Note: This page contains sample records for the topic paramagnetic nmr spectroscopy from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Protein structure determination with paramagnetic solid-state NMR spectroscopy.  

PubMed

Many structures of the proteins and protein assemblies that play central roles in fundamental biological processes and disease pathogenesis are not readily accessible via the conventional techniques of single-crystal X-ray diffraction and solution-state nuclear magnetic resonance (NMR). On the other hand, many of these challenging biological systems are suitable targets for atomic-level structural and dynamic analysis by magic-angle spinning (MAS) solid-state NMR spectroscopy, a technique that has far less stringent limitations on the molecular size and crystalline state. Over the past decade, major advances in instrumentation and methodology have prompted rapid growth in the field of biological solid-state NMR. However, despite this progress, one challenge for the elucidation of three-dimensional (3D) protein structures via conventional MAS NMR methods is the relative lack of long-distance data. Specifically, extracting unambiguous interatomic distance restraints larger than ?5 Å from through-space magnetic dipole-dipole couplings among the protein (1)H, (13)C, and (15)N nuclei has proven to be a considerable challenge for researchers. It is possible to circumvent this problem by extending the structural studies to include several analogs of the protein of interest, intentionally modified to contain covalently attached paramagnetic tags at selected sites. In these paramagnetic proteins, the hyperfine couplings between the nuclei and unpaired electrons can manifest themselves in NMR spectra in the form of relaxation enhancements of the nuclear spins that depend on the electron-nucleus distance. These effects can be significant for nuclei located up to ?20 Å away from the paramagnetic center. In this Account, we discuss MAS NMR structural studies of nitroxide and EDTA-Cu(2+) labeled variants of a model 56 amino acid globular protein, B1 immunoglobulin-binding domain of protein G (GB1), in the microcrystalline solid phase. We used a set of six EDTA-Cu(2+)-tagged GB1 mutants to rapidly determine the global protein fold in a de novo fashion. Remarkably, these studies required quantitative measurements of only approximately four or five backbone amide (15)N longitudinal paramagnetic relaxation enhancements per residue, in the complete absence of the usual internuclear distance restraints. Importantly, this paramagnetic solid-state NMR methodology is general and can be directly applied to larger proteins and protein complexes for which a significant fraction of the signals can be assigned in standard 2D and 3D MAS NMR chemical shift correlation spectra. PMID:23464364

Sengupta, Ishita; Nadaud, Philippe S; Jaroniec, Christopher P

2013-09-17

2

Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy  

NASA Astrophysics Data System (ADS)

Biomacromolecules that are challenging for the usual structural techniques can be studied with atomic resolution by solid-state NMR spectroscopy. However, the paucity of distance restraints >5 Å, traditionally derived from measurements of magnetic dipole-dipole couplings between protein nuclei, is a major bottleneck that hampers such structure elucidation efforts. Here, we describe a general approach that enables the rapid determination of global protein fold in the solid phase via measurements of nuclear paramagnetic relaxation enhancements (PREs) in several analogues of the protein of interest containing covalently attached paramagnetic tags, without the use of conventional internuclear distance restraints. The method is demonstrated using six cysteine-EDTA-Cu2+ mutants of the 56-residue B1 immunoglobulin-binding domain of protein G, for which ~230 longitudinal backbone 15N PREs corresponding to distances of ~10-20 Å were obtained. The mean protein fold determined in this manner agrees with the X-ray structure with a backbone atom root-mean-square deviation of 1.8 Å.

Sengupta, Ishita; Nadaud, Philippe S.; Helmus, Jonathan J.; Schwieters, Charles D.; Jaroniec, Christopher P.

2012-05-01

3

The dynamic complex of cytochrome c6 and cytochrome f studied with paramagnetic NMR spectroscopy.  

PubMed

The rapid transfer of electrons in the photosynthetic redox chain is achieved by the formation of short-lived complexes of cytochrome b6f with the electron transfer proteins plastocyanin and cytochrome c6. A balance must exist between fast intermolecular electron transfer and rapid dissociation, which requires the formation of a complex that has limited specificity. The interaction of the soluble fragment of cytochrome f and cytochrome c6 from the cyanobacterium Nostoc sp. PCC 7119 was studied using NMR spectroscopy and X-ray diffraction. The crystal structures of wild type, M58H and M58C cytochrome c6 were determined. The M58C variant is an excellent low potential mimic of the wild type protein and was used in chemical shift perturbation and paramagnetic relaxation NMR experiments to characterize the complex with cytochrome f. The interaction is highly dynamic and can be described as a pure encounter complex, with no dominant stereospecific complex. Ensemble docking calculations and Monte-Carlo simulations suggest a model in which charge-charge interactions pre-orient cytochrome c6 with its haem edge toward cytochrome f to form an ensemble of orientations with extensive contacts between the hydrophobic patches on both cytochromes, bringing the two haem groups sufficiently close to allow for rapid electron transfer. This model of complex formation allows for a gradual increase and decrease of the hydrophobic interactions during association and dissociation, thus avoiding a high transition state barrier that would slow down the dissociation process. PMID:24685428

Díaz-Moreno, Irene; Hulsker, Rinske; Skubak, Pavol; Foerster, Johannes M; Cavazzini, Davide; Finiguerra, Michelina G; Díaz-Quintana, Antonio; Moreno-Beltrán, Blas; Rossi, Gian-Luigi; Ullmann, G Matthias; Pannu, Navraj S; De la Rosa, Miguel A; Ubbink, Marcellus

2014-08-01

4

NMR Spectroscopy  

NSDL National Science Digital Library

Quiz questions from the organic chemistry question bank provide students with an excellent opportunity to review key concepts. These questions pertain to Nuclear magnetic resonance (NMR) spectroscopy and include topics such as: Chemical Shift, Proton NMR, and Carbon NMR.

Reich, Ieva

2008-03-25

5

The structure of the cytochrome p450cam-putidaredoxin complex determined by paramagnetic NMR spectroscopy and crystallography.  

PubMed

Cytochrome P450cam catalyzes the hydroxylation of camphor in a complex process involving two electron transfers (ETs) from the iron-sulfur protein putidaredoxin. The enzymatic control of the successive steps of catalysis is critical for a highly efficient reaction. The injection of the successive electrons is part of the control system. To understand the molecular interactions between putidaredoxin and cytochrome P450cam, we determined the structure of the complex both in solution and in the crystal state. Paramagnetic NMR spectroscopy using lanthanide tags yielded 446 structural restraints that were used to determine the solution structure. An ensemble of 10 structures with an RMSD of 1.3Å was obtained. The crystal structure of the complex was solved, showing a position of putidaredoxin that is identical with the one in the solution structure. The NMR data further demonstrate the presence of a minor state or set of states of the complex in solution, which is attributed to the presence of an encounter complex. The structure of the major state shows a small binding interface and a metal-to-metal distance of 16Å, with two pathways that provide strong electronic coupling of the redox centers. The interpretation of these results is discussed in the context of ET. The structure indicates that the ET rate can be much faster than the reported value, suggesting that the process may be gated. PMID:23856620

Hiruma, Yoshitaka; Hass, Mathias A S; Kikui, Yuki; Liu, Wei-Min; Ölmez, Betül; Skinner, Simon P; Blok, Anneloes; Kloosterman, Alexander; Koteishi, Hiroyasu; Löhr, Frank; Schwalbe, Harald; Nojiri, Masaki; Ubbink, Marcellus

2013-11-15

6

Lanthanide paramagnetic probes for NMR spectroscopic studies of fast molecular conformational dynamics and temperature control. Effective six-site proton exchange in 18-crown-6 by exchange spectroscopy.  

PubMed

(1)H and (13)C NMR measurements are reported for the CDCl(3) and CD(2)Cl(2) solutions of [La(18-crown-6)(NO(3))(3)] (I), [Pr(18-crown-6) (NO(3))(3)] (II), [Ce(18-crown-6)(NO(3))(3)] (III), and [Nd(18-crown-6)(NO(3))(3)] (IV) complexes. Temperature dependencies of the (1)H NMR spectra of paramagnetic II-IV have been analyzed using the dynamic NMR (DNMR) methods for six-site exchange. Two types of conformational dynamic processes were identified (the first one is conditioned by interconversion of complex enantiomeric forms and pseudorotation of a macrocycle molecule upon the C(2) symmetry axis; the second one is conditioned by macrocycle molecule inversion). Application of exchange spectroscopy (2D-EXSY) of DNMR for investigation of this dynamic system (II-IV) simplifies the assignment of the NMR signals and represents the first experimental study of multisite exchange. In the present work, the methodology of paramagnetic 4f (Ce, Pr, and Nd) probe applications for the study of free-energy, enthalpy, and entropy changes in chemical exchange processes, as well as the advantages of this method in a comparison with DNMR studies of diamagnetic substances, is discussed. In particular, as a result of paramagnetic chemical shifts in 4f complexes, the range of measurable rate constants expands considerably compared to the analogous range in diamagnetic compounds. Coordination compounds investigated in the paper represent new types of thermometric NMR sensors and lanthanide paramagnetic probes for in situ temperature control in solution. PMID:22250883

Babailov, Sergey P

2012-02-01

7

Bis(2-pyridylimino)isoindolato iron(II) and cobalt(II) complexes: structural chemistry and paramagnetic NMR spectroscopy.  

PubMed

Condensation of phthalodinitrile and 2-amino-5,6,7,8-tetrahydroquinoline gave the bis(2-pyridylimino)isoindole protioligand 1 (thqbpiH) in high yield. Deprotonation of thqbpiH (1) using LDA in THF at -78 °C yields the corresponding lithium complex [Li(THF)(thqbpi)] (2) in which the lithium atom enforces almost planar arrangement of the tridentate ligand, with an additional molecule of THF coordinated to Li. Reaction of cobalt(II) chloride or iron(II) chloride with one equivalent of the lithium complex 2 in THF led to formation of the metal complexes [CoCl(THF)(thqbpi)] (3a) and [FeCl(THF)(thqbpi)] (3b). The paramagnetic susceptibility of 3a,b in solution was measured by the Evans method (3a: ?(eff) = 4.17 ?(B); 3b: ?(eff) = 5.57 ?(B)). Stirring a solution of 1 and cobalt(II) acetate tetrahydrate in methanol yielded the cobalt(II) complex 4 which was also accessible by treatment of 3a with one equivalent of silver or thallium acetate in DMSO. Whereas 3a,b were found to be mononuclear in the solid state, the acetate complex 4 was found to be dinuclear, the two metal centres being linked by an almost symmetrically bridging acetate. For all transition metal complexes paramagnetic (1)H as well as (13)C NMR spectra were recorded at variable temperatures. The complete assignment of the paramagnetic NMR spectra was achieved by computation of the spin densities within the complexes using DFT. The proton NMR spectra of 3a and 3b displayed dynamic behaviour. This was attributed to the exchange of coordinating solvent molecules by an associative mechanism which was analysed using lineshape analysis (?S(?)= -154 ± 25 J mol(-1) K(-1) for 3a and ?S(?) = -168 ± 15 J mol(-1) K(-1) for 3b). PMID:21687900

Kruck, Matthias; Sauer, Désirée C; Enders, Markus; Wadepohl, Hubert; Gade, Lutz H

2011-10-28

8

High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning.  

PubMed

Magic angle spinning nuclear magnetic resonance (MAS NMR) is well suited for the study of membrane proteins in membrane mimetic and native membrane environments. These experiments often suffer from low sensitivity, due in part to the long recycle delays required for magnetization and probe recovery, as well as detection of low gamma nuclei. In ultrafast MAS experiments sensitivity can be enhanced through the use of low power sequences combined with paramagnetically enhanced relaxation times to reduce recycle delays, as well as proton detected experiments. In this work we investigate the sensitivity of (13)C and (1)H detected experiments applied to 27 kDa membrane proteins reconstituted in lipids and packed in small 1.3 mm MAS NMR rotors. We demonstrate that spin diffusion is sufficient to uniformly distribute paramagnetic relaxation enhancement provided by either covalently bound or dissolved CuEDTA over 7TM alpha helical membrane proteins. Using paramagnetic enhancement and low power decoupling in carbon detected experiments we can recycle experiments ~13 times faster than under traditional conditions. However, due to the small sample volume the overall sensitivity per unit time is still lower than that seen in the 3.2 mm probe. Proton detected experiments, however, showed increased efficiency and it was found that the 1.3 mm probe could achieve sensitivity comparable to that of the 3.2 mm in a given amount of time. This is an attractive prospect for samples of limited quantity, as this allows for a reduction in the amount of protein that needs to be produced without the necessity for increased experimental time. PMID:24338448

Ward, Meaghan E; Wang, Shenlin; Krishnamurthy, Sridevi; Hutchins, Howard; Fey, Michael; Brown, Leonid S; Ladizhansky, Vladimir

2014-01-01

9

High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal-organic frameworks, STAM-1 and HKUST-1.  

PubMed

Solid-state (13)C magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these MOFs upon activation (dehydration). NMR spectroscopy is an attractive technique for the investigation of these materials, owing to its high sensitivity to local structure, without any requirement for longer-range order. However, interactions between nuclei and unpaired electrons in paramagnetic systems (e.g., Cu(II)-based MOFs) pose a considerable challenge, not only for spectral acquisition, but also in the assignment and interpretation of the spectral resonances. Here, we exploit the rapid T(1) relaxation of these materials to obtain (13)C NMR spectra using a spin-echo pulse sequence at natural abundance levels, and employ frequency-stepped acquisition to ensure uniform excitation of resonances over a wide frequency range. We then utilise selective (13)C isotopic labelling of the organic linker molecules to enable an unambiguous assignment of NMR spectra of both MOFs for the first time. We show that the monomethylated linker can be recovered from STAM-1 intact, demonstrating not only the interesting use of this MOF as a protecting group, but also the ability (for both STAM-1 and HKUST-1) to recover isotopically-enriched linkers, thereby reducing significantly the overall cost of the approach. PMID:23202442

Dawson, Daniel M; Jamieson, Lauren E; Mohideen, M Infas H; McKinlay, Alistair C; Smellie, Iain A; Cadou, Romain; Keddie, Neil S; Morris, Russell E; Ashbrook, Sharon E

2013-01-21

10

Bioconjugation of proteins with a paramagnetic NMR and fluorescent tag.  

PubMed

Site-specific labeling of proteins with lanthanide ions offers great opportunities for investigating the structure, function, and dynamics of proteins by virtue of the unique properties of lanthanides. Lanthanide-tagged proteins can be studied by NMR, X-ray, fluorescence, and EPR spectroscopy. However, the rigidity of a lanthanide tag in labeling of proteins plays a key role in the determination of protein structures and interactions. Pseudocontact shift (PCS) and paramagnetic relaxation enhancement (PRE) are valuable long-range structure restraints in structural-biology NMR spectroscopy. Generation of these paramagnetic restraints generally relies on site-specific tagging of the target proteins with paramagnetic species. To avoid nonspecific interaction between the target protein and paramagnetic tag and achieve reliable paramagnetic effects, the rigidity, stability, and size of lanthanide tag is highly important in paramagnetic labeling of proteins. Here 4'-mercapto-2,2':6',2''-terpyridine-6,6''-dicarboxylic acid (4MTDA) is introduced as a a rigid paramagnetic and fluorescent tag which can be site-specifically attached to a protein by formation of a disulfide bond. 4MTDA can be readily immobilized by coordination of the protein side chain to the lanthanide ion. Large PCSs and RDCs were observed for 4MTDA-tagged proteins in complexes with paramagnetic lanthanide ions. At an excitation wavelength of 340 nm, the complex formed by protein-4MTDA and Tb(3+) produces high fluorescence with the main emission at 545 nm. These interesting features of 4MTDA make it a very promising tag that can be exploited in NMR, fluorescence, and EPR spectroscopic studies on protein structure, interaction, and dynamics. PMID:24307370

Huang, Feng; Pei, Ying-Ying; Zuo, Hui-Hui; Chen, Jia-Liang; Yang, Yin; Su, Xun-Cheng

2013-12-01

11

1H NMR and electronic absorption spectroscopy of paramagnetic water-soluble Meso-tetraarylsubstituted cationic and anionic metalloporphyrins  

Microsoft Academic Search

The ionization, ?-oxo-dimerization and axial ligation equilibria of free bases, iron(III) and manganese(III) derivatives of meso-tetrakis(p-sulfonatophenyl)porphyrin (TPPS4) and meso-tetrakis(4-N-methyl-pyridiniumyl)porphyrin (TMPyP) in aqueous solution are studied by 1H NMR and electronic absorption spectroscopy. At physiological pH, Fe(III) complexes of TMPYP and TPPS4 exist predominantly as dimers and may undergo transition to low spin species upon binding to biomolecules, whereas Mn(III) complexes

Victor E. Yushmanov; Hidetake Imasato; Tania T. Tominaga; Marcel Tabak

1996-01-01

12

1,3-Alternate calix[4]arene nitronyl nitroxide tetraradical and diradical: synthesis, X-ray crystallography, paramagnetic NMR spectroscopy, EPR spectroscopy, and magnetic studies  

PubMed Central

Calix[4]arenes constrained to 1,3-alternate conformation and functionalized at the upper rim with four and two nitronyl nitroxides have been synthesized, and characterized by X-ray crystallography, magnetic resonance (EPR and 1H NMR) spectroscopy, and magnetic studies. Such calix[4]arene tetraradicals and diradicals provide scaffolds for through-bond and through-space intramolecular exchange couplings.

Rajca, Andrzej; Pink, Maren; Mukherjee, Sumit; Rajca, Suchada; Das, Kausik

2009-01-01

13

NMR Spectroscopy  

NSDL National Science Digital Library

This site contains web-based programs that allow the user to predict chemical shifts, spin-spin coupling patterns and NMR line shapes affected by dynamic chemical exchange. This site will be most useful for students with a good background in the fundamentals of NMR theory.

Shattuck, Thomas W.

2011-07-01

14

Spin-transfer pathways in paramagnetic lithium transition-metal phosphates from combined broadband isotropic solid-state MAS NMR spectroscopy and DFT calculations.  

PubMed

Substituted lithium transition-metal (TM) phosphate LiFe(x)Mn(1-x)PO(4) materials with olivine-type structures are among the most promising next generation lithium ion battery cathodes. However, a complete atomic-level description of the structure of such phases is not yet available. Here, a combined experimental and theoretical approach to the detailed assignment of the (31)P NMR spectra of the LiFe(x)Mn(1-x)PO(4) (x = 0, 0.25, 0.5, 0.75, 1) pure and mixed TM phosphates is developed and applied. Key to the present work is the development of a new NMR experiment enabling the characterization of complex paramagnetic materials via the complete separation of the individual isotropic chemical shifts, along with solid-state hybrid DFT calculations providing the separate hyperfine contributions of all distinct Mn-O-P and Fe-O-P bond pathways. The NMR experiment, referred to as aMAT, makes use of short high-powered adiabatic pulses (SHAPs), which can achieve 100% inversion over a range of isotropic shifts on the order of 1 MHz and with anisotropies greater than 100 kHz. In addition to complete spectral assignments of the mixed phases, the present study provides a detailed insight into the differences in electronic structure driving the variations in hyperfine parameters across the range of materials. A simple model delimiting the effects of distortions due to Mn/Fe substitution is also proposed and applied. The combined approach has clear future applications to TM-bearing battery cathode phases in particular and for the understanding of complex paramagnetic phases in general. PMID:23004936

Clément, Raphaële J; Pell, Andrew J; Middlemiss, Derek S; Strobridge, Fiona C; Miller, Joel K; Whittingham, M Stanley; Emsley, Lyndon; Grey, Clare P; Pintacuda, Guido

2012-10-17

15

The Impact of Window Functions on NMR-Based Paramagnetic Relaxation Enhancement Measurements in Membrane Proteins  

PubMed Central

Summary Though challenging, solution NMR spectroscopy allows fundamental interrogation of the structure and dynamics of membrane proteins. One major technical hurdle in studies of helical membrane proteins by NMR is the difficulty of obtaining sufficient long range NOEs to determine tertiary structure. For this reason, long range distance information is sometimes sought through measurement of paramagnetic relaxation enhancements (PRE) of NMR nuclei as a function of distance from an introduced paramagnetic probe. Current PRE interpretation is based on the assumption of Lorentzian resonance lineshapes. However, in order to optimize spectral resolution, modern multidimensional NMR spectra are almost always subjected to resolution-enhanment, leading to distortions in the Lorentizian peak shape. Here it is shown that when PREs are derived using peak intensities (i.e., peak height) and linewidths from both real and simulated spectra that were produced using a wide range of apodization/window functions, that there is little variation in the distances determined (<1 angstrom at the extremes). This indicates that the high degree of resolution enhancement required to obtain well-resolved spectra from helical membrane proteins is compatible with the use of PRE data as a source of distance restraints. While these conclusions are particularly important for helical membrane proteins, they are generally applicable to all PRE measurements made using resolution-enhanced data.

Van Horn, Wade D.; Beel, Andrew J.; Kang, Congbao; Sanders, Charles R.

2009-01-01

16

Exploring sparsely populated states of macromolecules by diamagnetic and paramagnetic NMR relaxation  

PubMed Central

Sparsely populated states of macromolecules, characterized by short lifetimes and high free-energies relative to the predominant ground state, often play a key role in many biological, chemical, and biophysical processes. In this review, we briefly summarize various new developments in NMR spectroscopy that permit these heretofore invisible, sparsely populated states to be detected, characterized, and in some instances visualized. Relaxation dispersion spectroscopy yields detailed kinetic information on processes involving species characterized by distinct chemical shifts with lifetimes in the ?50 ?s?10 ms range and populations as low as 0.5%. In the fast exchange regime (time scale less than ?250?500 ?s), the footprint of sparsely populated states can be observed on paramagnetic relaxation enhancement profiles measured on the resonances of the major species, thereby yielding structural information that is directly related to paramagnetic center-nuclei distances from which it is possible, under suitable circumstances, to compute a structure or ensemble of structures for the minor species. Finally, differential transverse relaxation measurements can be used to detect lifetime broadening effects that directly reflect the unidirectional rates for the conversion of NMR-visible into high-molecular weight NMR-invisible species. Examples of these various approaches are presented.

Clore, G Marius

2011-01-01

17

Solid-state NMR (31)P paramagnetic relaxation enhancement membrane protein immersion depth measurements.  

PubMed

Paramagnetic relaxation enhancement (PRE) is a widely used approach for measuring long-range distance constraints in biomolecular solution NMR spectroscopy. In this paper, we show that (31)P PRE solid-state NMR spectroscopy can be utilized to determine the immersion depth of spin-labeled membrane peptides and proteins. Changes in the (31)P NMR PRE times coupled with modeling studies can be used to describe the spin-label position/amino acid within the lipid bilayer and the corresponding helical tilt. This method provides valuable insight on protein-lipid interactions and membrane protein structural topology. Solid-state (31)P NMR data on the 23 amino acid ?-helical nicotinic acetylcholine receptor nAChR M2? transmembrane domain model peptide followed predicted behavior of (31)P PRE rates of the phospholipid headgroup as the spin-label moves from the membrane surface toward the center of the membrane. Residue 11 showed the smallest changes in (31)P PRE (center of the membrane), while residue 22 shows the largest (31)P PRE change (near the membrane surface), when compared to the diamagnetic control M2? sample. This PRE SS-NMR technique can be used as a molecular ruler to measure membrane immersion depth. PMID:24689497

Maltsev, Sergey; Hudson, Stephen M; Sahu, Indra D; Liu, Lishan; Lorigan, Gary A

2014-04-24

18

Paramagnetic materials and practical algorithmic cooling for NMR quantum computing  

NASA Astrophysics Data System (ADS)

Algorithmic cooling is a method devised by Boykin, Mor Rowchodhury, Vatan and Vrijen (PNAS Mar '02) for initializing NMR systems in general and NMR quantum computers in particular. The algorithm recursively employs two steps. The first is an adiabatic entropy compression of the computation qubits of the system. The second step is an isothermal heat transfer from the system to the environment through a set of reset qubits that reach thermal relaxation rapidly. To allow experimental algorithmic cooling, the thermalization time of the reset qubits must be much shorter than the thermalization time of the computation qubits. We investigated the effect of the paramagnetic material Chromium Acetylacetonate on the thermalization times of computation qubits (carbons) and reset qubit (hydrogen). We report here the accomplishment of an improved ratio of the thermalization times from T1(H)/T1(C) of approximately 5 to around 15. The magnetic ions from the Chromium Acetylacetonate interact with the reset qubit reducing their thermalization time, while their effect on the less exposed computation qubits is found to be weaker. An experimental demonstrating of non adiabatic cooling by thermalization and magnetic ion is currently performed by our group based on these results.

Fernandez, Jose M.; Mor, Tal; Weinstein, Yossi

2003-08-01

19

Modern NMR Spectroscopy.  

ERIC Educational Resources Information Center

Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

Jelinski, Lynn W.

1984-01-01

20

Distance information for disordered proteins from NMR and ESR measurements using paramagnetic spin labels.  

PubMed

The growing recognition of the many roles that disordered protein states play in biology places an increasing importance on developing approaches to characterize the structural properties of this class of proteins and to clarify the links between these properties and the associated biological functions. Disordered proteins, when isolated in solution, do not adopt a fixed structure, but can and often do contain detectable and significant residual or transient structure, including both secondary and long-range structure. Such residual structure can play a role in nucleating local structural transitions as well as modulating intramolecular or intermolecular tertiary interactions, including those involved in ordered protein aggregation. An increasing array of tools has been recruited to help characterize the structural properties of disordered proteins. While a number of methods can report on residual secondary structure, detecting and quantifying transient long-range structure has proven to be more difficult. This chapter describes the use of paramagnetic spin labeling in combination with paramagnetic relaxation enhancement (PRE) in NMR spectroscopy and pulsed dipolar ESR spectroscopy (PDS) for this purpose. PMID:22760317

Eliezer, David

2012-01-01

21

"Solvent Effects" in 1H NMR Spectroscopy.  

ERIC Educational Resources Information Center

Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

Cavaleiro, Jose A. S.

1987-01-01

22

Ultrahigh-resolution NMR spectroscopy.  

PubMed

All psyched up: A flexible and general pure shift experiment (PSYCHE) has been developed that offers superior sensitivity, spectral purity, and tolerance of strong coupling over existing methods for broadband homonuclear decoupling. The partial spectra of estradiol in [D6 ]DMSO obtained by normal (1) H?NMR spectroscopy and PSYCHE are shown for comparison. PMID:24861024

Foroozandeh, Mohammadali; Adams, Ralph W; Meharry, Nicola J; Jeannerat, Damien; Nilsson, Mathias; Morris, Gareth A

2014-07-01

23

Solid-State NMR of a Large Membrane Protein by Paramagnetic Relaxation Enhancement  

PubMed Central

Membrane proteins play an important role in many biological functions. Solid-state NMR spectroscopy is uniquely suited for studying structure and dynamics of membrane proteins in a membranous environment. The major challenge to obtain high quality solid-state NMR spectra of membrane proteins is sensitivity, due to limited quantities of labeled high-molecular-weight proteins. Here we demonstrate the incorporation of paramagnetic metal (Cu2+) ions, through either EDTA or a chelator lipid, into membrane protein samples for rapid data collection under fast magic-angle spinning (MAS) and low power 1H decoupling. Spectral sensitivity of DsbB (20 kDa), an integral membrane protein, more than doubles in the same experimental time due to 1H T1 relaxation enhancement by Cu2+ ions, with DsbB native fold and active site intact. This technique can be implemented to acquire multidimensional solid-state NMR spectra for chemical shift assignments and structure elucidation of large membrane proteins with small sample quantities.

Tang, Ming; Berthold, Deborah A.; Rienstra, Chad M.

2011-01-01

24

Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins  

ERIC Educational Resources Information Center

An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

2013-01-01

25

Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy  

PubMed Central

Electron paramagnetic resonance (EPR) spectroscopy has been used in a number of ways to study nitric oxide chemistry and biology. As an intrinsically stable and relatively unreactive diatomic free radical, the challenges for detecting this species by EPR are somewhat different than those for transient radical species. This review gives a basic introduction to EPR spectroscopy and discusses its uses to assess and quantify nitric oxide formation in biological systems.

Hogg, Neil

2010-01-01

26

2H quadrupolar Carr-Purcell-Meiboom-Gill NMR for paramagnetic solids  

NASA Astrophysics Data System (ADS)

2H ( I = 1) quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) NMR methods in the presence of a paramagnetic shift interaction are reported. Pulse sequences based on quadrupole echo that can compensate effect of the shift interaction were adapted to obtain undistorted QCPMG spectra. The methods were demonstrated by 2H NMR measurement for paramagnetic CoSiF 6·6H 2O using strong radio-frequency pulses and by computer simulation. Detection of molecular dynamics by the present QCPMG method was also examined.

Iijima, Takahiro; Nishimura, Katsuyuki

2011-09-01

27

Tetrachloridocuprates(II)--Synthesis and Electron Paramagnetic Resonance (EPR) Spectroscopy  

PubMed Central

Ionic liquids (ILs) on the basis of metal containing anions and/or cations are of interest for a variety of technical applications e.g., synthesis of particles, magnetic or thermochromic materials. We present the synthesis and the results of electron paramagnetic resonance (EPR) spectroscopic analyses of a series of some new potential ionic liquids based on tetrachloridocuprates(II), [CuCl4]2?, with different sterically demanding cations: hexadecyltrimethylammonium 1, tetradecyltrimethylammonium 2, tetrabutylammonium 3 and benzyltriethylammonium 4. The cations in the new compounds were used to achieve a reasonable separation of the paramagnetic Cu(II) ions for EPR spectroscopy. The EPR hyperfine structure was not resolved. This is due to the exchange broadening, resulting from still incomplete separation of the paramagnetic Cu(II) centers. Nevertheless, the principal values of the electron Zeemann tensor (g? and g?) of the complexes could be determined. Even though the solid substances show slightly different colors, the UV/Vis spectra are nearly identical, indicating structural changes of the tetrachloridocuprate moieties between solid state and solution. The complexes have a promising potential e.g., as high temperature ionic liquids, as precursors for the formation of copper chloride particles or as catalytic paramagnetic ionic liquids.

Winter, Alette; Zabel, Andre; Strauch, Peter

2012-01-01

28

Hyperpolarized (131)Xe NMR spectroscopy.  

PubMed

Hyperpolarized (hp) (131)Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T(1) relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent (131)Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in (129)Xe SEOP. (131)Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase (131)Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp (131)Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp (131)Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I ? 1/2 nuclei is presented. PMID:21051249

Stupic, Karl F; Cleveland, Zackary I; Pavlovskaya, Galina E; Meersmann, Thomas

2011-01-01

29

Hyperpolarized 131Xe NMR spectroscopy  

PubMed Central

Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I?1/2 nuclei is presented.

Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

2011-01-01

30

NMR Spectroscopy and Its Value: A Primer  

ERIC Educational Resources Information Center

Nuclear magnetic resonance (NMR) spectroscopy is widely used by chemists. Furthermore, the use of NMR spectroscopy to solve structures of macromolecules or to examine protein-ligand interactions is popular. Yet, few students entering graduate education in biological sciences have been introduced to this method or its utility. Over the last six…

Veeraraghavan, Sudha

2008-01-01

31

PARAssign--paramagnetic NMR assignments of protein nuclei on the basis of pseudocontact shifts.  

PubMed

The use of paramagnetic NMR data for the refinement of structures of proteins and protein complexes is widespread. However, the power of paramagnetism for protein assignment has not yet been fully exploited. PARAssign is software that uses pseudocontact shift data derived from several paramagnetic centers attached to the protein to obtain amide and methyl assignments. The ability of PARAssign to perform assignment when the positions of the paramagnetic centers are known and unknown is demonstrated. PARAssign has been tested using synthetic data for methyl assignment of a 47 kDa protein, and using both synthetic and experimental data for amide assignment of a 14 kDa protein. The complex fitting space involved in such an assignment procedure necessitates that good starting conditions are found, both regarding placement and strength of paramagnetic centers. These starting conditions are obtained through automated tensor placement and user-defined tensor parameters. The results presented herein demonstrate that PARAssign is able to successfully perform resonance assignment in large systems with a high degree of reliability. This software provides a method for obtaining the assignments of large systems, which may previously have been unassignable, by using 2D NMR spectral data and a known protein structure. PMID:23526169

Skinner, Simon P; Moshev, Mois; Hass, Mathias A S; Keizers, Peter H J; Ubbink, Marcellus

2013-04-01

32

Paramagnetic NMR investigation of dendrimer-based host-guest interactions.  

PubMed

In this study, the host-guest behavior of poly(amidoamine) (PAMAM) dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO) derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the ¹H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE) was observed between TEMPO-NH?, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and ¹H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems. PMID:23762249

Wang, Fei; Shao, Naimin; Cheng, Yiyun

2013-01-01

33

Sensitivity and resolution enhanced solid-state NMR for paramagnetic systems and biomolecules under very fast magic angle spinning.  

PubMed

Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (?ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ?40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ?10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of A? amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the prospects for studying bimolecules using (13)C SSNMR under ultrafast MAS at the spinning speed of ?100 kHz. PMID:23889329

Parthasarathy, Sudhakar; Nishiyama, Yusuke; Ishii, Yoshitaka

2013-09-17

34

Mapping the encounter state of a transient protein complex by PRE NMR spectroscopy  

Microsoft Academic Search

Many biomolecular interactions proceed via a short-lived encounter state, consisting of multiple, lowly-populated species\\u000a invisible to most experimental techniques. Recent development of paramagnetic relaxation enhancement (PRE) nuclear magnetic\\u000a resonance (NMR) spectroscopy has allowed to directly visualize such transient intermediates in a number of protein-protein\\u000a and protein-DNA complexes. Here we present an analysis of the recently published PRE NMR data for

Alexander N. Volkov; Marcellus Ubbink; Nico A. J. van Nuland

2010-01-01

35

Solid state 13C and 2H NMR investigations of paramagnetic [Ni(II)(acac)2L2] complexes.  

PubMed

Nine structurally related paramagnetic acetylacetonato nickel(II) complexes: [Ni(acac)2] and trans-[Ni(acac)2(X)2]nH/D2O, X = H2O, D2O, NH3, MeOH, PMePh2, PMe2Ph, or [dppe]1/2, n = 0 or 1, dppe = 1,2-bis(diphenylphosphino)ethane, as well as cis-[Ni(F6-acac)2(D2O)2], F6-acac = hexafluoroacetylonato, have been characterized by solid state (13)C MAS NMR spectroscopy. (2)H MAS NMR was used to probe the local hydrogen bonding network in [Ni(acac)2(D2O)2]D2O and cis-[Ni(F6-acac)2(D2O)2]. The complexes serve to benchmark the paramagnetic shift, which can be associated with the resonances of atoms of the coordinated ligands. The methine (CH) and methyl (CH3) have characteristic combinations of the isotropic shift (?) and anisotropy parameters (d, ?). The size of the anisotropy (d), which is the sum of the chemical shift anisotropy (CSA) and the paramagnetic electron-nuclei dipolar coupling, is much more descriptive than the isotropic shift. Moreover, the CSA is found to constitute up to one-third of the total anisotropy and should be taken into consideration when (13)C anisotropies are used for structure determination of paramagnetic materials. The (13)C MAS NMR spectra of trans-[Ni(acac)2(PMe2Ph)2], trans-[Ni(acac)2(PMePh2)2], and the noncrystallographically characterized trans-[Ni(acac)2(dppe)]n were assigned using these correlations. The complexes with L = H2O, D2O, NH3, and MeOH can be prepared by a series of solid state desorption and sorption reactions. Crystal structures for trans-[Ni(acac)2(NH3)2] and trans-[Ni(acac)2(PMePh2)2] are reported. PMID:24325293

Lennartson, Anders; Christensen, Lene Ulrikke; McKenzie, Christine J; Nielsen, Ulla Gro

2014-01-01

36

Conformation of pseudoazurin in the 152 kDa electron transfer complex with nitrite reductase determined by paramagnetic NMR.  

PubMed

Copper-containing nitrite reductase is able to catalyze the reduction of nitrite with a turnover rate of several hundreds per second. Electrons for the reaction are donated by the electron transfer protein pseudoazurin. The process of protein complex formation, electron transfer and dissociation must occur on the millisecond timescale to enable the fast turnover of the enzyme. The structure of this transient protein complex has been studied using paramagnetic NMR spectroscopy. Gadolinium complexes were attached specifically through two engineered Cys residues on three sites on the surface of nitrite reductase, causing strong distance-dependent relaxation effects on the residues of pseudoazurin. Docking of the two proteins based on these NMR-derived distance restraints and the chemical shift perturbation data shows convergence to a cluster of structures with an average root-mean-square deviation of 1.5 A. The binding interface consists of polar and non-polar residues surrounded by charges. The interprotein distance between the two type-1 copper sites is 15.5(+/-0.5) A, enabling fast interprotein electron transfer. The NMR-based lower limit estimate of 600 s(-1) for the dissociation rate constant and the fast electron transfer are consistent with the transient nature of the complex. PMID:18083191

Vlasie, Monica D; Fernández-Busnadiego, Rubén; Prudêncio, Miguel; Ubbink, Marcellus

2008-02-01

37

NMR spectroscopy of peptides and proteins  

Microsoft Academic Search

High resolution nuclear magnetic resonance (NMR) spectroscopy is the only method available for determining the three-dimensional\\u000a structures of peptides and proteins in solution at atomic resolution. This article deals with a range of practical considerations\\u000a associated with such studies, including sample preparation, instrumental setup, one- and two-dimensional NMR methods, interpretation\\u000a of spectral data, and structure calculations.

Mark G. Hinds; Raymond S. Norton

1997-01-01

38

QUANTITATIVE 15N NMR SPECTROSCOPY  

EPA Science Inventory

Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

39

Electron paramagnetic resonance spectroscopy of nitroxide-labeled calmodulin.  

PubMed

Calmodulin (CaM) is a highly conserved calcium-binding protein consisting of two homologous domains, each of which contains two EF-hands, that is known to bind well over 300 proteins and peptides. In most cases the (Ca(2+))4-form of CaM leads to the activation of a key regulatory enzyme or protein in a myriad of biological processes. Using the nitroxide spin-labeling reagent, 3-(2-iodoacetamido)-2,2,5,5-tetramethyl-1-pyrrolidinyl oxyl, bovine brain CaM was modified at 2-3 methionines with retention of activity as judged by the activation of cyclic nucleotide phosphodiesterase. X-band electron paramagnetic resonance (EPR) spectroscopy was used to measure the spectral changes upon addition of Ca(2+) to the apo-form of spin-labeled protein. A significant loss of spectral intensity, arising primarily from reductions in the heights of the low, intermediate, and high field peaks, accompanied Ca(2+) binding. The midpoint of the Ca(2+)-mediated transition determined by EPR occurred at a higher Ca(2+) concentration than that measured with circular dichroic spectroscopy and enzyme activation. Recent data have indicated that the transition from the apo-state of CaM to the fully saturated form, [(Ca(2+))4-CaM], contains a compact intermediate corresponding to [(Ca(2+))2-CaM], and the present results suggest that the spin probes are reporting on Ca(2+) binding to the last two sites in the N-terminal domain, i.e. for the [(Ca(2+))2-CaM] ? [(Ca(2+))4-CaM] transition in which the compact structure becomes more extended. EPR of CaM, spin-labeled at methionines, offers a different approach for studying Ca(2+)-mediated conformational changes and may emerge as a useful technique for monitoring interactions with target proteins. PMID:24718677

Bowman, Paula B; Puett, David

2014-06-01

40

Predicting the spin state of paramagnetic iron complexes by DFT calculation of proton NMR spectra.  

PubMed

Many transition-metal complexes easily change their spin state S in response to external perturbations (spin crossover). Determining such states and their dynamics can play a central role in the understanding of useful properties such as molecular magnetism or catalytic behavior, but is often far from straightforward. In this work we demonstrate that, at a moderate computational cost, density functional calculations can predict the correct ground spin state of Fe(ii) and Fe(iii) complexes and can then be used to determine the (1)H NMR spectra of all spin states. Since the spectral features are remarkably different according to the spin state, calculated (1)H NMR resonances can be used to infer the correct spin state, along with supporting the structure elucidation of numerous paramagnetic complexes. PMID:24823843

Borgogno, Andrea; Rastrelli, Federico; Bagno, Alessandro

2014-06-01

41

Contactless NMR spectroscopy on a chip.  

PubMed

Inductively coupled planar resonators offer convenient integration of high-resolution NMR spectroscopy with microfluidic lab-on-a-chip devices. Planar spiral resonators are fabricated lithographically either by gold electroplating or by etching Cu laminated with polyimide. Their performance is characterized by NMR imaging as well as spectroscopy. A single-scan limit of detection LOD(t) = 0.95 nmol s(1/2) was obtained from sample volumes around 1 ?L. The sensitivity of this approach is similar to that obtained by microstripline and microslot probes. PMID:22409303

Ryan, Herbert; Song, Suk-Heung; Zaß, Anja; Korvink, Jan; Utz, Marcel

2012-04-17

42

Structure determination of a Galectin-3-carbohydrate complex using paramagnetism-based NMR constraints.  

