.

    PubMed

    Wilson, I D; Nicholson, J K

    1988-01-01

    The use of solid phase extraction onto disposable columns containing a C18 bonded silica gel provides a rapid and simple procedure for the removal of interfering endogenous components from urine samples containing drug metabolites prior to detection and identification by (1)H NMR spectroscopy. In addition, these columns can be used to retain and concentrate the compounds of interest, thus improving the effective sensitivity of the NMR detection method. Using simple step gradients chromatographic separations can be performed, and metabolites may be rapidly fractionated. This approach (solid phase extraction chromatography with NMR or SPEC-NMR) utilises the multiparametric metabolite detection facility of a Fourier transform NMR spectrometer to monitor a chromatographic separation, as such it has some of the beneficial properties of a directly linked liquid chromatography-NMR system without any of the disadvantages. Applications of the SPEC-NMR method in the investigation of drug metabolism are illustrated here by reference to excretion studies on the drugs ibuprofen, paracetamol, aspirin, oxpentifylline and naproxen. PMID:16867428

  7. Communication: Phase incremented echo train acquisition in NMR spectroscopy.

    PubMed

    Baltisberger, Jay H; Walder, Brennan J; Keeler, Eric G; Kaseman, Derrick C; Sanders, Kevin J; Grandinetti, Philip J

    2012-06-01

    We present an improved and general approach for implementing echo train acquisition (ETA) in magnetic resonance spectroscopy, particularly where the conventional approach of Carr-Purcell-Meiboom-Gill (CPMG) acquisition would produce numerous artifacts. Generally, adding ETA to any N-dimensional experiment creates an N + 1 dimensional experiment, with an additional dimension associated with the echo count, n, or an evolution time that is an integer multiple of the spacing between echo maxima. Here we present a modified approach, called phase incremented echo train acquisition (PIETA), where the phase of the mixing pulse and every other refocusing pulse, ?(P), is incremented as a single variable, creating an additional phase dimension in what becomes an N + 2 dimensional experiment. A Fourier transform with respect to the PIETA phase, ?(P), converts the ?(P) dimension into a ?p dimension where desired signals can be easily separated from undesired coherence transfer pathway signals, thereby avoiding cumbersome or intractable phase cycling schemes where the receiver phase must follow a master equation. This simple modification eliminates numerous artifacts present in NMR experiments employing CPMG acquisition and allows "single-scan" measurements of transverse relaxation and J-couplings. Additionally, unlike CPMG, we show how PIETA can be appended to experiments with phase modulated signals after the mixing pulse. PMID:22697523

  8. Coherence selection in double CP MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Jen-Hsien; Chou, Fang-Chieh; Tzou, Der-Lii M.

    2008-11-01

    Applications of double cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy, via 1H/ 15N and then 15N/ 13C coherence transfers, for 13C coherence selection are demonstrated on a 15N/ 13C-labeled N-acetyl-glucosamine (GlcNAc) compound. The 15N/ 13C coherence transfer is very sensitive to the settings of the experimental parameters. To resolve explicitly these parameter dependences, we have systematically monitored the 13C{ 15N/ 1H} signal as a function of the rf field strength and the MAS frequency. The data reveal that the zero-quantum coherence transfer, with which the 13C effective rf field is larger than that of the 15N by the spinning frequency, would give better signal sensitivity. We demonstrate in one- and two-dimensional double CP experiments that spectral editing can be achieved by tailoring the experimental parameters, such as the rf field strengths and/or the MAS frequency.

  9. Applications of electron paramagnetic resonance spectroscopy to study interactions of iron proteins in cells with nitric oxide

    NASA Astrophysics Data System (ADS)

    Cammack, R.; Shergill, J. K.; Ananda Inalsingh, V.; Hughes, Martin N.

    1998-12-01

    Nitric oxide and species derived from it have a wide range of biological functions. Some applications of electron paramagnetic resonance (EPR) spectroscopy are reviewed, for observing nitrosyl species in biological systems. Nitrite has long been used as a food preservative owing to its bacteriostatic effect on spoilage bacteria. Nitrosyl complexes such as sodium nitroprusside, which are added experimentally as NO-generators, themselves produce paramagnetic nitrosyl species, which may be seen by EPR. We have used this to observe the effects of nitroprusside on clostridial cells. After growth in the presence of sublethal concentrations of nitroprusside, the cells show they have been converted into other, presumably less toxic, nitrosyl complexes such as (RS) 2Fe(NO) 2. Nitric oxide is cytotoxic, partly due to its effects on mitochondria. This is exploited in the destruction of cancer cells by the immune system. The targets include iron-sulfur proteins. It appears that species derived from nitric oxide such as peroxynitrite may be responsible. Addition of peroxynitrite to mitochondria led to depletion of the EPR-detectable iron-sulfur clusters. Paramagnetic complexes are formed in vivo from hemoglobin, in conditions such as experimental endotoxic shock. This has been used to follow the course of production of NO by macrophages. We have examined the effects of suppression of NO synthase using biopterin antagonists. Another method is to use an injected NO-trapping agent, Fe-diethyldithiocarbamate (Fe-DETC) to detect accumulated NO by EPR. In this way we have observed the effects of depletion of serum arginine by arginase. In brains from victims of Parkinson's disease, a nitrosyl species, identified as nitrosyl hemoglobin, has been observed in substantia nigra. This is an indication for the involvement of nitric oxide or a derived species in the damage to this organ.

  10. Development of a micro flow-through cell for high field NMR spectroscopy.

    SciTech Connect

    Alam, Todd Michael; McIntyre, Sarah K.

    2011-05-01

    A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

  11. Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY)

    ERIC Educational Resources Information Center

    Li, Weibin; Kagan, Gerald; Hopson, Russell; Williard, Paul G.

    2011-01-01

    Increasingly, the undergraduate chemistry curriculum includes nuclear magnetic resonance (NMR) spectroscopy. Advanced NMR techniques are often taught including two-dimensional gradient-based experiments. An investigation of intermolecular forces including viscosity, by a variety of methods, is often integrated in the undergraduate physical and

  12. Screening of counterfeit corticosteroid in creams and ointments by NMR spectroscopy.

    PubMed

    McEwen, Ian; Elmsj, Albert; Lehnstrm, Angelica; Hakkarainen, Birgit; Johansson, Monika

    2012-11-01

    It has been shown that NMR spectroscopy is an effective analytical method to rapidly screen creams and ointments for counterfeit corticosteroids. Extraction and NMR procedures have been developed. Ten over the counter creams and ointments sold in health care shops were screened and two creams were found to contain counterfeited corticosteroids. PMID:22846515

  13. Stereochemistry Determination by Powder X-ray Diffraction Analysis and NMR Spectroscopy Residual Dipolar Couplings

    SciTech Connect

    Garcia, M.; Pagola, S; Navarro-Vasquez, A; Phillips, D; Gayathri, C; Krakauer, H; Stephens, P; Nicotra, V; Gil, R

    2009-01-01

    A matter of technique: For a new steroidal lactol, jaborosalactol 24 (1), isolated from Jaborosa parviflora, NMR spectroscopy residual dipolar couplings and powder X-ray diffraction analysis independently gave the same stereochemistry at C23-C26. Conventional NMR spectroscopic techniques, such as NOE and {sup 3}J coupling-constant analysis failed to unambiguously determine this stereochemistry.

  14. Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY)

    ERIC Educational Resources Information Center

    Li, Weibin; Kagan, Gerald; Hopson, Russell; Williard, Paul G.

    2011-01-01

    Increasingly, the undergraduate chemistry curriculum includes nuclear magnetic resonance (NMR) spectroscopy. Advanced NMR techniques are often taught including two-dimensional gradient-based experiments. An investigation of intermolecular forces including viscosity, by a variety of methods, is often integrated in the undergraduate physical and…

  15. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations.

    PubMed

    Di Valentin, Cristiana; Pacchioni, Gianfranco; Selloni, Annabella; Livraghi, Stefano; Giamello, Elio

    2005-06-16

    Electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations are combined for the first time in an effort to characterize the paramagnetic species present in N-doped anatase TiO2 powders obtained by sol-gel synthesis. The experimental hyperfine coupling constants are well reproduced by two structurally different nitrogen impurities: substitutional and interstitial N atoms in the TiO2 anatase matrix. DFT calculations show that the nitrogen impurities induce the formation of localized states in the band gap. Substitutional nitrogen states lie just above the valence band, while interstitial nitrogen states lie higher in the gap. Excitations from these localized states to the conduction band may account for the absorption edge shift toward lower energies (visible region) observed in the case of N-doped TiO2 with respect to pure TiO2 (UV region). Calculations also show that nitrogen doping leads to a substantial reduction of the energy cost to form oxygen vacancies in bulk TiO2. This suggests that nitrogen doping is likely to be accompanied by oxygen vacancy formation. Finally, we propose that the relative abundance of the two observed nitrogen-doping species depends on the preparation conditions, such as the oxygen concentration in the atmosphere and the annealing temperature during synthesis. PMID:16852395

  16. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB{sub 2} superconductor nanomaterials

    SciTech Connect

    Bateni, Ali; Somer, Mehmet E-mail: msomer@ku.edu.tr; Erdem, Emre E-mail: msomer@ku.edu.tr; Repp, Sergej; Weber, Stefan; Acar, Selcuk; Kokal, Ilkin; Häßler, Wolfgang

    2015-04-21

    Undoped and carbon-doped magnesium diboride (MgB{sub 2}) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp{sup 3}-hybridized carbon radicals were detected. A strong reduction in the critical temperature T{sub c} was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra.

  17. A Mononuclear Mn(II) Pseudoclathrochelate Complex Studied by Multi-Frequency Electron-Paramagnetic-Resonance Spectroscopy.

    PubMed

    Azarkh, Mykhailo; Penkova, Larysa V; Kats, Svitlana V; Varzatskii, Oleg A; Voloshin, Yan Z; Groenen, Edgar J J

    2014-03-01

    Knowledge of the correlation between structural and spectroscopic properties of transition-metal complexes is essential to deepen the understanding of their role in catalysis, molecular magnetism, and biological inorganic chemistry. It provides topological and, sometimes, functional insight with respect to the active site properties of metalloproteins. The electronic structure of a high-spin mononuclear Mn(II) pseudoclathrochelate complex has been investigated by electron-paramagnetic-resonance (EPR) spectroscopy at 9.5 and 275.7 GHz. A substantial, virtually axial zero-field splitting with D = -9.7 GHz (-0.32 cm(-1)) is found, which is the largest one reported to date for a Mn(II) complex with six nitrogen atoms in the first coordination sphere. PMID:26274083

  18. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB2 superconductor nanomaterials

    NASA Astrophysics Data System (ADS)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Acar, Selcuk; Kokal, Ilkin; Hler, Wolfgang; Weber, Stefan; Somer, Mehmet

    2015-04-01

    Undoped and carbon-doped magnesium diboride (MgB2) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp3-hybridized carbon radicals were detected. A strong reduction in the critical temperature Tc was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra.

  19. Functional groups identified by solid state 13C NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  20. Crystal field simulation and NMR study of 19F in a EuF3 Van Vleck paramagnet

    NASA Astrophysics Data System (ADS)

    Savinkov, A. V.; Dooglav, A. V.; Malkin, B. Z.; Tagirov, M. S.; Korableva, S. L.

    2015-01-01

    The temperature dependence of the nuclear spin-lattice relaxation rate of 19F nuclei is measured for a powder sample of a EuF3 Van Vleck paramagnet, in a broad temperature range (55-300 K). The increase in the nuclear relaxation rate observed at T > 100 K is caused by fluctuations in the magnetic fields, induced at the fluorine nuclei by the magnetic moments of the europium ions, the lifetime of which is determined by a two-phonon relaxation process with input from the first excited state of the electron shell of Eu3+ ions (?1 = 370 K). The set of crystal field parameters allowing for a satisfactory description of the electron energy spectrum of the Eu3+ ions in the EuF3 crystal, is calculated within the framework of the semi-phenomenological exchange charge model.

  1. Electron paramagnetic resonance and electron spin-echo spectroscopy of Argonne Premium coals

    SciTech Connect

    Silbernagel, B.G.; Gebhard, L.A.; Bernardo, M.; Thomann, H.

    1993-12-31

    The series of Argonne Premium coals was examined by using electron paramagnetic resonance (EPR) and electron spin-echo (ESE) techniques. EPR measurements indicate the presence of both carbon radical species and transition metal ions, principally iron and manganese, in the samples. The carbon radical densities and the ease of saturation of the radical signal do not increase with increasing coal rank, as was observed in previous studies of demineralized, isolated coal macerals. ESE techniques discriminate between the narrow (inertinitic) and broad (vitrinitic) components of the carbon radical signal, and the line widths and relaxation rates have been determined for both components. Instantaneous diffusion was observed for all bituminous coals but not for the lignite coal. The data suggest that transition metal species significantly affect the carbon radical resonance properties of these coals. 12 refs., 8 figs., 5 tabs.

  2. Charge trapping in TiO2 polymorphs as seen by Electron Paramagnetic Resonance spectroscopy.

    PubMed

    Chiesa, Mario; Paganini, Maria Cristina; Livraghi, Stefano; Giamello, Elio

    2013-06-28

    Electron Paramagnetic Resonance (EPR) techniques have been employed to investigate charge carrier trapping in the two main TiO2 polymorphs, anatase and rutile, with particular attention to the features of electron trapping sites (formally Ti(3+) ions). The classic CW-EPR technique in this case provides signals based on the g tensor only. Nevertheless a systematic analysis of the signals obtained in the various cases (anatase and rutile, surface and bulk centers, regular and defective sites) has been performed providing useful guidelines on a field affected by some confusion. The problem of the localization of the electron spin density has been tackled by means of Pulse-EPR hyperfine techniques on samples appositely enriched with (17)O. This approach has led to evidence of a substantial difference, in terms of wavefunction localization between anatase (electrons trapped in regular lattice sites exhibiting delocalized electron density) and rutile (interstitial sites showing localized electron density). PMID:23695705

  3. Phosphorus speciation in a eutrophic lake by P NMR spectroscopy.

    PubMed

    Read, Emily K; Ivancic, Monika; Hanson, Paul; Cade-Menun, Barbara J; McMahon, Katherine D

    2014-10-01

    For eutrophic lakes, patterns of phosphorus (P) measured by standard methods are well documented but provide little information about the components comprising standard operational definitions. Dissolved P (DP) and particulate P (PP) represents important but rarely characterized nutrient pools. Samples from Lake Mendota, Wisconsin, USA were characterized using 31-phosphorus nuclear magnetic resonance spectroscopy ((31)P NMR) during the open water season of 2011 in this unmatched temporal study of aquatic P dynamics. A suite of organic and inorganic P forms was detected in both dissolved and particulate fractions: orthophosphate, orthophosphate monoesters, orthophosphate diesters, pyrophosphate, polyphosphate, and phosphonates. Through time, phytoplankton biomass, temperature, dissolved oxygen, and water clarity were correlated with changes in the relative proportion of P fractions. Particulate P can be used as a proxy for phytoplankton-bound P, and in this study, a high proportion of polyphosphate within particulate samples suggested P should not be a limiting factor for the dominant primary producers, cyanobacteria. Hypolimnetic particulate P samples were more variable in composition than surface samples, potentially due to varying production and transport of sinking particles. Surface dissolved samples contained less P than particulate samples, and were typically dominated by orthophosphate, but also contained monoester, diester, polyphosphate, pyrophosphate, and phosphonate. Hydrologic inflows to the lake contained more orthophosphate and orthophosphate monoesters than in-lake samples, indicating transformation of P from inflowing waters. This time series explores trends of a highly regulated nutrient in the context of other water quality metrics (chlorophyll, mixing regime, and clarity), and gives insight on the variability of the structure and occurrence of P-containing compounds in light of the phosphorus-limited paradigm. PMID:24956605

  4. Applications of quantitative 1H- and 13C-NMR spectroscopy in drug analysis.

    PubMed

    Pieters, L A; Vlietinck, A J

    1989-01-01

    The usefulness of 1H and 13C Fourier transform (FT) nuclear magnetic resonance spectroscopy (1H- and 13C-NMR) as quantitative methods stems from the potential direct relationship between the area under an NMR peak and the number of the particular type of nuclei that give rise to the signal, though it is necessary, especially for quantitative 13C-NMR, to take some precautions. The experimental limitations that have to be overcome in order to obtain quantitative 13C-NMR spectra are associated with the relaxation time, the nuclear Overhauser effect (NOE), and the NMR instrument itself (filter characteristics, power level of the exciting pulse, dynamic range, digital resolution). Practical problems aside, 13C-NMR has a greater potential than 1H-NMR for the study of organic systems. The sensitivity of 13C chemical shifts to small differences in molecular environment, coupled with a large chemical shift range, gives a "chromatographic" separation of resonances of interest, and has made 13C-NMR an attractive method for analysing complex mixtures. Some applications of quantitative 1H- and 13C-NMR spectroscopy in drug analysis are discussed. PMID:2490526

  5. The inherent accuracy of 1H NMR spectroscopy to quantify plasma lipoproteins is subclass dependent.

    PubMed

    Ala-Korpela, Mika; Lankinen, Niko; Salminen, Aino; Suna, Teemu; Soininen, Pasi; Laatikainen, Reino; Ingman, Petri; Jauhiainen, Matti; Taskinen, Marja-Riitta; Hberger, Kroly; Kaski, Kimmo

    2007-02-01

    Proton NMR spectroscopy as a means to quantify lipoprotein subclasses has received wide clinical interest. The experimental part is a fast routine procedure that contrasts favourably to other lipoprotein measurement protocols. The difficulties in using (1)H NMR, however, are in uncovering the subclass specific information from the overlapping data. The NMR-based quantification has been evaluated only in relation to biochemical measures, thereby leaving the inherent capability of NMR rather vague due to biological variation and diversity among the biochemical experiments. Here we will assess the use of (1)H NMR spectroscopy of plasma per se. This necessitates data for which the inherent parameters, namely the shapes and areas of the (1)H NMR signals of the subclasses are available. This was achieved through isolation and (1)H NMR experiments of 11 subclasses--VLDL1, VLDL2, IDL, LDL1, LDL2, LDL3, HDL(2b), HDL(2a), HDL(3a), HDL(3b) and HDL(3c)--and the subsequent modelling of the spectra. The subclass models were used to simulate biochemically representative sets of spectra with known subclass concentrations. The spectral analyses revealed 10-fold differences in the quantification accuracy of different subclasses by (1)H NMR. This finding has critical significance since the usage of (1)H NMR methodology in the clinical arena is rapidly increasing. PMID:16730730

  6. Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone.

    PubMed

    Singh, Chandan; Rai, Ratan Kumar; Kayastha, Arvind M; Sinha, Neeraj

    2016-02-01

    Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line broadening in solid-state nuclear magnetic resonance (ssNMR) spectroscopy. It has given a new direction to ssNMR spectroscopy with its different applications. We present here the first and foremost application of ultra fast MAS (~60?kHz) for ssNMR spectroscopy of intact bone. This methodology helps to comprehend and elucidate the organic content in the intact bone matrix with resolution and sensitivity enhancement. At this MAS speed, amino protons from organic part of intact bone start to appear in (1) H NMR spectra. The experimental protocol of ultra-high speed MAS for intact bone has been entailed with an additional insight achieved at 60?kHz. Copyright 2015 John Wiley & Sons, Ltd. PMID:26352739

  7. NMR Stark Spectroscopy: New Methods to Calibrate NMR Sensitivity to Electric Fields

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.

    The influence of electrostatics on NMR parameters is well accepted. Thus, NMR is a promising route to probe electrical features within molecules and materials. However, applications of NMR Stark effects (E-field induced changes in spin energy levels) have been elusive. I have developed new approaches to resolve NMR Stark effects from an applied E field. This calibrates nuclear probes whose spectral response might later be used to evaluate internal E fields that are critical to function, such as those due to local charge distributions or sample structure. I will present two novel experimental approaches for direct calibration of NMR quadrupolar Stark effects (QSEs). In the first, steady-state (few-second) excitation by an E field at twice the NMR frequency (2? 0) is used to saturate spin magnetization. The extent of saturation vs. E-field amplitude calibrates the QSE response rate, while measurements vs sample orientation determine tensorial character. The second method instead synchronizes short (few s) pulses of the 2?0 E field with a multiple-pulse NMR sequence. This, POWER (Perturbations Observed With Enhanced Resolution) approach enables more accurate measure of small QSEs (i.e. few Hz spectral changes). A 2nd key advantage is the ability to define tensorial response without reorienting the sample, but instead varying the phase of the 2?0 field. I will describe these experiments and my home-built NMR Stark probe, employed on a conventional wide-bore solid-state NMR system. Results with GaAs demonstrate each method, while extensions to a wider array of molecular and material systems may now be possible using these methods.

  8. NMR spectroscopy for thin films by magnetic resonance force microscopy.

    PubMed

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 ?m that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the (19)F NMR spectrum for a 34 nm-thick CaF2 thin film. PMID:24217000

  9. NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, Sanggap; Kim, Kiwoong; Han, Yunseok

    2013-11-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 ?m that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34 nm-thick CaF2 thin film.

  10. NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy

    PubMed Central

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336??m that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34?nm-thick CaF2 thin film. PMID:24217000

  11. Characterization of molecular structure of DAST via NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Pang, Zi-Bo; Meng, Da-Lei; Xu, Yong-Kuan; Wu, Cong

    2016-02-01

    4-N, N-dimethylamino-4‧-N‧-methyl-stilbazolium tosylate (DAST) crystal has excellent properties of nonlinear optics and electro-optical effect, and it can be used in the fields of radiation and detection through wave bands from infrared to terahertz. Besides, DAST thin films have exhibited their excellent properties and have expanded application fields of DAST material. CD3OD was chosen as the solvent to conduct 1H NMR, 13C NMR, 1H-1H COSY, 1H-13C HSQC and 1H-13C HMBC characterization of DAST respectively. All peaks in 1H and 13C NMR spectra of DAST were assigned with assistance of 2D NMR correlation peaks.

  12. Copper Environment in Artificial Metalloproteins Probed by Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Flores, Marco; Olson, Tien L; Wang, Dong; Edwardraja, Selvakumar; Shinde, Sandip; Williams, JoAnn C; Ghirlanda, Giovanna; Allen, James P

    2015-10-29

    The design of binding sites for divalent metals in artificial proteins is a productive platform for examining the characteristics of metal-ligand interactions. In this report, we investigate the spectroscopic properties of small peptides and four-helix bundles that bind Cu(II). Three small peptides, consisting of 15 amino acid residues, were designed to have two arms, each containing a metal-binding site comprised of different combinations of imidazole and carboxylate side chains. Two four-helix bundles each had a binding site for a central dinuclear metal cofactor, with one design incorporating additional potential metal ligands at two identical sites. The small peptides displayed pH-dependent, metal-induced changes in the circular dichroism spectra, consistent with large changes in the secondary structure upon metal binding, while the spectra of the four-helix bundles showed a predominant ?-helix content but only small structural changes upon metal binding. Electron paramagnetic resonance spectra were measured at X-band revealing classic Cu(II) axial patterns with hyperfine coupling peaks for the small peptides and four-helix bundles exhibiting a range of values that were related to the specific chemical natures of the ligands. The variety of electronic structures allow us to define the distinctive environment of each metal-binding site in these artificial systems, including the designed additional binding sites in one of the four-helix bundles. PMID:26201933

  13. Electron paramagnetic resonance spectroscopy of Fe3+ ions in amethyst: thermodynamic potentials and magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Sivaramaiah, Gobburu; Lin, Jinru; Pan, Yuanming

    2011-02-01

    Single-crystal and powder electron paramagnetic resonance (EPR) spectroscopic studies of natural amethyst quartz, before and after isochronal annealing between 573 and 1,173 K, have been made from 90 to 294 K. Single-crystal EPR spectra confirm the presence of two substitutional Fe3+ centers. Powder EPR spectra are characterized by two broad resonance signals at g = ~10.8 and 4.0 and a sharp signal at g = 2.002. The sharp signal is readily attributed to the well-established oxygen vacancy electron center E 1'. However, the two broad signals do not correspond to any known Fe3+ centers in the quartz lattice, but are most likely attributable to Fe3+ clusters on surfaces. The absolute numbers of spins of the Fe3+ species at g = ~10.8 have been calculated from powder EPR spectra measured at temperatures from 90 to 294 K. These results have been used to extract thermodynamic potentials, including Gibbs energy of activation ? G, activation energy E a, entropy of activation ? S and enthalpy of activation ? H for the Fe3+ species in amethyst. In addition, magnetic susceptibilities ( ?) have been calculated from EPR data at different temperatures. A linear relationship between magnetic susceptibility and temperature is consistent with the Curie-Weiss law. Knowledge about the stability and properties of Fe3+ species on the surfaces of quartz is important to better understanding of the reactivity, bioavailability and heath effects of iron in silica particles.

  14. Use of Electron Paramagnetic Resonance Spectroscopy to Evaluate the Redox State In Vivo

    PubMed Central

    SWARTZ, HAROLD M.; KHAN, NADEEM; KHRAMTSOV, VALERY V.

    2009-01-01

    The aim of this article is to provide an overview of how electron paramagnetic resonance (EPR) can be used to measure redox-related parameters in vivo. The values of this approach include that the measurements are made under fully physiological conditions, and some of the measurements cannot be made by other means. Three complementary approaches are used with in vivo EPR: the rate of reduction or reactions of nitroxides, spin trapping of free radicals, and measurements of thiols. All three approaches already have produced unique and useful information. The measurement of the rate of decrease of nitroxides technically is the simplest, but difficult to interpret because the measured parameter, reduction in the intensity of the nitroxide signal, can occur by several different mechanisms. In vivo spin trapping can provide direct evidence for the occurrence of specific free radicals in vivo and reflect relative changes, but accurate absolute quantification remains challenging. The measurement of thiols in vivo also appears likely to be useful, but its development as an in vivo technique is at an early stage. It seems likely that the use of in vivo EPR to measure redox processes will become an increasingly utilized and valuable tool. PMID:17678441

  15. Determination of Dihydrobenzoacridinone Structures by NMR, IR, and UV Spectroscopy and Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kozlov, N. G.; Zhiharko, Yu. D.; Skakovsky, E. D.; Baranovsky, A. V.; Ogorodnikova, M. M.; Basalaeva, L. I.

    2016-01-01

    Condensation of 2-naphthylamine, aromatic aldehydes, and dimedone was found to produce 9,10-dihydrobenzo[a] acridin-11-one derivatives according to PMR, 13C NMR, and IR spectroscopy and mass spectrometry. Correlation spectroscopy showed that the carbonyl in the synthesized dihydrobenzoacridinone derivatives was located on C11.

  16. Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy.

    PubMed

    Stintzing, Florian C; Conrad, Jrgen; Klaiber, Iris; Beifuss, Uwe; Carle, Reinhold

    2004-02-01

    Four betacyanin pigments were analysed by LC NMR and subjected to extensive NMR characterisation after isolation. Previously, low pH values were applied for NMR investigations of betalains resulting in rapid degradation of the purified substances thus preventing extensive NMR studies. Consequently, up to now only one single (13)C NMR spectrum of a betalain pigment, namely that of neobetanin (=14,15-dehydrobetanin), was available. Because of its sufficient stability under highly acidic conditions otherwise detrimental for betacyanins, this pigment remained an exemption. Since betalains are most stable in the pH range of 5-7, a new solvent system has been developed allowing improved data acquisition through improved pigment stability at near neutral pH. Thus, not only (1)H, but for the first time also partial (13)C data of betanin, isobetanin, phyllocactin and hylocerenin isolated from red-purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose, Cactaceae] could be indirectly obtained by gHSQC- and gHMQC-NMR experiments. PMID:14759534

  17. Oxidative stability and radical scavenging activity of extra virgin olive oils: an electron paramagnetic resonance spectroscopy study.

    PubMed

    Papadimitriou, V; Sotiroudis, T G; Xenakis, A; Sofikiti, N; Stavyiannoudaki, V; Chaniotakis, N A

    2006-07-28

    The oxidative stability of extra virgin olive oils (EVOO) from the Greek island of Crete was evaluated by electron paramagnetic resonance (EPR) spectroscopy and the spin trapping technique. The spin trap N-t-butyl-alpha-phenylnitrone (PBN) was added to the olive oil samples and the production of free radicals was monitored during heating at 70 degrees C. Induction time for the accelerated oxidation of virgin olive oils at 70 degrees C was determined. The EPR results were compared with the oxidative stability values provided by the Rancimat method at 110 degrees C and high linear correlations were found (r=0.922). EPR spin trapping provides a sensitive and rapid method for evaluating the oxidative stability of EVOO. The same samples of Greek extra virgin olive oils were also examined for their radical scavenging activity (RSA) toward the stable galvinoxyl radical by EPR spectroscopy. The decrease of the intensity of the EPR signal upon incubation time was followed. Both oxidative stability and radical scavenging activity of EVOO samples were correlated to their content in polyphenols and tocopherols. PMID:17723560

  18. Paramagnetic NMR investigations of high-spin nickel(II) complexes. Controlled synthesis, structural, electronic, and magnetic properties of dinuclear vs. mononuclear species.

    PubMed

    Belle, C; Bougault, C; Averbuch, M T; Durif, A; Pierre, J L; Latour, J M; Le Pape, L

    2001-08-22

    New dissymmetric tertiary amines (N(3)SR) with varying N/S donor sets have been synthesized to provide mono- and dinuclear complexes. Acetate ions are used to complete the octahedral coordination sphere around nickel(II) atom(s). The facile conversion of mononuclear to dinuclear systems can be controlled to produce either mono- or dinuclear complexes from the same ligand. The dinuclear complex a(BPh(4))(2) ([Ni(2)(N(3)SSN(3))(OAc)(2)](BPh(4))(2)) has been characterized in the solid state by X-ray diffraction techniques as solvate: a(BPh(4))(2).(1/2)[5(CH(3)OH).(CH(3)CN).(CH(3)CH(2)OH)]. The two Ni atoms are six-coordinated and bridged by a disulfide group and two bidentate acetates. Magnetic susceptibility reveals a weak ferromagnetic exchange interaction between the two Ni atoms with J = 2.5(7) cm(-1). UV-vis studies suggest that the six-coordinated structure persists in solution. The (1)H NMR spectrum of a(BPh(4))(2) exhibits sharp significantly hyperfine shifted ligand signals. A complete assignment of resonances is accomplished by a combination of methods: 2D-COSY experiments, selective chemical substitution, and analysis of proton relaxation data. Proton isotropic hyperfine shifts are shown to originate mainly from contact interactions and to intrinsically contain a small J-magnetic coupling and/or zero-field splitting contribution. A temperature dependence study of longitudinal relaxation times indicates that a very unusual paramagnetic Curie dipolar mechanism is the dominant relaxation pathway in these weakly ferromagnetically spin-coupled dinickel(II) centers. The mononuclear nickel(II) analogue exhibits extremely broader (1)H NMR signals and only partial analysis could be performed. These data are consistent with a shortening of electronic relaxation times in homodinuclear compounds with respect to the corresponding mononuclear species. PMID:11506562

  19. Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.

    SciTech Connect

    Krishnan, V V

    2005-04-26

    NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

  20. Forensic examination of electrical tapes using high resolution magic angle spinning (1)H NMR spectroscopy.

    PubMed

    Schoenberger, Torsten; Simmross, Ulrich; Poppe, Christian

    2016-01-01

    The application of high resolution magic angle spinning (HR-MAS) (1)H NMR spectroscopy is ideally suited for the differentiation of plastics. In addition to the actual material composition, the different types of polymer architectures and tacticity provide characteristic signals in the fingerprint of the (1)H NMR spectra. The method facilitates forensic comparison, as even small amounts of insoluble but swellable plastic particles are utilized. The performance of HR-MAS NMR can be verified against other methods that were recently addressed in various articles about forensic tape comparison. In this study samples of the 90 electrical tapes already referenced by the FBI laboratory were used. The discrimination power of HR-MAS is demonstrated by the fact that more tape groups can be distinguished by NMR spectroscopy than by using the combined evaluation of several commonly used analytical techniques. An additional advantage of this robust and quick method is the very simple sample preparation. PMID:26558760

  1. Metabolic profiling of potential probiotic or synbiotic cheeses by nuclear magnetic resonance (NMR) spectroscopy.

    PubMed

    Rodrigues, Dina; Santos, Claudio H; Rocha-Santos, Teresa A P; Gomes, Ana M; Goodfellow, Brian J; Freitas, Ana C

    2011-05-11

    To assess ripening of potential probiotic cheeses (containing either Lactobacillus casei -01 or Bifidobacterium lactis B94) or synbiotic cheeses with fructooligosaccharides (FOS) or a 50:50 mix of FOS/inulin, metabolic profiles have been obtained via classical biochemical analyses and by NMR spectroscopy. The addition of prebiotics to the cheeses resulted in lower proteolysis indices, especially in those synbiotic cheeses inoculated with B. lactis B94. Among synbiotic cheeses the combination of FOS and inulin resulted in an increase in lipolytic activity. The metabolic profiles of the cheeses analyzed by NMR spectroscopy, combined with multivariate statistics, allowed profiles to be distinguished by maturation time, added probiotic bacteria, or, in the case of B. lactis B94 cheese, added prebiotic. The NMR results are in agreement with the biochemical analyses and demonstrate the potential of NMR for the study of metabolic processes in probiotic/synbiotic food matrices. PMID:21443163

  2. 31P NMR spectroscopy of in vivo tumors

    NASA Astrophysics Data System (ADS)

    Ng, T. C.; Evanochko, W. T.; Hiramoto, R. N.; Ghanta, V. K.; Lilly, M. B.; Lawson, A. J.; Corbett, T. H.; Durant, J. R.; Glickson, J. D.

    A probe, suitable for any wide-bore NMR spectrometer, was constructed for monitoring high-resolution spectra of in vivo subcutaneously implanted tumors in mice. Preliminary studies of a variety of murine tumors (MOPC 104E myeloma, Dunn osteosarcoma, colon-26, ovarian M5, and mammary adenocarcinoma as well as human colon, mammary, and lung tumors in athymic mice) indicate that the 31P NMR spectrum is a sensitive monitor of progressive metabolic changes that occur during untreated tumor growth and an early indicator of tumor response to chemotherapy, hyperthermia, and X radiation. Response to each of these therapeutic modalities is accompanied by distinctly different spectral changes.

  3. Localized double-quantum-filtered 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; Hetherington, H. P.; Meyerhoff, D. J.; Twieg, D. B.

    The image-guided in vivo spectroscopic (ISIS) pulse sequence has been combined with a double-quantum-filter scheme in order to obtain localized and water-suppressed 1H NMR spectra of J-coupled metabolites. The coherence-transfer efficiency associated with the DQ filter for AX and A 3X spin systems is described. Phantom results of carnosine, alanine, and ethanol in aqueous solution are presented. For comparison, the 1H NMR spectrum of alanine in aqueous solution with the binomial (1331, 2662) spin-echo sequence is also shown.

  4. Synthesis and characterization of polyphosphazene copolymers using phosphorus-31 NMR spectroscopy

    SciTech Connect

    Stewart, F.F.; Peterson, E.S.; Stone, M.L.; Singler, R.E.

    1997-01-01

    It was observed that competitive nucleophilic addition processes may be observed by {sup 31}P NMR spectroscopy. Methoxyethoxyethanol (MEE) and p-methoxyphenol readily substitute for chlorineonto phosphorus and the relative rates are generally comparable to each other. Sterically, the phenol presents is slightly larger than MEE but this does not appear to effect substitution judging by the observed PN(OAr){sub 2} NMR signal. These processes are still being studied.

  5. NMR spectroscopy of experimentally shocked single crystal quartz: A reexamination of the NMR shock barometer

    NASA Technical Reports Server (NTRS)

    Fiske, P. S.; Gratz, A. J.; Nellis, W. J.

    1993-01-01

    Cygan and others report a broadening of the Si-29 nuclear magnetic resonance (NMR) peak for synthetic quartz powders with increasing shock pressure which they propose as a shock wave barometer for natural systems. These results are expanded by studying single crystal quartz shocked to 12 and 33 GPa using the 6.5 m two-stage light-gas gun at Lawrence Livermore National Laboratories. Our NMR results differ substantially from those of Cygan and others and suggest that the proposed shock wave barometer may require refinement. The difference in results between this study and that of Cygan and others is most likely caused by different starting materials (single crystal vs. powder) and different shock loading histories. NMR results from single crystal studies may be more applicable to natural systems.

  6. Magic-angle-spinning NMR spectroscopy applied to small molecules and peptides in lipid bilayers.

    PubMed

    Ader, C; Schneider, R; Seidel, K; Etzkorn, M; Baldus, M

    2007-11-01

    ssNMR (solid-state NMR) spectroscopy provides increasing possibilities to study the structural and dynamic aspects of biological membranes. Here, we review recent ssNMR experiments that are based on MAS (magic angle spinning) and that provide insight into the structure and dynamics of membrane systems at the atomic level. Such methods can be used to study membrane architecture, domain formation or molecular complexation in a way that is highly complementary to other biophysical methods such as imaging or calorimetry. PMID:17956261

  7. Profiling formulated monoclonal antibodies by (1)H NMR spectroscopy.

    PubMed

    Poppe, Leszek; Jordan, John B; Lawson, Ken; Jerums, Matthew; Apostol, Izydor; Schnier, Paul D

    2013-10-15

    Nuclear magnetic resonance (NMR) is arguably the most direct methodology for characterizing the higher-order structure of proteins in solution. Structural characterization of proteins by NMR typically utilizes heteronuclear experiments. However, for formulated monoclonal antibody (mAb) therapeutics, the use of these approaches is not currently tenable due to the requirements of isotope labeling, the large size of the proteins, and the restraints imposed by various formulations. Here, we present a new strategy to characterize formulated mAbs using (1)H NMR. This method, based on the pulsed field gradient stimulated echo (PGSTE) experiment, facilitates the use of (1)H NMR to generate highly resolved spectra of intact mAbs in their formulation buffers. This method of data acquisition, along with postacquisition signal processing, allows the generation of structural and hydrodynamic profiles of antibodies. We demonstrate how variation of the PGSTE pulse sequence parameters allows proton relaxation rates and relative diffusion coefficients to be obtained in a simple fashion. This new methodology can be used as a robust way to compare and characterize mAb therapeutics. PMID:24006877

  8. Structural determination of larger proteins using stable isotope labeling and NMR spectroscopy

    SciTech Connect

    Unkefer, C.; Hernandez, G.; Springer, P.; Trewhella, J.; Blumenthal, D.; Lidstrom, M.

    1996-04-01

    The project sought to employ stable isotope labeling and NMR spectroscopy to study protein structures and provide insight into important biochemical problems. A methylotrophic bacterial expression system has been developed for uniform deuterium and carbon-13 labeling of proteins for structural studies. These organisms grow using methanol as the sole source of carbon and energy. Because isotopically labeled methanol is relatively inexpensive, the methylotrophs are ideal for expressing proteins labeled uniformly with deuterium and/or carbon-13. This expression system has been employed to prepare deuterated troponin C. NMR spectroscopy measurements have been made on the inhibitory peptide from troponin I (residues 96--115), both as the free peptide and the peptide complexed with deuterated troponin C. Proton-NMR spectroscopy resonance-signal assignments have been made for the free peptide.

  9. Characterizing the conformational dynamics of metal-free PsaA using molecular dynamics simulations and electron paramagnetic resonance spectroscopy.

    PubMed

    Deplazes, Evelyne; Begg, Stephanie L; van Wonderen, Jessica H; Campbell, Rebecca; Kobe, Bostjan; Paton, James C; MacMillan, Fraser; McDevitt, Christopher A; O'Mara, Megan L

    2015-12-01

    Prokaryotic metal-ion receptor proteins, or solute-binding proteins, facilitate the acquisition of metal ions from the extracellular environment. Pneumococcal surface antigen A (PsaA) is the primary Mn(2+)-recruiting protein of the human pathogen Streptococcus pneumoniae and is essential for its in vivo colonization and virulence. The recently reported high-resolution structures of metal-free and metal-bound PsaA have provided the first insights into the mechanism of PsaA-facilitated metal binding. However, the conformational dynamics of metal-free PsaA in solution remain unknown. Here, we use continuous wave electron paramagnetic resonance (EPR) spectroscopy and molecular dynamics (MD) simulations to study the relative flexibility of the structural domains in metal-free PsaA and its distribution of conformations in solution. The results show that the crystal structure of metal-free PsaA is a good representation of the dominant conformation in solution, but the protein also samples structurally distinct conformations that are not captured by the crystal structure. Further, these results suggest that the metal binding site is both larger and more solvent exposed than indicated by the metal-free crystal structure. Collectively, this study provides atomic-resolution insight into the conformational dynamics of PsaA prior to metal binding and lays the groundwork for future EPR and MD based studies of PsaA in solution. PMID:26379256

  10. Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy.

    PubMed

    Mader, K; Gallez, B; Liu, K J; Swartz, H M

    1996-02-01

    Using stable free radicals (nitroxides) whose spectra reflect microviscosity and pH, low-frequency electron paramagnetic resonance (EPR) spectroscopy was used to characterize the release pattern of subcutaneous implants of poly(D,L-lactide-co-glycolide) (PLGA) continuously and non-invasively in living mice. No significant changes occurred during the first days after implantation. After about 1 week, the recorded EPR spectra gave direct evidence for the formation of compartments with high mobility and increasing acidity in the delivery system. The contribution of the mobile part of the spectrum increased with time, but no remarkable decay of the overall signal intensity was observed during the second week. The EPR signals decayed rapidly after 3 weeks. The experimental data are consistent with bulk hydrolysis as the dominating mechanism of release and are not consistent with a surface-controlled pattern of degradation. The formation of acidic compartments in the delivery system may have significant effects on drug stability, drug solubility, bioavailability, pharmacokinetics, and ultimately on therapeutic efficiency. In particular, the finding of areas of low pH within the polymer raise the possibility that hydrolysable drugs may undergo degradation in the implant prior to their release. Our results demonstrate that EPR is a valuable tool for characterizing such drug delivery systems in vivo. PMID:8938242

  11. Mn(II) Binding and Subsequent Oxidation by the Multicopper Oxidase MnxG Investigated by Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Tao, Lizhi; Stich, Troy A; Butterfield, Cristina N; Romano, Christine A; Spiro, Thomas G; Tebo, Bradley M; Casey, William H; Britt, R David

    2015-08-26

    The dynamics of manganese solid formation (as MnOx) by the multicopper oxidase (MCO)-containing Mnx protein complex were examined by electron paramagnetic resonance (EPR) spectroscopy. Continuous-wave (CW) EPR spectra of samples of Mnx, prepared in atmosphere and then reacted with Mn(II) for times ranging from 7 to 600 s, indicate rapid oxidation of the substrate manganese (with two-phase pseudo-first-order kinetics modeled using rate coefficients of: k(1obs) = 0.205 0.001 s(-1) and k(2obs) = 0.019 0.001 s(-1)). This process occurs on approximately the same time scale as in vitro solid MnOx formation when there is a large excess of Mn(II). We also found CW and pulse EPR spectroscopic evidence for at least three classes of Mn(II)-containing species in the reaction mixtures: (i) aqueous Mn(II), (ii) a specifically bound mononuclear Mn(II) ion coordinated to the Mnx complex by one nitrogenous ligand, and (iii) a weakly exchange-coupled dimeric Mn(II) species. These findings provide new insights into the molecular mechanism of manganese mineralization. PMID:26244911

  12. Discrimination of allied species within the genus Turbinaria (Fucales, Phaeophyceae) using HRMAS NMR spectroscopy.

    PubMed

    Le Lann, K; Kervarec, N; Payri, C E; Deslandes, E; Stiger-Pouvreau, V

    2008-01-15

    A novel chemotaxonomical method based on 1D (1)H HRMAS NMR spectroscopy is being tested for taxonomical purposes. This powerful technique allowed us to discriminate between specimens belonging to two sister species of Turbinaria, which are difficult to tell apart using only morphological characters. Based on spectra analysis, the results allowed us to successfully group the specimens according to their species. Thus, the efficiency of HRMAS NMR spectroscopy for the discrimination of algal species and for the pre-screening of potential chemomarkers is demonstrated. PMID:18371754

  13. Characterization of the essential oil of Agastache rugosa by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Skakovskii, E. D.; Kiselev, W. P.; Tychinskaya, L. Yu.; Schutova, A. G.; Gonsharova, L. W.; Spiridowish, E. W.; Bovdey, N. A.; Kiselev, P. A.; Gaidukevich, O. A.

    2010-07-01

    The composition of essential oil from Agastache rugosa (Fish. et Mey) O.Kuntze was studied by 1H and 13C NMR spectroscopy. Essential oil was isolated from the aerial part of plants growing in the Central Botanical Garden of the NAS of Belarus during flowering and fruiting. The oil chemical composition was found to depend little on the sampling time. It was shown that NMR spectroscopy could be successfully used to both monitor the content of the hepatotoxic substance (pulegone) and characterize the quality and authenticity of essential oils.

  14. DSP-based on-line NMR spectroscopy using an anti-Hebbian learning algorithm

    SciTech Connect

    Razazian, K.; Dieckman, S.L.; Raptis, A.C.; Bobis, J.P. |

    1995-07-01

    This paper describes a nuclear magnetic resonance (NMR) system that uses an adaptive algorithm to carry out real-time NMR spectroscopy. The system employs a digital signal processor (DSP) chip to regulate the transmitted and received signal together with spectral analysis of the received signal to determine free induction decay (FID). To implement such a signal-processing routine for detection of the desired signal, an adaptive line enhancer filter that uses an anti-Hebbian learning algorithm is applied to the FID spectra. The results indicate that the adaptive filter can be a reliable technique for on-line spectroscopy study.

  15. Kissing G Domains of MnmE Monitored by X-Ray Crystallography and Pulse Electron Paramagnetic Resonance Spectroscopy

    PubMed Central

    Meyer, Simon; Bhme, Sabine; Krger, Andr; Steinhoff, Heinz-Jrgen; Klare, Johann P.; Wittinghofer, Alfred

    2009-01-01

    MnmE, which is involved in the modification of the wobble position of certain tRNAs, belongs to the expanding class of G proteins activated by nucleotide-dependent dimerization (GADs). Previous models suggested the protein to be a multidomain protein whose G domains contact each other in a nucleotide dependent manner. Here we employ a combined approach of X-ray crystallography and pulse electron paramagnetic resonance (EPR) spectroscopy to show that large domain movements are coupled to the G protein cycle of MnmE. The X-ray structures show MnmE to be a constitutive homodimer where the highly mobile G domains face each other in various orientations but are not in close contact as suggested by the GDP-AlFx structure of the isolated domains. Distance measurements by pulse double electron-electron resonance (DEER) spectroscopy show that the G domains adopt an open conformation in the nucleotide free/GDP-bound and an open/closed two-state equilibrium in the GTP-bound state, with maximal distance variations of 18 . With GDP and AlFx, which mimic the transition state of the phosphoryl transfer reaction, only the closed conformation is observed. Dimerization of the active sites with GDP-AlFx requires the presence of specific monovalent cations, thus reflecting the requirements for the GTPase reaction of MnmE. Our results directly demonstrate the nature of the conformational changes MnmE was previously suggested to undergo during its GTPase cycle. They show the nucleotide-dependent dynamic movements of the G domains around two swivel positions relative to the rest of the protein, and they are of crucial importance for understanding the mechanistic principles of this GAD. PMID:19806182

  16. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational

  17. Diffusion exchange NMR spectroscopy in inhomogeneous magnetic fields.

    PubMed

    Neudert, Oliver; Stapf, Siegfried; Mattea, Carlos

    2011-02-01

    Two-dimensional diffusion exchange experiments in the presence of a strong, static magnetic field gradient are presented. The experiments are performed in the stray field of a single sided NMR sensor with a proton Larmor frequency of 11.7 MHz. As a consequence of the strong and static magnetic field gradient the magnetization has contributions from different coherence pathways. In order to select the desired coherence pathways, a suitable phase cycling scheme is introduced. The pulse sequence is applied to study diffusion as well as the molecular exchange properties of organic solvents embedded in a mesoporous matrix consisting of a sieve of zeolites with a pore size of 0.8 nm and grain size of 2 ?m. This pulse sequence extends the possibilities of the study of transport properties in porous media, with satisfying sensitivity in measurement times of a few hours, in a new generation of relatively inexpensive low-field NMR mobile devices. PMID:21185207

  18. Diffusion exchange NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Neudert, Oliver; Stapf, Siegfried; Mattea, Carlos

    2011-02-01

    Two-dimensional diffusion exchange experiments in the presence of a strong, static magnetic field gradient are presented. The experiments are performed in the stray field of a single sided NMR sensor with a proton Larmor frequency of 11.7 MHz. As a consequence of the strong and static magnetic field gradient the magnetization has contributions from different coherence pathways. In order to select the desired coherence pathways, a suitable phase cycling scheme is introduced. The pulse sequence is applied to study diffusion as well as the molecular exchange properties of organic solvents embedded in a mesoporous matrix consisting of a sieve of zeolites with a pore size of 0.8 nm and grain size of 2 ?m. This pulse sequence extends the possibilities of the study of transport properties in porous media, with satisfying sensitivity in measurement times of a few hours, in a new generation of relatively inexpensive low-field NMR mobile devices.