PubMed

The determination of the location and conformation of a natural ligand bound to a protein receptor is often a first step in the rational design of molecules that can modulate receptor function. NMR observables, including NOEs, often provide the basis for these determinations. However, when ligands are carbohydrates, interactions mediated by extensive hydrogen-bonding networks often reduce or eliminate NOEs between ligand and protein protons. In these cases, it is useful to look to other distance- and orientation-dependent observables that can constrain the geometry of ligand-protein complexes. Here we illustrate the use of paramagnetism-based NMR constraints, including pseudo-contact shifts (PCS) and field-induced residual dipolar couplings (RDCs). When a paramagnetic center can be attached to the protein, field-induced RDCs and PCS reflect only bound-state properties of the ligand, even when averages over small fractions of bound states and large fractions of free states are observed. The effects can also be observed over a long range, making it possible to attach a paramagnetic center to a remote part of the protein. The system studied here is a Galectin-3-lactose complex. A lanthanide-binding peptide showing minimal flexibility with respect to the protein was integrated into the C terminus of an expression construct for the Galectin-3-carbohydrate-binding domain. Dysprosium ion, which has a large magnetic susceptibility anisotropy, was complexed to the peptide, making it possible to observe both PCSs and field-induced RDCs for the protein and the ligand. The structure determined from these constraints shows agreement with a crystal structure of a Galectin-3-N-acetyllactosamine complex. PMID:18413860

Zhuang, Tiandi; Lee, Han-Seung; Imperiali, Barbara; Prestegard, James H

2008-07-01

43

Sensitivity enhancement using paramagnetic relaxation in MAS solid-state NMR of perdeuterated proteins  

NASA Astrophysics Data System (ADS)

Previously, Ishii et al., could show that chelated paramagnetic ions can be employed to significantly decrease the recycle delay of a MAS solid-state NMR experiment [N.P. Wickramasinghe, M. Kotecha, A. Samoson, J. Past, Y. Ishii, Sensitivity enhancement in C-13 solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing H-1 T-1 relaxation, J. Magn. Reson. 184 (2007) 350-356]. Application of the method is limited to very robust samples, for which sample stability is not compromised by RF induced heating. In addition, probe integrity might be perturbed in standard MAS PRE experiments due to the use of very short duty cycles. We show that these deleterious effects can be avoided if perdeuterated proteins are employed that have been re-crystallized from D 2O:H 2O = 9:1 containing buffer solutions. The experiments are demonstrated using the SH3 domain of chicken ?-spectrin as a model system. The labeling scheme allows to record proton detected 1H, 15N correlation spectra with very high resolution in the absence of heteronuclear dipolar decoupling. Cu-edta as a doping reagent yields a reduction of the recycle delay by up to a factor of 15. In particular, we find that the 1H T1 for the bulk H N magnetization is reduced from 4.4 s to 0.3 s if the Cu-edta concentration is increased from 0 mM to 250 mM. Possible perturbations like chemical shift changes or line broadening due to the paramagnetic chelate complex are minimal. No degradation of our samples was observed in the course of the experiments.

Linser, Rasmus; Chevelkov, Veniamin; Diehl, Anne; Reif, Bernd

2007-12-01

44

Molecular Structure and Dynamics by NMR Spectroscopy  

NSDL National Science Digital Library

This site provides PowerPoint slides for a lecture for a graduate-level course in NMR spectroscopy. The slides include useful animations which help to demonstrate the concepts described. While the casual student may find it hard to follow everything on the slides without an accompanying lecture, the files should be very useful for advanced students or educators putting together similar courses.

Edison, Arthur S.; Long, Joanna

2011-07-04

45

Picoliter H-1 NMR Spectroscopy  

SciTech Connect

A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

Minard, Kevin R.(BATTELLE (PACIFIC NW LAB)) [BATTELLE (PACIFIC NW LAB); Wind, Robert A.(BATTELLE (PACIFIC NW LAB)) [BATTELLE (PACIFIC NW LAB)

2002-02-01

46

Tritiation methods and tritium NMR spectroscopy  

SciTech Connect

We have used a simple process for the production of highly tritiated water and characterized the product species by {sup 1}H and {sup 3}H NMR spectroscopy. The water is readily manipulated and used in subsequent reactions either as T{sub 2}O, CH{sub 3}COOT or CF{sub 3}COOT. Development of tritiated diimide has progressed to the point where cis-hydrogenated products at 1-20 Ci/mmole S.A. are possible. Tri-n-butyl tin tritide has been produced at >95% tritium content and well characterized by multinuclear NMR techniques. 27 refs., 3 figs.

Jaiswal, D.K. [Defence Research and Development Establishment, Gwalior (India); Morimoto, H.; Salijoughian, M.; Williams, P.G. [Lawrence Berkeley Lab., CA (United States)

1991-09-01

47

Carnosine as molecular probe for sensitive detection of Cu(II) ions using localized 1H NMR spectroscopy  

Microsoft Academic Search

Complex formation of carnosine (Csn) with Cu(II) is suspected to be of significant biochemical importance and can be detected by NMR via ion-induced paramagnetic relaxation of Csn signals. Here, we present quantification of the sensitivity achieved with localized 1H NMR spectroscopy at physiological pH and high ligand-to-metal ratios. While characterizing the highly effective relaxation transfer onto a huge Csn pool

Leif Schröder; Christian H. J. Schmitz; Peter Bachert

2008-01-01

48

Predicting paramagnetic 1H NMR chemical shifts and state-energy separations in spin-crossover host-guest systems.  

PubMed

The behaviour of metal-organic cages upon guest encapsulation can be difficult to elucidate in solution. Paramagnetic metal centres introduce additional dispersion of signals that is useful for characterisation of host-guest complexes in solution using nuclear magnetic resonance (NMR). However, paramagnetic centres also complicate spectral assignment due to line broadening, signal integration error, and large changes in chemical shifts, which can be difficult to assign even for known compounds. Quantum chemical predictions can provide information that greatly facilitates the assignment of NMR signals and identification of species present. Here we explore how the prediction of paramagnetic NMR spectra may be used to gain insight into the spin crossover (SCO) properties of iron(II)-based metal organic coordination cages, specifically examining how the structure of the local metal coordination environment affects SCO. To represent the tetrahedral metal-organic cage, a model system is generated by considering an isolated metal-ion vertex: fac-ML3(2+) (M = Fe(II), Co(II); L = N-phenyl-2-pyridinaldimine). The sensitivity of the (1)H paramagnetic chemical shifts to local coordination environments is assessed and utilised to shed light on spin crossover behaviour in iron complexes. Our data indicate that expansion of the metal coordination sphere must precede any thermal SCO. An attempt to correlate experimental enthalpies of SCO with static properties of bound guests shows that no simple relationship exists, and that effects are likely due to nuanced dynamic response to encapsulation. PMID:24752730

Isley, William C; Zarra, Salvatore; Carlson, Rebecca K; Bilbeisi, Rana A; Ronson, Tanya K; Nitschke, Jonathan R; Gagliardi, Laura; Cramer, Christopher J

2014-06-14

49

Dynamic nuclear polarization surface enhanced NMR spectroscopy.  

PubMed

Many of the functions and applications of advanced materials result from their interfacial structures and properties. However, the difficulty in characterizing the surface structure of these materials at an atomic level can often slow their further development. Solid-state NMR can probe surface structure and complement established surface science techniques, but its low sensitivity often limits its application. Many materials have low surface areas and/or low concentrations of active/surface sites. Dynamic nuclear polarization (DNP) is one intriguing method to enhance the sensitivity of solid-state NMR experiments by several orders of magnitude. In a DNP experiment, the large polarization of unpaired electrons is transferred to surrounding nuclei, which provides a maximum theoretical DNP enhancement of ?658 for (1)H NMR. In this Account, we discuss the application of DNP to enhance surface NMR signals, an approach known as DNP surface enhanced NMR spectroscopy (DNP SENS). Enabling DNP for these systems requires bringing an exogeneous radical solution into contact with surfaces without diluting the sample. We proposed the incipient wetness impregnation technique (IWI), a well-known method in materials science, to impregnate porous and particulate materials with just enough radical containing solution to fill the porous volume. IWI offers several advantages: it is extremely simple, provides a uniform wetting of the surface, and does not increase the sample volume or substantially reduce the concentration of the sample. This Account describes the basic principles behind DNP SENS through results obtained for mesoporous and nanoparticulate samples impregnated with radical solutions. We also discuss the quantification of the overall sensitivity enhancements obtained with DNP SENS and compare that with ordinary room temperature NMR spectroscopy. We then review the development of radicals and solvents that give the best possible enhancements today. With the best polarizing mixtures, DNP SENS enhances sensitivity by a factor of up to 100, which decreases acquisition time by five orders of magnitude. Such enhancement enables the detailed and expedient atomic level characterization of the surfaces of complex materials at natural isotopic abundance and opens new avenues for NMR. To illustrate these improvements, we describe the successful application of DNP SENS to characterize hybrid materials, organometallic surface species, and metal-organic frameworks. PMID:23517009

Rossini, Aaron J; Zagdoun, Alexandre; Lelli, Moreno; Lesage, Anne; Copéret, Christophe; Emsley, Lyndon

2013-09-17

50

Ensemble quantum computing by NMR spectroscopy  

PubMed Central

A quantum computer (QC) can operate in parallel on all its possible inputs at once, but the amount of information that can be extracted from the result is limited by the phenomenon of wave function collapse. We present a new computational model, which differs from a QC only in that the result of a measurement is the expectation value of the observable, rather than a random eigenvalue thereof. Such an expectation value QC can solve nondeterministic polynomial-time complete problems in polynomial time. This observation is significant precisely because the computational model can be realized, to a certain extent, by NMR spectroscopy on macroscopic ensembles of quantum spins, namely molecules in a test tube. This is made possible by identifying a manifold of statistical spin states, called pseudo-pure states, the mathematical description of which is isomorphic to that of an isolated spin system. The result is a novel NMR computer that can be programmed much like a QC, but in other respects more closely resembles a DNA computer. Most notably, when applied to intractable combinatorial problems, an NMR computer can use an amount of sample, rather than time, which grows exponentially with the size of the problem. Although NMR computers will be limited by current technology to exhaustive searches over only 15 to 20 bits, searches over as much as 50 bits are in principle possible, and more advanced algorithms could greatly extend the range of applicability of such machines.

Cory, David G.; Fahmy, Amr F.; Havel, Timothy F.

1997-01-01

51

Direct chiral discrimination in NMR spectroscopy  

NASA Astrophysics Data System (ADS)

Conventional nuclear magnetic resonance spectroscopy is unable to distinguish between the two mirror-image forms (enantiomers) of a chiral molecule. This is because the NMR spectrum is determined by the chemical shifts and spin-spin coupling constants which - in the absence of a chiral solvent - are identical for the two enantiomers. We discuss how chirality may nevertheless be directly detected in liquid-state NMR spectroscopy: In a chiral molecule, the rotating nuclear magnetic moment induces an electric dipole moment in the direction perpendicular to itself and to the permanent magnetic field of the spectrometer. We present computations of the precessing electric polarization following a ?/2 pulse. Our estimates indicate that the electric polarization should be detectable in favourable cases. We also predict that application of an electrostatic field induces a chirally sensitive magnetization oscillating in the direction of the permanent magnetic field. We show that the electric-field-perturbed chemical shift tensor, the nuclear magnetic shielding polarizability, underlies these chiral NMR effects.

Buckingham, A. D.; Fischer, P.

2006-05-01

52

Quantitative NMR spectroscopy--applications in drug analysis.  

PubMed

NMR spectroscopy being a primary ratio method of measurement is highly suitable to evaluate the quality of drugs. NMR spectroscopy can be used for the identification of a drug substance, the identification and quantification of impurities arising from the synthesis pathway and degradation, or residual solvents as well as the determination of the content in the assay. This review gives an overview of the application of quantitative NMR spectroscopy in International Pharmacopoeias and for licensing purposes. PMID:15893899

Holzgrabe, U; Deubner, R; Schollmayer, C; Waibel, B

2005-08-10

53

^77Se NMR investigation of the paramagnetic metal phase of ?-(BETS)2FeCl4  

NASA Astrophysics Data System (ADS)

We report ^77Se NMR measurements of the spectrum and the spin-lattice relaxation rate (1/T1) in a 7 ?g single crystal of ?­(BETS)2FeCl4 over the temperature (T) range 2.5-10 K in an applied field of 10.9 T parallel to the a-axis (paramagnetic metal phase). A behavior close to 1/T1T = constant is observed. It indicates that for these conditions, 1/T1 is dominated by the hyperfine interaction between the ^77Se spins and the conduction electrons, in contrast to 1/T1 for the protons, which is driven by the magnetic fluctuations of the Fe^3+ spins [W.G. Clark et al., Appl. Mag. Res. 27, 279 (2004)]. From these proton measurements, we estimate that the contribution of the Fe^3+ fluctuations to 1/T1 of ^77Se is negligible. Work at UCLA was supported by NSF Grants DMR-0334869 (WGC) and DMR-0520552 (SEB).

Wu, Guoqing; Clark, W. G.; Brown, S. E.; Brooks, J. S.; Kobayashi, A.; Kobayashi, H.

2007-03-01

54

Novel multisample dielectric resonators for electron paramagnetic resonance spectroscopy  

NASA Astrophysics Data System (ADS)

We have developed and tested two types of novel dielectric resonators for simultaneous recording of electron paramagnetic resonance (EPR) spectra from two to four samples. The resonator of the first type contains two holes, and the other resonator contains four holes for introduction of the samples. Also, the resonator structure includes a pair of gradient coils. Dielectric resonators made of materials with high dielectric constant with low losses can be inserted into the standard EPR cavity or waveguide in the maximum microwave magnetic field. Gradient coils are located outside the cavity (or waveguide) so that their axes are parallel to the static magnetic field. Computer simulations were made to obtain microwave characteristics of the resonators such as resonant frequency, sizes, and distribution of the fields. Spacing of the point samples and optimum value of the magnetic-field gradient have been chosen correctly. The designed resonators can be applied in express analysis using EPR technique, for instance.

Golovina, Iryna S.; Kolesnik, Sergiy P.; Geifman, Ilia N.; Belous, Anatoliy G.

2010-04-01

55

Solid-State NMR Investigation of the Depth of Insertion of Protegrin-1 in Lipid Bilayers Using Paramagnetic Mn 2+  

Microsoft Academic Search

The depth of insertion of an antimicrobial peptide, protegrin-1 (PG-1), in lipid bilayers is investigated using solid-state NMR. Paramagnetic Mn2+ ions bind to the surface of lipid bilayers and induce distance-dependent dipolar relaxation of nuclear spins. By comparing the signal dephasing of the peptide with that of the lipids, whose segmental depths of insertion are known, we determined the depths

Jarrod J. Buffy; Teresa Hong; Satoru Yamaguchi; Alan J. Waring; Robert I. Lehrer; Mei Hong

2003-01-01

56

Magnetism, optical absorbance, and 19F NMR spectra of nafion films with self-assembling paramagnetic networks  

SciTech Connect

Magnetization, optical absorbance, and {sup 19}F NMR spectra of Nafion transparent films as received and doped with Mn{sup 2+}, Co{sup 2+}, Fe{sup 2+}, and Fe{sup 3+} ions with and without treatment in 1H-1,2,4-triazole (trz) have been studied. Doping of Nafion with Fe{sup 2+} and Co{sup 2+} and their bridging to nitrogen of triazole yields a hybrid self-assembling paramagnetic system that exhibits interesting magnetic and optical properties. These include spin crossover phenomena between high-spin (HS) and low-spin (LS) states in Nafion-Fe{sup 2+}-trz and Nafion-Co{sup 2+}-trz accompanied by thermochromic effects in the visible range induced by temperature. A large shift of the magnetization curve induced by a magnetic field in the vicinity of the HS {leftrightarrow} LS, {approx}220 K, observed for Nafion-Fe{sup 2+}-trz has a rate of {approx}6 K/kOe, which is about three orders of magnitude larger than that in bulk spin crossover Fe{sup 2+} materials. Selective response of {sup 19}F NMR signals on doping with paramagnetic ions demonstrates that NMR can be used as spatially resolved method to study Nafion film with paramagnetic network. Both chemical shift and width of {sup 19}F NMR signals show that SO groups of Nafion, Fe or Co ions, and nitrogen of triazole are bonded whereas they form a spin crossover system. Based on a model of nanosize cylinders proposed for Nafion [K. Schmidt-Rohr and Q. Chen, Nat Mater (2008), 75], we suggest that paramagnetic ions are located inside these cylinders, forming self-assembling magnetically and optically active nanoscale networks.

Levin, E. M.; Chen, Q.; Bud'ko, S. L.

2012-01-15

57

NMR spectroscopy on domain dynamics in biomacromolecules.  

PubMed

Domain dynamics in biomacromolecules is currently an area of intense research because of its importance for understanding the huge quantity of available data relating the structure and function of proteins and nucleic acids. Control of structural flexibility is essential for the proper functioning of the biomacromolecules. Biophysical discoveries as well as computational algorithms and databases have reshaped our understanding of the often spectacular domain dynamics. At the residue level, such flexibility occurs due to local relaxation of peptide bond angles whose cumulative effect results in large changes in the secondary, tertiary or quaternary structures. The flexibility, or its absence, most often depends on the nature of interdomain linkages. Both the flexible and relatively rigid linkers are found in many multidomain biomacromolecules. Large-scale structural heterogeneity of multidomain biomacromolecules and their complexes is now seen as the norm rather than the exception. Absence of such motion, as in the so-called molecular rulers, also has desirable functional effects in architecture of biomacromolecules. The contemporary methods of NMR spectroscopy are capable to provide the detailed information on domain motions in biomacromolecules in the wide range of timescales related to the timescales of their functioning. We review here the current point of view on the nature of domain motions based on these last achievements in the field of NMR spectroscopy. Experimental and theoretical aspects of the collective intra- and interdomain motions are considered. PMID:23684958

Shapiro, Yury E

2013-08-01

58

Web Spectra: Problems in NMR and IR spectroscopy  

NSDL National Science Digital Library

This site was established to provide chemistry students with a library of spectroscopy problems. Interpretation of spectra is a technique that requires practice - this site provides 1H NMR and 13 C NMR, DEPT, COSY and IR spectra of various compounds for students to interpret. Hopefully, these problems will provide a useful resource to better understand spectroscopy.

Merlic, Craig A.

2008-02-29

59

Determination of 15N chemical shift anisotropy from a membrane bound protein by NMR spectroscopy  

PubMed Central

Chemical shift anisotropy (CSA) tensors are essential in the structural and dynamic studies of proteins using NMR spectroscopy. Results from relaxation studies in biomolecular solution and solid-state NMR experiments on aligned samples are routinely interpreted using well-characterized CSA tensors determined from model compounds. Since CSA tensors, particularly the 15N CSA, highly depend on a number of parameters including secondary structure, electrostatic interaction and the amino acid sequence, there is a need for accurately determined CSA tensors from proteins. In this study we report the backbone amide-15N CSA tensors for a 16.7-kDa membrane-bound and paramagnetic-heme containing protein, rabbit cytochrome b5 (cytb5), determined using the 15N CSA/15N-1H dipolar transverse cross-correlation rates. The mean values of 15N CSA determined for residues in helical, sheet and turn regions are ?187.9, ?166.0, and ?161.1 ppm, respectively, with an overall average value of ?171.7 ppm. While the average CSA value determined from this study is in good agreement with previous solution NMR experiments on small globular proteins, the CSA value determined for residues in helical conformation is slightly larger which may be attributed to the paramagnetic effect from Fe(III) of the heme unit in cytb5. However, like in previous solution NMR studies, the CSA values reported in this study are larger than the values measured from solid-state NMR experiments. We believe that the CSA parameters reported in this study will be useful in determining the structure, dynamics and orientation of proteins, including membrane proteins, using NMR spectroscopy.

Pandey, Manoj Kumar; Vivekanandan, Subramanian; Ahuja, Shivani; Pichumani, Kumar; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

2012-01-01

60

Assignment of paramagnetic (15)N-HSQC spectra by heteronuclear exchange spectroscopy.  

PubMed

Paramagnetic metal ions in proteins provide a rich source of structural information, but the resonance assignments required to extract the information can be challenging. Here we demonstrate that paramagnetically shifted (15)N-HSQC cross-peaks can be assigned using N(Z)-exchange spectroscopy under conditions in which the paramagnetic form of the protein is in dynamic equilibrium with its diamagnetic form. Even slow exchange of specifically bound metal ions may be detected within the long lifetime of (15)N longitudinal magnetization of large proteins at high magnetic fields. Alternatively, the exchange can be accelerated using an excess of metal ions. In the resulting exchange spectra, paramagnetic (15)N resonances become visible for residues that are not directly observed in a conventional (15)N-HSQC spectrum due to paramagnetic (1)H(N) broadening. The experiments are illustrated by the 30 kDa lanthanide-binding epsilon186/theta complex of DNA polymerase III in the presence of sub-stoichiometric amounts of Dy(3+) or a mixture of Dy(3+) and La(3+). PMID:17096205

John, Michael; Headlam, Madeleine J; Dixon, Nicholas E; Otting, Gottfried

2007-01-01

61

Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR  

PubMed Central

Paramagnetic relaxation enhancement provides a tool for studying the dynamics as well as the structure of macromolecular complexes. The application of side-chain coupled spin-labels is limited by the mobility of the free radical. The cyclic, rigid amino acid spin-label TOAC (2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid), which can be incorporated straightforwardly by peptide synthesis, provides an attractive alternative. In this study, TOAC was incorporated into a peptide derived from focal adhesion kinase (FAK), and the interaction of the peptide with the Src homology 3 (SH3) domain of Src kinase was studied, using paramagnetic NMR. Placing TOAC within the binding motif of the peptide has a considerable effect on the peptide-protein binding, lowering the affinity substantially. When the TOAC is positioned just outside the binding motif, the binding constant remains nearly unaffected. Although the SH3 domain binds weakly and transiently to proline-rich peptides from FAK, the interaction is not very dynamic and the relative position of the spin-label to the protein is well-defined. It is concluded that TOAC can be used to generate reliable paramagnetic NMR restraints. Electronic supplementary material The online version of this article (doi:10.1007/s10858-008-9248-0) contains supplementary material, which is available to authorized users.

Lindfors, Hanna E.; de Koning, Peter E.; Drijfhout, Jan Wouter; Venezia, Brigida

2008-01-01

62

WebSpectra: Problems in NMR and IR Spectroscopy  

NSDL National Science Digital Library

From the University of California at Los Angeles's Chemistry Department, WebSpectra provides chemistry students with a searchable library of Nuclear Magnetic Resonance (NMR) and Infrared (IR) spectroscopy problems. According to the makers of this innovative site, "Interpretation of spectra is a technique that requires practice - this site provides 1H NMR and 13C NMR, DEPT, COSY and IR spectra of various compounds for students to interpret." A set of instructional documents are entitled Solving Spectral Problems, Overview of NMR Spectroscopy, Notes on NMR Solvents, Types of NMR Spectra, Introduction to IR Spectra, and a Table of IR Absorptions. A wide variety of compounds and their spectra are available for interpretation and have been organized in categories from Beginning to Advanced. Spectrum for each compound may be magnified 16X by clicking on peaks. This is an outstanding learning tool for students coming to grips with interpreting NMR and IR spectra.

63

Broadband Multiple-Quantum NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

A simple broadband radiofrequency pulse sequence for the excitation of multiple-quantum coherences in the presence of fast magic-angle spinning is introduced. This sequence involves back-to-back (BABA) 90° radiofrequency pulse cycles timed to span two rotor periods. It proved to be robust and insensitive to off-resonance effects, to isotropic chemical shifts, and to chemical-shift anisotropies. This is demonstrated on crystalline phosphates, composed of Q(1), Q(2), and Q(3)groups, which are characterized by a large chemical-shift anisotropy spanning more than 200 ppm. With these experiments, 31P high-resolution double-quantum NMR spectroscopy is introduced as a tool for the direct investigation of dipolar connectivities between like or different Q( n) units in phosphates. 31P dipolar connectivities in two samples, Mg 2P 2O 7and MgP 4O 11were established. Therefore, double-quantum spectroscopy of this kind has potential for the investigation of disordered solids, for instance, phosphorus glasses.

Feike, M.; Demco, D. E.; Graf, R.; Gottwald, J.; Hafner, S.; Spiess, H. W.

64

PENDANT 13C NMR Spectroscopy Applied to CHn Groups  

NASA Astrophysics Data System (ADS)

Polarization enhancement nurtured during attached nucleus testing (PENDANT) NMR spectroscopy gives signals of quaternary carbon atoms in addition to signals indicative of CH, CH2 and CH3 groups. In this study, using product operator theory, analytical description of PENDANT NMR spectroscopy for CHn (ISn, I = 1/2, S = 1/2, n = 0, 1, 2, 3) spin systems are presented. Simulation and experimental results of PENDANT NMR spectroscopy are also presented. Theoretical results are found to be in exact agreement with the simulation results and in good agreement with the experimental ones.

Gençten, Azmi; Šaka, Irfan; Gümüš, Sedat

2006-05-01

65

Use of Paramagnetic Metalloporphyrins as Contrast Agents for Tumors in NMR Imaging.  

National Technical Information Service (NTIS)

Water-soluble paramagnetic metalloporphyrins are used as contrast enhancing agents for magnetic resonance imaging. These agents exhibit excellent localization, non-toxicity and suprisingly high contrast enhancement in magnetic resonance imaging applicatio...

J. S. Cohen

1985-01-01

66

Principles and Demonstrations of Quantum Information Processing by NMR Spectroscopy  

Microsoft Academic Search

This paper surveys our recent research on quantum infor- mation processing by nuclear magnetic resonance (NMR) spectroscopy. We begin with a geometric introduction to the NMR of an ensemble of indistinguishable spins, and then show how this geometric interpretation is contained within an algebra of multispin product operators. This al- gebra is used throughout the rest of the paper to

Timothy F. Havel; S. S. Somaroo; C.-H. Tseng; D. G. Cory

2000-01-01

67

Solid-state NMR correlation experiments and distance measurements in paramagnetic metalorganics exemplified by Cu-cyclam.  

PubMed

We show how to record and analyze solid-state NMR spectra of organic paramagnetic complexes with moderate hyperfine interactions using the Cu-cyclam complex as an example. Assignment of the (13)C signals was performed with the help of density functional theory (DFT) calculations. An initial assignment of the (1)H signals was done by means of (1)H-(13)C correlation spectra. The possibility of recording a dipolar HSQC spectrum with the advantage of direct (1)H acquisition is discussed. Owing to the paramagnetic shifting the resolution of such paramagnetic (1)H spectra is generally better than for diamagnetic solid samples, and we exploit this advantage by recording (1)H-(1)H correlation spectra with a simple and short pulse sequence. This experiment, along with a Karplus relation, allowed for the completion of the (1)H signal assignment. On the basis of these data, we measured the distances of the carbon atoms to the copper center in Cu-cyclam by means of (13)CR2 relaxation experiments combined with the electronic relaxation determined by EPR. PMID:23765913

Kumara Swamy, Shashi K; Karczmarska, Agnieszka; Makowska-Janusik, Malgorzata; Kassiba, Abdelhadi; Dittmer, Jens

2013-06-24

68

NMR Spectroscopy of Experimentally Shocked Silicate Minerals  

Microsoft Academic Search

Magic-angle spinning nuclear magnetic resonance (MAS NMR) techniques were used to analyze experimentally shocked quartz and feldspar powders. ²⁹Si NMR spectra were determined for quartz and labradorite feldspar and ²⁷Al and ²³Na spectra for labradorite. Both minerals were shocked to 7.5, 16.4, and 22 GPA using the Sandia Momma Bear'' recovery fixtures. The MAS NMR results for quartz are in

R. T. Cygan; M. B. Boslough; R. J. Kirkpatrick

1991-01-01

69

Recent developments in solid-state NMR spectroscopy of crystalline microporous materials.  

PubMed

Microporous materials, having pores and channels on the same size scale as small to medium molecules, have found many important applications in current technologies, including catalysis, gas separation and drug storage and delivery. Many of their properties and functions are related to their detailed local structure, such as the type and distribution of active sites within the pores, and the specific structures of these active sites. Solid-state NMR spectroscopy has a strong track record of providing the requisite detailed atomic-level insight into the structures of microporous materials, in addition to being able to probe dynamic processes occurring on timescales spanning many orders of magnitude (i.e., from s to ps). In this Perspective, we provide a brief review of some of the basic experimental approaches used in solid-state NMR spectroscopy of microporous materials, and then discuss some more recent advances in this field, particularly those applied to the study of crystalline materials such as zeolites and metal-organic frameworks. These advances include improved software for aiding spectral interpretation, the development of the NMR-crystallography approach to structure determination, new routes for the synthesis of isotopically-labelled materials, methods for the characterisation of host-guest interactions, and methodologies suitable for observing NMR spectra of paramagnetic microporous materials. Finally, we discuss possible future directions, which we believe will have the greatest impact on the field over the coming years. PMID:24675798

Ashbrook, Sharon E; Dawson, Daniel M; Seymour, Valerie R

2014-04-01

70

Fragment-Based Drug Discovery Using NMR Spectroscopy  

PubMed Central

Nuclear magnetic resonance (NMR) spectroscopy has evolved into a powerful tool for fragment-based drug discovery over the last two decades. While NMR has been traditionally used to elucidate the three-dimensional structures and dynamics of biomacromolecules and their interactions, it can also be a very valuable tool for the reliable identification of small molecules that bind to proteins and for hit-to-lead optimization. Here, we describe the use of NMR spectroscopy as a method for fragment-based drug discovery and how to most effectively utilize this approach for discovering novel therapeutics based on our experience.

Harner, Mary J.; Frank, Andreas O.; Fesik, Stephen W.

2013-01-01

71

Fragment-based drug discovery using NMR spectroscopy.  

PubMed

Nuclear magnetic resonance (NMR) spectroscopy has evolved into a powerful tool for fragment-based drug discovery over the last two decades. While NMR has been traditionally used to elucidate the three-dimensional structures and dynamics of biomacromolecules and their interactions, it can also be a very valuable tool for the reliable identification of small molecules that bind to proteins and for hit-to-lead optimization. Here, we describe the use of NMR spectroscopy as a method for fragment-based drug discovery and how to most effectively utilize this approach for discovering novel therapeutics based on our experience. PMID:23686385

Harner, Mary J; Frank, Andreas O; Fesik, Stephen W

2013-06-01

72

An Integrated Laboratory Project in NMR Spectroscopy.  

ERIC Educational Resources Information Center

Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

Hudson, Reggie L.; Pendley, Bradford D.

1988-01-01

73

NMR spectroscopy of experimentally shocked silicate minerals.  

National Technical Information Service (NTIS)

Magic-angle spinning nuclear magnetic resonance (MAS NMR) techniques were used to analyze experimentally shocked quartz and feldspar powders. (sup 29)Si NMR spectra were determined for quartz and labradorite feldspar and (sup 27)Al and (sup 23)Na spectra ...

R. T. Cygan M. B. Boslough R. J. Kirkpatrick

1991-01-01

74

Studies of organic paint binders by NMR spectroscopy  

NASA Astrophysics Data System (ADS)

Nuclear magnetic resonance spectroscopy is applied to the study of aged binding media used in paintings, namely linseed oil, egg tempera and an acrylic medium. High resolution 1D and 2D NMR experiments establish the state of hydrolysis and oxidation of the linseed and egg tempera binders after five years of aging, by determining several markers sensitive to the hydrolytic and oxidative processes of the binder lipid fraction. The composition of the acrylic binder co-polymer is determined by 2D NMR spectroscopy, while the identification of a surfactant, poly(ethylene glycol), found in greater amounts in aged acrylic medium, is reported. The non-destructive nature of the proposed analytical NMR methodology, and minimization of the amount of binder material needed through the use of sophisticated cryoprobes and hyphenated LC-NMR techniques, make NMR attractive for the arts analyst, in view of its rapid nature and experimental simplicity.

Spyros, A.; Anglos, D.

2006-06-01

75

Localized in vivo13C NMR spectroscopy of the brain  

PubMed Central

Localized 13C NMR spectroscopy provides a new investigative tool for studying cerebral metabolism. The application of 13C NMR spectroscopy to living intact humans and animals presents the investigator with a number of unique challenges. This review provides in the first part a tutorial insight into the ingredients required for achieving a successful implementation of localized 13C NMR spectroscopy. The difficulties in establishing 13C NMR are the need for decoupling of the one-bond 13C–1H heteronuclear J coupling, the large chemical shift range, the low sensitivity and the need for localization of the signals. The methodological consequences of these technical problems are discussed, particularly with respect to (a) RF front-end considerations, (b) localization methods, (c) the low sensitivity, and (d) quantification methods. Lastly, some achievements of in vivo localized 13C NMR spectroscopy of the brain are reviewed, such as: (a) the measurement of brain glutamine synthesis and the feasibility of quantifying glutamatergic action in the brain; (b) the demonstration of significant anaplerotic fluxes in the brain; (c) the demonstration of a highly regulated malate-aspartate shuttle in brain energy metabolism and isotope flux; (d) quantification of neuronal and glial energy metabolism; and (e) brain glycogen metabolism in hypoglycemia in rats and humans. We conclude that the unique and novel insights provided by 13C NMR spectroscopy have opened many new research areas that are likely to improve the understanding of brain carbohydrate metabolism in health and disease.

Gruetter, Rolf; Adriany, Gregor; Choi, In-Young; Henry, Pierre-Gilles; Lei, Hongxia; Oz, Gulin

2006-01-01

76

Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory  

ERIC Educational Resources Information Center

Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

2013-01-01

77

Paramagnetic spin lattice relaxations in solid-state nuclear magnetic resonance spectroscopy  

SciTech Connect

Information on molecular structure and dynamics of solids is provided by nuclear magnetic resonance (NMR) spin lattice (T[sub 1]) relaxation experiments. The presence of an unpaired electron can significantly decrease T[sub 1]s and potentially provide details about molecular structure. This dissertation studied the influence of an unpaired spin on intramolecular carbon-13 solid-state spin lattice relaxation parameters. Porphyrins were chosen as model compounds since they can complex metals and can be synthesized with carbon-13 labels. Five carbon-13 labeled N-alkylated tetrapyridyl porphyrin tetraiodide salts were synthesized and complexed with copper(II) as the paramagnetic metal. A novel porphyrin, tetra-6[N-methyl([sup 13]C)]-quinoline porphyrin tetraiodide salt was also synthesized and complexed with copper(II). The unique approach taken in this work was to eliminate the intermolecular paramagnetic relaxation component by adsorption of the porphyrin as a surface sub-monolayer on a silica based cationic-exchange resin. Various amounts of the tetra-4-[N-methyl([sup 13]C)]-pyridyl porphyrin were adsorbed to the silica surface. This varied the average distance between porphyrin molecules. The carbon-13 spin-lattice relaxation times of the adsorbed porphyrins decreased as a function of the decreasing amounts of adsorbed porphyrin. At low porphyrin loadings (<4 [mu]moles porphyrin/g silica gel), only the intramolecular unpaired spin influence remained in the observed relaxation rate. The copper(II)-porphyrin complexes were adsorbed to the silica gel surface at the loading concentration where only intramolecular paramagnetic effects are observed. Spin lattice relaxation rates for the N-methyl carbon-13 labels on each porphyrin were measured and compared with those predicted by theory. Excellent quantitative agreement was found between the experimental and predicted relaxation times.

McCurry, J.D.

1993-01-01

78

Paramagnetism-Based NMR Restraints Lift Residual Dipolar Coupling Degeneracy in Multidomain Detergent-Solubilized Membrane Proteins  

PubMed Central

Residual dipolar couplings (RDCs) give orientational dependent NMR restraints that improve the resolution of NMR conformational ensembles and define the relative orientation of multidomain proteins and protein complexes. The interpretation of RDCs is complicated by protein dynamics and the intrinsic degeneracy of solutions that lead to ill-defined orientations of the structural domains (ghost orientations). Here, we illustrate how paramagnetic-based restraints can remove the orientational ambiguity of multidomain membrane proteins solubilized in detergent micelles. We tested this approach for the monomeric form of phospholamban (PLN), a 52-residue membrane protein, which is composed of two helical domains connected by a relatively flexible loop. We show that the combination of classical solution NMR restraints (NOEs and dihedral angles) with RDCs and PREs resolve topological ambiguities, improving the convergence of the PLN structural ensemble and giving the depth of insertion of the protein within the micelle. This combined approach will be necessary for membrane proteins, whose three-dimensional structure is strongly influenced by interactions with the membrane-mimicking environment rather than compact tertiary folds common in soluble proteins.

Shi, Lei; Traaseth, Nathaniel J.; Verardi, Raffaello; Gustavsson, Martin; Gao, Jiali; Veglia, Gianluigi

2011-01-01

79

NMR study of thermally activated paramagnetism in metallic low-silica X zeolite filled with sodium atoms  

NASA Astrophysics Data System (ADS)

We report a 23Na and 27Al nuclear magnetic resonance (NMR) investigation of low-silica X (LSX) zeolite with chemical formula Na12Al12Si12O48 (Na12-LSX) loaded with n additional guest sodium atoms. Nan/Na12-LSX exhibits an insulator-to-metal transition around n=11.6, which is accompanied by a significant enhancement of bulk magnetic susceptibility. Paramagnetic moments are in the metallic Na12/Na12-LSX thermally activated with an activation energy of around 0.1 eV. Simultaneously a new shifted component appears in the 23Na NMR, whose large and positive NMR shift scales with bulk magnetic susceptibility. Its spin-lattice relaxation rate 1/T1 is governed by the local-field fluctuations characterized by the same activation energy as obtained from the bulk magnetic susceptibility data. The time scale of these fluctuations is typical for atomic motions, which suggest strong electron-phonon coupling, a hallmark of polaron states. The insulator-to-metal transition in Nan/Na12-LSX is thus discussed within a polaron model.

Igarashi, Mutsuo; Nakano, Takehito; Thi, Pham Tan; Nozue, Yasuo; Goto, Atsushi; Hashi, Kenjiro; Ohki, Shinobu; Shimizu, Tadashi; Krajnc, Andraž; Jegli?, Peter; Ar?on, Denis

2013-02-01

80

Solid-state proton NMR of paramagnetic metal complexes: DANTE spin echoes for selective excitation in inhomogeneously broadened lines  

NASA Astrophysics Data System (ADS)

The paramagnetic complex bis(oxazolinylphenyl)amine-Fe(III)Cl2 is investigated by means of solid-state proton NMR at 18.8 T (800 MHz) using magic-angle spinning at 65 kHz. Spin echoes that are excited and refocused by combs of rotor-synchronized pulses in the manner of 'Delays Alternating with Nutation for Tailored Excitation' (DANTE) allow one to characterize different chemical environments that severely overlap in conventional MAS spectra. Such sequences combine two apparently contradictory features: an overall bandwidth exceeding several MHz, and very selective irradiation of a few kHz within inhomogeneously broadened sidebands. The experimental hyperfine interactions correlate well with DFT calculations.

Carnevale, Diego; Perez Linde, A. J.; Bauer, Gerald; Bodenhausen, Geoffrey

2013-08-01

81

Solvent and metal dependent (1)H NMR hyperfine shifts in paramagnetic pentaamminemetal cyanide-bridged mixed-valence complexes.  

PubMed

(1)H NMR resonances, in several aprotic solvents, are reported for axial and equatorial ammonias coordinated to a single spin paramagnetic centre in the Robin-Day Class II cyanide-bridged mixed-valence cations [(OC)(5)Cr(?-CN)M(NH(3))(5)](2+) (M = Ru, Os) as well as in the complex [(OC)(5)Re(?-CN)Ru(NH(3))(5)](3+), whose synthesis and properties are reported herein. Using the appropriate isotropic hexaammine complex as a reference, the chemical shift difference between the ammonia protons, ?(ax) - ?(eq), is found to be very sensitive to the paramagnetic metal (M), the remote diamagnetic metal (Cr or Re) and also to the donor properties of the solvent (as well as the counter-ion) as a result of hydrogen bonding interactions. The difference varies linearly with the MMCT energy, and in [(OC)(5)Re(?-CN)Ru(NH(3))(5)](3+) can be tuned from positive (?(ax) > ?(eq)) to negative (?(ax) < ?(eq)) through zero (?(ax) = ?(eq)) by the choice of solvent. This reflects the sign and magnitude of the axial ligand field parameter which is in turn a result of changes in the ?-donor-acceptor interactions between the donor-cyanide bridging group and the pentaammine metal unit. PMID:23361503

Laidlaw, William Michael; Thompson, Amber L; Denning, Robert Gordon

2013-04-01

82

NMR Spectroscopy: Processing Strategies (by Peter Bigler)  

NASA Astrophysics Data System (ADS)

Peter Bigler. VCH: New York, 1997. 249 pp. ISBN 3-527-28812-0. $99.00. This book, part of a four-volume series planned to deal with all aspects of a standard NMR experiment, is almost the exact book I have been hoping to find. My department has acquired, as have hundreds of other undergraduate institutions, high-field NMR instrumentation and the capability of doing extremely sophisticated experiments. However, the training is often a one- or two-day experience in which the material retained by the faculty trained is garbled and filled with holes, not unlike the information our students seem to retain. This text, and the accompanying exercises based on data contained on a CD-ROM, goes a long way to fill in the gaps and clarify misunderstandings about NMR processing.

Mills, Nancy S.

1998-06-01

83

Membrane Protein Structure and Dynamics from NMR Spectroscopy  

PubMed Central

We review the current state of membrane protein structure determination using solid-state nuclear magnetic resonance (NMR) spectroscopy. Multidimensional magic-angle-spinning correlation NMR combined with oriented-sample experiments has made it possible to measure a full panel of structural constraints of membrane proteins directly in lipid bilayers. These constraints include torsion angles, interatomic distances, oligomeric structure, protein dynamics, ligand structure and dynamics, and protein orientation and depth of insertion in the lipid bilayer. Using solid-state NMR, researchers have studied potassium channels, proton channels, Ca2+ pumps, G protein–coupled receptors, bacterial outer membrane proteins, and viral fusion proteins to elucidate their mechanisms of action. Many of these membrane proteins have also been investigated in detergent micelles using solution NMR. Comparison of the solid-state and solution NMR structures provides important insights into the effects of the solubilizing environment on membrane protein structure and dynamics.

Hong, Mei; Zhang, Yuan; Hu, Fanghao

2014-01-01

84

Exposing the Moving Parts of Proteins with NMR Spectroscopy  

PubMed Central

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful tool for investigating the dynamics of biomolecules since it provides a description of motion that is comprehensive, site-specific, and relatively non-invasive. In particular, the study of protein dynamics has benefited from sustained methodological advances in NMR that have expanded the scope and time scales of accessible motion. Yet, many of these advances may not be well known to the more general physical chemistry community. Accordingly, this Perspective provides a glimpse of some of the more powerful methods in liquid state NMR that are helping reshape our understanding of functional motions of proteins.

Peng, J.W.

2012-01-01

85

NMR spectroscopy of experimentally shocked silicate minerals  

SciTech Connect

Magic-angle spinning nuclear magnetic resonance (MAS NMR) techniques were used to analyze experimentally shocked quartz and feldspar powders. {sup 29}Si NMR spectra were determined for quartz and labradorite feldspar and {sup 27}Al and {sup 23}Na spectra for labradorite. Both minerals were shocked to 7.5, 16.4, and 22 GPA using the Sandia Momma Bear'' recovery fixtures. The MAS NMR results for quartz are in full agreement with previous measurements, indicating a high degree of reproducibility. Numerical decomposition of quartz data are consistent with two distinct phases: a defective crystalline quartz and an amorphous-like silica phase. There is a strong correlation between the fraction of amorphous phase and the mean peak shock pressure. The labradorite data are much more complicated, consisting of multiple peaks with no obvious correlation with shock pressure. No amorphous phase was evident from the NMR spectra of the shocked labradorite, nor were high pressure phases detectable for either mineral. 6 refs., 3 figs., 1 tab.