  19. Genetic algorithm optimized triply compensated pulses in NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Manu, V. S.; Veglia, Gianluigi

    2015-11-01

    Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed ? and ? / 2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-13C, 15N NAVL peptide as well as U-13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.

  20. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy

    PubMed Central

    Lee, Woonghee; Tonelli, Marco; Markley, John L.

    2015-01-01

    Summary: SPARKY (Goddard and Kneller, SPARKY 3) remains the most popular software program for NMR data analysis, despite the fact that development of the package by its originators ceased in 2001. We have taken over the development of this package and describe NMRFAM-SPARKY, which implements new functions reflecting advances in the biomolecular NMR field. NMRFAM-SPARKY has been repackaged with current versions of Python and Tcl/Tk, which support new tools for NMR peak simulation and graphical assignment determination. These tools, along with chemical shift predictions from the PACSY database, greatly accelerate protein side chain assignments. NMRFAM-SPARKY supports automated data format interconversion for interfacing with a variety of web servers including, PECAN , PINE, TALOS-N, CS-Rosetta, SHIFTX2 and PONDEROSA-C/S. Availability and implementation: The software package, along with binary and source codes, if desired, can be downloaded freely from http://pine.nmrfam.wisc.edu/download_packages.html. Instruction manuals and video tutorials can be found at http://www.nmrfam.wisc.edu/nmrfam-sparky-distribution.htm. Contact: whlee@nmrfam.wisc.edu or markley@nmrfam.wisc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25505092

  1. Electron paramagnetic resonance spectroscopy and Hall effect studies of the effects of low energy electron irradiation on gallium nitride

    NASA Astrophysics Data System (ADS)

    Greene, Kevin Dewayne

    Irradiation effects on the wide-bandgap semiconductor material GaN are of interest due to this material's applicability in a wide range of on-orbit uses. Irradiation is also a valuable tool in analyzing the damage and defect formation dynamics of the material which is of great use in determining and correcting deficiencies in material growth processes. GaN samples representing several different growth methods and doping profiles were irradiated by 1.0--1.5 MeV electron beams to induce defects such as vacancies and interstitial atoms in the material. Following irradiation, the samples were analyzed using Electron Paramagnetic Spin Resonance (EPR) spectroscopy, with particular attention to the effects of irradiation on shallow donors in the material. EPR allows direct inspection of paramagnetic impurity or defect sites, providing information on site density as well as, in some cases, identity. Samples subjected to EPR analysis prior to irradiation show a strong signal attributed to the shallow donor in GaN that is without resolved hyperfine structure. Following low-temperature irradiation with 1.0 MeV electrons to a total dose of approximately 40 MRad (GaN), the samples showed a marked decrease in the shallow donor signal and the introduction of a broad EPR signal with resolved hyperfine structure. The decrease in the shallow donor signals is attributed to the formation of a deep band-gap complex of the nitrogen interstitial with the shallow donor sites, perhaps in combination with compensation by defect-related centers. The damage constant for the formation of this process is calculated as 0.14 cm-1. This decrease in shallow donor concentration in undoped GaN demonstrates that the native shallow donor in n-type GaN cannot be the nitrogen vacancy. A broad EPR signal imparted by low-temperature 1.0 MeV electron irradiation is identified as a gallium interstitial by modeling of the hyperfine spectrum. The Breit-Rabi formula is used with parameters characteristic of the two naturally occurring gallium isotopes to reproduce the observed spectrum. This is the first observation of the gallium interstitial by EPR, as well as the first simultaneous resolvable measurement of nitrogen and gallium sublattice damage in a single sample following irradiation.

  2. Probing oxidative degradation in polymers using {sup 17}O NMR spectroscopy

    SciTech Connect

    Alam, T.M.; Click, C.A.; Assink, R.A.

    1997-09-01

    Understanding the mechanism of oxidative degradation remains an important goal in being able to predict the aging process in polymer materials. Nuclear magnetic resonance (NMR) spectroscopy has previously been utilized to investigate polymer degradation, including both proton ({sup 1}H) and carbon ({sup 13}C) studies. These previous NMR studies, as well as other spectroscopic investigations, are complicated by the almost overwhelming signal arising from the native undegraded polymer. This makes the identification and quantification of degradation species at small concentrations difficult. In this note we discuss recent investigation into the use of oxygen ({sup 17}O) NMR spectroscopy to probe the oxidative degradation process in polymers at a molecular level. Due to the low natural abundance (0.037%) and a nuclear spin of I=5/2 possessing an appreciable quadrupolar moment, the use of {sup 17}O NMR in polymer investigations has been limited. By utilizing synthetically enriched oxygen gas during the accelerated aging process, both the difficulties of low natural abundance and background interference signals are eliminated. For enriched samples {sup 17}O NMR spectra now provide a unique probe since all of the observed NMR resonances are the direct result of oxidative degradation.

  3. Application of high-resolution magic-angle spinning NMR spectroscopy to define the cell uptake of MRI contrast agents.

    PubMed

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ((1)H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible. PMID:12165257

  4. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  5. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring

    NASA Astrophysics Data System (ADS)

    Zientek, Nicolai; Laurain, Clment; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-12-01

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16? fluorinated ethylene propylene (FEP) tube with an ID of 0.04? (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16? FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in D2O (single scan)) and maximum quantitative flow rates up to 0.3 mL min-1. Thus, a series of single scan 19F and 1H NMR spectra acquired with this simple set-up already presents a valuable basis for quantitative reaction monitoring.

  6. Simultaneous (19)F-(1)H medium resolution NMR spectroscopy for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-10-18

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02mm) was used as a flow cell in combination with a 5mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a (1)H Larmor frequency of 43.32MHz and 40.68MHz for (19)F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating (19)F and (1)H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02mm was characterised regarding the limit of detection (LOQ ((1)H)=0.335molL(-1) and LOQ ((19)F)=0.130molL(-1) for trifluoroethanol in D2O (single scan)) and maximum quantitative flow rates up to 0.3mLmin(-1). Thus, a series of single scan (19)F and (1)H NMR spectra acquired with this simple set-up already presents a valuable basis for quantitative reaction monitoring. PMID:25462947

  7. Characterizing Covalently Sidewall-Functionalized SWCNTs by using 1H NMR Spectroscopy

    PubMed Central

    Nelson, Donna J.; Kumar, Ravi

    2013-01-01

    Unambiguous evidence for covalent sidewall functionalization of single-walled carbon nanotubes (SWCNTs) has been a difficult task, especially for nanomaterials in which slight differences in functionality structure produce significant changes in molecular characteristics. Nuclear magnetic resonance (NMR) spectroscopy provides clear information about the structural skeleton of molecules attached to SWCNTs. In order to establish the generality of proton NMR as an analytical technique for characterizing covalently functionalized SWCNTs, we have obtained and analyzed proton NMR data of SWCNT-substituted benzenes across a variety of para substituents. Trends obtained for differences in proton NMR chemical shifts and the impact of o-, p-, and m-directing effects of electrophilic aromatic substituents on phenyl groups covalently bonded to SWCNTs are discussed. PMID:24009779

  8. Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples

    PubMed Central

    Renault, Marie; Shintu, Laetitia; Piotto, Martial; Caldarelli, Stefano

    2013-01-01

    High-Resolution Magic-Angle Spinning (HR-MAS) NMR spectroscopy has become an extremely versatile analytical tool to study heterogeneous systems endowed with liquid-like dynamics. Spinning frequencies of several kHz are however required to obtain NMR spectra, devoid of spinning sidebands, with a resolution approaching that of purely isotropic liquid samples. An important limitation of the method is the large centrifugal forces that can damage the structure of the sample. In this communication, we show that optimizing the sample preparation, particularly avoiding air bubbles, and the geometry of the sample chamber of the HR-MAS rotor leads to high-quality low-sideband NMR spectra even at very moderate spinning frequencies, thus allowing the use of well-established solution-state NMR procedures for the characterization of small and highly dynamic molecules in the most fragile samples, such as live cells and intact tissues. PMID:24284435

  9. Ultrasensitive anion detection by NMR spectroscopy: a supramolecular strategy based on modulation of chemical exchange rate.

    PubMed

    Perruchoud, Lose H; Hadzovic, Alen; Zhang, Xiao-An

    2015-06-01

    NMR spectroscopy is a powerful tool for monitoring molecular interactions and is widely used to characterize supramolecular systems at the atomic level. NMR is limited for sensing purposes, however, due to low sensitivity. Dynamic processes such as conformational changes or binding events can induce drastic effects on NMR spectra in response to variations in chemical exchange (CE) rate, which can lead to new strategies in the design of supramolecular sensors through the control and monitoring of CE rate. Here, we present an indirect NMR anion sensing technique in which increased CE rate, due to anion-induced conformational flexibility of a relatively rigid structure of a novel sensor, allows ultrasensitive anion detection as low as 120?nM. PMID:25931372

  10. Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples

    NASA Astrophysics Data System (ADS)

    Renault, Marie; Shintu, Laetitia; Piotto, Martial; Caldarelli, Stefano

    2013-11-01

    High-Resolution Magic-Angle Spinning (HR-MAS) NMR spectroscopy has become an extremely versatile analytical tool to study heterogeneous systems endowed with liquid-like dynamics. Spinning frequencies of several kHz are however required to obtain NMR spectra, devoid of spinning sidebands, with a resolution approaching that of purely isotropic liquid samples. An important limitation of the method is the large centrifugal forces that can damage the structure of the sample. In this communication, we show that optimizing the sample preparation, particularly avoiding air bubbles, and the geometry of the sample chamber of the HR-MAS rotor leads to high-quality low-sideband NMR spectra even at very moderate spinning frequencies, thus allowing the use of well-established solution-state NMR procedures for the characterization of small and highly dynamic molecules in the most fragile samples, such as live cells and intact tissues.

  11. Supramolecular complex formed by DNA oligonucleotide and thiacalix[4]arene. NMR-spectroscopy and molecular docking

    NASA Astrophysics Data System (ADS)

    Khairutdinov, Bulat; Ermakova, Elena; Sitnitsky, Aleksandr; Stoikov, Ivan; Zuev, Yuriy

    2014-09-01

    The combination of NMR-spectroscopy and molecular docking was applied to investigate the complexation of thiacalix[4]arene with DNA. We have studied the structure of supramolecular complex formed by palindromic decamer DNA d(GCGTTAACGC)2 and tetrasubstituted at lower rim of p-tert-butyl thiacalix[4]arene in 1,3-alternate conformation. With the help of NMR it is shown that oligonucleotide in solution exists in two states: double-stranded helix (dominant structure in solution) and single-stranded form (minor structure) rolled up in a hairpin with equilibrium between them. Both complementary methods, NMR and molecular docking, revealed the formation of molecular complex by thiacalix[4]arene and palindromic decamer DNA. Different possible conformations of the complexes were analyzed by means of molecular docking. We used the experimental constraints in molecular docking to identify the complexes, which were in agreement with the NMR data.

  12. Automated sample preparation station for studying self-diffusion in porous solids with NMR spectroscopy

    SciTech Connect

    Hedin, Niklas; DeMartin, Gregory J.; Reyes, Sebastian C.

    2006-03-15

    In studies of gas diffusion in porous solids with nuclear magnetic resonance (NMR) spectroscopy the sample preparation procedure becomes very important. An apparatus is presented here that pretreats the sample ex situ and accurately sets the desired pressure and temperature within the NMR tube prior to its introduction in the spectrometer. The gas manifold that supplies the NMR tube is also connected to a microbalance containing another portion of the same sample, which is kept at the same temperature as the sample in the NMR tube. This arrangement permits the simultaneous measurement of the adsorption loading on the sample, which is required for the interpretation of the NMR diffusion experiments. Furthermore, to ensure a good seal of the NMR tube, a hybrid valve design composed of titanium, a Teflon registered seat, and Kalrez registered O-rings is utilized. A computer controlled algorithm ensures the accuracy and reproducibility of all the procedures, enabling the NMR diffusion experiments to be performed at well controlled conditions of pressure, temperature, and amount of gas adsorbed on the porous sample.

  13. Automated sample preparation station for studying self-diffusion in porous solids with NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hedin, Niklas; DeMartin, Gregory J.; Reyes, Sebastián C.

    2006-03-01

    In studies of gas diffusion in porous solids with nuclear magnetic resonance (NMR) spectroscopy the sample preparation procedure becomes very important. An apparatus is presented here that pretreats the sample ex situ and accurately sets the desired pressure and temperature within the NMR tube prior to its introduction in the spectrometer. The gas manifold that supplies the NMR tube is also connected to a microbalance containing another portion of the same sample, which is kept at the same temperature as the sample in the NMR tube. This arrangement permits the simultaneous measurement of the adsorption loading on the sample, which is required for the interpretation of the NMR diffusion experiments. Furthermore, to ensure a good seal of the NMR tube, a hybrid valve design composed of titanium, a Teflon® seat, and Kalrez® O-rings is utilized. A computer controlled algorithm ensures the accuracy and reproducibility of all the procedures, enabling the NMR diffusion experiments to be performed at well controlled conditions of pressure, temperature, and amount of gas adsorbed on the porous sample.

  14. NMR difference spectroscopy with a dual saddle-coil difference probe.

    PubMed

    Macnaughtan, Megan A; Smith, Aaron P; Goldsbrough, Peter B; Santini, Robert E; Raftery, Daniel

    2004-03-01

    A new difference probe for nuclear magnetic resonance (NMR) spectroscopy is presented. The difference probe uses two saddle-shaped coils to excite and detect two samples simultaneously. The samples are held in a specially modified 3-mm NMR tube with an Ultem plastic disk to separate the samples. The probe's resonant circuit contains two crossed diodes that passively switch the relative phase of each coil during the NMR experiment. The result is a difference spectrum from the two samples. The degree of cancellation of common signals was determined to be approximately 90%, and the application of the probe to relaxation-edited difference spectroscopy for identifying protein-ligand interactions was demonstrated using glutathione and glutathione S-transferase binding protein. PMID:15214412

  15. Chiral Recognition Studies of ?-(Nonafluoro-tert-butoxy)carboxylic Acids by NMR Spectroscopy.

    PubMed

    Nemes, Anik; Cska, Tams; Bni, Szabolcs; Farkas, Viktor; Rbai, Jzsef; Szab, Dnes

    2015-06-19

    Three chiral ?-(nonafluoro-tert-butoxy)carboxylic acids (R)-1, (RS)-2, (R)-3 were synthesized to examine their application as chiral solvating agents with amines. As a model compound, first (S)- and/or (RS)-?-phenylethylamine was used, and their diastereomeric salts were investigated by (1)H and (19)F NMR and ECD spectroscopy. The NMR spectroscopic studies were carried out at room temperature using the slightly polar CDCl3 and apolar C6D6 as solvents in 5 mM and 54 mM concentrations. The difference of the chemical shifts (??) in the diastereomeric complexes is comparable with other, well-known chiral derivatizing and solvating agents (e.g., Mosher's acid, Pirkle's alcohol). Diastereomeric salts of racemic acids (RS)-1 and (RS)-2 with biologically active amines (1R,2S)-ephedrine and (S)-dapoxetine were also investigated by (19)F NMR spectroscopy. PMID:26024423

  16. Probing acid-amide intermolecular hydrogen bonding by NMR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Chaudhari, Sachin Rama; Suryaprakash, N.

    2012-05-01

    Benzene carboxylic acids and benzamide act as their self-complement in molecular recognition to form inter-molecular hydrogen bonded dimers between amide and carboxylic acid groups, which have been investigated by 1H, 13C and 15N NMR spectroscopy. Extensive NMR studies using diffusion ordered spectroscopy (DOSY), variable temperature 1D, 2D NMR, established the formation of heterodimers of benzamide with benzoic acid, salicylic acid and phenyl acetic acid in deuterated chloroform solution. Association constants for the complex formation in the solution state have been determined. The results are ascertained by X-ray diffraction in the solid state. Intermolecular interactions in solution and in solid state were found to be similar. The structural parameters obtained by X-ray diffraction studies are compared with those obtained by DFT calculations.

  17. Bacterial expression and purification of the amyloidogenic peptide PAPf39 for multidimensional NMR spectroscopy.

    PubMed

    Shanmuganathan, Aranganathan; Bishop, Anthony C; French, Kinsley C; McCallum, Scott A; Makhatadze, George I

    2013-04-01

    PAPf39 is a 39 residue peptide fragment from human prostatic acidic phosphatase that forms amyloid fibrils in semen. These fibrils have been implicated in facilitating HIV transmission. To enable structural studies of PAPf39 by NMR spectroscopy, efficient methods allowing the production of milligram quantities of isotopically labeled peptide are essential. Here, we report the high-yield expression and purification of uniformly (13)C- and (15)N-labeled PAPf39 peptide, through expression as a fusion to ubiquitin at the N-terminus and an intein at the C-terminus. This allows the study of the PAPf39 monomer conformational ensemble by NMR spectroscopy. To this end, we performed the NMR chemical shift assignment of the PAPf39 peptide in the monomeric state at low pH. PMID:23314347

  18. Bacterial Expression and Purification of the Amyloidogenic Peptide PAPf39 for Multidimensional NMR Spectroscopy

    PubMed Central

    Shanmuganathan, Aranganathan; Bishop, Anthony C.; French, Kinsley C.; McCallum, Scott A.; Makhatadze, George I.

    2013-01-01

    PAPf39 is a 39 residue peptide fragment from human prostatic acidic phosphatase that forms amyloid fibrils in semen. These fibrils have been implicated in facilitating HIV transmission. To enable structural studies of PAPf39 by NMR spectroscopy, efficient methods allowing the production of milligram quantities of isotopically labeled peptide are essential. Here, we report the high-yield expression, as a fusion to ubiquitin at the N-terminus and an intein at the C-terminus, and purification of uniformly labeled 13C- and 15N-labeled PAPf39 peptide. This allows the study of the PAPf39 monomer conformational ensemble by NMR spectroscopy. To this end, we performed the NMR chemical shift assignment of the PAPf39 peptide in the monomeric state at low pH. PMID:23314347

  19. NMR imaging and spectroscopy of the mammalian central nervous system after heavy ion radiation

    SciTech Connect

    Richards, T.

    1984-09-01

    NMR imaging, NMR spectroscopic, and histopathologic techniques were used to study the proton relaxation time and related biochemical changes in the central nervous system after helium beam in vivo irradiation of the rodent brain. The spectroscopic observations reported in this dissertation were made possible by development of methods for measuring the NMR parameters of the rodent brain in vivo and in vitro. The methods include (1) depth selective spectroscopy using an optimization of rf pulse energy based on a priori knowledge of N-acetyl aspartate and lipid spectra of the normal brain, (2) phase-encoded proton spectroscopy of the living rodent using a surface coil, and (3) dual aqueous and organic tissue extraction technique for spectroscopy. Radiation induced increases were observed in lipid and p-choline peaks of the proton spectrum, in vivo. Proton NMR spectroscopy measurements on brain extracts (aqueous and organic solvents) were made to observe chemical changes that could not be seen in vivo. Radiation-induced changes were observed in lactate, GABA, glutamate, and p-choline peak areas of the aqueous fraction spectra. In the organic fraction, decreases were observed in peak area ratios of the terminal-methyl peaks, the N-methyl groups of choline, and at a peak at 2.84 ppM (phosphatidyl ethanolamine and phosphatidyl serine resonances) relative to TMS. With histology and Evans blue injections, blood-brain barrier alternations were seen as early as 4 days after irradiation. 83 references, 53 figures.

  20. Characterization of various fast pyrolysis bio-oils by NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NMR spectroscopy, including 1H, 13 C and DEPT spectra were used to characterize fast pyrolysis oil from numerous energy crops and other agricultural feedstocks. The bio-oils studied were produced from swithchgrass, alfalfa stems, corn stover, guayule (whole plant and latex extracted bagasse) and ch...

  1. Introducing High School Students to NMR Spectroscopy through Percent Composition Determination Using Low-Field Spectrometers

    ERIC Educational Resources Information Center

    Bonjour, Jessica L.; Pitzer, Joy M.; Frost, John A.

    2015-01-01

    Mole to gram conversions, density, and percent composition are fundamental concepts in first year chemistry at the high school or undergraduate level; however, students often find it difficult to engage with these concepts. We present a simple laboratory experiment utilizing portable nuclear magnetic resonance spectroscopy (NMR) to determine the

  2. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution

  3. In situ measurement of molecular diffusion during catalytic reaction by pulsed-field gradient NMR spectroscopy

    SciTech Connect

    Hong, Y.; Kaerger, J.; Hunger, B. ); Feoktistova, N.N.; Zhdanov, S.P. )

    1992-09-01

    Pulsed-field gradient (PFG) NMR spectroscopy is applied to study the intracrystalline diffusivity of the reactant and product molecules during the conversion of cyclopropane to propene in Zeolite X. The diffusivities are found to be large enough that any influence of intracrystalline diffusion on the overall reaction in flow reactors may be excluded.

  4. USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY TO INVESTIGATE PMDI REACTIONS WITH WOOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solution-state NMR spectroscopy provides a powerful tool for understanding the formation of chemical bonds between wood components and adhesives. Finely ground cell wall (CW) material fully dissolves in a solvent system containing dimethylsulfoxide (DMSO-d6) and N-methylimidazole (NMI-d6), keeping ...

  5. NATURAL ABUNDANCE 13C NMR SPECTROSCOPY OF DOUBLE-STRANDED DNA

    EPA Science Inventory

    Although 13C NMR spectroscopy has already proved extremely useful in studies of biopolymers, including t-RNA's, and single-stranded polynucleotides, no successful study of native double-stranded DNA has been reported. This failure is mainly due to extremely unfavorable 13C spin r...

  6. NMR Spectroscopy of Aqueous Extracts of Fenugreek ( Trigonella foenum- graecum L.)

    NASA Astrophysics Data System (ADS)

    Skakovskii, E. D.; Tychinskaya, L. Yu.; Matveichuk, S. V.; Karankevich, E. G.; Agabalaeva, E. D.; Reshetnikov, V. N.

    2014-09-01

    The amino-acid and monosaccharide compositions of aqueous extracts of fenugreek herb were determined using PMR and 13C NMR spectroscopy. The content of identified extract constituents was >70 mol%, of which the dominant amino acid was 4-hydroxyisoleucine (26.5 mol%); the major carbohydrate, glucose (10.1 mol%).

  7. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible

  8. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  9. Introducing High School Students to NMR Spectroscopy through Percent Composition Determination Using Low-Field Spectrometers

    ERIC Educational Resources Information Center

    Bonjour, Jessica L.; Pitzer, Joy M.; Frost, John A.

    2015-01-01

    Mole to gram conversions, density, and percent composition are fundamental concepts in first year chemistry at the high school or undergraduate level; however, students often find it difficult to engage with these concepts. We present a simple laboratory experiment utilizing portable nuclear magnetic resonance spectroscopy (NMR) to determine the…

  10. Characterization of animal manure using advanced solid-state C-13 NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of chemical structure of animal manure is necessary for its effective utilization. However, characterization of animal manure is challenging since it is a complex mixture and partially soluble. Solid-state C-13 NMR (nuclear magnetic resonance) spectroscopy is regarded as the best tool to i...

  11. Positional isotope exchange studies on enzyme using NMR spectroscopy

    SciTech Connect

    Matsunaga, T.O.

    1987-01-01

    The isotopically enriched compounds, /sup 18/O-..beta..,..gamma..-ATP and /sup 18/O bridge-labeled pyrophosphate, synthesized previously in this laboratory, were used to investigate and measure the exchange vs. turnover of substrates and products from their central complexes in four selected enzyme systems. Using hi-field /sup 31/P NMR, we were able to differentiate between /sup 18/O labeled in the bridge vs. the non-bridge positions by virtue of the isotope shift upon the phosphorus nuclei. The bridge to non-bridge scrambling of the label was quantitated and the exchange vs. turnover ratios under a variety of conditions was determined. Using the substrate inhibitor carboxycreatinine, PIX experiments with /sup 18/O-..beta..,..gamma..-ATP and creatine kinase were conducted. It was shown that carboxycreatinine and creatine kinase promoted exchange of the /sup 18/O label as determined by NMR. We have concluded that carboxycreatinine is either a substrate that catalyzes very slow turnover or it catalyzes exchange by a dissociative (SN/sub 1//sub P/) type of mechanism

  12. Water Behavior in Bacterial Spores by Deuterium NMR Spectroscopy

    PubMed Central

    2015-01-01

    Dormant bacterial spores are able to survive long periods of time without nutrients, withstand harsh environmental conditions, and germinate into metabolically active bacteria when conditions are favorable. Numerous factors influence this hardiness, including the spore structure and the presence of compounds to protect DNA from damage. It is known that the water content of the spore core plays a role in resistance to degradation, but the exact state of water inside the core is a subject of discussion. Two main theories present themselves: either the water in the spore core is mostly immobile and the core and its components are in a glassy state, or the core is a gel with mobile water around components which themselves have limited mobility. Using deuterium solid-state NMR experiments, we examine the nature of the water in the spore core. Our data show the presence of unbound water, bound water, and deuterated biomolecules that also contain labile deuterons. Deuteriumhydrogen exchange experiments show that most of these deuterons are inaccessible by external water. We believe that these unreachable deuterons are in a chemical bonding state that prevents exchange. Variable-temperature NMR results suggest that the spore core is more rigid than would be expected for a gel-like state. However, our rigid core interpretation may only apply to dried spores whereas a gel core may exist in aqueous suspension. Nonetheless, the gel core, if present, is inaccessible to external water. PMID:24950158

  13. Nonmicellar systems for solution NMR spectroscopy of membrane proteins.

    PubMed

    Raschle, Thomas; Hiller, Sebastian; Etzkorn, Manuel; Wagner, Gerhard

    2010-08-01

    Integral membrane proteins play essential roles in many biological processes, such as energy transduction, transport of molecules, and signaling. The correct function of membrane proteins is likely to depend strongly on the chemical and physical properties of the membrane. However, membrane proteins are not accessible to many biophysical methods in their native cellular membrane. A major limitation for their functional and structural characterization is thus the requirement for an artificial environment that mimics the native membrane to preserve the integrity and stability of the membrane protein. Most commonly employed are detergent micelles, which can however be detrimental to membrane protein activity and stability. Here, we review recent developments for alternative, nonmicellar solubilization techniques, with a particular focus on their application to solution NMR studies. We discuss the use of amphipols and lipid bilayer systems, such as bicelles and nanolipoprotein particles (NLPs). The latter show great promise for structural studies in near native membranes. PMID:20570504

  14. 1 GHz NMR spectroscopy: innovation in magnet technology.

    PubMed

    Markiewicz, W D

    1997-11-01

    The present period is one of rapid development and major extension of the technology for high resolution and solid state NMR spectrometer magnets. Programs which have already been initiated have as their objective proton frequencies of 1 GHz and greater, eventually requiring HTS superconductors. These magnets will contain inner coils containing HTS conductors, surrounded by a set of relatively large coils fabricated with metallic superconductors. These coils represent a major extension of the adiabatically stable magnet technology that has evolved to address the performance issues posed by this type of magnet. The developments which are desirable for these large magnets are identified to include tough epoxy, interface to and thermal performance of external reinforcement, and high strength-high current density metallic superconductor. PMID:9413905

  15. Characterizing excited conformational states of RNA by NMR spectroscopy

    PubMed Central

    Zhao, Bo; Zhang, Qi

    2016-01-01

    Conformational dynamics is a hallmark of diverse non-coding RNA functions. During these functional processes, RNA molecules almost ubiquitously undergo conformational transitions that are tuned to meet distinct structural and kinetic requirements for proper function. A complete mechanistic understanding of RNA function requires comprehensive structural and dynamic knowledge of these complex transitions, which often involve alternative higher-energy conformational states that pose a major challenge for high-resolution structural study by conventional methods. In this review, we describe recent progress in RNA NMR that has started to unveil detailed structural, thermodynamic and kinetic insights into some of these excited conformational states of RNA and their functional roles in biology. PMID:25765780

  16. Urinary metabolic fingerprint of acute intermittent porphyria analyzed by (1)H NMR spectroscopy.

    PubMed

    Carichon, Mickael; Pallet, Nicolas; Schmitt, Caroline; Lefebvre, Thibaud; Gouya, Laurent; Talbi, Neila; Deybach, Jean Charles; Beaune, Philippe; Vasos, Paul; Puy, Herv; Bertho, Gildas

    2014-02-18

    (1)H NMR is a nonbiased technique for the quantification of small molecules that could result in the identification and characterization of potential biomarkers with prognostic value and contribute to better understand pathophysiology of diseases. In this study, we used (1)H NMR spectroscopy to analyze the urinary metabolome of patients with acute intermittent porphyria (AIP), an inherited metabolic disorder of heme biosynthesis in which an accumulation of the heme precursors 5-aminolaevulinic acid (ALA) and porphobilinogen (PBG) promotes sudden neurovisceral attacks, which can be life-threatening. Our objectives were (1) to demonstrate the usefulness of (1)H NMR to identify and quantify ALA and PBG in urines from AIP patients and (2) to identify metabolites that would predict the response to AIP crisis treatment and reflect differential metabolic reprogramming. Our results indicate that (1)H NMR can help to diagnose AIP attacks based on the identification of ALA and PBG. We also show that glycin concentration increases in urines from patients with frequent recurrences at the end of the treatment, after an initial decrease, whereas PBG concentration remains low. Although the reasons for this altered are elusive, these findings indicate that a glycin metabolic reprogramming occurs in AIPr patients and is associated with recurrence. Our results validate the proof of concept of the usefulness of (1)H NMR spectroscopy in clinical chemistry for the diagnosis of acute attack of AIP and identify urinary glycin as a potential marker of recurrence of AIP acute attacks. PMID:24437734

  17. Alternative determination of blood alcohol concentration by (1)H NMR spectroscopy.

    PubMed

    Zailer, Elina; Diehl, Bernd W K

    2016-02-01

    A rapid, accurate and specific proton nuclear magnetic resonance ((1)H NMR) spectroscopic method is developed to determine ethanol in blood, known as the blood alcohol concentration (BAC). The limits of detection and quantification are 0.02g/L and 0.07g/L, respectively. The (1)H NMR spectra show linearity for whole blood and serum samples of a concentration range of 0.00-3.00g/L (R(2)>0.9995). The (1)H NMR method is applied and validated for whole blood as the sample media. Real driving under influence case samples are analyzed with the reference enzyme-based alcohol dehydrogenase and headspace gas chromatography techniques by the Forensic Medicine in Bonn. The reference results are compared with the (1)H NMR spectroscopic results. The validation and comparison indicate that (1)H NMR is suitable for the quantification of BAC in whole blood. This technique has the advantages of automated analysis with good measurement precision and fast sample throughput. A drop of blood (V=20?L) is adequate for an analysis leading to a possible simplification of the sample collection. Due to the non-destructive method, follow-up examinations by (1)H NMR spectroscopy or DNA determinations by different techniques (PCR, in situ hybridization) are possible in resolving legal disputes. PMID:26641708

  18. Disclosing the multi-faceted world of weakly interacting inorganic systems by means of NMR spectroscopy.

    PubMed

    Rocchigiani, Luca; Macchioni, Alceo

    2016-02-21

    The potential of NMR spectroscopy to investigate inorganic systems assembled by, or whose reactivity is affected by, non-covalent interactions is described. Subjects that have received particular attention in recent years (halogen bonding and Frustrated Lewis Pairs) and more classical subjects that remain under-explored (self-aggregation of ion pairs in low polar solvents, behavior of MAO containing metallocenium ion pairs, and hydrogen bonding/ion pairing effects in Au(i) catalysis) are considered, using an innovative approach, always focusing on the crucial information that can be provided by NMR. PMID:26786408

  19. Synthesis and Proton NMR Spectroscopy of Intra-Vesicular Gamma-Aminobutyric Acid (GABA)*

    PubMed Central

    Wang, Luke Y.-J.; Tong, Rong; Kohane, Daniel S.

    2014-01-01

    We report the synthesis of vesicles containing gamma-aminobutyric acid (GABA), and their proton nuclear magnetic resonance (1H NMR) spectra. These vesicles were constructed to more closely mimic the intracellular environment wherein GABA exists. For this study, these GABA-containing vesicles were examined under 1H NMR as a potential platform for future studies on the differences between aqueous phantoms, ex vivo brain extracts, and in vivo magnetic resonance spectroscopy results. We found that intra-vesicular GABA faithfully yielded the chemical shifts and J-coupling constants of free aqueous GABA, alongside the chemical shift signals of the vesicle wall. PMID:24109882

  20. Localized proton NMR spectroscopy of brain tumors using short-echo time STEAM sequences.

    PubMed

    Frahm, J; Bruhn, H; Hnicke, W; Merboldt, K D; Mursch, K; Markakis, E

    1991-01-01

    Recent progress in localized proton NMR spectroscopy has been utilized to improve the spatial resolution and the metabolic specificity in a study of 19 patients with intracranial tumors. Selected examples demonstrate that short echo time stimulated echo acquisition mode sequences are able (a) to account for macroscopic tissue heterogeneity by reducing the volume of interest to 2-8 ml and (b) to facilitate a reasonable characterization of tumor metabolism by increasing the number of accessible metabolites. Proton NMR spectra were acquired within measuring times of 6.5 min on a 2.0 T whole-body system using the imaging headcoil. PMID:1939768

  1. Fundamental studies of supported bimetallic catalysts by NMR spectroscopy

    SciTech Connect

    Savargaonkar, N.

    1996-10-17

    Various hydrogenation reactions on transition metals are important commercially whereas certain hydrogenolysis reactions are useful from fundamental point of view. Understanding the hydrogen mobility and kinetics of adsorption-desorption of hydrogen is important in understanding the mechanisms of such reactions involving hydrogen. The kinetics of hydrogen chemisorption was studied by means of selective excitation NMR on silica supported Pt, Rh and Pt-Rh catalysts. The activation energy of hydrogen desorption was found to be lower on silica supported Pt catalysts as compared to Rh and Pt-Rh catalysts. It was found that the rates of hydrogen adsorption and desorption on Pt-Rh catalyst were similar to those on Rh catalyst and much higher as compared to Pt catalyst. The Ru-Ag bimetallic system is much simpler to study than the Pt-Rh system and serves as a model system to characterize more complicated systems such as the K/Ru system. Ag was found to decrease the amounts of adsorbed hydrogen and the hydrogen-to-ruthenium stoichiometry. Ag reduced the populations of states with low and intermediate binding energies of hydrogen on silica supported Ru catalyst. The rates of hydrogen adsorption and desorption were also lower on silica supported Ru-Ag catalyst as compared to Ru catalyst. This report contains introductory information, the literature review, general conclusions, and four appendices. An additional four chapters and one appendix have been processed separately for inclusion on the data base.

  2. Deuterium NMR spectroscopy of biosynthetically deuterated mammalian tissues

    SciTech Connect

    Curatolo, W.; Jungalwala, F.B.; Sears, B.; Tuck, L.; Neuringer, L.J.

    1985-07-30

    The choline-containing phospholipids of mammalian membranes have been biosynthetically deuterated by raising rats on a diet supplemented with (HOCH2CH2N(CD3)3) Cl or (HOCD2CH2N(CH3)3) Cl . Deuterium NMR spectra have been obtained from excised deuterated brain, sciatic nerve, heart, and lung, from isolated brain myelin and brain microsomes, and from aqueous dispersions of lipid extracts. Measurements of residual quadrupole splittings for excised deuterated neural tissues demonstrate that the orientational order of the choline head group is similar to that observed in model membranes. The spin-lattice relaxation time of the choline head group in deuterated neural tissue is indistinguishable from that observed in model membranes. These results support the proposal that the conformation and motional dynamics of the choline head groups of the bulk choline-containing lipids of neural tissue are similar to those in model membranes. Spectra of biosynthetically deuterated brain myelin and brain microsomes exhibit similar quadrupole splittings. Since these membranes have significantly different protein contents, these results indicate that no strong polar interactions exist between membrane proteins and the choline head groups of choline-containing membrane lipids. Spectra of intact deuterated heart and lung exhibit broad lines and a range of quadrupole splittings.

  3. Paramagnetic NMR study of Cu(2+)-IDA complex localization on a protein surface and its application to elucidate long distance information.

    PubMed

    Nomura, Makoto; Kobayashi, Toshitatsu; Kohno, Toshiyuki; Fujiwara, Kenichiro; Tenno, Takeshi; Shirakawa, Masahiro; Ishizaki, Itsuko; Yamamoto, Kazuo; Matsuyama, Toshifumi; Mishima, Masaki; Kojima, Chojiro

    2004-05-21

    The paramagnetic metal chelate complex Cu(2+)-iminodiacetic acid (Cu(2+)-IDA) was mixed with ubiquitin, a small globular protein. Quantitative analyses of (1)H and (15)N chemical shift changes and line broadenings induced by the paramagnetic effects indicated that Cu(2+)-IDA was localized to a histidine residue (His68) on the ubiquitin surface. The distances between the backbone amide proton and the Cu(2+) relaxation center were evaluated from the proton transverse relaxation rates enhanced by the paramagnetic effect. These correlated well with the distances calculated from the crystal structure up to 20 A. Here, we show that a Cu(2+)-IDA is the first paramagnetic reagent that specifically localizes to a histidine residue on the protein surface and gives the long-range distance information. PMID:15147887

  4. Bandwidth in double cross-polarization MAS NMR spectroscopy.

    PubMed

    Tzou, Der-Lii M

    2012-01-01

    The signal intensity in double cross-polarization (DCP) NMR experiments is critically dependent on the experimental parameters, which include the rf field strength, carrier frequency, and magic-angle spinning (MAS) frequency. In this systematic study, we have monitored {(1)H}/(31)P/(13)C DCP signals from monosaccharide ?-D-[UL-(13)C(6)] galactopyranosyl 1-phosphate (GalP) at a MAS frequency of 13 kHz, at which only double quantum cross-polarization (CP) coherence transfer is allowed. To lessen the stringent requirements for these experimental parameters, we have implemented linear ramp pulse, adiabatic ramp-shaped pulse, and block pulse during the period of (31)P/(13)C CP. We unravel the CP matching profiles with respect to these parameters by monitoring the (31)P/(13)C signal while varying the rf field strength and carrier frequency. For comparison, we extracted the selectivity bandwidth from the full width at half maximum (FWHM) of the matching profiles, in units of frequency (kHz), and found bandwidths of 1.1, 14, and 22 kHz for the matching profiles of the (13)C rf field strength and the (13)C and (31)P carrier frequencies, respectively, for a linear ramp pulse CP. These bandwidths are broader than the measured values in an adiabatic-shaped pulse CP (0.8, 10, and 12 kHz), as well as in block CP (0.3, 7, and 10 kHz) experiments. We demonstrate that the linear ramp pulse CP is superior to both block CP and adiabatic-shaped CP in lessening the stringent requirements of the aforementioned experimental settings for DCP experiments. PMID:22925494

  5. Nuclear charge-distribution effects on the NMR spectroscopy parameters

    NASA Astrophysics Data System (ADS)

    Maldonado, Alejandro F.; Gimnez, Carlos A.; Aucar, Gustavo A.

    2012-06-01

    We present here a systematic study about the influence of the size and type of nuclear charge-distribution models (Gaussian and point-like) on the NMR spectroscopic parameters, the nuclear magnetic shielding ? and the indirect nuclear spin J-coupling. We found that relativistic effects largely enhance the nuclear charge-distribution effects (NChDE) on those parameters being them quite sensitive to the nuclear model adopted for calculations. Results for two rare gas atoms (Kr, Rn) and few molecular systems like HX, (X = Br, I, At), CH4, SnH4, SnIH3, SnI2H2, and PbIH3 are presented. J-couplings are more sensitive than shieldings in both, relativistic and non-relativistic (NR) regimes. The highest effect (close to 11% of variation in relativistic calculations with that two different nuclear models) is observed for J(Pb-I) in PbIH3. A similar effect is found for J(Pb-H) in the same molecule, close to 9%. The NChDE for ?(Sn) in SnI4-nHn with n = 1, 2 is as large as few ppm (between 3 and 8.56 ppm). For J(Sn-H) in this set of molecules, it goes from 37 Hz for SnH4 to 54 Hz for SnI2H2. Furthermore, we found that the vicinal NChDE is very small though not zero. For 1J(Sn-H) in SnIH3, the NChDE of iodine is close to 2 Hz (0.1%). We also studied the NChDE on the ground state electronic energies of atoms and molecules. We found that these effects are only important within the relativistic regime but not within the NR one. They are in good agreement with previous works.

  6. Characterization of membrane protein function by solid-state NMR spectroscopy.

    PubMed

    Baker, Lindsay A; Baldus, Marc

    2014-08-01

    Membrane proteins are an important class of biological molecules whose association with lipid bilayers and intrinsic molecular mobility can complicate their structural study by high-resolution methods. As different experimental techniques require different membrane mimetics, it can be challenging to relate membrane protein structure to function. This review presents examples of the use of solid-state nuclear magnetic resonance spectroscopy (ssNMR) to correlate structure and function in membrane proteins with diverse biological roles, including signaling, transport, and enzymatic reactions. The types of ssNMR experiments, as well as sources of complementary information and implications for biology, will be discussed. An outlook towards extending ssNMR studies to cellular preparations will be given. PMID:24865155

  7. (1)H and DOSY NMR spectroscopy analysis of Ligusticum porteri rhizome extracts.

    PubMed

    Len, Alejandra; Chvez, Mara Isabel; Delgado, Guillermo

    2011-08-01

    The presence of dimeric phthalides and other constituents in extracts of the vegetal species Ligusticum porteri was established by NMR spectroscopy. In comparative qualitative (1)H NMR analyses of acetone extracts of rhizomes from fresh and dried L. porteri samples, we found that the dimeric phthalides tokinolide B (3), diligustilide (4) and riligustilide (5) were naturally produced by the plant and not post-harvest products. We also obtained DOSY (1)H NMR data that provided both virtual separation and structural information for the phthalides present in a dry acetone extract of L. porteri. In addition, we developed a protocol for the quantification of dimeric phthalides, which is performed by calculating the relative ratio of the peak area of selected proton signals for some compounds with respect to the known signal of the internal standard, 4-dimethylaminopyridine. The protocol allows the rapid and direct quantification of dimeric phthalides and others constituents in fresh L. porteri rhizomes. PMID:21761449

  8. Target-Based Whole-Cell Screening by 1H?NMR Spectroscopy**

    PubMed Central

    Ma, Junhe; Cao, Qing; McLeod, Sarah M; Ferguson, Keith; Gao, Ning; Breeze, Alexander L; Hu, Jun

    2015-01-01

    An NMR-based approach marries the two traditional screening technologies (phenotypic and target-based screening) to find compounds inhibiting a specific enzymatic reaction in bacterial cells. Building on a previous study in which it was demonstrated that hydrolytic decomposition of meropenem in living Escherichia coli cells carrying New Delhi metallo-?-lactamase subclass 1 (NDM-1) can be monitored in real time by NMR spectroscopy, we designed a cell-based NMR screening platform. A strong NDM-1 inhibitor was identified with cellular IC50 of 0.51??m, which is over 300-fold more potent than captopril, a known NDM-1 inhibitor. This new screening approach has great potential to be applied to targets in other cell types, such as mammalian cells, and to targets that are only stable or functionally competent in the cellular environment. PMID:25693499

  9. Bis(pentamethylcyclopentadienyl)ytterbium: An investigation of weak interactions in solution using multinuclear NMR spectroscopy

    SciTech Connect

    Schwartz, D.J.

    1995-07-01

    NMR spectroscopy is ideal for studying weak interactions (formation enthalpy {le}20 kcal/mol) in solution. The metallocene bis(pentamethylcyclopentadienyl)ytterbium, Cp*{sub 2}Yb, is ideal for this purpose. cis-P{sub 2}PtH{sub 2}complexes (P = phosphine) were used to produce slow-exchange Cp*{sub 2}YbL adducts for NMR study. Reversible formation of (P{sub 2}PtH){sub 2} complexes from cis-P{sub 2}PtH{sub 2} complexes were also studied, followed by interactions of Cp*{sub 2}Yb with phosphines, R{sub 3}PX complexes. A NMR study was done on the interactions of Cp*{sub 2}Yb with H{sub 2}, CH{sub 4}, Xe, CO, silanes, stannanes, C{sub 6}H{sub 6}, and toluene.

  10. High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins.

    PubMed

    Kamatari, Yuji O; Kitahara, Ryo; Yamada, Hiroyuki; Yokoyama, Shigeyuki; Akasaka, Kazuyuki

    2004-09-01

    Extensive structural studies using high-pressure NMR spectroscopy have recently been carried out on proteins, which potentially contribute to our understanding of the mechanisms of protein folding. Pressure shifts the conformational equilibrium from higher to lower volume conformers. If the pressure is varied, starting from the folded native structure, in many cases we observe intermediate conformers before the onset of total unfolding. This enables the investigation of details of the structure and thermodynamic characteristics of various intermediate conformers of proteins under equilibrium conditions. We can also examine pressure effects on the structure and stability of some typical denatured states such as helical denatured, molten globule, and unfolded states. The high-pressure NMR method can also be used to investigate association/dissociation equilibria of oligomeric or aggregated proteins. Beside direct observation of kinetic intermediates upon pressure jump, NMR structural investigations of equilibrium conformers under pressure provide information about the structures of kinetic intermediates during folding/unfolding reactions. PMID:15283922

  11. Towards single-molecule NMR detection and spectroscopy using single spins in diamond

    NASA Astrophysics Data System (ADS)

    Perunicic, V. S.; Hall, L. T.; Simpson, D. A.; Hill, C. D.; Hollenberg, L. C. L.

    2014-02-01

    Nanomagnetometry using the nitrogen-vacancy (NV) center in diamond has attracted a great deal of interest due to its unique combination of room temperature operation, nanoscale resolution, and high sensitivity. One of the important goals for nanomagnetometry is to be able to detect nanoscale nuclear magnetic resonance (NMR) in individual molecules. Our theoretical analysis details a method by which a single molecule on the surface of diamond, with characteristic NMR frequencies, can be detected using a proximate NV center on a time scale of an order of seconds with nanometer precision. We perform spatiotemporal resolution optimization and subsequently outline paths to greater sensitivity. Our method is suitable for application in low and relatively inhomogeneous background magnetic fields in contrast to both conventional liquid and solid state NMR spectroscopy.

  12. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    PubMed

    Blanc, Frdric; Leskes, Michal; Grey, Clare P

    2013-09-17

    Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help prevent dendrite formation. The in situ method was also applied to monitor (by (11)B NMR) electrochemical double-layer formation in supercapacitors in real time. Though this method is useful, it comes with challenges. The separation of the contributions from the different cell components in the NMR spectra is not trivial because of overlapping resonances. In addition, orientation-dependent NMR interactions, including the spatial- and orientation-dependent bulk magnetic susceptibility (BMS) effects, can lead to resonance broadening. Efforts to understand and mitigate these BMS effects are discussed in this Account. The in situ NMR investigation of fuel cells initially focused on the surface electrochemistry at the electrodes and the electrochemical oxidation of methanol and CO to CO2 on the Pt cathode. On the basis of the (13)C and (195)Pt NMR spectra of the adsorbates and electrodes, CO adsorbed on Pt and other reaction intermediates and complete oxidation products were detected and their mode of binding to the electrodes investigated. Appropriate design and engineering of the NMR hardware has allowed researchers to integrate intact direct methanol fuel cells into NMR probes. Chemical transformations of the circulating methanol could be followed and reaction intermediates could be detected in real time by either (2)H or (13)C NMR spectroscopy. By use of the in situ NMR approach, factors that control fuel cell performance, such as methanol cross over and catalyst performance, were identified. PMID:24041242

  13. Exploiting periodic first-principles calculations in NMR spectroscopy of disordered solids.

    PubMed

    Ashbrook, Sharon E; Dawson, Daniel M

    2013-09-17

    Much of the information contained within solid-state nuclear magnetic resonance (NMR) spectra remains unexploited because of the challenges in obtaining high-resolution spectra and the difficulty in assigning those spectra. Recent advances that enable researchers to accurately and efficiently determine NMR parameters in periodic systems have revolutionized the application of density functional theory (DFT) calculations in solid-state NMR spectroscopy. These advances are particularly useful for experimentalists. The use of first-principles calculations aids in both the interpretation and assignment of the complex spectral line shapes observed for solids. Furthermore, calculations provide a method for evaluating potential structural models against experimental data for materials with poorly characterized structures. Determining the structure of well-ordered, periodic crystalline solids can be straightforward using methods that exploit Bragg diffraction. However, the deviations from periodicity, such as compositional, positional, or temporal disorder, often produce the physical properties (such as ferroelectricity or ionic conductivity) that may be of commercial interest. With its sensitivity to the atomic-scale environment, NMR provides a potentially useful tool for studying disordered materials, and the combination of experiment with first-principles calculations offers a particularly attractive approach. In this Account, we discuss some of the issues associated with the practical implementation of first-principles calculations of NMR parameters in solids. We then use two key examples to illustrate the structural insights that researchers can obtain when applying such calculations to disordered inorganic materials. First, we describe an investigation of cation disorder in Y2Ti(2-x)Sn(x)O7 pyrochlore ceramics using (89)Y and (119)Sn NMR. Researchers have proposed that these materials could serve as host phases for the encapsulation of lanthanide- and actinide-bearing radioactive waste. In a second example, we discuss how (17)O NMR can be used to probe the dynamic disorder of H in hydroxyl-humite minerals (nMg2SiO4Mg(OH)2), and how (19)F NMR can be used to understand F substitution in these systems. The combination of first-principles calculations and multinuclear NMR spectroscopy facilitates the investigation of local structure, disorder, and dynamics in solids. We expect that applications will undoubtedly become more widespread with further advances in computational and experimental methods. Insight into the atomic-scale environment is a crucial first step in understanding the structure-property relationships in solids, and it enables the efficient design of future materials for a range of end uses. PMID:23402741

  14. Application of two-dimensional NMR spectroscopy to metabotyping laboratory Escherichia coli strains.

    PubMed

    Chae, Young Kee; Kim, Seol Hyun; Nam, Youn-Ki

    2013-10-01

    NMR Spectroscopy has been established as a major tool for identification and quantification of metabolites in a living system. Since the metabolomics era began, one-dimensional NMR spectroscopy has been intensively employed due to its simplicity and quickness. However, it has suffered from an inevitable overlap of signals, thus leading to inaccuracy in identification and quantification of metabolites. Two-dimensional (2D) NMR has emerged as a viable alternative because it can offer higher accuracy in a reasonable amount of time. We employed (1) H,(13) C-HSQC to profile metabolites of six different laboratory E. coli strains. We identified 18 metabolites and observed clustering of six strains according to their metabolites. We compared the metabolites among the strains, and found that a) the strains specialized for protein production were segregated; b) XL1-Blue separated itself from others by accumulating amino acids such as alanine, aspartate, glutamate, methionine, proline, and lysine; c) the strains specialized for cloning purpose were spread out from one another; and d) the strains originating from B strain were characterized by succinate accumulation. This work shows that 2D-NMR can be applied to identify a strain from metabolite analysis, offering a possible alternative to genetic analysis to identify E. coli strains. PMID:24130025

  15. Proton-Detected Solid-State NMR Spectroscopy of Bone with Ultrafast Magic Angle Spinning.

    PubMed

    Mroue, Kamal H; Nishiyama, Yusuke; Kumar Pandey, Manoj; Gong, Bo; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2015-01-01

    While obtaining high-resolution structural details from bone is highly important to better understand its mechanical strength and the effects of aging and disease on bone ultrastructure, it has been a major challenge to do so with existing biophysical techniques. Though solid-state NMR spectroscopy has the potential to reveal the structural details of bone, it suffers from poor spectral resolution and sensitivity. Nonetheless, recent developments in magic angle spinning (MAS) NMR technology have made it possible to spin solid samples up to 110 kHz frequency. With such remarkable capabilities, (1)H-detected NMR experiments that have traditionally been challenging on rigid solids can now be implemented. Here, we report the first application of multidimensional (1)H-detected NMR measurements on bone under ultrafast MAS conditions to provide atomistic-level elucidation of the complex heterogeneous structure of bone. Our investigations demonstrate that two-dimensional (1)H/(1)H chemical shift correlation spectra for bone are obtainable using fp-RFDR (finite-pulse radio-frequency-driven dipolar recoupling) pulse sequence under ultrafast MAS. Our results infer that water exhibits distinct (1)H-(1)H dipolar coupling networks with the backbone and side-chain regions in collagen. These results show the promising potential of proton-detected ultrafast MAS NMR for monitoring structural and dynamic changes caused by mechanical loading and disease in bone. PMID:26153138

  16. Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy

    PubMed Central

    2013-01-01

    A multi-nuclear solid-state NMR approach is employed to investigate the lithium–air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by 17O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. 13C ssNMR provides evidence for carbonate formation on the surface of the carbon cathode, the carbonate being removed at high charging voltages in the first cycle, but accumulating in later cycles. Small amounts of lithium hydroxide and formate are also detected in discharged cathodes and while the hydroxide formation is reversible, the formate persists and accumulates in the cathode upon further cycling. The results indicate that the rechargeability of the battery is limited by both the electrolyte and the carbon cathode stability. The utility of ssNMR spectroscopy in directly detecting product formation and decomposition within the battery is demonstrated, a necessary step in the assessment of new electrolytes, catalysts, and cathode materials for the development of a viable lithium–oxygen battery. PMID:24489976

  17. Proton-Detected Solid-State NMR Spectroscopy of Bone with Ultrafast Magic Angle Spinning

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Nishiyama, Yusuke; Kumar Pandey, Manoj; Gong, Bo; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2015-07-01

    While obtaining high-resolution structural details from bone is highly important to better understand its mechanical strength and the effects of aging and disease on bone ultrastructure, it has been a major challenge to do so with existing biophysical techniques. Though solid-state NMR spectroscopy has the potential to reveal the structural details of bone, it suffers from poor spectral resolution and sensitivity. Nonetheless, recent developments in magic angle spinning (MAS) NMR technology have made it possible to spin solid samples up to 110 kHz frequency. With such remarkable capabilities, 1H-detected NMR experiments that have traditionally been challenging on rigid solids can now be implemented. Here, we report the first application of multidimensional 1H-detected NMR measurements on bone under ultrafast MAS conditions to provide atomistic-level elucidation of the complex heterogeneous structure of bone. Our investigations demonstrate that two-dimensional 1H/1H chemical shift correlation spectra for bone are obtainable using fp-RFDR (finite-pulse radio-frequency-driven dipolar recoupling) pulse sequence under ultrafast MAS. Our results infer that water exhibits distinct 1H-1H dipolar coupling networks with the backbone and side-chain regions in collagen. These results show the promising potential of proton-detected ultrafast MAS NMR for monitoring structural and dynamic changes caused by mechanical loading and disease in bone.

  18. Proton-Detected Solid-State NMR Spectroscopy of Bone with Ultrafast Magic Angle Spinning

    PubMed Central

    Mroue, Kamal H.; Nishiyama, Yusuke; Kumar Pandey, Manoj; Gong, Bo; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2015-01-01

    While obtaining high-resolution structural details from bone is highly important to better understand its mechanical strength and the effects of aging and disease on bone ultrastructure, it has been a major challenge to do so with existing biophysical techniques. Though solid-state NMR spectroscopy has the potential to reveal the structural details of bone, it suffers from poor spectral resolution and sensitivity. Nonetheless, recent developments in magic angle spinning (MAS) NMR technology have made it possible to spin solid samples up to 110 kHz frequency. With such remarkable capabilities, 1H-detected NMR experiments that have traditionally been challenging on rigid solids can now be implemented. Here, we report the first application of multidimensional 1H-detected NMR measurements on bone under ultrafast MAS conditions to provide atomistic-level elucidation of the complex heterogeneous structure of bone. Our investigations demonstrate that two-dimensional 1H/1H chemical shift correlation spectra for bone are obtainable using fp-RFDR (finite-pulse radio-frequency-driven dipolar recoupling) pulse sequence under ultrafast MAS. Our results infer that water exhibits distinct 1H−1H dipolar coupling networks with the backbone and side-chain regions in collagen. These results show the promising potential of proton-detected ultrafast MAS NMR for monitoring structural and dynamic changes caused by mechanical loading and disease in bone. PMID:26153138

  19. Uroscopy in the 21st century: high-field NMR spectroscopy.

    PubMed

    Neild, G H; Foxall, P J; Lindon, J C; Holmes, E C; Nicholson, J K

    1997-03-01

    From the experiments described, it can be seen that there are different research approaches that can be taken and these are summarized in Table 1. Whereas much scientific research is principally hypothesis led, there remains, nevertheless, an important place for exploratory research. High resolution NMR can measure, directly and simultaneously, a wide range of endogenous metabolites in biological fluids and has the unique capability of providing structural information on the metabolites detected. It has proved to be a powerful research tool with which to study inherited metabolic diseases, renal disease, drug metabolism, and toxicity, and can be used to monitor the effects of drug therapy. For instance, by using a library of experimental toxins one can map the metabolic profile of site-specific nephron injury. With this approach in man one could eventually take an unknown disease such as Balkan nephropathy and predict the initial site of tubular injury, the mode of injury and therefore the kind of toxin capable of producing that injury. NMR spectroscopic techniques are still advancing rapidly, with ever increasing sensitivity and sophistication of NMR pulse sequences to enhance structural elucidation in complex mixtures. Given the advances in directly coupled HPLC-NMR and even HPLC-NMR-mass spectroscopy it is likely that these technologies in conjunction with pattern recognition will make major contribution to our understanding of renal processes and provide new diagnostic insights in the 21st century. PMID:9075117

  20. Facile backbone structure determination of human membrane proteins by NMR spectroscopy

    PubMed Central

    Klammt, Christian; Maslennikov, Innokentiy; Bayrhuber, Monika; Eichmann, Cédric; Vajpai, Navratna; Chiu, Ellis Jeremy Chua; Blain, Katherine Y; Esquivies, Luis; Kwon, June Hyun Jung; Balana, Bartosz; Pieper, Ursula; Sali, Andrej; Slesinger, Paul A; Kwiatkowski, Witek; Riek, Roland; Choe, Senyon

    2013-01-01

    Although nearly half of today’s major pharmaceutical drugs target human integral membrane proteins (hIMPs), only 30 hIMP structures are currently available in the Protein Data Bank, largely owing to inefficiencies in protein production. Here we describe a strategy for the rapid structure determination of hIMPs, using solution NMR spectroscopy with systematically labeled proteins produced via cell-free expression. We report new backbone structures of six hIMPs, solved in only 18 months from 15 initial targets. Application of our protocols to an additional 135 hIMPs with molecular weight <30 kDa yielded 38 hIMPs suitable for structural characterization by solution NMR spectroscopy without additional optimization. PMID:22609626

  1. Structural characterization of selenosubtilisin by sup 77 Se-NMR spectroscopy

    SciTech Connect

    House, K.L.; Dunlap, R.B.; Odom, J.D.; Wu, Z.P.; Hilvert. D. Research Inst. of Scripps Clinic, La Jolla, CA )

    1991-03-15

    Selenosubtilisin is an artificial enzyme containing an active site selenocysteine residue. In this environment the selenium atom is a valuable probe of structure-function relationships and also confers novel redox and hydrolytic properties to the original protease template. The authors have used {sup 77}Se NMR spectroscopy to characterize different oxidation states of {sup 77}Se isotopically enriched selenosubtilisin. The oxidized form of the enzyme exhibits a {sup 77}Se resonance at 1,189 ppm. This is in good agreement with the {sup 77}Se chemical shifts for model seleninic acids, confirming that the prosthetic group is in the seleninic acid oxidation state. On treatment of the oxidized enzyme with three equivalents of 3-carboxy-4-nitrobenzenethiol at pH 5.0, they observe the enzyme bound selenenyl sulfide at 388.5 ppm. This work demonstrates the utility of {sup 77}Se NMR spectroscopy for examining structure-function relationships of selenium containing proteins.

  2. Localized NMR Spectroscopy with a 1.5 T Whole- Body Imager Using CODEX

    NASA Astrophysics Data System (ADS)

    Jung, Wulf-Ingo; Lutz, Otto; Pfeffer, Markus

    1991-05-01

    With a whole-body NMR imager working at 1.5 T localized 1H and 31P spectra were obtained using the CODEX sequence. Examples are presented: With ethanol 'H spectra the resolution, stability, and sensitivity are documented. Human in vivo investigations of the yellow bone marrow of (13 mm)3 volume elements show well resolved spectra with a good signal-to-noise ratio. An example for 31P spectroscopy is also given

  3. INVESTIGATION INTO HOW WOOD CELL WALLS INTERACT WITH SYNTHETIC ADHESIVES USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the continued growth of the wood adhesive industry and the need to create durable and environmentally friendly adhesive systems, it is still unclear whether covalent bonds contribute to wood adhesive bond strength.In order to investigate this question, solid-state NMR spectroscopy (NMR) has be...

  4. Analysis of Hydroperoxides in solid Polyethylene by NMR and EPR Spectroscopy

    SciTech Connect

    ASSINK,ROGER A.; CELINA,MATHIAS C.; DUNBAR,TIMOTHY D.; ALAM,TODD M.; CLOUGH,ROGER LEE; GILLEN,KENNETH T.

    2000-06-12

    The authors have shown that the hydroperoxide species in {gamma}-irradiated {sup 13}C-polyethylene can be directly observed by {sup 13}C MAS NMR spectroscopy. The experiment was performed without the need for special sample preparation such as chemical derivatization or dissolution. Annealing experiments were employed to study the thermal decomposition of the hydroperoxide species and to measure an activation energy of 98 kJ/mol. EPR spectroscopy suggests that residual polyenyl and alkylperoxy radicals are predominantly trapped in interracial or crystalline regions, while the peroxy radicals observed after UV-photolysis of hydroperoxides are in amorphous regions.

  5. Study of diffusion coefficient of anhydrous trehalose glasses by using PFG-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Joung; Takekawa, Reiji; Kawamura, Junichi; Tokuyama, Michio

    2013-02-01

    We investigated the temperature dependent long time self-diffusion coefficient of the anhydrous trehalose supercooled liquids by using pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. At the same temperature ranges, the diffusion coefficient convoluted from the ?-relaxation time as Einstein-Smoluchowski relaxation, measured by using the dielectric loss spectroscopy are well overlapped with diffusion coefficients within experimental error. The temperature dependent diffusion coefficients obtained from different methods are normalized by fictive temperature and well satisfied the single master curve, proposed by Tokuyama.

  6. High resolution magic angle spinning (HR-MAS) NMR spectroscopy of human osteoarthritic cartilage

    PubMed Central

    Shet, Keerthi; Siddiqui, Sarmad M.; Yoshihara, Hikari; Kurhanewicz, John; Ries, Michael; Li, Xiaojuan

    2011-01-01

    Osteoarthritis (OA) is a degenerative disease of the joint and results in changes in the biochemical composition of cartilage. Studies have been undertaken in the past that have used high resolution NMR spectroscopy to study the biochemical composition of porcine, canine and bovine cartilage. In this study high resolution magical angle spinning (HRMAS) NMR spectroscopy at 11.7 T has been used to characterize metabolites and detect differences in the spectral signature of human knee articular cartilage from non-OA healthy cadaver knees and samples acquired from severe OA patients at the time of total knee replacement surgery. A statistically significant difference in the alanine (1.47 ppm), N-acetyl (2.04 ppm), choline (3.25 ppm) and glycine (3.55 ppm) metabolite levels is observed between healthy and OA specimens. The results of the study indicate that a decrease in the intensity of N-acetyl resonance occurs in later stages of OA. A positive correlation of the N-acetyl levels as measured by 1H HR-MAS NMR spectroscopy with the total proteoglycan content in the same cartilage specimens as measured by the GAG assay was observed. This indicates that N-acetyl can serve as an important bio-marker of OA disease progression. A decrease in the alanine concentration in OA may be attributed to the degradation of the collagen framework with disease progression and eventual loss of the degradation products that are transported from cartilage into the synovial cavity. PMID:21850648

  7. Metabolomics specificity of tuberculosis plasma revealed by (1)H NMR spectroscopy.

    PubMed

    Zhou, Aiping; Ni, Jinjing; Xu, Zhihong; Wang, Ying; Zhang, Haomin; Wu, Wenjuan; Lu, Shuihua; Karakousis, Petros C; Yao, Yu-Feng

    2015-05-01

    Tuberculosis (TB) is a communicable disease of major global importance and causes metabolic disorder of the patients. In a previous study, we found that the plasma metabolite profile of TB patients differs from that of healthy control subjects based on nuclear magnetic resonance (NMR) spectroscopy. In order to evaluate the TB specificity of the metabolite profile, a total of 110 patients, including 40 with diabetes, 40 with malignancy, and 30 with community-acquired pneumonia (CAP), assessed by NMR spectroscopy, and compared to those of patients with TB. Based on the orthogonal partial least-squares discriminant analysis (OPLS-DA), the metabolic profiles of these diseases were significant different, as compared to the healthy controls and TB patients, respectively. The score plots of the OPLS-DA model demonstrated that TB was easily distinguishable from diabetes, CAP and malignancy. Plasma levels of ketone bodies, lactate, and pyruvate were increased in TB patient compared to healthy control, but lower than CAP and malignancy. We conclude that the metabolic profiles were TB-specific and reflected MTB infection. Our results strongly support the NMR spectroscopy-based metabolomics could contribute to an improved understanding of disease mechanisms and may offer clues to new TB clinic diagnosis and therapies. PMID:25736521

  8. Methodology of H NMR Spectroscopy of the Human Brain at Very High Magnetic Fields.

    PubMed

    Tk?, I; Gruetter, R

    2005-03-01

    An ultrashort-echo-time stimulated echo-acquisition mode (STEAM) pulse sequence with interleaved outer volume suppression and VAPOR (variable power and optimized relaxation delays) water suppression was redesigned and optimized for human applications at 4 and 7 T, taking into account the specific requirements for spectroscopy at high magnetic fields and limitations of currently available hardware. In combination with automatic shimming, automated parameter adjustments and data processing, this method provided a user-friendly tool for routine (1)H nuclear magnetic resonance (NMR) spectroscopy of the human brain at very high magnetic fields. Effects of first- and second-order shimming, single-scan averaging, frequency and phase corrections, and eddy currents were described. LCModel analysis of an in vivo (1)H NMR spectrum measured from the human brain at 7 T allowed reliable quantification of more than fifteen metabolites noninvasively, illustrating the potential of high-field NMR spectroscopy. Examples of spectroscopic studies performed at 4 and 7 T demonstrated the high reproducibility of acquired spectra quality. PMID:20179773

  9. High-sensitivity multinuclear NMR spectroscopy of a smectite clay and of clay-intercalated polymer.

    PubMed

    Hou, S S; Beyer, F L; Schmidt-Rohr, K

    2002-01-01

    The nuclear magnetic resonance (NMR) properties of a smectite clay low in paramagnetic ions, and NMR experiments to detect organic material near the silicate surfaces with high sensitivity, have been explored by 1H, 29Si, and 13C NMR. In oven-dried hectorite clay, 1H NMR reveals a sharp signal at 0.35 ppm that narrows significantly with spinning speed. It is assigned to the "inner" OH protons of the silicate layers. In fluorohectorite, where the OH groups are replaced by fluorines, no such 1H peak is observed. The assignment is further confirmed by the efficient cross-polarization observed in two-dimensional (2D) 1H-29Si HETCOR spectra, and by 29Si-detected REDOR experiments with 1H-dephasing in the 29Si dipolar field, which yield a 1H-29Si distance of 2.9 + 0.4 A. In these 1H-29Si experiments, the sensitivity of the 29Si signal is enhanced at least fivefold by refocusing the decay resulting from the inhomogeneous broadening of the single 29Si peak, stretching the 29Si signal out over 80 ms. The small 1H linewidth of this signal at spinning frequencies exceeding 4 kHz is attributed to the large proton-proton distances in the clay. The upfield isotropic chemical shift of the OH groups is explained by their inaccessibility to hydrogen-bonding partners, as a result of their location in hexagonal "cavities" of the clay structure. The well-resolved, easily selectable OH-proton signal and the high-sensitivity 29Si detection open excellent perspectives for NMR studies of composites of clays with organic molecules. Two-dimensional 1H-29Si and 1H-1H chemical-shift correlation experiments enable efficient detection of the 1H spectrum of organic segments near the clay surface. Combined with 1H spin diffusion, the organic segments at up to several nanometers from the clay surfaces can be probed. A 2D 1H-13C correlation experiment yields the 13C spectrum of the organic species near the clay surfaces. A mobility gradient of intercalated poly(ethylene oxide), PEO, segments is proven in 1H-3Si WISE experiments with spin diffusion. PMID:12469807

  10. NMR paramagnetic relaxation due to the S=5/2 complex, Fe(III)-(tetra-p-sulfonatophenyl)porphyrin: central role of the tetragonal fourth-order zero-field splitting interaction.

    PubMed

    Schaefle, Nathaniel; Sharp, Robert

    2005-05-01

    The metalloporphyrins, Me-TSPP [Me=Cr(III), Mn(III), Mn(II), Fe(III), and TSPP=meso-(tetra-p-sulfonatophenyl)porphyrin], which possess electron spins S=3/2, 2, 5/2, and 5/2, respectively, comprise an important series of model systems for mechanistic studies of NMR paramagnetic relaxation enhancement (NMR-PRE). For these S>1/2 spin systems, the NMR-PRE depends critically on the detailed form of the zero-field splitting (zfs) tensor. We report the results of experimental and theoretical studies of the NMR relaxation mechanism associated with Fe(III)-TSPP, a spin 5/2 complex for which the overall zfs is relatively large (D approximately = 10 cm(-1)). A comparison of experimental data with spin dynamics simulations shows that the primary determinant of the shape of the magnetic relaxation dispersion profile of the water proton R1 is the tetragonal fourth-order component of the zfs tensor. The relaxation mechanism, which has not previously been described, is a consequence of zfs-induced mixing of the spin eigenfunctions of adjacent Kramers doublets. We have also investigated the magnetic-field dependence of electron-spin relaxation for S=5/2 in the presence of a large zfs, such as occurs in Fe(III)-TSPP. Calculations show that field dependence of this kind is suppressed in the vicinity of the zfs limit, in agreement with observation. PMID:15918723

  11. Probing structure and dynamics of protein assemblies by magic angle spinning NMR spectroscopy.

    PubMed

    Yan, Si; Suiter, Christopher L; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2013-09-17

    In living organisms, biological molecules often organize into multicomponent complexes. Such assemblies consist of various proteins and carry out essential functions, ranging from cell division, transport, and energy transduction to catalysis, signaling, and viral infectivity. To understand the biological functions of these assemblies, in both healthy and disease states, researchers need to study their three-dimensional architecture and molecular dynamics. To date, the large size, the lack of inherent long-range order, and insolubility have made atomic resolution studies of many protein assemblies challenging or impractical using traditional structural biology methods such as X-ray diffraction and solution NMR spectroscopy. In the past 10 years, we have focused our work on the development and application of magic angle spinning solid-state NMR (MAS NMR) methods to characterize large protein assemblies at atomic-level resolution. In this Account, we discuss the rapid progress in the field of MAS NMR spectroscopy, citing work from our laboratory and others on methodological developments that have facilitated the in-depth analysis of biologically important protein assemblies. We emphasize techniques that yield enhanced sensitivity and resolution, such as fast MAS (spinning frequencies of 40 kHz and above) and nonuniform sampling protocols for data acquisition and processing. We also discuss the experiments for gaining distance restraints and for recoupling anisotropic tensorial interactions under fast MAS conditions. We give an overview of sample preparation approaches when working with protein assemblies. Following the overview of contemporary MAS NMR methods, we present case studies into the structure and dynamics of two classes of biological systems under investigation in our laboratory. We will first turn our attention to cytoskeletal microtubule motor proteins including mammalian dynactin and dynein light chain 8. We will then discuss protein assemblies from the HIV-1 retrovirus. PMID:23402263

  12. Structural basis of the green-blue color switching in proteorhodopsin as determined by NMR spectroscopy.

    PubMed

    Mao, Jiafei; Do, Nhu-Nguyen; Scholz, Frank; Reggie, Lenica; Mehler, Michaela; Lakatos, Andrea; Ong, Yean-Sin; Ullrich, Sandra J; Brown, Lynda J; Brown, Richard C D; Becker-Baldus, Johanna; Wachtveitl, Josef; Glaubitz, Clemens

    2014-12-17

    Proteorhodopsins (PRs) found in marine microbes are the most abundant retinal-based photoreceptors on this planet. PR variants show high levels of environmental adaptation, as their colors are tuned to the optimal wavelength of available light. The two major green and blue subfamilies can be interconverted through a L/Q point mutation at position 105. Here we reveal the structural basis behind this intriguing color-tuning effect. High-field solid-state NMR spectroscopy was used to visualize structural changes within green PR directly within the lipid bilayer upon introduction of the green-blue L105Q mutation. The observed effects are localized within the binding pocket and close to retinal carbons C14 and C15. Subsequently, magic-angle spinning (MAS) NMR spectroscopy with sensitivity enhancement by dynamic nuclear polarization (DNP) was applied to determine precisely the retinal structure around C14-C15. Upon mutation, a significantly stretched C14-C15 bond, deshielding of C15, and a slight alteration of the retinal chain's out-of-plane twist was observed. The L105Q blue switch therefore acts locally on the retinal itself and induces a conjugation defect between the isomerization region and the imine linkage. Consequently, the S0-S1 energy gap increases, resulting in the observed blue shift. The distortion of the chromophore structure also offers an explanation for the elongated primary reaction detected by pump-probe spectroscopy, while chemical shift perturbations within the protein can be linked to the elongation of late-photocycle intermediates studied by flash photolysis. Besides resolving a long-standing problem, this study also demonstrates that the combination of data obtained from high-field and DNP-enhanced MAS NMR spectroscopy together with time-resolved optical spectroscopy enables powerful synergies for in-depth functional studies of membrane proteins. PMID:25415762

  13. Lithium ion diffusion in Li ?-alumina single crystals measured by pulsed field gradient NMR spectroscopy

    SciTech Connect

    Chowdhury, Mohammed Tareque Takekawa, Reiji; Iwai, Yoshiki; Kuwata, Naoaki; Kawamura, Junichi

    2014-03-28

    The lithium ion diffusion coefficient of a 93% Li ?-alumina single crystal was measured for the first time using pulsed field gradient (PFG) NMR spectroscopy with two different crystal orientations. The diffusion coefficient was found to be 1.2 10{sup ?11} m{sup 2}/s in the direction perpendicular to the c axis at room temperature. The Li ion diffusion coefficient along the c axis direction was found to be very small (6.4 10{sup ?13} m{sup 2}/s at 333 K), which suggests that the macroscopic diffusion of the Li ion in the ?-alumina crystal is mainly two-dimensional. The diffusion coefficient for the same sample was also estimated using NMR line narrowing data and impedance measurements. The impedance data show reasonable agreement with PFG-NMR data, while the line narrowing measurements provided a lower value for the diffusion coefficient. Line narrowing measurements also provided a relatively low value for the activation energy and pre-exponential factor. The temperature dependent diffusion coefficient was obtained in the temperature range 297333 K by PFG-NMR, from which the activation energy for diffusion of the Li ion was estimated. The activation energy obtained by PFG-NMR was smaller than that obtained by impedance measurements, which suggests that thermally activated defect formation energy exists for 93% Li ?-alumina single crystals. The diffusion time dependence of the diffusion coefficient was observed for the Li ion in the 93% Li ?-alumina single crystal by means of PFG-NMR experiments. Motion of Li ion in fractal dimension might be a possible explanation for the observed diffusion time dependence of the diffusion coefficient in the 93% Li ?alumina system.

  14. Identifying metabolites related to nitrogen mineralisation using 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    . T McDonald, Noeleen; Graham, Stewart; Watson, Catherine; Gordon, Alan; Lalor, Stan; Laughlin, Ronnie; Elliott, Chris; . P Wall, David

    2015-04-01

    Exploring new analysis techniques to enhance our knowledge of the various metabolites within our soil systems is imperative. Principally, this knowledge would allow us to link key metabolites with functional influences on critical nutrient processes, such as the nitrogen (N) mineralisation in soils. Currently there are few studies that utilize proton nuclear magnetic resonance spectroscopy (1H NMR) to characterize multiple metabolites within a soil sample. The aim of this research study was to examine the effectiveness of 1H NMR for isolating multiple metabolites that are related to the mineralizable N (MN) capacity across a range of 35 Irish grassland soils. Soils were measured for MN using the standard seven day anaerobic incubation (AI-7). Additionally, soils were also analysed for a range of physio-chemical properties [e.g. total N, total C, mineral N, texture and soil organic matter (SOM)]. Proton NMR analysis was carried on these soils by extracting with 40% methanol:water, lyophilizing and reconstituting in deuterium oxide and recording the NMR spectra on a 400MHz Bruker AVANCE III spectrometer. Once the NMR data were spectrally processed and analysed using multivariate statistical analysis, seven metabolites were identified as having significant relationships with MN (glucose, trimethylamine, glutamic acid, serine, aspartic acid, 4-aminohippuirc acid and citric acid). Following quantification, glucose was shown to explain the largest percentage variability in MN (72%). These outcomes suggest that sources of labile carbon are essential in regulating N mineralisation and the capacity of plant available N derived from SOM-N pools in these soils. Although, smaller in concentration, the amino acids; 4-aminohippuirc acid, glutamic acid and serine also significantly (P<0.05) explained 43%, 27% and 19% of the variability in MN, respectively. This novel study highlights the effectiveness of using 1H NMR as a practical approach to profile multiple metabolites in soils simultaneously, and increasing the potential to identify those related to various soil processes.

  15. NMR-based approach to the analysis of radiopharmaceuticals: radiochemical purity, specific activity, and radioactive concentration values by proton and tritium NMR spectroscopy.

    PubMed

    Schenk, David J; Dormer, Peter G; Hesk, David; Pollack, Scott R; Lavey, Carolee Flader

    2015-06-15

    Compounds containing tritium are widely used across the drug discovery and development landscape. These materials are widely utilized because they can be efficiently synthesized and produced at high specific activity. Results from internally calibrated (3)H and (1)H nuclear magnetic resonance (NMR) spectroscopy suggests that at least in some cases, this calibrated approach could supplement or potentially replace radio-high-performance liquid chromatography for radiochemical purity, dilution and scintillation counting for the measurement of radioactivity per volume, and liquid chromatography/mass spectrometry analysis for the determination of specific activity. In summary, the NMR-derived values agreed with those from the standard approaches to within 1% to 9% for solution count and specific activity. Additionally, the NMR-derived values for radiochemical purity deviated by less than 5%. A benefit of this method is that these values may be calculated at the same time that (3)H NMR analysis provides the location and distribution of tritium atoms within the molecule. Presented and discussed here is the application of this method, advantages and disadvantages of the approach, and a rationale for utilizing internally calibrated (1)H and (3)H NMR spectroscopy for specific activity, radioactive concentration, and radiochemical purity whenever acquiring (3)H NMR for tritium location. PMID:26014438

  16. Application of Electron Paramagnetic Resonance Spectroscopy for Validation of the Novel (AN+DN) Solvent Polarity Scale

    PubMed Central

    Malavolta, Luciana; Poletti, Erick F.; Silva, Elias H.; Schreier, Shirley; Nakaie, Clovis R.

    2008-01-01

    Based on solvation studies of polymers, the sum (1:1) of the electron acceptor (AN) and electron donor (DN) values of solvents has been proposed as an alternative polarity scale. To test this, the electron paramagnetic resonance isotropic hyperfine splitting constant, a parameter known to be dependent on the polarity/proticity of the medium, was correlated with the (AN+DN) term using three paramagnetic probes. The linear regression coefficient calculated for 15 different solvents was approximately 0.9, quite similar to those of other well-known polarity parameters, attesting to the validity of the (AN+DN) term as a novel two-parameter solvent polarity scale. PMID:19325805

  17. Distinguishing Phosphate Structural Defects From Inclusions in Calcite and Aragonite by NMR Spectroscopy (Invited)

    NASA Astrophysics Data System (ADS)

    Phillips, B. L.; Mason, H. E.

    2010-12-01

    Variations in the concentration of minor and trace elements are being studied extensively for potential use as proxies to infer environmental conditions at the time of mineral deposition. Such proxies rely fundamentally on a relationship between the activities in the solution and in the solid that would seem to be simple only in the case that the species substitutes into the mineral structure. Other incorporation mechanisms are possible, including inclusions (both mineral and fluid) and occlusion of surface adsorbate complexes, that might be sensitive to other factors, such as crystallization kinetics, and difficult to distinguish analytically. For example, it is known from mineral adsorption studies that surface precipitates can be nanoscopic, and might not be apparent at resolutions typical of microchemical analysis. Techniques by which a structural relationship between the substituting element and the host mineral structure are needed to provide a sound basis for geochemical proxies. NMR spectroscopy offers methods for probing such spatial relationship. We are using solid-state NMR spectroscopy to investigate phosphate incorporation in calcium carbonate minerals, including calcite speleothems and coral skeletal aragonite, at concentrations of the order 100 ?g P g -1. In 31P NMR spectra of most samples, narrow peaks arising from crystalline inclusions can be resolved, including apatite in coral aragonite and an unidentified phase in calcite. All samples studied yield also a broad 31P signal, centered near chemical shifts of +3 to +4 ppm, that could be assigned to phosphate defects in the host mineral and from which the fraction of P occurring in the carbonate mineral structure can be determined. To test this assignment we applied rotational-echo double-resonance (REDOR) NMR techniques that probe the molecular-scale proximity of carbonate groups to the phosphate responsible for the broad 31P peak. This method measures dipole-dipole coupling between 31P of phosphate and carbonate carbon, which varies with the inverse-cube of the internuclear distance. 31P{13C} REDOR NMR results for synthetic phosphate/(13C)-aragonite coprecipitates show that the broad peak is closely associated with carbonate, exhibiting a 31P-13C dipolar coupling qualitatively consistent with phosphate occupying an anion structural site (i.e., 6 C at 0.32 nm). 31P-detected 1H NMR spectra, which contain signal only from H located near P, show that structural water molecules help accommodate phosphate in the structure. Similar methods can be applied to other elements of potential paleo-proxy interest having NMR-active isotopes, including B, Mg, and Cd.

  18. Stereochemistry of 16a-hydroxyfriedelin and 3-Oxo-16-methylfriedel-16-ene established by 2D NMR spectroscopy.

    PubMed

    Duarte, Lucienir Pains; Silva de Miranda, Roqueline Rodrigues; Rodrigues, Salomo Bento Vasconcelos; de Ftima Silva, Grcia Divina; Vieira Filho, Sidney Augusto; Knupp, Vagner Fernandes

    2009-01-01

    Friedelin (1), 3beta-friedelinol (2), 28-hydroxyfriedelin (3), 16alpha-hydroxyfriedelin (4), 30-hydroxyfriedelin (5) and 16alpha,28-dihydroxyfriedelin (6) were isolated through fractionation of the hexane extract obtained from branches of Salacia elliptica. After a week in CDCl(3) solution, 16alpha-hydroxyfriedelin (4) reacted turning into 3-oxo-16-methylfriedel-16-ene (7). This is the first report of a dehydration followed by a Nametkin rearrangement of a pentacyclic triterpene in CDCl(3) solution occurring in the NMR tube. These seven pentacyclic triterpenes was identified through NMR spectroscopy and the stereochemistry of compound 4 and 7 was established by 2D NMR (NOESY) spectroscopy and mass spectrometry (GC-MS). It is also the first time that all the (13)C-NMR and 2D NMR spectral data are reported for compounds 4 and 7. PMID:19214150

  19. Metabolomic by 1H NMR spectroscopy differentiates "Fiano di Avellino" white wines obtained with different yeast strains.

    PubMed

    Mazzei, Pierluigi; Spaccini, Riccardo; Francesca, Nicola; Moschetti, Giancarlo; Piccolo, Alessandro

    2013-11-13

    We employed (1)H NMR spectroscopy to examine the molecular profile of a white "Fiano di Avellino" wine obtained through fermentation by either a commercial or a selected autochthonous Saccharomyces cerevisiae yeast starter. The latter was isolated from the same grape variety used in the wine-making process in order to strengthen the relationship between wine molecular quality and its geographical origin. (1)H NMR spectra, where water and ethanol signals were suppressed by a presaturated T1-edited NMR pulse sequence, allowed for definition of the metabolic content of the two differently treated wines. Elaboration of NMR spectral data by multivariate statistical analyses showed that the two different yeasts led to significant diversity in the wine metabolomes. Our results indicate that metabolomics by (1)H NMR spectroscopy combined with multivariate statistical analysis enables wine differentiation as a function of yeast species and other wine-making factors, thereby contributing to objectively relate wine quality to the terroir. PMID:24117410

  20. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGESBeta

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurementmore » of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  1. Structure-Correlation NMR Spectroscopy for Macromolecules Using Repeated Bidirectional Photoisomerization of Azobenzene.

    PubMed

    Nagashima, Toshio; Ueda, Keisuke; Nishimura, Chiaki; Yamazaki, Toshio

    2015-11-17

    Control over macromolecular structure offers bright potentials for manipulation of macromolecular functions. We here present structure-correlation NMR spectroscopy to analyze the correlation between polymorphic macromolecular structures driven by photoisomerization of azobenzene. The structural conversion of azobenzene was induced within the mixing time of a NOESY experiment using a colored light source, and the reverse structural conversion was induced during the relaxation delay using a light source of another color. The correlation spectrum between trans- and cis-azobenzene was then obtained. To maximize the efficiency of the bidirectional photoisomerization of azobenzene-containing macromolecules, we developed a novel light-irradiation NMR sample tube and method for irradiating target molecules in an NMR radio frequency (rf) coil. When this sample tube was used for photoisomerization of an azobenzene derivative at a concentration of 0.2 mM, data collection with reasonable sensitivity applicable to macromolecules was achieved. We performed isomerization of an azobenzene-cross-linked peptide within the mixing time of a NOESY experiment that produced cross-peaks between helix and random-coil forms of the peptide. Thus, these results indicate that macromolecular structure manipulation can be incorporated into an NMR pulse sequence using an azobenzene derivative and irradiation with light of two types of wavelengths, providing a new method for structural analysis of metastable states of macromolecules. PMID:26479462

  2. High resolution sup 27 Al NMR spectroscopy of the aluminophosphate molecular sieve VPI-5

    SciTech Connect

    Wu, Y.; Chmelka, B.F.; Pines, A. ); Davis, M.E. ); Grobet, P.J.; Jacobs, P.A. )

    1990-08-01

    Aluminium plays an important part in determining the properties of many materials, such as the catalytic behavior of zeolites. Aluminophosphate molecular sieves, in particular, have useful applications as superlattice hosts in the fabrication of quantum-effect devices. Although nuclear magnetic resonance (NMR) spectroscopy is often a sensitive probe of solids, the use of {sup 27}Al NMR to investigate the structure of aluminosilicates and aluminophosphates has been severely limited because anisotropic second-order quadrupolar interactions, responsible for spectral broadening, cannot be eliminated by conventional magic-angle-spinning or multiple-pulse techniques. Here the authors report the first high-resolution NMR spectra of {sup 27}Al in a solid using double rotation and demonstrate its usefulness for probing subtle structural perturbations in the aluminophosphate molecular sieve VPI-5. From their results, they conclude that high-resolution {sup 27}Al NMR is capable of resolving discrete framework aluminium sites, permitting quantitative investigation of site-specific adsorbate interactions with the VPI-5 host.

  3. ?High resolution-magic-angle spinning NMR spectroscopy for metabolic phenotyping of Caenorhabditis elegans.

    PubMed

    Wong, Alan; Li, Xiaonan; Molin, Laurent; Solari, Florence; Elena-Herrmann, Bndicte; Sakellariou, Dimitris

    2014-06-17

    Analysis of model organisms, such as the submillimeter-size Caenorhabditis elegans, plays a central role in understanding biological functions across species and in characterizing phenotypes associated with genetic mutations. In recent years, metabolic phenotyping studies of C. elegans based on (1)H high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy have relied on the observation of large populations of nematodes, requiring labor-intensive sample preparation that considerably limits high-throughput characterization of C. elegans. In this work, we open new platforms for metabolic phenotyping of C. elegans mutants. We determine rich metabolic profiles (31 metabolites identified) from samples of 12 individuals using a (1)H NMR microprobe featuring high-resolution magic-angle coil spinning (HR-MACS), a simple conversion of a standard HR-MAS probe to ?HR-MAS. In addition, we characterize the metabolic variations between two different strains of C. elegans (wild-type vs slcf-1 mutant). We also acquire a NMR spectrum of a single C. elegans worm at 23.5 T. This study represents the first example of a metabolomic investigation carried out on a small number of submillimeter-size organisms, demonstrating the potential of NMR microtechnologies for metabolomics screening of small model organisms. PMID:24897622

  4. Survey and qualification of internal standards for quantification by 1H NMR spectroscopy.

    PubMed

    Rundlöf, Torgny; Mathiasson, Marie; Bekiroglu, Somer; Hakkarainen, Birgit; Bowden, Tim; Arvidsson, Torbjörn

    2010-09-01

    In quantitative NMR (qNMR) selection of an appropriate internal standard proves to be crucial. In this study, 25 candidate compounds considered to be potent internal standards were investigated with respect to the ability of providing unique signal chemical shifts, purity, solubility, and ease of use. The (1)H chemical shift (delta) values, assignments, multiplicities and number of protons (for each signal), appropriateness (as to be used as internal standards) in four different deuterated solvents (D(2)O, DMSO-d(6), CD(3)OD, CDCl(3)) were studied. Taking into account the properties of these 25 internal standards, the most versatile eight compounds (2,4,6-triiodophenol, 1,3,5-trichloro-2-nitrobenzene, 3,4,5-trichloropyridine, dimethyl terephthalate, 1,4-dinitrobenzene, 2,3,5-triiodobenzoic acid, maleic acid and fumaric acid) were qualified using both differential scanning calorimetry (DSC) and NMR spectroscopy employing highly pure acetanilide as the reference standard. The data from these two methods were compared as well as utilized in the quality assessment of the compounds as internal standards. Finally, the selected internal standards were tested and evaluated in a real case of quantitative NMR analysis of a paracetamol pharmaceutical product. PMID:20207092

  5. A metabonomic investigation of hepatotoxicity using diffusion-edited 1H NMR spectroscopy of blood serum.

    PubMed

    Beckwith-Hall, Bridgette M; Thompson, Nicholas A; Nicholson, Jeremy K; Lindon, John C; Holmes, Elaine

    2003-07-01

    It has been shown extensively, that chemometric investigations of 1H NMR spectra of rat urine taken from animals dosed with model toxins produce characteristic patterns of metabolic responses and that this permits the identification of biomarkers of toxic response and regeneration. To date, metabonomic methods have been mainly optimised for urine which contains mainly low molecular weight moieties, and thus a conventional 1-dimensional 1H NMR pulse sequence is an efficient means of obtaining information-rich data. In the case of biofluids such as blood plasma or serum, which contain a wide range of macromolecules the resonances of which can overlap with peaks from small molecule metabolites, the information giving rise to sample classification can be concealed in a conventional NMR spectrum andthis presents a different analytical challenge in terms of chemometric analysis of spectral profiles. Here, the use of other types of NMR data have been investigated and it is shown that by using spectra where the peak intensities are edited according to their molecular diffusion coefficients, it is possible to improve differentiation of control animals and those treated with the model hepatotoxin, alpha-naphthylisothiocyanate (ANIT). By using diffusion-edited spectroscopy, plasma lipid moieties are less attenuated than those from small endogenous metabolites and thus the toxin-induced changes to the lipoprotein profiles are more easily detectable. PMID:12894815

  6. Quantitative identification of metastable magnesium carbonate minerals by solid-state 13C NMR spectroscopy.

    PubMed

    Moore, Jeremy K; Surface, J Andrew; Brenner, Allison; Wang, Louis S; Skemer, Philip; Conradi, Mark S; Hayes, Sophia E

    2015-01-01

    In the conversion of CO2 to mineral carbonates for the permanent geosequestration of CO2, there are multiple magnesium carbonate phases that are potential reaction products. Solid-state (13)C NMR is demonstrated as an effective tool for distinguishing magnesium carbonate phases and quantitatively characterizing magnesium carbonate mixtures. Several of these mineral phases include magnesite, hydromagnesite, dypingite, and nesquehonite, which differ in composition by the number of waters of hydration or the number of crystallographic hydroxyl groups. These carbonates often form in mixtures with nearly overlapping (13)C NMR resonances which makes their identification and analysis difficult. In this study, these phases have been investigated with solid-state (13)C NMR spectroscopy, including both static and magic-angle spinning (MAS) experiments. Static spectra yield chemical shift anisotropy (CSA) lineshapes that are indicative of the site-symmetry variations of the carbon environments. MAS spectra yield isotropic chemical shifts for each crystallographically inequivalent carbon and spin-lattice relaxation times, T1, yield characteristic information that assist in species discrimination. These detailed parameters, and the combination of static and MAS analyses, can aid investigations of mixed carbonates by (13)C NMR. PMID:25437754

  7. Compensating Pulse Imperfections in Solid-State NMR Spectroscopy: A Key to Better Reproducibility and Performance.

    PubMed

    Wittmann, Johannes J; Takeda, Kazuyuki; Meier, Beat H; Ernst, Matthias

    2015-10-19

    The power and versatility of NMR spectroscopy is strongly related to the ability to manipulate NMR interactions by the application of radio-frequency (rf) pulse sequences. Unfortunately, the rf fields seen by the spins differ from the ones programmed by the experimentalist. Pulse transients, i.e., deviations of the amplitude and phase of the rf fields from the desired values, can have a severe impact on the performance of pulse sequences and can lead to inconsistent results. Here, we demonstrate how transient-compensated pulses can greatly improve the efficiency and reproducibility of NMR experiments. The implementation is based on a measurement of the characteristics of the resonance circuit and does not rely on an experimental optimization of the NMR signal. We show how the pulse sequence has to be modified to use it with transient-compensated pulses. The efficiency and reproducibility of the transient-compensated sequence is greatly superior to the original POST-C7 sequence. PMID:26465653

  8. Natural Abundance (17)O DNP Two-Dimensional and Surface-Enhanced NMR Spectroscopy.

    PubMed

    Perras, Frdric A; Kobayashi, Takeshi; Pruski, Marek

    2015-07-01

    Due to its extremely low natural abundance and quadrupolar nature, the (17)O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to (17)O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from (1)H. Here, we demonstrate new DNP-based measurements that extend (17)O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional (1)H-(17)O cross-polarization greatly improves the sensitivity and enables the facile measurement of undistorted line shapes and two-dimensional (1)H-(17)O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone (17)O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. Lastly, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the (17)O nuclide. PMID:26098846

  9. The study of transient protein-nanoparticle interactions by solution NMR spectroscopy.

    PubMed

    Assfalg, Michael; Ragona, Laura; Pagano, Katiuscia; D'Onofrio, Mariapina; Zanzoni, Serena; Tomaselli, Simona; Molinari, Henriette

    2016-01-01

    The rapid development of novel nanoscale materials for applications in biomedicine urges an improved characterization of the nanobio interfaces. Nanoparticles exhibit unique structures and properties, often different from the corresponding bulk materials, and the nature of their interactions with biological systems remains poorly characterized. Solution NMR spectroscopy is a mature technique for the investigation of biomolecular structure, dynamics, and intermolecular associations, however its use in protein-nanoparticle interaction studies remains scarce and highly challenging, particularly due to unfavorable hydrodynamic properties of most nanoscale assemblies. Nonetheless, recent efforts demonstrated that a number of NMR observables, such as chemical shifts, signal intensities, amide exchange rates and relaxation parameters, together with newly designed saturation transfer experiments, could be successfully employed to characterize the orientation, structure and dynamics of proteins adsorbed onto nanoparticle surfaces. This review provides the first survey and critical assessment of the contributions from solution NMR spectroscopy to the study of transient interactions between proteins and both inorganic (gold, silver, and silica) and organic (polymer, carbon and lipid based) nanoparticles. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. PMID:25936778

  10. pKa determination by H NMR spectroscopy - an old methodology revisited.