Cygan, R.T.; Boslough, M.B. (Sandia National Labs., Albuquerque, NM (USA)); Kirkpatrick, R.J. (Illinois Univ., Urbana, IL (USA). Dept. of Geology)

1991-01-01

86

Two-dimensional NMR spectroscopy. Applications for chemists and biochemists  

SciTech Connect

Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear.

Croasmun, W.R.; Carlson, R.M.K.

1987-01-01

87

Searching for protein binding sites from Molecular Dynamics simulations and paramagnetic fragment-based NMR studies.  

PubMed

Hotspot delineation on protein surfaces represents a fundamental step for targeting protein-protein interfaces. Disruptors of protein-protein interactions can be designed provided that the sterical features of binding pockets, including the transient ones, can be defined. Molecular Dynamics, MD, simulations have been used as a reliable framework for identifying transient pocket openings on the protein surface. Accessible surface area and intramolecular H-bond involvement of protein backbone amides are proposed as descriptors for characterizing binding pocket occurrence and evolution along MD trajectories. TEMPOL induced paramagnetic perturbations on (1)H-(15)N HSQC signals of protein backbone amides have been analyzed as a fragment-based search for surface hotspots, in order to validate MD predicted pockets. This procedure has been applied to CXCL12, a small chemokine responsible for tumor progression and proliferation. From combined analysis of MD data and paramagnetic profiles, two CXCL12 sites suitable for the binding of small molecules were identified. One of these sites is the already well characterized CXCL12 region involved in the binding to CXCR4 receptor. The other one is a transient pocket predicted by Molecular Dynamics simulations, which could not be observed from static analysis of CXCL12 PDB structures. The present results indicate how TEMPOL, instrumental in identifying this transient pocket, can be a powerful tool to delineate minor conformations which can be highly relevant in dynamic discovery of antitumoral drugs. PMID:24373878

Bernini, Andrea; Henrici De Angelis, Lucia; Morandi, Edoardo; Spiga, Ottavia; Santucci, Annalisa; Assfalg, Michael; Molinari, Henriette; Pillozzi, Serena; Arcangeli, Annarosa; Niccolai, Neri

2014-03-01

88

NMR Spectroscopy and Pediatric Brain Tumors  

Microsoft Academic Search

Proton nuclear magnetic resonance spectroscopy ( 1 H-NMRS) is a noninvasive in vivo technique that utilizes conventional MR imaging hardware to obtain biochemical information from a discrete volume of tissue after suppres- sion of the water signal. MR spectroscopy coupled with conventional MR imaging allows correlation of structural changes with biochemical processes in tissues by measur- ing specific metabolites present

KATHERINE E. WARREN

2004-01-01

89

Magnetization and NMR study of amorphous NiP alloys in the paramagnetic concetration range  

Microsoft Academic Search

The temperature- and field-dependence of magnetization, and the 31P NMR linewidth and Knight shift of some amorphous Ni100-xPx alloys with 18<= x <= 22 prepared by melt-quenching and electrodeposition were studied below room temperature. Although all the alloys investigated contain magnetic inhomogeneities, the amount and nature of which depend on impurities and on the details of sample preparation, it could

I. Bakonyi; L. K. Varga; A. Lovas; E. Tóth-Kádár; A. Sólyom

1985-01-01

90

High-resolution NMR spectroscopy under the fume hood.  

PubMed

This work reports the possibility to acquire high-resolution (1)H NMR spectra with a fist-sized NMR magnet directly installed under the fume hood. The small NMR sensor based on permanent magnets was used to monitor the trimerization of propionaldehyde catalyzed by indium trichloride in real time by continuously circulating the reaction mixture through the magnet bore in a closed loop with the help of a peristaltic pump. Thanks to the chemical selectivity of NMR spectroscopy the progress of the reaction can be monitored on-line by determining the concentrations of both reactant and product from the area under their respective lines in the NMR spectra as a function of time. This in situ measurement demonstrates that NMR probes can be used in chemistry laboratories, e.g. for reaction optimization, or installed at specific points of interest along industrial process lines. Therefore, it will open the door for the implementation of feedback control based on spectroscopic NMR data. PMID:21698335

Küster, Simon K; Danieli, Ernesto; Blümich, Bernhard; Casanova, Federico

2011-08-01

91

NMR spectroscopy for determination of cationic polymer concentrations  

Microsoft Academic Search

Organic polyelectrolytes are utilized extensively in wastewater treatment, but their fate after use is poorly understood. Analytical methods used for polymer determination in less complex systems appear to fail in application to wastewater systems, contributing to the lack of knowledge. Thus, the development of 1H NMR spectroscopy is reported here for specifically quantitating certain cationic flocculant polymers in environmental samples.

Lin-Li Chang; Martha D Bruch; Nancy J Griskowitz; Steven K Dentel

2002-01-01

92

Studies of the Photodegradation of Spruce Lignin by Nmr Spectroscopy  

Microsoft Academic Search

The light-induced degradation of lignin was studied using spruce MWL impregnated on handsheets prepared from cotton linters. The sheets were irradiated with simulated sunlight and the lignin was extracted. Solutions of untreated and irradiated lignin were studied by H and C NMR spectroscopy. The results showed that ?- and ?- ether and ?-? bond cleavage were the main reactions. The

Rainer Sjöholm; Bjarne Holmbom; Nina Akerback

1992-01-01

93

MULTIVARIATE CURVE RESOLUTION OF NMR SPECTROSCOPY METABONOMIC DATA  

EPA Science Inventory

Sandia National Laboratories is working with the EPA to evaluate and develop mathematical tools for analysis of the collected NMR spectroscopy data. Initially, we have focused on the use of Multivariate Curve Resolution (MCR) also known as molecular factor analysis (MFA), a tech...

94

Laser-enhanced NMR spectroscopy: Theoretical considerations  

SciTech Connect

W. S. Warren et al. report that the proton magnetic resonance spectra of chiral molecules are modified slightly by circularly polarized laser light. While it is not unexpected that circularly polarized radiation can influence chiral molecules, the large magnitude of the reported results is surprising. From conservation of parity, and under the conditions of the experiment, the relevant energy shifts per randomly oriented molecule show several simple relations. The chemical shielding of a chiral molecule in right circularly polarized light must be the same as its enantiomer in left circularly polarized light. However, the splitting of nuclear magnetic resonance (NMR) lines in left circular polarization will not necessarily equal that for right circular polarization because of the zero magnetic field term, b[sup 0]I[sub 0]. Direct calculation using the standard Hamiltonian descriptive of the interaction between radiation and matter in a magnetic field shows that for light intensities of 10 W cm[sup [minus]2] the nonchiral chemical shift in the NMR spectrum should yield a value of aI[sub 0] on the order of 10[sup [minus]15] [sigma][sub 0]. The chiral chemical shift, bI[sub 0], is on the order of 10[sup [minus]18] [sigma][sub 0]; for a magnetic field of 10[sup 4] gauss, this intensity-dependent shift corresponds to about 10[sup [minus]15] Hz. The zero magnetic field shift (b[sup 0]I[sub 0]) is about 10[sup [minus]10]Hz. In conclusion, the ordinary manifestation of chirality on light-perturbed chemical shifts is too small to be observed. Shining laser light on a racemic mixture and seeing a single NMR line split into two lines would provide a convincing experimental result. The authors' calculations predict that it will not occur. 3 refs., 1 tab.

Harris, R.A.; Tinoco, I. Jr. (Univ. of California, Berkeley (United States))

1993-02-05

95

Radical Scavenging of White Tea and Its Flavonoid Constituents by Electron Paramagnetic Resonance (EPR) Spectroscopy.  

PubMed

White tea (WT) presents high levels of catechins, which are known to reduce oxidative stress. WT is the least processed tea, unfermented and prepared only from very young tea leaves. The subject of this paper is the use of the spin trap method and electron paramagnetic resonance (EPR) spectroscopy as the analytical tool to measure, for the first time, the radical scavenging activity of WT and its major catechin components, epicatechin (EC), epicatechin-3-gallate (ECG), epigallocatechin (EGC), and epigallocatechin-3-gallate (EGCG), against the methoxy radical, using ferulic acid as antioxidant pattern. The antioxidant activity has been measured by the decrease of the intensity of the spectral bands of the adduct DMPO-OCH3 in the EPR with the amount of antioxidant in the reactive mixture. Tea leaves and buds were extracted with waterless methanol. It has been proved that tea compounds with more antiradical activity against methoxy radical are those with the gallate group, EGCG and ECG. PMID:24885813

Azman, Nurul A M; Peiró, Sara; Fajarí, Lluís; Julià, Luis; Almajano, Maria Pilar

2014-06-25

96

Electronic structure of polycrystalline polyamine copper dinitrate complexes investigated by photoacoustic and electron paramagnetic resonance spectroscopy  

NASA Astrophysics Data System (ADS)

Photoacoustic and electron paramagnetic resonance (EPR) spectroscopies have been applied to resolve the electronic structure in powder polycrystalline samples of three biogenic polyamine copper complexes, spermine copper dinitrate, aqua norspermine copper dinitrate, and homospermine copper dinitrate. The fine structure of the intense absorption band in the photoacoustic spectra is assigned to the d-d transitions between the crystal field split levels of copper ions, that cannot be discriminated in the UV/vis solution absorption spectra. Combination with the EPR results allows one to probe the variation of the electronic properties and bonding interaction at the copper site, consistent with the structural data for the crystalline complexes and further supports the reliability of the photoacoustic method to resolve the d-d transition band. A dominant contribution of the in-plane ligand field due to equatorial nitrogen atoms is deduced for the complexes of polyamines with copper salts.

Guskos, N.; Papadopoulos, G. J.; Likodimos, V.; Majszczyk, J.; Typek, J.; Wabia, M.; Grech, E.; Dziembowska, T.; Perkowska, A.; Aidinis, K.

2001-08-01

97

Diffusion of Paramagnetically Labeled Proteins in Cartilage: Enhancement of the 1-D NMR Imaging Technique  

NASA Astrophysics Data System (ADS)

Quantifying the diffusive transport of large molecules in avascular cartilage tissue is important both for planning potential pharamacological treatments and for gaining insight into the molecular-scale structure of cartilage. In this work, the diffusion coefficients of gadolinium-DTPA and Gd-labeled versions of four proteins—lysozyme, trypsinogen, ovalbumin, and bovine serum albumin (BSA) with molecular weights of 14,300, 24,000, 45,000, and 67,000, respectively—have been measured in healthy and degraded calf cartilage. The experimental technique relies on the effect of the paramagnetic on the relaxation properties of the surrounding water, combined with the time course of a 1-dimensional spatial profile of the water signal in the cartilage sample. The enhanced technique presented here does not require a prior measurement of the relaxivity of the paramagnetic compound in the sample of interest. The data are expressed as the ratio of the diffusion coefficient of a compound in cartilage to its diffusion coefficient in water. For healthy cartilage, this ratio was 0.34 ± 0.07 for Gd-DTPA, the smallest compound, and fell to 0.3 ± 0.1 for Gd-lysozyme, 0.08 ± 0.04 for Gd-trypsinogen, and 0.07 ± 0.04 for Gd-ovalbumin. Gd-BSA did not appear to enter healthy cartilage tissue beyond a surface layer. After the cartilage had been degraded by 24-h trypsinization, these ratios were 0.60 ± 0.03 for Gd-DTPA, 0.40 ± 0.08 for Gd-lysozyme, 0.42 ± 0.09 for Gd-trypsinogen, 0.16 ± 0.14 for Gd-ovalbumin, and 0.11 ± 0.05 for Gd-BSA. Thus, degradation of the cartilage led to increases in the diffusion coefficient of up to fivefold for the Gd-labeled proteins. These basic transport parameters yield insights on the nature of pore sizes and chemical-matrix interactions in the cartilage tissue and may prove diagnostically useful for identifying the degree and nature of damage to cartilage.

Foy, Brent D.; Blake, Joseph

2001-01-01

98

Double Quantum Filtered NMR Spectroscopy and Imaging  

NASA Astrophysics Data System (ADS)

As a result of the anisotropic motion of water molecules interacting with ordered biological tissues the proton-proton dipolar interaction and the deuteron quadrupolar interaction do not average to zero leaving some residual splittings. The technique of double quantum filtered (DQF) NMR capitalizes on this phenomenon, opening new possibilities to probe biological processes and to obtain a new kind of contrast in MRI. In the talk new applications of the DQF pulse sequences to the study of nerves, enabling the measurement of intercompartmental water exchange in sciatic and optic nerves, the study of the fiber architecture in cartilage under normal, compressed and diseased conditions and the imaging of tendons, enabling the monitoring their healing process following injury.

Navon, Gil

2007-03-01

99

Mitochondria-targeted antioxidant promotes recovery of skeletal muscle mitochondrial function after burn trauma assessed by in vivo 31P nuclear magnetic resonance and electron paramagnetic resonance spectroscopy  

PubMed Central

Burn injury causes a major systemic catabolic response that is associated with mitochondrial dysfunction in skeletal muscle. We investigated the effects of the mitochondria-targeted peptide antioxidant Szeto-Schiller 31 (SS-31) on skeletal muscle in a mouse burn model using in vivo phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy to noninvasively measure high-energy phosphate levels; mitochondrial aconitase activity measurements that directly correlate with TCA cycle flux, as measured by gas chromatography mass spectrometry (GC-MS); and electron paramagnetic resonance (EPR) to assess oxidative stress. At 6 h postburn, the oxidative ATP synthesis rate was increased 5-fold in burned mice given a single dose of SS-31 relative to untreated burned mice (P=0.002). Furthermore, SS-31 administration in burned animals decreased mitochondrial aconitase activity back to control levels. EPR revealed a recovery in redox status of the SS-31-treated burn group compared to the untreated burn group (P<0.05). Our multidisciplinary convergent results suggest that SS-31 promotes recovery of mitochondrial function after burn injury by increasing ATP synthesis rate, improving mitochondrial redox status, and restoring mitochondrial coupling. These findings suggest use of noninvasive in vivo NMR and complementary EPR offers an approach to monitor the effectiveness of mitochondrial protective agents in alleviating burn injury symptoms.—Righi, V., Constantinou, C., Mintzopoulos, D., Khan, N., Mupparaju, S. P., Rahme, L. G., Swartz, H. M., Szeto, H. H., Tompkins, R. G., and Tzika, A. A. Mitochondria-targeted antioxidant promotes recovery of skeletal muscle mitochondrial function after burn trauma assessed by in vivo 31P nuclear magnetic resonance and electron paramagnetic resonance spectroscopy.

Righi, Valeria; Constantinou, Caterina; Mintzopoulos, Dionyssios; Khan, Nadeem; Mupparaju, S. P.; Rahme, Laurence G.; Swartz, Harold M.; Szeto, Hazel H.; Tompkins, Ronald G.; Tzika, A. Aria

2013-01-01

100

Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.  

PubMed

Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. PMID:24881032

Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

2014-07-01

101

Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA  

NASA Astrophysics Data System (ADS)

Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

2014-07-01

102

Use of a paramagnetic substance, colloidal manganese sulfide, as an NMR contrast material in rats  

SciTech Connect

To determine whether an insoluble magnetopharmaceutical might be useful in such service, the authors investigated the effect of a colloidal preparation of manganese sulfide (MnSC) upon liver and lung spin-lattice relaxation time (T/sub 1/) in rats following intravenous administration. NMR tissue sample measurements were made at 24 MHz, and showed that after MnSC treatment, liver T/sub 1/ values - and to a lesser extent lung T/sub 1/ values - were depressed below control values. Liver manganese content (as determined by flame atomic absorption spectrophotometry) increased in proportion to the dose of MnSC, and the reciprocal of the liver T/sub 1/ values also increased in proportion to the dose of MnSC.

Chilton, H.M.; Jackels, S.C.; Hinson, W.H.; Ekstrand, K.E.

1984-05-01

103

Axially uniform resonant cavity modes for potential use in electron paramagnetic resonance spectroscopy  

NASA Astrophysics Data System (ADS)

This article is concerned with cylindrical transverse electric TE011 and rectangular TE102 microwave cavity resonators commonly used in electron paramagnetic resonance (EPR) spectroscopy. In the cylindrical mode geometry considered here, the sample is along the z axis of the cylinder, dielectric disks of 1/4 wavelength thickness are placed at each end wall, and the diameter of the cylinder is set at the cutoff condition for propagation of microwave energy in a cylindrical waveguide at the desired microwave frequency. The microwave magnetic field is exactly uniform along the sample in the region between the dielectric disks and the resonant frequency is independent of the length of the cylinder without limit. The rectangular TE102 geometry is analogous, but here the microwave magnetic field is exactly uniform in a plane. A uniform microwave field along a line sample is highly advantageous in EPR spectroscopy compared with the usual sinusoidal variation, and these geometries are called ``uniform field'' modes. Extensive theoretical analysis as well as finite element calculation of field patterns are presented. The perturbation of field patterns caused by sample insertion as functions of the overall length of the resonator and diameter of the sample is analyzed. The article is intended to provide a basis for design of practical structures in the range of 10 to 100 GHz.

Mett, Richard R.; Froncisz, Wojciech; Hyde, James S.

2001-11-01

104

Mobile sensor for high resolution NMR spectroscopy and imaging  

NASA Astrophysics Data System (ADS)

In this work we describe the construction of a mobile NMR tomograph with a highly homogeneous magnetic field. Fast MRI techniques as well as NMR spectroscopy measurements were carried out. The magnet is based on a Halbach array built from identical permanent magnet blocks generating a magnetic field of 0.22 T. To shim the field inhomogeneities inherent to magnet arrays constructed from these materials, a shim strategy based on the use of movable magnet blocks is employed. With this approach a reduction of the line-width from ˜20 kHz to less than 0.1 kHz was achieved, that is by more than two orders of magnitude, in a volume of 21 cm 3. Implementing a RARE sequence, 3D images of different objects placed in this volume were obtained in short experimental times. Moreover, by reducing the sample size to 1 cm 3, sub ppm resolution is obtained in 1H NMR spectra.

Danieli, Ernesto; Mauler, Jörg; Perlo, Juan; Blümich, Bernhard; Casanova, Federico

2009-05-01

105

Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser.  

PubMed

Electron paramagnetic resonance (EPR) spectroscopy interrogates unpaired electron spins in solids and liquids to reveal local structure and dynamics; for example, EPR has elucidated parts of the structure of protein complexes that other techniques in structural biology have not been able to reveal. EPR can also probe the interplay of light and electricity in organic solar cells and light-emitting diodes, and the origin of decoherence in condensed matter, which is of fundamental importance to the development of quantum information processors. Like nuclear magnetic resonance, EPR spectroscopy becomes more powerful at high magnetic fields and frequencies, and with excitation by coherent pulses rather than continuous waves. However, the difficulty of generating sequences of powerful pulses at frequencies above 100 gigahertz has, until now, confined high-power pulsed EPR to magnetic fields of 3.5 teslas and below. Here we demonstrate that one-kilowatt pulses from a free-electron laser can power a pulsed EPR spectrometer at 240 gigahertz (8.5 teslas), providing transformative enhancements over the alternative, a state-of-the-art ?30-milliwatt solid-state source. Our spectrometer can rotate spin-1/2 electrons through ?/2 in only 6 nanoseconds (compared to 300 nanoseconds with the solid-state source). Fourier-transform EPR on nitrogen impurities in diamond demonstrates excitation and detection of EPR lines separated by about 200 megahertz. We measured decoherence times as short as 63 nanoseconds, in a frozen solution of nitroxide free-radicals at temperatures as high as 190 kelvin. Both free-electron lasers and the quasi-optical technology developed for the spectrometer are scalable to frequencies well in excess of one terahertz, opening the way to high-power pulsed EPR spectroscopy up to the highest static magnetic fields currently available. PMID:22996555

Takahashi, S; Brunel, L-C; Edwards, D T; van Tol, J; Ramian, G; Han, S; Sherwin, M S

2012-09-20

106

Recombinant locust apolipophorin III: characterization and NMR spectroscopy  

Microsoft Academic Search

Apolipophorin III (apoLp-III) from the locust Locusta migratoria is an exchangeable apolipoprotein that reversibly binds to lipoproteins. During lipid binding the protein has been proposed to undergo a major conformational change. To study the mechanism of lipid binding we have cloned and expressed recombinant protein in bacteria, permitting stable isotope enrichment for heteronuclear NMR spectroscopy and site-directed mutagenesis. The cDNA

Paul M. M. Weers; Jianjun Wang; Dick J. Van der Horst; Cyril M. Kay; Brian D. Sykes; Robert O. Ryan

1998-01-01

107

NMR spectroscopy around filling factor three  

NASA Astrophysics Data System (ADS)

We probe the spin signatures of a two-dimensional electron system, confined to a GaAs quantum well, around filling factor three (?˜3) using resistively detected nuclear magnetic resonance (RDNMR) spectroscopy at milliKelvin temperatures. Whereas the existence of spin textures, known as skyrmions, around filling factor one is well established, an understanding of the spin degrees of freedom for odd-integer states in higher Landau levels remains elusive. It is believed that for skyrmions to exist at ?˜3, the Zeeman energy needs to be smaller than in the case of ?˜1 [1]. We measured the spin-lattice relaxation time, T1, which is sensitive to these spin textures as they trigger a rapid nuclear spin relaxation. Our T1 measurements around ?= 3 at 5 T find a small spin-lattice relaxation rate, suggesting the absence of skyrmions. In addition, our Knight shift measurements corroborate this interpretation. Furthermore, we report striking anomalies in the RDNMR spectral line shape and discuss their origin in conjunction with our findings. * [1]N. R. Cooper, Phys. Rev. B 55, R1934 (1997).

Rhone, Trevor David; Tiemann, Lars; Muraki, Koji

2013-03-01

108

Unraveling photoexcited conformational changes of bacteriorhodopsin by time resolved electron paramagnetic resonance spectroscopy.  

PubMed Central

By means of time-resolved electron paramagnetic resonance (EPR) spectroscopy, the photoexcited structural changes of site-directed spin-labeled bacteriorhodopsin are studied. A complete set of cysteine mutants of the C-D loop, positions 100-107, and of the E-F loop, including the first alpha-helical turns of helices E and F, positions 154-171, was modified with a methanethiosulfonate spin label. The EPR spectral changes occurring during the photocycle are consistent with a small movement of helix C and an outward tilt of helix F. These helix movements are accompanied by a rearrangement of the E-F loop and of the C-terminal turn of helix E. The kinetic analysis of the transient EPR data and the absorbance changes in the visible spectrum reveals that the conformational change occurs during the lifetime of the M intermediate. Prominent rearrangements of nitroxide side chains in the vicinity of D96 may indicate the preparation of the reprotonation of the Schiff base. All structural changes reverse with the recovery of the bacteriorhodopsin initial state.

Rink, T; Pfeiffer, M; Oesterhelt, D; Gerwert, K; Steinhoff, H J

2000-01-01

109

Ultrasensitive microwave spectroscopy of paramagnetic impurities in sapphire crystals at millikelvin temperatures  

NASA Astrophysics Data System (ADS)

Progress in the emerging field of engineered quantum systems requires the development of devices that can act as quantum memories. The realization of such devices by doping solid-state cavities with paramagnetic ions imposes a tradeoff between ion concentration and cavity coherence time. Here, we investigate an alternative approach involving interactions between photons and naturally occurring impurity ions in ultrapure crystalline microwave cavities exhibiting exceptionally high quality factors. We implement a hybrid whispering gallery/electron spin resonance method to perform rigorous spectroscopy of an undoped single-crystal sapphire resonator over the frequency range 8-19 GHz, and at external applied DC magnetic fields up to 0.9 T. Measurements of high-purity sapphire cooled close to 100 mK reveal the presence of Fe3+, Cr3+, and V2+ impurities. A host of electron transitions are measured and identified, including the two-photon classically forbidden quadrupole transition (?ms=2) for Fe3+, as well as hyperfine transitions of V2+.

Farr, Warrick G.; Creedon, Daniel L.; Goryachev, Maxim; Benmessai, Karim; Tobar, Michael E.

2013-12-01

110

A novel 5 displacement spin-labeling technique for electron paramagnetic resonance spectroscopy of RNA.  

PubMed Central

An RNA spin-labeling technique was developed using the well-characterized interaction between the HIV Rev peptide and the Rev response element (RRE) RNA as a model system. Spin-labeled RNA molecules were prepared by incorporating guanosine monophosphorothioate (GMPS) at the 5' end using T7 RNA polymerase and then covalently attaching a thiol-specific nitroxide spin label. Three different constructs of the RRE RNA were made by strategically displacing the 5' end within the native three-dimensional structure. Nitroxide-to-nitroxide distance measurements were made between the specifically bound RNA and peptide using electron paramagnetic resonance (EPR) spectroscopy. The dipolar EPR method can reliably measure distances up to 25 A, the calculation of which is derived from the 1/r3 dependence of the broadening of EPR lines in motionally frozen samples. This RNA-labeling technique, dubbed 5' displacement spin labeling, extends the usefulness of the dipolar EPR method developed for analysis of protein structure. The advantage of this technique is that it is applicable to large RNA systems such as the ribosome, which are difficult to study by other structural methods.

Macosko, J C; Pio, M S; Tinoco, I; Shin, Y K

1999-01-01

111

(57)Fe Mössbauer spectroscopy and electron paramagnetic resonance studies of human liver ferritin, Ferrum Lek and Maltofer®.  

PubMed

A human liver ferritin, commercial Ferrum Lek and Maltofer® samples were studied using Mössbauer spectroscopy and electron paramagnetic resonance. Two Mössbauer spectrometers have been used: (i) a high velocity resolution (4096 channels) at 90 and 295K, (ii) and a low velocity resolution (250 channels) at 20 and 40K. It is shown that the three studied materials have different superparamagnetic features at various temperatures. This may be caused by different magnetic anisotropy energy barriers, sizes (volume), structures and compositions of the iron cores. The electron paramagnetic resonance spectra of the ferritin, Ferrum Lek and Maltofer® were decomposed into multiple spectral components demonstrating the presence of minor ferro- or ferrimagnetic phases along with revealing marked differences among the studied substances. Mössbauer spectroscopy provides evidences on several components in the measured spectra which could be related to different regions, layers, nanocrystallites, etc. in the iron cores that coincides with heterogeneous and multiphase models for the ferritin iron cores. PMID:24762570

Alenkina, I V; Oshtrakh, M I; Klencsár, Z; Kuzmann, E; Chukin, A V; Semionkin, V A

2014-09-15

112

Spin dynamics in the paramagnetic phase of YBa2Cu3O6.12 as seen by Cu NMR  

NASA Astrophysics Data System (ADS)

We report a Cu nuclear magnetic resonance (NMR) study at both Cu sites in the paramagnetic phase of YBa2Cu3O6.12. By measuring the temperature dependence of the magnetic shift and the spin-lattice relaxation time, we have obtained the following major results. Above 500 K, the compound is in the renormalized classical regime of a two-dimensional quantum Heisenberg antiferromagnet (AF) with spin S=1/2. We have determined the temperature dependence of the AF correlation length, a value for the hyperfine coupling constant at the plane Cu(2) site, \\|Aab-4B\\|=117(3) kOe/?B, and the effective magnetic moment, ?eff=0.68(2)?B. Below 500 K, the individual layers start to couple into pairs and the temperature dependence of the AF correlation length abruptly crosses over to a faster increase when TN is approached; the corresponding effective AF in-plane coupling constant becomes Jeff=4100 K. A comparison with quantum Monte Carlo calculations allows one to estimate an intrabilayer coupling constant, Jb/J<~0.01, which is significantly smaller than Jb/J=0.08 as obtained by neutron-scattering experiments. Only ~4 K above TN, also the bilayers begin to couple. A further crossover has been observed in the Cu(2) spin-fluctuation symmetry: from XY-like fluctuations around TN to isotropic fluctuations at ~500 K. Due to its high value, TN does not depend on the orientation of the applied magnetic field of 5.16 T.

Pozzi, R.; Mali, M.; Brinkmann, D.; Erb, A.

1999-10-01

113

Identification of Pd 3+ ions in zeolite L by temperature programmed reduction and electron paramagnetic resonance spectroscopy  

Microsoft Academic Search

Pd supported on KL zeolite has been studied by temperature programmed reduction (TPR) and electron paramagnetic resonance (EPR) spectroscopy. It has been found that upon calcination in pure oxygen Pd3+ and Pd2+ ions are formed; the Pd3+ ions are identified by their EPR signal. As Pd3+ ions in the cancrinite cages are difficult to reduce, the H2 consumption in conventional

Sanjay N. Gandhi; Guan-Dao Lei; Wolfgang M. H. Sachtler

1993-01-01

114

Chirality in gold nanoclusters probed by NMR spectroscopy.  

PubMed

We report the analysis of chirality in atomically precise gold nanoclusters by nuclear magnetic resonance (NMR) spectroscopic probing of the surface ligands. The Au(38)(SR)(24) and Au(25)(SR)(18) (where, R = CH(2)CH(2)Ph) are used as representative models for chiral and nonchiral nanoclusters, respectively. Interestingly, different (1)H signals for the two germinal protons in each CH(2) of the ligands on the chiral Au(38)(SR)(24) nanocluster were observed, so-called diastereotopicity. For ?-CH(2) (closest to the chiral metal core), a chemical shift difference of up to ~0.8 ppm was observed. As for the nonchiral Au(25)(SCH(2)CH(2)Ph)(18)(-)TOA(+) nanocluster, no diastereotopicity was detected (i.e., no chemical shift difference for the two protons in the CH(2)), confirming the Au(25) core being nonchiral. These two typical examples demonstrate that NMR spectroscopy can be a useful tool for investigating chirality in Au nanoclusters. Since the diastereotopicity induced on the methylene protons by chiral nanoclusters is independent of the enantiomeric composition of the chiral particles, NMR can probe the chirality of the nanoclusters even in the case of a racemic mixture, while circular dichroism spectroscopy is not useful for racemic mixtures. PMID:21981416

Qian, Huifeng; Zhu, Manzhou; Gayathri, Chakicherla; Gil, Roberto R; Jin, Rongchao

2011-11-22

115

Simulation of selective pulse techniques for localized NMR spectroscopy  

NASA Astrophysics Data System (ADS)

The results of a computer simulation investigation delineating the limits of resolution, sensitivity, and accuracy of the depth- resolved suface-coil spectroscopy (DRESS), volume-selective excitation (VSE), and image-selected in vivo spectroscopy (ISIS) methods for achieving spatially localized NMR spectroscopy are presented. A computer program, which numerically solves the Bloch equations for variable input parameters, is used to simulate the spatial localization afforded by each technique. Because the numerical solution of the Bloch equations describes the behavior of the bulk magnetization with great precision, the simulations provide an objective and realistic means of evaluating the performance of the individual localization schemes and reveal nuances and limitations not discussed in the original experimental papers. The results of this computer simulation study should encourage the optimization of localization methodology for use in specific applications.

Garwood, Michael; Schleich, Thomas; Robin Bendall, M.

116

Paramagnetic 1H NMR spectrum of nickel(II) pseudoazurin: investigation of the active site structure and the acid and alkaline transitions.  

PubMed

The paramagnetic (1)H NMR spectrum of Ni(II) pseudoazurin [(PA)Ni(II)] possesses a number of resonances exhibiting sizable Fermi-contact shifts. These have been assigned to protons associated with the four ligating amino acids, His40, Cys78, His81, and Met86. The shifts experienced by the C(gamma)H protons of the axial Met86 ligand are unprecedented compared to other Ni(II)- and Co(II)-substituted cupredoxins (the C(gamma)(1)H signal is found at 432.5 ppm at 25 degrees C). The large shift of protons of the axial Met86 ligand highlights a strong Ni(II)-S(Met) interaction in (PA)Ni(II). The paramagnetic (1)H NMR spectrum of (PA)Ni(II) is altered by decreasing and increasing the pH value from 8.0. At acidic pH a number of the hyperfine-shifted resonances undergo limited changes in their chemical shift values. This effect is assigned to the surface His6 residue whose protonation results in a structural modification of the active site. Increasing the pH value from 8.0 has a more significant effect on the paramagnetic (1)H NMR spectrum of (PA)Ni(II), and the alkaline transition can now be assigned to two surface lysine residues close to the active site of the protein. The effect of altering pH on the (1)H NMR spectrum of Ni(II) pseudoazurin is smaller than that previously observed in the Cu(II) protein indicating more limited structural rearrangements at the non-native metal site. PMID:12470061

Dennison, Christopher; Sato, Katsuko

2002-12-16

117

Mitochondria-targeted antioxidant promotes recovery of skeletal muscle mitochondrial function after burn trauma assessed by in vivo 31P nuclear magnetic resonance and electron paramagnetic resonance spectroscopy.  

PubMed

Burn injury causes a major systemic catabolic response that is associated with mitochondrial dysfunction in skeletal muscle. We investigated the effects of the mitochondria-targeted peptide antioxidant Szeto-Schiller 31 (SS-31) on skeletal muscle in a mouse burn model using in vivo phosphorus-31 nuclear magnetic resonance ((31)P NMR) spectroscopy to noninvasively measure high-energy phosphate levels; mitochondrial aconitase activity measurements that directly correlate with TCA cycle flux, as measured by gas chromatography mass spectrometry (GC-MS); and electron paramagnetic resonance (EPR) to assess oxidative stress. At 6 h postburn, the oxidative ATP synthesis rate was increased 5-fold in burned mice given a single dose of SS-31 relative to untreated burned mice (P=0.002). Furthermore, SS-31 administration in burned animals decreased mitochondrial aconitase activity back to control levels. EPR revealed a recovery in redox status of the SS-31-treated burn group compared to the untreated burn group (P<0.05). Our multidisciplinary convergent results suggest that SS-31 promotes recovery of mitochondrial function after burn injury by increasing ATP synthesis rate, improving mitochondrial redox status, and restoring mitochondrial coupling. These findings suggest use of noninvasive in vivo NMR and complementary EPR offers an approach to monitor the effectiveness of mitochondrial protective agents in alleviating burn injury symptoms. PMID:23482635

Righi, Valeria; Constantinou, Caterina; Mintzopoulos, Dionyssios; Khan, Nadeem; Mupparaju, S P; Rahme, Laurence G; Swartz, Harold M; Szeto, Hazel H; Tompkins, Ronald G; Tzika, A Aria

2013-06-01

118

Anomalous resonances in 29Si and 27Al NMR spectra of pyrope ([Mg,Fe]3Al2Si3O12) garnets: effects of paramagnetic cations.  

PubMed

In oxide and silicate materials, particularly naturally-occurring minerals with contents of iron oxides greater than a few percent, paramagnetic impurities are well-known to broaden MAS NMR peaks, decrease relaxation times, and even cause overall loss of signal intensity. However, detection of resolved, discrete peaks that are shifted in frequency by nearby unpaired electron spins is rare in such systems. We report here high-resolution (27)Al and (29)Si spectra for synthetic and natural samples of pyrope garnet ([Mg,Fe](3)Al(2)Si(3)O(12)), the latter containing up to 3.5 wt% FeO. For both nuclides, spectra contain anomalous NMR peaks at frequencies that are 25 to 200 ppm from normal ranges, possibly through pseudocontact shifts induced by paramagnetic cations. Quantitation of peak areas suggests that signals from nuclides with such cations in their first shell may be broadened enough to be unobservable, while those with paramagnetics in their second cation shells may be substantially shifted. Overall spin-lattice relaxation rates are greatly enhanced by such impurities, and shifted resonances relax much faster than the unshifted main peaks. A high symmetry crystal structure (in this case cubic), which limits the number of different cation-cation distances in each shell, combined with a relatively low (non-cubic) symmetry for the sites hosting the magnetic cations, may be needed to readily detect such features. PMID:19652824

Stebbins, Jonathan F; Kelsey, Kimberly E

2009-08-28

119

Quantitative analysis of hydrogen peroxide by 1H NMR spectroscopy.  

PubMed

A technique utilizing 1H NMR spectroscopy has been developed to measure the concentration of hydrogen peroxide from 10(-3) to 10 M. Hydrogen peroxide produces a peak at around 10-11 ppm, depending upon the interaction between solvent molecules and hydrogen peroxide molecules. The intensity of this peak can be monitored once every 30 s, enabling the measurement of changes in hydrogen peroxide concentration as a function of time. 1H NMR has several advantages over other techniques: (1) applicability to a broad range of solvents, (2) ability to quantify hydrogen peroxide rapidly, and (3) ability to follow reactions forming and/or consuming hydrogen peroxide as a function of time. As an example, this analytical technique has been used to measure the concentration of hydrogen peroxide as a function of time in a study of hydrogen peroxide decomposition catalyzed by iron(III) tetrakispentafluorophenyl porphyrin. PMID:15756600

Stephenson, Ned A; Bell, Alexis T

2005-03-01

120

Drug solubilization mechanism of ?-glucosyl stevia by NMR spectroscopy.  

PubMed

We investigated the drug solubilization mechanism of ?-glucosyl stevia (Stevia-G) which was synthesized from stevia (rebaudioside-A) by transglycosylation. (1)H and (13)C NMR peaks of Stevia-G in water were assigned by two-dimensional (2D) NMR experiments including (1)H-(1)H correlation, (1)H-(13)C heteronuclear multiple bond correlation, and (1)H-(13)C heteronuclear multiple quantum coherence spectroscopies. The (1)H and (13)C peaks clearly showed the incorporation of two glucose units into rebaudioside-A to produce Stevia-G, supported by steviol glycoside and glucosyl residue assays. The concentration-dependent chemical shifts of Stevia-G protons correlated well with a mass-action law model, indicating the self-association of Stevia-G molecules in water. The critical micelle concentration (CMC) was 12.0 mg/mL at 37°C. The aggregation number was 2 below the CMC and 12 above the CMC. Dynamic light scattering and 2D (1)H-(1)H nuclear Overhauser effect spectroscopy (NOESY) NMR experiments demonstrated that Stevia-G self-associated into micelles of a few nanometers in size with a core-shell structure, containing a kaurane diterpenoid-based hydrophobic core and a glucose-based shell. 2D (1)H-(1)H NOESY NMR measurements also revealed that a poorly water-soluble drug, naringenin, was incorporated into the hydrophobic core of the Stevia-G micelle. The Stevia-G self-assembly behavior and micellar drug inclusion capacity can achieve significant enhancement in drug solubility. PMID:24508331

Zhang, Junying; Higashi, Kenjirou; Ueda, Keisuke; Kadota, Kazunori; Tozuka, Yuichi; Limwikrant, Waree; Yamamoto, Keiji; Moribe, Kunikazu

2014-04-25

121

Characterization of iron, manganese, and copper synthetic hydroxyapatites by electron paramagnetic resonance spectroscopy  

NASA Technical Reports Server (NTRS)

The incorporation of micronutrients (e.g., Fe, Mn, Cu) into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in NASA's Advanced Life Support (ALS) program for long-duration space missions. Separate Fe3+ (Fe-SHA), Mn2+ (Mn-SHA), and Cu2+ (Cu-SHA) containing SHA materials were synthesized by a precipitation method. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the location of Fe3+, Mn2+, and Cu2+ ions in the SHA structure and to identify other Fe(3+)-, Mn(2+)-, and Cu(2+)-containing phases that formed during precipitation. The EPR parameters for Fe3+ (g=4.20 and 8.93) and for Mn2+ (g=2.01, A=9.4 mT, D=39.0 mT and E=10.5 mT) indicated that Fe3+ and Mn2+ possessed rhombic ion crystal fields within the SHA structure. The Cu2+ EPR parameters (g(z)=2.488, A(z)=5.2 mT) indicated that Cu2+ was coordinated to more than six oxygens. The rhombic environments of Fe3+ and Mn2+ along with the unique Cu2+ environment suggested that these metals substituted for the 7 or 9 coordinate Ca2+ in SHA. The EPR analyses also detected poorly crystalline metal oxyhydroxides or metal-phosphates associated with SHA. The Fe-, Mn-, and Cu-SHA materials are potential slow release sources of Fe, Mn, and Cu for ALS and terrestrial cropping systems.

Sutter, B.; Wasowicz, T.; Howard, T.; Hossner, L. R.; Ming, D. W.

2002-01-01

122

Soil meso- and microporosity studied by 129Xe nmr spectroscopy of adsorbed xenon  

NASA Astrophysics Data System (ADS)

The pore structure of soil significantly affects its density and the transport of water, air, nutrients and pollutants through the soil. Micropores (< 2 nm) play a special role in sorption processes, since most of the soil surface area is located in such pores. Meso- and macropores (2 - 50 nm and >50 nm, respectively) act as a transport system, the former pores provide an access to micropores. Despite of significant progress in evaluating soil porosity by the use of electron microscopy, mercury intrusion porosimetry and standard adsorption methods, many aspects still need further examination. In the present contribution, 129Xe NMR spectroscopy of adsorbed xenon was applied for the first time for the characterisation of soil meso- and microporosity. Soils with different texture were studied. The impact of organic matter on the porosity of the mineral phase was analysed. Also, we examined the influence of paramagnetic soil constituents on the 129Xe resonance parameters. The study of the model system, Ca-montmorillonite, demonstrated that quantitative information about pore sizes in soil related materials can be provided, if the impact of paramagnetic species is avoided. In natural soils, the pores within the mineral phase can be analysed for relatively large particles (>20-50 µm), where the 129Xe resonance parameters are not affected by xenon exchange between intra- and interparticle void spaces. In contrast, for the clay-sized fractions the combined internal - external pore system is probed. The presence of micropores (< 2 nm) can always be inferred from the observed 129Xe downfield shifts increasing with xenon pressure. In contrast, spectral lines close to the xenon gas line position suggest adsorption in large interparticle pores. In the studied soils (Luvisol, Gleysol and Podzol) no micropores within the mineral phase available for xenon adsorption were found. The possible reason is that such pores are occupied by small molecules of the soil organic matter. When xenon exchange between different adsorption zones (e.g., pores of differing size) was slow on an NMR time scale, separate signals were distinguished, each characterising xenon behaviour in the respective adsorption zone. Variable extent of accessibility of mesopores within the mineral phase of the various soils has been revealed. In Podzol it was shown to be higher than in other soils studied. A model for the possible mutual location of organic matter and iron species in natural soils is suggested. Complementary studies using standard adsorption methods were performed and they showed a good coincidence with the 129Xe NMR results.