    PubMed

    Bezenon, Jacqueline; Wittwer, Matthias B; Cutting, Brian; Smieko, Martin; Wagner, Bjoern; Kansy, Manfred; Ernst, Beat

    2014-05-01

    pKa values of acids and protonated bases have an essential impact on organic synthesis, medicinal chemistry, and material and food sciences. In drug discovery and development, they are of utmost importance for the prediction of pharmacokinetic and pharmacodynamic properties. To date, various methods for the determination of pKa values are available, including UV-spectroscopic, potentiometric, and capillary electrophoretic techniques. An additional option is provided by nuclear magnetic resonance (NMR) spectroscopy. The underlying principle is the alteration of chemical shifts of NMR-active nuclei (e.g., (13)C and (1)H) depending on the protonation state of adjacent acidic or basic sites. When these chemical shifts are plotted against the pH, the inflection point of the resulting sigmoidal curve defines the pKa value. Although pKa determinations by (1)H NMR spectroscopy are reported for numerous cases, the potential of this approach is not yet fully evaluated. We therefore revisited this method with a diverse set of test compounds covering a broad range of pKa values (pKa 0.9-13.8) and made a comparison with four commonly used approaches. The methodology revealed excellent correlations (R(2)=0.99 and 0.97) with electropotentiometric and UV spectroscopic methods. Moreover, the comparison with in silico results (Epik and Marvin) also showed high correlations (R(2)=0.92 and 0.94), further confirming the reliability and utility of this approach. PMID:24462329

  11. Qualitative and Quantitative Control of Carbonated Cola Beverages Using 1H NMR Spectroscopy

    PubMed Central

    2012-01-01

    1H Nuclear magnetic resonance (NMR) spectroscopy (400 MHz) was used in the context of food surveillance to develop a reliable analytical tool to differentiate brands of cola beverages and to quantify selected constituents of the soft drinks. The preparation of the samples required only degassing and addition of 0.1% of TSP in D2O for locking and referencing followed by adjustment of pH to 4.5. The NMR spectra obtained can be considered as “fingerprints” and were analyzed by principal component analysis (PCA). Clusters from colas of the same brand were observed, and significant differences between premium and discount brands were found. The quantification of caffeine, acesulfame-K, aspartame, cyclamate, benzoate, hydroxymethylfurfural (HMF), sulfite ammonia caramel (E 150D), and vanillin was simultaneously possible using external calibration curves and applying TSP as internal standard. Limits of detection for caffeine, aspartame, acesulfame-K, and benzoate were 1.7, 3.5, 0.8, and 1.0 mg/L, respectively. Hence, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of soft drinks and quantification of selected constituents. PMID:22356160

  12. 1H NMR spectroscopy-based interventional metabolic phenotyping: a cohort study of rheumatoid arthritis patients.

    PubMed

    Lauridsen, Michael B; Bliddal, Henning; Christensen, Robin; Danneskiold-Samse, Bente; Bennett, Robert; Keun, Hector; Lindon, John C; Nicholson, Jeremy K; Dorff, Mikkel H; Jaroszewski, Jerzy W; Hansen, Steen H; Cornett, Claus

    2010-09-01

    1H NMR spectroscopy-based metabolic phenotyping was used to identify biomarkers in the plasma of patients with rheumatoid arthritis (RA). Forty-seven patients with RA (23 with active disease at baseline and 24 in remission) and 51 healthy subjects were evaluated during a one-year follow-up with assessments of disease activity (DAS-28) and 1H NMR spectroscopy of plasma samples. Discriminant analysis provided evidence that the metabolic profiles predicted disease severity. Cholesterol, lactate, acetylated glycoprotein, and lipid signatures were found to be candidate biomarkers for disease severity. The results also supported the link between RA and coronary artery disease. Repeated assessment using mixed linear models showed that the predictors obtained from metabolic profiles of plasma at baseline from patients with active RA were significantly different from those of patients in remission (P=0.0007). However, after 31 days of optimized therapy, the two patient groups were not significantly different (P=0.91). The metabolic profiles of both groups of RA patients were different from the healthy subjects. 1H NMR-based metabolic phenotyping of plasma samples in patients with RA is well suited for discovery of biomarkers and may be a potential approach for disease monitoring and personalized medication for RA therapy. PMID:20701312

  13. Mapping Inhibitor Binding Modes on an Active Cysteine Protease via NMR Spectroscopy

    PubMed Central

    Lee, Gregory M.; Balouch, Eaman; Goetz, David H.; Lazic, Ana; McKerrow, James H.; Craik, Charles S.

    2013-01-01

    Cruzain is a member of the papain/cathepsin-L family of cysteine proteases, and the major cysteine protease of the protozoan Trypanosoma cruzi, the causative agent of Chagas disease. We report an auto-induction methodology that provides soluble-cruzain at high yields (> 30 mg per liter in minimal media). These increased yields provide sufficient quantities of active enzyme for use in NMR-based ligand mapping. Using CD and NMR spectroscopy, we also examined the solution-state structural dynamics of the enzyme in complex with a covalently bound vinyl sulfone inhibitor (K777). We report the backbone amide and side chain carbon chemical shift assignments of cruzain in complex with K777. These resonance assignments were used to identify and map residues located in the substrate binding pocket, including the catalytic Cys25 and His162. Selective 15N-Cys, 15N-His, and 13C-Met labeling was performed to quickly assess cruzain-ligand interactions for a set of eight low molecular weight compounds exhibiting micromolar binding or inhibition. Chemical shift perturbation mapping verifies that six of the eight compounds bind to cruzain at the active site. Three different binding modes were delineated for the compounds, namely covalent, non-covalent, and non-interacting. These results provide examples of how NMR spectroscopy can be used to screen compounds for fast evaluation of enzyme-inhibitor interactions in order to facilitate lead compound identification and subsequent structural studies. PMID:23181936

  14. Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy.

    PubMed

    Morgado, Leonor; Zeth, Kornelius; Burmann, Björn M; Maier, Timm; Hiller, Sebastian

    2015-04-01

    The insertase BamA is the central protein of the Bam complex responsible for outer membrane protein biogenesis in Gram-negative bacteria. BamA features a 16-stranded transmembrane β-barrel and five periplasmic POTRA domains, with a total molecular weight of 88 kDa. Whereas the structure of BamA has recently been determined by X-ray crystallography, its functional mechanism is not well understood. This mechanism comprises the insertion of substrates from a dynamic, chaperone-bound state into the bacterial outer membrane, and NMR spectroscopy is thus a method of choice for its elucidation. Here, we report solution NMR studies of different BamA constructs in three different membrane mimetic systems: LDAO micelles, DMPC:DiC7PC bicelles and MSP1D1:DMPC nanodiscs. The impact of biochemical parameters on the spectral quality was investigated, including the total protein concentration and the detergent:protein ratio. The barrel of BamA is folded in micelles, bicelles and nanodiscs, but the N-terminal POTRA5 domain is flexibly unfolded in the absence of POTRA4. Measurements of backbone dynamics show that the variable insertion region of BamA, located in the extracellular lid loop L6, features high local flexibility. Our work establishes biochemical preparation schemes for BamA, which will serve as a platform for structural and functional studies of BamA and its role within the Bam complex by solution NMR spectroscopy. PMID:25638436

  15. NMR Spectroscopy of Human Eye Tissues: A New Insight into Ocular Biochemistry

    PubMed Central

    Kryczka, Tomasz; Wyl?ga?a, Edward; Dobrowolski, Dariusz; Midelfart, Anna

    2014-01-01

    Background. The human eye is a complex organ whose anatomy and functions has been described very well to date. Unfortunately, the knowledge of the biochemistry and metabolic properties of eye tissues varies. Our objective was to reveal the biochemical differences between main tissue components of human eyes. Methods. Corneas, irises, ciliary bodies, lenses, and retinas were obtained from cadaver globes 0-1/2 hours postmortem of 6 male donors (age: 4461 years). The metabolic profile of tissues was investigated with HR MAS 1H NMR spectroscopy. Results. A total of 29 metabolites were assigned in the NMR spectra of the eye tissues. Significant differences between tissues were revealed in contents of the most distant eye-tissues, while irises and ciliary bodies showed minimal biochemical differences. ATP, acetate, choline, glutamate, lactate, myoinositol, and taurine were identified as the primary biochemical compounds responsible for differentiation of the eye tissues. Conclusions. In this study we showed for the first time the results of the analysis of the main human eye tissues with NMR spectroscopy. The biochemical contents of the selected tissues seemed to correspond to their primary anatomical and functional attributes, the way of the delivery of the nutrients, and the location of the tissues in the eye. PMID:25525621

  16. Ultrafast double-quantum NMR spectroscopy with optimized sensitivity for the analysis of mixtures.

    PubMed

    Rouger, Laetitia; Gouilleux, Boris; Pourchet-Gellez, Mariane; Dumez, Jean-Nicolas; Giraudeau, Patrick

    2016-02-15

    Ultrafast (UF) 2D NMR enables the acquisition of 2D spectra within a single-scan. This methodology has become a powerful analytical tool, used in a large array of applications. However, UF NMR spectroscopy still suffers from the need to compromise between sensitivity, spectral width and resolution. With the commonly used UF-COSY pulse sequence, resolution issues are compounded by the presence of strong auto-correlation signals, particularly in the case of samples with high dynamic ranges. The recently proposed concept of UF Double Quantum Spectroscopy (DQS) allows a better peak separation as it provides a lower spectral peak density. This paper presents the detailed investigation of this new NMR tool in an analytical chemistry context. Theoretical calculations and numerical simulations are used to characterize the modulation of peak intensities as a function of pulse-sequence parameters, and thus enable a significant enhancement of the sensitivity. The analytical comparison of UF-COSY and UF-DQS shows similar performances, however the ultrafast implementation of the DQS approach is found to have some sensitivity advantages over its conventional counterpart. The analytical performance of the pulse sequence is illustrated by the quantification of taurine in complex mixtures (homemade and commercial energy drinks). The results demonstrate the high potential of this experiment, which forms a valuable alternative to UF-COSY spectra when the latter are characterized by strong overlaps and high dynamic ranges. PMID:26865359

  17. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petj, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2012-01-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytil, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from laboratory experiments of terpenes photo-oxidation. The second NMR factor associated with western air masses was linked to biogenic marine sources, and was enriched in low-molecular weight aliphatic amines. Such findings provide evidence of at least two independent sources originating biogenic organic aerosols in Hyytil by oxidation and condensation mechanisms: reactive terpenes emitted by the boreal forest and compounds of marine origin, with the latter relatively more important when predominantly polar air masses reach the site. This study is an example of how spectroscopic techniques, such as proton NMR, can add functional group specificity for certain chemical features (like aromatics) of OA with respect to AMS. They can therefore be profitably exploited to complement aerosol mass spectrometric measurements in organic source apportionment studies.

  18. N-15 NMR Spectroscopy as a Method for Comparing the Rates of Imidization of Several Diamines

    NASA Technical Reports Server (NTRS)

    Johnson, J. Christopher; Kuczmarski, Maria A.

    2006-01-01

    The relative rates of the conversion of amide-acid to imide was measured for a series or aromatic diamines that have been identified as potential replacements for 4,4'-methylene dianiline (MDA) in high-temperature polyimides and polymer composites. These rates were compared with the N-15 NMR resonances of the unreacted amines. The initial rates of imidization track with the difference in chemical shift between the amine nitrogens in MDA and those in the subject diamines. This comparison demonstrated that N-15 NMR spectroscopy is appropriate for the rapid screening of candidate diamines to determine their reactivity relative to MDA, and can serve to provide guidance to the process of creating the time-temperature profiles used in processing these materials into polymer matrix composites.

  19. Sample collection and preparation of biofluids and extracts for NMR spectroscopy.

    PubMed

    Le Gall, Gwnalle

    2015-01-01

    Metabonomics is a cross-disciplinary science that overlaps with analytical chemistry, biology, and statistical analysis. The techniques commonly used are proton nuclear magnetic resonance ((1)H NMR) spectroscopy and mass spectrometry (MS). Applying (1)H NMR on cell extracts provides a rapid and comprehensive screening of the most abundant metabolites allowing the quantitation of typically 20-70 compounds (depending on the type of sample) including amino and organic acids, sugars, amines, nucleosides, phenolic compounds, osmolytes, and lipids produced at sublevel millimolar concentrations. The sample preparation is usually kept minimal making the method particularly suited to high-throughput analysis (up to 100 samples/24 h with the use of a 60-holder autosampler). This chapter describes procedures for profiling liquids and solids of biological origin from plants, food, microbes, and mammalian systems. PMID:25677143

  20. Structure of lysozyme dissolved in neat organic solvents as assessed by NMR and CD spectroscopies

    SciTech Connect

    Knubovets, T.; Klibanov, A.M.; Osterhout, J.J.

    1999-04-20

    The structure of the model protein hen egg-white lysozyme dissolved in water and in five neat organic solvents (ethylene glycol, methanol, dimethylsufloxide (DMSO), formamide, and dimethylformamide (DMF)) has been examined by means of {sup 1}H NMR and circular dichroism (CD) spectroscopies. The NMR spectra of lysozyme reveal the lack of a defined tertiary structure in all five organic solvents, although the examination of line widths suggests the possibility of some ordered structure in ethylene glycol and in methanol. The near-UV CD spectra of the protein suggest no tertiary structure in lysozyme dissolved in DMSO, formamide, and DMF, while a distinctive tertiary structure is seen in ethylene glycol and a drastically changed one in methanol. A highly developed secondary structure was observed by far-UV CD in ethylene glycol and methanol; interestingly, the {alpha}-helix content of the protein in both was greater than in water, while the {beta}-structure content was lower.

  1. Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kimata, Naoki; Reeves, Philip J.; Smith, Steven O.

    2015-04-01

    G protein-coupled receptors (GPCRs) span cell membranes with seven transmembrane helices and respond to a diverse array of extracellular signals. Crystal structures of GPCRs have provided key insights into the architecture of these receptors and the role of conserved residues. However, the question of how ligand binding induces the conformational changes that are essential for activation remains largely unanswered. Since the extracellular sequences and structures of GPCRs are not conserved between receptor subfamilies, it is likely that the initial molecular triggers for activation vary depending on the specific type of ligand and receptor. In this article, we describe NMR studies on the rhodopsin subfamily of GPCRs and propose a mechanism for how retinal isomerization switches the receptor to the active conformation. These results suggest a general approach for determining the triggers for activation in other GPCR subfamilies using NMR spectroscopy.

  2. Isotope-Filtered 4D NMR Spectroscopy for Structure Determination of Humic Substances.

    PubMed

    Bell, Nicholle G A; Michalchuk, Adam A L; Blackburn, John W T; Graham, Margaret C; Uhrn, Duan

    2015-07-13

    Humic substances, the main component of soil organic matter, could form an integral part of green and sustainable solutions to the soil fertility problem. However, their global-scale application is hindered from both scientific and regulatory perspectives by the lack of understanding of the molecular make-up of these chromatographically inseparable mixtures containing thousands of molecules. Here we show how multidimensional NMR spectroscopy of isotopically tagged molecules enables structure characterization of humic compounds. We illustrate this approach by identifying major substitution patterns of phenolic aromatic moieties of a peat soil fulvic acid, an operational fraction of humic substances. Our methodology represents a paradigm shift in the use of NMR active tags in structure determination of small molecules in complex mixtures. Unlike previous tagging methodologies that focused on the signals of the tags, we utilize tags to directly probe the identity of the molecules they are attached to. PMID:26036217

  3. Two-dimensional NMR spectroscopy of (13)C methanol at less than 5 ?T.

    PubMed

    Shim, Jeong Hyun; Lee, Seong-Joo; Hwang, Seong-min; Yu, Kwon-Kyu; Kim, Kiwoong

    2014-09-01

    Two-dimensional (2D) spectroscopy is one of the most significant applications of nuclear magnetic resonance (NMR). Here, we demonstrate that the 2D NMR can be performed even at a low magnetic field of less than 5?T, which is ten times less than the Earth's magnetic field. The pulses used in the experiment were composed of circularly polarized fields for coherent as well as wideband excitations. Since the excitation band covers the entire spectral range, the simplest two-pulse sequence delivered the full 2D spectrum. At 5?T, methanol with (13)C enriched up to 99% belongs to a strongly coupled regime, and thus its 2D spectrum exhibits complicated spectral correlations, which can be exploited as a fingerprint in chemical analysis. In addition, we show that, with compressive sensing, the acquisition of the 2D spectrum can be accelerated to take only 45% of the overall duration. PMID:25063950

  4. Detoxification of organophosphorus pesticides and nerve agents through RSDL: efficacy evaluation by (31)P NMR spectroscopy.

    PubMed

    Elsinghorst, Paul W; Worek, Franz; Koller, Marianne

    2015-03-01

    Intoxication by organophosphorus compounds, especially by pesticides, poses a considerable risk to the affected individual. Countermeasures involve both medical intervention by means of antidotes as well as external decontamination to reduce the risk of dermal absorption. One of the few decontamination options available is Reactive Skin Decontamination Lotion (RSDL), which was originally developed for military use. Here, we present a (31)P NMR spectroscopy based methodology to evaluate the detoxification efficacy of RSDL with respect to a series of organophosphorus pesticides and nerve agents. Kinetic analysis of the obtained NMR data provided degradation half-lives proving that RSDL is also reasonably effective against organophosphorus pesticides. Unexpected observations of different RSDL degradation patterns are presented in view of its reported oximate-catalyzed mechanism of action. PMID:25597861

  5. Lipid profiling of cancerous and benign gallbladder tissues by 1H NMR spectroscopy.

    PubMed

    Jayalakshmi, Kamaiah; Sonkar, Kanchan; Behari, Anu; Kapoor, Vinay K; Sinha, Neeraj

    2011-05-01

    Qualitative and quantitative (1) H NMR analysis of lipid extracts of gallbladder tissue in chronic cholecystitis (CC, benign) (n = 14), xanthogranulomatous cholecystitis (XGC, intermediate) (n = 9) and gallbladder cancer (GBC, malignant) (n = 8) was carried out to understand the mechanisms involved in the transformation of benign gallbladder tissue to intermediate and malignant tissue. The results revealed alterations in various tissue lipid components in gallbladder in CC, XGC and GBC. The difference in the nature of lipid components in benign and malignant disease may aid in the identification of the biological pathways involved in the etiopathogenesis of GBC. This is the first study on lipid profiling of gallbladder tissue by (1) H NMR spectroscopy, and has possible implications for the development of future diagnostic approaches. PMID:22945290

  6. Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy.

    PubMed

    Kimata, Naoki; Reeves, Philip J; Smith, Steven O

    2015-04-01

    G protein-coupled receptors (GPCRs) span cell membranes with seven transmembrane helices and respond to a diverse array of extracellular signals. Crystal structures of GPCRs have provided key insights into the architecture of these receptors and the role of conserved residues. However, the question of how ligand binding induces the conformational changes that are essential for activation remains largely unanswered. Since the extracellular sequences and structures of GPCRs are not conserved between receptor subfamilies, it is likely that the initial molecular triggers for activation vary depending on the specific type of ligand and receptor. In this article, we describe NMR studies on the rhodopsin subfamily of GPCRs and propose a mechanism for how retinal isomerization switches the receptor to the active conformation. These results suggest a general approach for determining the triggers for activation in other GPCR subfamilies using NMR spectroscopy. PMID:25797010

  7. Influences of membrane curvature in lipid hexagonal phases studied by deuterium NMR spectroscopy

    SciTech Connect

    Thurmond, R.L.; Lindblom, G.; Brown, M.F. )

    1990-12-31

    The presence of reversed hexagonal phase, HII, favoring lipids in membranes has been proposed to be significant in various biological processes. Therefore an understanding of the HII phase and the transition from the lamellar to hexagonal phase is of importance. We have applied deuterium NMR spectroscopy to study the bilayer and reversed hexagonal phases of 1-perdeuteriopalmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine. The difference in packing between the HII and L alpha phases leads to smaller segmental order parameters in the former case. Since the order profiles are sensitive to the geometry of the aggregates, they can be used to extract structural information about the phases. We present a new means of calculating the radius of curvature, R1, for the HII phase from 2H NMR data. This method gives a value of R1 = 18.1 A, which is in agreement with current understanding of the structure of the HII phase and with x-ray diffraction data.

  8. A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.

    PubMed

    Halse, Meghan E; Callaghan, Paul T

    2008-12-01

    Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation. PMID:18926746

  9. Complete spectral assignments of methacrylonitrile styrene methyl methacrylate terpolymers by 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Brar, A. S.; Pradhan, D. R.

    2003-04-01

    Methacrylonitrile-styrene-methyl methacrylate (N/S/M) terpolymers of different monomer concentrations were prepared by bulk polymerization. The terpolymer compositions were determined by quantitative 13C{ 1H} NMR spectra and compared with those calculated by Goldfinger's equation using comonomer reactivity ratios: rNS=0.30, rSN=0.45; rNM=0.91, rMN=0.88; rSM=0.52, rMS=0.47. The overlapping and complex 13C{ 1H} and 1H NMR spectra of the terpolymers were assigned with the help of distortionless enhancement by polarization transfer and two-dimensional (2D) 13C- 1H heteronuclear single quantum coherence experiments. The various vicinal and geminal couplings between the protons in the polymer chains can be seen in the 2D total correlated spectroscopy experiments.

  10. Structural studies of pravastatin and simvastatin and their complexes with SDS micelles by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Rakhmatullin, I. Z.; Galiullina, L. F.; Klochkova, E. A.; Latfullin, I. A.; Aganov, A. V.; Klochkov, V. V.

    2016-02-01

    Conformational features of pravastatin and simvastatin molecules in solution and in their complexes with sodium dodecyl sulfate micelles (SDS) were studied by 2D NOESY NMR spectroscopy. On the basis of the nuclear magnetic resonance experiments it was established that pravastatin and simvastatin can form molecular complex with SDS micelles which were considered as the model of cell membrane. In addition, interatomic distances for studied compounds were calculated based on 2D NOESY NMR experiments. It was shown that pravastatin interacts only with a surface of model membrane. However, in contrast to pravastatin, simvastatin penetrates into the inner part of SDS micelles. Observed distinctions in the mechanisms of interaction of pravastatin and simvastatin with models of cell membranes could explain the differences in their pharmacological properties.

  11. Purification, crystallization, NMR spectroscopy and biochemical analyses of alpha-phycoerythrocyanin peptides.

    PubMed

    Wiegand, Georg; Parbel, Axel; Seifert, Markus H J; Holak, Tad A; Reuter, Wolfgang

    2002-10-01

    The alpha-phycoerythrocyanin subunits of the different phycoerythrocyanin complexes of the phycobilisomes from the cyanobacterium Mastigocladus laminosus perform a remarkable photochemistry. Similar to phytochromes - the photoreceptors of higher plants - the spectral properties of the molecule reversibly change according to the irradiation wavelength. To enable extensive analyses, the protein has been produced at high yield by improving purification protocols. As a result, several comparative studies on the Z- and E-configurations of the intact alpha-subunit, and also on photoactive peptides originating from nonspecific degradations of the chromoprotein, were possible. The analyses comprise absorbance, fluorescence and CD spectroscopy, crystallization, preliminary X-ray measurements, mass spectrometry, N-terminal amino acid sequencing and 1D NMR spectroscopy. Intact alpha-phycoerythrocyanin aggregates significantly, due to hydrophobic interactions between the two N-terminal helices. Removal of these helices reduces the aggregation but also destabilizes the protein fold. The complete subunit could be crystallized in its E-configuration, but the X-ray measurement conditions must be improved. Nevertheless, NMR spectroscopy on a soluble photoactive peptide presents the first insight into the complex chromophore protein interactions that are dependent on the light induced state. The chromophore environment in the Z-configuration is rigid whereas other regions of the protein are more flexible. In contrast, the E-configuration has a mobile chromophore, especially the pyrrole ring D, while other regions of the protein rigidified compared to the Z-configuration. PMID:12383264

  12. Linking Local Environments and Hyperfine Shifts: A Combined Experimental and Theoretical 31P and 7Li Solid–State NMR Study of Paramagnetic Fe(III) Phosphates

    SciTech Connect

    Kim, Jonsik; Middlemiss, Derek S.; Chernova, Natasha; Zhu, Ben Y.H.; Masquelier, Christian; Grey, Clare P.

    2010-11-05

    Iron phosphates (FePO4) are among the most promising candidate materials for advanced Li-ion battery cathodes. This work reports upon a combined nuclear magnetic resonance (NMR) experimental and periodic density functional theory (DFT) computational study of the environments and electronic structures occurring in a range of paramagnetic Fe(III) phosphates comprising FePO4 (heterosite), monoclinic Li3Fe2(PO4)3 (anti-NASICON A type), rhombohedral Li3Fe2(PO4)3 (NASICON B type), LiFeP2O7, orthorhombic FePO4·2H2O (strengite), monoclinic FePO4·2H2O (phosphosiderite), and the dehydrated forms of the latter two phases. Many of these materials serve as model compounds relevant to battery chemistry. The 31P spin-echo mapping and 7Li magic angle spinning NMR techniques yield the hyperfine shifts of the species of interest, complemented by periodic hybrid functional DFT calculations of the respective hyperfine and quadrupolar tensors. A Curie-Weiss-based magnetic model scaling the DFT-calculated hyperfine parameters from the ferromagnetic into the experimentally relevant paramagnetic state is derived and applied, providing quantitative finite temperature values for each phase. The sensitivity of the hyperfine parameters to the composition of the DFT exchange functional is characterized by the application of hybrid Hamiltonians containing admixtures 0%, 20%, and 35% of Fock exchange. Good agreement between experimental and calculated values is obtained, provided that the residual magnetic couplings persisting in the paramagnetic state are included. The potential applications of a similar combined experimental and theoretical NMR approach to a wider range of cathode materials are discussed.

  13. Study of order and dynamics in liquid crystalline materials by carbon-13 and deuterium NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Jiadi

    This dissertation investigates the phase structures, molecular structures and diffusion motions in some recently discovered liquid crystals using 1D and 2D carbon-13 and deuterium NMR spectroscopy. Two classes of liquid crystals are involved: chiral rod-like liquid crystals and banana mesogens. Our investigations of these new materials were divided into five main sections. The ordering and structures of banana liquid crystals and chiral rod-like mesogens were extracted from solid-state 13C NMR experiments including Separated-Local-Field study based on Lee-Goldberg Cross-Polarization (LGCP-SLF) and temperature dependent chemical shifts. The principal values of CSA tensor were measured using Separation of Undistorted CSA Powder patterns by Effortless Recoupling (SUPER) experiment. Some ID and 2D pulse experiments were performed for the assignment of carbon peaks, such as Cross-Polarization Polarization-Inversion (CPPI), HECTOR and so on. The soliton-like distortion of the helicoidal structure in the chiral smectic C phase (SmC*) of 8BEF5 liquid crystal was observed by the angular dependent DNMR patterns, and quantitatively interpreted based on Landau theory. The distortion was induced by the NMR magnetic field. The phase structure and interlayer diffusion in anticlinic Sm C* phases (Sm C*A , Sm C*Fi1 and Sm C*Fi2 ) of 10B1M7 liquid crystal were measured using angular dependent DNMR lineshapes and echo intensities. This work represents the first study of ferrielectric smectic phases by means of NMR. Measurements of the interlayer diffusion in synclinic and anticlinic SmC* phases (SmC*, Sm C*Fi1 and Sm C*Fi2 ) of 10B1M7 were carried out using 2H NMR exchange experiments. The phase structures of anticlinic SmC* phases were also determined using the same technique. A 'deformed clock model' was found to be appropriate for these phases. Molecular structures and dynamics were investigated in an exotic B 2 phase of a banana liquid crystal Pbis11BB by means of CP-MAS 13C NMR, MAS 2D 13C NMR exchange and LGCP-SLF (with MAS) experiments. These experiments showed that the molecules have asymmetric conformation in the solid state and carry on much slower motions in solid and liquid states compared to banana molecules in the same homologous series.

  14. Metabolic effects of dental resin components in vitro detected by NMR spectroscopy.

    PubMed

    Engelmann, J; Leyhausen, G; Leibfritz, D; Geurtsen, W

    2001-03-01

    Earlier studies have shown that the comonomer triethyleneglycol-dimethacrylate (TEGDMA) and the photostabilizer 2-hydroxy-4-methoxybenzophenone (HMBP) are cytotoxic and inhibit cell growth. It was the aim of this study to elucidate the underlying metabolic effects of TEGDMA and HMBP on immortal contact-inhibited Swiss albino mouse embryo cells (3T3 fibroblasts) by nuclear magnetic resonance (NMR) spectroscopy. Cell extracts and culture media were analyzed by NMR spectroscopy for metabolic changes after incubation for 24 hours with ED20-concentrations of TEGDMA and HMBP. TEGDMA could be detected in all fractions (cytosol, lipid fractions, and culture media) of 3T3 cells, while HMBP was found only in the lipid fraction accumulated at a maximum rate (51 nmol/mg DNA) compared with TEGDMA (27 nmol/mg DNA). TEGDMA increased the concentration of phosphomonoesters to 180+/-36% and decreased the phosphodiesters to 65+/-5% of controls (control = 100%). Thus, the turnover of phospholipids was enhanced, whereas content and composition of phospholipids of membranes did not alter markedly. Additionally, TEGDMA changed the metabolic state of cells, indicated by slight decreases of nucleoside triphosphates and an increase in the ratio of nucleoside diphosphates to nucleoside triphosphates, while HMBP had no effect. The most remarkable effect of TEGDMA was a nearly complete decline of the intracellular glutathione levels. Analysis of our data shows that NMR spectroscopy of cell-material interactions may reveal metabolic effects of organic test substances which are not detectable by standard in vitro assays. The comonomer TEGDMA affected the metabolism of the cells on different levels, while HMBP accumulated in the lipid fraction and induced significantly fewer effects on cell metabolism. PMID:11379887

  15. Heteronuclear dipolar couplings, total spin coherence, and bilinear rotations in NMR spectroscopy

    SciTech Connect

    Garbow, J.R.

    1983-07-01

    In Chapter 1 a variety of different introductory topics are presented. The potential complexity of the nuclear magnetic resonsnace (NMR) spectra of molecules dissolved in liquid crystal solvents serves to motivate the development of multiple quantum (MQ) spectroscopy. The basics of MQ NMR are reviewed in Chapter 2. An experimental search procedure for the optimization of MQ pulse sequences is introduced. Chapter 3 discusses the application of MQ NMR techniques to the measurement of dipolar couplings in heteronuclear spin systems. The advantages of MQ methods in such systems are developed and experimental results for partially oriented (1-/sup 13/C) benzene are presented. Several pulse sequences are introduced which employ a two-step excitation of heteronuclear MQ coherence. A new multiple pulse method, involving the simultaneous irradiation of both rare and abundant spin species, is described. The problem of the broadening of MQ transitions due to magnetic field inhomogeneity is considered in Chapter 4. The method of total spin coherence transfer echo spectroscopy (TSCTES) is presented, with experimets on partially oriented acetaldehyde serving to demonstrate this new technique. TSCTES results in MQ spectra which are sensitive to all chemical shifts and spin-spin couplings and which are free of inhomogeneous broadening. In Chapter 5 the spectroscopy of spin systems of several protons and a /sup 13/C nucleus in the isotropic phase is discussed. The usefulness of the heteronuclear bilinear rotation as a calculational tool is illustrated. Compensated bilinear ..pi.. rotations, which are relatively insensitive to timing parameter missets, are presented. A new technique for homonuclear proton decoupling, Bilinear Rotation Decoupling, is described and its success in weakly coupled systems is demonstrated.

  16. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    NASA Astrophysics Data System (ADS)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (?), such as protons, to the less abundant 13C nuclei with low ? values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kgel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90 x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched. The Hartmann-Hahn condition can be expressed as ?HB1H = ?CB1C, where ?H and ?C are the gyromagnetic ratios of protons and carbons, whereas B1H and B1C are the 1H and 13C radio-frequency (r.f.) fields applied to the nuclei. The Hartmann-Hahn condition is affected by the H-C dipolar interaction strength (Stejskal & Memory, 1994). All the factors affecting dipolar interactions may mismatch the Hartmann-Hahn condition and prevent a quantitative representation of the NOM chemical composition (Conte et al., 2004). It has been reported that under low speed MAS conditions, broad matching profiles are centered around the Hartmann-Hahn condition....... With increasing spinning speed the Hartmann-Hahn matching profiles break down in a series of narrow matching bands separated by the rotor frequency (Stejskal & Memory, 1994). In order to account for the instability of the Hartmann-Hahn condition at higher rotor spin rates (>10 kHz), variable amplitude cross-polarization techniques (RAMP-CP) have been developed (Metz et al., 1996). So far, to our knowledge, the prevailing way used to obtain quantitative 13C-CPMAS NMR results was to optimize the 1H and 13C spin lock r.f. fields on simple standard systems such as glycine and to use those r.f. field values to run experiments on unknown organic samples. The aim of the present study was to experimentally evidence that the stability of the Hartmann-Hahn condition was different for different samples with a known structure. Moreover, Hartmann-Hahn profiles of four different humic acids (HAs) were also provided in order to show that the 1H/13C r.f. spin lock field strength must also be tested on the HAs prior to a quantitative evaluation of their 13C-CPMAS NMR spectra. Baldock, J.A., Oades, J.M., Nelson, P.N., Skene, T.M., Golchin, A. & Clarke, P., 1997. Assessing the extent of decomposition of natural organic materials using solid-state C-13 NMR spectroscopy. Australian Journal of Soil Research, 35, 1061-1083. Conte, P., Piccolo, A., van Lagen, B., Buurman, P. & de Jager, P.A., 1997. Quantitative Aspects of So

  17. Dynamic processes and chemical composition of Lepidium sativum seeds determined by means of field-cycling NMR relaxometry and NMR spectroscopy.

    PubMed

    Rachocki, A; Latanowicz, L; Tritt-Goc, J

    2012-12-01

    Proton nuclear magnetic resonance (NMR) techniques, such as field-cycling relaxometry, wide-line NMR spectroscopy, and magic angle spinning NMR spectroscopy, were applied to study the seeds of cress, Lepidium sativum. Field-cycling NMR relaxometry was used for the first time to investigate the properties of the whole molecular system of dry cress seeds. This method not only allowed the dynamics to be studied, but was also successful in the differentiation among the solid (i.e., carbohydrates, proteins, or fats forming a solid form of lipids) and liquid-like (oil compounds) components of the seeds. The (1)H NMR relaxation dispersion of oils was interpreted as a superposition of intramolecular and intermolecular contributions. The intramolecular part was described in terms of a Lorentzian spectral density function, whereas a log-Gaussian distribution of correlation times was applied for the intermolecular dipole-dipole contribution. The models applied led to very good agreement with the experimental data and demonstrate that the contribution of the intermolecular relaxation to the overall relaxation should not be disregarded, especially at low frequencies. A power-law frequency dependence of the proton relaxation dispersion was used for the interpretation of the solid components. From the analysis of the (1)H wide-line NMR spectra of the liquid-like component of hydrated cress seeds, we can conclude that the contribution of oil protons should always be taken into account when evaluating the spin-lattice relaxation times values or measuring the moisture and oil content. The application of (1)H magic angle spinning NMR significantly improves resolution in the liquid-like spectrum of seeds and allows the determination of the chemical composition of cress seeds. PMID:23001307

  18. Impact of Hydrophilic Surfaces on Interfacial Water Dynamics Probed with NMR Spectroscopy

    PubMed Central

    Yoo, Hyok; Paranji, Rajan

    2011-01-01

    In suspensions of Nafion beads and of cationic gel beads, NMR spectroscopy showed two waterproton resonances, one representing intimate water layers next to the polymer surface, the other corresponding to water lying beyond. Both resonances show notably shorter spinlattice relaxation times (T1) and smaller self-diffusion coefficients (D) indicating slower dynamics than bulk water. These findings confirm the existence of highly restricted water layers adsorbed onto hydrophilic surfaces and dynamically stable water beyond the first hydration layers. Thus, aqueous regions on the order of micrometers are dynamically different from bulk water. PMID:22003430

  19. Silica sol assisted chromatographic NMR spectroscopy for resolution of trans- and cis-isomers

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Wu, Rui; Huang, Shaohua; Bai, Zhengwu

    2016-04-01

    Chromatographic NMR spectroscopy can separate the mixtures of species with significantly different molecular size, but generally fails for isomeric species. Herein, we reported the resolution of trans- and cis-isomers and their structural analogue, which are different in molecular shapes, but similar in mass, were greatly enhanced in the presence of silica sol. The mixtures of maleic acid, fumaric acid and succinic acid, and the mixtures of trans- and cis-1,2-cyclohexanedicarboxylic acids, were distinguished by virtue of their different degrees of interaction with silica sol. Moreover, we found mixed solvents could improve the spectral resolution of DOSY spectra of mixtures.

  20. Probabilistic Interaction Network of Evidence Algorithm and its Application to Complete Labeling of Peak Lists from Protein NMR Spectroscopy

    PubMed Central

    Bahrami, Arash; Assadi, Amir H.; Markley, John L.; Eghbalnia, Hamid R.

    2009-01-01

    The process of assigning a finite set of tags or labels to a collection of observations, subject to side conditions, is notable for its computational complexity. This labeling paradigm is of theoretical and practical relevance to a wide range of biological applications, including the analysis of data from DNA microarrays, metabolomics experiments, and biomolecular nuclear magnetic resonance (NMR) spectroscopy. We present a novel algorithm, called Probabilistic Interaction Network of Evidence (PINE), that achieves robust, unsupervised probabilistic labeling of data. The computational core of PINE uses estimates of evidence derived from empirical distributions of previously observed data, along with consistency measures, to drive a fictitious system M with Hamiltonian H to a quasi-stationary state that produces probabilistic label assignments for relevant subsets of the data. We demonstrate the successful application of PINE to a key task in protein NMR spectroscopy: that of converting peak lists extracted from various NMR experiments into assignments associated with probabilities for their correctness. This application, called PINE-NMR, is available from a freely accessible computer server (http://pine.nmrfam.wisc.edu). The PINE-NMR server accepts as input the sequence of the protein plus user-specified combinations of data corresponding to an extensive list of NMR experiments; it provides as output a probabilistic assignment of NMR signals (chemical shifts) to sequence-specific backbone and aliphatic side chain atoms plus a probabilistic determination of the protein secondary structure. PINE-NMR can accommodate prior information about assignments or stable isotope labeling schemes. As part of the analysis, PINE-NMR identifies, verifies, and rectifies problems related to chemical shift referencing or erroneous input data. PINE-NMR achieves robust and consistent results that have been shown to be effective in subsequent steps of NMR structure determination. PMID:19282963

  1. In-vivo two-dimensional NMR spectroscopy: inventory and perspectives

    NASA Astrophysics Data System (ADS)

    Ziegler, A.; Dcorps, M.

    1998-02-01

    Two-dimensional spectroscopy, routinely used in high-resolution NMR, may present a number of advantages fo in-vivo applications (resonance assignments, follow-up of metabolism...). The main features of experiments on living systems (animal models and clinical applications) are reviewed: short T2* decay times, low field magnets, water suppression, localization, motion artefacts... The need for adapting 2D techniques is analyzed. Recent applications and developments are reviewed (J-resolved, homonuclear correlation spectroscopy. La spectroscopie deux dimensions, couramment utilise en RMN haute rsolution, pourrait prsenter de nombreux avantages dans les applications in vivo. Les caractristiques de l'exprimentation sur des systmes vivants (en clinique ou sur des modles animaux) sont dtailles : T2* courts, faibles" champ B0, suppression de l'eau et des signaux indsirables, localisation du signal, artefacts de mouvement... Les consquences pour l'utilisation in vivo des techniques RMN 2D sont passes en revue. Les applications et dveloppements rcents sont mentionns (spectroscopie J-rsolu, spectroscopie de corrlation homonuclaire).

  2. Oil droplet size determination in complex flavor delivery systems by diffusion NMR spectroscopy.

    PubMed

    Fieber, Wolfgang; Hafner, Valeria; Normand, Valéry

    2011-04-15

    Droplet size distribution of flavor oils in two different solid flavor delivery systems were determined with pulsed field gradient NMR spectroscopy: yeast encapsulation system, a spray dried flavor encapsulation system based on empty yeast cells, and glassy encapsulation system, an extruded solid water soluble carbohydrate delivery system. The oil droplet sizes are limited by the yeast cell walls in the yeast encapsulation system and the size distribution is unimodal according to images from transmission electron microscopy. The droplet size determination with diffusion NMR is based on the Murday and Cotts theory of restricted diffusion of liquids in geometrical confinements. Good fits of the diffusion data could be obtained by applying a unimodal, log-normal size distribution model and average droplet sizes of about 2 μm were found that correspond approximately to the inner diameter of the yeast cells. Scanning electron microscopy images showed a multimodal droplet size distribution in the glassy extruded delivery systems. To fit the NMR data a bimodal log-normal distribution function with five independent fitting parameters was implemented that yielded consistent and robust results. The two size populations were found in the micron and sub-micron range, respectively. The method was sufficiently accurate to depict variation of droplet size distributions in glassy encapsulation systems of different formulation. PMID:21316700

  3. Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy.

    PubMed

    Piveteau, Laura; Ong, Ta-Chung; Rossini, Aaron J; Emsley, Lyndon; Copret, Christophe; Kovalenko, Maksym V

    2015-11-01

    Understanding the chemistry of colloidal quantum dots (QDs) is primarily hampered by the lack of analytical methods to selectively and discriminately probe the QD core, QD surface and capping ligands. Here, we present a general concept for studying a broad range of QDs such as CdSe, CdTe, InP, PbSe, PbTe, CsPbBr3, etc., capped with both organic and inorganic surface capping ligands, through dynamic nuclear polarization (DNP) surface enhanced NMR spectroscopy. DNP can enhance NMR signals by factors of 10-100, thereby reducing the measurement times by 2-4 orders of magnitude. 1D DNP enhanced spectra acquired in this way are shown to clearly distinguish QD surface atoms from those of the QD core, and environmental effects such as oxidation. Furthermore, 2D NMR correlation experiments, which were previously inconceivable for QD surfaces, are demonstrated to be readily performed with DNP and provide the bonding motifs between the QD surfaces and the capping ligands. PMID:26473384

  4. Advanced Structural Determination of Diterpene Esters Using Molecular Modeling and NMR Spectroscopy.

    PubMed

    Nothias-Scaglia, Louis-Flix; Gallard, Jean-Franois; Dumontet, Vincent; Roussi, Fanny; Costa, Jean; Iorga, Bogdan I; Paolini, Julien; Litaudon, Marc

    2015-10-23

    Three new jatrophane esters (1-3) were isolated from Euphorbia amygdaloides ssp. semiperfoliata, including an unprecedented macrocyclic jatrophane ester bearing a hemiketal substructure, named jatrohemiketal (3). The chemical structures of compounds 1-3 and their relative configurations were determined by spectroscopic analysis. The absolute configuration of compound 3 was determined unambiguously through an original strategy combining NMR spectroscopy and molecular modeling. Conformational search calculations were performed for the four possible diastereomers 3a-3d differing in their C-6 and C-9 stereocenters, and the lowest energy conformer was used as input structure for geometry optimization. The prediction of NMR parameters ((1)H and (13)C chemical shifts and (1)H-(1)H coupling constants) by density functional theory (DFT) calculations allowed identifying the most plausible diastereomer. Finally, the stereostructure of 3 was solved by comparison of the structural features obtained by molecular modeling for 3a-3d with NMR-derived data (the values of dihedral angles deduced from the vicinal proton-proton coupling constants ((3)JHH) and interproton distances determined by ROESY). The methodology described herein provides an efficient way to solve or confirm structural elucidation of new macrocyclic diterpene esters, in particular when no crystal structure is available. PMID:26431312

  5. Characterization of silica catalyst supports by single and multiple quantum proton NMR spectroscopy

    SciTech Connect

    Hwang, S.J.; Uner, D.O.; King, T.S. |; Pruski, M.; Gerstein, B.C.

    1995-03-16

    Cab-O-Sil HS5, used as the support in silica supported ruthenium (Ru/SiO{sub 2}) catalysts, was characterized via single and multiple quantum (MQ) {sup 1}H NMR spectroscopy. The samples were studied both in the presence and in the absence of ruthenium. Single quantum spin counting of protons on silica support with and without ruthenium metal indicated that the total number of hydroxyl groups decreased significantly with increasing reduction temperature over the range of 350-530{degree}C. Two different components shown in static {sup 1}H NMR were found to reveal homogeneous and inhomogenous broadening via spectral hole burning experiments. {sup 1}H MQ-NMR spin, counting, based on the number of MQ coherences observed, showed the existence of small clusters of proton spins on the silica surface. The maximum measured cluster size was 6-7, or less, spins. Segments of silica resembling the 100 face of cristobalite on the surface are postulated to be possible sites for the clusters. The clusters in pure silica became smaller as the reduction temperature increased over 500{degree}C. No such change was detected in the presence of ruthenium. 33 refs., 11 figs., 2 tabs.

  6. 60MHz 1H NMR spectroscopy for the analysis of edible oils?

    PubMed Central

    Parker, T.; Limer, E.; Watson, A.D.; Defernez, M.; Williamson, D.; Kemsley, E. Kate

    2014-01-01

    We report the first results from a new 60MHz 1H nuclear magnetic resonance (NMR) bench-top spectrometer, Pulsar, in a study simulating the adulteration of olive oil with hazelnut oil. There were qualitative differences between spectra from the two oil types. A single internal ratio of two isolated groups of peaks could detect hazelnut oil in olive oil at the level of ?13%w/w, whereas a whole-spectrum chemometric approach brought the limit of detection down to 11.2%w/w for a set of independent test samples. The Pulsars performance was compared to that of Fourier transform infrared (FTIR) spectroscopy. The Pulsar delivered comparable sensitivity and improved specificity, making it a superior screening tool. We also mapped NMR onto FTIR spectra using a correlation-matrix approach. Interpretation of this heat-map combined with the established annotations of the NMR spectra suggested a hitherto undocumented feature in the IR spectrum at ?1130cm?1, attributable to a double-bond vibration. PMID:24850979

  7. Interaction of the replication terminator protein of Bacillus subtilis with DNA probed by NMR spectroscopy

    SciTech Connect

    Hastings, Adam F.; Otting, Gottfried; Folmer, Rutger H.A.; Duggin, Iain G.; Wake, R. Gerry; Wilce, Matthew C.J.; Wilce, Jacqueline A. . E-mail: Jackie.Wilce@med.monash.edu.au

    2005-09-23

    Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the dimeric 29 kDa replication terminator protein (RTP) and DNA terminator sites. We have used NMR spectroscopy to probe the changes in {sup 1}H-{sup 15}N correlation spectra of a {sup 15}N-labelled RTP.C110S mutant upon the addition of a 21 base pair symmetrical DNA binding site. Assignment of the {sup 1}H-{sup 15}N correlations was achieved using a suite of triple resonance NMR experiments with {sup 15}N,{sup 13}C,70% {sup 2}H enriched protein recorded at 800 MHz and using TROSY pulse sequences. Perturbations to {sup 1}H-{sup 15}N spectra revealed that the N-termini, {alpha}3-helices and several loops are affected by the binding interaction. An analysis of this data in light of the crystallographically determined apo- and DNA-bound forms of RTP.C110S revealed that the NMR spectral perturbations correlate more closely to protein structural changes upon complex formation rather than to interactions at the protein-DNA interface.

  8. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R.L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  9. Analysis of trivalent cation complexation to functionalized mesoporous silica using solid-state NMR spectroscopy.

    PubMed

    Shusterman, Jennifer; Mason, Harris; Bruchet, Anthony; Zavarin, Mavrik; Kersting, Annie B; Nitsche, Heino

    2014-11-28

    Functionalized mesoporous silica has applications in separations science, catalysis, and sensors. In this work, we studied the fundamental interactions of trivalent cations with functionalized mesoporous silica. We contacted trivalent cations of varying ionic radii with N-[5-(trimethoxysilyl)-2-aza-1-oxopentyl]caprolactam functionalized mesoporous silica with the aim of probing the binding mechanism of the metal to the surface of the solid. We studied the functionalized silica using solid-state nuclear magnetic resonance (NMR) spectroscopy before and after contact with the metals of interest. We collected NMR spectra of the various metals, as well as of (29)Si and (13)C to probe the silica substrate and the ligand properties, respectively. The NMR spectra indicate that the metals bind to the functionalized silica via two mechanisms. Aluminum sorbed to both the silica and the ligand, but with different coordination for each. Scandium also sorbed to both the silica and the ligand, and unlike the aluminum, had the same coordination number. Additionally, the functionalized silica was susceptible to acid hydrolysis and two primary mechanisms of degradation were observed: detachment from the silica surface and opening of the seven-membered ring in the ligand. Opening of the seven-membered ring may be beneficial in that it decreases steric hindrance of the molecule for binding. PMID:25265419

  10. Siderochromes from Pseudomonas fluorescens. II. Structural homology as revealed by NMR spectroscopy.

    PubMed

    Philson, S B; Llinás, M

    1982-07-25

    Ferribactin and the pyoverdines, siderochromes that are obtained from liquid cultures of Pseudomonas fluorescens cells, have been studied and compared by 1H and 13C NMR spectroscopy. The proton spectra of the iron-free compounds show that the pyoverdines share with ferribactin a common feature, formyl hydroxamic acid groups, that previously had only been observed in hadacidin, and antitumor antibiotic produced by Penicillium frequentans. The 1H and 13C NMR data confirm that ferribactin is a nonapeptide that contains two residues each of lysine and N6-formyl-N6-hydroxyornithine. This corrects an earlier report (Maurer, B., Müller, A., Keller-Schierlein, W., and Zähner, H. (1968) Arch. Mikrobiol. 60, 326-339) ascribing two acetyl hydroxamic acid groups and three lysyl residues to ferribactin. Similarly, the spectroscopic data show that pyoverdine lacks the Glx and Tyr residues present in ferribactin. On the basis of the compositional analogy exhibited by pyoverdine and ferribactin, it is suggested that the two siderochromes may be metabolically related. The 13C NMR spectra of pyoverdine indicate that its fluorescent component is a nine-carbon aromatic heterocycle, probably identical with an o-dihydroxyquinoline chromophore found in pseudobactin, a fluorescent siderophore produced by Pseudomonas B10. PMID:6211451

  11. Investigation of Oxidative Degradation in Polymers Using (17)O NMR Spectroscopy

    SciTech Connect

    Alam, Todd M.; Celina, Mathew; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T.; Wheeler David R.

    1999-07-20

    The thermal oxidation of pentacontane (C{sub 50}H{sub 102}), and of the homopolymer polyisoprene, has been investigated using {sup 17}O NMR spectroscopy. By performing the oxidation using {sup 17}O labeled O{sub 2} gas, it is possible to easily identify degradation products, even at relatively low concentrations. It is demonstrated that details of the degradation mechanism can be obtained from analysis of the {sup 17}O NMR spectra as a function of total oxidation. Pentacontane reveals the widest variety of reaction products, and exhibits changes in the relative product distributions with increasing O{sub 2} consumption. At low levels of oxygen incorporation, peroxides are the major oxidation product, while at later stages of degradation these species are replaced by increasing concentrations of ketones, alcohols, carboxylic acids and esters. Analyzing the product distribution can help in identification of the different free-radical decomposition pathways of hydroperoxides, including recombination, proton abstraction and chain scission, as well as secondary reactions. The {sup 17}O NMR spectra of thermally oxidized polyisoprene reveal fewer degradation functionalities, but exhibit an increased complexity in the type of observed degradation species due to structural features such as unsaturation and methyl branching. Alcohols and ethers formed from hydrogen abstraction and free radical termination.

  12. Biological effects and physical safety aspects of NMR imaging and in vivo spectroscopy

    SciTech Connect

    Tenforde, T.S.; Budinger, T.F.

    1985-08-01

    An assessment is made of the biological effects and physical hazards of static and time-varying fields associated with the NMR devices that are being used for clinical imaging and in vivo spectroscopy. A summary is given of the current state of knowledge concerning the mechanisms of interaction and the bioeffects of these fields. Additional topics that are discussed include: (1) physical effects on pacemakers and metallic implants such as aneurysm clips, (2) human health studies related to the effects of exposure to nonionizing electromagnetic radiation, and (3) extant guidelines for limiting exposure of patients and medical personnel to the fields produced by NMR devices. On the basis of information available at the present time, it is concluded that the fields associated with the current generation of NMR devices do not pose a significant health risk in themselves. However, rigorous guidelines must be followed to avoid the physical interaction of these fields with metallic implants and medical electronic devices. 476 refs., 5 figs., 2 tabs.

  13. Novel monosaccharide fermentation products in Caldicellulosiruptor saccharolyticus identified using NMR spectroscopy

    SciTech Connect

    Isern, Nancy G.; Xue, Junfeng; Rao, Jaya V.; Cort, John R.; Ahring, Birgitte K.

    2013-04-03

    Profiles of metabolites produced by the thermophilic obligately anaerobic cellulose-degrading Gram-positive bacterium Caldicellulosiruptor saccharolyticus DSM 8903 strain following growth on different monosaccharides (D-glucose, D-mannose, L-arabinose, D-arabinose, D-xylose, L-fucose, and D-fucose) as carbon sources revealed several unexpected fermentation products, suggesting novel metabolic capacities and unexplored metabolic pathways in this organism. Both 1H and 13C nuclear magnetic resonance (NMR) spectroscopy were used to determine intracellular and extracellular metabolite profiles. Metabolite profiles were determined from 1-D 1H NMR spectra by curve fitting against spectral libraries provided in Chenomx software. To reduce uncertainties due to unassigned, overlapping, or poorly-resolved peaks, metabolite identifications were confirmed with 2-D homonuclear and heteronuclear NMR experiments. In addition to expected metabolites such as acetate, lactate, glycerol, and ethanol, several novel fermentation products were identified: ethylene glycol (from growth on D-arabinose, though not L-arabinose), acetoin and 2,3-butanediol (from D-glucose and L-arabinose), and hydroxyacetone (from D-mannose and L-arabinose). Production of ethylene glycol from D-arabinose was particularly notable, with around 10% of the substrate carbon converted into this uncommon fermentation product. The novel products have not previously been reported to be produced by C. saccharolyticus, nor would they be easily predicted from the current genome annotation, and show new potentials for using this strain for production of bioproducts.

  14. Functional group analysis in coal and on coal surfaces by NMR spectroscopy

    SciTech Connect

    Verkade, J.G.

    1990-01-01

    An accurate knowledge of the oxygen-bearing labile hydrogen functional groups (e.g., carboxylic acids, phenols and alcohols) in coal is required for today's increasingly sophisticated coal cleaning and beneficiation processes. Phospholanes (compounds having the general structure -POCH{sub 2}CH{sub 2}O (1)) are being investigated as reagents for the tagging of liable hydrogen functional groups in coal materials with the NMR-active {sup 31}P nucleus. Of twelve such reagents investigated so far, 2 (2-chloro-1,3-dioxaphospholane, ClPOCH{sub 2}CH{sub 2}O) and 8 (2-chloro-1,3-dithiaphospholane, ClPSCH{sub 2}CH{sub 2}S) have been found to be useful in identifying and quantitating, by {sup 31}P NMR spectroscopy, labile hydrogen functional groups in an Illinois No. 6 coal condensate. Reagent 2 has also been used to quantitate moisture in pyridine extracts of Argonne Premium Coal Samples. Preliminary {sup 119}Sn NMR spectroscopic results on model compounds with the new reagent CF{sub 3}C(O)NHSnMe{sub 3} (N-trimethylstannyltrifluoroacetamide, 14) suggest that labile hydrogen functional groups in coal materials may be more precisely identified with 14 than with phospholanes. 14 refs., 2 figs., 2 tabs.

  15. 60 MHz (1)H NMR spectroscopy for the analysis of edible oils.

    PubMed

    Parker, T; Limer, E; Watson, A D; Defernez, M; Williamson, D; Kemsley, E Kate

    2014-05-01

    We report the first results from a new 60 MHz (1)H nuclear magnetic resonance (NMR) bench-top spectrometer, Pulsar, in a study simulating the adulteration of olive oil with hazelnut oil. There were qualitative differences between spectra from the two oil types. A single internal ratio of two isolated groups of peaks could detect hazelnut oil in olive oil at the level of ∼13%w/w, whereas a whole-spectrum chemometric approach brought the limit of detection down to 11.2%w/w for a set of independent test samples. The Pulsar's performance was compared to that of Fourier transform infrared (FTIR) spectroscopy. The Pulsar delivered comparable sensitivity and improved specificity, making it a superior screening tool. We also mapped NMR onto FTIR spectra using a correlation-matrix approach. Interpretation of this heat-map combined with the established annotations of the NMR spectra suggested a hitherto undocumented feature in the IR spectrum at ∼1130 cm(-1), attributable to a double-bond vibration. PMID:24850979

  16. Solid-State (87)Sr NMR Spectroscopy at Natural Abundance and High Magnetic Field Strength.

    PubMed

    Faucher, Alexandra; Terskikh, Victor V; Ye, Eric; Bernard, Guy M; Wasylishen, Roderick E

    2015-12-10

    Twenty-five strontium-containing solids were characterized via (87)Sr NMR spectroscopy at natural abundance and high magnetic field strength (B0 = 21.14 T). Strontium nuclear quadrupole coupling constants in these compounds are sensitive to the strontium site symmetry and range from 0 to 50.5 MHz. An experimental (87)Sr chemical shift scale is proposed, and available data indicate a chemical shift range of approximately 550 ppm, from -200 to +350 ppm relative to Sr(2+)(aq). In general, magnetic shielding increased with strontium coordination number. Experimentally measured chemical shift anisotropy is reported for stationary samples of solid powdered SrCl26H2O, SrBr26H2O, and SrCO3, with ?aniso((87)Sr) values of +28, +26, and -65 ppm, respectively. NMR parameters were calculated using CASTEP, a gauge including projector augmented wave (GIPAW) DFT-based program, which addresses the periodic nature of solids using plane-wave basis sets. Calculated NMR parameters are in good agreement with those measured. PMID:26565918

  17. Directly Decoupled Diffusion-Ordered NMR Spectroscopy for the Analysis of Compound Mixtures

    PubMed Central

    Glanzer, Simon; Zangger, Klaus

    2014-01-01

    For the analysis of compound mixtures by NMR spectroscopy, it is important to assign the different peaks to the individual constituents. Diffusion-ordered spectroscopy (DOSY) is often used for the separation of signals based on their self-diffusion coefficient. However, this method often fails in the case of signal overlap, which is a particular problem for 1H-detected DOSY spectra. Herein, an approach that allows the acquisition of homonuclear broadband-decoupled DOSY spectra without the introduction of an additional decoupling dimension, by instant decoupling during acquisition, is presented. It was demonstrated on a mixture of six alcohols, and the investigation of the binding of a dodecapeptide to membrane mimetics. PMID:25059845

  18. Investigation on origin of Z{sub 1/2} center in SiC by deep level transient spectroscopy and electron paramagnetic resonance

    SciTech Connect

    Kawahara, Koutarou; Suda, Jun; Kimoto, Tsunenobu; Thang Trinh, Xuan; Tien Son, Nguyen; Janzen, Erik

    2013-03-18

    The Z{sub 1/2} center in n-type 4H-SiC epilayers-a dominant deep level limiting the carrier lifetime-has been investigated. Using capacitance versus voltage (C-V) measurements and deep level transient spectroscopy (DLTS), we show that the Z{sub 1/2} center is responsible for the carrier compensation in n-type 4H-SiC epilayers irradiated by low-energy (250 keV) electrons. The concentration of the Z{sub 1/2} defect obtained by C-V and DLTS correlates well with that of the carbon vacancy (V{sub C}) determined by electron paramagnetic resonance, suggesting that the Z{sub 1/2} deep level originates from V{sub C}.

  19. Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy

    ERIC Educational Resources Information Center

    Ruhayel, Rasha A.; Berners-Price, Susan J.

    2010-01-01

    2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how

  20. Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy

    ERIC Educational Resources Information Center

    Ruhayel, Rasha A.; Berners-Price, Susan J.

    2010-01-01

    2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how…

  1. Structural investigation of aluminium doped ZnO nanoparticles by solid-state NMR spectroscopy.

    PubMed

    Avadhut, Yamini S; Weber, Johannes; Hammarberg, Elin; Feldmann, Claus; Schmedt auf der Gnne, Jrn

    2012-09-01

    The electrical conductivity of aluminium doped zinc oxide (AZO, ZnO:Al) materials depends on doping induced defects and grain structure. This study aims at relating macroscopic electrical conductivity of AZO nanoparticles with their atomic structure, which is non-trivial because the derived materials are heavily disordered and heterogeneous in nature. For this purpose we synthesized AZO nanoparticles with different doping levels and narrow size distribution by a microwave assisted polyol method followed by drying and a reductive treatment with forming gas. From these particles electrically conductive, optically transparent films were obtained by spin-coating. Characterization involved energy-dispersive X-ray analysis, wet chemical analysis, X-ray diffraction, electron microscopy and dynamic light scattering, which provided a basis for a detailed structural solid-state NMR study. A multinuclear ((27)Al, (13)C, (1)H) spectroscopic investigation required a number of 1D MAS NMR and 2D MAS NMR techniques (T(1)-measurements, (27)Al-MQMAS, (27)Al-(1)H 2D-PRESTO-III heteronuclear correlation spectroscopy), which were corroborated by quantum chemical calculations with an embedded cluster method (EEIM) at the DFT level. From the combined data we conclude that only a small part of the provided Al is incorporated into the ZnO structure by substitution of Zn. The related (27)Al NMR signal undergoes a Knight shift when the material is subjected to a reductive treatment with forming gas. At higher (formal) doping levels Al forms insulating (Al, H and C containing) side-phases, which cover the surface of the ZnO:Al particles and increase the sheet resistivity of spin-coated material. Moreover, calculated (27)Al quadrupole coupling constants serve as a spectroscopic fingerprint by which previously suggested point-defects can be identified and in their great majority be ruled out. PMID:22801707

  2. Understanding J-Modulation during Spatial Encoding for Sensitivity-Optimized Ultrafast NMR Spectroscopy.

    PubMed

    Gouilleux, Boris; Rouger, Laetitia; Charrier, Benoît; Kuprov, Ilya; Akoka, Serge; Dumez, Jean-Nicolas; Giraudeau, Patrick

    2015-10-01

    Ultrafast (UF) NMR spectroscopy is an approach that yields 2D spectra in a single scan. This methodology has become a powerful analytical tool that is used in a large array of applications. However, UF NMR spectroscopy still suffers from an intrinsic low sensitivity, and from the need to compromise between sensitivity, spectral width, and resolution. In particular, the modulation of signal intensities by the spin-spin J-coupling interaction (J-modulation) impacts significantly on the intensities of the spectral peaks. This effect can lead to large sensitivity losses and even to missing spectral peaks, depending on the nature of the spin system. Herein, a general simulation package (Spinach) is used to describe J-modulation effects in UF experiments. The results from simulations match with experimental data and the results of product operator calculations. Several methods are proposed to optimize the sensitivity in UF COSY spectra. The potential and drawbacks of the different strategies are also discussed. These approaches provide a way to adjust the sensitivity of UF experiments for a large range of applications. PMID:26401975

  3. High Resolution NMR Spectroscopy of Nanocrystalline Proteins at Ultra-High Magnetic Field

    PubMed Central

    Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Lipton, Andrew S.; Berthold, Deborah A.; Rienstra, Chad M.

    2010-01-01

    Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly-13C,15N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla (1H frequencies of 500, 750, and 900 MHz). For two protein systems—GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein—line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C-C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine Cδ1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies. PMID:19953303

  4. Labeling strategy and signal broadening mechanism of Protein NMR spectroscopy in Xenopus laevis oocytes.

    PubMed

    Ye, Yansheng; Liu, Xiaoli; Chen, Yanhua; Xu, Guohua; Wu, Qiong; Zhang, Zeting; Yao, Chendie; Liu, Maili; Li, Conggang

    2015-06-01

    We used Xenopus laevis oocytes, a paradigm for a variety of biological studies, as a eukaryotic model system for in-cell protein NMR spectroscopy. The small globular protein GB1 was one of the first studied in Xenopus oocytes, but there have been few reports since then of high-resolution spectra in oocytes. The scarcity of data is at least partly due to the lack of good labeling strategies and the paucity of information on resonance broadening mechanisms. Here, we systematically evaluate isotope enrichment and labeling methods in oocytes injected with five different proteins with molecular masses of 6 to 54?kDa. (19) F labeling is more promising than (15) N, (13) C, and (2) H enrichment. We also used (19) F?NMR spectroscopy to quantify the contribution of viscosity, weak interactions, and sample inhomogeneity to resonance broadening in cells. We found that the viscosity in oocytes is only about 1.2?times that of water, and that inhomogeneous broadening is a major factor in determining line width in these cells. PMID:25965532

  5. The Development of 460 GHz gyrotrons for 700 MHz DNP-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Idehara, T.; Tatematsu, Y.; Yamaguchi, Y.; Khutoryan, E. M.; Kuleshov, A. N.; Ueda, K.; Matsuki, Y.; Fujiwara, T.

    2015-07-01

    Two demountable gyrotrons with internal mode converters were developded as sub-THz radiation sources for 700 MHz DNP (Dynamic Nuclear Polarization) enhanced NMR spectroscopy. Experimental study on the DNP-NMR spectroscopy will be carried out in Osaka University, Institute for Protein Research, as a collaboration with FIR UF. Both gyrotrons operate near 460 GHz and the output CW power measured at the end of transmission system made by circular waveguides is typically 20 to 30 watts. One of them named Gyrotron FU CW GVI (we are using "Gyrotron FU CW GO-1" as an official name in Osaka University) is designed to have a special function of high speed frequency modulation ? f within 100 MHz band. This will expand excitable band width of ESR and increase the number of electron spins contributing to DNP. The other gyrotron, Gyrotron FU CW GVIA ("Gyrotron FU CW GO-II") has a function of frequency tunability ? f in the range of wider than 1.5 GHz, which is achieved in steady state by changing magnetic field intensity. This function should be used for adjusting the output frequency at the optimal value to achieve the highest enhancement factor of DNP.

  6. Proton-bound dimers of 1-methylcytosine and its derivatives: vibrational and NMR spectroscopy.

    PubMed

    Ung, Hou U; Moehlig, Aaron R; Kudla, Ryan A; Mueller, Leonard J; Oomens, Jos; Berden, Giel; Morton, Thomas Hellman

    2013-11-21

    Vibrational spectroscopy and NMR demonstrate that the proton-bound dimer of 1-methylcytosine, 1, has an unsymmetrical structure at room temperature. In the gas phase, investigation of isolated homodimer 1 reveals five fundamental NH vibrations by IR Multiple Photon Dissociation (IRMPD) action spectroscopy. The NHN stretching vibration between the two ring nitrogens exhibits a frequency of 1570 cm(-1), as confirmed by examination of the proton-bound homodimers of 5-fluoro-1-methycytosine, 2, and of 1,5-dimethylcytosine, 3, which display absorptions in the same region that disappear upon deuterium substitution. (13)C, and (15)N NMR of the solid iodide salt of 1 confirm the nonequivalence of the two rings in the anhydrous proton-bound homodimer at room temperature. IRMPD spectra of the three possible heterodimers also show NHN stretches in the same domain, and at least one of the heterodimers, the proton-bound dimer of 1,5-dimethylcytosine with 1-methylcytosine, exhibits two bands suggestive of the presence of two tautomers close in energy. PMID:24096726

  7. Postharvest ripening study of sweet lime (Citrus limettioides) in situ by volume-localized NMR spectroscopy.

    PubMed

    Banerjee, Abhishek; George, Christy; Bharathwaj, Sathyamoorthy; Chandrakumar, Narayanan

    2009-02-25

    Spatially resolved NMR--especially volume-localized spectroscopy (VLS)is useful in various fields including clinical diagnosis, process monitoring, etc. VLS carries high significance because of its ability to identify molecular species and hence track molecular events. This paper reports the application of VLS at 200 MHz to study the postharvest ripening of sweet lime ( Citrus limettioides ) in situ, including a comparative study of normal and acetylene-mediated ripening. Localization to a cubic voxel of 64 microL was achieved with point-resolved spectroscopy (PRESS). Glucose, sucrose, fructose, and citric acid are found to be among the main constituents in the fruit. In the natural process, the sugar to acid ratio increases with ripening. Ethanol generation is seen to occur at a faster rate in acetylene-mediated ripening. Whereas NMR imaging experiments including parametric imaging (e.g., T(1) or T(2) maps) may be employed for "macro" monitoring of processes such as these, this work demonstrates that the molecular imprint of the process may be tracked noninvasively by VLS. PMID:19161255

  8. Secondary structure determination of human. beta. -endorphin by /sup 1/H NMR spectroscopy

    SciTech Connect

    Lichtarge, O.; Jardetzky, O.; Li, C.H.

    1987-09-08

    The /sup 1/H NMR spectra of human ..beta..-endorphin indicate that the peptide exists in random-coil form in aqueous solution but becomes helical in mixed solvent. Thermal denaturation NMR experiments show that in water there is no transition between 24 and 75/sup 0/C, while a slow noncooperative thermal unfolding is observed in a 60% methanol-40% water mixed solvent in the same temperature range. These findings are consistent with circular dichroism studies by other workers concluding that ..beta..-endorphin is a random coil in water but that it forms 50% ..cap alpha..-helix or more in mixed solvents. The peptide in the mixed water-methanol solvent was further studied by correlated spectroscopy (COSY) and nuclear Overhauser effect spectroscopy (NOESY) experiments. These allow a complete set of assignments to be made and establish two distinct stretches over which the solvent induces formation of ..cap alpha..-helices: the first occurs between Tyr-1 and Thr-12 and the second between Leu-14 and extending to Lys-28. There is evidence that the latter is capped by a turn occurring between Lys-28 and Glu-31. These helices form at the enkephalin receptor binding site, which is at the amino terminus, and at the morphine receptor binding site, located at the carboxyl terminus. The findings suggest that these two receptors may specifically recognize ..cap alpha..-helices.

  9. Interactions of Polyvinylpyrrolidone with Chlorin e6-Based Photosensitizers Studied by NMR and Electronic Absorption Spectroscopy.

    PubMed

    Hdener, Marianne; Gjuroski, Ilche; Furrer, Julien; Vermathen, Martina

    2015-09-10

    Polyvinylpyrrolidone (PVP) can act as potential drug delivery vehicle for porphyrin-based photosensitizers in photodynamic therapy (PDT) to enhance their stability and prevent porphyrin self-association. In the present study the interactions of PVP (MW 10 kDa) were probed with five different derivatives of chlorin e6 (CE6) bearing either one of the amino acids serine, lysine, tyrosine or arginine, or monoamino-hexanoic acid as substituent. All derivatives of CE6 (xCE) formed aggregates of a similar structure in aqueous buffer in the millimolar range. In the presence of PVP monomerization of all xCE aggregates could be proved by (1)H NMR spectroscopy. xCE-PVP complex formation was confirmed by (1)H NMR T2 relaxation and diffusion ordered spectroscopy (DOSY). (1)H(1)H-NOESY data suggested that the xCE uptake into the PVP polymer matrix is governed by hydrophobic interactions. UV-vis absorption and fluorescence emission bands of xCE in the micromolar range revealed characteristic PVP-induced bathochromic shifts. The presented data point out the potential of PVP as carrier system for amphiphilic derivatives of chlorin e6. The capacity of PVP to monomerize xCE aggregates may enhance their efficiency as possible photosensitizers in PDT. PMID:26291382

  10. Phosphorus Speciation of Sequential Extracts of Organic Amendments using NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Akinremi, O.

    2009-04-01

    O.O. 1Akinremi Babasola Ajiboye and Donald N. Flaten 1Department of Soil Science, University of Manitoba, Winnipeg, R3T 2NT, Canada We carried out this study in order to determine the forms of phosphorus in various organic amendments using state-of-the art spectroscopic technique. Anaerobically digested biosolids (BIO), hog (HOG), dairy (DAIRY), beef (BEEF) and poultry (POULTRY) manures were subjected to sequential extraction. The extracts were analyzed by solution 31P nuclear magnetic resonance (NMR) spectroscopy. Most of the total P analysed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) in the sequential extracts of organic amendments were orthophosphate, except POULTRY, which was dominated by organic P. The labile P fraction in all the organic amendments, excluding POULTRY, was mainly orthophosphate P from readily soluble calcium and some aluminum phosphates. In the poultry litter, however, Ca phytate was the main P species controlling P solubility. Such knowledge of the differences in the chemical forms of phosphorus in organic amendments are essential for proper management of these amendments for agro-environmental purposes Key words: organic amendments, solution NMR, sequential fractionation, labile phosphorus

  11. Identification and quantitative determination of lignans in Cedrus atlantica resins using 13C NMR spectroscopy.

    PubMed

    Nam, Anne-Marie; Paoli, Mathieu; Castola, Vincent; Casanova, Joseph; Bighelli, Ange

    2011-03-01

    Identification and quantitative determination of individual components of resin collected on the trunk of 28 Cedrus atlantica trees, grown in Corsica, has been carried out using 13C NMR spectroscopy. Eight resin acids bearing either the pimarane or abietane skeleton, two monoterpene hydrocarbons and four oxygenated neutral diterpenes have been identified, as well as three lignans, scarcely found in resins. Three groups could be distinguished within the 28 resin samples. The nine samples of Group I had their composition dominated by diterpene acids (33.7-45.8%), with abietic acid (6.2-18.7%) and isopimaric acid (5.1-12.6%) being the major components. The four samples of Group II contained resin acids (main components) and lignans in moderate amounts (up to 10.3%). Conversely, lignans (38.8-63.8%) were by far the major components of the 15 samples of Group III. Depending on the sample, the major component was pinoresinol (18.1-38.9%), lariciresinol (17.2-33.7%) or lariciresinol 9'-acetate (16.9-29.1%). Finally, due to the high biological interest in lignans, a rapid procedure, based on 1H NMR spectroscopy, was developed for quantification of lignans in resins of C. atlantica. PMID:21485279

  12. Insoluble protein characterization by circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR).

    PubMed

    Goyal, Shaveta; Qin, Haina; Lim, Liangzhong; Song, Jianxing

    2015-01-01

    Besides misfolded proteins, which still retain the capacity to fold into uniquely defined structures but are misled to "off-pathway" aggregation, there exists a group of proteins which are unrefoldable and insoluble in buffers. Previously no general method was available to solubilize them and consequently their solution conformations could not be characterized. Recently, we discovered that these insoluble proteins could in fact be solubilized in pure water. Circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) characterization led to their classification into three groups, all of which lack the tight tertiary packing and consequently anticipated to unavoidably aggregate in vivo with ~150 mM ions, thus designated as "intrinsically insoluble proteins (IIPs)." It appears that eukaryotic genomes contain many "IIP," which also have a potential to interact with membranes to trigger neurodegenerative diseases. In this chapter, we provide a detailed procedure to express and purify these proteins, followed by CD and NMR spectroscopy characterization of their conformation and interaction with dodecylphosphocholine (DPC). PMID:25447876

  13. Determination of RNA polymerase binding surfaces of transcription factors by NMR spectroscopy

    PubMed Central

    Drgemller, Johanna; Strau, Martin; Schweimer, Kristian; Jurk, Marcel; Rsch, Paul; Knauer, Stefan H.

    2015-01-01

    In bacteria, RNA polymerase (RNAP), the central enzyme of transcription, is regulated by N-utilization substance (Nus) transcription factors. Several of these factors interact directly, and only transiently, with RNAP to modulate its function. As details of these interactions are largely unknown, we probed the RNAP binding surfaces of Escherichia coli (E. coli) Nus factors by nuclear magnetic resonance (NMR) spectroscopy. Perdeuterated factors with [1H,13C]-labeled methyl groups of Val, Leu, and Ile residues were titrated with protonated RNAP. After verification of this approach with the N-terminal domain (NTD) of NusG and RNAP we determined the RNAP binding site of NusE. It overlaps with the NusE interaction surface for the NusG C-terminal domain, indicating that RNAP and NusG compete for NusE and suggesting possible roles for the NusE:RNAP interaction, e.g. in antitermination and direct transcription:translation coupling. We solved the solution structure of NusA-NTD by NMR spectroscopy, identified its RNAP binding site with the same approach we used for NusG-NTD, and here present a detailed model of the NusA-NTD:RNAP:RNA complex. PMID:26560741

  14. Comparison of I-123 IMP uptake and NMR spectroscopy in the brain following experimental carotid occlusion

    SciTech Connect

    Holman, B.L.; Jolesz, F.; Polak, J.F.; Kronauge, J.; Adams, D.F.

    1984-01-01

    Both I-123 IMP scintigraphy and NMR have been suggested as sensitive detectors of changes shortly after acute cerebral infarction. The authors compared the uptake of N-isopropul I-123 p-iodoamphetamine (IMP) and NMR spectroscopy of the brain after internal carotid artery ligation. Thirteen gerbils were lightly anesthetized with ether. After neck dissection, an internal carotid artery was occluded. After 2.8 hours, 100 ..mu..Ci I-123 IMP was injected intravenously into the 13 experimental animals plus 3 controls. Seven gerbils remained asymptomatic while 6 developed hemiparesis. At 3 hours after ligation, the animals were killed. The brains were bisected and T/sub 1/ and T/sub 2/ relaxation times were determined for the right and left hemispheres by NMR spectroscopy immediately after dissection. I-123 IMP uptake was then determined in the samples. Interhemispheric differences in uptake for I-123 IMP uptake was 2.2% +- 0.5% in the control, 33.5% +- 9.6% in the asymptomatic and 54.6% +- 9.7% in the symptomatic animals. Significant differences were seen with I-123 IMP in 6/7 asymptomatic and 6/6 symptomatic animals. Significant differences in T/sub 1/ and T/sub 2/ were seen in 2/7 of the asymptomatic and 5/6 of the symptomatic animals. The authors conclude that I-123 is more sensitive than T/sub 1/ or T/sub 2/ for the detection of cerebral perfusion abnormalities while T/sub 1/ and T/sub 2/ more accurately separate symptomatic from asymptomatic animals.

  15. Flexible Stoichiometry and Asymmetry of the PIDDosome Core Complex by Heteronuclear NMR Spectroscopy and Mass Spectrometry

    PubMed Central

    Nematollahi, Lily A.; Garza-Garcia, Acely; Bechara, Chrine; Esposito, Diego; Morgner, Nina; Robinson, Carol V.; Driscoll, Paul C.

    2015-01-01

    Homotypic death domain (DD)DD interactions are important in the assembly of oligomeric signaling complexes such as the PIDDosome that acts as a platform for activation of caspase-2-dependent apoptotic signaling. The structure of the PIDDosome core complex exhibits an asymmetric three-layered arrangement containing five PIDD-DDs in one layer, five RAIDD-DDs in a second layer and an additional two RAIDD-DDs. We addressed complex formation between PIDD-DD and RAIDD-DD in solution using heteronuclear nuclear magnetic resonance (NMR) spectroscopy, nanoflow electrospray ionization mass spectrometry and size-exclusion chromatography with multi-angle light scattering. The DDs assemble into complexes displaying molecular masses in the range 130158kDa and RAIDD-DD:PIDD-DD stoichiometries of 5:5, 6:5 and 7:5. These data suggest that the crystal structure is representative of only the heaviest species in solution and that two RAIDD-DDs are loosely attached to the 5:5 core. Two-dimensional 1H,15N-NMR experiments exhibited signal loss upon complexation consistent with the formation of high-molecular-weight species. 13C-Methyl-transverse relaxation optimized spectroscopy measurements of the PIDDosome core exhibit signs of differential line broadening, cross-peak splitting and chemical shift heterogeneity that reflect the presence of non-equivalent sites at interfaces within an asymmetric complex. Experiments using a mutant RAIDD-DD that forms a monodisperse 5:5 complex with PIDD-DD show that the spectroscopic signature derives from the quasi- but non-exact equivalent environments of each DD. Since this characteristic was previously demonstrated for the complex between the DDs of CD95 and FADD, the NMR data for this system are consistent with the formation of a structure homologous to the PIDDosome core. PMID:25528640

  16. Dissolution DNP-NMR spectroscopy using galvinoxyl as a polarizing agent

    PubMed Central

    Lumata, Lloyd L.; Merritt, Matthew E.; Malloy, Craig R.; Sherry, A. Dean; van Tol, Johan; Song, Likai; Kovacs, Zoltan

    2012-01-01

    The goal of this work was to test feasibility of using galvinoxyl (2,6-di-tert-butyl-?-(3,5- di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy) as a polarizing agent for dissolution dynamic nuclear polarization (DNP) NMR spectroscopy. We have found that galvinoxyl is reasonably soluble in ethyl acetate, chloroform, or acetone and the solutions formed good glasses when mixed together or with other solvents such as dimethyl sulfoxide. W-band electron spin resonance (ESR) measurements revealed that galvinoxyl has an ESR linewidth D intermediate between that of carbon-centered free radical trityl OX063 and the nitroxide-based 4-oxo-TEMPO, thus the DNP with galvinoxyl for nuclei with low gyromagnetic ratio ? such as 13C and 15N is expected to proceed predominantly via the thermal mixing process. The optimum radical concentration that would afford the highest 13C nuclear polarization (approximately 6% for [1-13C]ethyl acetate) at 3.35 T and 1.4 K was found to be around 40 mM. After dissolution, large liquid-state NMR enhancements were achieved for a number of 13C and 15N compounds with long spin-lattice relaxation time T1. In addition, the hydrophobic galvinoxyl free radical can be easily filtered out from the dissolution liquid when water is used as the solvent. These results indicate that galvinoxyl can be considered as an easily available free radical polarizing agent for routine dissolution DNP-NMR spectroscopy. PMID:23246650

  17. Earle K. Plyler Prize for Molecular Spectroscopy Talk: Coherent Ultrafast Multidimensional Spectroscopy of Molecules; From NMR to X-rays

    NASA Astrophysics Data System (ADS)

    Mukamel, Shaul

    2011-03-01

    Multidimensional spectroscopic techniques which originated with NMR in the 1970s have been extended over the past 15 years to the optical regime. NMR spectroscopists have developed methods for the design of pulse sequences that resolve otherwise congested spectra, enhance selected spectral features and reveal desired dynamical events. The major experimental and computational advances required for extending these ideas to study electronic and vibrational motions on the femtosecond timescale will be surveyed. The response of complex molecules and semiconductor nanostructures to sequences of optical pulses provides snapshots of their structure and dynamical processes. Two-dimensional correlation plots of the signals show characteristic cross-peak patterns which carry information about hydrogen bonding, secondary structure fluctuations of proteins and amyloid fibrils, and coherent and incoherent energy and charge transfer in photosynthetic complexes. Double quantum coherence signals that are induced by correlations among electrons or excitons allow the visualization of correlated wavefunctions. Future extensions to the attosecond regime using xray pulses will be discussed. Since core excitations are highly localized at selected atoms, such signals can monitor the motions of valence electron wavepackets in real space with atomic spatial resolution. Common principles underlying coherent spectroscopy techniques for spins, valence electrons, and core electronic excitations, spanning frequencies from radiowaves, infrared, ultraviolet all the way to hard X-rays will be discussed.

  18. Actinide(IV) and actinide(VI) carbonate speciation studies by PAS and NMR spectroscopies; Yucca Mountain Project: Milestone report 3031-WBS 1.2.3.4.1.3.1

    SciTech Connect

    Clark, D.L.; Ekberg, S.A.; Morris, D.E.; Palmer, P.D.; Tait, C.D.

    1994-09-01

    Pulsed-laser photoacoustic spectroscopy (PAS) and Fourier-transform nuclear magnetic resonance (NMR) spectroscopy were used to study speciation of actinide(IV) and actinide(VI) ions (Np, Pu, Am) in aqueous carbonate solutions vs pH, carbonate content, actinide content, temperature. PAS focused on Pu(IV) speciation. Stability fields on a pH (8.4 to 12.0) versus total carbonate content (0.003 to 1.0 M) plot for dilute Pu(IV) carbonate species ([Pu]{sub tot} = 1 mM) were mapped. Four plutonium species, with absorption peaks at 486, 492, 500, and 512 nm were found. Loss of a single carbonate ligand does not account for the difference in speciation for the 486 and 492 nm absorption peaks, nor can any of the observed species be identified as colloidal Pu(IV). NMR data have been obtained for UO{sub 2}{sup 2+}, PuO{sub 2}{sup 2+} and AmO{sub 2}{sup 2+}. This report focuses on results for PuO{sub 2}{sup 2+}. The ligand exchange reaction between free and coordinated carbonate on the PuO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} systems has been examined by variable temperature {sup 13}C NMR spectroscopy. In each of the six different PuO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} samples, two NMR signals are present, one for the free carbonate ligand and one for the carbonate ligand coordinated to a paramagnetic plutonium metal center. The single{sup 13}C resonance line for coordinated carbonate is consistent with expectations of a monomeric PuO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} species in solution. A modified Carr-Purcell-Meiboom-Gill NMR pulse sequence was used for determining ligand exchange parameters for paramagnetic actinide complexes. Eyring analysis at standard conditions provided activation parameters of {Delta}H = 38 KJ/M and {Delta}S = {minus}60 J/K for the plutonyl triscarbonate system, suggesting an associative transition state for the plutonyl(VI) carbonate complex self-exchange reaction.

  19. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy.

    PubMed

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS 1H NMR spectroscopy. HR-MAS 1H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS 1H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  20. The contribution of solid-state NMR spectroscopy to understanding biomineralization: Atomic and molecular structure of bone

    NASA Astrophysics Data System (ADS)

    Duer, Melinda J.

    2015-04-01

    Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.

  1. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy

    PubMed Central

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS 1H NMR spectroscopy. HR-MAS 1H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS 1H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  2. Diffusion of Paramagnetically Labeled Proteins in Cartilage

    NASA Astrophysics Data System (ADS)

    Foy, Brent

    1999-10-01

    The diffusion coefficient and relaxivity of paramagnetic compounds in gels and cartilage is measured using a magnetic resonance 1-dimensional imaging technique. The paramagnetic compound to be studied can be either an element such as copper or gadolinium, or the paramagnetic element can be bound to a larger molecule such as a protein(1). The technique relies on the effect of the paramagnetic on the T1 relaxation properties of the surrounding water. Thus as the concentration of the paramagnetic rises, due to diffusion of the paramagnetic into a material, the NMR signal experiences a faster relaxation rate. The technique is an extension of a previously published NMR technique (2), with the additional capability of measuring the relaxivity of the paramagnetic in the gel or cartilage matrix. The accuracy of the technique is verified using mathematical simulations and experimental diffusion of CuSO4 into agarose. Data on small and large paramagnetic molecule diffusion in articular cartilage will be presented. (1) Lauffer, RB, Brady TJ. Magn. Reson. Imag. 3: 11-16, 1985. (2) Balcom, BJ, Fischer, AE, Carpenter, TA, Hall, LD. J. Am. Chem. Soc. 115: 3300-3305, 1993.

  3. Identification of different tin species in SnO2 nanosheets with 119Sn solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Junchao; Wu, Xin-Ping; Shen, Li; Li, Yuhong; Wu, Di; Ding, Weiping; Gong, Xue-Qing; Lin, Ming; Peng, Luming

    2016-01-01

    119Sn solid-state nuclear magnetic resonance (NMR) spectroscopy was employed to investigate the structure of hydroxylated SnO2 nanosheets. Three 119Sn resonances can be observed and assigned to Sn ions in the first layer, the bulk and the second layer from high to low frequencies with the help of density functional theory (DFT) calculations. The results suggest that 119Sn NMR spectroscopy can be a sensitive method to monitor the structure of SnO2 based nanomaterials and extension of this approach to other diamagnetic metal oxides.

  4. Specific inclusion mode of guest compounds in the amylose complex analyzed by solid state NMR spectroscopy.

    PubMed

    Tozuka, Yuichi; Takeshita, Aya; Nagae, Ayako; Wongmekiat, Arpansiree; Moribe, Kunikazu; Oguchi, Toshio; Yamamoto, Keiji

    2006-08-01

    The inclusion compound formation between linear amylose of molecular weight 102500 (AS100) and p-aminobenzoic acid (PA) during the sealed-heating process was investigated by powder X-ray diffractometry, infrared spectroscopy and solid state NMR spectroscopy. Sealed-heating of AS100 and PA at 100 degrees C for 6 h provided an inclusion compound with 6(1)-helix structure, while a 7(1)-helix structure was found when sealed-heating was carried out at 150 degrees C for 1 h. The formation of an inclusion compound was not observed when sealed-heating was performed at 50 degrees C for 6 h. The 7(1)-helix inclusion compound maintained its structure even during storage at high temperature while the 6(1)-helix inclusion compound decomposed and returned to the original V(a)-amylose upon heating to 180 degrees C. Quantitative determination revealed that one PA molecule could be included per one helical turn of AS100 for both 6(1)-helix and 7(1)-helix inclusion compounds. Solid state NMR spectroscopy suggested that PA molecules were included in the amylose helix core in the 7(1)-helix inclusion compound, while in the case of 6(1)-helix inclusion compound, PA molecules were accommodated in the interstices between amylose helices. Moreover, the inclusion compound formation by sealed-heating of AS100 was also observed when using PA analogues as guest compounds. The binding ratio of AS100 and PA analogues varied depending on the size of guest molecules. PMID:16880651

  5. Paramagnetic Nanoparticles Leave Their Mark on Nuclear Spins of Transiently Adsorbed Proteins.

    PubMed

    Zanzoni, Serena; Pedroni, Marco; D'Onofrio, Mariapina; Speghini, Adolfo; Assfalg, Michael

    2016-01-13

    The successful application of nanomaterials in biosciences necessitates an in-depth understanding of how they interface with biomolecules. Transient associations of proteins with nanoparticles (NPs) are accessible by solution NMR spectroscopy, albeit with some limitations. The incorporation of paramagnetic centers into NPs offers new opportunities to explore bio-nano interfaces. We propose NMR paramagnetic relaxation enhancement as a new tool to detect NP-binding surfaces on proteins with increased sensitivity, also extending the applicability of NMR investigations to heterogeneous biomolecular mixtures. The adsorption of ubiquitin on gadolinium-doped fluoride-based NPs produced residue-specific NMR line-broadening effects mapping to a contiguous area on the surface of the protein. Importantly, an identical paramagnetic fingerprint was observed in the presence of a competing protein-protein association equilibrium, exemplifying possible interactions taking place in crowded biological media. The interaction was further characterized using isothermal titration calorimetry and upconversion emission measurements. The data indicate that the used fluoride-based NPs are not biologically inert but rather are capable of biomolecular recognition. PMID:26683352

  6. Spin Hamiltonian Parameters for Cu(II)Prion Peptide Complexes from L-Band Electron Paramagnetic Resonance Spectroscopy

    PubMed Central

    Kowalski, Jason M.; Bennett, Brian

    2011-01-01

    Cu(II) is an essential element for life but is also associated with numerous and serious medical conditions, particularly neurodegeneration. Structural modeling of crystallization-resistant biological Cu(II) species relies on detailed spectroscopic analysis. Electron paramagnetic resonance (EPR) can, in principle, provide spin Hamiltonian parameters that contain information on the geometry and ligand atom complement of Cu(II). Unfortunately, EPR spectra of Cu(II) recorded at the traditional X-band frequency are complicated by (i) strains in the region of the spectrum corresponding to the g|| orientation and (ii) potentially very many overlapping transitions in the g? region. The rapid progress of density functional theory computation as a means to correlate EPR and structure, and the increasing need to study Cu(II) associated with biomolecules in more biologically and biomedically relevant environments such as cells and tissue, have spurred the development of a technique for the extraction of a more complete set of spin Hamiltonian parameters that is relatively straightforward and widely applicable. EPR at L-band (12 GHz) provides much enhanced spectral resolution and straightforward analysis via computer simulation methods. Herein, the anisotropic spin Hamiltonian parameters and the nitrogen coordination numbers for two hitherto incompletely characterized Cu(II)-bound species of a prion peptide complex are determined by analysis of their L-band EPR spectra. PMID:21265507

  7. High-speed digitizer/averager data-acquisition system for Fourier transform electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Pohida, Thomas J.; Fredrickson, Hal A.; Tschudin, Rolf G.; Fessler, Joseph F.; Krishna, Murali C.; Bourg, John; Harrington, Frank; Subramanian, Sankaran

    1994-08-01

    A high-speed digitizer/averager data-acquisition system designed and built as part of a 300-MHz Fourier transform electron paramagnetic resonance spectrometer is described. There are two key features of the system: (1) the maximum digitizing rate is 300 Msamples/s and (2) a 256-point free-induction-decay signal running summation can be updated in less than 3 ?s. At the maximum digitizing rate, the system can sum 65 536 FIDs in 220 ms. The system consists of an analog-to-digital converter/adder unit (ADCA) and an IBM compatible personal computer. The ADCA is comprised of a digitizer, high-speed sample buffers, high-speed adders/memory, and control hardware. Design techniques, such as parallel processing, utilized to meet the high-speed performance requirements are described. Trigger and timing signals for the system are derived from the spectrometer. System efficiency, synchronization, and time base stability are demonstrated in the spectrometer at a sampling frequency of 200 MHz. Signal-to-noise ratio enhancements are shown using a lithium phthalocyanine test sample.

  8. Heterogeneous ordered-disordered structure of the mesodomain in frozen sucrose-water solutions revealed by multiple electron paramagnetic resonance spectroscopies.

    PubMed

    Chen, Hanlin; Sun, Li; Warncke, Kurt

    2013-04-01

    The microscopic structure of frozen aqueous sucrose solutions, over concentrations of 0-75% (w/v), is characterized by using multiple continuous-wave and pulsed electron paramagnetic resonance (EPR) spectroscopic and relaxation techniques and the paramagnetic spin probe, TEMPOL. The temperature dependence of the TEMPOL EPR line-shape anisotropy reveals a mobility transition, specified at 205 K in pure water and 255 ± 5 K for >1% (w/v) added sucrose. The transition temperature is >Tg, where Tg is the homogeneous water glass transition temperature, which shows that TEMPOL resides in the mesoscopic domain (mesodomain) at water-ice crystallite boundaries and that the mesodomain sucrose concentrations are comparable at >1% (w/v) added sucrose. Electron spin-echo envelope modulation (ESEEM) spectroscopy of TEMPOL-(2)H2-sucrose hyperfine interactions also indicates comparable sucrose concentrations in mesodomains at >1% (w/v) added sucrose. Electron spin-echo (ESE) detected longitudinal and phase memory relaxation times (T1 and TM, respectively) at 6 K indicate a general trend of increased mesodomain volume with added sucrose, in three stages: 1-15, 20-50, and >50% (w/v). The calibrated TEMPOL concentrations indicate that the mesodomain volume is less than the predicted maximally freeze-concentrated value [80 (w/w); 120% (w/v)], with transitions at 15-20% and 50% (w/v) starting sucrose. An ordered sucrose hydrate phase, which excludes TEMPOL, and a disordered, amorphous sucrose-water glass phase, in which TEMPOL resides, are proposed to compose a heterogeneous mesodomain. The results show that the ratio of ordered and disordered volume fractions in the mesodomain is exquisitely sensitive to the starting sucrose concentration. PMID:23464733

  9. In vivo 31P-NMR spectroscopy of right ventricle in pigs.

    PubMed

    Schwartz, G G; Steinman, S K; Weiner, M W; Matson, G B

    1992-06-01

    The energy metabolism of the right ventricle (RV) in vivo has been largely unexplored. The goal of this study was to develop and implement techniques for in vivo 31P nuclear magnetic resonance (NMR) spectroscopy of the RV free wall. A two-turn, crossover-design elliptical surface coil was constructed to provide high sensitivity across the thin RV wall but minimal sensitivity in the blood-filled RV cavity. In 36 open-chest, anesthetized pigs, 31P spectroscopy of the RV free wall was performed with this coil at a field strength of 2 Tesla. Spectra were obtained from 800 acquisitions in 24 min with an average signal-to-noise ratio of 13.2 for phosphocreatine (PCr). The PCr-to-ATP (PCr/ATP) ratio of porcine RV was 1.42 +/- 0.05 (mean +/- SE), uncorrected for saturation at a repetition time of 1.8 s. With the use of literature values of the time constant of longitudinal relaxation (T1) to correct for partial saturation, the RV PCr/ATP was estimated to lie between 1.7 and 2.3. Decreased RV PCr/ATP was observed during RV ischemia and pressure overload. Thus in vivo 31P spectroscopy of the RV is readily accomplished with an appropriate surface coil and can provide new information about RV energy metabolism. PMID:1621852

  10. Organic solute changes with acidification in Lake Skjervatjern as shown by 1H-NMR spectroscopy

    USGS Publications Warehouse

    Malcolm, R.L.; Hayes, T.