Filimonova, S.; Knicker, H.; Häusler, W.; Kögel-Knabner, I.

2003-04-01

123

Stimulated Anti-Echo Selection in Spatially Localized NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

Spectral localization using the stimulated-echo acquisition mode (STEAM) is one of the most popular methods in volume-localized in vivoNMR spectroscopy. The localized volume signal is generated via stimulated echoes from spins excited by three 90° RF pulses, and the conventional STEAM sequence detects the stimulated-echo signal. From an analysis of the STEAM pulse sequence using the coherence transfer pathway formalism, stimulated anti-echoes are also formed by the same pulse sequence, which constitute the other half of the localized signal in the STEAM experiment. A new scheme of pulsed field gradients for the selection of stimulated anti-echoes was proposed, and localized spectroscopy in the stimulated anti-echo selection mode was achieved on a phantom and from in vivorat brain.

Zhu, Jian-Ming; Smith, Ian C. P.

1999-01-01

124

Report on neptunium speciation by NMR and optical spectroscopies  

SciTech Connect

Hydrolysis and carbonate complexation reactions were examined for NpO{sub 2}{sup 2+} and NpO{sub 2}{sup +} ions by a variety of techniques including potentiometric titration, UV-Vis-NIR and NMR spectroscopy. The equilibrium constant for the reaction 3NpO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} + 3H{sup +} {rightleftharpoons} (NpO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} + 3HCO{sub 3}{sup {minus}} was determined to be logK = 19.7 ({plus_minus} 0.8) (I = 2.5 m). {sup 17}O NMR spectroscopy of NpO{sub 2}{sup n+} ions (n = 1,2) reveals a readily observable {sup 17}O resonance for n = 2, but not for n = 1. The first hydrolysis constant for NpO{sub 2}{sup +} was studied as a function of temperature, and the functional form for the temperature-dependent equilibrium constant for the reaction written as NpO{sub 2}{sup +} + H{sub 2}O {rightleftharpoons} NpO{sub 2}OH + H{sup +} was found to be logK = 2.28 {minus} 3780/T, where T is in {degree}K. Finally, the temperature dependence of neptunium(V) carbonate complexation constants was studied. For the first carbonate complexation constant, the appropriate functional form was found to be log{beta}{sub 01} = 1.47 + 786/T.

Tait, C.D.; Palmer, P.D.; Ekberg, S.A.; Clark, D.L.

1995-11-01

125

Galactose oxidase models: insights from 19F NMR spectroscopy.  

PubMed

(19)F labelled tripodal ligands that possess a N(3)O donor set (one phenol, one tertiary amine and either two pyridines or one pyridine and one quinoline) have been synthesized. The fluorine is incorporated either at the phenol O-donor (HL(F) and HL(CF3)) or at the quinoline N-donor (HLq(OMe) and HLq(NO2)). The copper(ii)-phenol complexes (2H)(2+), (1H)(2+), (3H)(2+) and (4H)(2+) as well as the corresponding copper(ii)-phenolate complexes have been characterized. X-Ray diffraction reveals an increase in the oxygen-copper bond distance of more than 0.4 A upon protonation of the phenolate moiety of (4)(+). Protonation is accompanied by an axial to equatorial isomerization of the quinoline group. DFT calculations show that stretching of the Cu-O(phenol) bond, pi-stacking interactions and rotation of the pyridine are key steps in this isomerization process. Protonation, and thus changes in the oxygen-copper bond distance induce either a decrease ((1H)(2+), (2H)(2+)) or an increase ((3H)(2+) and (4H)(2+)) in the copper-fluorine distance that could be monitored by (19)F NMR. In the former case, a broadening of the (19)F NMR signal is observed, whereas a sharpening is observed in the latter case. Temperature dependent (19)F NMR measurements on equimolar mixtures of the phenol and phenolate complexes of (3)(+) and (4)(+) reveal rate constants for proton transfer and/or isomerization of 3000 +/- 100 s(-1) and 2900 +/- 100 s(-1), respectively, at the coalescence temperature. This temperature was found to be strongly affected by the phenol para-substituent as it is 226 K and ca. 330 K for (3)(+) and (4)(+), respectively. A phenoxyl radical species ((3 )(2+)) could be generated and characterized for the first time by (19)F NMR spectroscopy. PMID:19156277

Michel, Fabien; Hamman, Sylvain; Philouze, Christian; Del Valle, Carlos Perez; Saint-Aman, Eric; Thomas, Fabrice

2009-02-01

126

27Al and 29Si NMR spectroscopy of MgSiO3 perovskite: mechanisms of Al and Fe incorporation  

NASA Astrophysics Data System (ADS)

The boundary between the Earth's upper and lower mantle is generally attributed to the decomposition of (Mg,Fe)2SiO4 ringwoodite into ferropericlase and perovskite-structured (Mg,Fe)SiO3, hereafter perovskite. Concomitant with this phase change is the more gradual disappearance of a separate Al-bearing phase (majoritic garnet) and dissolution of Al into perovskite. The mechanism of Al incorporation is strongly affected by the presence of Fe due to the co-substitution of Al3+ and Fe3+ for Si4+ and Mg2+, respectively. However, questions about specific substitution mechanisms, site occupancy, and long- and short-range ordering of Fe and Al are still not fully understood. These are questions that NMR is particularly suited to address. We are applying Mossbauer, and 27Al and 29Si MAS-NMR spectroscopy to a series of Al- and Fe-bearing MgSiO3 perovskites of nominal composition Mg1-xFexSi1-xAlxO3 (x = 0.01, 0.025, 0.05). These were synthesized in a multi-anvil cell press at 26 GPa and 1900°C from either glassy starting material or Fe-bearing, aluminous pyroxene synthesized at 8-10 GPa and 1200°C. 29Si spectra show the presence of only a narrow perovskite peak at -191.7 ppm and a broad peak at -81 ppm from an amorphous phase likely formed when crushing the multi-anvil run products. 27Al spectra contain one narrow peak at 6.4 ppm and one broad peak at -14.6 ppm, matching those seen in previous NMR studies of aluminous perovskite and corresponding to Al3+ substituting for Si4+ and Mg2+ respectively. The ratio of observable Al3+ in Si4+ vs. that in Mg2+ sites ranges from 5.5 to 6.3 when the signal to noise of the -14.6 ppm peak is sufficient for quantitation. NMR spectra of materials containing paramagnetic species (i.e. Fe2+ or Fe3+) are often complicated and difficult to interpret due to line broadening, signal loss, "contact" shifts, etc. However, with an understanding of paramagnetic interactions in NMR spectroscopy, valuable information can be gained about some Fe-bearing geological materials. For the pyroxene starting materials used here, NMR signal loss increases linearly with increasing Fe content, an expected result given the likely uncoupled substitution of Fe2+ and Al3+ in these materials. However, 27Al signal loss for the perovskite samples is non-linear with a nearly constant value going from Fe/(Fe + Mg) = 0.01 to 0.025 indicating strong ordering of Fe3+ and Al3+ onto adjacent crystallographic sites. Complete signal loss at Fe/(Fe + Mg) = 0.05 suggests the upper limit of Fe2+ and Fe3+ concentration at which useful NMR data can be obtained for this system. The results of this study are a start to a better understanding of the mechanism of solution of Fe and Al in perovskite and continued work on this problem could provide valuable information on this important lower mantle phase. In addition, this study has potential to give us more general insights into paramagnetic interactions in NMR spectroscopy of geological materials.

Palke, A.; Stebbins, J. F.; Frost, D. J.; McCammon, C. A.

2011-12-01

127

The inherent accuracy of 1H NMR spectroscopy to quantify plasma lipoproteins is subclass dependent  

Microsoft Academic Search

Proton NMR spectroscopy as a means to quantify lipoprotein subclasses has received wide clinical interest. The experimental part is a fast routine procedure that contrasts favourably to other lipoprotein measurement protocols. The difficulties in using 1H NMR, however, are in uncovering the subclass specific information from the overlapping data. The NMR-based quantification has been evaluated only in relation to biochemical

Mika Ala-Korpela; Niko Lankinen; Aino Salminen; Teemu Suna; Pasi Soininen; Reino Laatikainen; Petri Ingman; Matti Jauhiainen; Marja-Riitta Taskinen; Károly Héberger; Kimmo Kaski

2007-01-01

128

In vivo two-dimensional NMR correlation spectroscopy  

NASA Astrophysics Data System (ADS)

The poor resolution of in-vivo one- dimensional nuclear magnetic resonance spectroscopy (NMR) has limited its clinical potential. Currently, only the large singlet methyl resonances arising from N-acetyl aspartate (NAA), choline, and creatine are quantitated in a clinical setting. Other metabolites such as myo- inositol, glutamine, glutamate, lactate, and ?- amino butyric acid (GABA) are of clinical interest but quantitation is difficult due to the overlapping resonances and limited spectral resolution. To improve the spectral resolution and distinguish between overlapping resonances, a series of two- dimensional chemical shift correlation spectroscopy experiments were developed for a 1.5 Tesla clinical imaging magnet. Two-dimensional methods are attractive for in vivo spectroscopy due to their ability to unravel overlapping resonances with the second dimension, simplifying the interpretation and quantitation of low field NMR spectra. Two-dimensional experiments acquired with mix-mode line shape negate the advantages of the second dimension. For this reason, a new experiment, REVOLT, was developed to achieve absorptive mode line shape in both dimensions. Absorptive mode experiments were compared to mixed mode experiments with respect to sensitivity, resolution, and water suppression. Detailed theoretical and experimental calculations of the optimum spin lock and radio frequency power deposition were performed. Two-dimensional spectra were acquired from human bone marrow and human brain tissue. The human brain tissue spectra clearly reveal correlations among the coupled spins of NAA, glutamine, glutamate, lactate, GABA, aspartate and myo-inositol obtained from a single experiment of 23 minutes from a volume of 59 mL. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

Kraft, Robert A.

1999-10-01

129

Paramagnetic 13C and 15N NMR analyses of the push and pull effects in cytochrome c peroxidase and Coprinus cinereus peroxidase variants: functional roles of highly conserved amino acids around heme.  

PubMed

Paramagnetic (13)C and (15)N nuclear magnetic resonance (NMR) spectroscopy of heme-bound cyanide ((13)C(15)N) was applied to 11 cytochrome c peroxidase (CcP) and Coprinus cinereus peroxidase (CIP) mutants to investigate contributions to the push and pull effects of conserved amino acids around heme. The (13)C and (15)N NMR data for the distal His and Arg mutants indicated that distal His is the key amino acid residue creating the strong pull effect and that distal Arg assists. The mutation of distal Trp of CcP to Phe, the amino acid at this position in CIP, changed the push and pull effects so they resembled those of CIP, whereas the mutation of distal Phe of CIP to Trp changed this mutant to become CcP-like. The (13)C NMR shifts for the proximal Asp mutants clearly showed that the proximal Asp-His hydrogen bonding strengthens the push effect. However, even in the absence of a hydrogen bond, the push effect of proximal His in peroxidase is significantly stronger than in globins. Comparison of these NMR data with the compound I formation rate constants and crystal structures of these mutants showed that (1) the base catalysis of the distal His is more critical for rapid compound I formation than its acid catalysis, (2) the primary function of the distal Arg is to maintain the distal heme pocket in favor of rapid compound I formation via hydrogen bonding, and (3) the push effect is the major contributor to the differential rates of compound I formation in wild-type peroxidases. PMID:19954239

Nonaka, Daisuke; Wariishi, Hiroyuki; Welinder, Karen G; Fujii, Hiroshi

2010-01-12

130

X-ray photoelectron spectroscopy and paramagnetic resonance evidence for shock-induced intramolecular bond breaking in some energetic solids  

NASA Astrophysics Data System (ADS)

Solid samples of 1,3,5, trinitro 1,3,5, triazacyclohexane (RDX), trinitrotoluene (TNT), and ammonium nitrate were subjected to shock pulses of strength and duration less than the threshold to cause detonation. The recovered shocked samples were studied by x-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The results of these measurements indicate that the shock pulse either broke or altered the internal bonds of the molecules of the solid. The results of the shock decomposition are compared with measurements of the uv and slow thermal decomposition of these materials using the same experimental techniques.

Owens, F. J.; Sharma, J.

1980-03-01

131

Electron paramagnetic resonance and electron nuclear double resonance spectroscopy at 275 GHz  

Microsoft Academic Search

A spectrometer for Electron Paramagnetic Resonance (EPR), operating at the very high microwave frequency of 275 GHz in both continuous wave (cw) and pulsed mode, is described and its capabilities are illustrated. A superconducting magnet provides the magnetic field up to 12 Tesla and experiments are possible between room temperature and 5 K. The system utilizes pseudo-optical techniques to minimize

Huibrecht Blok

2006-01-01

132

Paramagnetic hyperfine interactions of iron in solid ammonia from Moessbauer spectroscopy.  

National Technical Information Service (NTIS)

Moessbauer studies on highly dilute (sup 57)Fe in solid ammonia are reported. The hyperfine parameters of the paramagnetic reaction product FeNH(sub 3) point to a nearly atomic configuration of iron (Ar)3d(sup 7)4s. The electronic spin relaxation slows do...

F. J. Litterst E. M. B. Saitovitch J. Terra

1988-01-01

133

Covariance NMR in higher dimensions: application to 4D NOESY spectroscopy of proteins  

Microsoft Academic Search

Elucidation of high-resolution protein structures by NMR spectroscopy requires a large number of distance constraints that\\u000a are derived from nuclear Overhauser effects between protons (NOEs). Due to the high level of spectral overlap encountered\\u000a in 2D NMR spectra of proteins, the measurement of high quality distance constraints requires higher dimensional NMR experiments.\\u000a Although four-dimensional Fourier transform (FT) NMR experiments can

David A. Snyder; Fengli Zhang; Rafael Brüschweiler

2007-01-01

134

'Shim pulses' for NMR spectroscopy in inhomogeneous magneticfields  

SciTech Connect

NMR spectroscopy conveys information about chemical structure through ppm-scale shifts of the resonance frequency depending on the chemical environment. In order to observe these small shifts, magnets with highly homogeneous magnetic field B{sub 0} are used. The high cost and large size of these magnets are a consequence of the requirement for high homogeneity. In this contribution we introduce a new method for recording high-resolution NMR spectra from samples in inhomogeneous B{sub 0}, opening up the possibility of exploiting magnets of lower homogeneity and cost. Instead of using the traditional B{sub 0} ''shim coils'', adiabatic radiofrequency (RF) pulse sequences and modulated B{sub 0} gradients generated by coils in the probe are used to produce ''shim pulses''. A great deal of work has been devoted to finding methods for retrieving chemical shift information even when B{sub 0} is inhomogeneous. One class of methods relies on zero- or multiple quantum coherences which evolve independently of B{sub 0}. These methods are inherently two-dimensional and the high-resolution information is obtained indirectly. In order to minimize experimental time it is desirable to acquire a high-resolution spectrum directly just as for traditional NMR in homogeneous fields. A further advantage with direct acquisition is that modification of already existing multidimensional NMR techniques is facilitated. A fundamentally different approach utilizes inhomogeneity of the RF magnetic field to periodically refocus the phase dispersion from the inhomogeneous B{sub 0}. With this technique a high-resolution spectrum can indeed be acquired in a single shot. The main drawback is the requirement for spatial matching between the RF and B{sub 0} inhomogeneities. Based on this latter technique we propose the use of ''shim pulses'', i.e. modulated, spatially constant, B{sub 0} gradient pulses together with spatially homogeneous adiabatic frequency sweeps to induce non-linear phase shifts in three dimensions. An intuitive understanding of the approach can be obtained from the following: An adiabatic full passage applied to transverse magnetization effectively rotates the magnetization in the transverse plane with an amount that depends on the frequency offset. In homogeneous B{sub 0} this gives rise to a ''phase roll'' across the NMR spectrum. If the adiabatic full passage is applied in the presence of a constant B{sub 0} gradient, a phase shift approximately linear in space will be the result. A second adiabatic passage reverses this phase shift and the adiabatic double passage constitutes effectively a 360{sup o} pulse. However, if the amplitude of the B{sub 0} gradient is changing during the adiabatic passages, phase shifts, which are non-linear in space, can be achieved. With a proper choice of the RF and gradient modulation functions, the phase dispersion from the inhomogeneous B{sub 0} can be canceled. Application of a shim pulse between each detected point in the time-domain NMR signal yields an NMR spectrum free from the broadening caused by the B{sub 0} inhomogeneity.

Topgaard, Daniel; Martin, Rachel W.; Sakellariou, Dimitris; Meriles, Carlos; Pines, Alexander

2004-05-19

135

Heteronuclear Double-Quantum MAS NMR Spectroscopy in Dipolar Solids  

NASA Astrophysics Data System (ADS)

A new pulse sequence for high-resolution solid-state heteronuclear double-quantum MAS NMR spectroscopy of dipolar-coupled spin- {1}/{2} nuclei is introduced. It is based on the five-pulse sequence known from solution-state NMR, which is here applied synchronously to both spin species. The heteronuclear double-quantum (HeDQ) spinning-sideband patterns produced by this experiment are shown to be sensitive to the heteronuclear distance, as well as the relative orientations of the chemical-shift and dipolar tensors. In particular, it is shown that the HeDQ patterns exhibit an enhanced sensitivity to the chemical shielding tensors as compared with the single-quantum spinning-sideband patterns. The detection of HeDQ patterns via the I and S spins is discussed. The isolated 13C- 1H spin pair in deuterated ammonium formate with 13C in natural abundance was chosen as a model system, and the perturbing influence of dipolar couplings to surrounding protons on the 13C- 1H DQ coherence is discussed. The pulse sequence can also be used as a heteronuclear double-quantum filter, hence providing information about heteronuclear couplings, and thus allowing the differentiation of quaternary and CH n bonded carbons. The elucidation of 13C- 1H dipolar proximities is presented for a sample of bisphenol A polycarbonate with 13C in natural abundance, recorded with a broadband version of the synchronized five-pulse sequence.

Saalwächter, Kay; Graf, Robert; Demco, Dan E.; Spiess, Hans W.

1999-08-01

136

Protein Motions and Folding Investigated by NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

NMR spin relaxation spectroscopy is a powerful experimental approach for globally characterizing conformational dynamics of proteins in solution. Laboratory frame relaxation measurements are sensitive to overall rotational diffusion and internal motions on picosecond-nanosecond time scales, while rotating frame relaxation measurements are sensitive to chemical exchange processes on microsecond-millisecond time scales. The former approach is illustrated by ^15N laboratory-frame relaxation experiments as a function of temperature for the helical subdomain HP36 of the F-actin-binding headpiece domain of chicken villin. The data are analyzed using the model-free formalism to characterize order parameters and effective correlation times for intramolecular motions of individual ^15N sites. The latter approach is illustrated by ^13C Carr-Purcell-Meiboom-Gill relaxation measurements for the de novo designed ?_2D protein and by ^15N rotating-frame relaxation measurements for the peripheral subunit-binding domain (PSBD) from the dihydrolopoamide acetyltransferase component of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus. These experiments are used to determine the folding and unfolding kinetic rate constants for the two proteins. The results for HP36, ?_2D, and PSBD illustrate the capability of current NMR methods for characterizing dynamic processes on multiple time scales in proteins.

Palmer, Arthur

2002-03-01

137

Structure determination of bioactive galloyl derivatives by NMR spectroscopy.  

PubMed

The investigation of the chemical constituents of Symplocos racemosa Roxb led to the isolation of two new glycosides, symcomoside A (1) and symcomoside B (2), together with one known glycoside, tortoside C (3), which is reported for the first time from this plant. The structures of the new compounds were determined by 1D and 2D homonuclear and heteronuclear NMR spectroscopy, from chemical evidence and by comparison with published data for closely related compounds. Symcomoside B (2) showed potent inhibitory activity against alpha-glucosidase in a concentration-dependent fashion with an IC50 value of 0.733 +/- 0.033 mM whereas symcomoside A (1) showed very weak inhibitory activity against alpha-glucosidase (9.90% in 0.70 mM). PMID:15772993

Ahmad, Viqar Uddin; Zubair, Muhammad; Athar Abbasi, Muhammad; Abid Rashid, Muhammad; Rasool, Nasir; Nahar Khan, Shamsun; Iqbal Choudhary, M; Kousar, Farzana

2005-06-01

138

Regularized Partial Least Squares with an Application to NMR Spectroscopy  

PubMed Central

High-dimensional data common in genomics, proteomics, and chemometrics often contains complicated correlation structures. Recently, partial least squares (PLS) and Sparse PLS methods have gained attention in these areas as dimension reduction techniques in the context of supervised data analysis. We introduce a framework for Regularized PLS by solving a relaxation of the SIMPLS optimization problem with penalties on the PLS loadings vectors. Our approach enjoys many advantages including flexibility, general penalties, easy interpretation of results, and fast computation in high-dimensional settings. We also outline extensions of our methods leading to novel methods for non-negative PLS and generalized PLS, an adoption of PLS for structured data. We demonstrate the utility of our methods through simulations and a case study on proton Nuclear Magnetic Resonance (NMR) spectroscopy data.

Allen, Genevera I.; Peterson, Christine; Vannucci, Marina; Maletic-Savatic, Mirjana

2014-01-01

139

Detection of Taurine in Biological Tissues by 33S NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

The potential of 33S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that 33S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. 33S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the 33S NMR spectra of biological tissues.

Musio, Roberta; Sciacovelli, Oronzo

2001-12-01

140

Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase; pertinence for determining magnetic axes in paramagnetic substrate complexes  

PubMed Central

Proton 2D NMR was used to confirm in solution a highly conserved portion of the molecular structure upon substrate loss for the heme oxygenase from the pathogenic bacterium Corynebacterium diphtheriae, HmuO. The chemical shifts for the conserved portion of the structure are assessed as references for the dipolar shifts needed to determine the orientation of the paramagnetic susceptibility tensor, ?, in paramagnetic substrate complexes of HmuO. It is shown that the chemical shifts for the structurally conserved portion of substrate-free HmuO serve as excellent references for residues with only small to moderate sized dipolar shifts in the cyanide-inhibited substrate complex of HmuO, yielding an orientation of ? that is essentially the same as conventionally obtained from large dipolar shifts based on empirical estimates of the diamagnetic reference. The implications of these diamagnetic chemical shifts for characterizing the hydrogen bonding in the physiologically relevant, resting-state, high-spin aquo complex are discussed. The pattern of labile proton exchange in the distal H-bond network of substrate-free HmuO allowed comparison of changes in dynamic stability of tertiary contacts in the substrate-free and substrate-bound HmuO and with the same complexes of human heme oxygenase.

Du, Zhenming; Unno, Masaki; Matsui, Toshitaka; Ikeda-Saito, Masao; La Mar, Gerd N.

2010-01-01

141

Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins.  

PubMed

In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy. PMID:23076578

Verardi, Raffaello; Traaseth, Nathaniel J; Masterson, Larry R; Vostrikov, Vitaly V; Veglia, Gianluigi

2012-01-01

142

NMR spectroscopy for determination of cationic polymer concentrations.  

PubMed

Organic polyelectrolytes are utilized extensively in wastewater treatment, but their fate after use is poorly understood. Analytical methods used for polymer determination in less complex systems appear to fail in application to wastewater systems, contributing to the lack of knowledge. Thus, the development of 1H NMR spectroscopy is reported here for specifically quantitating certain cationic flocculant polymers in environmental samples. Proton observe frequencies of 250 or 400 MHz proton were used. A copolymer of acrylamide and acryloyloxyethyltrimethylammonium chloride was used, representative of cationic flocculant polymers possessing quaternary ammonium groups with terminal methyls that provide a sharp singlet at a chemical shift of approximately 3.06 ppm. A strong linear relationship was demonstrated between polymer concentration and either height or area of this peak. Recoveries were up to 96% at higher concentrations (250 mg/L), and were greater than when using viscosity or charge titration methods for polymer determination. Lesser recoveries at lower concentrations (70% at 5 mg/L) were attributed to adsorptive losses. The detection limit of this method was determined to be <0.5 mg/L. Use of the method was exemplified by analysis of anaerobically digested sludges for residual polymer following a range of dosages, showing the resulting isotherm. PMID:12108718

Chang, Lin-Li; Bruch, Martha D; Griskowitz, Nancy J; Dentel, Steven K

2002-05-01

143

Communication: Phase incremented echo train acquisition in NMR spectroscopy.  

PubMed

We present an improved and general approach for implementing echo train acquisition (ETA) in magnetic resonance spectroscopy, particularly where the conventional approach of Carr-Purcell-Meiboom-Gill (CPMG) acquisition would produce numerous artifacts. Generally, adding ETA to any N-dimensional experiment creates an N + 1 dimensional experiment, with an additional dimension associated with the echo count, n, or an evolution time that is an integer multiple of the spacing between echo maxima. Here we present a modified approach, called phase incremented echo train acquisition (PIETA), where the phase of the mixing pulse and every other refocusing pulse, ?(P), is incremented as a single variable, creating an additional phase dimension in what becomes an N + 2 dimensional experiment. A Fourier transform with respect to the PIETA phase, ?(P), converts the ?(P) dimension into a ?p dimension where desired signals can be easily separated from undesired coherence transfer pathway signals, thereby avoiding cumbersome or intractable phase cycling schemes where the receiver phase must follow a master equation. This simple modification eliminates numerous artifacts present in NMR experiments employing CPMG acquisition and allows "single-scan" measurements of transverse relaxation and J-couplings. Additionally, unlike CPMG, we show how PIETA can be appended to experiments with phase modulated signals after the mixing pulse. PMID:22697523

Baltisberger, Jay H; Walder, Brennan J; Keeler, Eric G; Kaseman, Derrick C; Sanders, Kevin J; Grandinetti, Philip J

2012-06-01

144

Antioxidant activity of grape skin aqueous extracts from pressurized hot water extraction combined with electron paramagnetic resonance spectroscopy.  

PubMed

Pressurized hot water extraction (PHWE) was employed to prepare extracts from dried grape skin of two wine grape varieties (St. Laurent and Alibernet) at various temperatures (from 40 up to 120°C) and amounts of sample (0.5, 1.0 and 1.5 g). To assess the antioxidant activity of the extracts, electron paramagnetic resonance (EPR) spectroscopy was applied involving DPPH and ABTS(+) assays. Other extract characteristics including HPLC profile of anthocyanins and total phenolic compound content were obtained as well. PHWE has also been compared with earlier results of extractions of the same grape skin samples with compressed methanol and compressed ethanol under the conditions of pressurized fluid extraction (PFE). From this comparison, PHWE emerges as the more benign and efficient extraction method to recover valuable phenolic antioxidants from grape skins for the prospective use in functional food supplements. PMID:21872083

S?avíková, Lenka; Polovka, Martin; Hohnová, Barbora; Karásek, Pavel; Roth, Michal

2011-09-30

145

Development of a micro flow-through cell for high field NMR spectroscopy.  

SciTech Connect

A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

Alam, Todd Michael; McIntyre, Sarah K.

2011-05-01

146

Stereochemistry Determination by Powder X-ray Diffraction Analysis and NMR Spectroscopy Residual Dipolar Couplings  

SciTech Connect

A matter of technique: For a new steroidal lactol, jaborosalactol 24 (1), isolated from Jaborosa parviflora, NMR spectroscopy residual dipolar couplings and powder X-ray diffraction analysis independently gave the same stereochemistry at C23-C26. Conventional NMR spectroscopic techniques, such as NOE and {sup 3}J coupling-constant analysis failed to unambiguously determine this stereochemistry.

Garcia, M.; Pagola, S; Navarro-Vasquez, A; Phillips, D; Gayathri, C; Krakauer, H; Stephens, P; Nicotra, V; Gil, R

2009-01-01

147

Zinc Dialkyldithiophosphate Oxidation by Cumene Hydroperoxide: Kinetic Studies by Raman and P NMR Spectroscopy  

Microsoft Academic Search

The oxidation of zinc dialkyldithiophosphates (ZDDPs) by cumene hydroperoxide in cyclohexane is studied by Raman and P NMR spectroscopy. The reaction proceeds in two main stages: oxidation of ZDDP to basic ZDDP, and oxidation of basic ZDDP to other products. Observation of phosphorus-containing reaction products by the two techniques yields approximate rate coefficients for the two stages. P NMR spectra

J. L. Paddy; N. C. J. Lee; D. N. Waters; W. Trott

1990-01-01

148

Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY)  

ERIC Educational Resources Information Center

Increasingly, the undergraduate chemistry curriculum includes nuclear magnetic resonance (NMR) spectroscopy. Advanced NMR techniques are often taught including two-dimensional gradient-based experiments. An investigation of intermolecular forces including viscosity, by a variety of methods, is often integrated in the undergraduate physical and…

Li, Weibin; Kagan, Gerald; Hopson, Russell; Williard, Paul G.

2011-01-01

149

Isotope labeling methods for studies of excited protein states by relaxation dispersion NMR spectroscopy  

Microsoft Academic Search

The utility of nuclear magnetic resonance (NMR) spectroscopy as a tool for the study of biomolecular structure and dynamics has benefited from the development of facile labeling methods that incorporate NMR active probes at key positions in the molecule. Here we describe a protocol for the labeling of proteins that facilitates their study using a technique that is sensitive to

Patrik Lundström; Pramodh Vallurupalli; D Flemming Hansen; Lewis E Kay

2009-01-01

150

Determination of rank and kerogen type by high resolution NMR spectroscopy  

Microsoft Academic Search

Nuclear magnetic resonance (NMR) spectroscopy is a nondestructive technique for measuring the chemical and structural properties of organic matter. Although used in organic geochemistry for the past 14 years, the technique has continually undergone refinement. Initially, only the aromatic and aliphatic signal areas of the carbon NMR spectrum could be measured. Carboxylic groups as well as oxygen-substituted groups on aromatic

W. W. Dickinson; J. D. Collen; R. H. Newman

1990-01-01

151

A new pulse width reduction technique for pulsed electron paramagnetic resonance spectroscopy  

NASA Astrophysics Data System (ADS)

We present a new technique for a microwave pulse modulator that generates a short microwave pulse of approximately 1 ns for use in an electron paramagnetic resonance (EPR) spectrometer. A quadruple-frequency multiplier that generates a signal of 16-20 GHz from an input of 4-5 GHz was employed to reduce the rise and fall times of the pulse prepared by a PIN diode switch. We examined the transient response characteristics of a commercial frequency multiplier and found that the device can function as a multiplier for pulsed signal even though it was designed for continuous wave operation. We applied the technique to a Ku band pulsed EPR spectrometer and successfully observed a spin echo signal with a broad excitation bandwidth of approximately 1.6 mT using 80° pulses of 1.5 ns.

Ohba, Yasunori; Nakazawa, Shigeaki; Kazama, Shunji; Mizuta, Yukio

2008-03-01

152

Trends in solid-state NMR spectroscopy and their relevance for bioanalytics  

Microsoft Academic Search

Based on continuous methodical advances and developments, solid-state NMR spectroscopy has become a powerful tool for the\\u000a investigation of various materials, including polymers, glasses, zeolites, fullerenes, and many others. During the past decade,\\u000a solid-state NMR spectroscopy also found increasing interest for the study of biomolecules. For example, membrane proteins\\u000a reconstituted into lipid environments such as bilayers or vesicles, protein aggregates

Silvia Paasch; Eike Brunner

2010-01-01

153

Studies of Molecular Dynamics by Solid State Deuterium NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

The rotational dynamics of molecules in a number of solid systems were followed by variable temperature deuterium (^2H), nuclear magnetic resonance (NMR) spectroscopy via changes in the spectral lineshapes and spin-lattice relaxation times (T _1). First the pure solid trimethylamine-borane adduct, (CH_3)_3NBH_3, was studied. For a methyl deuterated sample, T _1 measurements yielded two T_1 minima, 6.9 ms and 4.3 ms corresponding to the slowing of methyl and trimethyl rotation, respectively, with decreasing temperature. Activation energies for methyl and trimethyl rotation, obtained from fitting the T _1 curve as a function of temperature, were 32.8 and 15.0 kJ/mol, respectively; simulations of the spectral lineshapes gave 26.6 and 18.9 kT/mol, respectively. Fitting of the ^2H T_1 curve for the borane deuterated sample gave a BH _3 rotation activation energy of 14.1 kT/mol and a ^2H quadrupolar coupling constant, chi, of 101 kHz. The activation energy for BH_3 rotation obtained from the spectral lineshape simulations gave 12.6 kT/mol. A series of deuterated organic chalcogen cations: (CH_3)_3S^+, (CH_3)_3Se^+ and (CH_3)_3Te^+, were ion exchanged into the cavities of sodium Mordenite LZ-M5 and the dynamics of these guests within the hydrated zeolite were followed by ^2H NMR. All three undergo isotropic motion above about -80 to -90^circC. Below this temperature two superimposed ^2H powder spectra appear; the broad lineshape is consistent with only methyl rotation in a hindered, coordinated site, and the other narrow lineshape is due to both methyl and trimethyl rotation in a less hindered, uncoordinated site. As the temperature is lowered the population of the lower energy coordinated site increases. Relative peak areas yield adsorption enthalpies of 6.7, 7.8 and 10.0 kJ/mol for (CH_3)_3S^+, (CH_3)_3Se^+ and (CH_3)_3Te^+, respectively. The series of methyl deuterated ammonium and phosphonium cations: (CH_3)NH_3^+ , (CH_3)_2NH^+ , (CH_3)_3NH^+ and (CH_3)_4P^+ , were also ion-exchanged into Mordenite. It is shown that these cations also undergo exchange between hindered and unhindered sites. The motion of the cations is strongly influenced by the number of N-H hydrogen bonds available.

Zhao, Baiyi

154

Frequency-modulation enhanced magnetic rotation spectroscopy: A sensitive and selective absorption scheme for paramagnetic molecules  

Microsoft Academic Search

The technique of frequency-modulation enhanced magnetic rotation spectroscopy (FM-MRS) is described. An experimental comparison between FM-MRS, frequency-modulation, and magnetic rotation spectroscopies clearly demonstrates that the doublenull absorption-based FM-MR technique is more sensitive than either FM or MRS separately. The theoretical basis for this sensitivity enhancement can be attributed to a 1\\/? (where ? is the small uncrossing angle between two

Michael C. McCarthy; Jonathan C. Bloch; Robert W. Field

1994-01-01

155

Applications of high-resolution solid-state NMR spectroscopy in food science.  

PubMed

The principal applications of high-resolution solid-state NMR spectroscopy, in the field of food science, are reviewed, after a short general introduction, mainly focusing on the potential of these investigations, which are, today, routine tools for resolving technological problems. Selected examples of the applications in the field of food science of high-resolution solid-state NMR spectroscopy both in (13)C and in (1)H NMR particularly illustrative of the results obtainable are reported in some detail. PMID:18821771

Bertocchi, Fabio; Paci, Maurizio

2008-10-22

156

Fast automated NMR spectroscopy of short-lived biological samples.  

PubMed

Faster than death: NMR techniques that make use of nonlinear sampling and hyperdimensional processing enable the recording of complete NMR data sets for the automated assignment of the backbone and side-chain resonances of short-lived protein samples of cell lysates. PMID:22492650

Tikole, Suhas; Jaravine, Victor; Rogov, Vladimir V; Rozenknop, Alexis; Schmöe, Kerstin; Löhr, Frank; Dötsch, Volker; Güntert, Peter

2012-05-01

157

NMR spectroscopy of RNA duplexes containing pseudouridine in supercooled water  

Microsoft Academic Search

We have performed NMR experiments in supercooled water in order to decrease the temperature-dependent exchange of protons in RNA duplexes. NMR spectra of aqueous samples of RNA in bundles of narrow capillaries that were acquired at temperatures as low as ---188C reveal resonances of exchangeable protons not seen at higher temperatures. In particular, we detected the imino protons of terminal

KERSTEN T. SCHROEDER; JACK J. SKALICKY; NANCY L. GREENBAUM

2005-01-01

158

Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR study of Co(II)-pseudoazurin.  

PubMed

Pseudoazurin is an electron transfer copper protein, a member of the cupredoxin family. The protein is frequently found in denitrifying bacteria, where it is the electron donor of nitrite reductase. The copper at the active site is coordinated to His40, Cys78, His81 and Met86 in a distorted tetragonal geometry. We have recorded and assigned the (1)H NMR spectra of Co(II)-substituted pseudoazurin from Achromobacter cycloclastes. The (1)H NMR spectrum of Co(II)-pseudoazurin closely resembles that of Co(II)-rusticyanin, reflecting an altered conformation for the Met-Co(II)-Cys moiety in both proteins, compared to Co(II)-azurin, amicyanin and stellacyanin. The electron spin density onto the Sgamma(Cys) is larger in Co(II)-pseudoazurin compared to Co(II)-rusticyanin. Instead, the Co(II)-Met interaction is similar in both derivatives. Hence, the different metal-ligand interactions might be independently modulated by the protein structure. The present work also shows that the electron spin density onto the Co(II)-S(cys) bond is sensibly smaller than the Cu(II)-S(cys). Notwithstanding, NMR data on Co(II)-substituted blue copper proteins can be safely extrapolated to native Cu(II) proteins. PMID:12459901

Fernández, Claudio O; Niizeki, Tomotake; Kohzuma, Takamitsu; Vila, Alejandro J

2003-01-01

159

Use of Electron Paramagnetic Resonance Spectroscopy to Evaluate the Redox State In Vivo  

PubMed Central

The aim of this article is to provide an overview of how electron paramagnetic resonance (EPR) can be used to measure redox-related parameters in vivo. The values of this approach include that the measurements are made under fully physiological conditions, and some of the measurements cannot be made by other means. Three complementary approaches are used with in vivo EPR: the rate of reduction or reactions of nitroxides, spin trapping of free radicals, and measurements of thiols. All three approaches already have produced unique and useful information. The measurement of the rate of decrease of nitroxides technically is the simplest, but difficult to interpret because the measured parameter, reduction in the intensity of the nitroxide signal, can occur by several different mechanisms. In vivo spin trapping can provide direct evidence for the occurrence of specific free radicals in vivo and reflect relative changes, but accurate absolute quantification remains challenging. The measurement of thiols in vivo also appears likely to be useful, but its development as an in vivo technique is at an early stage. It seems likely that the use of in vivo EPR to measure redox processes will become an increasingly utilized and valuable tool.

SWARTZ, HAROLD M.; KHAN, NADEEM; KHRAMTSOV, VALERY V.

2009-01-01

160

Application of NMR spectroscopy and LC-NMR/MS to the identification of carbohydrates in beer.  

PubMed

The application of LC-NMR/MS for the direct identification of carbohydrates in beer has been studied. Carbohydrates are major beer components, and their structural characterization by NMR alone is seriously hindered by strong spectroscopic overlap. Direct analysis of beer by LC-NMR/MS enables the rapid (1-2 h) identification of dextrins with degree of polymerization (DP) of up to nine monomers, with degassing being the only sample treatment required. Although the presence of alpha(1-->6) branching points is easily indicated by NMR for each subfraction separated by LC, difficulties arise for the unambiguous assignment of linear or branched forms of high DP dextrins. The two beer samples investigated in this work were found to have significantly different oligosaccharide compositions, reflecting the different production conditions employed. The use of hyphenated NMR for the rapid characterization of the carbohydrate composition of beers may be the basis of a useful tool for the quality control of beer. PMID:12903934

Duarte, Iola F; Godejohann, Markus; Braumann, Ulrich; Spraul, Manfred; Gil, Ana M

2003-08-13

161

Dielectric microwave resonators in TE011 cavities for electron paramagnetic resonance spectroscopy  

NASA Astrophysics Data System (ADS)

The coupled system of the microwave cylindrical TE011 cavity and the TE01? dielectric modes has been analyzed in order to determine the maximum achievable resonator efficiency parameter of a dielectric inserted into a cavity, and whether this value can exceed that of a dedicated TE01? mode dielectric resonator. The frequency, Q value, and resonator efficiency parameter ? for each mode of the coupled system were calculated as the size of the dielectric was varied. Other output parameters include the relative field magnitudes and phases. Two modes are found: one with fields in the dielectric parallel to the fields in the cavity center and the other with antiparallel fields. Results closely match those from a computer program that solves Maxwell's equations by finite element methods. Depending on the relative natural resonance frequencies of the cavity and dielectric, one mode has a higher Q value and correspondingly lower ? than the other. The mode with the higher Q value is preferentially excited by a coupling iris or loop in or near the cavity wall. However, depending on the frequency separation between modes, either can be excited in this way. A relatively narrow optimum is found for the size of the insert that produces maximum signal for both modes simultaneously. It occurs when the self-resonance frequencies of the two resonators are nearly equal. The maximum signal is almost the same as that of the dedicated TE01? mode dielectric resonator alone, ??40 G/W1/2 at X-band for a KTaO3 crystal. The cavity is analogous to the second stage of a two-stage coupler. In general, there is no electron paramagnetic resonance (EPR) signal benefit by use of a second stage. However, there is a benefit of convenience. A properly designed sample-mounted resonator inserted into a cavity can give EPR signals as large as what one would expect from the dielectric resonator alone.

Mett, Richard R.; Sidabras, Jason W.; Golovina, Iryna S.; Hyde, James S.

2008-09-01

162

Dielectric microwave resonators in TE011 cavities for electron paramagnetic resonance spectroscopy  

PubMed Central

The coupled system of the microwave cylindrical TE011 cavity and the TE01? dielectric modes has been analyzed in order to determine the maximum achievable resonator efficiency parameter of a dielectric inserted into a cavity, and whether this value can exceed that of a dedicated TE01? mode dielectric resonator. The frequency, Q value, and resonator efficiency parameter ? for each mode of the coupled system were calculated as the size of the dielectric was varied. Other output parameters include the relative field magnitudes and phases. Two modes are found: one with fields in the dielectric parallel to the fields in the cavity center and the other with antiparallel fields. Results closely match those from a computer program that solves Maxwell’s equations by finite element methods. Depending on the relative natural resonance frequencies of the cavity and dielectric, one mode has a higher Q value and correspondingly lower ? than the other. The mode with the higher Q value is preferentially excited by a coupling iris or loop in or near the cavity wall. However, depending on the frequency separation between modes, either can be excited in this way. A relatively narrow optimum is found for the size of the insert that produces maximum signal for both modes simultaneously. It occurs when the self-resonance frequencies of the two resonators are nearly equal. The maximum signal is almost the same as that of the dedicated TE01? mode dielectric resonator alone, ??40 G?W1?2 at X-band for a KTaO3 crystal. The cavity is analogous to the second stage of a two-stage coupler. In general, there is no electron paramagnetic resonance (EPR) signal benefit by use of a second stage. However, there is a benefit of convenience. A properly designed sample-mounted resonator inserted into a cavity can give EPR signals as large as what one would expect from the dielectric resonator alone.