    1994-01-01

    1H-NMR spectroscopy has been found to be a useful tool to establish possible real differences and trends between all natural organic solute fractions (fulvic acids, humic acids, and XAD-4 acids) after acid-rain additions to the Lake Skjervatjern watershed. The proton NMR technique used in this study determined the spectral distribution of nonexchangeable protons among four peaks (aliphatic protons; aliphatic protons on carbon ?? or attached to electronegative groups; protons on carbons attached to O or N heteroatoms; and aromatic protons). Differences of 10% or more in the respective peak areas were considered to represent a real difference. After one year of acidification, fulvic acids decreased 13% (relative) in Peak 3 protons on carbon attached to N and O heteratoms and exhibited a decrease in aromatic protons between 27% and 31%. Humic acids also exhibited an 11% relative decrease in aromatic protons as a result of acidification. After one year of acidification, real changes were shown in three of the four proton assignments in XAD-4 acids. Peak 1 aliphatic protons increased by 14% (relative), Peak 3 protons on carbons attached to O and N heteroatoms decreased by 13% (relative), and aromatic protons (Peak 4) decreased by 35% (relative). Upon acidification, there was a trend in all solutes for aromatic protons to decrease and aliphatic protons to increase. The natural variation in organic solutes as shown in the Control Side B of the lake from 1990 to 1991 is perhaps a small limitation to the same data interpretations of acid rain changes at the Lake Skjervatjern site, but the proton NMR technique shows great promise as an independent scientific tool to detect and support other chemical techniques in establishing organic solute changes with different treatments (i.e., additions of acid rain).

  11. Structure of a Conserved Retroviral RNA Packaging Element by NMR Spectroscopy and Cryo-Electron Tomography

    PubMed Central

    Miyazaki, Yasuyuki; Irobalieva, Rossitza N.; Tolbert, Blanton; Smalls-Mantey, Adjoa; Iyalla, Kilali; Loeliger, Kelsey; D’Souza, Victoria; Khant, Htet; Schmid, Michael F.; Garcia, Eric; Telesnitsky, Alice; Chiu, Wah; Summers, Michael F.

    2010-01-01

    The 5′-untranslated regions (5′-UTRs) of all gammaretroviruses contain a conserved “double hairpin motif” (ΨCD) that is required for genome packaging. Both hairpins (SL-C and SL-D) contain GACG tetraloops that, in isolated RNAs, are capable of forming “kissing” interactions stabilized by two intermolecular G-C base pairs. We have determined the three-dimensional structure of the double hairpin from the Moloney Murine Leukemia Virus (MoMuLV) ([ΨCD]2, 132-nucleotides, 42.8 kDaltons) using a 2H-edited NMR spectroscopy-based approach. This approach enabled the detection of 1H-1H dipolar interactions that were not observed in previous studies of isolated SL-C and SL-D hairpin RNAs using traditional 1H-1H correlated and 1H-13C-edited NMR methods. The hairpins participate in intermolecular cross-kissing interactions (SL-C to SL-D’ and SLC’ to SL-D), and stack in an end-to-end manner (SL-C to SL-D and SL-C’ to SL-D’) that gives rise to an elongated overall shape (ca. 95 Å by 45 Å by 25 Å). The global structure was confirmed by cryo-electron tomography (cryo-ET), making [ΨCD]2 simultaneously the smallest RNA to be structurally characterized to date by cryo-ET and among the largest to be determined by NMR. Our findings suggest that, in addition to promoting dimerization, [ΨCD]2 functions as a scaffold that helps initiate virus assembly by exposing a cluster of conserved UCUG elements for binding to the cognate nucleocapsid domains of assembling viral Gag proteins. PMID:20933521

  12. Orientation, Dynamics and Lipid Interaction of an Antimicrobial Arylamide Investigated by 19F and 31P Solid-State NMR Spectroscopy

    PubMed Central

    Su, Yongchao; DeGrado, William F.; Hong, Mei

    2010-01-01

    A number of arylamides have been synthesized and found to exhibit potent antimicrobial activities against a broad spectrum of Gram-positive and Gram-negative bacteria while low toxicity towards eukaryotic cells. These facially amphiphilic foldamers have a relatively rigid intramolecular hydrogen-bonded arylamide as a framework, which places trifluormethyl versus positively charged amino and guanidino groups along opposite faces of the elongated molecule, facilitating interactions with lipid membranes. To better understand the mechanism of action of these antimicrobial foldamers, we have investigated the lipid interaction, depth of insertion, orientation and dynamics of an arylamide, PMX30016, using 31P and 19F solid-state NMR spectroscopy. Static 31P NMR lineshapes of lipid membranes with a range of compositions indicate that PMX30016 does not disrupt the lamellar order of the lipid bilayer, but perturbs the lipid headgroup conformation. This headgroup perturbation, manifested as systematic 31P chemical shift anisotropy increases, is consistent with the well documented electrometer effect of lipid membranes in response to the addition of positive charges to membrane surfaces. Paramagnetic relaxation enhancement experiments indicate that the arylamide inserts to the membrane-water interface, just below the headgroup region. Measurement of 19F-19F dipolar couplings within each CF3 moiety revealed that PMX30016 is oriented with the molecular plane 20 and 30 from the membrane normal of neutral and anionic bilayers, respectively, and the long molecular axis lies parallel to the membrane plane. Thus, this arylamide inserts into the bilayer in a knife-like fashion, consistent with previous vibrational spectroscopy results. Moreover, 19F NMR lineshapes indicate that this molecular knife undergoes fast uniaxial rotation around the bilayer normal. These results suggest that antimicrobial arylamides destabilize anionic lipid membranes primarily by altering the membrane electric potential profile, and the spinning molecular knife may additionally create transient defects in the lipid membrane. Compared to typical antimicrobial peptides, this arylamide has more subtle effects on and is less disruptive of the structure of lipid bilayers. PMID:20536141

  13. Time-domain Bayesian detection and estimation of noisy damped sinusoidal signals applied to NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Rubtsov, Denis V.; Griffin, Julian L.

    2007-10-01

    The problem of model detection and parameter estimation for noisy signals arises in different areas of science and engineering including audio processing, seismology, electrical engineering, and NMR spectroscopy. We have adopted the Bayesian modeling framework to jointly detect and estimate signal resonances. This considers a model of the time-domain complex free induction decay (FID) signal as a sum of exponentially damped sinusoidal components. The number of model components and component parameters are considered unknown random variables to be estimated. A Reversible Jump Markov Chain Monte Carlo technique is used to draw samples from the joint posterior distribution on the subspaces of different dimensions. The proposed algorithm has been tested on synthetic data, the 1H NMR FID of a standard of L-glutamic acid and a blood plasma sample. The detection and estimation performance is compared with Akaike information criterion (AIC), minimum description length (MDL) and the matrix pencil method. The results show the Bayesian algorithm superior in performance especially in difficult cases of detecting low-amplitude and strongly overlapping resonances in noisy signals.

  14. Study of the Phosphoryl-Transfer Mechanism of Shikimate Kinase by NMR Spectroscopy.

    PubMed

    Prado, Vernica; Lence, Emilio; Vallejo, Juan A; Beceiro, Alejandro; Thompson, Paul; Hawkins, Alastair R; Gonzlez-Bello, Concepcin

    2016-02-01

    The phosphoryl-transfer mechanism of shikimate kinase from Mycobacterium tuberculosis and Helicobacter pylori, which is an attractive target for antibiotic drug discovery, has been studied by 1D (1) H and (31) P?NMR spectroscopy. Metaphosphoric acid proved to be a good mimetic of the metaphosphate intermediate and facilitated the ready and rapid evaluation by NMR spectroscopic analysis of a dissociative mechanism. The required closed form of the active site for catalysis was achieved by the use of ADP (product) or two synthetic ADP analogues (AMPNP, AMPCP). Molecular dynamics simulation studies reported here also revealed that the essential arginine (Arg116/Arg117 in H. pylori and M. tuberculosis, respectively), which activates the ?-phosphate group of ATP for catalysis and triggers the release of the product for turnover, would also be involved in the stabilisation of the metaphosphate intermediate during catalysis. We believe that the studies reported here will be helpful for future structure-based design of inhibitors of this attractive target. The approach is also expected be useful for studies on the possible dissociative mechanism of other kinase enzymes. PMID:26797764

  15. In vivo sup 31 P-NMR spectroscopy of chronically stimulated canine skeletal muscle

    SciTech Connect

    Clark, B.J. III; McCully, A.K.; Subramanian, H.V.; Hammond, R.L.; Salmons, S.; Chance, B.; Stephenson, L.W. Univ. of Pennsylvania School of Medicine, Philadelphia Univ. of Birmingham )

    1988-02-01

    Chronic stimulation converts skeletal muscle of mixed fiber type to a uniform muscle made up of type I, fatigue-resistant fibers. Here, the bioenergetic correlates of fatigue resistance in conditioned canine latissimus dorsi are assessed with in vivo phosphorus-31 nuclear magnetic resonance ({sup 31}P-NMR) spectroscopy. After chronic electrical stimulation, five dogs underwent {sup 31}P-NMR spectroscopic and isometric tension measurements on conditioned and contralateral control muscle during stimulation for 200, 300, 500, and 800 ms of an 1,100-ms duty cycle. With stimulation, phosphocreatine (PCr) fell proportional to the degree of stimulation in both conditioned and control muscle but fell significantly less in conditioned muscle at all the least intense stimulation period (200 ms). Isometric tension, expressed as a tension time index per gram muscle, was significantly greater in the conditioned muscle at the two longest stimulation periods. The overall small change in PCr and the lack of a plateau in tension observed in the conditioned muscle are similar to that seen in cardiac muscle during increased energy demand. This study indicates that the conditioned muscle's markedly enhanced resistance to fatigue is in part the result of its increased capacity for oxidative phosphorylation.

  16. In Situ and Ex Situ Low-Field NMR Spectroscopy and MRI Endowed by SABRE Hyperpolarization**

    PubMed Central

    Barskiy, Danila A.; Kovtunov, Kirill V.; Koptyug, Igor V.; He, Ping; Groome, Kirsten A.; Best, Quinn A.; Shi, Fan; Goodson, Boyd M.; Shchepin, Roman V.; Truong, Milton L.; Coffey, Aaron M.; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2015-01-01

    By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 105-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. PMID:25367202

  17. Characterization of alkyl carbon in forest soils by CPMAS 13C NMR spectroscopy and dipolar dephasing

    USGS Publications Warehouse

    Kogel-Knabner, I.; Hatcher, P.G.

    1989-01-01

    Samples obtained from forest soils at different stages of decomposition were treated sequentially with chloroform/methanol (extraction of lipids), sulfuric acid (hydrolysis), and sodium chlorite (delignification) to enrich them in refractory alkyl carbon. As revealed by NMR spectroscopy, this treatment yielded residues with high contents of alkyl carbon. In the NMR spectra of residues obtained from litter samples, resonances for carbohydrates are also present, indicating that these carbohydrates are tightly bound to the alkyl carbon structures. During decomposition in the soils this resistant carbohydrate fraction is lost almost completely. In the litter samples the alkyl carbon shows a dipolar dephasing behavior indicative of two structural components, a rigid and a more mobile component. As depth and decomposition increase, only the rigid component is observed. This fact could be due to selective degradation of the mobile component or to changes in molecular mobility during decomposition, e.g., because of an increase in cross linking or contact with the mineral matter of the soil.

  18. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy

    PubMed Central

    Jakes, W.; Gerdova, A.; Defernez, M.; Watson, A.D.; McCallum, C.; Limer, E.; Colquhoun, I.J.; Williamson, D.C.; Kemsley, E.K.

    2015-01-01

    This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60 MHz 1H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10 min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional “authentic” beef region (p = 0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze–thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60 MHz 1H NMR represents a feasible high-throughput approach for screening raw meat. PMID:25577043

  19. Multinuclear NMR spectroscopy for differentiation of molecular configurations and solvent properties between acetone and dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Wen, Yuan-Chun; Kuo, Hsiao-Ching; Jia, Hsi-Wei

    2016-04-01

    The differences in molecular configuration and solvent properties between acetone and dimethyl sulfoxide (DMSO) were investigated using the developed technique of 1H, 13C, 17O, and 1H self-diffusion liquid state nuclear magnetic resonance (NMR) spectroscopy. Acetone and DMSO samples in the forms of pure solution, ionic salt-added solution were used to deduce their active sites, relative dipole moments, dielectric constants, and charge separations. The NMR results suggest that acetone is a trigonal planar molecule with a polarized carbonyl double bond, whereas DMSO is a trigonal pyramidal-like molecule with a highly polarized S-O single bond. Both molecules use their oxygen atoms as the active sites to interact other molecules. These different molecular models explain the differences their physical and chemical properties between the two molecules and explain why DMSO is classified as an aprotic but highly dipolar solvent. The results are also in agreement with data obtained using X-ray diffraction, neutron diffraction, and theoretical calculations.

  20. The Interaction between tRNALys3 and the Primer Activation Signal Deciphered by NMR Spectroscopy

    PubMed Central

    Brachet, Franck; Tisne, Carine

    2013-01-01

    The initiation of reverse transcription of the human immunodeficiency virus type 1 (HIV-1) requires the opening of the three-dimensional structure of the primer tRNALys3 for its annealing to the viral RNA at the primer binding site (PBS). Despite the fact that the result of this rearrangement is thermodynamically more stable, there is a high-energy barrier that requires the chaperoning activity of the viral nucleocapsid protein. In addition to the nucleotide complementarity to the PBS, several regions of tRNALys3 have been described as interacting with the viral genomic RNA. Among these sequences, a sequence of the viral genome called PAS for “primer activation signal” was proposed to interact with the T-arm of tRNALys3, this interaction stimulating the initiation of reverse transcription. In this report, we investigate the formation of this additional interaction with NMR spectroscopy, using a simple system composed of the primer tRNALys3, the 18 nucleotides of the PBS, the PAS (8 nucleotides) encompassed or not in a hairpin structure, and the nucleocapsid protein. Our NMR study provides molecular evidence of the existence of this interaction and highlights the role of the nucleocapsid protein in promoting this additional RNA-RNA annealing. This study presents the first direct observation at a single base-pair resolution of the PAS/anti-PAS association, which has been proposed to be involved in the chronological regulation of the reverse transcription. PMID:23762248

  1. Low Temperature 1H MAS NMR Spectroscopy Studies of Proton Motion in Zeolite

    SciTech Connect

    Huo, H.; Peng, L; Grey, C

    2009-01-01

    Low temperature {sup 1}H MAS NMR spectroscopy is used to study protonic motion in zeolite HZSM-5 in both samples that have been dried using procedures that are standard in the literature and samples that have been more carefully dehydrated. A significant enhancement of proton mobility is seen for the ''standard'' dehydrated HZSM-5 sample in comparison to that seen for the much drier sample. This is ascribed to a vehicle-hopping mechanism involving the residual water that is present in these zeolites. A gradual change of the framework structure is observed on cooling to approximately 213 K, as monitored via the change in {sup 1}H chemical shift values of the Broensted acid resonances and by X-ray diffraction. A more sudden change in structure is seen by differential scanning calorimetry and NMR at approximately 220?230 K, which is associated with changes in both the mobility and the modes of binding of the residual water to the Broensted acid sites and the zeolite framework.

  2. XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass

    NASA Technical Reports Server (NTRS)

    Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.

    2006-01-01

    The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.

  3. Impurity profiling of carbocisteine by HPLC-CAD, qNMR and UV/vis spectroscopy.

    PubMed

    Wahl, Oliver; Holzgrabe, Ulrike

    2014-07-01

    For the impurity profiling of the mucolytic and anti-inflammatory drug carbocisteine a high performance liquid chromatographic (HPLC) method using corona charged aerosol detection (CAD) was developed and fully validated following the ICH guideline Q2(R1). The response was linear (R>0.995) over a small concentration range (0.05-0.25 or 0.10-0.60% respectively) and a detection limit of at least 0.03% was registered. The separation was achieved on a mixed mode column combining hydrophobic C18 and strong cation exchange retention mechanisms using a mass spectrometer compatible volatile mobile phase consisting of trifluoroacetic acid 10 mM and acetonitrile 12% (V/V). Impurities, not assessable by HPLC-CAD such as the volatile chloroacetic acid and the unstable cysteine, were determined by quantitative NMR (qNMR) with maleic acid as internal standard and UV/vis spectroscopy after reaction with Ellman's reagent, respectively. Six batches of three different manufacturers were tested by means of those methods. The purity varied from below 99.0 to higher than 99.8 per cent. The major impurities of all batches were the starting material cystine and N,S-dicarboxymethylcysteine being a synthesis by-product. PMID:24637049

  4. Conformational analysis of an anti-androgenic, (E,E)-8-hydroxygermacrene B, using NOESY and dynamic NMR spectroscopy.

    PubMed

    Srivilai, Jukkarin; Khorana, Nantaka; Waranuch, Neti; Suphrom, Nungruthai; Ingkaninan, Kornkanok

    2014-08-01

    (E,E)-8-Hydroxygermacrene B was prepared by ketone reduction of germacrone, a naturally occurring compound from Curcuma aeruginosa Roxb. with NaBH4 at low temperature (4 C). This compound showed remarkable in vitro anti-androgenic activity (IC50 0.150.022 mM) applicable to male baldness treatments. NMR analysis at -50 C indicated that there were four conformational isomers of (E,E)-8-hydroxygermacrene B in a ratio of 48:40:8:4. The major conformers were assigned by (1)H NMR and 2D-NOESY NMR spectroscopy as having methyl groups at C-10 and C-4 in up-down (UD) orientations (48% predominance) and UU (40%). (1)H NMR spectra implied another two minor conformers with these methyls having DU (8%) and DD (4%) orientations. PMID:24951332

  5. Structures of glycans bound to receptors from saturation transfer difference (STD) NMR spectroscopy: quantitative analysis by using CORCEMA-ST.

    PubMed

    Enríquez-Navas, Pedro M; Guzzi, Cinzia; Muñoz-García, Juan C; Nieto, Pedro M; Angulo, Jesús

    2015-01-01

    Glycan-receptor interactions are of fundamental relevance for a large number of biological processes, and their kinetics properties (medium/weak binding affinities) make them appropriated to be studied by ligand observed NMR techniques, among which saturation transfer difference (STD) NMR spectroscopy has been shown to be a very robust and powerful approach. The quantitative analysis of the results from a STD NMR study of a glycan-receptor interaction is essential to be able to translate the resulting spectral intensities into a 3D molecular model of the complex. This chapter describes how to carry out such a quantitative analysis by means of the Complete Relaxation and Conformational Exchange Matrix Approach for STD NMR (CORCEMA-ST), in general terms, and an example of a previous work on an antibody-glycan interaction is also shown. PMID:25753726

  6. Pulsed electron paramagnetic resonance spectroscopy of (33)S-labeled molybdenum cofactor in catalytically active bioengineered sulfite oxidase.

    PubMed

    Klein, Eric L; Belaidi, Abdel Ali; Raitsimring, Arnold M; Davis, Amanda C; Krmer, Tobias; Astashkin, Andrei V; Neese, Frank; Schwarz, Gnter; Enemark, John H

    2014-01-21

    Molybdenum enzymes contain at least one pyranopterin dithiolate (molybdopterin, MPT) moiety that coordinates Mo through two dithiolate (dithiolene) sulfur atoms. For sulfite oxidase (SO), hyperfine interactions (hfi) and nuclear quadrupole interactions (nqi) of magnetic nuclei (I ? 0) near the Mo(V) (d(1)) center have been measured using high-resolution pulsed electron paramagnetic resonance (EPR) methods and interpreted with the help of density functional theory (DFT) calculations. These have provided important insights about the active site structure and the reaction mechanism of the enzyme. However, it has not been possible to use EPR to probe the dithiolene sulfurs directly since naturally abundant (32)S has no nuclear spin (I = 0). Here we describe direct incorporation of (33)S (I = 3/2), the only stable magnetic sulfur isotope, into MPT using controlled in vitro synthesis with purified proteins. The electron spin echo envelope modulation (ESEEM) spectra from (33)S-labeled MPT in this catalytically active SO variant are dominated by the "interdoublet" transition arising from the strong nuclear quadrupole interaction, as also occurs for the (33)S-labeled exchangeable equatorial sulfite ligand [ Klein, E. L., et al. Inorg. Chem. 2012 , 51 , 1408 - 1418 ]. The estimated experimental hfi and nqi parameters for (33)S (aiso = 3 MHz and e(2)Qq/h = 25 MHz) are in good agreement with those predicted by DFT. In addition, the DFT calculations show that the two (33)S atoms are indistinguishable by EPR and reveal a strong intermixing between their out-of-plane pz orbitals and the dxy orbital of Mo(V). PMID:24387640

  7. Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter

    2000-08-01

    A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA?BB? spin system of taurine at 1.5 T is discussed.

  8. Solution structure of omega-conotoxin MVIIA using 2D NMR spectroscopy.

    PubMed

    Basus, V J; Nadasdi, L; Ramachandran, J; Miljanich, G P

    1995-08-21

    The solution structure of omega-conotoxin MVIIA (SNX-111), a peptide toxin from the fish hunting cone snail Conus magus and a high-affinity blocker of N-type calcium channels, was determined by 2D NMR spectroscopy. The backbones of the best 44 structures match with an average pairwise RMSD of 0.59 angstroms. The structures contain a short segment of triple-stranded beta-sheet involving residues 6-8, 20-21, and 24-25. The structure of this toxin is very similar to that of omega-conotoxin GVIA with which is has only 40% sequence homology, but very similar calcium channel binding affinity and selectivity. PMID:7656969

  9. Quantitative determination of glyphosate in human serum by 1H NMR spectroscopy.

    PubMed

    Cartigny, Bernard; Azaroual, Nathalie; Imbenotte, Michel; Mathieu, Daniel; Parmentier, Erika; Vermeersch, Gaston; Lhermitte, Michel

    2008-01-15

    The determination and quantification of glyphosate in serum using (1)H NMR spectroscopy is reported. This method permitted serum samples to be analysed without derivatization or any other sample pre-treatment, using 3-trimethylsilyl 2,2',3,3'-tetradeuteropropionic acid (TSP-d(4)) as a qualitative and quantitative standard. Characterization of the herbicide N-(phosphonomethyl)glycine was performed by analysing chemical shifts and coupling constant patterns. Quantification was performed by relative integration of CH(2)-P protons to the TSP-d(4) resonance peak. The method was tested for repeatability (n=5) and yielded coefficients of variation of 1% and 3%, respectively: detection and quantification limits were also determined and were 0.03 and 0.1mmol/L, respectively. The method was applied to the quantification of glyphosate in a case of acute poisoning. PMID:18371753

  10. Quantitative analysis of sesquiterpene lactones in extract of Arnica montana L. by 1H NMR spectroscopy.

    PubMed

    Staneva, Jordanka; Denkova, Pavletta; Todorova, Milka; Evstatieva, Ljuba

    2011-01-01

    (1)H NMR spectroscopy was used as a method for quantitative analysis of sesquiterpene lactones present in a crude lactone fraction isolated from Arnica montana. Eight main components - tigloyl-, methacryloyl-, isobutyryl- and 2-methylbutyryl-esters of helenalin (H) and 11α,13-dihydrohelenalin (DH) were identified in the studied sample. The method allows the determination of the total amount of sesquiterpene lactones and the quantity of both type helenalin and 11α,13-dihydrohelenalin esters separately. Furthermore, 6-O-tigloylhelenalin (HT, 1), 6-O-methacryloylhelenalin (HM, 2), 6-O-tigloyl-11α,13-dihydrohelenalin (DHT, 5), and 6-O-methacryloyl-11α,13-dihydrohelenalin (DHM, 6) were quantified as individual components. PMID:20837387

  11. Spatial structure of fibrinopeptide B in water solution with DPC micelles by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Blokhin, Dmitriy S.; Fayzullina, Adeliya R.; Filippov, Andrei V.; Karataeva, Farida Kh.; Klochkov, Vladimir V.

    2015-12-01

    Fibrinopeptide B (GluFib) is one of the factors of thrombosis. Normal blood protein soluble, fibrinogen (fibrinopeptide A and fibrinopeptide B), is transformed into the insoluble, fibrin, which in the form of filaments adheres to the vessel wall at the site of injury, forming a grid. However, the spatial structure of this peptide has not been established till now. In this article, GluFib peptide is investigated together with dodecylphosphocholine (DPC) micelles which were used for mimicking the environment of peptide in blood vessels. The spatial structure was obtained by applying 1D and 2D 1H-1H NMR spectroscopy (TOCSY, NOESY). It was shown that the fibrinopeptide B does not have a secondary structure but we can distinguish the fragment Gly 9 - Arg 14 with a good convergence (the backbone RMSD for the Gly9 - Arg14 is 0.180.08).

  12. Reconsidering the activation entropy for anomerization of glucose and mannose in water studied by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosaka, Ami; Aida, Misako; Katsumoto, Yukiteru

    2015-08-01

    The anomerization of monosaccharides is a very important process to understand how their stereoisomers are stabilized in aqueous solutions. For glucose and mannose, it has been known that ?- and ?-anomers of hexopyranose exist as the major components. In order to examine the anomerization pathway for glucose and mannose in aqueous solutions, it is indispensable to determine the thermodynamic parameters such as the activation energy, the activation Gibbs free energy (?G), enthalpy (?H), and entropy (?S). Although several research groups reported these quantities in aqueous solution, they have still been controversial especially for ?S. In this paper, we employ 1H NMR spectroscopy for monitoring the population of both ?- and ?-anomers of glucose and mannose. The contribution of ?S to ?G for glucose in water is estimated to be ca. 30%, while that for mannose is 8.0%. The large difference in ?S suggests that the anomerization pathway is not the same for glucose and mannose.

  13. Simultaneous De Novo Identification of Molecules in Chemical Mixtures by Doubly Indirect Covariance NMR Spectroscopy

    PubMed Central

    Zhang, Fengli; Bruschweiler-Li, Lei; Brschweiler, Rafael

    2010-01-01

    The detailed characterization of complex molecular mixtures plays a key role in many areas of modern Chemistry. Here we report a novel NMR spectroscopic method that deconvolutes a complex mixture of organic molecules simultaneously into individual components and depicts their chemical structure without requiring physical separation of the components. Doubly indirect covariance spectroscopy is introduced and applied to 2D 13C-1H HSQC and 2D 1H-1H COSY spectra, which results in a 13C-13C 2D spectrum with unprecedented high resolution. This reconstituted spectrum is indeed a carbon-connectivity map that can be directly analyzed with basic graph theory to obtain the skeletal structures of individual mixture components or their fragments. The method is demonstrated for a model mixture and a natural product mixture extracted from cancer cells. Its suitability for automation makes this approach attractive for the analysis of a broad range of mixtures of natural or synthetic products. PMID:21062057

  14. Measuring Residual Dipolar Couplings in Excited Conformational States of Nucleic Acids by CEST NMR Spectroscopy

    PubMed Central

    Zhao, Bo; Zhang, Qi

    2015-01-01

    Nucleic acids undergo structural transitions to access sparsely populated and transiently lived conformational statesor excited conformational statesthat play important roles in diverse biological processes. Despite ever-increasing detection of these functionally essential states, 3D structure determination of excited states (ESs) of RNA remains elusive. This is largely due to challenges in obtaining high-resolution structural constraints in these ESs by conventional structural biology approaches. Here, we present nucleic-acid-optimized chemical exchange saturation transfer (CEST) NMR spectroscopy for measuring residual dipolar couplings (RDCs), which provide unique long-range angular constraints in ESs of nucleic acids. We demonstrate these approaches on a fluoride riboswitch, where one-bond 13C-1H RDCs from both base and sugar moieties provide direct structural probes into an ES of the ligand-free riboswitch. PMID:26462068

  15. Recent applications of /sup 13/C NMR spectroscopy to biological systems

    SciTech Connect

    Matwiyoff, N.A.

    1981-01-01

    Carbon-13 nuclear magnetic resonance (NMR) spectroscopy, in conjunction with carbon-13 labelling, is a powerful new analytical technique for the study of metabolic pathways and structural components in intact organelles, cells, and tissues. The technique can provide, rapidly and non-destructively, unique information about: the architecture and dynamics of structural components; the nature of the intracellular environment; and metabolic pathways and relative fluxes of individual carbon atoms. With the aid of results recently obtained by us and those reported by a number of other laboratories, the problems and potentialities of the technique will be reviewed with emphasis on: the viscosities of intracellular fluids; the structure and dynamics of the components of membranes; and the primary and secondary metabolic pathways of carbon in microorganisms, plants, and mammalian cells in culture.

  16. 93Nb NMR spin echo spectroscopy in single crystal NbSe3.

    PubMed

    Suh, S; Clark, W G; Monceau, P; Thorne, R E; Brown, S E

    2008-09-26

    We report electric field induced phase displacements of the charge density wave (CDW) in a single crystal of NbSe3 using 93Nb NMR spin-echo spectroscopy. CDW polarizations in the pinned state induced by unipolar and bipolar pulses are linear and reversible up to at least E = (0.96)ET. The polarizations have a broad distribution extending up to phase angles of order 60 degrees for electric fields close to threshold. No evidence for polarizations in excess of a CDW wavelength or for a divergence in polarization near ET are observed. The results are consistent with elastic depinning models, provided that the critical regime expected in large systems is not observable. PMID:18851473

  17. Aliphatic chain length by isotropic mixing (ALCHIM): determining composition of complex lipid samples by 1H NMR spectroscopy

    PubMed Central

    Yi, Ruiyang; Volden, Paul A.; Conzen, Suzanne D.

    2015-01-01

    Quantifying the amounts and types of lipids present in mixtures is important in fields as diverse as medicine, food science, and biochemistry. Nuclear magnetic resonance (NMR) spectroscopy can quantify the total amounts of saturated and unsaturated fatty acids in mixtures, but identifying the length of saturated fatty acid or the position of unsaturation by NMR is a daunting challenge. We have developed an NMR technique, aliphatic chain length by isotropic mixing, to address this problem. Using a selective total correlation spectroscopy technique to excite and transfer magnetization from a resolved resonance, we demonstrate that the time dependence of this transfer to another resolved site depends linearly on the number of aliphatic carbons separating the two sites. This technique is applied to complex natural mixtures allowing the identification and quantification of the constituent fatty acids. The method has been applied to whole adipocytes demonstrating that it will be of great use in studies of whole tissues. PMID:24831341

  18. Rapid geographical differentiation of the European spread brown macroalga Sargassum muticum using HRMAS NMR and Fourier-Transform Infrared spectroscopy.

    PubMed

    Tanniou, Analle; Vandanjon, Laurent; Gonalves, Olivier; Kervarec, Nelly; Stiger-Pouvreau, Valrie

    2015-01-01

    Two recent techniques based on chemical footprinting analysis, HRMAS NMR and FTIR spectroscopy, were tested on a brown macroalgal model. These powerful and easily-to-use techniques allowed us to discriminate Sargassum muticum specimens collected in five different countries along Atlantic coasts, from Portugal to Norway. HRMAS NMR and FTIR permitted the obtaining of an overview of metabolites produced by the alga. Based on spectra analysis, results allowed us to successfully group the samples according to their geographical origin. HRMAS NMR and FTIR spectroscopy respectively point out the relation between the geographical localization and the chemical composition and demonstrated macromolecules variations regarding to environmental stress. Then, our results are discussed in regard of the powerful of these techniques together with the variability of the main molecules produced by Sargassum muticum along the Atlantic coasts. PMID:25476330

  19. (77)Se and (125)Te NMR spectroscopy on a selectivity study of organochalcogenanes with L-amino acids.

    PubMed

    Silva, Marcio S; Andrade, Leandro H

    2015-06-01

    The hypervalent selenium- and tellurium-containing compounds (halo-organoselenuranes and halo-organotelluranes) were treated with amino acids to evaluate their reactivity and chemoselectivity by (1)H, (13)C, (77)Se and (125)Te NMR spectroscopy. The study of forced thermal stability was performed and analyzed by NMR. The organotelluranes remained stable at temperatures around 60 C but in the case of organoselenuranes, there was formation of new products at 37 C as a result of halogen loss. (77)Se and (125)Te NMR spectroscopy has proved to be a very efficient and fast technique to evidence the high selectivity of organochalcogenanes against l-amino acids, specific to l-cysteine. PMID:25923042

  20. NMR spectroscopy with force-gradient detection on a GaAs epitaxial layer.

    PubMed

    Alexson, Dimitri A; Smith, Doran D

    2013-10-01

    We demonstrate nuclear magnetic resonance spectroscopy on 35 ?m(3) of (69)Ga in a GaAs epitaxial layer in vacuum at 5K, and 5T yielding a linewidth on the order of 10 kHz. This was achieved by a force-gradient magnetic resonance detection scheme, using the interaction between the force-gradient of a Ni sphere-tipped single crystal Si cantilever and the nuclear spins to register changes in the spin state as a change in the driven cantilever's natural resonant frequency. The dichotomy between the background magnetic field (B0) homogeneity requirements imposed by NMR spectroscopy and the magnetic particle's large magnetic field gradient is resolved via sample shuttling during the NMR pulse encoding. A GaAs sample is polarized in a B0 of 5T for 3 T1. The sample is shuttled away from the magnetic particle to a region of negligible magnetic field inhomogeneity. A (?/2)x pulse rotates the polarization to the xy-plane, the magnetization is allowed to precess for 2-200 ?s before a (?/2)x or (?/2)y pulse stores the remaining spin along the z-axis that represents a single point of the free induction decay (FID). The sample is shuttled back to the established tip-sample distance. An adiabatic rapid passage (ARP) sweep inverts the spins in a volume of interest, causing the cantilever's natural resonance frequency to shift an amount proportional to the spin polarization in the volume. By varying the delay between the first and second (?/2) pulses the entire FID is measured. PMID:23962899

  1. NMR spectroscopy of intermetallic compounds: an experimental and theoretical approach to local atomic arrangements in binary gallides.

    PubMed

    Haarmann, Frank; Koch, Katrin; Jegli?, Peter; Pecher, Oliver; Rosner, Helge; Grin, Yuri

    2011-06-27

    The results of the investigation of MGa(2) with M = Ca, Sr, Ba and of MGa(4) with M = Na, Ca, Sr, Ba by a combined application of NMR spectroscopy and quantum mechanical calculations are comprehensively evaluated. The electric-field gradient (EFG) was identified as the most reliable measure to study intermetallic compounds, since it is accessible with high precision by quantum mechanical calculations and, for nuclear spin I>1/2, by NMR spectroscopy. The EFG values obtained by NMR spectroscopy and quantum mechanical calculations agree very well for both series of investigated compounds. A deconvolution of the calculated EFGs into their contributions reveals its sensitivity to the local environment of the atoms. The EFGs of the investigated di- and tetragallides are dominated by the population of the p(x)-, p(y)-, and p(z)-like states of the Ga atoms. A general combined approach for the investigation of disordered intermetallic compounds by application of diffraction methods, NMR spectroscopy, and quantum mechanical calculations is suggested. This scheme can also be applied to other classes of crystalline disordered inorganic materials. PMID:21590820

  2. NMR and IR Spectroscopy for the Structural Characterization of Edible Fats and Oils: An Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Crowther, Molly W.

    2008-01-01

    This article describes an upper-level instrumental laboratory for undergraduates that explores the complementary nature of IR and NMR spectroscopy for analysis of several edible fats and oils that are structurally similar but differ in physical properties and health implications. Five different fats and oils are analyzed for average chain length,…

  3. Response to the Letter to the Editor regarding "Determination of the fatty acid profile by 1H-NMR spectroscopy."

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In expansion of previous work (G. Knothe, J.A. Kenar, Determination of the fatty acid profile by 1H-NMR spectroscopy, Eur. J. Lipid Sci. Technol. 2004, 106, 88-96), an additional approach is discussed for quantitating saturated fatty acids in the fatty acid profiles of common vegetable oils by 1H-NM...

  4. NMR and IR Spectroscopy for the Structural Characterization of Edible Fats and Oils: An Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Crowther, Molly W.

    2008-01-01

    This article describes an upper-level instrumental laboratory for undergraduates that explores the complementary nature of IR and NMR spectroscopy for analysis of several edible fats and oils that are structurally similar but differ in physical properties and health implications. Five different fats and oils are analyzed for average chain length,

  5. Electronic relaxation of paramagnetic metal ions and NMR relaxivity in solution: Critical analysis of various approaches and application to a Gd(III)-based contrast agent

    NASA Astrophysics Data System (ADS)

    Fries, Pascal H.; Belorizky, Elie

    2005-09-01

    The time correlation functions (TCFs) G??(t )??S?(t)S?(0)? (?=x,y,z) of the electronic spin components of a complexed paramagnetic metal ion give information about the time fluctuations of its zero-field splitting (ZFS) Hamiltonian due to the random dynamics of the coordination polyhedron. These TCFs reflect the electronic spin relaxation which plays an essential role in the inner- and outer-sphere paramagnetic relaxation enhancements of the various nuclear spins in solution. When a static ZFS Hamiltonian is allowed by symmetry, its modulation by the random rotational motion of the complex has a great influence on the TCFs. We discuss several attempts to describe this mechanism and show that subtle mathematical pitfalls should be avoided in order to obtain a theoretical framework, within which reliable adjustable parameters can be fitted through the interpretation of nuclear-magnetic relaxation dispersion experimental results. We underline the advantage of the numerical simulation of the TCFs, which avoids the above difficulties and allows one to include the effect of the transient ZFS for all the relative magnitudes of the various terms in the electron-spin Hamiltonian and arbitrary correlation times. This method is applied for various values of the magnetic field taken to be along the z direction. At low field, contrary to previous theoretical expectations, if the transient ZFS has negligible influence, the longitudinal TCF G?(t)?Gzz(t ) has a monoexponential decay with an electronic relaxation time T1e different from 1/(2Dr), Dr being the rotational diffusion coefficient of the complex. At intermediate and high field, the simulation results show that G?(t) still has a monoexponential decay with a characteristic time T1e, which is surprisingly well approximated by a simple analytical expression derived from the Redfield perturbation approximation of the time-independent Zeeman Hamiltonian, even in the case of a strong ZFS where this approximation is expected to fail. These results are illustrated for spins S =1, 3/2, and 5/2 in axial and rhombic symmetries. Finally, the simulation method is applied to the reinterpretation of the water-proton relaxivity profile due to P760-Gd(III), an efficient blood pool contrast agent for magnetic-resonance imaging.

  6. Influence of inner-sphere processes on the paramagnetic shifts in the {sup 1}H NMR spectra of some mixed-ligand complexes of rare-earth elements

    SciTech Connect

    Khachatryan, A.S.; Vashchuk, A.V.; Panyushkin, V.T.

    1995-12-20

    Concentration dependences of the observed chemical shifts in the NMR spectra of 1:1:1 and 1:2:1 mixed-ligand complexes of rare-earth elements with acetylacetone and acrylic, methacrylic, maleic, and fumaric acids were analyzed. The complexes undergo inner-sphere structural transformations involving different modes of coordination of the unsaturated acid, which is capable of coordination to the central ion through both the carboxylic group and {pi} electrons of the double bond. The possibility of determining equilibrium constants and limiting chemical shifts of the isomeric forms of the complexes was demonstrated. 9 refs., 4 figs.

  7. Consortium to develop the medical uses of NMR imaging, NMR spectroscopy, and positron emission tomography. Final technical report

    SciTech Connect

    Pohost, G.M.

    1998-06-01

    The goal of this work is to, perform clinically relevant studies using a new whole-body 4.1 T NMR imaging spectrometer. Initially we will develop and approach for the assessment of the severity of skeletal muscle involvement in ischemic peripheral vascular disease.

  8. Molecular-level characterization of probucol nanocrystal in water by in situ solid-state NMR spectroscopy.

    PubMed

    Zhang, Junying; Higashi, Kenjirou; Limwikrant, Waree; Moribe, Kunikazu; Yamamoto, Keiji

    2012-02-28

    The molecular state of colloidal probucol nanoparticles with additives was evaluated by (13)C in situ solid-state NMR spectroscopy. The nanoparticles were obtained by dispersing a ternary co-ground mixture of probucol/polyvinylpyrrolidon (PVP)/sodium dodecyl sulfate (SDS) in water. Their mean particle size was found to be approximately 150 nm by dynamic light scattering and cryogenic-scanning electron microscopy measurements. The results of the (13)C in situ solid-state NMR spectroscopy showed that probucol existed in the crystalline state (form I) in water. (13)C liquid-state NMR results indicated that PVP and SDS interacted with probucol in water. Their broad signals suggested that the surface interaction of the probucol nanocrystal with PVP and SDS stabilized the suspension. In addition, a freeze-dried sample of the suspension was studied by (13)C solid-state NMR and powder X-ray diffraction experiments, which confirmed the presence of the probucol nanocrystals. The combination of the in situ solid-state, solid-state, and liquid-state NMR measurement results provided molecular-level insights about the role of intermolecular interactions in the design of nanoformulations. PMID:22138607

  9. State-of-the-Art Direct 13C and Indirect 1H-[13C] NMR Spectroscopy In Vivo

    PubMed Central

    de Graaf, Robin A.; Rothman, Douglas L.; Behar, Kevin L.

    2013-01-01

    Carbon-13 NMR spectroscopy in combination with 13C-labeled substrate infusion is a powerful technique to measure a large number of metabolic fluxes non-invasively in vivo. It has been used to quantify glycogen synthesis rates, establish quantitative relationships between energy metabolism and neurotransmission and evaluate the importance of different substrates. All measurements can, in principle, be performed through direct 13C NMR detection or via indirect 1H-[13C] NMR detection of the protons attached to 13C nuclei. The choice for detection scheme and pulse sequence depends on the magnetic field strength, whereas substrate selection depends on the metabolic pathways that are studied. 13C NMR spectroscopy remains a challenging technique that requires several non-standard hardware modifications, infusion of 13C-labeled substrates and sophisticated processing and metabolic modeling. Here the various aspects of direct 13C and indirect 1H-[13C] NMR are reviewed with the aim of providing a practical guide. PMID:21919099

  10. Investigation by electron paramagnetic resonance spectroscopy of the molybdenum centre of respiratory nitrate reductase from Paracoccus denitrificans.

    PubMed Central

    Turner, N; Ballard, A L; Bray, R C; Ferguson, S

    1988-01-01

    The molybdenum centre of respiratory nitrate reductase from Paracoccus denitrificans has been investigated by e.p.r. spectroscopy of Mo(V). In common with the centres of the analogous enzymes from Escherichia coli and Pseudomonas aeruginosa, it undergoes a pH- and anion-dependent transition between two different e.p.r. signal-giving species. Comparison of the relevant e.p.r. parameters extracted with the help of computer simulations reveals ligation of the metal in the active centres of the three enzymes to be identical. PMID:2844161

  11. High field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter from the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Grill, P.; Schmitt-Kopplin, P.

    2012-01-01

    Non target high resolution organic structural spectroscopy of marine dissolved organic matter (DOM) isolated on 27 November 2008 by means of solid phase extraction (SPE) from four different depths in the South Atlantic Ocean off the Angola coast (3.1° E; -17.7° S; Angola basin) provided molecular level information of complex unknowns with unprecedented coverage and resolution. The sampling was intended to represent major characteristic oceanic regimes of general significance: 5 m (FISH; near surface photic zone), 48 m (FMAX; fluorescence maximum), 200 m (upper mesopelagic zone) and 5446 m (30 m above ground). 800 MHz proton (1H) nuclear magnetic resonance (NMR) 1H NMR, spectra were least affected by fast and differential transverse NMR relaxation and produced at first similar looking, rather smooth bulk NMR envelopes reflecting intrinsic averaging from massive signal overlap. Visibly resolved NMR signatures were most abundant in surface DOM but contributed at most a few percent to the total 1H NMR integral and were mainly limited to unsaturated and singly oxygenated carbon chemical environments. The relative abundance and variance of resolved signatures between samples was maximal in the aromatic region; in particular, the aromatic resolved NMR signature of the deep ocean sample at 5446 m was considerably different from that of all other samples. When scaled to equal total NMR integral, 1H NMR spectra of the four marine DOM samples revealed considerable variance in abundance for all major chemical environments across the entire range of chemical shift. Abundance of singly oxygenated CH units and acetate derivatives declined from surface to depth whereas aliphatics and carboxyl-rich alicyclic molecules (CRAM) derived molecules increased in abundance. Surface DOM contained a remarkably lesser abundance of methyl esters than all other marine DOM, likely a consequence of photodegradation from direct exposure to sunlight. All DOM showed similar overall 13C NMR resonance envelopes typical of an intricate mixture of natural organic matter with noticeable peaks of anomerics and C-aromatics carbon whereas oxygenated aromatics and ketones were of too low abundance to result in noticeable humps at the S/N ratio provided. Integration according to major substructure regimes revealed continual increase of carboxylic acids and ketones from surface to deep marine DOM, reflecting a progressive oxygenation of marine DOM, with concomitant decline of carbohydrate-related substructures. Isolation of marine DOM by means of SPE likely discriminated against carbohydrates but produced materials with beneficial NMR relaxation properties: a substantial fraction of dissolved organic molecules present allowed the acquisition of two-dimensional NMR spectra with exceptional resolution. JRES, COSY and HMBC NMR spectra were capable to depict resolved molecular signatures of compounds exceeding a certain minimum abundance. Here, JRES spectra suffered from limited resolution whereas HMBC spectra were constrained because of limited S/N ratio. Hence, COSY NMR spectra appeared best suited to depict organic complexity in marine DOM. The intensity and number of COSY cross peaks was found maximal for sample FMAX and conformed to about 1500 molecules recognizable in variable abundance. Surface DOM (FISH) produced a slightly (~25%) lesser number of cross peaks with remarkable positional accordance to FMAX (~80% conforming COSY cross peaks were found in FISH and FMAX). With increasing water depth, progressive attenuation of COSY cross peaks was caused by fast transverse NMR relaxation of yet unknown origin. However, most of the faint COSY cross peak positions of deep water DOM conformed to those observed in the surface DOM, suggesting the presence of a numerous set of identical molecules throughout the entire ocean column even if the investigated water masses belonged to different oceanic regimes and currents. Aliphatic chemical environments of methylene (CH2) and methyl (CH3) in marine DOM were nicely discriminated in DEPT HSQC NMR spectra. Classical methyl groups terminating aliphatic chains represented only ~15% of total methyl in all marine DOM investigated. Chemical shift anisotropy from carbonyl derivatives (i.e. most likely carboxylic acids) displaced aliphatic methyl 1H NMR resonances up to δH ~1.6 ppm, indicative of alicyclic geometry which furnishes more numerous short range connectivities for any given atom pairs. A noticeable fraction of methyl (~2%) was bound to olefinic carbon. The comparatively large abundance of methyl ethers in surface marine DOM contrasted with DOM of freshwater and soil origin. The chemical diversity of carbohydrates as indicated by H2CO-groups (δC ~ 62 ± 2 ppm) and anomerics (δC ~ 102 ± 7 ppm) exceeded that of freshwater and soil DOM considerably. HSQC NMR spectra were best suited to identify chemical environments of methin carbon (CH) and enabled discrimination of olefinic and aromatic cross peaks (δC > 110 ppm) and those of doubly oxygenated carbon (δC < 110 ppm). The abundance of olefinic protons exceeded that of aromatic protons; comparison of relative HSQC cross peak integrals indicated larger abundance of olefinic carbon than aromatic carbon in all marine DOM as well. A considerable fraction of olefins seemed isolated and likely sterically constrained as judged from small nJHH couplings associated with those olefins. High S/N ratio and fair resolution of TOCSY and HSQC cross peaks enabled unprecedented depiction of sp2-hybridized carbon chemical environments in marine DOM with discrimination of isolated and conjugated olefins as well as α, β-unsaturated double bonds. However, contributions from five-membered heterocycles (furan, pyrrol and thiophene derivatives) even if very unlikely from given elemental C/N and C/S ratios and upfield proton NMR chemical shift (δH < 6.5 ppm) could not yet been ruled out entirely. In addition to classical aromatic DOM, like benzene derivatives and phenols, six-membered nitrogen heterocycles were found prominent contributors to the downfield region of proton chemical shift (δH > 8 ppm). Specifically, a rather confined HSQC cross peak at δH/δC = 8.2/164 ppm indicated a limited set of nitrogen heterocycles with several nitrogen atoms in analogy to RNA derivatives present in all four marine DOM. Appreciable amounts of extended HSQC and TOCSY cross peaks derived from various key polycyclic aromatic hydrocarbon substructures suggested the presence of previously proposed but NMR invisible thermogenic organic matter (TMOC) in marine DOM at all water depths. Eventually, olefinic unsaturation in marine DOM will be more directly traceable to ultimate biogenic precursors than aromatic unsaturation of which a substantial fraction originates from an aged material which from the beginning was subjected to complex and less specific biogeochemical reactions like thermal decomposition. The variance in molecular mass as indicated from Fourier transform ion cyclotron resonance (FTICR) mass spectra was limited and could not satisfactorily explain the observed disparity in NMR transverse relaxation of the four marine DOM samples. Likewise, the presence of metal ions in isolated marine DOM remained near constant or declined from surface to depth for important paramagnetic ions like Mn, Cr, Fe, Co, Ni and Cu. Iron in particular, a strong complexing paramagnetic ion, was found most abundant by a considerable margin in surface (FISH) marine DOM for which well resolved COSY cross peaks were observed. Hence, facile relationships between metal content of isolated DOM (which does not reflect authentic marine DOM metal content) and transverse NMR relaxation were not observed. High field (12 T) negative electrospray ionization FTICR mass spectra showed at first view rather conforming mass spectra for all four DOM samples with abundant CHO, CHNO, CHOS and CHNOS molecular series with slightly increasing numbers of mass peaks from surface to bottom DOM and similar fractions (~50%) of assigned molecular compositions throughout all DOM samples. The average mass increased from surface to bottom DOM by about 10 Dalton. The limited variance of FTICR mass spectra probably resulted from a rather inherent conformity of marine DOM at the mandatory level of intrinsic averaging provided by FTICR mass spectrometry, when many isomers unavoidably project on single nominal mass peaks. In addition, averaging from ion suppression added to the accordance observed. The proportion of CHO and CHNO molecular series increased from surface to depth whereas CHOS and especially CHNOS molecular series markedly declined. The abundance of certain aromatic CHOS compounds declined with water depth. For future studies, COSY NMR spectra appear best suited to assess organic molecular complexity of marine DOM and to define individual DOM molecules of yet unknown structure and function. Non-target organic structural spectroscopy at the level demonstrated here covered nearly all carbon present in marine DOM. The exhaustive characterization of complex unknowns in marine DOM will reveal a meaningful assessment of individual marine biogeosignatures which carry the holistic memory of the oceanic water masses (Koch et al., 2011).

  12. Correlating nuclear frequencies by two-dimensional ELDOR-detected NMR spectroscopy.

    PubMed

    Kaminker, Ilia; Wilson, Tiffany D; Savelieff, Masha G; Hovav, Yonatan; Zimmermann, Herbert; Lu, Yi; Goldfarb, Daniella

    2014-03-01

    ELDOR (Electron Double Resonance)-detected NMR (EDNMR) is a pulse EPR experiment that is used to measure the transition frequencies of nuclear spins coupled to electron spins. These frequencies are further used to determine hyperfine and quadrupolar couplings, which are signatures of the electronic and spatial structures of paramagnetic centers. In recent years, EDNMR has been shown to be particularly useful at high fields/high frequencies, such as W-band (?95 GHz, ?3.5 T), for low ? quadrupolar nuclei. Although at high fields the nuclear Larmor frequencies are usually well resolved, the limited resolution of EDNMR still remains a major concern. In this work we introduce a two dimensional, triple resonance, correlation experiment based on the EDNMR pulse sequence, which we term 2D-EDNMR. This experiment allows circumventing the resolution limitation by spreading the signals in two dimensions and the observed correlations help in the assignment of the signals. First we demonstrate the utility of the 2D-EDNMR experiment on a nitroxide spin label, where we observe correlations between (14)N nuclear frequencies. Negative cross-peaks appear between lines belonging to different MS electron spin manifolds. We resolved two independent correlation patterns for nuclear frequencies arising from the EPR transitions corresponding to the (14)N mI=0 and mI=-1 nuclear spin states, which severely overlap in the one dimensional EDNMR spectrum. The observed correlations could be accounted for by considering changes in the populations of energy levels that S=1/2, I=1 spin systems undergo during the pulse sequence. In addition to these negative cross-peaks, positive cross-peaks appear as well. We present a theoretical model based on the Liouville equation and use it to calculate the time evolution of populations of the various energy levels during the 2D-EDNMR experiment and generated simulated 2D-EDMR spectra. These calculations show that the positive cross-peaks appear due to off resonance effects and/or nuclear relaxation effects. These results suggest that the 2D-EDNMR experiment can be also useful for relaxation pathway studies. Finally we present preliminary results demonstrating that 2D-EDNMR can resolve overlapping (33)S and (14)N signals of type 1 Cu(II) center in (33)S enriched Azurin. PMID:24530956

  13. Multiple Acquisition/Multiple Observation Separated Local Field/Chemical Shift Correlation Solid-state Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Das, Bibhuti B.; Opella, Stanley J.

    2014-01-01

    Multiple acquisition spectroscopy (MACSY) experiments that enable multiple free induction decays to be recorded during individual experiments are demonstrated. In particular, the experiments incorporate separated local field spectroscopy into homonuclear and heteronuclear correlation spectroscopy. The measured heteronuclear dipolar couplings are valuable in structure determination as well as in enhancing resolution by providing an additional frequency axis. In one example four different three-dimensional spectra are obtained in a single experiment, demonstrating that substantial potential saving in experimental time is available when multiple multi-dimensional spectra are required as part of solid-state NMR studies. PMID:25023566

  14. Improvements in localized proton NMR spectroscopy of human brain. Water suppression, short echo times, and 1 ml resolution

    NASA Astrophysics Data System (ADS)

    Frahm, J.; Michaelis, T.; Merboldt, K. D.; Bruhn, H.; Gyngell, M. L.; Hnicke, W.

    Considerable technical improvements are reported for localized proton NMR spectroscopy using stimulated echoes. When compared to previous results, proton NMR spectra of the human brain are now obtainable (i) with in vivo water suppression factors of ?1000, (ii) with only minor T2 losses and negligible distortions due to J modulation at short echo times of 10-20 ms, and (iii) from volumes of interest as small as 1-8 ml within measuring times of 1-10 min. As a consequence, the detection of cerebral metabolites is greatly facilitated. This particularly applies to the assignment of those resonances (e.g., glutamate, taurine, inositols) that suffer from strong spin-spin coupling at the field strengths commonly in use for NMR in man. Studies of regional metabolite differences, tissue heterogeneity, and focal lesions in patients benefit from the increased spatial resolution and a concomitant reduction of partial volume effects. Localized proton NMR spectroscopy was performed on young healthy volunteers. Experiments were carried out on a 2.0 T whole-body MRI/MRS system using the standard headcoil for both imaging and spectroscopy.

  15. Effects of MnO doping on the electronic properties of zinc oxide: 406 GHz electron paramagnetic resonance spectroscopy and Newman superposition model analysis

    NASA Astrophysics Data System (ADS)

    Yksel Price, Berat; Hardal, Gkhan; A?kgz, Muhammed; Repp, Sergej; Erdem, Emre

    2015-11-01

    MnO-doped ZnO ceramics have been synthesized through the conventional ceramic processing route. Mn2+ ions have been incorporated into the ZnO lattice within the limits of solid solubility. By using X-band-frequency and high-field electron paramagnetic resonance (EPR), we have resolved some of the main electronic transitions for the S = 5/2, I = 5/2 high-spin system and have determined accurately the EPR spin-Hamiltonian parameters. By combining data from crystallographic X-ray diffraction and EPR with the semi-empirical Newman superposition model, we have found the local configurational position of Mn2+ and have confirmed the symmetry of the lattice. The results presented in this contribution indicate that Mn ions substitute at Zn sites in ZnO. The effect of Mn2+ ions on the intrinsic defects becomes remarkable, thus the vacancy related intrinsic defect signals cannot be visible in the EPR spectrum. MnO doping affects the band gap energy of ZnO system which was confirmed via UV-Vis spectroscopy.

  16. Characterization of monomeric Mn(II/III/IV)-hydroxo complexes from X- and Q-band dual mode electron paramagnetic resonance (EPR) spectroscopy.

    PubMed

    Gupta, Rupal; Taguchi, Taketo; Borovik, A S; Hendrich, Michael P

    2013-11-01

    Manganese-hydroxo species have been implicated in C-H bond activation performed by metalloenzymes, but the electronic properties of many of these intermediates are not well characterized. The present work presents a detailed characterization of three Mn(n)-OH complexes (where n = II, III, and IV) of the tris[(N'-tert-butylureaylato)-N-ethylene]aminato ([H3buea](3-)) ligand using X- and Q-band dual mode electron paramagnetic resonance (EPR). Quantitative simulations for the [Mn(II)H3buea(OH)](2-) complex demonstrated the ability to characterize similar Mn(II) species commonly present in the resting states of manganese-containing enzymes. The spin states of the Mn(III) and Mn(IV) complexes determined from EPR spectroscopy are S = 2 and 3/2, respectively, as expected for the C3 symmetry imposed by the [H3buea](3-) ligand. Simulations of the spectra indicated the constant presence of two Mn(IV) species in solutions of [Mn(IV)H3buea(OH)] complex. The simulations of perpendicular- and parallel-mode EPR spectra allow determination of zero-field splitting and hyperfine parameters for all complexes. For the Mn(III) and Mn(IV) complexes, density functional theory calculations are used to determine the isotropic Mn hyperfine values, to compare the excited electronic state energies, and to give theoretical estimates of the zero-field energy. PMID:24156406

  17. Characterization of Cu Mordenite deNOx Catalysts at Variable Si/Al Ratios, by NMR, TPD and Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Marzke, Robert F.; Petranovskii, Vitalii P.; Bogdanchikova, Nina E.

    2002-03-01

    Cu mordenite is an effective catalyst for nitrogen oxide removal (deNOx), which is readily produced from H mordenite at various silica-to-alumina (Si/Al) ratios by ion exchange. We have characterized a set of H and Cu mordenite catalysts prepared from material originally supplied by the TOSOH Corp. (Japan), using NMR, TPD and optical Diffuse Reflectance Spectroscopy. The nuclei observed in NMR were Silicon-29, Aluminum-27 and protons. Resulst show strong effects of Si/Al ratio, upon both framework and extra-framework structures of the mordenites. Information about the state of the Cu ion in the catalysts will be reviewed.

  18. High-Speed Frequency Modulation of a 460-GHz Gyrotron for Enhancement of 700-MHz DNP-NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Idehara, T.; Khutoryan, E. M.; Tatematsu, Y.; Yamaguchi, Y.; Kuleshov, A. N.; Dumbrajs, O.; Matsuki, Y.; Fujiwara, T.

    2015-09-01

    The high-speed frequency modulation of a 460-GHz Gyrotron FU CW GVI (the official name in Osaka University is Gyrotron FU CW GOI) was achieved by modulation of acceleration voltage of beam electrons. The modulation speed f m can be increased up to 10 kHz without decreasing the modulation amplitude δ f of frequency. The amplitude δ f was increased almost linearly with the modulation amplitude of acceleration voltage Δ V a. At the Δ V a = 1 kV, frequency spectrum width df was 50 MHz in the case of f m < 10 kHz. The frequency modulation was observed as both the variation of the IF frequency in the heterodyne detection system measured by a high-speed oscilloscope and the widths of frequency spectra df measured on a frequency spectrum analyzer. Both results well agree reasonably. When f m exceeds 10 kHz, the amplitude δ f is decreased gradually with increasing f m because of the degradation of the used amplifier in response for high-speed modulation. The experiment was performed successfully for both a sinusoidal wave and triangle wave modulations. We can use the high-speed frequency modulation for increasing the enhancement factor of the dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy, which is one of effective and attractive methods for the high-frequency DNP-NMR spectroscopy, for example, at 700 MHz. Because the sensitivity of NMR is inversely proportional to the frequency, high-speed frequency modulation can compensate the decreasing the enhancement factor in the high-frequency DNP-NMR spectroscopy and keep the factor at high value. In addition, the high-speed frequency modulation is useful for frequency stabilization by a PID control of an acceleration voltage by feeding back of the fluctuation of frequency. The frequency stabilization in long time is also useful for application of a DNP-NMR spectroscopy to the analysis of complicated protein molecules.

  19. Identification of the Glycosaminoglycan Binding Site of Interleukin-10 by NMR Spectroscopy.

    PubMed

    Knze, Georg; Khling, Sebastian; Vogel, Alexander; Rademann, Jrg; Huster, Daniel

    2016-02-01

    The biological function of interleukin-10 (IL-10), a pleiotropic cytokine with an essential role in inflammatory processes, is known to be affected by glycosaminoglycans (GAGs). GAGs are highly negatively charged polysaccharides and integral components of the extracellular matrix with important functions in the biology of many growth factors and cytokines. The molecular mechanism of the IL-10/GAG interaction is unclear. In particular, experimental evidence about IL-10/GAG binding sites is lacking, despite its importance for understanding the biological role of the interaction. Here, we report the experimental determination of a GAG binding site of IL-10. Although no co-crystal structure of the IL-10GAG complex could be obtained, its structural characterization was possible by NMR spectroscopy. Chemical shift perturbations of IL-10 induced by GAG binding were used to narrow down the location of the binding site and to assess the affinity for different GAG molecules. Subsequent observation of NMR pseudocontact shifts of IL-10 and its heparin ligand, as induced by a protein-attached lanthanide spin label, provided structural restraints for the proteinligand complex. Using these restraints, pseudocontact shift-based rigid body docking together with molecular dynamics simulations yielded a GAG binding model. The heparin binding site is located at the C-terminal end of helix D and the adjacent DE loop and coincides with a patch of positively charged residues involving arginines 102, 104, 106, and 107 and lysines 117 and 119. This study represents the first experimental characterization of the IL-10GAG complex structure and provides the starting point for revealing the biological significance of the interaction of IL-10 with GAGs. PMID:26677224

  20. Higher order amyloid fibril structure by MAS NMR and DNP spectroscopy.

    PubMed

    Debelouchina, Galia T; Bayro, Marvin J; Fitzpatrick, Anthony W; Ladizhansky, Vladimir; Colvin, Michael T; Caporini, Marc A; Jaroniec, Christopher P; Bajaj, Vikram S; Rosay, Melanie; Macphee, Cait E; Vendruscolo, Michele; Maas, Werner E; Dobson, Christopher M; Griffin, Robert G

    2013-12-26

    Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure, and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide ?-strands into ?-sheets but also the ?-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The ?-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the residues buried within the interior of the fibrils. PMID:24304221

  1. Acid epimerization of 20-keto pregnane glycosides is determined by 2D-NMR spectroscopy.

    PubMed

    Garca, Vctor P

    2011-05-01

    Carbohydrates influence many essential biological events such as apoptosis, differentiation, tumor metastasis, cancer, neurobiology, immunology, development, host-pathogen interactions, diabetes, signal transduction, protein folding, and many other contexts. We now report on the structure determination of pregnane glycosides isolated from the aerial parts of Ceropegia fusca Bolle (Asclepiadaceae). The observation of cicatrizant, vulnerary and cytostatic activities in some humans and animals of Ceropegia fusca Bolle, a species endemic to the Canary Islands, encouraged us to begin a pharmacological study to determine their exact therapeutic properties. High resolution (1)H-NMR spectra of pregnane glycosides very often display well-resolved signals that can be used as starting points in several selective NMR experiments to study scalar (J coupling), and dipolar (NOE) interactions. ROESY is especially suited for molecules such that ??(c) ~ 1, where ?(c) are the motional correlation times and ? is the angular frequency. In these cases the NOE is nearly zero, while the rotating-frame Overhauser effect spectroscopy (ROESY) is always positive and increases monotonically for increasing values of ?(c). The ROESY shows dipolar interactions cross peaks even in medium-sized molecules which are helpful in unambiguous assignment of all the interglycosidic linkages. Selective excitation was carried out using a double pulsed-field gradient spin-echo sequence (DPFGSE) in which 180 Gaussian pulses are sandwiched between sine shaped z-gradients. Scalar interactions were studied by homonuclear DPFGSE-COSY and DPFGSE-TOCSY experiments, while DPFGSE-ROESY was used to monitor the spatial environment of the selectively excited proton. Dipolar interactions between nuclei close in space can be detected by the 1D GROESY experiment, which is a one-dimensional counterpart of the 2D ROESY method. The C-12 and C-17 configurations were determined by ROESY experiments. PMID:21431831

  2. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    PubMed Central

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (?,?) in a series of selectively 13C-labeled 40-residue ?-amyloid (A?140) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of A?140 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 1621. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ? and ? angles between the two carbonyl labels. Although the data are not sufficient to determine ? and ? uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of A?140 fibrils in 4 hr or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples. PMID:23562665

  3. Intracellular free calcium concentration measured with /sup 19/F NMR spectroscopy in intact ferret hearts

    SciTech Connect

    Marban, E.; Kitakaze, M.; Kusuoka, H.; Porterfield, J.K.; Yue, D.T.; Chacko, V.P.

    1987-08-01

    Changes in the intracellular free Ca/sup 2 +/ concentration, (Ca/sup 2 +/)/sub i/, mediate excitation-contraction coupling in the heart and contribute to cellular injury during ischemia and reperfusion. To study these processes directly, the authors measured (Ca/sup 2 +/)/sub i/ in perfused ferret (Mustela putorius furo) hearts using /sup 19/F NMR spectroscopy to detect the 5,5'-difluoro derivative of the Ca/sup 2 +/ chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). To load cells, hearts were perfused with the acetoxymethyl ester derivative of 5,5'-F/sub 2/-BAPTA. They measured /sup 19/F NMR spectra and left ventricular pressure simultaneously,at rest and during pacing at various external Ca concentrations ((Ca)/sub 0/). Although contractile force was attenuated by the Ca/sup 2 +/ buffering properties of 5,5'-F/sup 2/-BAPTA, the decrease in pressure could be overcome by raising (Ca)/sub 0/. The mean value of 104 nM for (Ca/sup 2 +/)/sub i/ at rest in the perfused heart agrees well with previous measurements in isolated ventricular muscle. During pacing at 0.6-4 Hz, time-averaged (Ca/sup 2 +/)/sub i/ increased; the effect of pacing was augmented by increasing (Ca)/sub 0/. (Ca/sup 2 +/)/sub i/ more than tripled during 10-20 min of global ischemia, and returned toward control levels upon reperfusion. This approach promises to be particularly useful in investigating the physiology of intact hearts and the pathophysiology of alterations in the coronary circulation

  4. Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy

    PubMed Central

    Debelouchina, Galia T.; Bayro, Marvin J.; Fitzpatrick, Anthony W.; Ladizhansky, Vladimir; Colvin, Michael T.; Caporini, Marc A.; Jaroniec, Christopher P.; Bajaj, Vikram S.; Rosay, Melanie; MacPhee, Cait E.; Vendruscolo, Michele; Maas, Werner E.; Dobson, Christopher M.; Griffin, Robert G.

    2014-01-01

    Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide β-strands into β-sheets but also the β-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The β-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the side-chains buried within the interior of the fibrils. PMID:24304221

  5. Dynamic Nuclear Polarization Enhanced MAS NMR Spectroscopy for Structural Analysis of HIV-1 Protein Assemblies.

    PubMed

    Gupta, Rupal; Lu, Manman; Hou, Guangjin; Caporini, Marc A; Rosay, Melanie; Maas, Werner; Struppe, Jochem; Suiter, Christopher; Ahn, Jinwoo; Byeon, In-Ja L; Franks, W Trent; Orwick-Rydmark, Marcella; Bertarello, Andrea; Oschkinat, Hartmut; Lesage, Anne; Pintacuda, Guido; Gronenborn, Angela M; Polenova, Tatyana

    2016-01-21

    Mature infectious HIV-1 virions contain conical capsids composed of CA protein, generated by the proteolytic cleavage cascade of the Gag polyprotein, termed maturation. The mechanism of capsid core formation through the maturation process remains poorly understood. We present DNP-enhanced MAS NMR studies of tubular assemblies of CA and Gag CA-SP1 maturation intermediate and report 20-64-fold sensitivity enhancements due to DNP at 14.1 T. These sensitivity enhancements enabled direct observation of spacer peptide 1 (SP1) resonances in CA-SP1 by dipolar-based correlation experiments, unequivocally indicating that the SP1 peptide is unstructured in assembled CA-SP1 at cryogenic temperatures, corroborating our earlier results. Furthermore, the dependence of DNP enhancements and spectral resolution on magnetic field strength (9.4-18.8 T) and temperature (109-180 K) was investigated. Our results suggest that DNP-based measurements could potentially provide residue-specific dynamics information by allowing for the extraction of the temperature dependence of the anisotropic tensorial or relaxation parameters. With DNP, we were able to detect multiple well-resolved isoleucine side-chain conformers; unique intermolecular correlations across two CA molecules; and functionally relevant conformationally disordered states such as the 14-residue SP1 peptide, none of which are visible at ambient temperatures. The detection of isolated conformers and intermolecular correlations can provide crucial constraints for structure determination of these assemblies. Overall, our results establish DNP-based MAS NMR spectroscopy as an excellent tool for the characterization of HIV-1 assemblies. PMID:26709853

  6. Electronic structure of four-coordinate C3v nickel(II) scorpionate complexes: investigation by high-frequency and -field electron paramagnetic resonance and electronic absorption spectroscopies.

    PubMed

    Desrochers, Patrick J; Telser, Joshua; Zvyagin, S A; Ozarowski, Andrew; Krzystek, J; Vicic, David A

    2006-10-30

    A series of complexes of formula TpNiX, where Tp*- = hydrotris(3,5-dimethylpyrazole)borate and X = Cl, Br, I, has been characterized by electronic absorption spectroscopy in the visible and near-infrared (NIR) region and by high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy. The crystal structure of TpNiCl has been previously reported; that for TpNiBr is given here: space group = Pmc2(1), a = 13.209(2) A, b = 8.082(2) A, c = 17.639(4) A, alpha = beta = gamma = 90 degrees , Z = 4. TpNiX contains a four-coordinate nickel(II) ion (3d8) with approximate C3v point group symmetry about the metal and a resulting S = 1 high-spin ground state. As a consequence of sizable zero-field splitting (zfs), TpNiX complexes are "EPR silent" with use of conventional EPR; however, HFEPR allows observation of multiple transitions. Analysis of the resonance field versus the frequency dependence of these transitions allows extraction of the full set of spin Hamiltonian parameters. The axial zfs parameter for TpNiX displays pronounced halogen contributions down the series: D = +3.93(2), -11.43(3), -22.81(1) cm(-1), for X = Cl, Br, I, respectively. The magnitude and change in sign of D observed for TpNiX reflects the increasing bromine and iodine spin-orbit contributions facilitated by strong covalent interactions with nickel(II). These spin Hamiltonian parameters are combined with estimates of 3d energy levels based on the visible-NIR spectra to yield ligand-field parameters for these complexes following the angular overlap model (AOM). This description of electronic structure and bonding in a pseudotetrahedral nickel(II) complex can enhance the understanding of similar sites in metalloproteins, both native nickel enzymes and nickel-substituted zinc enzymes. PMID:17054352

  7. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    SciTech Connect

    Mao, Kanmi

    2011-08-15

    The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-{gamma} nuclei (e.g., {sup 13}C and {sup 15}N) via the sensitive high-{gamma} nuclei (e.g., {sup 1}H and {sup 19}F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for {sup 1}H-{sup 1}H homonuclear decoupling. Also presented is a simple new strategy for optimization of {sup 1}H-{sup 1}H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in {sup 1}H detected 2D {sup 1}H{l_brace}{sup 13}C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional {sup 13}C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear {sup 1}H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5{sub m}{sup {bar x}}, PMLG5{sub mm}{sup {bar x}x} and SAM3) were analyzed to maximize the performance of through-bond transfer based on decoupling efficiency as well as scaling factors. Indirect detection with assistance of PMLG{sub m}{sup {bar x}} during INEPTR transfer proved to offer the highest sensitivity gains of 3-10. In addition, the CRAMPS sequence was applied under fast MAS to increase the {sup 1}H resolution during t{sub 1} evolution in the traditional, {sup 13}C detected HETCOR scheme. Two naturally abundant solids, tripeptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (f-MLF-OH) and brown coal, with well ordered and highly disordered structures, respectively, are studied to confirm the capabilities of these techniques. Concomitantly, a simple optimization of {sup 1}H homonuclear dipolar decoupling at MAS rates exceeding 10 kHz was developed (Chapter 4). The fine-tuned decoupling efficiency can be obtained by minimizing the signal loss due to transverse relaxation in a simple spin-echo experiment, using directly the sample of interest. The excellent agreement between observed decoupling pattern and earlier theoretical predictions confirmed the utility of this strategy. The properties of naturally abundant surface-bound fluorocarbon groups in mesoporous silica nanoparticles (MSNs) were investigated by the above-mentioned multidimensional solid-state NMR experiments and theoretical modeling (Chapter 5). Two conformations of (pentafluorophenyl)propyl groups (abbreviated as PFP) were determined as PFP-prone and PFP-upright, whose aromatic rings are located above the siloxane bridges and in roughly upright position, respectively. Several 1D and 2D NMR techniques were implemented in the characterizations, including indirectly detected {sup 1}H{l_brace}{sup 13}C{r_brace} and {sup 19}F{l_brace}{sup 13}C{r_brace} 2D HETCOR, Carr-Purcell-Meiboom-Gill (CPMG) assisted {sup 29}Si direct polarization and {sup 29}Si{sup 19}F 2D experiments, 2D double-quantum (DQ) {sup 19}F MAS NMR spectra and spin-echo measurements. Furthermore, conformational details of two types of PFP were confirmed by theoretical calculation, operated by Dr. Takeshi Kobayashi. Finally, the arrangement of two surfactants, cetyltrimetylammoium bromide (CTAB) and cetylpyridinium bromide (CPB), mixed inside the MSN pores, was studied by solid-state NMR (Chapter 6). By analyzing the {sup 1}H-{sup 1}H DQMAS and NOESY correlation spectra, the CTAB and CPB molecules were shown to co-exist inside the pores without forming significant monocomponent domains. A 'folded-over' conformation of CPB headgroups was proposed according to the results from {sup 1}H-{sup 29}Si 2D HETCOR.

  8. Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Pecher, Oliver; Bayley, Paul M.; Liu, Hao; Liu, Zigeng; Trease, Nicole M.; Grey, Clare P.

    2016-04-01

    We have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g., significantly different shifts of the multi-component samples, changing sample conditions (such as the magnetic susceptibility and conductivity) during cycling, signal broadening due to paramagnetism as well as interferences between the NMR and external cycler circuit that might impair the experiments. We provide practical insight into how to conduct ATMC in situ NMR experiments and discuss applications of the methodology to LiFePO4 (LFP) and Na3V2(PO4)2F3 cathodes as well as Na metal anodes. Automatic frequency sweep 7Li in situ NMR reveals significant changes of the strongly paramagnetic broadened LFP line shape in agreement with the structural changes due to delithiation. Additionally, 31P in situ NMR shows a full separation of the electrolyte and cathode NMR signals and is a key feature for a deeper understanding of the processes occurring during charge/discharge on the local atomic scale of NMR. 31P in situ NMR with "on-the-fly" re-calibrated, varying carrier frequencies on Na3V2(PO4)2F3 as a cathode in a NIB enabled the detection of different P signals within a huge frequency range of 4000 ppm. The experiments show a significant shift and changes in the number as well as intensities of 31P signals during desodiation/sodiation of the cathode. The in situ experiments reveal changes of local P environments that in part have not been seen in ex situ NMR investigations. Furthermore, we applied ATMC 23Na in situ NMR on symmetrical Na-Na cells during galvanostatic plating. An automatic adjustment of the NMR carrier frequency during the in situ experiment ensured on-resonance conditions for the Na metal and electrolyte peak, respectively. Thus, interleaved measurements with different optimal NMR set-ups for the metal and electrolyte, respectively, became possible. This allowed the formation of different Na metal species as well as a quantification of electrolyte consumption during the electrochemical experiment to be monitored. The new approach is likely to benefit a further understanding of Na-ion battery chemistries.

  9. QUANTITATIVE SOLID-STATE 13C NMR SPECTROSCOPY OF ORGANIC MATTER FRACTIONS IN LOWLAND RICE SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spin counting on solid-state **13C cross-polarization (CP) nuclear magnetic resonance (NMR) spectra of two humic fractions isolated from tropical lowland soils showed that only 32-81% of potential **13C NMR signal was detected. The observability of **13C NMR signal (Cobs) was higher in the mobile h...

  10. Observation of intermediate states of the human prion protein by high pressure NMR spectroscopy

    PubMed Central

    Kachel, Norman; Kremer, Werner; Zahn, Ralph; Kalbitzer, Hans Robert

    2006-01-01

    Background Prions as causative agents of transmissible spongiform encephalopathies (TSEs) in humans and animals are composed of the infectious isomer, PrPSc, of the cellular prion protein, PrPC. The conversion and thus the propensity of PrPC to adopt alternative folds leads to the species-specific propagation of the disease. High pressure is a powerful tool to study the physico-chemical properties of proteins as well as the dynamics and structure of folding intermediates. Results Conformational intermediates of the human prion protein huPrPC were characterized by a combination of hydrostatic pressure (up to 200 MPa) with two-dimensional NMR spectroscopy. All pressure effects showed to be reversible and there is virtually no difference in the overall pressure response between the folded core of the N-terminal truncated huPrPC(121230) and the full-length huPrPC(23230). The only significant differences in the pressure response of full-length and truncated PrP suggest that E168, H187, T192, E207, E211 and Y226 are involved in a transient interaction with the unfolded N-terminus. High-pressure NMR spectroscopy indicates that the folded core of the human prion protein occurs in two structural states N1and N2 in solution associated with rather small differences in free enthalpies (3.0 kJ/mol). At atmospheric pressure approximately 29% of the protein are already in the pressure favored conformation N2. There is a second process representing two possible folding intermediates I1 and I2 with corresponding average free enthalpies of 10.8 and 18.6 kJ/mol. They could represent preaggregation states of the protein that coexist at ambient pressure with a very small population of approximately 1.2% and less than 0.1%. Further the pressure response of the N-terminus indicates that four different regions are in a fast equilibrium with non-random structural states whose populations are shifted by pressure. Conclusion We identified pressure stabilized folding intermediates of the human prion protein. The regions reflecting most strongly the transition to the intermediate states are the ?1/?1-loop and the solvent exposed side of ?3. The most pressure-sensitive region (representing mainly intermediate I1) is the loop between ?-strand 1 and ?-helix 1 (residue 139141), indicating that this region might be the first entry point for the infectious conformer to convert the cellular protein. PMID:16846506

  11. Enhanced detection of aldehydes in Extra-Virgin Olive Oil by means of band selective NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dugo, Giacomo; Rotondo, Archimede; Mallamace, Domenico; Cicero, Nicola; Salvo, Andrea; Rotondo, Enrico; Corsaro, Carmelo

    2015-02-01

    High resolution Nuclear Magnetic Resonance (NMR) spectroscopy is a very powerful tool for comprehensive food analyses and especially for Extra-Virgin Olive Oils (EVOOs). We use the NMR technique to study the spectral region of aldehydes (8-10 ppm) for EVOOs coming from the south part of Italy. We perform novel experiments by using mono and bidimensional band selective spin-echo pulse sequences and identify four structural classes of aldehydes in EVOOs. For the first time such species are identified in EVOOs without any chemical treatment; only dilution with CDCl3 is employed. This would allow the discrimination of different EVOOs for the aldehydes content increasing the potentiality of the NMR technique in the screening of metabolites for geographical characterization of EVOOs.

  12. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    SciTech Connect

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie; Tiralongo, Joe; Gerardy-Schahn, Rita; Itzstein, Mark von . E-mail: m.vonitzstein@griffith.edu.au

    2007-08-10

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand ({alpha}/{beta}-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available.

  13. Investigation of Local Structures in Layered Niobates by Solid-state NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Ting

    Research on ion-exchangeable layered niobates has attracted great attention due to their unique structures and corresponding variations in properties and applications, such as ion conductors, solid acids, and water splitting catalysts. Families of layered niobates include double-layered or triple-layered Dion-Jacobson type perovskites (ALaNb2O7, A = Cs, Rb, K, H; AM2Nb3O10, A = Rb, K, H; M = Sr, Ca), layered niobates with both edge and corner sharing of NbO6 octahedra (KNb3O8, HNb3O6, Nb 6O17 and H4Nb6O17) and many others. Lately, more developments in the layered niobates through a variety of topochemical manipulations have been achieved. The topochemical reactions include ion exchange, exfoliation, substitution, and etc. As a result, many new materials have been successfully prepared, for example, solid solutions (ALa2NbTi2O10, ACaLaNb2TiO 10 and ACa2Nb3-xTaxO10, etc.), nanosheets (HNb3O8, H4Nb6O17, HLaNb2O7, HCa2Nb3O10, etc., to intercalate with organic molecules such as tetrabutylammonium hydroxide or n-butylamines), and nanoscrolls (from H2K2Nb 6O17). While these structural modifications often induce improvements in properties, the fundamental mechanisms of improvements in properties upon the modifications, especially local structural arrangements are poorly understood, which is often limited by structural characterizations. Particularly, the characterizations of the exfoliated nanosheets can be difficult by conventional X-ray diffraction (XRD) method due to disordered structures. Alternatively, solid-state nuclear magnetic resonance (NMR) spectroscopy is a useful tool to study local structures in solids. The structural information can be extracted by examining intrinsic interactions, such as quadrupolar, chemical shielding, and dipolar interactions, which are all associated with local environments surrounding a specific nucleus, 1H or 93Nb in layered niobates. The ultimate goal of this dissertation is to understand the relationships between local structures of layered niobates and their chemical or physical properties, and provide insights into further modifications and improvements. The primary objectives of this work are summarized below: I. Synthesis of series of layered niobates (ALaNb2O7 , A = Cs, Rb, K; KNb3O8; K4Nb 6O17; RbLa2NbTi2O10 and RbCaLaNb2TiO10) by microwave heating or cation exchange methods, their protonated forms by acid exchange (HLaNb2O 7, H3ONb3O8 and HNb3O 8, H4Nb8O17, HLa2NbTi 2O10 and HCaLaNb2TiO10), and three nanosheet niobates by exfoliation (HNb3O8, H4Nb 6O17 and HLaNb2O7 nanosheets). II. Structural characterizations of all niobates by powder XRD and solid-state NMR spectroscopy. Powder XRD is used to determine lattice constants and long-range structural ordering. Solid-state NMR is used to determine the electric field gradient parameters, chemical shift anisotropy parameters and dipolar coupling constants. Solid-state NMR techniques include 93Nb MQMAS, wide-line VOCS echo and WURST-echo; 1H{93Nb} CP, TRAPDOR, S-RESPDOR and iS-RESPDOR experiments. III. Understanding the trends of changes in NMR parameters with respect to cation exchange, exfoliation and compositional alteration, and correlation of the NMR parameters with local environments and possible structural rearrangements. IV. Identification of proton locations in the acid-exchanged niobates and surface acidity for the exfoliated nanosheets, based on 1H chemical shifts and dipolar coupling information from CP, S-RESPDOR and iS-RESPDOR experiments.

  14. Studies by electron-paramagnetic-resonance spectroscopy of the molybdenum centre of spinach (Spinacia oleracea) nitrate reductase.

    PubMed Central

    Gutteridge, S; Bray, R C; Notton, B A; Fido, R J; Hewitt, E J

    1983-01-01

    The molybdenum centre of spinach (Spinacia oleracea) nitrate reductase has been investigated by e.p.r. spectroscopy of molybdenum(V) in reduced forms of the enzyme. The resting enzyme gives no signals attributable to Mo(V). However, on reduction with NADH, Mo(V) signals appeared at relatively short reaction times but decreased again on prolonged exposure to excess of the substrate as the enzyme was further reduced. On brief treatment of such samples with nitrate, Mo(V) signals reappeared but disappeared again on longer exposure to excess nitrate as the enzyme became fully reoxidized. Detailed investigation of the signals carried out in both 1H2O and 2H2O revealed the presence of two signal-giving species, referred to as 'signal A' and 'signal B', analogous to corresponding signals from nitrate reductase from Escherichia coli and from liver sulphite oxidase. Signal A has gav. 1.9767 and shows coupling to a single proton, exchangeable with the solvent, with A(1H)av. 1.3mT, whereas signal B shows no more than weak coupling to protons. Investigation of interconversion between the two species indicated that decreasing the pH from 8.0 to 6.7 had little effect, but that signal A was favoured by the presence of Cl-. This suggests, by analogy with recent work on sulphite oxidase by Bray, Gutteridge, Lamy & Wilkinson [Biochem. J. (1983) 211, 227-236] that Cl- is a ligand of molybdenum in the species giving signal A. PMID:6311159

  15. The Stoichiometry of Synthetic Alunite as a Function of Hydrothermal Aging Investigated by Solid-State NMR Spectroscopy, Powder X-ray Diffraction and Infrared Spectroscopy

    SciTech Connect

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-05-01

    The stoichiometry of a series of synthetic alunite [nominally KAl3(SO4)2(OH)6] samples prepared by hydrothermal methods as a function of reaction time (1–31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 1H MAS NMR spectra recorded at high magnetic field (21.1 T, 900 MHz) allowed for a clear separation of the different proton environments and for quantitative determination of the aluminum vacancy concentration as a function of time. The concentration of structural defects determined from, i.e., aluminum vacancies was reduced from 4 to 1 %, as the reaction time was extended from one to 31 days based on 1H MAS NMR. This was further supported by an increase of the unit cell parameter c, which is indicative of the relative concentration of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7–10 % impurities in the samples.

  16. Metabolic profiling for studying chemotype variations in Withania somnifera (L.) Dunal fruits using GC-MS and NMR spectroscopy.

    PubMed

    Bhatia, Anil; Bharti, Santosh K; Tewari, Shri K; Sidhu, Om P; Roy, Raja

    2013-09-01

    Withania somnifera (L.) Dunal (Solanaceae), commonly known as Ashwagandha, is one of the most valued Indian medicinal plant with several pharmaceutical and nutraceutical applications. Metabolic profiling was performed by GC-MS and NMR spectroscopy on the fruits obtained from four chemotypes of W. somnifera. A combination of (1)H NMR spectroscopy and GC-MS identified 82 chemically diverse metabolites consisting of organic acids, fatty acids, aliphatic and aromatic amino acids, polyols, sugars, sterols, tocopherols, phenolic acids and withanamides in the fruits of W. somnifera. The range of metabolites identified by GC-MS and NMR of W. somnifera fruits showed various known and unknown metabolites. The primary and secondary metabolites observed in this study represent MVA, DOXP, shikimic acid and phenylpropanoid biosynthetic metabolic pathways. Squalene and tocopherol have been rated as the most potent naturally occurring compounds with antioxidant properties. These compounds have been identified by us for the first time in the fruits of W. somnifera. Multivariate principal component analysis (PCA) on GC-MS and NMR data revealed clear distinctions in the primary and secondary metabolites among the chemotypes. The variation in the metabolite concentration among different chemotypes of the fruits of W. somnifera suggest that specific chemovars can be used to obtain substantial amounts of bioactive ingredients for use as potential pharmacological and nutraceuticals agents. PMID:23578960

  17. Secondary organic aerosol formation from multiphase oxidation of limonene by ozone: mechanistic constraints via two-dimensional heteronuclear NMR spectroscopy.

    PubMed

    Maksymiuk, Christina S; Gayahtri, Chakicherla; Gil, Roberto R; Donahue, Neil M

    2009-09-28

    Because it is doubly unsaturated, gaseous limonene and ozone reactions exhibit considerable potential for not only a large quantity of secondary organic aerosol (SOA), but also a diverse and complicated product mixture influenced by reactant conditions. We explore the chemistry of limonene ozonolysis and provide evidence that under low-NOx conditions, the endocyclic double bond is oxidized in the gas phase, while under excess ozone conditions, the residual exocyclic double bond in condensed-phase products is heterogeneously oxidized by ozone. We use regular and multinuclear-multidimensional NMR spectroscopy, in particular 1D 1H-NMR, 1H,1H-COSY correlation spectroscopy, and 1H,13C-HSQC (heteronuclear single quantum coherence). For structural assignments we simulate 1H and 13C NMR spectra with ACDLabs online, relying representative products consistent with the postulated reaction mechanism. The 1-D 1H-NMR data allow us to quantify the extent to which the residual unsaturation is oxidized with rising ozone, confirming our hypothesis that the residual unsaturation is oxidized via heterogeneous uptake of ozone to fresh SOA particles. PMID:19727487

  18. Structure of the propeptide of prothrombin containing the. gamma. -carboxylation recognition site determined by two-dimensional NMR spectroscopy

    SciTech Connect

    Sanford, D.G.; Sudmeier, J.L.; Bachovchin, W.W.; Kanagy, C.; Furie, B.C.; Furie, B. )

    1991-10-15

    The propeptides of the vitamin K dependent blood clotting and regulatory proteins contain a {gamma}-carboxylation recognition site that directs precursor forms of these proteins for posttranslational {gamma}-carboxylation. Peptides corresponding to the propeptide of prothrombin were synthesized and examined by circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR). CD spectra indicate that these peptides have little or no secondary structure in aqueous solutions but that the addition of trifluoroethanol induces or stabilizes a structure containing {alpha}-helical character. The maximum helical content occurs at 35-40% trifluoroethanol. This trifluoroethanol-stabilized structure was solved by two-dimensional NMR spectroscopy. The NMR results demonstrate that residues {minus}13 to {minus}3 form an amphipathic {alpha}-helix. NMR spectra indicate that a similar structure is present at 5C, in the absence of trifluoroethanol. Of the residues previously implicated in defining the {gamma}-carboxylation recognition site, four residues ({minus}18, {minus}17, {minus}16, and {minus}15) are adjacent to the helical region and one residue ({minus}10) is located within the helix. The potential role of the amphipathic {alpha}-helix in the {gamma}-carboxylation recognition site is discussed.

  19. NMR spectroscopy evaluation of direct relationship between soils and molecular composition of red wines from Aglianico grapes.

    PubMed

    Mazzei, Pierluigi; Francesca, Nicola; Moschetti, Giancarlo; Piccolo, Alessandro

    2010-07-19

    (1)H NMR spectroscopy was employed to investigate the molecular quality of Aglianico red wines from the Campania region of Italy. The wines were obtained from three different Aglianico vineyards characterized by different microclimatic and pedological properties. In order to reach an objective evaluation of "terroir" influence on wine quality, grapes were subjected to the same winemaking procedures. The careful subtraction of water and ethanol signals from NMR spectra allowed to statistically recognize the metabolites to be employed in multivariate statistical methods: Principal Component Analysis (PCA), Discriminant Analysis (DA) and Hierarchical Clustering Analysis (HCA). The three wines were differentiated from each other by six metabolites: alpha-hydroxyisobutyrate, lactic acid, succinic acid, glycerol, alpha-fructose and beta-D-glucuronic acid. All multivariate analyses confirmed that the differentiation among the wines were related to micro-climate, and carbonate, clay, and organic matter content of soils. Additionally, the wine discrimination ability of NMR spectroscopy combined with chemometric methods, was proved when commercial Aglianico wines, deriving from different soils, were shown to be statistically different from the studied wines. Our findings indicate that multivariate statistical elaboration of NMR spectra of wines is a fast and accurate method to evaluate the molecular quality of wines, underlining the objective relation with terroir. PMID:20599031

  20. Silicon carbide polytype characterisation in coated fuel particles by Raman spectroscopy and 29Si magic angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Lpez-Honorato, E.; Brigden, C.; Shatwell, R. A.; Zhang, H.; Farnan, I.; Xiao, P.; Guillermier, P.; Somers, J.

    2013-02-01

    The silicon carbide layer of a batch of as-produced TRISO (tristructural isotropic) coated fuel particles with zirconia kernels was characterised by Raman spectroscopy and magic angle spinning nuclear magnetic resonance (MAS-NMR). The techniques were evaluated as a probe for the evolution of SiC local structure as a function of chemical vapour deposition processing. Nuclear magnetic resonance resolved 29Si resonances for multiple hexagonal or cubic silicon local environments, consistent with a mixture of 6H, 15R and 4H polytypes, within a majority (36%) 3C-SiC target structure. Polarised Raman spectroscopy by contrast, showed some evidence of hexagonal and cubic local environments but no evidence for clearly defined hexagonal or orthorhombic polytypes. It was clear from the Raman that there was significant scattering from q > 0 regions of the Brillouin zone, consistent with a loss of translational symmetry associated with stacking faults. Simulation and TEM images suggested that the signals observed in Raman and NMR correspond closer to a random arrangement of SiC layers in which structures similar to the various polytypes occur over short distances. As NMR is a probe of local environment, the signals obtained were similar to those that would come from a mixture of crystallites, each of a well-defined polytype. The NMR data was analysed quantitatively by fitting the spectra of known polytypes and by using a simple model to represent the random arrangement of layers in a heavily faulted crystal.

  1. Analysis of Ascarosides from Caenorhabditis elegans Using Mass Spectrometry and NMR Spectroscopy

    PubMed Central

    Zhang, Xinxing; Noguez, Jaime H.; Zhou, Yue; Butcher, Rebecca A.

    2014-01-01

    The nematode Caenorhabditis elegans secretes a family of water-soluble small molecules, known as the ascarosides, into its environment and uses these ascarosides in chemical communication. The ascarosides are derivatives of the 3,6-dideoxysugar ascarylose, modified with different fatty acid-derived side chains. C. elegans uses specific ascarosides, which are together known as the dauer pheromone, to trigger entry into the stress-resistant dauer larval stage. In addition, C. elegans uses specific ascarosides to control certain behaviors, including mating attraction, aggregation, and avoidance. Although in general the concentration of the ascarosides in the environment increases with population density, C. elegans can vary the types and amounts of ascarosides that it secretes depending on the culture conditions under which it has been grown and its developmental history. Here, we describe how to grow high-density worm cultures and the bacterial food for those cultures, as well as how to extract the culture medium to generate a crude pheromone extract. Then, we discuss how to analyze the types and amounts of ascarosides in that extract using mass spectrometry and NMR spectroscopy. PMID:24014355

  2. Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy.