Mett, Richard R.; Sidabras, Jason W.; Golovina, Iryna S.; Hyde, James S.

2008-01-01

163

High resolution phosphorus NMR spectroscopy of transfer ribonucleic acids  

Microsoft Academic Search

The temperature dependence of the 31P NMR spectra of yeast phenylalanine tRNA, E. coli tyrosine, glutamate (2), and formylmethione tRNA, and bovine liver aspartate (2b) tRNA is presented. The major difference between the 31P NMR spectra of the different acceptor tRNAs is in the main cluster region between -0.5 and -1.3 ppm. This confirms earlier assignment of the main cluster

D. G. Gorenstein; E. M. Goldfield

1982-01-01

164

Quantitative Determination of Carthamin in Carthamus Red by 1H-NMR Spectroscopy.  

PubMed

Carthamus Red is a food colorant prepared from the petals of Carthamus tinctorius (Asteraceae) whose major pigment is carthamin. Since an authentic carthamin standard is difficult to obtain commercially for the preparation of calibration curves in HPLC assays, we applied (1)H-NMR spectroscopy to the quantitative determination of carthamin in commercial preparations of Carthamus Red. Carthamus Red was repeatedly extracted in methanol and the extract was dissolved in pyridine-d(5) containing hexamethyldisilane (HMD) prior to (1)H-NMR spectroscopic analysis. The carthamin contents were calculated from the ratios of singlet signal intensities at approximately ?: 9.3 derived from H-16 of carthamin to those of the HMD signal at ?: 0. The integral ratios exhibited good repeatability among NMR spectroscopic analyses. Both the intra-day and inter-day assay variations had coefficients of variation of <5%. Based on the coefficient of absorption, the carthamin contents of commercial preparations determined by (1)H-NMR spectroscopy correlated well with those determined by colorimetry, although the latter were always approximately 1.3-fold higher than the former, irrespective of the Carthamus Red preparations. In conclusion, the quantitative (1)H-NMR spectroscopy used in the present study is simple and rapid, requiring no carthamin standard for calibration. After HMD concentration has been corrected using certified reference materials, the carthamin contents determined by (1)H-NMR spectroscopy are System of Units (SI)-traceable. PMID:24436958

Yoshida, Takamitsu; Terasaka, Kazuyoshi; Kato, Setsuko; Bai, Fan; Sugimoto, Naoki; Akiyama, Hiroshi; Yamazaki, Takeshi; Mizukami, Hajime

2013-01-01

165

Asymmetric Insertion of Membrane Proteins in Lipid Bilayers by Solid-State NMR Paramagnetic Relaxation Enhancement: A Cell-Penetrating Peptide Example  

PubMed Central

A novel solid-state NMR technique for identifying the asymmetric insertion depths of membrane proteins in lipid bilayers is introduced. By applying Mn2+ ions on the outer but not the inner leaflet of lipid bilayers, the sidedness of protein residues in the lipid bilayer can be determined through paramagnetic relaxation enhancement (PRE) effects. Protein-free lipid membranes with one-side Mn2+-bound surfaces exhibit significant residual 31P and lipid headgroup 13C intensities, in contrast to two-side Mn2+-bound membranes, where lipid headgroup signals are mostly suppressed. Applying this method to a cell-penetrating peptide, penetratin, we found that at low peptide concentrations, penetratin is distributed in both leaflets of the bilayer, in contrast to the prediction of the electroporation model, which predicts that penetratin binds to only the outer lipid leaflet at low peptide concentrations to cause an electric field that drives subsequent peptide translocation. The invalidation of the electroporation model suggests an alternative mechanism for intracellular import of penetratin, which may involve guanidinium–phosphate complexation between the peptide and the lipids.

Su, Yongchao; Mani, Rajeswari; Hong, Mei

2014-01-01

166

Applications of toroids in high-pressure NMR spectroscopy  

SciTech Connect

Toroid detectors have distinct NMR sensitivity and imaging advantages. The magnetic field lines are nearly completely contained within the active volume element of a toroid. This results in high NMR signal sensitivity. In addition, the toroid detector may be placed next to the metallic walls of a containment vessel with minimal signal loss due to magnetic coupling with the metal container. Thus, the toroid detector is ideal for static high pressure or continuous flow monitoring systems. Toroid NMR detectors have been used to follow the hydroformylation of olefins in supercritical fluids under industrial process conditions. Supercritical fluids are potentially ideal media for conducting catalytic reactions that involve gaseous reactants, including H{sub 2}, CO, and CO{sub 2}. The presence of a single homogeneous reaction phase eliminates the gas-liquid mixing problem of alternative two-phase systems, which can limit process rates and adversely affect hydroformylation product selectivities. A second advantage of toroid NMR detectors is that they exhibit a well-defined gradient in the rf field. This magnetic field gradient can be used for NMR imaging applications. Distance resolutions of 20 {mu} have been obtained.

Klingler, R.J.; Rathke, J.W.; Woelk, K. [and others

1995-12-01

167

GFT projection NMR spectroscopy for proteins in the solid state  

PubMed Central

Recording of four-dimensional (4D) spectra for proteins in the solid state has opened new avenues to obtain virtually complete resonance assignments and three-dimensional (3D) structures of proteins. As in solution state NMR, the sampling of three indirect dimensions leads per se to long minimal measurement time. Furthermore, artifact suppression in solid state NMR relies primarily on radio-frequency pulse phase cycling. For an n-step phase cycle, the minimal measurement times of both 3D and 4D spectra are increased n times. To tackle the associated ‘sampling problem’ and to avoid sampling limited data acquisition, solid state G-Matrix Fourier Transform (SS GFT) projection NMR is introduced to rapidly acquire 3D and 4D spectral information. Specifically, (4,3)D (HA)CANCOCX and (3,2)D (HACA)NCOCX were implemented and recorded for the 6 kDa protein GB1 within about 10% of the time required for acquiring the conventional congeners with the same maximal evolution times and spectral widths in the indirect dimensions. Spectral analysis was complemented by comparative analysis of expected spectral congestion in conventional and GFT NMR experiments, demonstrating that high spectral resolution of the GFT NMR experiments enables one to efficiently obtain nearly complete resonance assignments even for large proteins.

Franks, W. Trent; Atreya, Hanudatta S.; Szyperski, Thomas

2011-01-01

168

17O NMR spectroscopy: intramolecular hydrogen bonding in 7-hydroxyindanones  

NASA Astrophysics Data System (ADS)

Natural abundance 17O NMR chemical shift data for seven substituted indanones including four hydroxyindanones, three fluorenones including two hydroxyfluorenones, and seven 2-methyleneindanones including four hydroxymethyleneindanones, at 75°C in acetonitrile are reported. The hydroxyindanones, the one hydroxyfluorenone and the hydroxymethyleneindanones capable of intramolecular hydrogen bonding exhibit carbonyl 17O NMR signals which are shielded relative to those incapable of intramolecular hydrogen bonding. The intramolecular hydrogen bonding component (?? HB) of the carbonyl 17O NMR chemical shift was determined to be 9.8 ± 1.2 and 10.9 ± 1.4 ppm for the hydroxyindanones and the hydroxymethyleneindanones, respectively. The small ?? HB values for these hydroxyindanones relative to other ketone systems (about 50 ppm) are discussed in terms of molecular mechanics calculated hydrogen bond geometry.

Boykin, David W.; Kumar, Arvind

1993-10-01

169

NMR spectroscopy of RNA duplexes containing pseudouridine in supercooled water.  

PubMed

We have performed NMR experiments in supercooled water in order to decrease the temperature-dependent exchange of protons in RNA duplexes. NMR spectra of aqueous samples of RNA in bundles of narrow capillaries that were acquired at temperatures as low as -18 degrees C reveal resonances of exchangeable protons not seen at higher temperatures. In particular, we detected the imino protons of terminal base pairs and the imino proton of a non-base-paired pseudouridine in a duplex representing the eukaryotic pre-mRNA branch site helix. Analysis of the temperature dependence of chemical shift changes (thermal coefficients) for imino protons corroborated hydrogen bonding patterns observed in the NMR-derived structural model of the branch site helix. The ability to observe non-base-paired imino protons of RNA is of significant value in structure determination of RNA motifs containing loop and bulge regions. PMID:15987812

Schroeder, Kersten T; Skalicky, Jack J; Greenbaum, Nancy L

2005-07-01

170

Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.  

SciTech Connect

NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

Krishnan, V V

2005-04-26

171

Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy  

Microsoft Academic Search

The metabolomic analysis of Brassica rapa leaves treated with methyl jasmonate was performed using 2-dimensional J-resolved NMR spectroscopy combined with multivariate data analysis. The principal component analysis of the J-resolved NMR spectra showed discrimination between control and methyl jasmonate treated plants by principal components 1 and 2. While the level of glucose, sucrose and amino acids showed a decrease after

Yun-Sa Liang; Young Hae Choi; Hye Kyong Kim; Huub J. M. Linthorst; Robert Verpoorte

2006-01-01

172

Quantitating metabolites in protein precipitated serum using NMR spectroscopy.  

PubMed

Quantitative NMR-based metabolite profiling is challenged by the deleterious effects of abundant proteins in the intact blood plasma/serum, which underscores the need for alternative approaches. Protein removal by ultrafiltration using low molecular weight cutoff filters thus represents an important step. However, protein precipitation, an alternative and simple approach for protein removal, lacks detailed quantitative assessment for use in NMR based metabolomics. In this study, we have comprehensively evaluated the performance of protein precipitation using methanol, acetonitrile, perchloric acid, and trichloroacetic acid and ultrafiltration approaches using 1D and 2D NMR, based on the identification and absolute quantitation of 44 human blood metabolites, including a few identified for the first time in the NMR spectra of human serum. We also investigated the use of a "smart isotope tag," (15)N-cholamine for further resolution enhancement, which resulted in the detection of a number of additional metabolites. (1)H NMR of both protein precipitated and ultrafiltered serum detected all 44 metabolites with comparable reproducibility (average CV, 3.7% for precipitation; 3.6% for filtration). However, nearly half of the quantified metabolites in ultrafiltered serum exhibited 10-74% lower concentrations; specifically, tryptophan, benzoate, and 2-oxoisocaproate showed much lower concentrations compared to protein precipitated serum. These results indicate that protein precipitation using methanol offers a reliable approach for routine NMR-based metabolomics of human blood serum/plasma and should be considered as an alternative to ultrafiltration. Importantly, protein precipitation, which is commonly used by mass spectrometry (MS), promises avenues for direct comparison and correlation of metabolite data obtained from the two analytical platforms to exploit their combined strength in the metabolomics of blood. PMID:24796490

Nagana Gowda, G A; Raftery, Daniel

2014-06-01

173

Variable angle NMR spectroscopy and its application to the measurement of residual chemical shift anisotropy  

NASA Astrophysics Data System (ADS)

The successful measurement of anisotropic NMR parameters like residual dipolar couplings (RDCs), residual quadrupolar couplings (RQCs), or residual chemical shift anisotropy (RCSA) involves the partial alignment of solute molecules in an alignment medium. To avoid any influence of the change of environment from the isotropic to the anisotropic sample, the measurement of both datasets with a single sample is highly desirable. Here, we introduce the scaling of alignment for mechanically stretched polymer gels by varying the angle of the director of alignment relative to the static magnetic field, which we call variable angle NMR spectroscopy (VA-NMR). The technique is closely related to variable angle sample spinning NMR spectroscopy (VASS-NMR) of liquid crystalline samples, but due to the mechanical fixation of the director of alignment no sample spinning is necessary. Also, in contrast to VASS-NMR, VA-NMR works for the full range of sample inclinations between 0° and 90°. Isotropic spectra are obtained at the magic angle. As a demonstration of the approach we measure 13C-RCSA values for strychnine in a stretched PDMS/CDCl 3 gel and show their usefulness for assignment purposes. In this context special care has been taken with respect to the exact calibration of chemical shift data, for which three approaches have been derived and tested.

Kummerlöwe, Grit; Grage, Stephan L.; Thiele, Christina M.; Kuprov, Ilya; Ulrich, Anne S.; Luy, Burkhard

2011-03-01

174

Insights into the metabolic response to traumatic brain injury as revealed by 13C NMR spectroscopy  

PubMed Central

The present review highlights critical issues related to cerebral metabolism following traumatic brain injury (TBI) and the use of 13C labeled substrates and nuclear magnetic resonance (NMR) spectroscopy to study these changes. First we address some pathophysiologic factors contributing to metabolic dysfunction following TBI. We then examine how 13C NMR spectroscopy strategies have been used to investigate energy metabolism, neurotransmission, the intracellular redox state, and neuroglial compartmentation following injury. 13C NMR spectroscopy studies of brain extracts from animal models of TBI have revealed enhanced glycolytic production of lactate, evidence of pentose phosphate pathway (PPP) activation, and alterations in neuronal and astrocyte oxidative metabolism that are dependent on injury severity. Differential incorporation of label into glutamate and glutamine from 13C labeled glucose or acetate also suggest TBI-induced adaptations to the glutamate-glutamine cycle.

Bartnik-Olson, Brenda L.; Harris, Neil G.; Shijo, Katsunori; Sutton, Richard L.

2013-01-01

175

NMR spectroscopy of experimentally shocked single crystal quartz: A reexamination of the NMR shock barometer  

NASA Technical Reports Server (NTRS)

Cygan and others report a broadening of the Si-29 nuclear magnetic resonance (NMR) peak for synthetic quartz powders with increasing shock pressure which they propose as a shock wave barometer for natural systems. These results are expanded by studying single crystal quartz shocked to 12 and 33 GPa using the 6.5 m two-stage light-gas gun at Lawrence Livermore National Laboratories. Our NMR results differ substantially from those of Cygan and others and suggest that the proposed shock wave barometer may require refinement. The difference in results between this study and that of Cygan and others is most likely caused by different starting materials (single crystal vs. powder) and different shock loading histories. NMR results from single crystal studies may be more applicable to natural systems.

Fiske, P. S.; Gratz, A. J.; Nellis, W. J.

1993-01-01

176

Investigation of Cu-doped Li2B4O7 single crystals by electron paramagnetic resonance and time-resolved optical spectroscopy  

Microsoft Academic Search

A low-temperature study of the thermoluminescent dosimeter material, lithium tetraborate (Li2B4O7) doped by Cu, has been carried out by the methods of electron paramagnetic resonance (EPR) and time-resolved polarization spectroscopy using 4-20 eV synchrotron radiation and 1 µs Xe flash lamp pulses in the region 3-6 eV. The observed EPR spectra of an unpaired hole with strong d-character and characteristic

G. Corradi; V. Nagirnyi; A. Kotlov; A. Watterich; M. Kirm; K. Polgár; A. Hofstaetter; M. Meyer

2008-01-01

177

Ensemble Quantum Computing by Liquid-State NMR Spectroscopy.  

National Technical Information Service (NTIS)

We propose to use NMR as a testbed to develop general methods for solving computational problems on EQC's, to study the fundamental physics and computer science of these machines, and to learn how to make optimal use of the trade-offs that their unique ca...

T. F. Havel D. G. Cory

2003-01-01

178

Simultaneous Nonlinear Least Squares Fitting Technique For NMR Spectroscopy  

Microsoft Academic Search

A new iterative nonlinear least squares fitting technique is developed to fit the NMR free induction decay (FlD) signals in the time domain. The new technique makes it possible fitting all the parameters, e.g., frequencies, decay factors, amplitudes and phases, simultaneously. The corresponding initial values are obtained by linear prediction singular value decomposition (LPSVD)[ 11, which is a completely automatic

Wen Ge; H. K. Lee; O. Nalcioglu

1993-01-01

179

Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies.  

PubMed

Cryogenic probe technology can significantly compensate for the inherently low sensitivity of natural abundance 13C NMR spectroscopy. This now permits its routine use in NMR spectroscopy of biofluids, such as urine or plasma, with acquisition times that enable a high throughput of samples. Metabonomic studies often generate numerous samples in order to characterize fully the time-dependent biochemical response to stimuli, but until now, they have been largely conducted using 1H NMR spectroscopy because of its high sensitivity and hence efficient data acquisition. Here, we demonstrate that information-rich 13C NMR spectra of rat urine can be obtained using appropriately short acquisition times suitable for biochemical samples when using a cryogenic probe. Furthermore, these data were amenable to automated pattern recognition analysis, which produced a profile of the metabolic response to the model hepatotoxin hydrazine that was consistent with earlier studies. Thus, a new source of detailed and complementary information is available to metabonomics using cryogenic probe 13C NMR spectroscopy. PMID:12236374

Keun, Hector C; Beckonert, Olaf; Griffin, Julian L; Richter, Christian; Moskau, Detlef; Lindon, John C; Nicholson, Jeremy K

2002-09-01

180

Characterization of the essential oil of Agastache rugosa by NMR spectroscopy  

NASA Astrophysics Data System (ADS)

The composition of essential oil from Agastache rugosa (Fish. et Mey) O.Kuntze was studied by 1H and 13C NMR spectroscopy. Essential oil was isolated from the aerial part of plants growing in the Central Botanical Garden of the NAS of Belarus during flowering and fruiting. The oil chemical composition was found to depend little on the sampling time. It was shown that NMR spectroscopy could be successfully used to both monitor the content of the hepatotoxic substance (pulegone) and characterize the quality and authenticity of essential oils.

Skakovskii, E. D.; Kiselev, W. P.; Tychinskaya, L. Yu.; Schutova, A. G.; Gonsharova, L. W.; Spiridowish, E. W.; Bovdey, N. A.; Kiselev, P. A.; Gaidukevich, O. A.

2010-07-01

181

DSP-based on-line NMR spectroscopy using an anti-Hebbian learning algorithm  

SciTech Connect

This paper describes a nuclear magnetic resonance (NMR) system that uses an adaptive algorithm to carry out real-time NMR spectroscopy. The system employs a digital signal processor (DSP) chip to regulate the transmitted and received signal together with spectral analysis of the received signal to determine free induction decay (FID). To implement such a signal-processing routine for detection of the desired signal, an adaptive line enhancer filter that uses an anti-Hebbian learning algorithm is applied to the FID spectra. The results indicate that the adaptive filter can be a reliable technique for on-line spectroscopy study.

Razazian, K.; Dieckman, S.L.; Raptis, A.C. [Argonne National Lab., IL (United States). Energy Technology Div.; Bobis, J.P. [Argonne National Lab., IL (United States). Energy Technology Div.]|[Northern Illinois Univ., DeKalb, IL (United States)

1995-07-01

182

Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises  

ERIC Educational Resources Information Center

This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

2012-01-01

183

From Molecular Structure to Global Processes : NMR Spectroscopy in Analytical/Environmental Chemistry  

NASA Astrophysics Data System (ADS)

NMR Spectroscopy is arguably the most powerful tool to elucidate structure and probe molecular interactions. A range of NMR approaches will be introduced with emphasis on addressing and understanding structure and reactivity of soil organic matter at the molecular level. The presentation will be split into three main sections. The first section will look at evidence from advanced NMR based approaches that when considered synergistically describes the major structural components in soil organic matter. Multidimensional NMR spectroscopy (1-3D NMR), automated pattern matching, spectral simulations, diffusion NMR and hybrid-diffusion NMR will be introduced in context of molecular structure. Finally the structural components in soil will be contrasted to those found in aquatic dissolved organic matter. Secondly molecular interactions of natural organic matter will be considered. Advanced structural studies have provided detailed spectral assignments which in turn permit the reactivity of various soil components to be elucidated. Aggregation and self-association of soil and dissolved organic matter will be discussed along with the structural components likely responsible for aggregation/colloid formation. Interactions of soil organic matter with anthropogenic chemicals will also be considered and NMR techniques based on "Saturation Transfer Difference" introduced. These techniques are extremely powerful and can be used to both; describe mechanistically how anthropogenic chemicals sorb to whole soils and identify the structural components (lignin, protein, cellulose, etc..) that are responsible for the binding/sorption in soil. In the last section, the "big questions" and challenges facing the field will be considered along with some novel experimental NMR based approaches that should, in future, assist in providing answers to these questions.

Simpson, A.

2009-04-01

184

Diffusion exchange NMR spectroscopy in inhomogeneous magnetic fields  

NASA Astrophysics Data System (ADS)

Two-dimensional diffusion exchange experiments in the presence of a strong, static magnetic field gradient are presented. The experiments are performed in the stray field of a single sided NMR sensor with a proton Larmor frequency of 11.7 MHz. As a consequence of the strong and static magnetic field gradient the magnetization has contributions from different coherence pathways. In order to select the desired coherence pathways, a suitable phase cycling scheme is introduced. The pulse sequence is applied to study diffusion as well as the molecular exchange properties of organic solvents embedded in a mesoporous matrix consisting of a sieve of zeolites with a pore size of 0.8 nm and grain size of 2 ?m. This pulse sequence extends the possibilities of the study of transport properties in porous media, with satisfying sensitivity in measurement times of a few hours, in a new generation of relatively inexpensive low-field NMR mobile devices.

Neudert, Oliver; Stapf, Siegfried; Mattea, Carlos

2011-02-01

185

New Insights into Glycopeptide Antibiotic Binding to Cell Wall Precursors using SPR and NMR Spectroscopy.  

PubMed

Glycopeptide antibiotics, such as vancomycin and teicoplanin, are used to treat life-threatening infections caused by multidrug-resistant Gram-positive pathogens. They inhibit bacterial cell wall biosynthesis by binding to the D-Ala-D-Ala C-terminus of peptidoglycan precursors. Vancomycin-resistant bacteria replace the dipeptide with the D-Ala-D-Lac depsipeptide, thus reducing the binding affinity of the antibiotics with their molecular targets. Herein, studies of the interaction of teicoplanin, teicoplanin-like A40926, and of their semisynthetic derivatives (mideplanin, MDL63,246, dalbavancin) with peptide analogues of cell-wall precursors by NMR spectroscopy and surface plasmon resonance (SPR) are reported. NMR spectroscopy revealed the existence of two different complexes in solution, when the different glycopeptides interact with Ac2KdAlaDAlaOH. Despite the NMR experimental conditions, which are different from those employed for the SPR measurements, the NMR spectroscopy results parallel those deduced in the chip with respect to the drastic binding difference existing between the D-Ala and the D-Lac terminating analogues, confirming that all these antibiotics share the same primary molecular mechanism of action and resistance. Kinetic analysis of the interaction between the glycopeptide antibiotics and immobilized AcKdAlaDAlaOH by SPR suggest a dimerization process that was not observed by NMR spectroscopy in DMSO solution. Moreover, in SPR, all glycopeptides with a hydrophobic acyl chain present stronger binding with a hydrophobic surface than vancomycin, indicating that additional interactions through the employed surface are involved. In conclusion, SPR provides a tool to differentiate between vancomycin and other glycopeptides, and the calculated binding affinities at the surface seem to be more relevant to in vitro antimicrobial activity than the estimations from NMR spectroscopy analysis. PMID:24805824

Treviño, Juan; Bayón, Carlos; Ardá, Ana; Marinelli, Flavia; Gandolfi, Raffaella; Molinari, Francesco; Jimenez-Barbero, Jesús; Hernáiz, María J

2014-06-10

186

Solid-State NMR Investigation of Paramagnetic Nylon-6 Clay Nanocomposites. 1. Crystallinity, Morphology, and the Direct Influence of Fe3+ on Nuclear Spins  

NSDL National Science Digital Library

Several exfoliated nylon-6/clay nanocomposites (NnCâs) were investigated and compared with pure nylon-6 using solid-state NMR, both proton and 13C. NnCâs had nominally 5 mass % clay and were generated both by blending and by in situ polymerization (IsP). Most of the studied NnCâs contained layered, naturally occurring montmorillonite clays having nonstoichiometric amounts of nonexchangeable Mg2+ and Fe3+ ions that substitute into octahedral Al3+ sites along the midplane of the 1-nm-thick clay layers. The Fe3+ ions impart a useful paramagnetism to the clay. Each Mg2+ ion leaves an embedded negative charge that must be neutralized with some cation at the surface of the clay. All clays were initially treated with a cationic so-called organic modifier (OM), often a substituted ammonium ion, which increases the clay layer spacing, attaching ionically to the surface of the clay layers. Clay is found to promote growth of the ç-crystalline phase of nylon-6 for both blended and IsP NnCâs; R-crystallites are characteristic of the pure nylon-6. Stability of the ç-phase to annealing at 214 °C was investigated. Conversion of ç- to R-crystallinity during annealing was minimal, except for an injection-molded IsP NnC, which had been exposed to a temperature of 295 °C during molding. This high processing temperature produced an irreversible change. An attempt was made to understand, at least qualitatively, the nature of the spectral density of magnetic fluctuations associated with the paramagnetic Fe3+ sites in the clay. For this purpose, we looked directly at the influence of Fe3+ on the 13C and proton observables in organically modified clays (OMC). We agree with other investigators that the spectral density of paramagnetic fluctuations at the surface of the clay is determined mainly by spin-exchange interactions between Fe3+ sites; thus, the spectral density can be altered by changing the Fe3+ concentration. Moreover, we find that the spectral density is very wide, having strong contributions all the way from mid-kHz fluctuations to MHz fluctuations near the proton Larmor frequencies. Significant variations in the R/ç ratio were also observed in the injection-molded disk, which reflect either a processing-induced heterogeneity in clay dispersion or a significant variation in cooling history from region to region. Proton spin diffusion and multiple-pulse methods were utilized to compare morphologies for a diamagnetic NnC and nylon-6 with the same thermal histories. Long spacing, crystallinity, and the mobility of the noncrystalline nylon-6 segments are very similar for NnCâs and nylon-6.

Vanderhart, D. L.; Asano, A.; Gilman, J. W.

2001-01-01

187

A comprehensive approach for quantitative lignin characterization by NMR spectroscopy.  

PubMed

A detailed approach for the quantification of different lignin structures in milled wood lignin (MWL) has been suggested using a combination of NMR techniques. 1H-13C heteronuclear multiple quantum coherence and quantitative 13C NMR of nonacetylated and acetylated spruce MWL have been found to have a synergetic effect, resulting in significant progress in the characterization of lignin moieties by NMR. About 80% of side chain moieties, such as different beta-O-4, dibenzodioxocin, phenylcoumaran, pinoresinol, and others, have been identified on the structural level. The presence of appreciable amounts of alpha-O-alkyl and gamma-O-alkyl ethers has been suggested. Although the quantification of various condensed moieties was less precise than for side chain structures, reliable information can be obtained. Comparison of the calculated results with known databases on spruce MWL structure shows that the suggested approach is rather informative and comparable with the information obtained from the combination of various wet chemistry methods. Discrepancies between the results obtained in this study and those previously published are discussed. PMID:15053520

Capanema, Ewellyn A; Balakshin, Mikhail Y; Kadla, John F

2004-04-01

188

Sensitivity enhancement of double quantum NMR spectroscopy by modified CPMG  

NASA Astrophysics Data System (ADS)

A modified Carr-Purcell-Meiboom-Gill (CPMG) sequence for sensitivity enhancement of dipolar coupled homonuclear spin pairs in static solid-state NMR is presented. The modified CPMG block uses the Hahn-solid-Hahn echo as basic element of the CPMG echo train to refocus the homonuclear dipolar coupling and chemical shift anisotropy. The new CPMG sequence is dubbed as Hahn-solid-Hahn Carr-Purcell-Meiboom-Gill (HSHCPMG). We demonstrate a gain in signal to noise ratio of approximately 4.2 using HSHCPMG sequence in double quantum filtered CP experiment for 5%-13C2-15N-glycine. The resulting gain in sensitivity in the spikelet spectrum does not compromise the anisotropic information that is available from static NMR lineshapes. As an example, relative orientation angles of chemical shift anisotropy tensors for the alpha and carbonyl carbons in glycine are determined from the 2D DOQSY experiment recorded with the HSHCPMG block in the acquisition dimension. The resultant relative orientation angles of the two CSA tensors are compared to those obtained from 2D DOQSY experiment acquired without sensitivity enhancement as well as to the data as available from single crystal NMR experiments.

Gowda, Chandrakala M.; Agarwal, Vipin; Kentgens, Arno P. M.

2012-10-01

189

High-Resolution NMR Spectroscopy: An Alternative Fast Tool for Qualitative and Quantitative Analysis of Diacylglycerol (DAG) Oil  

Microsoft Academic Search

Multinuclear (1H, 13C, 31P) and multidimensional NMR spectroscopy was employed for the analysis of diacylglycerol (DAG) oil and the quantification\\u000a of its acylglycerols and acyl chains composition. A number of gradient selected two dimensional NMR techniques (TOCSY, HSQC-DEPT,\\u000a HSQC-TOCSY, and HMBC) facilitated the assignment of the complex one dimensional 1H- and 13C-NMR spectra. In several cases, the aforementioned 2D-NMR techniques

Emmanuel Hatzakis; Alexia Agiomyrgianaki; Sarantos Kostidis; Photis Dais

190

Optical absorption and NMR spectroscopic studies on paramagnetic neodymium(III) complexes with ?-diketone and heterocyclic amines. The environment effect on 4f-4f hypersensitive transitions  

NASA Astrophysics Data System (ADS)

The optical absorption spectra of [Nd(acac) 3(H 2O) 2]·H 2O, [Nd(acac) 3bpy] and [Nd(acac) 3phen(H 2O) 2] (where acac = acetylacetone, bpy = 2,2'-bipyridyl and phen = 1,10-phenanthroline) complexes in the visible region, in a series of non-aqueous solvents (methanol, ethanol, isopropanol, chloroform, acetonitrile, pyridine, nitrobenzene and dimethylsulphoxide) have been analyzed. The transition 4G 5/2 ? 4I 9/2 (Nd-VI) located near the middle of the visible region (17,500 cm -1) is hypersensitive. Its behavior is in sharp contrast to many other typically weak and consistently unvaried, normal 4f-4f transitions. The oscillator strength of this transition for the chelate as well as its adducts with phen and bpy in any of the solvent employed is larger than the oscillator strength of Nd 3+ aqua-ion. It is most intense in pyridine for all the complexes studied and, therefore, pyridine is the most effective in promoting f-f spectral intensity. The band shape and oscillator strength of the hypersensitive transitions display pronounced changes as compared to Nd 3+ aqua-ion. The band shapes of the hypersensitive transitions show remarkable changes on passing from aqueous solution to various non-aqueous solutions, which is the result of change in the environment about the Nd(III) ion in the various solutions and suggests change in the environment about the Nd(III) ion in the various solutions and suggests coordination of solvent molecule(s), in some cases. A comparative account of hypersensitivity in the present complexes with those of other adducts of Nd(?-diketoenolate) 3 with heterocyclic amines is discussed. The NMR signals of heterocyclic amines have been shifted to high fields while the resonances due to acetylacetone moiety have moved to low fields. The paramagnetic shift in the complexes is dipolar in nature.

Ansari, A. A.; Irfanullah, M.; Iftikhar, K.

2007-08-01

191

Citron and lemon under the lens of HR-MAS NMR spectroscopy.  

PubMed

High Resolution Magic Angle Spinning (HR-MAS) is an NMR technique that can be applied to semi-solid samples. Flavedo, albedo, pulp, seeds, and oil gland content of lemon and citron were studied through HR-MAS NMR spectroscopy, which was used directly on intact tissue specimens without any physicochemical manipulation. HR-MAS NMR proved to be a very suitable technique for detecting terpenes, sugars, organic acids, aminoacids and osmolites. It is valuable in observing changes in sugars, principal organic acids (mainly citric and malic) and ethanol contents of pulp specimens and this strongly point to its use to follow fruit ripening, or commercial assessment of fruit maturity. HR-MAS NMR was also used to derive the molar percentage of fatty acid components of lipids in seeds, which can change depending on the Citrus species and varieties. Finally, this technique was employed to elucidate the metabolic profile of mold flavedo. PMID:23871074

Mucci, Adele; Parenti, Francesca; Righi, Valeria; Schenetti, Luisa

2013-12-01

192

13C NMR spectroscopy for the quantitative determination of compound ratios and polymer end groups.  

PubMed

(13)C NMR spectroscopic integration employing short relaxation delays was evaluated as a quantitative tool to obtain ratios of diastereomers, regioisomers, constitutional isomers, mixtures of unrelated compounds, peptoids, and sugars. The results were compared to established quantitative methods such as (1)H NMR spectroscopic integration, gas chromatography, and high-performance liquid chromatography and were found to be within <3.4% of (1)H NMR spectroscopic values (most examples give results within <2%). Acquisition of the spectra took 2-30 min on as little as 10 mg of sample, proving the general utility of the technique. The simple protocol was extended to include end group analysis of low molecular weight polymers, which afforded results in accordance with (1)H NMR spectroscopy and matrix-assisted laser desorption-ionization time-of-flight spectrometry. PMID:24601654

Otte, Douglas A L; Borchmann, Dorothee E; Lin, Chin; Weck, Marcus; Woerpel, K A

2014-03-21

193

Metabolic fingerprinting of Ephedra species using 1H-NMR spectroscopy and principal component analysis.  

PubMed

The metabolomic analysis of Ephedra species was performed using 1H-NMR spectroscopy and multivariate data analysis. A broad range of metabolites could be detected by 1H-NMR spectroscopy without any chromatographic separation. The principal component analysis used to reduce the huge data set obtained from the 1H-NMR spectra of the plant extracts clearly discriminated three different Ephedra species. The major differences in Ephedra sinica, Ephedra intermedia and Ephedra distachya var. distachya were found to be due to benzoic acid analogues in the aqueous fraction and ephedrine-type alkaloids in the organic fraction. Based on this metabolomic recognition, one of nine commercial Ephedra materials evaluated was shown to be a mixture of Ephedra species. This method will be a useful tool for chemotaxonomic analysis and authentification of Ephedra species including quality control of plant materials. PMID:15635242

Kim, Hye Kyong; Choi, Young Hae; Erkelens, Cornelis; Lefeber, Alfons W M; Verpoorte, Robert

2005-01-01

194

The efficiency of DPPH as a polarising agent for DNP-NMR spectroscopy  

PubMed Central

The free radical 2,2-diphenyl-1-pycrylhydrazyl (DPPH) was tested as a polarising agent for fast dissolution dynamic nuclear polarisation (DNP) NMR spectroscopy. DPPH was found to be reasonably soluble in sulfolane and the optimum concentration for DNP is 20–40 mM depending upon whether short polarisation times or the maximum signal intensity is needed. W-band ESR measurements revealed that the ESR linewidth D of DPPH is intermediate between that of BDPA and 4-oxo-TEMPO. Several thousand-fold NMR signal enhancements in the liquid-state were achieved for 13C, 15N, 89Y, and 109Ag compounds, demonstrating that DPPH can be added to the list of polarising agents for DNP-NMR spectroscopy. Furthermore, the hydrophobic DPPH free radical can be easily filtered out from the dissolution liquid when water is used as the dissolution solvent.

Lumata, Lloyd; Merritt, Matthew; Khemtong, Chalermchai; Ratnakar, S. James; van Tol, Johan; Yu, Lu; Song, Likai

2012-01-01

195

Determination of glyphosate in biological fluids by 1H and 31P NMR spectroscopy.  

PubMed

Identification of glyphosate in four cases of poisoning, using nuclear magnetic resonance spectroscopy of biological fluids is reported. It has been performed by using a combination of 1H and 31P NMR analyses. Characterization of the N-(phosphonomethyl) glycine herbicide was achieved by chemical shift considerations and coupling constant patterns: CH2-(P) presents specific resonance at 3.12 ppm and appears as a doublet with a H-P characteristic coupling constant of 12.3 Hz. Moreover, resonances due to isopropylamine were present, confirming the ingestion of the considered trade formulation. After a calibration step, quantitation was performed by 1H and 31P NMR spectroscopy. The benefit and reliability of NMR investigations of biological fluids are discussed, particularly when the clinical picture is quite confusing. PMID:15240034

Cartigny, B; Azaroual, N; Imbenotte, M; Mathieu, D; Vermeersch, G; Goullé, J P; Lhermitte, M

2004-07-16

196

Slow motion of confined molecules: NMR and broadband dielectric spectroscopy investigations.  

PubMed

Nuclear magnetic resonance (NMR) and broadband dielectric spectroscopy are used to investigate the dynamics of small glass-forming molecules confined to restricted geometries. Ethylene glycol molecules are embedded in the supercages of NaX zeolites. The combined application of NMR and broadband dielectric spectroscopy advances the understanding of the slowing down of the motion near the glass transition temperature of these confined molecules. In combination with nuclear spin relaxation and nuclear magnetic resonance spectroscopy, dielectric relaxation studies on glass forming molecules allow conclusions on the character of the motion. High resolution 1H magic angle spinning (MAS) NMR measurements not only enable a characterisation of the state of the adsorbed molecules via a chemical shift analysis. By means of an analysis of MAS spinning sidebands we may also estimate a correlation time the meaning of which will be discussed in comparison to the results of longitudinal proton spin relaxation measurements. In addition to broadband dielectric spectroscopy slow molecular motions of partially deuterated ethylene glycol adsorbed in NaX are studied by means of 2H NMR line-shape analysis. PMID:18464423

Erdem, Ozlen F; Pampel, André; Michel, Dieter

2008-02-01

197

Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory  

ERIC Educational Resources Information Center

This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

2012-01-01

198

NMR imaging and spectroscopy of the mammalian central nervous system after heavy ion radiation  

SciTech Connect

NMR imaging, NMR spectroscopic, and histopathologic techniques were used to study the proton relaxation time and related biochemical changes in the central nervous system after helium beam in vivo irradiation of the rodent brain. The spectroscopic observations reported in this dissertation were made possible by development of methods for measuring the NMR parameters of the rodent brain in vivo and in vitro. The methods include (1) depth selective spectroscopy using an optimization of rf pulse energy based on a priori knowledge of N-acetyl aspartate and lipid spectra of the normal brain, (2) phase-encoded proton spectroscopy of the living rodent using a surface coil, and (3) dual aqueous and organic tissue extraction technique for spectroscopy. Radiation induced increases were observed in lipid and p-choline peaks of the proton spectrum, in vivo. Proton NMR spectroscopy measurements on brain extracts (aqueous and organic solvents) were made to observe chemical changes that could not be seen in vivo. Radiation-induced changes were observed in lactate, GABA, glutamate, and p-choline peak areas of the aqueous fraction spectra. In the organic fraction, decreases were observed in peak area ratios of the terminal-methyl peaks, the N-methyl groups of choline, and at a peak at 2.84 ppM (phosphatidyl ethanolamine and phosphatidyl serine resonances) relative to TMS. With histology and Evans blue injections, blood-brain barrier alternations were seen as early as 4 days after irradiation. 83 references, 53 figures.

Richards, T.

1984-09-01

199

High Resolution NMR Spectroscopy of Nanocrystalline Proteins at Ultra-High Magnetic Field  

SciTech Connect

Solid-state NMR (SSNMR) spectroscopy is a powerful tool for studying protein structure and function, uniquely able to address macroscopically disordered proteins. Insights from SSNMR include atomic-resolution structure, site-specific dynamics, metal center chemistry, and orientation of membrane proteins in bilayers.

Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Lipton, Andrew S.; Berthold, Deborah A.; Rienstra, Chad M.

2010-02-01

200

Analysis of Epoxy Resin Formulations by exp 13 C NMR Spectroscopy.  

National Technical Information Service (NTIS)

The chloroform soluble components of several epoxy resin formulations were analyzed by exp 13 C NMR spectroscopy. The technique permits the components of an epoxy resin formulation to be identified on a routine basis with a high degree of confidence. Narm...

R. A. Assink F. T. Gurule

1981-01-01

201

An NMR spectroscopy study of bendaline-albumin interactions.  

PubMed

The complete assignment of the 1H and 13C NMR spectra of bendaline (BNDL) was performed by mono-dimensional and homo- and hetero-correlated two-dimensional NMR experiments. The interaction between bendaline and albumin was also studied by the analysis of the motional parameters spin-lattice relaxation times, allowing the motional state of the BNDL free and bound with albumin to be defined. In absence of albumin the indazolacetic and benzylic moieties are characterized by roughly the same mobility and by positive sigma (cross-relaxation rates) values. In the presence of the macromolecule, the indazolacetic and benzylic moieties and the lysine change their motional behaviour to different extents, as indicated by correlation times. Data obtained in absence and in presence of the protein show that the molecular moiety of the bendaline most involved in the binding with albumin is the fragment H-4 H-5. The binding constant was evaluated at 2.4x10(3)M(-1). PMID:12941290

Delfini, M; Bianchetti, C; Di Cocco, M E; Pescosolido, N; Porcelli, F; Rosa, R; Rugo, G

2003-10-01

202

Relaxation filtered hyperfine (REFINE) spectroscopy: a novel tool for studying overlapping biological electron paramagnetic resonance signals applied to mitochondrial complex I.  

PubMed

A simple strategy to separate overlapping electron paramagnetic resonance (EPR) signals in biological systems is presented. Pulsed EPR methods (inversion- and saturation-recovery) allow the determination of the T(1) spin-lattice relaxation times of paramagnetic centers. T(1) may vary by several orders of magnitude depending on the species under investigation. These variations can be employed to study selectively individual species from a spectrum that results from an overlap of two species using an inversion-recovery filtered (IRf) pulsed EPR technique. The feasibility of such an IRf field-swept technique is demonstrated on model compounds (alpha,gamma-bisphenylene-beta-phenylallyl-benzolate, BDPA, and 2,2,6,6-tetramethyl-piperidine-1-oxyl, TEMPO) and a simple strategy for the successful analysis of such mixtures is presented. Complex I is a multisubunit membrane protein of the respiratory chain containing several iron-sulfur (FeS) centers, which are observable with EPR spectroscopy. It is not possible to investigate the functionally important FeS cluster N2 separately because this EPR signal always overlaps with the other FeS signals. This cluster can be studied selectively using the IRf field-swept technique and its EPR spectrum is in excellent agreement with previous cw-EPR data from the literature. In addition, the possibility to separate the hyperfine spectra of two spectrally overlapping paramagnetic species is demonstrated by applying this relaxation filter together with hyperfine spectroscopy (REFINE). For the first time, the application of this filter to a three-pulse electron spin-echo envelope modulation (ESEEM) pulse sequence is demonstrated to selectively observe hyperfine spectra on a system containing two paramagnetic species. Finally, REFINE is used to assign the observed nitrogen modulation in complex I to an individual iron-sulfur cluster. PMID:15049704

Maly, Thorsten; MacMillan, Fraser; Zwicker, Klaus; Kashani-Poor, Noushin; Brandt, Ulrich; Prisner, Thomas F

2004-04-01

203

Hadamard NMR spectroscopy for two-dimensional quantum information processing and parallel search algorithms.  