    PubMed Central

    Gruetter, R; Novotny, E J; Boulware, S D; Rothman, D L; Mason, G F; Shulman, G I; Shulman, R G; Tamborlane, W V

    1992-01-01

    Glucose is the main fuel for energy metabolism in the normal human brain. It is generally assumed that glucose transport into the brain is not rate-limiting for metabolism. Since brain glucose concentrations cannot be determined directly by radiotracer techniques, we used 13C NMR spectroscopy after infusing enriched D-[1-13C]glucose to measure brain glucose concentrations at euglycemia and at hyperglycemia (range, 4.5-12.1 mM) in six healthy children (13-16 years old). Brain glucose concentrations averaged 1.0 +/- 0.1 mumol/ml at euglycemia (4.7 +/- 0.3 mM plasma) and 1.8-2.7 mumol/ml at hyperglycemia (7.3-12.1 mM plasma). Michaelis-Menten parameters of transport were calculated to be Kt = 6.2 +/- 1.7 mM and Tmax = 1.2 +/- 0.1 mumol/g.min from the relationship between plasma and brain glucose concentrations. The brain glucose concentrations and transport constants are consistent with transport not being rate-limiting for resting brain metabolism at plasma levels greater than 3 mM. PMID:1736294

  3. Application of NMR Spectroscopy in the Assessment of Radiation Dose in Human Primary Cells.

    PubMed

    Kang, Chang-Mo; Seong Hyeon, Jin; Ra Kim, So; Kyeong Lee, Eun; Jin Yun, Hyun; Young Kim, Sun; Kee Chae, Young

    2015-11-01

    We employed the primary cell model system as a first step toward establishing a method to assess the influence of ionizing radiation by using a combination of common and abundant metabolites. We applied X-ray irradiation amounts of 0, 1, and 5 Gy to the cells that were harvested 24, 48, or 72?h later, and profiled metabolites by 2D-NMR spectroscopy to sort out candidate molecules that could be used to distinguish the samples under different irradiation conditions. We traced metabolites stemming from the input (13) C-glucose, identified twelve of them from the cell extracts, and applied statistical analysis to find out that all the metabolites, including glycine, alanine, and gluatamic acid, increased upon irradiation. The combinatorial use of the selected metabolites showed promising results where the product of signal intensities of alanine and lactate could differentiate samples according to the dose of X-ray irradiation. We hope that this work can form a base for treating radiation-poisoned patients in the future. PMID:26567947

  4. 31P NMR spectroscopy for quantification of moieties present in the backbone of poly(aryloxycyclotriphosphazene)

    NASA Astrophysics Data System (ADS)

    Al-Shukri, Salah Mahdi

    2015-03-01

    A new method for semi-quantification of the moieties present in the back bone of poly(aryloxycyclotriphosphazene) using 31P NMR spectroscopy was proposed based on integral values and number of phosphorus atoms of the representative resonance. Poly(m-phenylenedioxy)cyclotriphosphazenes with a different degree of crosslink were synthesized from the reaction of hexachlorocyclotriphosphazene (NPCl2)3 with 1,3-benzenediol and triethylamine in five different mole ratios, afforded structurally different products designated as PI-PV. The structures of these products and their isomeric compositions were identified based on the correlation between chemical shifts and JPP coupling constants. The data clearly demonstrated presence of a mixture contains different substitution modes and isomers. When the mole ratio of the reactants is in equal amount, the non-geminal mode is predominantly formed of about 89.03% and also geminal mode of about 10.95% has been observed. The formation of the later increased to 52.19% when the ratio of substituent was raised at the tris and tetra stage of chlorine replacement.

  5. Fast Proton Exchange in Histidine: Measurement of Rate Constants through Indirect Detection by NMR Spectroscopy

    PubMed Central

    Sehgal, Akansha Ashvani; Duma, Luminita; Bodenhausen, Geoffrey; Pelupessy, Philippe

    2014-01-01

    Owing to its imidazole side chain, histidine participates in various processes such as enzyme catalysis, pH regulation, metal binding, and phosphorylation. The determination of exchange rates of labile protons for such a system is important for understanding its functions. However, these rates are too fast to be measured directly in an aqueous solution by using NMR spectroscopy. We have obtained the exchange rates of the NH3+ amino protons and the labile NH?2 and NH?1 protons of the imidazole ring by indirect detection through nitrogen-15 as a function of temperature (272?K

  6. NMR spectroscopy reveals the presence and association of lipids and keratin in adhesive gecko setae.

    PubMed

    Jain, Dharamdeep; Stark, Alyssa Y; Niewiarowski, Peter H; Miyoshi, Toshikazu; Dhinojwala, Ali

    2015-01-01

    Lipid and protein aggregates are one of the fundamental materials of biological systems. Examples include cell membranes, insect cuticle, vertebrate epidermis, feathers, hair and adhesive structures known as 'setae' on gecko toes. Until recently gecko setae were assumed to be composed entirely of keratin, but analysis of footprints left behind by geckos walking on surfaces revealed that setae include various kinds of lipids. However, the arrangement and molecular-level behavior of lipids and keratin in the setae is still not known. In the present study we demonstrate, for the first time, the use of Nuclear Magnetic Resonance (NMR) spectroscopy techniques to confirm the presence of lipids and investigate their association with keratin in 'pristine' sheds, or natural molts of the adhesive toe pad and non-adhesive regions of the skin. Analysis was also carried on the sheds after they were 'delipidized' to remove surface lipids. Our results show a distribution of similar lipids in both the skin and toe shed but with different dynamics at a molecular level. The present study can help us understand the gecko system both biologically and for design of synthetic adhesives, but the findings may be relevant to the characteristics of lipid-protein interactions in other biological systems. PMID:25902194

  7. Thermodynamic Study on the Protonation Reactions of Glyphosate in Aqueous Solution: Potentiometry, Calorimetry and NMR spectroscopy.

    PubMed

    Liu, Bijun; Dong, Lan; Yu, Qianhong; Li, Xingliang; Wu, Fengchang; Tan, Zhaoyi; Luo, Shunzhong

    2016-03-10

    Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information concerning the structures and conformations involved in the protonation process of glyphosate. Protonation may influence the chemical and physical properties of glyphosate, modifying its structure and the chemical processes in which it is involved. To better understand the species in solution associated with changes in pH, thermodynamic study (potentiometry, calorimetry and NMR spectroscopy) about the protonation pathway of glyphosate is performed. Experimental results confirmed that the order of successive protonation sites of totally deprotonated glyphosate is phosphonate oxygen, amino nitrogen, and finally carboxylate oxygen. This trend is in agreement with the most recent theoretical work in the literature on the subject ( J. Phys. Chem. A 2015, , 119 , 5241 - 5249 ). The result is important because it confirms that the protonated site of glyphosate in pH range 7-8, is not on the amino but on the phosphonate group instead. This corrected information can improve the understanding of the glyphosate chemical and biochemical action. PMID:26862689

  8. Multiple-Window Spectrum Estimation Applied to in VivoNMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, G.; Thomson, D. J.; Wu, E. X.; Williams, S. C. R.

    1996-02-01

    Multiple-window spectrum estimation (MWSE) is a method of deriving frequency spectra from time series. A set of apodizing windows is applied to the time data and each windowed data set is Fourier transformed. The windows are prolate spheroidal sequences. These form the orthonormal set of functions that is maximally concentrated in both time and frequency domains. An iterative algorithm is then applied to the data set to find a least-squares estimate of the power spectrum. In addition, statistical tests may be applied to determine the existence of periodic components at particular frequencies, their amplitudes, phases, and positions. The method is quantitative and makes no lineshape assumptions. Computer simulations were used to compare MWSE performance with that of conventional Fourier-transform processing with quantification by curve fitting. Signal-to-noise ratio, spectral resolution, linearity, and susceptibility to artifacts were compared. MWSE gives similar signal-to-noise ratio and spectral resolution to Fourier-transform data and is linear over three orders of magnitude but is much more robust with respect to artifacts. In particular, data truncation introduces no baseline distortion, broad baseline humps are removed automatically, and large solvent peaks may be easily removed without affecting adjacent lines. No separate phase correction is required. MWSE gives more accurate quantitative spectra, particularly when the time data are imperfect. The method is, therefore, particularly appropriate for processingin vivodata. The utility of the MWSE method is demonstrated onin vivo1H,31P, and13C NMR spectroscopy data.

  9. Probing the structural details of xylan degradation by real-time NMR spectroscopy.

    PubMed

    Petersen, Bent Ole; Lok, Finn; Meier, Sebastian

    2014-11-01

    The biodegradation of abundantly available cell wall polysaccharides has recently received much attention, not least because cell wall polysaccharides are substrates for the human gut microbiota and for environmentally sustainable processes of biomass conversion to value-added compounds. A major fraction of cereal cell wall polysaccharides consists of arabinoxylans. Arabinoxylan and its degradation products are therefore present in a variety of agro-industrial residues and products. Here, we undertook to track the structural details of wheat arabinoxylan degradation with high resolution NMR spectroscopy. More than 15 carbohydrate residues were distinguished in the substrate and more than 20 residues in partially degraded samples without any sample cleanup. The resolution of a plethora of structural motifs in situ permits the readout of persisting structures in degradation processes and in products. Reaction progress was visualized for the biodegradation of arabinoxylan by different crude microbial enzyme preparations. The direct observation of structural details in complex mixtures containing arabinoxylan fragments is significant, as such structural details reportedly modulate the health-promoting functions of arabinoxylan fragments. PMID:25129786

  10. Metabolic changes during cellular senescence investigated by proton NMR-spectroscopy.

    PubMed

    Gey, Claudia; Seeger, Karsten

    2013-03-01

    Cellular senescence is of growing interest due to its role in tumour suppression and its contribution to organismic ageing. This cellular state can be reached by replicative loss of telomeres or certain stresses in cell culture and is characterized by the termination of cell division; however, the cells remain metabolically active. To identify metabolites that are characteristic for senescent cells, extracts of human embryonic lung fibroblast (WI-38 cell line) have been investigated with NMR spectroscopy. Three different types of senescence have been characterized: replicative senescence, DNA damage-induced senescence (etoposide treatment) and oncogene-induced senescence (hyperactive RAF kinase). The metabolite pattern allows (I) discrimination of senescent and control cells and (II) discrimination of the three senescence types. Senescent cells show an increased ratio of glycerophosphocholine to phosphocholine independent from the type of senescence. The increase in glycerophosphocholine implicates a key role of phospholipid metabolism in cellular senescence. The observed changes in the choline metabolism are diametrically opposite to the well-known changes in choline metabolism of tumour cells. As tumours responding to chemotherapeutic agents show a "glycerophosphocholine-to-phosphocholine switch" i.e. an increase in glycerophosphocholine, our metabolic data suggests that these malignant cells enter a senescent state emphasizing the role of senescence in tumour suppression. PMID:23416267

  11. Phosphate defects and apatite inclusions in coral skeletal aragonite revealed by solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mason, Harris E.; Montagna, Paolo; Kubista, Laura; Taviani, Marco; McCulloch, Malcolm; Phillips, Brian L.

    2011-12-01

    Recent development of paleo-nutrient proxies based on the phosphorus/calcium (P/Ca) ratio in tropical- and deep-water corals (also known as cold-water corals) require an understanding of the processes by which P is incorporated into the coral skeletal aragonite. Here, we apply single- and double-resonance solid-state nuclear magnetic resonance (NMR) spectroscopy to determine the speciation of P in coral aragonite. The results show that the majority of P occurs as phosphate defects in the aragonite structure, but in many samples a significant fraction of the P occurs also in crystalline hydroxylapatite inclusions. Quantification of the amount of hydroxylapatite indicates that its presence is not related simply to external environmental factors and that it can occur at varying abundances in different parts of the same corallite. Since there is currently no model available to describe the relationship between dissolved inorganic phosphate and its incorporation as apatite inclusions into carbonates, careful screening of samples which contain only phosphate in the aragonite structure or selective microsampling could improve proxy development.

  12. Revealing the metabonomic variation of rosemary extracts using 1H NMR spectroscopy and multivariate data analysis.

    PubMed

    Xiao, Chaoni; Dai, Hui; Liu, Hongbing; Wang, Yulan; Tang, Huiru

    2008-11-12

    The molecular compositions of rosemary ( Rosmarinus officinalis L.) extracts and their dependence on extraction solvents, seasons, and drying processes were systematically characterized using NMR spectroscopy and multivariate data analysis. The results showed that the rosemary metabonome was dominated by 33 metabolites including sugars, amino acids, organic acids, polyphenolic acids, and diterpenes, among which quinate, cis-4-glucosyloxycinnamic acid, and 3,4,5-trimethoxyphenylmethanol were found in rosemary for the first time. Compared with water extracts, the 50% aqueous methanol extracts contained higher levels of sucrose, succinate, fumarate, malonate, shikimate, and phenolic acids, but lower levels of fructose, glucose, citrate, and quinate. Chloroform/methanol was an excellent solvent for selective extraction of diterpenes. From February to August, the levels of rosmarinate and quinate increased, whereas the sucrose level decreased. The sun-dried samples contained higher concentrations of rosmarinate, sucrose, and some amino acids but lower concentrations of glucose, fructose, malate, succinate, lactate, and quinate than freeze-dried ones. These findings will fill the gap in the understanding of rosemary composition and its variations. PMID:18800806

  13. Near constant loss regime in fast ionic conductors analyzed by impedance and NMR spectroscopies.

    PubMed

    Bucheli, Wilmer; Arbi, Kamel; Sanz, Jesús; Nuzhnyy, Dmitry; Kamba, Stanislav; Várez, Alejandro; Jimenez, Ricardo

    2014-08-01

    Universal dielectric response (UDR) and nearly constant loss (NCL) dispersive regimes have been investigated in fast ion conductors with perovskite and NASICON structure by using NMR and impedance spectroscopy (IS). In this study, the electrical behavior of La(0.5)Li(0.5)TiO3 (LLTO-05) perovskite and Li(1.2)Ti(1.8)Al(0.2)(PO4)3 (LTAP0-02) NASICON compounds was investigated. In both systems a three-dimensional network of conduction paths is present. In the Li-rich LLTO-05 sample, lithium and La are randomly distributed on A-sites of perovskites, but in LTAP0-02 Li and cation vacancies are preferentially disposed at M1 and M2 sites. In perovskite compounds, local motions produced inside unit cells are responsible for the large "near constant loss" regime detected at low temperatures, however, in the case of NASICON compounds, local motions not participating in long-range charge transport were not detected. In both analyzed systems long-range correlated motions are responsible for dc-conductivity values of ceramic grains near 10(-3) S cm(-1) at room temperature, indicating that low-temperature local motions, producing large NCL contribution, are not required to achieve the highest ionic conductivities. PMID:24944081

  14. Evaluation of characteristic deuterium distributions of ephedrines and methamphetamines by NMR spectroscopy for drug profiling.

    PubMed

    Matsumoto, Teruki; Urano, Yasuteru; Makino, Yukiko; Kikura-Hanajiri, Ruri; Kawahara, Nobuo; Goda, Yukihiro; Nagano, Tetsuo

    2008-02-15

    We have established a method for quantitative analysis of the deuterium contents (D/H) at the phenyl, methine, benzyl, N-methyl and methyl groups of l-ephedrine/HCl, d-pseudoephedrine/HCl and methamphetamine/HCl by 2H NMR spectroscopy. Comparison of the 5 position-specific D/H values of l-ephedrine/HCl and d-pseudoephedrine/HCl prepared by three methods (chemical synthesis, semichemical synthesis, and biosynthesis) showed that chemically synthesized ephedrines and semisynthetic ephedrines have highly specific distributions of deuterium at the methine position and at the benzyl position, compared with the other positions. The classification of several methamphetamine samples seized in Japan in terms of the D/H values at these two positions clearly showed that the methamphetamine samples had been synthesized from ephedrines extracted from Ephedra plants or semisynthetic ephedrines but not from synthetic ephedrine. This isotope ratio analysis method should be useful to trace the origins of seized methamphetamine in Southeast Asia. PMID:18271510

  15. Diffusion in Model Networks as Studied by NMR and Fluorescence Correlation Spectroscopy.

    PubMed

    Modesti, Giorgio; Zimmermann, Boris; Brsch, Michael; Herrmann, Andreas; Saalwchter, Kay

    2009-07-14

    We have studied the diffusion of small solvent molecules (octane) and larger hydrophobic dye probes in octane-swollen poly(dimethyl siloxane) linear-chain solutions and end-linked model networks, using pulsed-gradient nuclear magnetic resonance (NMR) and fluorescence correlation spectroscopy (FCS), respectively, focusing on diffusion in the bulk polymer up to the equilibrium degree of swelling of the networks, that is, 4.8 at most. The combination of these results allows for new conclusions on the feasibility of different theories describing probe diffusion in concentrated polymer systems. While octane diffusion shows no cross-link dependence, the larger dyes are increasingly restricted by fixed chemical meshes. The simple Fujita free-volume theory proved most feasible to describe probe diffusion in linear long-chain solutions with realistic parameters, while better fits were obtained assuming a stretched exponential dependence on concentration. Importantly, we have analyzed the cross-link specific effect on probe diffusion independently of any specific model by comparing the best-fit interpolation of the solution data with the diffusion in the networks. The most reasonable description is obtained by assuming that the cross-link effect is additive in the effective friction coefficient of the probes. The concentration dependences as well as the data compared at the equilibrium degrees of swelling indicate that swelling heterogeneities and diffusant shape have a substantial influence on small-molecule diffusion in networks. PMID:19812716

  16. Membrane interactions of phylloseptin-1, -2, and -3 peptides by oriented solid-state NMR spectroscopy.

    PubMed

    Resende, Jarbas M; Verly, Rodrigo M; Aisenbrey, Christopher; Cesar, Amary; Bertani, Philippe; Pil-Veloso, Dorila; Bechinger, Burkhard

    2014-08-19

    Phylloseptin-1, -2, and -3 are three members of the family of linear cationic antimicrobial peptides found in tree frogs. The highly homologous peptides encompass 19 amino acids, and only differ in the amino acid composition and charge at the six most carboxy-terminal residues. Here, we investigated how such subtle changes are reflected in their membrane interactions and how these can be correlated to their biological activities. To this end, the three peptides were labeled with stable isotopes, reconstituted into oriented phospholipid bilayers, and their detailed topology determined by a combined approach using (2)H and (15)N solid-state NMR spectroscopy. Although phylloseptin-2 and -3 adopt perfect in-plane alignments, the tilt angle of phylloseptin-1 deviates by 8 probably to assure a more water exposed localization of the lysine-17 side chain. Furthermore, different azimuthal angles are observed, positioning the amphipathic helices of all three peptides with the charged residues well exposed to the water phase. Interestingly, our studies also reveal that two orientation-dependent (2)H quadrupolar splittings from methyl-deuterated alanines and one (15)N amide chemical shift are sufficient to unambiguously determine the topology of phylloseptin-1, where quadrupolar splittings close to the maximum impose the most stringent angular restraints. As a result of these studies, a strategy is proposed where the topology of a peptide structure can be determined accurately from the labeling with (15)N and (2)H isotopes of only a few amino acid residues. PMID:25140425

  17. Amino acid conservation and interactions in rhodopsin: probing receptor activation by NMR spectroscopy.

    PubMed

    Pope, Andreyah; Eilers, Markus; Reeves, Philip J; Smith, Steven O

    2014-05-01

    Rhodopsin is a classical two-state G protein-coupled receptor (GPCR). In the dark, its 11-cis retinal chromophore serves as an inverse agonist to lock the receptor in an inactive state. Retinal-protein and protein-protein interactions have evolved to reduce the basal activity of the receptor in order to achieve low dark noise in the visual system. In contrast, absorption of light triggers rapid isomerization of the retinal, which drives the conversion of the receptor to a fully active conformation. Several specific protein-protein interactions have evolved that maintain the lifetime of the active state in order to increase the sensitivity of this receptor for dim-light vision in vertebrates. In this article, we review the molecular interactions that stabilize rhodopsin in the dark-state and describe the use of solid-state NMR spectroscopy for probing the structural changes that occur upon light-activation. Amino acid conservation provides a guide for those interactions that are common in the class A GPCRs as well as those that are unique to the visual system. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks. PMID:24183693

  18. Molecular areas of phospholipids as determined by 2H NMR spectroscopy. Comparison of phosphatidylethanolamines and phosphatidylcholines

    SciTech Connect

    Thurmond, R.L.; Dodd, S.W.; Brown, M.F. )

    1991-01-01

    The role of lipid diversity in biomembranes is one of the major unsolved problems in biochemistry. One parameter of possible importance is the mean cross-sectional area occupied per lipid molecule, which may be related to formation of nonbilayer structures and membrane protein function. We have used {sup 2}H NMR spectroscopy to compare the properties of 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE-d62) and 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphocholine (DPPC-d62) in the L alpha phase. We find that DPPE has greater segmental order than DPPC, and that this increase in order is related to the smaller area per acyl chain found for DPPE. Values of the mean cross-sectional chain area are calculated using a simple diamond lattice model for the acyl chain configurational statistics, together with dilatometry data. The results obtained for the mean area per molecule are comparable with those from low angle x-ray diffraction studies.

  19. Hetergeneous tumour response to photodynamic therapy assessed by in vivo localised 31P NMR spectroscopy.

    PubMed Central

    Ceckler, T. L.; Gibson, S. L.; Kennedy, S. D.; Hill, R.; Bryant, R. G.

    1991-01-01

    Photodynamic therapy (PDT) is efficacious in the treatment of small malignant lesions when all cells in the tumour receive sufficient drug, oxygen and light to induce a photodynamic effect capable of complete cytotoxicity. In large tumours, only partial effectiveness is observed presumably because of insufficient light penetration into the tissue. The heterogeneity of the metabolic response in mammary tumours following PDT has been followed in vivo using localised phosphorus NMR spectroscopy. Alterations in nucleoside triphosphates (NTP), inorganic phosphate (Pi) and pH within localised regions of the tumour were monitored over 24-48 h following PDT irradiation of the tumour. Reduction of NTP and increases in Pi were observed at 4-6 h after PDT irradiation in all regions of treated tumours. The uppermost regions of the tumours (those nearest the skin surface and exposed to the greatest light fluence) displayed the greatest and most prolonged reduction of NTP and concomitant increase in Pi resulting in necrosis. The metabolite concentrations in tumour regions located towards the base of the tumour returned a near pre-treatment levels by 24-48 h after irradiation. The ability to follow heterogeneous metabolic responses in situ provides one means to assess the degree of metabolic inhibition which subsequently leads to tumour necrosis. Images Figure 4 PMID:1829953

  20. NMR Spectroscopy of Macrophages Loaded with Native, Oxidized or Enzymatically Degraded Lipoproteins

    PubMed Central

    Ramm Sander, Paul; Peer, Markus; Grandl, Margot; Bogdahn, Ulrich; Schmitz, Gerd; Kalbitzer, Hans Robert

    2013-01-01

    Oxidized and enzymatically modified low-density lipoproteins (oxLDL and eLDL) play a key role in early stages of atherogenesis. Their uptake by recruited macrophages leads to endolysosomal phospholipidosis or foam cell formation, respectively, each of which is preceded by highly differential lipid restructuring processes. We applied 1H-NMR spectroscopy (NMRS) to elucidate these structural rearrangements both in consequence of lipoprotein modifications and following phagocytosis. Being specifically sensitive to the mobile lipid subset, NMRS of oxLDL and eLDL revealed a partial and total immobilization of lipids, respectively. NMRS of intact macrophages showed a sixfold increase in mobile lipids in case of loading with eLDL but no significant changes for oxLDL or native LDL. This finding reflected the disparate lipid storage in lipid droplets and in multilamellar endolysosomal clusters when loaded with either eLDL or oxLDL, respectively. Moreover, a significant shift of the degree of saturation towards mainly polyunsaturated fatty acid chains was found for the mobile lipid pool in eLDL-loaded macrophages. Additional analyses of lipid extracts by NMRS and mass spectrometry (MS) reflected these changes in lipid content and in fatty acid composition only partially. In summary, in-cell NMRS represents a unique lipidomics tool to investigate structural changes within the mobile lipid pool following atherogenic triggers that can be not detected by the analysis of lipid extracts by MS or NMRS. PMID:23457556

  1. 1H NMR Spectroscopy and MVA Analysis of Diplodus sargus Eating the Exotic Pest Caulerpa cylindracea

    PubMed Central

    De Pascali, Sandra A.; Del Coco, Laura; Felline, Serena; Mollo, Ernesto; Terlizzi, Antonio; Fanizzi, Francesco P.

    2015-01-01

    The green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet. PMID:26058009

  2. Characterizing mixed phosphonic acid ligand capping on CdSe/ZnS quantum dots using ligand exchange and NMR spectroscopy.

    PubMed

    Davidowski, Stephen K; Lisowski, Carmen E; Yarger, Jeffery L

    2016-03-01

    The ligand capping of phosphonic acid functionalized CdSe/ZnS core-shell quantum dots (QDs) was investigated with a combination of solution and solid-state (31) P nuclear magnetic resonance (NMR) spectroscopy. Two phosphonic acid ligands were used in the synthesis of the QDs, tetradecylphosphonic acid and ethylphosphonic acid. Both alkyl phosphonic acids showed broad liquid and solid-state (31) P NMR resonances for the bound ligands, indicative of heterogeneous binding to the QD surface. In order to quantify the two ligand populations on the surface, ligand exchange facilitated by phenylphosphonic acid resulted in the displacement of the ethylphosphonic acid and tetradecylphosphonic acid and allowed for quantification of the free ligands using (31) P liquid-state NMR. After washing away the free ligand, two broad resonances were observed in the liquids' (31) P NMR corresponding to the alkyl and aromatic phosphonic acids. The washed samples were analyzed via solid-state (31) P NMR, which confirmed the ligand populations on the surface following the ligand exchange process. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26639792

  3. Solution-State (17) O?Quadrupole Central-Transition NMR Spectroscopy in the Active Site of Tryptophan Synthase.

    PubMed

    Young, Robert P; Caulkins, Bethany G; Borchardt, Dan; Bulloch, Daryl N; Larive, Cynthia K; Dunn, Michael F; Mueller, Leonard J

    2016-01-01

    Oxygen is an essential participant in the acid-base chemistry that takes place within many enzyme active sites, yet has remained virtually silent as a probe in NMR spectroscopy. Here, we demonstrate the first use of solution-state (17) O?quadrupole central-transition NMR spectroscopy to characterize enzymatic intermediates under conditions of active catalysis. In the 143?kDa pyridoxal-5'-phosphate-dependent enzyme tryptophan synthase, reactions of the ?-aminoacrylate intermediate with the nucleophiles indoline and 2-aminophenol correlate with an upfield shift of the substrate carboxylate oxygen resonances. First principles calculations suggest that the increased shieldings for these quinonoid intermediates result from the net increase in the charge density of the substrate-cofactor ?-bonding network, particularly at the adjacent ?-carbon site. PMID:26661504

  4. Rapid approach to identify the presence of Arabica and Robusta species in coffee using 1H NMR spectroscopy.

    PubMed

    Monakhova, Yulia B; Ruge, Winfried; Kuballa, Thomas; Ilse, Maren; Winkelmann, Ole; Diehl, Bernd; Thomas, Freddy; Lachenmeier, Dirk W

    2015-09-01

    NMR spectroscopy was used to verify the presence of Arabica and Robusta species in coffee. Lipophilic extracts of authentic roasted and green coffees showed the presence of established markers for Robusta (16-O-methylcafestol (16-OMC)) and for Arabica (kahweol). The integration of the 16-OMC signal (δ 3.165 ppm) was used to estimate the amount of Robusta in coffee blends with an approximate limit of detection of 1-3%. The method was successfully applied for the analysis of 77 commercial coffee samples (coffee pods, coffee capsules, and coffee beans). Furthermore, principal component analysis (PCA) was applied to the spectra of lipophilic and aqueous extracts of 20 monovarietal authentic samples. Clusters of the two species were observed. NMR spectroscopy can be used as a rapid prescreening tool to discriminate Arabica and Robusta coffee species before the confirmation applying the official method. PMID:25842325

  5. Cherry tomatoes metabolic profile determined by H-High Resolution-NMR spectroscopy as influenced by growing season.

    PubMed

    Masetti, Olimpia; Ciampa, Alessandra; Nisini, Luigi; Valentini, Massimiliano; Sequi, Paolo; Dell'Abate, Maria Teresa

    2014-11-01

    The content of the most valuable metabolites present in the lipophilic fraction of Protected Geographical Indication cherry tomatoes produced in Pachino (Italy) was observed for 2 cultivated varieties, i.e. cv. Naomi and cv. Shiren, over a period of 3 years in order to observe variations due to relevant climatic parameters, e.g. solar radiation and average temperature, characterising different seasons. (1)H-NMR spectroscopy was applied and spectral data were processed by means of Principal Component Analysis (PCA). We found that the metabolic profile was different for the two considered cultivated varieties and they were differently affected by climatic conditions. Major metabolites influenced by cropping period were ?-tocopherol and the unsaturated lipid fraction in Naomi cherry tomatoes, and chlorophylls and phospholipids in Shiren variety, respectively. These results furnished useful information on seasonal dynamics of such important nutritional metabolites contained in tomatoes, confirming also NMR spectroscopy as powerful tool to define a complete metabolic profiling. PMID:24874378

  6. NH NMR shifts of new structurally characterized fac-[Re(CO)3(polyamine)]n+ complexes probed via outer-sphere hydrogen-bonding interactions to anions, including the paramagnetic [Re(IV)Br6]2- anion.

    PubMed

    Perera, Theshini; Marzilli, Patricia A; Fronczek, Frank R; Marzilli, Luigi G

    2010-06-21

    fac-[Re(I)(CO)(3)L](n) complexes serve as models for short-lived fac-[(99m)Tc(I)(CO)(3)L](n) imaging tracers (L = tridentate ligands forming two five-membered chelate rings defining the L face). Dangling groups on L, needed to achieve desirable biodistribution, complicate the NMR spectra, which are not readily understood. Using less complicated L, we found that NH groups (exo-NH) projecting toward the L face sometimes showed an upfield shift attributable to steric shielding of the exo-NH group from the solvent by the chelate rings. Our goal is to advance our ability to relate these spectral features to structure and solution properties. To investigate whether exo-NH groups in six-membered rings exhibit the same effect and whether the presence of dangling groups alters the effect, we prepared new fac-[Re(CO)(3)L](n+) complexes that allow direct comparisons of exo-NH shifts for six-membered versus five-membered chelate rings. New complexes were structurally characterized with the following L: dipn [N-3-(aminopropyl)-1,3-propanediamine], N'-Medipn (3,3'-diamino-N-methyldipropylamine), N,N-Me(2)dipn (N,N-dimethyldipropylenetriamine), aepn [N-2-(aminoethyl)-1,3-propanediamine], trpn [tris-(3-aminopropyl)amine], and tren [tris-(2-aminoethyl)amine]. In DMSO-d(6), the upfield exo-NH signals were exhibited by all complexes, indicating that the rings sterically shield the exo-NH groups from bulky solvent molecules. This interpretation was supported by exo-NH signal shift changes caused by added halide and [ReBr(6)](2-) anions, consistent with outer-sphere hydrogen-bond interactions between these anions and the exo-NH groups. For fac-[Re(CO)(3)(dipn)]PF(6) in acetonitrile-d(3), the exo-NH signal shifted further downfield in the series, Cl(-) > Br(-) > I(-), and the plateau in the shift change required a lower concentration for smaller anions. These results are consistent with steric shielding of the exo-NH groups by the chelate rings. Nevertheless, despite its size, the shape and charge of [ReBr(6)](2-) allowed the dianion to induce large upfield paramagnetic shifts of the exo-NH signal of fac-[Re(CO)(3)(dipn)]PF(6). This dianion shows promise as an outer-sphere hydrogen-bonding paramagnetic shift reagent. PMID:20481637

  7. Solid state NMR spectroscopy investigation of the molecular structure of epoxy based materials cured in different conditions

    NASA Astrophysics Data System (ADS)

    Alessi, S.; Spinella, A.; Caponetti, E.; Sabatino, Maria Antonietta; Spadaro, G.

    2012-07-01

    In this work two epoxy resin model systems, whose monomers are typically used in structural composites, were thermally cured in different cure conditions in order to obtain different cross-linking densities. Their molecular structures were investigated through solid state NMR spectroscopy in order to correlate them to the cure process conditions used and the results were discussed in the light of the dynamical mechanical thermal analysis (DMTA) performed.

  8. Method of Continuous Variation: Characterization of Alkali Metal Enolates Using 1H and 19F NMR Spectroscopies

    PubMed Central

    2015-01-01

    The method of continuous variation in conjunction with 1H and 19F NMR spectroscopies was used to characterize lithium and sodium enolates solvated by N,N,N?,N?-tetramethylethyldiamine (TMEDA) and tetrahydrofuran (THF). A strategy developed using lithium enolates was then applied to the more challenging sodium enolates. A number of sodium enolates solvated by TMEDA or THF afford exclusively tetramers. Evidence suggests that TMEDA chelates sodium on cubic tetramers. PMID:24915602

  9. Copper doping of ZnO crystals by transmutation of {sup 64}Zn to {sup 65}Cu: An electron paramagnetic resonance and gamma spectroscopy study

    SciTech Connect

    Recker, M. C.; McClory, J. W. Holston, M. S.; Golden, E. M.; Giles, N. C.; Halliburton, L. E.

    2014-06-28

    Transmutation of {sup 64}Zn to {sup 65}Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5?keV gamma ray from the {sup 65}Zn decay and the positron annihilation peak at 511?keV. Their presence confirmed the successful transmutation of {sup 64}Zn nuclei to {sup 65}Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu{sup 2+} ions (where {sup 63}Cu and {sup 65}Cu hyperfine lines are easily resolved). A spectrum from isolated Cu{sup 2+} (3d{sup 9}) ions acquired after the neutron irradiation showed only hyperfine lines from {sup 65}Cu nuclei. The absence of {sup 63}Cu lines in this Cu{sup 2+} spectrum left no doubt that the observed {sup 65}Cu signals were due to transmuted {sup 65}Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu{sup +}-H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu{sup +}-H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900?C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

  10. Human in vivo cardiac phosphorus NMR spectroscopy at 3.0 Tesla

    NASA Astrophysics Data System (ADS)

    Bruner, Angela Properzio

    One of the newest methods with great potential for use in clinical diagnosis of heart disease is human, cardiac, phosphorus NMR spectroscopy (cardiac p 31 MRS). Cardiac p31 MRS is able to provide quantitative, non-invasive, functional information about the myocardial energy metabolites such as pH, phosphocreatine (PCr), and adenosinetriphosphate (ATP). In addition to the use of cardiac p3l MRS for other types of cardiac problems, studies have shown that the ratio of PCr/ATP and pH are sensitive and specific markers of ischemia at the myocardial level. In human studies, typically performed at 1.5 Tesla, PCr/ATP has been relatively easy to measure but often requires long scan times to provide adequate signal-to-noise (SNR). In addition, pH which relies on identification of inorganic phosphate (Pi), has rarely been obtained. Significant improvement in the quality of cardiac p31 MRS was achieved through the use of the General Electric SIGNATM 3.0 Tesla whole body magnet, improved coil designs and optimized pulse sequences. Phantom and human studies performed on many types of imaging and spectroscopy sequences, identified breathhold gradient-echo imaging and oblique DRESS p31 spectroscopy as the best compromises between SNR, flexibility and quality localization. Both single-turn and quadrature 10-cm diameter, p31 radiofrequency coils, were tested with the quadrature coil providing greater SNR, but at a greater depth to avoid skeletal muscle contamination. Cardiac p31 MRS obtained in just 6 to 8 minutes, gated, showed both improved SNR and discernment of Pi allowing for pH measurement. A handgrip, in-magnet exerciser was designed, created and tested at 1.5 and 3.0 Tesla on volunteers and patients. In ischemic patients, this exercise was adequate to cause a repeated drop in PCr/ATP and pH with approximately eight minutes of isometric exercise at 30% maximum effort. As expected from literature, this exercise did not cause a drop in PCr/ATP for reference volunteers.

  11. High sensitivity 1H-NMR spectroscopy of homeopathic remedies made in water

    PubMed Central

    Anick, David J

    2004-01-01

    Background The efficacy of homeopathy is controversial. Homeopathic remedies are made via iterated shaking and dilution, in ethanol or in water, from a starting substance. Remedies of potency 12 C or higher are ultra-dilute (UD), i.e. contain zero molecules of the starting material. Various hypotheses have been advanced to explain how a UD remedy might be different from unprepared solvent. One such hypothesis posits that a remedy contains stable clusters, i.e. localized regions where one or more hydrogen bonds remain fixed on a long time scale. High sensitivity proton nuclear magnetic resonance spectroscopy has not previously been used to look for evidence of differences between UD remedies and controls. Methods Homeopathic remedies made in water were studied via high sensitivity proton nuclear magnetic resonance spectroscopy. A total of 57 remedy samples representing six starting materials and spanning a variety of potencies from 6 C to 10 M were tested along with 46 controls. Results By presaturating on the water peak, signals could be reliably detected that represented H-containing species at concentrations as low as 5 ?M. There were 35 positions where a discrete signal was seen in one or more of the 103 spectra, which should theoretically have been absent from the spectrum of pure water. Of these 35, fifteen were identified as machine-generated artifacts, eight were identified as trace levels of organic contaminants, and twelve were unexplained. Of the unexplained signals, six were seen in just one spectrum each. None of the artifacts or unexplained signals occurred more frequently in remedies than in controls, using a p < .05 cutoff. Some commercially prepared samples were found to contain traces of one or more of these small organic molecules: ethanol, acetate, formate, methanol, and acetone. Conclusion No discrete signals suggesting a difference between remedies and controls were seen, via high sensitivity 1H-NMR spectroscopy. The results failed to support a hypothesis that remedies made in water contain long-lived non-dynamic alterations of the H-bonding pattern of the solvent. PMID:15518588

  12. Metabolomics-Based Study of Logarithmic and Stationary Phases of Promastigotes in Leishmania major by 1H NMR Spectroscopy

    PubMed Central

    Arjmand, Mohammad; Madrakian, Azadeh; Khalili, Ghader; Najafi, Ali; Zamani, Zahra; Akbari, Ziba

    2016-01-01

    Background: Cutaneous leishmaniasis is one of the most important parasitic diseases in humans. In this disease, one of the responsible organisms is Leishmania major, which is transmitted by sandfly vector. There are specific differences in biochemical profiles and metabolite pathways in logarithmic and stationary phases of Leishmania parasites. In the present study, 1H NMR spectroscopy was used to examine the metabolites outliers in the logarithmic and stationary phases of promastigotes in L. major to enlighten more about the transmission mechanism in metacyclogenesis of L. major. Methods: Promastigote was cultured, logarithmic and stationary phases were separated by the peanut agglutinin, and cell metabolites were extracted. 1H NMR spectroscopy was applied, and outliers were analyzed using principal component analysis. Results: The most altered metabolites in stationary and logarithmic phases were limited to citraconic acid, isopropylmalic acid, L-leucine, ornithine, caprylic acid, capric acid, and acetic acid. Conclusion: 1H NMR spectroscopy could play an important role in the characterization of metabolites in biochemical pathways during a metacyclogenesis process. These metabolites and their pathways can help in exploiting a transmission mechanism in metacyclogenesis, and outcoming data might be used in the metabolic network reconstruction of L. major modeling. PMID:26592771

  13. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110-120 kHz), (1)H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong (1)H-(1)H homonuclear dipolar couplings and narrow (1)H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) (1)H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about (1)H-(1)H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical information for a variety of solid systems that possess high proton density. PMID:26472372

  14. The microporous structure of coals and a microporous carbon studied using xenon-129 NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Anderson, Stasia A.

    sp{129}Xe nuclear magnetic resonance spectroscopy of xenon gas adsorbed in coal is used to describe coal microporous structure. Emphasis is on establishing micropore diameter, whether pores are open, the type of connectivity, and changes associated with coal rank. Pressure dependent sp{129}Xe NMR spectra were acquired for a rank-varied set of coals. Micropore diameters calculated from the spectra range from 5.6 to 7.5 A and are related to coal rank. Signal linewidths decrease with increasing coal rank. The packing density of powdered coal affected the spectral appearance. Micropore diameters were also calculated for a microporous carbon before and after pore-size alteration. Selective low power presaturation of the adsorbed xenon signal for four coals produces a hole-burning effect in the spectra indicating that the signal is composed of a series of overlapped chemical shifts. Saturation transfer to the external gas signal, (which most likely originates from xenon in large pores) is observed as presaturation time is increased. Saturation transfer occurs significantly faster in two low-rank than in two higher-rank coals. The process of xenon adsorption was monitored by acquisition of sp{129}Xe NMR during adsorption. Equilibrium is achieved faster in smaller particle size anthracite than in larger, and for either, the time is slower than for the microporous carbon. The external xenon is observed only in the larger particle size and loses intensity as the internally-adsorbed xenon increases. No intermediate signal location is indicated prior to equilibrium. These experiments indicate coal porosity is open and that it constitutes a constricted network. The degree of constriction is higher in coals over ˜89% carbon. Microporosity in low-rank coals is consistent with a dendritic pore structure. For higher rank coals over 89% carbon, the microporosity is more isolated and is open via constricted micropores but lacks a route through larger pores. Smaller particle size anthracite has less constriction in its porosity than larger particle size, and may also have less larger porosity or fracture.

  15. Improving Assessment of Lipoprotein Profile in Type 1 Diabetes by 1H NMR Spectroscopy

    PubMed Central

    Brugnara, Laura; Mallol, Roger; Ribalta, Josep; Vinaixa, Maria; Murillo, Serafín; Casserras, Teresa; Guardiola, Montse; Vallvé, Joan Carles; Kalko, Susana G.; Correig, Xavier; Novials, Anna

    2015-01-01

    Patients with type 1 diabetes (T1D) present increased risk of cardiovascular disease (CVD). The aim of this study is to improve the assessment of lipoprotein profile in patients with T1D by using a robust developed method 1H nuclear magnetic resonance spectroscopy (1H NMR), for further correlation with clinical factors associated to CVD. Thirty patients with T1D and 30 non-diabetes control (CT) subjects, matched for gender, age, body composition (DXA, BMI, waist/hip ratio), regular physical activity levels and cardiorespiratory capacity (VO2peak), were analyzed. Dietary records and routine lipids were assessed. Serum lipoprotein particle subfractions, particle sizes, and cholesterol and triglycerides subfractions were analyzed by 1H NMR. It was evidenced that subjects with T1D presented lower concentrations of small LDL cholesterol, medium VLDL particles, large VLDL triglycerides, and total triglycerides as compared to CT subjects. Women with T1D presented a positive association with HDL size (p<0.005; R = 0.601) and large HDL triglycerides (p<0.005; R = 0.534) and negative (p<0.005; R = -0.586) to small HDL triglycerides. Body fat composition represented an important factor independently of normal BMI, with large LDL particles presenting a positive correlation to total body fat (p<0.005; R = 0.505), and total LDL cholesterol and small LDL cholesterol a positive correlation (p<0.005; R = 0.502 and R = 0.552, respectively) to abdominal fat in T1D subjects; meanwhile, in CT subjects, body fat composition was mainly associated to HDL subclasses. VO2peak was negatively associated (p<0.005; R = -0.520) to large LDL-particles only in the group of patients with T1D. In conclusion, patients with T1D with adequate glycemic control and BMI and without chronic complications presented a more favourable lipoprotein profile as compared to control counterparts. In addition, slight alterations in BMI and/or body fat composition showed to be relevant to provoking alterations in lipoproteins profiles. Finally, body fat composition appears to be a determinant for cardioprotector lipoprotein profile. PMID:26317989

  16. Humic acids as proxies for assessing different Mediterranean forest soils signatures using solid-state CPMAS 13C NMR spectroscopy.

    PubMed

    Duarte, Regina M B O; Fernndez-Getino, Ana P; Duarte, Armando C

    2013-06-01

    Humic acids (HAs) of four representative forest soils profiles from Central Spain (two with different vegetation - pine and oak - but same parent material - granitie, and two with same vegetation - holm oak - but different parent material - granite and limestone) were investigated by solid-state cross polarization with magic angle spinning (13)C nuclear magnetic resonance (NMR) spectroscopy. The objectives included the investigation of the impact of different forest properties on HA composition, assessing how the structural characteristics of the HA vary with soil depth, and evaluating the role of HA as surrogates for mapping the different forest soils signatures using structural data derived from (13)C NMR spectroscopy. On average, alkyl C is the dominant C constituent (38-48% of the total NMR peak area) in all HA samples, followed by aromatic (12-22%) and O-alkyl C (12-19%), and finally carboxyl C (7.0-10%). The NMR data also indicated that HA composition is likely to be differently affected by the soil physico-chemical properties and type of forest vegetation. The structural characteristics of the HA from soil under oak did not differ broadly downward in the profile, whereas soil HA under pine forest exhibits a somewhat higher recalcitrant nature as a consequence of a higher degree of decomposition. The soil HA from holm oak forests differed from the other two forest soils, exhibiting a progressive decomposition of the alkyl C structures with increasing depth, while the carbohydrate-like indicator (O-alkyl C) is apparently being protected from mineralization in the horizons below the ground level. Overall, these differences in soil HA NMR signatures are an important diagnostic tool for understanding the role of different soil environmental factors on the structural composition of HA from Mediterranean forest soils. PMID:23332874

  17. Exploring abiotic stress on asynchronous protein metabolism in single kernels of wheat studied by NMR spectroscopy and chemometrics

    PubMed Central

    Winning, H.; Viereck, N.; Wollenweber, B.; Larsen, F. H.; Jacobsen, S.; Sndergaard, I.; Engelsen, S. B.

    2009-01-01

    Extreme climate events are being recognized as important factors in the effects on crop growth and yield. Increased climatic variability leads to more frequent extreme conditions which may result in crops being exposed to more than one extreme event within a growing season. The aim of this study was to examine the implications of different drought treatments on the protein fractions in grains of winter wheat using 1H nuclear magnetic resonance spectroscopy followed by chemometric analysis. Triticum aestivum L. cv. Vinjett was studied in a semi-field experiment and subjected to drought episodes either at terminal spikelet, during grain-filling or at both stages. Principal component trajectories of the total protein content and the protein fractions of flour as well as the 1H NMR spectra of single wheat kernels, wheat flour, and wheat methanol extracts were analysed to elucidate the metabolic development during grain-filling. The results from both the 1H NMR spectra of methanol extracts and the 1H HR-MAS NMR of single kernels showed that a single drought event during the generative stage had as strong an influence on protein metabolism as two consecutive events of drought. By contrast, a drought event at the vegetative growth stage had little effect on the parameters investigated. For the first time, 1H HR-MAS NMR spectra of grains taken during grain-filling were analysed by an advanced multiway model. In addition to the results from the chemical protein analysis and the 1H HR-MAS NMR spectra of single kernels indicating that protein metabolism is influenced by multiple drought events, the 1H NMR spectra of the methanol extracts of flour from mature grains revealed that the amount of fumaric acid is particularly sensitive to water deficits. PMID:19213725

  18. Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets.

    PubMed

    Cloarec, Olivier; Dumas, Marc-Emmanuel; Craig, Andrew; Barton, Richard H; Trygg, Johan; Hudson, Jane; Blancher, Christine; Gauguier, Dominique; Lindon, John C; Holmes, Elaine; Nicholson, Jeremy

    2005-03-01

    We describe here the implementation of the statistical total correlation spectroscopy (STOCSY) analysis method for aiding the identification of potential biomarker molecules in metabonomic studies based on NMR spectroscopic data. STOCSY takes advantage of the multicollinearity of the intensity variables in a set of spectra (in this case 1H NMR spectra) to generate a pseudo-two-dimensional NMR spectrum that displays the correlation among the intensities of the various peaks across the whole sample. This method is not limited to the usual connectivities that are deducible from more standard two-dimensional NMR spectroscopic methods, such as TOCSY. Moreover, two or more molecules involved in the same pathway can also present high intermolecular correlations because of biological covariance or can even be anticorrelated. This combination of STOCSY with supervised pattern recognition and particularly orthogonal projection on latent structure-discriminant analysis (O-PLS-DA) offers a new powerful framework for analysis of metabonomic data. In a first step O-PLS-DA extracts the part of NMR spectra related to discrimination. This information is then cross-combined with the STOCSY results to help identify the molecules responsible for the metabolic variation. To illustrate the applicability of the method, it has been applied to 1H NMR spectra of urine from a metabonomic study of a model of insulin resistance based on the administration of a carbohydrate diet to three different mice strains (C57BL/6Oxjr, BALB/cOxjr, and 129S6/SvEvOxjr) in which a series of metabolites of biological importance can be conclusively assigned and identified by use of the STOCSY approach. PMID:15732908

  19. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Smith, Pieter E. S.; Cai, Shuhui; Zheng, Zhenyao; Lin, Yulan; Chen, Zhong

    2015-12-01

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials' structure and dynamics. Because 2D NMR relies on systematic changes in coherences' phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, "ultrafast" NMR has been developed into an effective and widely applicable methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.

  20. 1020 MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Zhang, Rongchun; Hashi, Kenjiro; Ohki, Shinobu; Nishijima, Gen; Matsumoto, Shinji; Noguchi, Takashi; Deguchi, Kenzo; Goto, Atsushi; Shimizu, Tadashi; Maeda, Hideaki; Takahashi, Masato; Yanagisawa, Yoshinori; Yamazaki, Toshio; Iguchi, Seiya; Tanaka, Ryoji; Nemoto, Takahiro; Miyamoto, Tetsuo; Suematsu, Hiroto; Saito, Kazuyoshi; Miki, Takashi; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-12-01

    This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020 MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.