PubMed

Hadamard spectroscopy has earlier been used to speed-up multi-dimensional NMR experiments. In this work, we speed-up the two-dimensional quantum computing scheme, by using Hadamard spectroscopy in the indirect dimension, resulting in a scheme which is faster and requires the Fourier transformation only in the direct dimension. Two and three qubit quantum gates are implemented with an extra observer qubit. We also use one-dimensional Hadamard spectroscopy for binary information storage by spatial encoding and implementation of a parallel search algorithm. PMID:17011221

Gopinath, T; Kumar, Anil

2006-12-01

204

Mobility and Diffusion-Ordered Two-Dimensional NMR Spectroscopy  

Microsoft Academic Search

Mobility and diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy experiments have been developed for the analysis of mixtures. In the mobility -ordered experiments, the full range of positive and negative electrophoretic mobilities is displayed in one dimension and chemical shifts are displayed in the other. A concentric cylindrical tube electrophoresis chamber was designed to reduce the effective pathlength for current and

Kevin Freeman Morris

1993-01-01

205

Pushing the Limits of NMR Spectroscopy: In Situ analysis of Organic Matter in Natural Waters  

NASA Astrophysics Data System (ADS)

Dissolved Organic Matter (DOM) is ubiquitous in all natural waters and is known to play important roles in the carbon and nitrogen cycles, the transport and transformation of contaminants and nutrients, and health and biodiversity of aquatic species. Thus there is a great scientific need to further understand the composition, variability and reactivity of dissolved organic matter in the environment. Of all the analytical approaches employed to study DOM, NMR spectroscopy has provided the greatest insights into its general composition. However, conventional NMR studies often require a considerable amount of isolated DOM (mg quantities) and are adversely influenced by high salt and/or metal content which can result from sample concentration. Also there is concern that DOM can be altered during chemical isolation to varying extents and may not be completely representative of the material in its natural state. Here we demonstrate, that while very difficult, it is possible to obtain NMR spectra of Organic Matter in situ for practically all major bodies of water including groundwater, rainwater, seawater, and water from lakes and rivers. In sea water DOM is present at ~1ppm, and thus with a standard 5mm NMR probe (assuming ~300µL volume inside the coil), only ~300ng of DOM is present. Furthermore, considering that the intensity of the water signal is many orders of magnitude greater than the weak signals from the DOM (itself a heterogeneous mixture) it is clear that such applications challenge the limits of modern NMR spectroscopy.

Simpson, A.; Lam, B.

2009-05-01

206

Urinary metabolic fingerprint of acute intermittent porphyria analyzed by (1)H NMR spectroscopy.  

PubMed

(1)H NMR is a nonbiased technique for the quantification of small molecules that could result in the identification and characterization of potential biomarkers with prognostic value and contribute to better understand pathophysiology of diseases. In this study, we used (1)H NMR spectroscopy to analyze the urinary metabolome of patients with acute intermittent porphyria (AIP), an inherited metabolic disorder of heme biosynthesis in which an accumulation of the heme precursors 5-aminolaevulinic acid (ALA) and porphobilinogen (PBG) promotes sudden neurovisceral attacks, which can be life-threatening. Our objectives were (1) to demonstrate the usefulness of (1)H NMR to identify and quantify ALA and PBG in urines from AIP patients and (2) to identify metabolites that would predict the response to AIP crisis treatment and reflect differential metabolic reprogramming. Our results indicate that (1)H NMR can help to diagnose AIP attacks based on the identification of ALA and PBG. We also show that glycin concentration increases in urines from patients with frequent recurrences at the end of the treatment, after an initial decrease, whereas PBG concentration remains low. Although the reasons for this altered are elusive, these findings indicate that a glycin metabolic reprogramming occurs in AIPr patients and is associated with recurrence. Our results validate the proof of concept of the usefulness of (1)H NMR spectroscopy in clinical chemistry for the diagnosis of acute attack of AIP and identify urinary glycin as a potential marker of recurrence of AIP acute attacks. PMID:24437734

Carichon, Mickael; Pallet, Nicolas; Schmitt, Caroline; Lefebvre, Thibaud; Gouya, Laurent; Talbi, Neila; Deybach, Jean Charles; Beaune, Philippe; Vasos, Paul; Puy, Hervé; Bertho, Gildas

2014-02-18

207

Microcoil high-resolution magic angle spinning NMR spectroscopy.  

PubMed

We report the construction of a dual-channel microcoil nuclear magnetic resonance probehead allowing magic-angle spinning for mass-limited samples. With coils down to 235 mum inner diameter, this allows high-resolution solid-state NMR spectra to be obtained for amounts of materials of a few nanoliters. This is demonstrated by the carbon-13 spectrum of a tripeptide and a single silk rod, prepared from the silk gland of the Bombyx mori silkworm. Furthermore, the microcoil allows for radio frequency field strengths well beyond current probe technology, aiding in getting the highest possible resolution by efficiently decoupling the observed nuclei from the abundantly present proton nuclei. PMID:16819853

Janssen, Hans; Brinkmann, Andreas; van Eck, Ernst R H; van Bentum, P Jan M; Kentgens, Arno P M

2006-07-12

208

1 GHz NMR spectroscopy: innovation in magnet technology.  

PubMed

The present period is one of rapid development and major extension of the technology for high resolution and solid state NMR spectrometer magnets. Programs which have already been initiated have as their objective proton frequencies of 1 GHz and greater, eventually requiring HTS superconductors. These magnets will contain inner coils containing HTS conductors, surrounded by a set of relatively large coils fabricated with metallic superconductors. These coils represent a major extension of the adiabatically stable magnet technology that has evolved to address the performance issues posed by this type of magnet. The developments which are desirable for these large magnets are identified to include tough epoxy, interface to and thermal performance of external reinforcement, and high strength-high current density metallic superconductor. PMID:9413905

Markiewicz, W D

1997-11-01

209

Application of HR-MAS NMR spectroscopy for studying chemotype variations of Withania somnifera (L.) Dunal.  

PubMed

Withania somnifera (L.) Dunal (Solanaceae), commonly known as Ashwagandha, is one of the most valued Indian medicinal plants with a number of pharmaceutical and nutraceutical applications. Metabolic profiling has been performed by HR-MAS NMR spectroscopy on fresh leaf and root tissue specimens from four chemotypes of W. somnifera. The HR-MAS NMR spectroscopy of lyophilized defatted leaf tissue specimens clearly distinguishes resonances of medicinally important secondary metabolites (withaferin A and withanone) and its distinctive quantitative variability among the chemotypes. A total of 41 metabolites were identified from both the leaf and root tissues of the chemotypes. The presence of methanol in leaf and root tissues of W. somnifera was detected by HR-MAS NMR spectroscopy. Multivariate principal component analysis (PCA) on HR-MAS (1) H NMR spectra of leaves revealed clear variations in primary metabolites among the chemotypes. The results of the present study demonstrated an efficient method, which can be utilized for metabolite profiling of primary and secondary metabolites in medicinally important plants. PMID:21915899

Bharti, S K; Bhatia, Anil; Tewari, S K; Sidhu, O P; Roy, Raja

2011-10-01

210

Solid-State NMR Investigation of Paramagnetic Nylon-6 Clay Nanocomposites. 2. Measurement of Clay Dispersion, Crystal Stratification, and Stability of Organic Modifiers  

NSDL National Science Digital Library

In this second paper of a two-part series dealing mainly with NMR characterization of nylon-6/clay nanocomposites (NnCâs) having nominally 5 mass % clay, measurements with application to processing are featured. The paramagnetism of the montmorillonite clays, discussed in the first paper, allowed us to use the corresponding spin-diffusion-moderated reduction in longitudinal proton relaxation time, T1 H, for two purposes, namely, to rank the quality of clay dispersion in NnC families with the same formulation and to investigate morphological stratification of the nylon-6 R- and ç-crystallites with respect to the clay surface. In a group of three NnCâs with the same formulation but different melt-blending conditions, variations in T1 H correlated well with previously published TEM assessments of the quality of the clay dispersion. Also, in a set of samples from an injection-molded, in situ polymerized NnC disk where strong variations in R/ç ratios were observed, it was found that these differences did not arise from processing-induced inhomogeneities in clay concentration; rather, variations in cooling histories throughout the disk was the more probable cause. In these latter samples, well-defined stratification of the ç-phase (versus the R-phase) crystallites nearer the clay surface did not occur until after annealing at 214 °C. We also examined the dependence of NnC T1 Hâs on the static field of the measurement. It is clear that the magnitude of the paramagnetic contribution to T1 H is a function of field and of Fe3+ concentration in the clay. Trends support the notion that spin-exchange interactions between the electrons on different Fe3+ ions largely define the spectral density of magnetic fluctuations near the clay surface. Some attention was, therefore, given to optimizing Fe3+ concentrations for the best NnC characterization. Finally, we investigated the chemical stability of a particular organic modifier (OM), which is used to pretreat the clay prior to melt blending. The OM, dimethyl, dehydrogenated-tallow ammonium ion, was followed in the process of blending this modified clay with nylon-6 at 240 °C. It was found that when such a clay surface was exposed to the nylon-6 during blending, most of the OM on that surface decomposed, releasing a free amine with one methyl and two tallow substituents. However, subsequent melting at 240 °C produced no further decomposition. The implication is that the combination of temperature and shear stress in blending causes decomposition, not just temperature alone. The susceptibility to chemical decomposition varied strongly with the OM. Ironically, extensive decomposition of the OM did not result in poor mixing; in fact, as judged by T1 H, the NnC with the best dispersion of clay also had the most extensively degraded OM. The implications of this degradation for the physical properties have not been explored in detail.

Vanderhart, D. L.; Asano, A.; Gilman, J. W.

2001-01-01

211

High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations.  

PubMed

Heteronuclear NMR spectroscopy is an extremely powerful tool for determining the structures of organic molecules and is of particular significance in the structural analysis of proteins. In order to leverage the method's potential for structural investigations, obtaining high-resolution NMR spectra is essential and this is generally accomplished by using very homogeneous magnetic fields. However, there are several situations where magnetic field distortions and thus line broadening is unavoidable, for example, the samples under investigation may be inherently heterogeneous, and the magnet's homogeneity may be poor. This line broadening can hinder resonance assignment or even render it impossible. We put forth a new class of pulse sequences for obtaining high-resolution heteronuclear spectra in magnetic fields with unknown spatial variations based on distant dipolar field modulations. This strategy's capabilities are demonstrated with the acquisition of high-resolution 2D gHSQC and gHMBC spectra. These sequences' performances are evaluated on the basis of their sensitivities and acquisition efficiencies. Moreover, we show that by encoding and decoding NMR observables spatially, as is done in ultrafast NMR, an extra dimension containing J-coupling information can be obtained without increasing the time necessary to acquire a heteronuclear correlation spectrum. Since the new sequences relax magnetic field homogeneity constraints imposed upon high-resolution NMR, they may be applied in portable NMR sensors and studies of heterogeneous chemical and biological materials. PMID:24607822

Zhang, Zhiyong; Huang, Yuqing; Smith, Pieter E S; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

2014-05-01

212

High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations  

NASA Astrophysics Data System (ADS)

Heteronuclear NMR spectroscopy is an extremely powerful tool for determining the structures of organic molecules and is of particular significance in the structural analysis of proteins. In order to leverage the method’s potential for structural investigations, obtaining high-resolution NMR spectra is essential and this is generally accomplished by using very homogeneous magnetic fields. However, there are several situations where magnetic field distortions and thus line broadening is unavoidable, for example, the samples under investigation may be inherently heterogeneous, and the magnet’s homogeneity may be poor. This line broadening can hinder resonance assignment or even render it impossible. We put forth a new class of pulse sequences for obtaining high-resolution heteronuclear spectra in magnetic fields with unknown spatial variations based on distant dipolar field modulations. This strategy’s capabilities are demonstrated with the acquisition of high-resolution 2D gHSQC and gHMBC spectra. These sequences’ performances are evaluated on the basis of their sensitivities and acquisition efficiencies. Moreover, we show that by encoding and decoding NMR observables spatially, as is done in ultrafast NMR, an extra dimension containing J-coupling information can be obtained without increasing the time necessary to acquire a heteronuclear correlation spectrum. Since the new sequences relax magnetic field homogeneity constraints imposed upon high-resolution NMR, they may be applied in portable NMR sensors and studies of heterogeneous chemical and biological materials.

Zhang, Zhiyong; Huang, Yuqing; Smith, Pieter E. S.; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

2014-05-01

213

Observing selected domains in multi-domain proteins via sortase-mediated ligation and NMR spectroscopy  

PubMed Central

NMR spectroscopy has distinct advantages for providing insight into protein structures, but faces significant resolution challenges as protein size increases. To alleviate such resonance overlap issues, the ability to produce segmentally labeled proteins is beneficial. Here we show that the S. aureus transpeptidase sortase A can be used to catalyze the ligation of two separately expressed domains of the same protein, MecA (B. subtilis). The yield of purified, segmentally labeled MecA protein conjugate is ?40%. The resultant HSQC spectrum obtained from this domain-labeled conjugate demonstrates successful application of sortase A for segmental labeling of multi-domain proteins for solution NMR study.

Refaei, Mary Anne; Combs, Al; Kojetin, Douglas J.; Cavanagh, John; Caperelli, Carol; Rance, Mark; Sapitro, Jennifer

2011-01-01

214

Deuterium NMR spectroscopy of biosynthetically deuterated mammalian tissues  

SciTech Connect

The choline-containing phospholipids of mammalian membranes have been biosynthetically deuterated by raising rats on a diet supplemented with (HOCH2CH2N(CD3)3) Cl or (HOCD2CH2N(CH3)3) Cl . Deuterium NMR spectra have been obtained from excised deuterated brain, sciatic nerve, heart, and lung, from isolated brain myelin and brain microsomes, and from aqueous dispersions of lipid extracts. Measurements of residual quadrupole splittings for excised deuterated neural tissues demonstrate that the orientational order of the choline head group is similar to that observed in model membranes. The spin-lattice relaxation time of the choline head group in deuterated neural tissue is indistinguishable from that observed in model membranes. These results support the proposal that the conformation and motional dynamics of the choline head groups of the bulk choline-containing lipids of neural tissue are similar to those in model membranes. Spectra of biosynthetically deuterated brain myelin and brain microsomes exhibit similar quadrupole splittings. Since these membranes have significantly different protein contents, these results indicate that no strong polar interactions exist between membrane proteins and the choline head groups of choline-containing membrane lipids. Spectra of intact deuterated heart and lung exhibit broad lines and a range of quadrupole splittings.

Curatolo, W.; Jungalwala, F.B.; Sears, B.; Tuck, L.; Neuringer, L.J.

1985-07-30

215

NMR spectroscopy of native and in vitro tissues implicates polyADP ribose in biomineralization.  

PubMed

Nuclear magnetic resonance (NMR) spectroscopy is useful to determine molecular structure in tissues grown in vitro only if their fidelity, relative to native tissue, can be established. Here, we use multidimensional NMR spectra of animal and in vitro model tissues as fingerprints of their respective molecular structures, allowing us to compare the intact tissues at atomic length scales. To obtain spectra from animal tissues, we developed a heavy mouse enriched by about 20% in the NMR-active isotopes carbon-13 and nitrogen-15. The resulting spectra allowed us to refine an in vitro model of developing bone and to probe its detailed structure. The identification of an unexpected molecule, poly(adenosine diphosphate ribose), that may be implicated in calcification of the bone matrix, illustrates the analytical power of this approach. PMID:24833391

Chow, W Ying; Rajan, Rakesh; Muller, Karin H; Reid, David G; Skepper, Jeremy N; Wong, Wai Ching; Brooks, Roger A; Green, Maggie; Bihan, Dominique; Farndale, Richard W; Slatter, David A; Shanahan, Catherine M; Duer, Melinda J

2014-05-16

216

Bis(pentamethylcyclopentadienyl)ytterbium: An investigation of weak interactions in solution using multinuclear NMR spectroscopy  

SciTech Connect

NMR spectroscopy is ideal for studying weak interactions (formation enthalpy {le}20 kcal/mol) in solution. The metallocene bis(pentamethylcyclopentadienyl)ytterbium, Cp*{sub 2}Yb, is ideal for this purpose. cis-P{sub 2}PtH{sub 2}complexes (P = phosphine) were used to produce slow-exchange Cp*{sub 2}YbL adducts for NMR study. Reversible formation of (P{sub 2}PtH){sub 2} complexes from cis-P{sub 2}PtH{sub 2} complexes were also studied, followed by interactions of Cp*{sub 2}Yb with phosphines, R{sub 3}PX complexes. A NMR study was done on the interactions of Cp*{sub 2}Yb with H{sub 2}, CH{sub 4}, Xe, CO, silanes, stannanes, C{sub 6}H{sub 6}, and toluene.

Schwartz, D.J.

1995-07-01

217

Dynamic nuclear polarisation enhanced (14)N overtone MAS NMR spectroscopy.  

PubMed

Dynamic nuclear polarisation (DNP) has been used to obtain magic angle spinning (14)N(OT) (nitrogen-14 overtone) solid-state NMR spectra from several model amino acids, with both direct and indirect observation of the (14)N(OT) signal. The crystalline solids were impregnated with biradical solutions of organic liquids that do not dissolve the crystalline phase. The bulk phase was then polarized via(1)H spin diffusion from the highly-polarized surface (1)H nuclei, resulting in (1)H DNP signal enhancements of around two orders of magnitude. Cross polarisation from (1)H nuclei directly to the (14)N overtone transition is demonstrated under magic angle spinning, using a standard pulse sequence with a relatively short contact time (on the order of 100 ?s). This method can be used to acquire (14)N overtone MAS powder patterns that match closely with simulated line shapes, allowing isotropic chemical shifts and quadrupolar parameters to be measured. DNP enhancement also allows the rapid acquisition of 2D (14)N(OT) heteronuclear correlation spectra from natural abundance powder samples. (1)H-(14)N(OT) HETCOR and (13)C-(14)N(OT) HMQC pulse sequences were used to observe all single-bond H-N and C-N correlations in histidine hydrochloride monohydrate, with the spectra obtained in a matter of hours. Due to the high natural abundance of the (14)N isotope (99.6%) and the advantages of observing the overtone transition, these methods provide an attractive route to the observation of C-N correlations from samples at natural isotopic abundance and enable the high resolution measurement of (14)N chemical shifts and quadrupolar interaction parameters. PMID:24847776

Rossini, Aaron J; Emsley, Lyndon; O'Dell, Luke A

2014-06-01

218

In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.  

PubMed

Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help prevent dendrite formation. The in situ method was also applied to monitor (by (11)B NMR) electrochemical double-layer formation in supercapacitors in real time. Though this method is useful, it comes with challenges. The separation of the contributions from the different cell components in the NMR spectra is not trivial because of overlapping resonances. In addition, orientation-dependent NMR interactions, including the spatial- and orientation-dependent bulk magnetic susceptibility (BMS) effects, can lead to resonance broadening. Efforts to understand and mitigate these BMS effects are discussed in this Account. The in situ NMR investigation of fuel cells initially focused on the surface electrochemistry at the electrodes and the electrochemical oxidation of methanol and CO to CO2 on the Pt cathode. On the basis of the (13)C and (195)Pt NMR spectra of the adsorbates and electrodes, CO adsorbed on Pt and other reaction intermediates and complete oxidation products were detected and their mode of binding to the electrodes investigated. Appropriate design and engineering of the NMR hardware has allowed researchers to integrate intact direct methanol fuel cells into NMR probes. Chemical transformations of the circulating methanol could be followed and reaction intermediates could be detected in real time by either (2)H or (13)C NMR spectroscopy. By use of the in situ NMR approach, factors that control fuel cell performance, such as methanol cross over and catalyst performance, were identified. PMID:24041242

Blanc, Frédéric; Leskes, Michal; Grey, Clare P

2013-09-17

219

Exploiting periodic first-principles calculations in NMR spectroscopy of disordered solids.  

PubMed

Much of the information contained within solid-state nuclear magnetic resonance (NMR) spectra remains unexploited because of the challenges in obtaining high-resolution spectra and the difficulty in assigning those spectra. Recent advances that enable researchers to accurately and efficiently determine NMR parameters in periodic systems have revolutionized the application of density functional theory (DFT) calculations in solid-state NMR spectroscopy. These advances are particularly useful for experimentalists. The use of first-principles calculations aids in both the interpretation and assignment of the complex spectral line shapes observed for solids. Furthermore, calculations provide a method for evaluating potential structural models against experimental data for materials with poorly characterized structures. Determining the structure of well-ordered, periodic crystalline solids can be straightforward using methods that exploit Bragg diffraction. However, the deviations from periodicity, such as compositional, positional, or temporal disorder, often produce the physical properties (such as ferroelectricity or ionic conductivity) that may be of commercial interest. With its sensitivity to the atomic-scale environment, NMR provides a potentially useful tool for studying disordered materials, and the combination of experiment with first-principles calculations offers a particularly attractive approach. In this Account, we discuss some of the issues associated with the practical implementation of first-principles calculations of NMR parameters in solids. We then use two key examples to illustrate the structural insights that researchers can obtain when applying such calculations to disordered inorganic materials. First, we describe an investigation of cation disorder in Y2Ti(2-x)Sn(x)O7 pyrochlore ceramics using (89)Y and (119)Sn NMR. Researchers have proposed that these materials could serve as host phases for the encapsulation of lanthanide- and actinide-bearing radioactive waste. In a second example, we discuss how (17)O NMR can be used to probe the dynamic disorder of H in hydroxyl-humite minerals (nMg2SiO4·Mg(OH)2), and how (19)F NMR can be used to understand F substitution in these systems. The combination of first-principles calculations and multinuclear NMR spectroscopy facilitates the investigation of local structure, disorder, and dynamics in solids. We expect that applications will undoubtedly become more widespread with further advances in computational and experimental methods. Insight into the atomic-scale environment is a crucial first step in understanding the structure-property relationships in solids, and it enables the efficient design of future materials for a range of end uses. PMID:23402741

Ashbrook, Sharon E; Dawson, Daniel M

2013-09-17

220

Application of two-dimensional NMR spectroscopy to metabotyping laboratory Escherichia coli strains.  

PubMed

NMR Spectroscopy has been established as a major tool for identification and quantification of metabolites in a living system. Since the metabolomics era began, one-dimensional NMR spectroscopy has been intensively employed due to its simplicity and quickness. However, it has suffered from an inevitable overlap of signals, thus leading to inaccuracy in identification and quantification of metabolites. Two-dimensional (2D) NMR has emerged as a viable alternative because it can offer higher accuracy in a reasonable amount of time. We employed (1) H,(13) C-HSQC to profile metabolites of six different laboratory E. coli strains. We identified 18 metabolites and observed clustering of six strains according to their metabolites. We compared the metabolites among the strains, and found that a) the strains specialized for protein production were segregated; b) XL1-Blue separated itself from others by accumulating amino acids such as alanine, aspartate, glutamate, methionine, proline, and lysine; c) the strains specialized for cloning purpose were spread out from one another; and d) the strains originating from B strain were characterized by succinate accumulation. This work shows that 2D-NMR can be applied to identify a strain from metabolite analysis, offering a possible alternative to genetic analysis to identify E. coli strains. PMID:24130025

Chae, Young Kee; Kim, Seol Hyun; Nam, Youn-Ki

2013-10-01

221

Exchange rate constants of invisible protons in proteins determined by NMR spectroscopy.  

PubMed

Although labile protons that are exchanging rapidly with those of the solvent cannot be observed directly, their exchange rate constants can be determined by indirect detection of scalar-coupled neighboring nuclei. We have used heteronuclear NMR spectroscopy to measure the exchange rate constants of labile protons in the side chains of lysine and arginine residues in ubiquitin enriched in carbon-13 and nitrogen-15 at neutral pH. Exchange rate constants as fast as 40x10(3) s(-1) were thus measured. These results demonstrate that NMR spectroscopy is a powerful tool for the characterization of lysine NH3(+) and arginine NH groups in proteins at physiologically relevant pH values. PMID:18247446

Segawa, Takuya; Kateb, Fatiha; Duma, Luminita; Bodenhausen, Geoffrey; Pelupessy, Philippe

2008-03-01

222

STRUCTURAL STUDIES OF BIOMATERIALS USING DOUBLE-QUANTUM SOLID-STATE NMR SPECTROSCOPY  

SciTech Connect

Proteins directly control the nucleation and growth of biominerals, but the details of molecular recognition at the protein-biomineral interface remain poorly understood. The elucidation of recognition mechanisms at this interface may provide design principles for advanced materials development in medical and ceramic composites technologies. Here, we describe both the theory and practice of double-quantum solid-stateNMR(ssNMR) structure-determination techniques, as they are used to determine the secondary structures of surface-adsorbed peptides and proteins. In particular, we have used ssNMR dipolar techniques to provide the first high-resolution structural and dynamic characterization of a hydrated biomineralization protein, salivary statherin, adsorbed to its biologically relevant hydroxyapatite (HAP) surface. Here, we also review NMR data on peptides designed to adsorb from aqueous solutions onto highly porous hydrophobic surfaces with specific helical secondary structures. The adsorption or covalent attachment of biological macromolecules onto polymer materials to improve their biocompatibility has been pursued using a variety of approaches, but key to understanding their efficacy is the verification of the structure and dynamics of the immobilized biomolecules using double-quantum ssNMR spectroscopy.

Drobny, Gary P.; Long, J. R.; Karlsson, T.; Shaw, Wendy J.; Popham, Jennifer M.; Oyler, N.; Bower, Paula M.; Stringer, J.; Gregory, D.; Mehta, M.; Stayton, Patrick S.

2004-10-31

223

Study of stretched polypropylene fibres by 1H pulsed and CW NMR spectroscopy.  

PubMed

A set of stretched isotactic polypropylene fibres prepared with the draw ratio lambda=4 at four different stretching temperatures was investigated by H1 pulsed relaxation NMR methods and CW NMR spectroscopy. We have studied the influence of the stretching temperature and draw ratio upon the changes of structure and molecular mobility. Some information on the influence of these conditions was obtained from CW NMR measurements by means of the temperature dependences of second moment M(2) and decomposition of NMR spectra into elementary components corresponding to the chains with different mobility. H1 CW NMR spectra were measured at two (14.1 and 10.5 MHz) Larmor frequencies in the temperature range 200-420 K. An analysis of the experimental data shows that the stretching of the fibres at different temperature results in a change of molecular mobility. Spin-lattice relaxation times in laboratory (T(1)) and rotating (T(1rho)) frames were also measured on the set of the fibres in the temperature range 239-423 K at 30 MHz Larmor frequency employing a home made pulse spectrometer. In the rotating frame spin-lattice relaxation time measurements in the temperature range above 278 K three relaxation times T(1rho) have been observed. The minima of the temperature dependences of the observed relaxation times reflect an alpha-relaxation process in crystalline regions and beta-relaxation process related to a double glass transition in the non-crystalline regions of the studied fibres. PMID:19857943

Sevcovic, L; Mucha, L'

2009-11-01

224

Structural Studies of Biomaterials Using Double-Quantum Solid-State NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

Proteins directly control the nucleation and growth of biominerals, but the details of molecular recognition at the protein-biomineral interface remain poorly understood. The elucidation of recognition mechanisms at this interface may provide design principles for advanced materials development in medical and ceramic composites technologies. Here, we describe both the theory and practice of double-quantum solid-state NMR (ssNMR) structure-determination techniques, as they are used to determine the secondary structures of surface-adsorbed peptides and proteins. In particular, we have used ssNMR dipolar techniques to provide the first high-resolution structural and dynamic characterization of a hydrated biomineralization protein, salivary statherin, adsorbed to its biologically relevant hydroxyapatite (HAP) surface. Here, we also review NMR data on peptides designed to adsorb from aqueous solutions onto highly porous hydrophobic surfaces with specific helical secondary structures. The adsorption or covalent attachment of biological macromolecules onto polymer materials to improve their biocompatibility has been pursued using a variety of approaches, but key to understanding their efficacy is the verification of the structure and dynamics of the immobilized biomolecules using double-quantum ssNMR spectroscopy.

Drobny, G. P.; Long, J. R.; Karlsson, T.; Shaw, W.; Popham, J.; Oyler, N.; Bower, P.; Stringer, J.; Gregory, D.; Mehta, M.; Stayton, P. S.

2003-10-01

225

Molecular dynamics of ethylene glycol adsorbed in NaX: NMR and broadband dielectric spectroscopy studies  

Microsoft Academic Search

Proton spin relaxation and broadband dielectric spectroscopy are applied to study the dynamics of ethylene glycol adsorbed in NaX, EG\\/NaX. The molecular mobility strongly depends on the pore filling factor which may be controlled by high-resolution 1H MAS NMR measurements. Although EG in bulk shows a Vogel–Fulcher–Tammann type of activation, temperature dependent relaxation rate measurements for the EG\\/NaX systems always

Özlen F. Erdem; Dieter Michel

2006-01-01

226

Investigation of interaction parameters in mixed micelle using pulsed field gradient NMR spectroscopy  

Microsoft Academic Search

Pulsed field gradient NMR spectroscopy was used to determine the partitioning of surfactant between monomeric and micellar forms in a mixed CTAB (hexadecyltetramethylammonium bromide) and Triton X-100 [p-(1,1,3-tetramethylbutyl)polyoxyethylene] system. In addition, potentiometric and surface tension measurements were used to determine the free concentration of ionic surfactant and the critical micelle concentration (CMC) of mixtures of n-alkyltrimethylammonium bromide (CnTAB, n=12, 14,

H. Gharibi; S. Javadian; B. Sohrabi; R. Behjatmanesh

2005-01-01

227

Elucidation of cross relaxation in liquids by two-dimensional N.M.R. spectroscopy  

Microsoft Academic Search

Two-dimensional N.M.R. spectroscopy is applied to the elucidation of cross relaxation pathways in liquids. The theory underlying two dimensional studies of cross relaxation and of transient nuclear Overhauser effects is developed. The influence of the correlation time of the molecular random process is investigated. It is found that in the limit of short correlation times (extreme narrowing limit) weak negative

S. Macura; R. R. Ernst

1980-01-01

228

Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study  

Microsoft Academic Search

Summary   Recent muscle biopsy studies have shown a relation between intramuscular lipid content and insulin resistance. The aim of\\u000a this study was to test this relation in humans by using a novel proton nuclear magnetic resonance (1H NMR) spectroscopy technique, which enables non-invasive and rapid ( ? 45 min) determination of intramyocellular lipid (IMCL)\\u000a content. Normal weight non-diabetic adults (n

M. Krssak; K. Falk Petersen; A. Dresner; L. DiPietro; S. M. Vogel; D. L. Rothman; G. I. Shulman; M. Roden

1999-01-01

229

Stereochemical investigations on the diketopiperazine derivatives of enalapril and lisinopril by NMR spectroscopy  

Microsoft Academic Search

Stereochemical analysis of epimeric diketopiperazine (DKP) derivatives of enalapril and lisinopril has been performed by NMR spectroscopy. The present study focuses on the configurational assignment and conformational characteristics of the epimeric DKPs obtained from cyclization and subsequent base-catalyzed hydrolysis. We report full 1H and 13C assignments as obtained by a concerted use of 1D and 2D methods. The configuration of

Ádám Demeter; Tamás Fodor; János Fischer

1998-01-01

230

Identification of biochemical changes in lactovegetarian urine using 1 H NMR spectroscopy and pattern recognition  

Microsoft Academic Search

A vegetarian diet has been demonstrated to have a profound influence on human metabolism as well as to aid the prevention\\u000a of several chronic diseases relative to an omnivorous diet. However, there have been no systematic metabolomic studies on\\u000a all of the biochemical changes induced in human subjects by long-term vegetarianism. In this study, 1H NMR spectroscopy in combination with

Jingjing Xu; Shuyu Yang; Shuhui Cai; Jiyang Dong; Xuejun Li; Zhong Chen

2010-01-01

231

Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids  

Microsoft Academic Search

Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular\\u000a rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY\\u000a in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available.\\u000a We have developed the reverse micelle encapsulation strategy as an alternative

Nathaniel V. Nucci; Bryan S. Marques; Sabrina Bédard; Jakob Dogan; John M. Gledhill; Veronica R. Moorman; Ronald W. Peterson; Kathleen G. Valentine; Alison L. Wand; A. Joshua Wand

2011-01-01

232

High Q factor RF planar microcoils for micro-scale NMR spectroscopy  

Microsoft Academic Search

We present the design, fabrication and test of high-Q factor radiofrequency planar microcoils for nuclear magnetic resonance (NMR) spectroscopy in small volume samples. The coils are fabricated on glass wafers using high-aspect ratio SU-8 photoepoxy and copper electroplating. On-wafer electrical characterization shows quality factors up to 40 at 800MHz. A 500?m diameter microcoil with a measured quality factor of 24

C. Massin; G. Boero; F. Vincent; J. Abenhaim; P.-A. Besse; R. S. Popovic

2002-01-01

233

Semiquantitative analysis of thiophenic compounds in light cycle oil (LCO) using 13C NMR spectroscopy  

Microsoft Academic Search

S-methyltetrafluoroborate salts of the thiophenic compounds (CH3-S+:BF4?) present in LCO petroleum fractions were obtained and analyzed by 1H and 13C NMR spectroscopy. The methylation of the samples was carried out using 99.5% 13C enriched methyl iodine, to improve the sensitivity of the technique. The amount of the methylated derivatives was determined by the internal standard method; using dioxane as a

J. C Poveda Jaramillo; D. R Molina Velazco; C Baldrich

2004-01-01

234

In-Vivo NMR Spectroscopy of the Brain at High Fields  

Microsoft Academic Search

Increased magnetic fields in principle provide increased sensitivity and specificity. In vivo, however, the increase in magnetic\\u000a field alone does not automatically result in obvious improvements. Among the factors that are set to impede the improvements\\u000a in sensitivity for in-vivo NMR spectroscopy are the increased challenges in eliminating the macroscopic inhomogeneities caused\\u000a by mainly the air- tissue interface and increased

Rolf Gruetter; Pierre-Gilles Henry; Hongxia Lei; Silvia Mangia; Gülin Öz; Melissa Terpstra; Ivan Tkac

235

Nanotechnology for biomaterials engineering: structural characterization of amphiphilic polymeric nanoparticles by 1H NMR spectroscopy  

Microsoft Academic Search

Nanoparticles composed of diblock poly(d,l-lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) or a branched, multiblock PLA-(PEG)3 were prepared by the single emulsion technique. Results of previous studies of these nanoparticles suggested that their structure is of the core-corona type with a polyester core and an outer PEG coating. In the present study, 1H NMR spectroscopy was utilized to provide direct evidence of the structure

Jeffrey S. Hrkach; Maria Teresa Peracchia; Avi Bomb; noah Lotan; Robert Langer

1997-01-01

236

Quantitative determination of glyphosate in human serum by 1H NMR spectroscopy  

Microsoft Academic Search

The determination and quantification of glyphosate in serum using 1H NMR spectroscopy is reported. This method permitted serum samples to be analysed without derivatization or any other sample pre-treatment, using 3-trimethylsilyl 2,2?,3,3?-tetradeuteropropionic acid (TSP-d4) as a qualitative and quantitative standard. Characterization of the herbicide N-(phosphonomethyl)glycine was performed by analysing chemical shifts and coupling constant patterns. Quantification was performed by relative

Bernard Cartigny; Nathalie Azaroual; Michel Imbenotte; Daniel Mathieu; Erika Parmentier; Gaston Vermeersch; Michel Lhermitte

2008-01-01

237

Analysis of Hydroperoxides in solid Polyethylene by NMR and EPR Spectroscopy  

SciTech Connect

The authors have shown that the hydroperoxide species in {gamma}-irradiated {sup 13}C-polyethylene can be directly observed by {sup 13}C MAS NMR spectroscopy. The experiment was performed without the need for special sample preparation such as chemical derivatization or dissolution. Annealing experiments were employed to study the thermal decomposition of the hydroperoxide species and to measure an activation energy of 98 kJ/mol. EPR spectroscopy suggests that residual polyenyl and alkylperoxy radicals are predominantly trapped in interracial or crystalline regions, while the peroxy radicals observed after UV-photolysis of hydroperoxides are in amorphous regions.

ASSINK,ROGER A.; CELINA,MATHIAS C.; DUNBAR,TIMOTHY D.; ALAM,TODD M.; CLOUGH,ROGER LEE; GILLEN,KENNETH T.

2000-06-12

238

Determination of group composition of tar fractions from pyrolysis of worn-out tires by 1 H NMR spectroscopy  

Microsoft Academic Search

The advantage of IH NMR spectroscopy is the fact that the spectra of the products to be analyzed can be interpreted without first separating them. This makes it considerably simpler and faster to obtain information on the composition of the hydrocarbons under investigation. Both earlier [4, 5] and current [6, 7] integral structure analysis methods consider the entire NMR spectrum

S. S. Belyaeva; Yu. E. Shapiro; V. G. Lebedevskaya; A. B. Kufirin; N. A. Danilov

1991-01-01

239

Orientation of Amphipathic Helical Peptides in Membrane Bilayers Determined by Solid-State NMR Spectroscopy. (Reannouncement with New Availability Information).  

National Technical Information Service (NTIS)

Solid-state NMR spectroscopy was used to determine the orientations of two amphipathic helical peptides associated with lipid bilayers. A single spectral parameter provides sufficient orientational information for these peptides, which are known, from oth...

B. Bechinger Y. Kim L. E. Chirlian J. Gesell J. M. Neumann

1991-01-01

240

Methodology of H NMR Spectroscopy of the Human Brain at Very High Magnetic Fields.  

PubMed

An ultrashort-echo-time stimulated echo-acquisition mode (STEAM) pulse sequence with interleaved outer volume suppression and VAPOR (variable power and optimized relaxation delays) water suppression was redesigned and optimized for human applications at 4 and 7 T, taking into account the specific requirements for spectroscopy at high magnetic fields and limitations of currently available hardware. In combination with automatic shimming, automated parameter adjustments and data processing, this method provided a user-friendly tool for routine (1)H nuclear magnetic resonance (NMR) spectroscopy of the human brain at very high magnetic fields. Effects of first- and second-order shimming, single-scan averaging, frequency and phase corrections, and eddy currents were described. LCModel analysis of an in vivo (1)H NMR spectrum measured from the human brain at 7 T allowed reliable quantification of more than fifteen metabolites noninvasively, illustrating the potential of high-field NMR spectroscopy. Examples of spectroscopic studies performed at 4 and 7 T demonstrated the high reproducibility of acquired spectra quality. PMID:20179773

Tká?, I; Gruetter, R

2005-03-01

241

High resolution magic angle spinning (HR-MAS) NMR spectroscopy of human osteoarthritic cartilage  

PubMed Central

Osteoarthritis (OA) is a degenerative disease of the joint and results in changes in the biochemical composition of cartilage. Studies have been undertaken in the past that have used high resolution NMR spectroscopy to study the biochemical composition of porcine, canine and bovine cartilage. In this study high resolution magical angle spinning (HRMAS) NMR spectroscopy at 11.7 T has been used to characterize metabolites and detect differences in the spectral signature of human knee articular cartilage from non-OA healthy cadaver knees and samples acquired from severe OA patients at the time of total knee replacement surgery. A statistically significant difference in the alanine (1.47 ppm), N-acetyl (2.04 ppm), choline (3.25 ppm) and glycine (3.55 ppm) metabolite levels is observed between healthy and OA specimens. The results of the study indicate that a decrease in the intensity of N-acetyl resonance occurs in later stages of OA. A positive correlation of the N-acetyl levels as measured by 1H HR-MAS NMR spectroscopy with the total proteoglycan content in the same cartilage specimens as measured by the GAG assay was observed. This indicates that N-acetyl can serve as an important bio-marker of OA disease progression. A decrease in the alanine concentration in OA may be attributed to the degradation of the collagen framework with disease progression and eventual loss of the degradation products that are transported from cartilage into the synovial cavity.

Shet, Keerthi; Siddiqui, Sarmad M.; Yoshihara, Hikari; Kurhanewicz, John; Ries, Michael; Li, Xiaojuan

2011-01-01

242

PASADENA hyperpolarization of succinic acid for MRI and NMR spectroscopy.  

PubMed

We use the PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment) method to achieve 13C polarization of approximately 20% in seconds in 1-13C-succinic-d2 acid. The high-field 13C multiplets are observed as a function of pH, and the line broadening of C1 is pronounced in the region of the pK values. The 2JCH, 3JCH, and 3JHH couplings needed for spin order transfer vary with pH and are best resolved at low pH leading to our use of pH approximately 3 for both the molecular addition of parahydrogen to 1-13C-fumaric acid-d2 and the subsequent transfer of spin order from the nascent protons to C1 of the succinic acid product. The methods described here may generalize to hyperpolarization of other carboxylic acids. The C1 spin-lattice relaxation time at neutral pH and 4.7 T is measured as 27 s in H2O and 56 s in D2O. Together with known rates of succinate uptake in kidneys, this allows an estimate of the prospects for the molecular spectroscopy of metabolism. PMID:18335934

Chekmenev, Eduard Y; Hövener, Jan; Norton, Valerie A; Harris, Kent; Batchelder, Lynne S; Bhattacharya, Pratip; Ross, Brian D; Weitekamp, Daniel P

2008-04-01

243

Aminocarboxylate complexes of vanadium(III): Electronic structure investigation by high-frequency and -field electron paramagnetic resonance spectroscopy  

Microsoft Academic Search

Aminocarboxylate complexes of vanadium(III) are of interest as models for biologically and medicinally relevant forms of this interesting and somewhat neglected ion. The V(III) ion is paramagnetic, but not readily suited to conventional EPR, due to its integer-spin ground state (S=1) and associated large zero-field splitting (zfs). High-frequency and -field EPR (HFEPR), however, has the ability to study such systems

Joshua Telser; Chi-Chin Wu; Kun-Yuan Chen; Hua-Fen Hsu; Dmitry Smirnov; Andrew Ozarowski; J. Krzystek

2009-01-01

244

Sensitivity of 2H NMR spectroscopy to motional models: proteins and highly viscous liquids as examples.  

PubMed

In order to study to what extent mechanisms of molecular motion can be unambiguously revealed by (2)H NMR spectroscopy, (2)H spectra for proteins (chicken villin protein headpiece HP36, selectively methyl-deuterated at leucine-69, C(?) D(3)) and binary systems of high viscosity (benzene-d(6) in tricresyl phosphate) have been carefully analyzed as illustrative examples (the spectra are taken from the literature). In the first case, a model of restricted diffusion mediated by jumps between rotameric orientations has been tested against jump- and free diffusion models which describe rotational motion combined with jump dynamics. It has been found that the set of (2)H spectra of methyl-deuterated at leucine-69 chicken villin protein headpiece HP36 can be consistently explained by different motional models as well as by a gaussian distribution of correlation times assuming isotropic rotation (simple brownian diffusion model). The last finding shows that when the possible distribution of correlation times is not very broad one might not be able to distinguish between heterogeneous and homogenous (but more complex) dynamics by analyzing (2)H lineshapes. For benzene-d(6) in tricresyl phosphate, the dynamics is heterogeneous and it has been demonstrated that a gaussian distribution of correlation times reproduces well the experimental lineshapes, while for a Cole-Davidson distribution the agreement is somewhat worse. For inquires into the sensitivity of quadrupolar NMR spectral analysis (by "quadrupolar NMR spectroscopy we understand NMR spectroscopy of nuclei possessing quadrupole moment), the recently presented theoretical approach [Kruk et al., J. Chem. Phys. 135, 224511 (2011)] has been used as it allows simulating quadrupolar spectra for arbitrary motional conditions by employing the stochastic Liouville equation. PMID:22755589

Kruk, D; Mielczarek, A; Korpala, A; Kozlowski, A; Earle, K A; Moscicki, J

2012-06-28

245

Lithium ion diffusion in Li ?-alumina single crystals measured by pulsed field gradient NMR spectroscopy  

NASA Astrophysics Data System (ADS)

The lithium ion diffusion coefficient of a 93% Li ?-alumina single crystal was measured for the first time using pulsed field gradient (PFG) NMR spectroscopy with two different crystal orientations. The diffusion coefficient was found to be 1.2 × 10-11 m2/s in the direction perpendicular to the c axis at room temperature. The Li ion diffusion coefficient along the c axis direction was found to be very small (6.4 × 10-13 m2/s at 333 K), which suggests that the macroscopic diffusion of the Li ion in the ?-alumina crystal is mainly two-dimensional. The diffusion coefficient for the same sample was also estimated using NMR line narrowing data and impedance measurements. The impedance data show reasonable agreement with PFG-NMR data, while the line narrowing measurements provided a lower value for the diffusion coefficient. Line narrowing measurements also provided a relatively low value for the activation energy and pre-exponential factor. The temperature dependent diffusion coefficient was obtained in the temperature range 297-333 K by PFG-NMR, from which the activation energy for diffusion of the Li ion was estimated. The activation energy obtained by PFG-NMR was smaller than that obtained by impedance measurements, which suggests that thermally activated defect formation energy exists for 93% Li ?-alumina single crystals. The diffusion time dependence of the diffusion coefficient was observed for the Li ion in the 93% Li ?-alumina single crystal by means of PFG-NMR experiments. Motion of Li ion in fractal dimension might be a possible explanation for the observed diffusion time dependence of the diffusion coefficient in the 93% Li ?-alumina system.

Chowdhury, Mohammed Tareque; Takekawa, Reiji; Iwai, Yoshiki; Kuwata, Naoaki; Kawamura, Junichi

2014-03-01

246

Lithium ion diffusion in Li ?-alumina single crystals measured by pulsed field gradient NMR spectroscopy.  

PubMed

The lithium ion diffusion coefficient of a 93% Li ?-alumina single crystal was measured for the first time using pulsed field gradient (PFG) NMR spectroscopy with two different crystal orientations. The diffusion coefficient was found to be 1.2 × 10(-11) m(2)/s in the direction perpendicular to the c axis at room temperature. The Li ion diffusion coefficient along the c axis direction was found to be very small (6.4 × 10(-13) m(2)/s at 333 K), which suggests that the macroscopic diffusion of the Li ion in the ?-alumina crystal is mainly two-dimensional. The diffusion coefficient for the same sample was also estimated using NMR line narrowing data and impedance measurements. The impedance data show reasonable agreement with PFG-NMR data, while the line narrowing measurements provided a lower value for the diffusion coefficient. Line narrowing measurements also provided a relatively low value for the activation energy and pre-exponential factor. The temperature dependent diffusion coefficient was obtained in the temperature range 297-333 K by PFG-NMR, from which the activation energy for diffusion of the Li ion was estimated. The activation energy obtained by PFG-NMR was smaller than that obtained by impedance measurements, which suggests that thermally activated defect formation energy exists for 93% Li ?-alumina single crystals. The diffusion time dependence of the diffusion coefficient was observed for the Li ion in the 93% Li ?-alumina single crystal by means of PFG-NMR experiments. Motion of Li ion in fractal dimension might be a possible explanation for the observed diffusion time dependence of the diffusion coefficient in the 93% Li ?-alumina system. PMID:24697461

Chowdhury, Mohammed Tareque; Takekawa, Reiji; Iwai, Yoshiki; Kuwata, Naoaki; Kawamura, Junichi

2014-03-28

247

State-of-the-Art Direct 13C and Indirect 1H-[13C] NMR Spectroscopy In Vivo  

PubMed Central

Carbon-13 NMR spectroscopy in combination with 13C-labeled substrate infusion is a powerful technique to measure a large number of metabolic fluxes non-invasively in vivo. It has been used to quantify glycogen synthesis rates, establish quantitative relationships between energy metabolism and neurotransmission and evaluate the importance of different substrates. All measurements can, in principle, be performed through direct 13C NMR detection or via indirect 1H-[13C] NMR detection of the protons attached to 13C nuclei. The choice for detection scheme and pulse sequence depends on the magnetic field strength, whereas substrate selection depends on the metabolic pathways that are studied. 13C NMR spectroscopy remains a challenging technique that requires several non-standard hardware modifications, infusion of 13C-labeled substrates and sophisticated processing and metabolic modeling. Here the various aspects of direct 13C and indirect 1H-[13C] NMR are reviewed with the aim of providing a practical guide.

de Graaf, Robin A.; Rothman, Douglas L.; Behar, Kevin L.

2013-01-01

248

Novel monosaccharide fermentation products in Caldicellulosiruptor saccharolyticus identified using NMR spectroscopy  

PubMed Central

Background Caldicellulosiruptor saccharolyticus is a thermophilic, Gram-positive, non-spore forming, strictly anaerobic bacterium of interest in potential industrial applications, including the production of biofuels such as hydrogen or ethanol from lignocellulosic biomass through fermentation. High-resolution, solution-state nuclear magnetic resonance (NMR) spectroscopy is a useful method for the identification and quantification of metabolites that result from growth on different substrates. NMR allows facile resolution of isomeric (identical mass) constituents and does not destroy the sample. Results Profiles of metabolites produced by the thermophilic cellulose-degrading bacterium Caldicellulosiruptor saccharolyticus DSM 8903 strain following growth on different monosaccharides (D-glucose, D-mannose, L-arabinose, D-arabinose, D-xylose, L-fucose, and D-fucose) as carbon sources revealed several unexpected fermentation products, suggesting novel metabolic capacities and unexplored metabolic pathways in this organism. Both 1H and 13C nuclear magnetic resonance (NMR) spectroscopy were used to determine intracellular and extracellular metabolite profiles. One dimensional 1H NMR spectral analysis was performed by curve fitting against spectral libraries provided in the Chenomx software; 2-D homonuclear and heteronuclear NMR experiments were conducted to further reduce uncertainties due to unassigned, overlapping, or poorly-resolved peaks. In addition to expected metabolites such as acetate, lactate, glycerol, and ethanol, several novel fermentation products were identified: ethylene glycol (from growth on D-arabinose), acetoin and 2,3-butanediol (from growth on D-glucose, L-arabinose, and D-xylose), and hydroxyacetone (from growth on D-mannose, L-arabinose, and D-xylose). Production of ethylene glycol from D-arabinose was particularly notable, with around 10% of the substrate carbon converted into this uncommon fermentation product. Conclusions The present research shows that C. saccharolyticus, already of substantial interest due to its capability for biological ethanol and hydrogen production, has further metabolic potential for production of higher molecular weight compounds, such as acetoin and 2,3-butanediol, as well as hydroxyacetone and the uncommon fermentation product ethylene glycol. In addition, application of nuclear magnetic resonance (NMR) spectroscopy facilitates identification of novel metabolites, which is instrumental for production of desirable bioproducts from biomass through microbial fermentation.

2013-01-01

249

Survey and qualification of internal standards for quantification by 1H NMR spectroscopy.  

PubMed

In quantitative NMR (qNMR) selection of an appropriate internal standard proves to be crucial. In this study, 25 candidate compounds considered to be potent internal standards were investigated with respect to the ability of providing unique signal chemical shifts, purity, solubility, and ease of use. The (1)H chemical shift (delta) values, assignments, multiplicities and number of protons (for each signal), appropriateness (as to be used as internal standards) in four different deuterated solvents (D(2)O, DMSO-d(6), CD(3)OD, CDCl(3)) were studied. Taking into account the properties of these 25 internal standards, the most versatile eight compounds (2,4,6-triiodophenol, 1,3,5-trichloro-2-nitrobenzene, 3,4,5-trichloropyridine, dimethyl terephthalate, 1,4-dinitrobenzene, 2,3,5-triiodobenzoic acid, maleic acid and fumaric acid) were qualified using both differential scanning calorimetry (DSC) and NMR spectroscopy employing highly pure acetanilide as the reference standard. The data from these two methods were compared as well as utilized in the quality assessment of the compounds as internal standards. Finally, the selected internal standards were tested and evaluated in a real case of quantitative NMR analysis of a paracetamol pharmaceutical product. PMID:20207092

Rundlöf, Torgny; Mathiasson, Marie; Bekiroglu, Somer; Hakkarainen, Birgit; Bowden, Tim; Arvidsson, Torbjörn

2010-09-01

250

Probing the surface structure of hydroxyapatite using NMR spectroscopy and first principles calculations.  

PubMed

The surface characteristics of hydroxyapatite (HA) are probed using a combination of NMR spectroscopy and first principles calculations. The NMR spectrum is taken from a bone sample and the first principles calculations are performed using a plane-wave density functional approach within the pseudopotential approximation. The computational work focuses on the (100) and (200) surfaces, which exhibit a representative range of phosphate, hydroxyl and cation bonding geometries. The shielding tensors for the 31P, 1H and 17O nuclei are calculated from the relaxed surface structures using an extension of the projector augmented-wave method. The calculated 31P chemical shifts for the surface slab are found to be significantly different from the bulk crystal and are consistent with the NMR data from bone and also synthetically prepared nanocrystalline samples of HA. Rotational relaxations of the surface phosphate ions and the sub-surface displacement of other nearby ions are identified as causing the main differences. The investigation points to further calculations of other crystallographic surfaces and highlights the potential of using NMR with ab initio modelling to fully describe the surface structure and chemistry of HA, which is essential for understanding its reactivity with the surrounding organic matrix. PMID:18183321

Chappell, Helen; Duer, Melinda; Groom, Nicholas; Pickard, Chris; Bristowe, Paul

2008-01-28

251

Direct (1)H NMR spectroscopy of dissolved organic matter in natural waters.  

PubMed

Nuclear magnetic resonance (NMR) spectroscopy arguably provides the greatest insight into the overall chemical composition of dissolved organic matter (DOM). However, in a standard 5 mm NMR probe, a sample of sea water at natural abundance only contains ca. 500-600 ng of organic matter, distributed among the heterogeneous components of DOM. Additionally, the intensity of the water signal, which may be many orders of magnitude greater than the signals from DOM, makes the detection and analysis of DOM at natural abundance extremely demanding. Here, we demonstrate, that although challenging, the application of an improved water suppression technique allows NMR spectra of DOM to be obtained directly (i.e without pre-concentration) for major bodies of water, including rivers, lakes and the ocean. The technique described here provides a compositional overview of an intact sample, permitting researchers to investigate and assess the impact of concentration, isolation and extraction procedures that are employed routinely. Also the technique permits NMR to be performed on 'precious' samples for which traditional isolations are not possible, for example, water from ice cores and pore water, which are key in hydrology and for paleoclimatic reconstruction. PMID:18227951

Lam, Buuan; Simpson, André J

2008-02-01

252

?High Resolution-Magic-Angle Spinning NMR Spectroscopy for Metabolic Phenotyping of Caenorhabditis elegans.  

PubMed

Analysis of model organisms, such as the submillimeter-size Caenorhabditis elegans, plays a central role in understanding biological functions across species and in characterizing phenotypes associated with genetic mutations. In recent years, metabolic phenotyping studies of C. elegans based on (1)H high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy have relied on the observation of large populations of nematodes, requiring labor-intensive sample preparation that considerably limits high-throughput characterization of C. elegans. In this work, we open new platforms for metabolic phenotyping of C. elegans mutants. We determine rich metabolic profiles (31 metabolites identified) from samples of 12 individuals using a (1)H NMR microprobe featuring high-resolution magic-angle coil spinning (HR-MACS), a simple conversion of a standard HR-MAS probe to ?HR-MAS. In addition, we characterize the metabolic variations between two different strains of C. elegans (wild-type vs slcf-1 mutant). We also acquire a NMR spectrum of a single C. elegans worm at 23.5 T. This study represents the first example of a metabolomic investigation carried out on a small number of submillimeter-size organisms, demonstrating the potential of NMR microtechnologies for metabolomics screening of small model organisms. PMID:24897622

Wong, Alan; Li, Xiaonan; Molin, Laurent; Solari, Florence; Elena-Herrmann, Bénédicte; Sakellariou, Dimitris

2014-06-17

253

Pore-structure determinations of silica aerogels by {sup 129}Xe NMR spectroscopy and imaging.  

SciTech Connect

Silica aerogels represent a new class of open-pore materials with pore dimensions on a scale of tens of nanometers, and are thus classified as mesoporous materials. In this work, we show that the combination of NMR spectroscopy and chemical-shift selective magnetic resonance imaging (MRI) can resolve some of the important aspects of the structure of silica aerogels. The use of xenon as a gaseous probe in combination with spatially resolved NMR techniques is demonstrated to be a powerful, new approach for characterizing the average pore structure and steady-state spatial distributions of xenon atoms in different physicochemical environments. Furthermore, dynamic NMR magnetization transfer experiments and pulsed-field gradient (PFG) measurements have been used to characterize exchange processes and diffusive motion of xenon in samples at equilibrium. In particular, this new NMR approach offers unique information and insights into the nanoscopic pore structure and microscopic morphology of aerogels and the dynamical behavior of occluded adsorbates. MRI provides spatially resolved information on the nature of the flaw regions found in these materials. Pseudo-first-order rate constants for magnetization transfer among the bulk and occluded xenon phases indicate xenon-exchange rate constants on the order of 1 s-1 for specimens having volumes of 0.03 cm3. PFG diffusion measurements show evidence of anisotropic diffusion for xenon occluded within aerogels, with nominal self-diffusivity coefficients on the order of D= 10-3cm2/s.

Gregory, D. M.; Gerald, R. E., II; Botto, R. E.; Chemistry

1998-04-01

254

pKa determination by (1)H NMR spectroscopy - An old methodology revisited.  

PubMed

pKa values of acids and protonated bases have an essential impact on organic synthesis, medicinal chemistry, and material and food sciences. In drug discovery and development, they are of utmost importance for the prediction of pharmacokinetic and pharmacodynamic properties. To date, various methods for the determination of pKa values are available, including UV-spectroscopic, potentiometric, and capillary electrophoretic techniques. An additional option is provided by nuclear magnetic resonance (NMR) spectroscopy. The underlying principle is the alteration of chemical shifts of NMR-active nuclei (e.g., (13)C and (1)H) depending on the protonation state of adjacent acidic or basic sites. When these chemical shifts are plotted against the pH, the inflection point of the resulting sigmoidal curve defines the pKa value. Although pKa determinations by (1)H NMR spectroscopy are reported for numerous cases, the potential of this approach is not yet fully evaluated. We therefore revisited this method with a diverse set of test compounds covering a broad range of pKa values (pKa 0.9-13.8) and made a comparison with four commonly used approaches. The methodology revealed excellent correlations (R(2)=0.99 and 0.97) with electropotentiometric and UV spectroscopic methods. Moreover, the comparison with in silico results (Epik and Marvin) also showed high correlations (R(2)=0.92 and 0.94), further confirming the reliability and utility of this approach. PMID:24462329

Bezençon, Jacqueline; Wittwer, Matthias B; Cutting, Brian; Smieško, Martin; Wagner, Bjoern; Kansy, Manfred; Ernst, Beat

2014-05-01

255

Mapping Inhibitor Binding Modes on an Active Cysteine Protease via NMR Spectroscopy  

PubMed Central

Cruzain is a member of the papain/cathepsin-L family of cysteine proteases, and the major cysteine protease of the protozoan Trypanosoma cruzi, the causative agent of Chagas’ disease. We report an auto-induction methodology that provides soluble-cruzain at high yields (> 30 mg per liter in minimal media). These increased yields provide sufficient quantities of active enzyme for use in NMR-based ligand mapping. Using CD and NMR spectroscopy, we also examined the solution-state structural dynamics of the enzyme in complex with a covalently bound vinyl sulfone inhibitor (K777). We report the backbone amide and side chain carbon chemical shift assignments of cruzain in complex with K777. These resonance assignments were used to identify and map residues located in the substrate binding pocket, including the catalytic Cys25 and His162. Selective 15N-Cys, 15N-His, and 13C-Met labeling was performed to quickly assess cruzain-ligand interactions for a set of eight low molecular weight compounds exhibiting micromolar binding or inhibition. Chemical shift perturbation mapping verifies that six of the eight compounds bind to cruzain at the active site. Three different binding modes were delineated for the compounds, namely covalent, non-covalent, and non-interacting. These results provide examples of how NMR spectroscopy can be used to screen compounds for fast evaluation of enzyme-inhibitor interactions in order to facilitate lead compound identification and subsequent structural studies.

Lee, Gregory M.; Balouch, Eaman; Goetz, David H.; Lazic, Ana; McKerrow, James H.; Craik, Charles S.

2013-01-01

256

Natural-Abundance 43Ca Solid-State NMR Spectroscopy of Bone  

PubMed Central

Structural information about the coordination environment of calcium present in bone is highly valuable in understanding the role of calcium in bone formation, biomineralization, and bone diseases like osteoporosis. While a high-resolution structural study on bone has been considered to be extremely challenging, NMR studies on model compounds and bone minerals have provided valuable insights into the structure of bone. Particularly, the recent demonstration of 43Ca solid-state NMR experiments on model compounds is an important advance in this field. However, application of 43Ca NMR is hampered due to the low natural-abundance and poor sensitivity of 43Ca. In this study, we report the first demonstration of natural-abundance 43Ca magic angle spinning (MAS) NMR experiments on bone, using powdered bovine cortical bone samples. 43Ca NMR spectra of bovine cortical bone are analyzed by comparing to the natural-abundance 43Ca NMR spectra of model compounds including hydroxyapatite and carbonated apatite. While 43Ca NMR spectra of hydroxyapatite and carbonated apatite are very similar, they significantly differ from that of cortical bone. Raman spectroscopy shows that the calcium environment in bone is more similar to carbonated apatite than hydroxyapatite. A close analysis of 43Ca NMR spectra reveals that the chemical shift frequencies of cortical bone and 10% carbonated apatite are similar but the quadrupole coupling constant of cortical bone is larger than that measured for model compounds. In addition, our results suggest that an increase in the carbonate concentration decreases the observed 43Ca chemical shift frequency. A comparison of experimentally obtained 43Ca MAS spectra with simulations reveal a 3:4 mole ratio of Ca-I:Ca-II sites in carbonated apatite and a 2.3:3 mole ratio for hydroxyapatite. 2D triple-quantum 43Ca MAS experiments performed on a mixture of carbonated apatite and the bone protein osteocalcin reveal the presence of protein-bound and free calcium sites, which is in agreement with a model developed from X-ray crystal structure of the protein.

Xu, Jiadi; Zhu, Peizhi; Gan, Zhehong; Sahar, Nadder; Tecklenburg, Mary; Morris, Michael D.; Kohn, David H.; Ramamoorthy, Ayyalusamy

2010-01-01

257

Structure and dynamics of paramagnetic transients by pulsed EPR and NMR detection of nuclear resonance. [Pulse radiolysis of methanol in D/sub 2/O  

SciTech Connect

Structure and dynamics of transient radicals in pulse radiolysis can be studied by time resolved EPR and NMR techniques. EPR study of kinetics and relaxation is illustrated. The NMR detection of nuclear resonance in transient radicals is a new method which allows the study of hyperfine coupling, population dynamics, radical kinetics, and reaction mechanism. 9 figures.

Trifunac, A.D.

1981-01-01

258

N-15 NMR Spectroscopy as a Method for Comparing the Rates of Imidization of Several Diamines  

NASA Technical Reports Server (NTRS)

The relative rates of the conversion of amide-acid to imide was measured for a series or aromatic diamines that have been identified as potential replacements for 4,4'-methylene dianiline (MDA) in high-temperature polyimides and polymer composites. These rates were compared with the N-15 NMR resonances of the unreacted amines. The initial rates of imidization track with the difference in chemical shift between the amine nitrogens in MDA and those in the subject diamines. This comparison demonstrated that N-15 NMR spectroscopy is appropriate for the rapid screening of candidate diamines to determine their reactivity relative to MDA, and can serve to provide guidance to the process of creating the time-temperature profiles used in processing these materials into polymer matrix composites.

Johnson, J. Christopher; Kuczmarski, Maria A.

2006-01-01

259

Synthesis of beta-O-4-type artificial lignin polymers and their analysis by NMR spectroscopy.  

PubMed

We describe the synthesis and NMR spectroscopic analysis of three artificial lignin polymers containing only the beta-O-4 substructure: syringyl-type homopolymer, p-hydroxyphenyl-type homopolymer and guaiacyl/syringyl-type heteropolymer. Using gel permeation chromatography, the weight-average degree of polymerization (DP(w)) of the three polymers was determined as 19.2, 38.6, and 13.9, respectively. The polymers were prepared based on the synthetic methodology of guaiacyl-type homopolymer, and were fully characterized using (1)H-, (13)C-, and (1)H-(13)C NMR spectroscopy of the acetylated and non-acetylated forms. The spectra of guaiacyl/syringyl-type heteropolymers were in good agreement with those of the beta-O-4 substructure of milled wood lignin obtained from the hardwood of Japanese white birch. PMID:18688492

Kishimoto, Takao; Uraki, Yasumitsu; Ubukata, Makoto

2008-08-21

260

Isotope labeling methods for studies of excited protein states by relaxation dispersion NMR spectroscopy.  

PubMed

The utility of nuclear magnetic resonance (NMR) spectroscopy as a tool for the study of biomolecular structure and dynamics has benefited from the development of facile labeling methods that incorporate NMR active probes at key positions in the molecule. Here we describe a protocol for the labeling of proteins that facilitates their study using a technique that is sensitive to millisecond conformational exchange processes. The samples necessary for an analysis of exchange dynamics are discussed, using the Abp1p SH3 domain from Saccharomyces cerevisiae as an example. For this system, the time frame for production of each sample, including in vitro refolding, is about 80 h. The samples so produced facilitate the measurement of accurate chemical shifts of low populated, invisible conformers that are part of the exchange pathway. The accuracy of the methodology has been established experimentally and the chemical shifts that are obtained provide important restraints in structure calculations of the excited state. PMID:19876024

Lundström, Patrik; Vallurupalli, Pramodh; Hansen, D Flemming; Kay, Lewis E

2009-01-01

261

Low Temperature 65Cu NMR Spectroscopy of the Cu+ Site in Azurin  

PubMed Central

65Cu central-transition NMR spectroscopy of the blue copper protein azurin in the reduced Cu(I) state, conducted at 18.8 Tesla and 10 K, gave a strongly second order quadrupole perturbed spectrum, which yielded a 65Cu quadrupole coupling constant of ±71.2 ± 1 MHz, corresponding to an electric field gradient of ±1.49 atomic units at the copper site, and an asymmetry parameter of approximately 0.2. Quantum chemical calculations employing second order Møller-Plesset perturbation theory and large basis sets successfully reproduced these experimental results. Sensitivity and relaxation times were quite favorable, suggesting that NMR may be a useful probe of the electronic state of copper sites in proteins.

Lipton, Andrew S.; Heck, Robert W.; de Jong, Wibe A.; Gao, Amy R.; Wu, Xiongjian; Roehrich, Adrienne; Harbison, Gerard S.; Ellis, Paul D.

2009-01-01

262

Natural abundance high-resolution solid state 2 H NMR spectroscopy  

NASA Astrophysics Data System (ADS)

We report for the first time an approach for natural abundance solid state 2H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1H decoupling (HPPD) and 1H- 2H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1H to 2H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

1994-08-01

263

Natural abundance high-resolution solid state 2 H NMR spectroscopy  

NASA Astrophysics Data System (ADS)

We report for the first time an approach for natural abundance solid state 2 H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1 H decoupling (HPPD) and 1 H- 2 H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2 H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2 H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1 H to 2 H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

1994-08-01

264

A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.  

PubMed

Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation. PMID:18926746

Halse, Meghan E; Callaghan, Paul T

2008-12-01

265

2H-DNP-enhanced 2H-13C solid-state NMR correlation spectroscopy.  

PubMed

Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution (2)H-(13)C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved (2)H-(13)C correlation spectra with a signal enhancement of epsilon > or = 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that (2)H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain (2)H-(13)C correlation spectra of U-[(2)H, (13)C] proline. PMID:20458422

Maly, Thorsten; Andreas, Loren B; Smith, Albert A; Griffin, Robert G

2010-06-14

266

Strategy for the Stereochemical Assignment of Tris-Heteroleptic Ru(II) Complexes by NMR Spectroscopy  

PubMed Central

The relative stereochemistry of tris-heteroleptic ruthenium complexes [Ru(pp)(pp?)(pp?)](PF6)2, where pp = 1,10-phenanthroline-4-carboxamide, pp? = 5,6-dimethyl-1,10-phenanthroline, and pp? = 7,8-dimethyl dipyrido[3,2-a:2?,3?-c]phenazine, was studied using NMR spectroscopy. The 1H and 13C spectra were assigned by using (DQF)-COSY, HSQC, and HMBC experiments for the two diastereomers, each a pair of enantiomers. NOE contacts between the neighboring ligands differentiated the two halves of each symmetrical ligand, thus enabling a full assignment of the NMR signals and an accurate determination of the relative stereochemistry of the complexes. Introduction of an additional chiral center to ligand pp by coupling it with L-lysine caused removal of the enantiomerism. Thus four diastereomers were observed and their relative stereochemistry determined.

Xie, Xiulan; Mulcahy, Seann P.; Meggers, Eric

2009-01-01

267

An instrument control and data analysis program for NMR imaging and spectroscopy  

SciTech Connect

We describe a software environment created to support real-time instrument control and signal acquisition as well as array-processor based signal and image processing in up to five dimensions. The environment is configured for NMR imaging and in vivo spectroscopy. It is designed to provide flexible tools for implementing novel NMR experiments in the research laboratory. Data acquisition and processing operations are programmed in macros which are loaded in assembled from to minimize instruction overhead. Data arrays are dynamically allocated for efficient use of memory and can be mapped directly into disk files. The command set includes primitives for real-time control of data acquisition, scalar arithmetic, string manipulation, branching, a file system and vector operations carried out by an array processor. 6 figs.

Roos, M.S.; Mushlin, R.A.; Veklerov, E.; Port, J.D.; Ladd, C.; Harrison, C.G.

1988-01-01

268

Earle K. Plyler Prize for Molecular Spectroscopy Talk: Coherent Ultrafast Multidimensional Spectroscopy of Molecules; From NMR to X-rays  

NASA Astrophysics Data System (ADS)

Multidimensional spectroscopic techniques which originated with NMR in the 1970s have been extended over the past 15 years to the optical regime. NMR spectroscopists have developed methods for the design of pulse sequences that resolve otherwise congested spectra, enhance selected spectral features and reveal desired dynamical events. The major experimental and computational advances required for extending these ideas to study electronic and vibrational motions on the femtosecond timescale will be surveyed. The response of complex molecules and semiconductor nanostructures to sequences of optical pulses provides snapshots of their structure and dynamical processes. Two-dimensional correlation plots of the signals show characteristic cross-peak patterns which carry information about hydrogen bonding, secondary structure fluctuations of proteins and amyloid fibrils, and coherent and incoherent energy and charge transfer in photosynthetic complexes. Double quantum coherence signals that are induced by correlations among electrons or excitons allow the visualization of correlated wavefunctions. Future extensions to the attosecond regime using xray pulses will be discussed. Since core excitations are highly localized at selected atoms, such signals can monitor the motions of valence electron wavepackets in real space with atomic spatial resolution. Common principles underlying coherent spectroscopy techniques for spins, valence electrons, and core electronic excitations, spanning frequencies from radiowaves, infrared, ultraviolet all the way to hard X-rays will be discussed. [4pt] [1] "Coherent Multidimensional Optical Probes for Electronic Correlations and Exciton Dynamics; from NMR to X-rays", S. Mukamel, D. Abramavicius, L. Yang, W.Zhuang, I.V. Schweigert and D. Voronine. Acct.Chem.Res. Acct.Chem.Res. 42, 553-562 (2009). [0pt] [2] "Coherent Multidimensional Optical Spectroscopy Excitons in Molecular Aggregates; Quasiparticle vs. Supermolecule Perspectives", D. Abramavicius, B. Palmieri, D. Voronine, F. Sanda and S. Mukamel, Chem. Rev. 109, 2350-2408 (2009).

Mukamel, Shaul

2011-03-01

269

Organic carbon and sulphur compounds in wetland soils: insights on structure and transformation processes using Kedge XANES and NMR spectroscopy  

Microsoft Academic Search

X-ray absorption near-edge structure (XANES) and nuclear magnetic resonance (NMR) spectroscopy were used in combination to characterize organic carbon structures in a series of wetland soils in Saskatchewan, and XANES spectroscopy was also used to examine sulphur speciation in the soils. The organic C contents of most of the wetland soils are consistently higher by a factor of two to

Aleksander Jokic; Jeffrey N Cutler; Elena Ponomarenko; Garth van der Kamp; Darwin W Anderson

2003-01-01

270

Detection and characterization of serine and threonine hydroxyl protons in Bacillus circulans xylanase by NMR spectroscopy.  

PubMed

Hydroxyl protons on serine and threonine residues are not well characterized in protein structures determined by both NMR spectroscopy and X-ray crystallography. In the case of NMR spectroscopy, this is in large part because hydroxyl proton signals are usually hidden under crowded regions of (1)H-NMR spectra and remain undetected by conventional heteronuclear correlation approaches that rely on strong one-bond (1)H-(15)N or (1)H-(13)C couplings. However, by filtering against protons directly bonded to (13)C or (15)N nuclei, signals from slowly-exchanging hydroxyls can be observed in the (1)H-NMR spectrum of a uniformly (13)C/(15)N-labeled protein. Here we demonstrate the use of a simple selective labeling scheme in combination with long-range heteronuclear scalar correlation experiments as an easy and relatively inexpensive way to detect and assign these hydroxyl proton signals. Using auxtrophic Escherichia coli strains, we produced Bacillus circulans xylanase (BcX) labeled with (13)C/(15)N-serine or (13)C/(15)N-threonine. Signals from two serine and three threonine hydroxyls in these protein samples were readily observed via (3)JC-OH couplings in long-range (13)C-HSQC spectra. These scalar couplings (~5-7 Hz) were measured in a sample of uniformly (13)C/(15)N-labeled BcX using a quantitative (13)C/(15)N-filtered spin-echo difference experiment. In a similar approach, the threonine and serine hydroxyl hydrogen exchange kinetics were measured using a (13)C/(15)N-filtered CLEANEX-PM pulse sequence. Collectively, these experiments provide insights into the structural and dynamic properties of several serine and threonine hydroxyls within this model protein. PMID:24306180

Brockerman, Jacob A; Okon, Mark; McIntosh, Lawrence P

2014-01-01

271

Micellization in aqueous solution of an ethylene oxide-propylene oxide triblock copolymer, investigated with 1H NMR spectroscopy, pulsed-field gradient NMR, and NMR relaxation.  

PubMed

(1)H nuclear magnetic resonance (NMR) spectroscopy has been applied to study the temperature and concentration-induced micellization of a poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymer, Pluronic P105, in D(2)O solutions in the temperature range from 5 to 45 degrees C and the concentration range from 0.01 to 15% (w/v). The intrinsic probes, the chemical shift, and the half-height width of the PO CH(3) signal are very sensitive to the local environment and can be used to characterize the temperature and concentration-dependent aggregation process. When the temperature approaches the critical micellization temperature or the polymer concentration reaches the critical micellization concentration, the chemical shift of the PO CH(3) signal moves toward lower ppm values and the half-height width of the PO CH(3) signal shows a sudden increase. It indicates that the methyl groups are experiencing a progressively less polar environment and transferring from water to the hydrophobic micellar core. The hydrodynamic radius of the unimers and the micelles are determined as be 1.8 and 5.0 nm by means of pulsed-field gradient spin-echo (PGSE) NMR. They were independent of temperature and concentration. The drastic shortening of spin-lattice relaxation time T(1) for the PO CH(3)/CH(2) protons in the transition region suggested that the PPO blocks are located in a "liquid-like" micellar core, whereas the exponential increase of T(1) for the PEO CH(2) protons implied that the PEO blocks are still keeping in contact with surrounding water. Thermodynamics analysis according to a closed association model shows that the micellization process is entropy-driven and has an endothermic micellization enthalpy. PMID:17482638

Ma, Junhe; Guo, Chen; Tang, Yalin; Xiang, Junfeng; Chen, Shu; Wang, Jing; Liu, Huizhou

2007-08-15

272

High-resolution magic angle spinning NMR spectroscopy of human osteoarthritic cartilage.  

PubMed

Osteoarthritis (OA) is a degenerative disease of the joints and results in changes in the biochemical composition of cartilage. Previous studies have been undertaken that have used high-resolution NMR spectroscopy to study the biochemical composition of porcine, canine and bovine cartilage. In the present study, high-resolution magical angle spinning (HR-MAS) NMR spectroscopy at 11.7 T has been used to characterize metabolites and detect differences in the spectral signature of human knee articular cartilage from non-OA healthy cadaver knees and samples acquired from severe OA patients at the time of total knee replacement surgery. A statistically significant difference in the alanine (1.47 p.p.m.), N-acetyl (2.04 p.p.m.), choline (3.25 p.p.m.) and glycine (3.55 p.p.m.) metabolite levels was observed between healthy and OA specimens. The results of the present study indicate that a decrease in the intensity of N-acetyl resonance occurs in the later stages of OA. A positive correlation of the N-acetyl levels as measured by (1)H HR-MAS NMR spectroscopy with the total proteoglycan content in the same cartilage specimens as measured by the glycosaminoglycan (GAG) assay was observed. This indicates that N-acetyl can serve as an important bio-marker of OA disease progression. A decrease in the alanine concentration in OA may be attributed to the degradation of the collagen framework with disease progression and eventual loss of the degradation products that are transported from cartilage into the synovial cavity. PMID:21850648

Shet, Keerthi; Siddiqui, Sarmad M; Yoshihara, Hikari; Kurhanewicz, John; Ries, Michael; Li, Xiaojuan

2012-04-01

273

Heteronuclear dipolar couplings, total spin coherence, and bilinear rotations in NMR spectroscopy  

SciTech Connect

In Chapter 1 a variety of different introductory topics are presented. The potential complexity of the nuclear magnetic resonsnace (NMR) spectra of molecules dissolved in liquid crystal solvents serves to motivate the development of multiple quantum (MQ) spectroscopy. The basics of MQ NMR are reviewed in Chapter 2. An experimental search procedure for the optimization of MQ pulse sequences is introduced. Chapter 3 discusses the application of MQ NMR techniques to the measurement of dipolar couplings in heteronuclear spin systems. The advantages of MQ methods in such systems are developed and experimental results for partially oriented (1-/sup 13/C) benzene are presented. Several pulse sequences are introduced which employ a two-step excitation of heteronuclear MQ coherence. A new multiple pulse method, involving the simultaneous irradiation of both rare and abundant spin species, is described. The problem of the broadening of MQ transitions due to magnetic field inhomogeneity is considered in Chapter 4. The method of total spin coherence transfer echo spectroscopy (TSCTES) is presented, with experimets on partially oriented acetaldehyde serving to demonstrate this new technique. TSCTES results in MQ spectra which are sensitive to all chemical shifts and spin-spin couplings and which are free of inhomogeneous broadening. In Chapter 5 the spectroscopy of spin systems of several protons and a /sup 13/C nucleus in the isotropic phase is discussed. The usefulness of the heteronuclear bilinear rotation as a calculational tool is illustrated. Compensated bilinear ..pi.. rotations, which are relatively insensitive to timing parameter missets, are presented. A new technique for homonuclear proton decoupling, Bilinear Rotation Decoupling, is described and its success in weakly coupled systems is demonstrated.

Garbow, J.R.

1983-07-01

274

Investigation on origin of Z1/2 center in SiC by deep level transient spectroscopy and electron paramagnetic resonance  

NASA Astrophysics Data System (ADS)

The Z1/2 center in n-type 4H-SiC epilayers--a dominant deep level limiting the carrier lifetime--has been investigated. Using capacitance versus voltage (C-V) measurements and deep level transient spectroscopy (DLTS), we show that the Z1/2 center is responsible for the carrier compensation in n-type 4H-SiC epilayers irradiated by low-energy (250 keV) electrons. The concentration of the Z1/2 defect obtained by C-V and DLTS correlates well with that of the carbon vacancy (VC) determined by electron paramagnetic resonance, suggesting that the Z1/2 deep level originates from VC.

Kawahara, Koutarou; Thang Trinh, Xuan; Tien Son, Nguyen; Janzén, Erik; Suda, Jun; Kimoto, Tsunenobu

2013-03-01

275

Study of order and dynamics in liquid crystalline materials by carbon-13 and deuterium NMR spectroscopy  

NASA Astrophysics Data System (ADS)

This dissertation investigates the phase structures, molecular structures and diffusion motions in some recently discovered liquid crystals using 1D and 2D carbon-13 and deuterium NMR spectroscopy. Two classes of liquid crystals are involved: chiral rod-like liquid crystals and banana mesogens. Our investigations of these new materials were divided into five main sections. The ordering and structures of banana liquid crystals and chiral rod-like mesogens were extracted from solid-state 13C NMR experiments including Separated-Local-Field study based on Lee-Goldberg Cross-Polarization (LGCP-SLF) and temperature dependent chemical shifts. The principal values of CSA tensor were measured using Separation of Undistorted CSA Powder patterns by Effortless Recoupling (SUPER) experiment. Some ID and 2D pulse experiments were performed for the assignment of carbon peaks, such as Cross-Polarization Polarization-Inversion (CPPI), HECTOR and so on. The soliton-like distortion of the helicoidal structure in the chiral smectic C phase (SmC*) of 8BEF5 liquid crystal was observed by the angular dependent DNMR patterns, and quantitatively interpreted based on Landau theory. The distortion was induced by the NMR magnetic field. The phase structure and interlayer diffusion in anticlinic Sm C* phases (Sm C*A , Sm C*Fi1 and Sm C*Fi2 ) of 10B1M7 liquid crystal were measured using angular dependent DNMR lineshapes and echo intensities. This work represents the first study of ferrielectric smectic phases by means of NMR. Measurements of the interlayer diffusion in synclinic and anticlinic SmC* phases (SmC*, Sm C*Fi1 and Sm C*Fi2 ) of 10B1M7 were carried out using 2H NMR exchange experiments. The phase structures of anticlinic SmC* phases were also determined using the same technique. A 'deformed clock model' was found to be appropriate for these phases. Molecular structures and dynamics were investigated in an exotic B 2 phase of a banana liquid crystal Pbis11BB by means of CP-MAS 13C NMR, MAS 2D 13C NMR exchange and LGCP-SLF (with MAS) experiments. These experiments showed that the molecules have asymmetric conformation in the solid state and carry on much slower motions in solid and liquid states compared to banana molecules in the same homologous series.

Xu, Jiadi

276

Structural studies of racecadotril and its process impurities by NMR and mass spectroscopy.  

PubMed

Three unknown impurities in racecadotril bulk drug at levels below 0.5% were detected by simple reverse phase isocratic high performance liquid chromatography (HPLC). Structures for these impurities were proposed by molecular ion information and their fragmentation pattern obtained by LC-MS and these impurities were confirmed by NMR spectroscopy. The impurities I, II and III were characterized as benzyl 2-methyl carboximido acetate, benzyl 2-phenyl ethyl carboximido acetate, and benzyl 2-(1-benzyl vinyl carboximido) acetate. These structures were further confirmed by co-injecting of synthetic standards of impurities with racecadotril. The mechanism of the formation of these process related impurities is discussed. PMID:17283655

Reddy, K Mallikarjun; Babu, J Moses; Sudhakar, P; Sharma, M S P; Reddy, G Sudershan; Vyas, K

2006-12-01

277

Early stage monitoring of miltefosine induced apoptosis in KB cells by multinuclear NMR spectroscopy.  

PubMed

Synthetic ether lipids, like miltefosine (hexadecylphosphocholine), an alkylphosphocholine, are antineoplastic agents in vitro and in vivo. Their mode of action is mediated via the cell membrane, but the mechanism is still unclear. Miltefosine induces apoptosis in human epithelial KB cells, but slows down only proliferation in rat C6 glioma cells. NMR spectroscopy on lipid extracts reveals increased diacylglycerol and triacyglycerol biosynthesis in KB cells prior to DNA fragmentation indicating a CTP:phosphocholine-cytidylyl-transferase (CT) inhibition by the drug. Although C6 cells were morphologically affected by alterations in phospholipid composition and metabolism by a long term treatment (23 days) with the drug, no persistent diacylglycerol increase is observed. PMID:8694511

Engelmann, J; Henke, J; Willker, W; Kutscher, B; Nössner, G; Engel, J; Leibfritz, D

1996-01-01

278

Analysis of epoxy resin formulations by /sup 13/C NMR spectroscopy  

SciTech Connect

The chloroform soluble components of several epoxy resin formulations were analyzed by /sup 13/C NMR spectroscopy. The technique permits the components of an epoxy resin formulation to be identified on a routine basis with a high degree of confidence. Narmco's 5208 contained MY-720 and EpiRez SU-7 or SU-8. Two versions of Ferro's CE-9000 contained ERL-0510 and EpiRez SU-7 or SU-8. Although the method is semiquantitative, it was able to distinguish between the two versions of Ferro's CE-9000 in which the concentration of ERL-0510 differs by approximately a factor of two.

Assink, R.A.; Gurule, F.T.

1981-02-01

279

1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems  

NASA Astrophysics Data System (ADS)

Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (?), such as protons, to the less abundant 13C nuclei with low ? values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched. The Hartmann-Hahn condition can be expressed as ?HB1H = ?CB1C, where ?H and ?C are the gyromagnetic ratios of protons and carbons, whereas B1H and B1C are the 1H and 13C radio-frequency (r.f.) fields applied to the nuclei. The Hartmann-Hahn condition is affected by the H-C dipolar interaction strength (Stejskal & Memory, 1994). All the factors affecting dipolar interactions may mismatch the Hartmann-Hahn condition and prevent a quantitative representation of the NOM chemical composition (Conte et al., 2004). It has been reported that under low speed MAS conditions, broad matching profiles are centered around the Hartmann-Hahn condition....... With increasing spinning speed the Hartmann-Hahn matching profiles break down in a series of narrow matching bands separated by the rotor frequency (Stejskal & Memory, 1994). In order to account for the instability of the Hartmann-Hahn condition at higher rotor spin rates (>10 kHz), variable amplitude cross-polarization techniques (RAMP-CP) have been developed (Metz et al., 1996). So far, to our knowledge, the prevailing way used to obtain quantitative 13C-CPMAS NMR results was to optimize the 1H and 13C spin lock r.f. fields on simple standard systems such as glycine and to use those r.f. field values to run experiments on unknown organic samples. The aim of the present study was to experimentally evidence that the stability of the Hartmann-Hahn condition was different for different samples with a known structure. Moreover, Hartmann-Hahn profiles of four different humic acids (HAs) were also provided in order to show that the 1H/13C r.f. spin lock field strength must also be tested on the HAs prior to a quantitative evaluation of their 13C-CPMAS NMR spectra. Baldock, J.A., Oades, J.M., Nelson, P.N., Skene, T.M., Golchin, A. & Clarke, P., 1997. Assessing the extent of decomposition of natural organic materials using solid-state C-13 NMR spectroscopy. Australian Journal of Soil Research, 35, 1061-1083. Conte, P., Piccolo, A., van Lagen, B., Buurman, P. & de Jager, P.A., 1997. Quantitative Aspects of So

Berns, Anne E.; Conte, Pellegrino

2010-05-01

280

Dynamic processes and chemical composition of Lepidium sativum seeds determined by means of field-cycling NMR relaxometry and NMR spectroscopy.  

PubMed

Proton nuclear magnetic resonance (NMR) techniques, such as field-cycling relaxometry, wide-line NMR spectroscopy, and magic angle spinning NMR spectroscopy, were applied to study the seeds of cress, Lepidium sativum. Field-cycling NMR relaxometry was used for the first time to investigate the properties of the whole molecular system of dry cress seeds. This method not only allowed the dynamics to be studied, but was also successful in the differentiation among the solid (i.e., carbohydrates, proteins, or fats forming a solid form of lipids) and liquid-like (oil compounds) components of the seeds. The (1)H NMR relaxation dispersion of oils was interpreted as a superposition of intramolecular and intermolecular contributions. The intramolecular part was described in terms of a Lorentzian spectral density function, whereas a log-Gaussian distribution of correlation times was applied for the intermolecular dipole-dipole contribution. The models applied led to very good agreement with the experimental data and demonstrate that the contribution of the intermolecular relaxation to the overall relaxation should not be disregarded, especially at low frequencies. A power-law frequency dependence of the proton relaxation dispersion was used for the interpretation of the solid components. From the analysis of the (1)H wide-line NMR spectra of the liquid-like component of hydrated cress seeds, we can conclude that the contribution of oil protons should always be taken into account when evaluating the spin-lattice relaxation times values or measuring the moisture and oil content. The application of (1)H magic angle spinning NMR significantly improves resolution in the liquid-like spectrum of seeds and allows the determination of the chemical composition of cress seeds. PMID:23001307

Rachocki, A; Latanowicz, L; Tritt-Goc, J

2012-12-01

281

Identification of metabolites in human hepatic bile using 800 MHz 1H NMR spectroscopy, HPLC-NMR/MS and UPLC-MS.  

PubMed

The first application of high field NMR spectroscopy (800 MHz for (1)H observation) to human hepatic bile (as opposed to gall bladder bile) is reported. The bile sample used for detailed investigation was from a donor liver with mild fat infiltration, collected during organ retrieval prior to transplantation. In addition, to focus on the detection of bile acids in particular, a bile extract was analysed by 800 MHz (1)H NMR spectroscopy, HPLC-NMR/MS and UPLC-MS. In the whole bile sample, 40 compounds have been assigned with the aid of two-dimensional (1)H-(1)H TOCSY and (1)H-(13)C HSQC spectra. These include phosphatidylcholine, 14 amino acids, 10 organic acids, 4 carbohydrates and polyols (glucose, glucuronate, glycerol and myo-inositol), choline, phosphocholine, betaine, trimethylamine-N-oxide and other small molecules. An initial NMR-based assessment of the concentration range of some key metabolites has been made. Some observed chemical shifts differ from expected database values, probably due to a difference in bulk diamagnetic susceptibility. The NMR spectra of the whole extract gave identification of the major bile acids (cholic, deoxycholic and chenodeoxycholic), but the glycine and taurine conjugates of a given bile acid could not be distinguished. However, this was achieved by HPLC-NMR/MS, which enabled the separation and identification of ten conjugated bile acids with relative abundances varying from approximately 0.1% (taurolithocholic acid) to 34.0% (glycocholic acid), of which, only the five most abundant acids could be detected by NMR, including the isomers glycodeoxycholic acid and glycochenodeoxycholic acid, which are difficult to distinguish by conventional LC-MS analysis. In a separate experiment, the use of UPLC-MS allowed the detection and identification of 13 bile acids. This work has shown the complementary potential of NMR spectroscopy, MS and hyphenated NMR/MS for elucidating the complex metabolic profile of human hepatic bile. This will be useful baseline information in ongoing studies of liver excretory function and organ transplantation. PMID:19156264

Duarte, Iola F; Legido-Quigley, Cristina; Parker, David A; Swann, Jonathan R; Spraul, Manfred; Braumann, Ulrich; Gil, Ana M; Holmes, Elaine; Nicholson, Jeremy K; Murphy, Gerard M; Vilca-Melendez, Hector; Heaton, Nigel; Lindon, John C

2009-02-01

282

Investigation of M(III) chelates by NMR and luminescence spectroscopy  

SciTech Connect

This paper studies the structure of complexes of lanthanides with ethylenediamine-disphosphoric acid (EDDP) and ethylenediaminetetraphosphonic acid (EDTP) in solution with the aid of /sup 1/H NMR spectroscopy and luminescence spectroscopy. It has been shown that complexes of EDDP with different lanthanides have the same structure, which is not dependent on the pH. The structure of the complexes of EDTP with europium, praseodymium, and holmium differs from the structure of the complexes with ytterbium and thulium. The structures of the isolated complexes of lanthanides, calcium, and indium have been studied with the aid of the luminescence and excitation spectra of a europium impurity ion. It has been shown that the structures of the complexes of the lanthanides and indium are similar.

Babushkina, T.A.; Kolin, V.F.; Koreneva, L.G.; Lazukova, L.B.

1986-03-01

283

Structural determination of a key exopolysaccharide in mixed culture aerobic sludge granules using NMR spectroscopy.  

PubMed

Nuclear magnetic resonance (NMR) techniques were used to elucidate the structure of an exopolysaccharide material previously revealed to be important in formation of aerobic granules. The 1D NMR spectral data acquired showed that this gel-forming polysaccharide was a major component of granular EPS, while 1D and 2D NMR spectra showed it consisted of eight sugar residues. These were assigned as ?-galactose, ?-rhamnose, 2-acetoamido-2-deoxy-?-galactopyranuronic acid, ?-mannose, ?-galactose, ?-glucuronate, ?-glucosamine, and N-acetyl ?-galactosamine. With the exception of 2-acetoamido-2-deoxy-?-galactopyranuronic acid, a highly unusual sugar, their presence was confirmed with high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Carbon and proton shifts were assigned for each sugar. Heteronuclear multiple bond correlation (HMBC) and nuclear Overhauser enhancement spectroscopy (NOESY) were used to identify linkage sites between individual sugar residues. This gel-forming exopolysaccharide appeared to be a highly complex single heteropolysaccharide with a repeat sequence of ?-galactose, ?-mannose, ?-glucosamine, N-acetyl-?-galactosamine, and 2-acetoamido-2-deoxy-?-galactopyranuronic acid. It has a disaccharide branch of ?-galactose and ?-glucuronic acid attached to 2-acetoamido-2-deoxy-?-galactopyranuronic acid and an ?-rhamnose branch attached to ?-galactose. PMID:21033741

Seviour, Thomas; Lambert, Lynette K; Pijuan, Maite; Yuan, Zhiguo

2010-12-01

284

Rapid Etiological Classification of Meningitis by NMR Spectroscopy Based on Metabolite Profiles and Host Response  

PubMed Central

Bacterial meningitis is an acute disease with high mortality that is reduced by early treatment. Identification of the causative microorganism by culture is sensitive but slow. Large volumes of cerebrospinal fluid (CSF) are required to maximise sensitivity and establish a provisional diagnosis. We have utilised nuclear magnetic resonance (NMR) spectroscopy to rapidly characterise the biochemical profile of CSF from normal rats and animals with pneumococcal or cryptococcal meningitis. Use of a miniaturised capillary NMR system overcame limitations caused by small CSF volumes and low metabolite concentrations. The analysis of the complex NMR spectroscopic data by a supervised statistical classification strategy included major, minor and unidentified metabolites. Reproducible spectral profiles were generated within less than three minutes, and revealed differences in the relative amounts of glucose, lactate, citrate, amino acid residues, acetate and polyols in the three groups. Contributions from microbial metabolism and inflammatory cells were evident. The computerised statistical classification strategy is based on both major metabolites and minor, partially unidentified metabolites. This data analysis proved highly specific for diagnosis (100% specificity in the final validation set), provided those with visible blood contamination were excluded from analysis; 6–8% of samples were classified as indeterminate. This proof of principle study suggests that a rapid etiologic diagnosis of meningitis is possible without prior culture. The method can be fully automated and avoids delays due to processing and selective identification of specific pathogens that are inherent in DNA-based techniques.

Himmelreich, Uwe; Malik, Richard; Kuhn, Till; Daniel, Heide-Marie; Somorjai, Ray L.; Dolenko, Brion; Sorrell, Tania C.

2009-01-01

285

Functional group analysis in coal and on coal surfaces by NMR spectroscopy  

SciTech Connect

An accurate knowledge of the oxygen-bearing labile hydrogen functional groups (e.g., carboxylic acids, phenols and alcohols) in coal is required for today's increasingly sophisticated coal cleaning and beneficiation processes. Phospholanes (compounds having the general structure -POCH{sub 2}CH{sub 2}O (1)) are being investigated as reagents for the tagging of liable hydrogen functional groups in coal materials with the NMR-active {sup 31}P nucleus. Of twelve such reagents investigated so far, 2 (2-chloro-1,3-dioxaphospholane, ClPOCH{sub 2}CH{sub 2}O) and 8 (2-chloro-1,3-dithiaphospholane, ClPSCH{sub 2}CH{sub 2}S) have been found to be useful in identifying and quantitating, by {sup 31}P NMR spectroscopy, labile hydrogen functional groups in an Illinois No. 6 coal condensate. Reagent 2 has also been used to quantitate moisture in pyridine extracts of Argonne Premium Coal Samples. Preliminary {sup 119}Sn NMR spectroscopic results on model compounds with the new reagent CF{sub 3}C(O)NHSnMe{sub 3} (N-trimethylstannyltrifluoroacetamide, 14) suggest that labile hydrogen functional groups in coal materials may be more precisely identified with 14 than with phospholanes. 14 refs., 2 figs., 2 tabs.

Verkade, J.G.

1990-01-01

286

Biological effects and physical safety aspects of NMR imaging and in vivo spectroscopy  

SciTech Connect

An assessment is made of the biological effects and physical hazards of static and time-varying fields associated with the NMR devices that are being used for clinical imaging and in vivo spectroscopy. A summary is given of the current state of knowledge concerning the mechanisms of interaction and the bioeffects of these fields. Additional topics that are discussed include: (1) physical effects on pacemakers and metallic implants such as aneurysm clips, (2) human health studies related to the effects of exposure to nonionizing electromagnetic radiation, and (3) extant guidelines for limiting exposure of patients and medical personnel to the fields produced by NMR devices. On the basis of information available at the present time, it is concluded that the fields associated with the current generation of NMR devices do not pose a significant health risk in themselves. However, rigorous guidelines must be followed to avoid the physical interaction of these fields with metallic implants and medical electronic devices. 476 refs., 5 figs., 2 tabs.

Tenforde, T.S.; Budinger, T.F.

1985-08-01

287

Sensitivity and resolution enhancement in solid-state NMR spectroscopy of bicelles  

NASA Astrophysics Data System (ADS)

Magnetically aligned bicelles are becoming attractive model membranes to investigate the structure, dynamics, geometry, and interaction of membrane-associated peptides and proteins using solution- and solid-state NMR experiments. Recent studies have shown that bicelles are more suitable than mechanically aligned bilayers for multidimensional solid-state NMR experiments. In this work, we describe experimental aspects of the natural abundance 13C and 14N NMR spectroscopy of DMPC/DHPC bicelles. In particular, approaches to enhance the sensitivity and resolution and to quantify radio-frequency heating effects are presented. Sensitivity of 13C detection using single pulse excitation, conventional cross-polarization (CP), ramp-CP, and NOE techniques are compared. Our results suggest that the proton decoupling efficiency of the FLOPSY pulse sequence is better than that of continuous wave decoupling, TPPM, SPINAL, and WALTZ sequences. A simple method of monitoring the water proton chemical shift is demonstrated for the measurement of sample temperature and calibration of the radio-frequency-induced heating in the sample. The possibility of using 14N experiments on bicelles is also discussed.

Dvinskikh, Sergey V.; Yamamoto, Kazutoshi; Dürr, Ulrich H. N.; Ramamoorthy, Ayyalusamy

2007-02-01

288

Synthesis and structural study of benzamarones by X-ray and NMR spectroscopy  

NASA Astrophysics Data System (ADS)

In this work only one diastereomer of benzamarone (1,2,3,4,5-pentaphenylpentan-1,5-dione) 1 was isolated from tandem condensation/addition reaction between deoxybenzoin and benzaldehyde in alkaline medium and by Michael addition of deoxybenzoin to ( E)-2-phenylchalcone. Compound 1 was investigated by single crystal X-ray diffraction: C 35H 28O 2, Mr = 480.57, triclinic system, space group P1 with unit cell parameters a = 11.489(2), b = 11.669(2), c = 11.855(2) Å, ? = 104.31(4), ? = 116.91(3), ? = 98.96(3)°, V = 1305.6(4) Å 3, Z = 2, T = 25(2) °C, ?calc = 1.222 gr/cm 3, ? = 0.074 mm -1. This study allowed us to assign the configuration 2R,4R/2S,4S corresponding to the diastereomer racemate C ( Fig. 1) due to the fact that the crystal structure exhibits two independent molecules in the unit cell. Data obtained using NMR spectroscopy [1D and 2D NMR] are agreement with those obtained by X-ray diffraction. By comparison of NMR data, the configuration corresponding to the diastereomer racemate C was assigned to other substituted benzamarones synthesized by us, which present two and three stereocenters in their structure.

Mufato, Jorge D.; Vega, Daniel R.; Aguirre, José M.; de la Faba, Diego J.; Lantaño, Beatriz

2011-02-01

289

Quantitative evaluation of noncovalent interactions between glyphosate and dissolved humic substances by NMR spectroscopy.  

PubMed

Interactions of glyphosate (N-phosphonomethylglycine) herbicide (GLY) with soluble fulvic acids (FAs) and humic acids (HAs) at pH 5.2 and 7 were studied by (1)H and (31)P NMR spectroscopy. Increasing concentrations of soluble humic matter determined broadening and chemical shift drifts of proton and phosphorus GLY signals, thereby indicating the occurrence of weak interactions between GLY and humic superstructures. Binding was larger for FAs and pH 5.2 than for HAs and pH 7, thus suggesting formation of hydrogen bonds between GLY carboxyl and phosphonate groups and protonated oxygen functions in humic matter. Changes in relaxation and correlation times of (1)H and (31)P signals and saturation transfer difference NMR experiments confirmed the noncovalent nature of GLY-humic interactions. Diffusion-ordered NMR spectra allowed calculation of the glyphosate fraction bound to humic superstructures and association constants (K(a)) and Gibbs free energies of transfer for GLY-humic complex formation at both pH values. These values showed that noncovalent interactions occurred most effectively with FAs and at pH 5.2. Our findings indicated that glyphosate may spontaneously and significantly bind to soluble humic matter by noncovalent interactions at slightly acidic pH and, thus, potentially pollute natural water bodies by moving through soil profiles in complexes with dissolved humus. PMID:22591574

Mazzei, Pierluigi; Piccolo, Alessandro

2012-06-01

290

Unraveling the structure and function of G protein-coupled receptors through NMR spectroscopy  

PubMed Central

G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.

Tikhonova, Irina G.; Costanzi, Stefano

2009-01-01

291

Interaction of the replication terminator protein of Bacillus subtilis with DNA probed by NMR spectroscopy.  

PubMed

Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the dimeric 29 kDa replication terminator protein (RTP) and DNA terminator sites. We have used NMR spectroscopy to probe the changes in 1H-15N correlation spectra of a 15N-labelled RTP.C110S mutant upon the addition of a 21 base pair symmetrical DNA binding site. Assignment of the 1H-15N correlations was achieved using a suite of triple resonance NMR experiments with 15N,13C,70% 2H enriched protein recorded at 800 MHz and using TROSY pulse sequences. Perturbations to 1H-15N spectra revealed that the N-termini, alpha3-helices and several loops are affected by the binding interaction. An analysis of this data in light of the crystallographically determined apo- and DNA-bound forms of RTP.C110S revealed that the NMR spectral perturbations correlate more closely to protein structural changes upon complex formation rather than to interactions at the protein-DNA interface. PMID:16061201

Hastings, Adam F; Otting, Gottfried; Folmer, Rutger H A; Duggin, Iain G; Wake, R Gerry; Wilce, Matthew C J; Wilce, Jacqueline A

2005-09-23

292

Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy  

USGS Publications Warehouse

13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

Thorn, K. A.; Steelink, C.; Wershaw, R. L.

1987-01-01

293

60 MHz 1H NMR spectroscopy for the analysis of edible oils?  

PubMed Central

We report the first results from a new 60 MHz 1H nuclear magnetic resonance (NMR) bench-top spectrometer, Pulsar, in a study simulating the adulteration of olive oil with hazelnut oil. There were qualitative differences between spectra from the two oil types. A single internal ratio of two isolated groups of peaks could detect hazelnut oil in olive oil at the level of ?13%w/w, whereas a whole-spectrum chemometric approach brought the limit of detection down to 11.2%w/w for a set of independent test samples. The Pulsar’s performance was compared to that of Fourier transform infrared (FTIR) spectroscopy. The Pulsar delivered comparable sensitivity and improved specificity, making it a superior screening tool. We also mapped NMR onto FTIR spectra using a correlation-matrix approach. Interpretation of this heat-map combined with the established annotations of the NMR spectra suggested a hitherto undocumented feature in the IR spectrum at ?1130 cm?1, attributable to a double-bond vibration.

Parker, T.; Limer, E.; Watson, A.D.; Defernez, M.; Williamson, D.; Kemsley, E. Kate

2014-01-01

294

Interaction of a goose-type lysozyme with chitin oligosaccharides as determined by NMR spectroscopy.  

PubMed

The interaction between a goose-type lysozyme from ostrich egg white (OEL) and chitin oligosaccharides [(GlcNAc)(n) (n = 2, 4 and 6)] was studied by nuclear magnetic resonance (NMR) spectroscopy. A stable isotope-labelled OEL was produced in Pichia pastoris, and backbone resonance assignments for the wild-type and an inactive mutant (E73A OEL) were achieved using modern multi-dimensional NMR techniques. NMR titration was performed with (GlcNAc)(n) for mapping the interaction sites of the individual oligosaccharides based on the shifts in the two-dimensional heteronuclear single quantum correlation (HSQC) resonances. In wild-type OEL, the interaction sites for (GlcNAc)(n) were basically similar to those determined by X-ray crystallography. In E73A OEL, however, the interaction sites were spread more widely over the substrate-binding cleft than expected, due to the multiple modes of binding. The association constant for E73A OEL and (GlcNAc)(6) calculated from the shifts in the Asp97 resonance (7.2 × 10(3) M(-1)) was comparable with that obtained by isothermal titration calorimetry (5.3 × 10(3) M(-1)). The interaction was enthalpy-driven as judged from the thermodynamic parameters (?H = -6.1 kcal/mol and T?S = -1.0 kcal/mol). This study provided novel insights into the oligosaccharide binding mechanism and the catalytic residues of the enzymes belonging to family GH-23. PMID:21859795

Shinya, Shoko; Ohnuma, Takayuki; Kawamura, Shunsuke; Torikata, Takao; Nishimura, Shigenori; Katoh, Etsuko; Fukamizo, Tamo

2011-11-01

295

Examining weak protein-protein interactions in start codon recognition via NMR spectroscopy.  

PubMed

Weak protein-protein interactions are critical in numerous biological processes. Unfortunately, they are difficult to characterize due to the high concentrations required for the production and detection of the complex population. The inherent sensitivity of NMR spectroscopy to the chemical environment makes it an excellent tool to tackle this problem. NMR permits the exploration of interactions over a range of affinities, yielding essential insights into dynamic biological processes. The conversion of messanger RNA to protein is one such process that requires the coordinated association of many low-affinity proteins. During start codon recognition, eukaryotic initiation factors assemble into high-order complexes that bind messanger RNA and bring it to the ribosome for decoding. Many of the structures of the eukaryotic initiation factors have been determined; however, little is known regarding the weak binary complexes formed and their structure-function mechanisms. Herein, we use start codon recognition as a model system to review the relevant NMR methods for the characterization of weak interactions and the development of small molecule inhibitors. PMID:24393460

Luna, Rafael E; Akabayov, Sabine R; Ziarek, Joshua J; Wagner, Gerhard

2014-04-01

296

Sensitivity and Resolution Enhancement in Solid-State NMR Spectroscopy of Bicelles  

PubMed Central

Magnetically aligned bicelles are becoming attractive model membranes to investigate the structure, dynamics, geometry, and interaction of membrane-associated peptides and proteins using solution- and solid-state NMR experiments. Recent studies have shown that bicelles are more suitable than mechanically aligned bilayers for multidimensional solid-state NMR experiments. In this work, we describe experimental aspects of the natural abundance 13C and 14N NMR spectroscopy of DMPC/DHPC bicelles. In particular, approaches to enhance the sensitivity and resolution and to quantify radio frequency heating effects are presented. Sensitivity of 13C detection using single pulse excitation, conventional cross-polarization (CP), ramp-CP, and NOE techniques are compared. Our results suggest that the proton decoupling efficiency of the FLOPSY pulse sequence is better than that of continuous wave decoupling, TPPM, SPINAL and WALTZ sequences. A simple method of monitoring the water proton chemical shift is demonstrated for the measurement of sample temperature and calibration of the radio-frequency-induced heating in the sample. The possibility of using 14N experiments on bicelles is also discussed.

Dvinskikh, Sergey V.; Yamamoto, Kazutoshi; Durr, Ulrich H. N.; Ramamoorthy, Ayyalusamy

2007-01-01

297

Metabolomic Characterization of Ovarian Epithelial Carcinomas by HRMAS-NMR Spectroscopy  

PubMed Central

Objectives. The objectives of the present study are to determine if a metabolomic study by HRMAS-NMR can (i) discriminate between different histological types of epithelial ovarian carcinomas and healthy ovarian tissue, (ii) generate statistical models capable of classifying borderline tumors and (iii) establish a potential relationship with patient's survival or response to chemotherapy. Methods. 36 human epithelial ovarian tumor biopsies and 3 healthy ovarian tissues were studied using 1H HRMAS NMR spectroscopy and multivariate statistical analysis. Results. The results presented in this study demonstrate that the three histological types of epithelial ovarian carcinomas present an effective metabolic pattern difference. Furthermore, a metabolic signature specific of serous (N-acetyl-aspartate) and mucinous (N-acetyl-lysine) carcinomas was found. The statistical models generated in this study are able to predict borderline tumors characterized by an intermediate metabolic pattern similar to the normal ovarian tissue. Finally and importantly, the statistical model of serous carcinomas provided good predictions of both patient's survival rates and the patient's response to chemotherapy. Conclusions. Despite the small number of samples used in this study, the results indicate that metabolomic analysis of intact tissues by HRMAS-NMR is a promising technique which might be applicable to the therapeutic management of patients.

Ben Sellem, D.; Elbayed, K.; Neuville, A.; Moussallieh, F.-M.; Lang-Averous, G.; Piotto, M.; Bellocq, J.-P.; Namer, I. J.

2011-01-01

298

Spectroscopy  

NSDL National Science Digital Library

This site describes the theory and practice of IR and NMR spectroscopy for classroom and laboratory instruction. Although it is written for a course at the University of Colorado, Boulder, this site is appropriate for anyone doing analytical measurements with infrared or NMR.

2011-08-05

299

A simple method for determining protic end-groups of synthetic polymers by 1H NMR spectroscopy  

Microsoft Academic Search

A simple method for the determination of protic end-groups (–XH) in synthetic polymers involves in situ derivatization with trichloroacetyl isocyanate (TAI) in an NMR tube and observation of the imidic hydrogens of the derivatized products [–X–C(O)–NH–COCCl3] by 1H NMR spectroscopy. In this paper, we report that the method is effective for the quantitative determination of hydroxy, primary amino and carboxy

Almar Postma; Thomas P. Davis; A. Richard Donovan; Guoxin Li; Graeme Moad; Roger Mulder; Michael S. O'Shea

2006-01-01

300

Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy  

ERIC Educational Resources Information Center

2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how…

Ruhayel, Rasha A.; Berners-Price, Susan J.

2010-01-01

301

Multicomponent analysis of radiolytic products in human body fluids using high field proton nuclear magnetic resonance (NMR) spectroscopy  

Microsoft Academic Search

High field proton Hahn spin-echo nuclear magnetic resonance (NMR) spectroscopy has been employed to investigate radiolytic damage to biomolecules present in intact human body fluids. gamma-Radiolysis of healthy or rheumatoid human serum (5.00 kGy) in the presence of atmospheric O2 gave rise to reproducible elevations in the concentration of NMR-detectable acetate which are predominantly ascribable to the prior oxidation of

Martin C. Grootveld; Herman Herz; Rachel Haywood; Geoffrey E. Hawkes; Declan Naughton; Anusha Perera; Jacky Knappitt; David R. Blake; Andrew W. D. Claxson

1994-01-01

302

Solid-state 13C NMR spectroscopy studies of xylans in the cell wall of Palmaria palmata (L. Kuntze, Rhodophyta)  

Microsoft Academic Search

The chemical structure and interactions of the cell wall polysaccharides from the red edible seaweed Palmaria palmata were studied by liquid-like magic-angle-spinning (MAS) and cross-polarization MAS (CPMAS) solid-state 13C NMR spectroscopy. The liquid-like MAS and CPMAS 13C NMR spectra of the rehydrated algal powder revealed the presence of ?-(1?4)\\/?-(1?3)-linked d-xylan with chemical shifts close to those observed in the solution

Marc Lahaye; Corinne Rondeau-Mouro; Estelle Deniaud; Alain Buléon

2003-01-01

303

Mapping functional interaction sites of human prune C-terminal domain by NMR spectroscopy in human cell lysates.  

PubMed

Get well prune: The C-terminal third domain of h-prune is largely unfolded and involved in relevant protein-protein interactions, particularly with Nm23-H1 (see figure), GSK-3? and gelsolin. This study shows that protein functions mediated by protein-protein interactions can be accurately followed in cell lysates by using fast NMR spectroscopy, which could be easily used for a very efficient NMR drug-discovery strategy. PMID:23939913

Diana, Donatella; Smaldone, Giovanni; De Antonellis, Pasquale; Pirone, Luciano; Carotenuto, MariaNeve; Alonzi, Alessandro; Di Gaetano, Sonia; Zollo, Massimo; Pedone, Emilia M; Fattorusso, Roberto

2013-09-01

304

Studies on the MxiH protein in T3SS needles using DNP-enhanced ssNMR spectroscopy.  

PubMed

Bacterial T3SS needles formed by the protein MxiH are studied using DNP-enhanced ssNMR spectroscopy at 14.1 T (600 MHz). This technique provides spectra of good resolution, allowing us to draw conclusions about the protein dynamics. With the obtained signal enhancement, samples of limited quantity now get within reach of ssNMR studies. PMID:24282046

Fricke, Pascal; Demers, Jean-Philippe; Becker, Stefan; Lange, Adam

2014-01-13

305

Spectroscopy  

NSDL National Science Digital Library

This page is a set of concept test questions about organic chemistry spectroscopy. There are ten questions about topics including trans isomer and NMR spectra, C-X vibration, wavenumber absorption, and carbon signals.

2008-03-11

306

Postharvest ripening study of sweet lime (Citrus limettioides) in situ by volume-localized NMR spectroscopy.  

PubMed

Spatially resolved NMR--especially volume-localized spectroscopy (VLS)is useful in various fields including clinical diagnosis, process monitoring, etc. VLS carries high significance because of its ability to identify molecular species and hence track molecular events. This paper reports the application of VLS at 200 MHz to study the postharvest ripening of sweet lime ( Citrus limettioides ) in situ, including a comparative study of normal and acetylene-mediated ripening. Localization to a cubic voxel of 64 microL was achieved with point-resolved spectroscopy (PRESS). Glucose, sucrose, fructose, and citric acid are found to be among the main constituents in the fruit. In the natural process, the sugar to acid ratio increases with ripening. Ethanol generation is seen to occur at a faster rate in acetylene-mediated ripening. Whereas NMR imaging experiments including parametric imaging (e.g., T(1) or T(2) maps) may be employed for "macro" monitoring of processes such as these, this work demonstrates that the molecular imprint of the process may be tracked noninvasively by VLS. PMID:19161255

Banerjee, Abhishek; George, Christy; Bharathwaj, Sathyamoorthy; Chandrakumar, Narayanan

2009-02-25

307

Broad identification of bacterial type in urinary tract infection using (1)h NMR spectroscopy.  

PubMed

To address the shortcomings of urine culture for the rapid identification of urinary tract infection (UTI), we applied (1)H-nuclear magnetic resonance (NMR) spectroscopy as a surrogate method for fast screening of microorganisms. Study includes 682 urine samples from suspected UTI patients, 50 healthy volunteers, and commercially available standard strains of gram negative bacilli (GNB) (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterobacter, Acinetobacter, Proteus mirabilis, Citrobacter frundii) and gram positive cocci (GPC) (Enterococcus faecalis, Streptococcus group B, Staphylococcus saprophyticus). Acetate, lactate, ethanol, succinate, creatinine, trimethylamine (TMA), citrate, trimethylamin-N-oxide, glycine, urea, and hippurate were measured by (1)H NMR spectroscopy. All urine specimens were evaluated with culture method. Multivariate discriminant function analysis (DFA) reveals that acetate, lactate, succinate, and formate were able to differentiate, with high accuracy (99.5%), healthy controls from UTI patients. This statistical analysis was also able to classify GNB to GPC infected urine samples with high accuracy (96%). This technique appears to be a promising, rapid, and noninvasive approach to probing GNB and GPC infected urine specimens with its distinguishing metabolic profile. The determination of infection will be very important for rapidly and efficiently measuring the efficacy of a tailored treatment, leading to prompt and appropriate care of UTI patients. PMID:22292465

Gupta, Ashish; Dwivedi, Mayank; Mahdi, Abbas Ali; Khetrapal, Chunni Lal; Bhandari, Mahendra

2012-03-01

308

High-resolution two-dimensional j-resolved NMR spectroscopy for biological systems.  

PubMed

NMR spectroscopy is a principal tool in metabolomic studies and can, in theory, yield atom-level information critical for understanding biological systems. Nevertheless, NMR investigations on biological tissues generally have to contend with field inhomogeneities originating from variations in macroscopic magnetic susceptibility; these field inhomogeneities broaden spectral lines and thereby obscure metabolite signals. The congestion in one-dimensional NMR spectra of biological tissues often leads to ambiguities in metabolite identification and quantification. We propose an NMR approach based on intermolecular double-quantum coherences to recover high-resolution two-dimensional (2D) J-resolved spectra from inhomogeneous magnetic fields, such as those created by susceptibility variations in intact biological tissues. The proposed method makes it possible to acquire high-resolution 2D J-resolved spectra on intact biological samples without recourse to time-consuming shimming procedures or the use of specialized hardware, such as magic-angle-spinning probes. Separation of chemical shifts and J couplings along two distinct dimensions is achieved, which reduces spectral crowding and increases metabolite specificity. Moreover, the apparent J coupling constants observed are magnified by a factor of 3, facilitating the accurate measurement of small J couplings, which is useful in metabolic analyses. Dramatically improved spectral resolution is demonstrated in our applications of the technique on pig brain tissues. The resulting spectra contain a wealth of chemical shift and J-coupling information that is invaluable for metabolite analyses. A spatially localized experiment applied on an intact fish (Crossocheilus siamensis) reveals the promise of the proposed method in in vivo metabolite studies. Moreover, the proposed method makes few demands on spectrometer hardware and therefore constitutes a convenient and effective manner for metabonomics study of biological systems. PMID:24806938

Huang, Yuqing; Cai, Shuhui; Zhang, Zhiyong; Chen, Zhong

2014-05-01

309

Dissolution DNP-NMR spectroscopy using galvinoxyl as a polarizing agent  

PubMed Central

The goal of this work was to test feasibility of using galvinoxyl (2,6-di-tert-butyl-?-(3,5- di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy) as a polarizing agent for dissolution dynamic nuclear polarization (DNP) NMR spectroscopy. We have found that galvinoxyl is reasonably soluble in ethyl acetate, chloroform, or acetone and the solutions formed good glasses when mixed together or with other solvents such as dimethyl sulfoxide. W-band electron spin resonance (ESR) measurements revealed that galvinoxyl has an ESR linewidth D intermediate between that of carbon-centered free radical trityl OX063 and the nitroxide-based 4-oxo-TEMPO, thus the DNP with galvinoxyl for nuclei with low gyromagnetic ratio ? such as 13C and 15N is expected to proceed predominantly via the thermal mixing process. The optimum radical concentration that would afford the highest 13C nuclear polarization (approximately 6% for [1-13C]ethyl acetate) at 3.35 T and 1.4 K was found to be around 40 mM. After dissolution, large liquid-state NMR enhancements were achieved for a number of 13C and 15N compounds with long spin-lattice relaxation time T1. In addition, the hydrophobic galvinoxyl free radical can be easily filtered out from the dissolution liquid when water is used as the solvent. These results indicate that galvinoxyl can be considered as an easily available free radical polarizing agent for routine dissolution DNP-NMR spectroscopy.

Lumata, Lloyd L.; Merritt, Matthew E.; Malloy, Craig R.; Sherry, A. Dean; van Tol, Johan; Song, Likai; Kovacs, Zoltan

2012-01-01

310

Actinide(IV) and actinide(VI) carbonate speciation studies by PAS and NMR spectroscopies; Yucca Mountain Project: Milestone report 3031-WBS 1.2.3.4.1.3.1  

SciTech Connect

Pulsed-laser photoacoustic spectroscopy (PAS) and Fourier-transform nuclear magnetic resonance (NMR) spectroscopy were used to study speciation of actinide(IV) and actinide(VI) ions (Np, Pu, Am) in aqueous carbonate solutions vs pH, carbonate content, actinide content, temperature. PAS focused on Pu(IV) speciation. Stability fields on a pH (8.4 to 12.0) versus total carbonate content (0.003 to 1.0 M) plot for dilute Pu(IV) carbonate species ([Pu]{sub tot} = 1 mM) were mapped. Four plutonium species, with absorption peaks at 486, 492, 500, and 512 nm were found. Loss of a single carbonate ligand does not account for the difference in speciation for the 486 and 492 nm absorption peaks, nor can any of the observed species be identified as colloidal Pu(IV). NMR data have been obtained for UO{sub 2}{sup 2+}, PuO{sub 2}{sup 2+} and AmO{sub 2}{sup 2+}. This report focuses on results for PuO{sub 2}{sup 2+}. The ligand exchange reaction between free and coordinated carbonate on the PuO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} systems has been examined by variable temperature {sup 13}C NMR spectroscopy. In each of the six different PuO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} samples, two NMR signals are present, one for the free carbonate ligand and one for the carbonate ligand coordinated to a paramagnetic plutonium metal center. The single{sup 13}C resonance line for coordinated carbonate is consistent with expectations of a monomeric PuO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} species in solution. A modified Carr-Purcell-Meiboom-Gill NMR pulse sequence was used for determining ligand exchange parameters for paramagnetic actinide complexes. Eyring analysis at standard conditions provided activation parameters of {Delta}H = 38 KJ/M and {Delta}S = {minus}60 J/K for the plutonyl triscarbonate system, suggesting an associative transition state for the plutonyl(VI) carbonate complex self-exchange reaction.

Clark, D.L.; Ekberg, S.A.; Morris, D.E.; Palmer, P.D.; Tait, C.D.

1994-09-01

311

1H and 13C NMR data to aid the identification and quantification of residual solvents by NMR spectroscopy.  

PubMed

We present reference data and a javascript web page which allow the rapid identification and quantification of residual solvents by NMR. The data encompass all of the ICH-prescribed solvents and were obtained for a number of NMR solvents. We also present an example of its application. PMID:15809983

Jones, Ian C; Sharman, Gary J; Pidgeon, Julia

2005-06-01

312

The effect of polysialic acid on molecular dynamics of model membranes studied by 31P NMR spectroscopy.  

PubMed

The paper reports the results of our study on the dynamics of model phospholipid membranes studied by 31P NMR spectroscopy. The 31P NMR spectra of multilamellar vesicles in temperatures below the main phase transition of PC are reported. The 31P NMR spectra revealed changes caused by an increase of the membrane fluidity when polysialic acid (polySia) was applied as a modifying agent. The presence of polySia in the external environment of the phospholipid vesicles changes the motional freedom in the region of phosphate group of lipids. Increase of polysialic acid concentration changes structural properties of a membrane by increasing its fluidity. PMID:14698401

Timoszyk, Anna; Gdaniec, Zofia; Latanowicz, Lidia

2004-01-01

313

Single-Crystalline cooperite (PtS): Crystal-Chemical characterization, ESR spectroscopy, and {sup 195}Pt NMR spectroscopy  

SciTech Connect

Single-crystalline cooperite (PtS) with a nearly stoichiometric composition was characterized in detail by X-ray diffraction, electron-probe X-ray microanalysis, and high-resolution scanning electron microscopy. For the first time it was demonstrated that {sup 195}Pt static and MAS NMR spectroscopy can be used for studying natural platinum minerals. The {sup 195}Pt chemical-shift tensor of cooperite was found to be consistent with the axial symmetry and is characterized by the following principal values: {delta}{sub xx} = -5920 ppm, {delta}{sub yy} = -3734 ppm, {delta}{sub zz} = +4023 ppm, and {delta}{sub iso} = -1850 ppm. According to the ESR data, the samples of cooperite contain copper(II), which is adsorbed on the surface during the layer-by-layer crystal growth and is not involved in the crystal lattice.

Rozhdestvina, V. I., E-mail: veronika@ascnet.ru; Ivanov, A. V.; Zaremba, M. A. [Far East Division, Russian Academy of Sciences, Institute of Geology and Nature Management (Russian Federation); Antsutkin, O. N.; Forsling, W. [Lulea University of Technology (Sweden)

2008-05-15

314

Application of 29Si NMR spectroscopy to study of alkaline aqueous and alcoholic tetraoctylammonium (TOA) silicate solutions  

NASA Astrophysics Data System (ADS)

29Si NMR spectroscopy is a powerful tool for studying the silicate species existing in aqueous and non-aqueous solutions. In the present work, 29Si NMR spectroscopy is used to characterize the species present in alkaline alcoholic solutions of silicates. Tetraoctylammonium (TOA) hydroxide is used as a template. The effects of polymerization/depolymerization of silicate anions on alkaline alcoholic solutions are investigated using different alcohols (methanol, 1-propanol, 1,3-propane-diol, and glycerin) by 29Si NMR spectroscopy. The esterification of monomeric silicate, Si(OH) 4, in the presence of different alcohols is also studied. Esterification of Si(OH) 4 depends on the alkyl chain as well as the number of hydroxyl groups present in the alcohol.

Goudarzi, Nasser; Arab Chamjangali, M.; Bagherian, G.

2010-10-01

315

Probing RNA dynamics via longitudinal exchange and CPMG relaxation dispersion NMR spectroscopy using a sensitive 13C-methyl label  

PubMed Central

The refolding kinetics of bistable RNA sequences were studied in unperturbed equilibrium via 13C exchange NMR spectroscopy. For this purpose a straightforward labeling technique was elaborated using a 2?-13C-methoxy uridine modification, which was prepared by a two-step synthesis and introduced into RNA using standard protocols. Using 13C longitudinal exchange NMR spectroscopy the refolding kinetics of a 20?nt bistable RNA were characterized at temperatures between 298 and 310?K, yielding the enthalpy and entropy differences between the conformers at equilibrium and the activation energy of the refolding process. The kinetics of a more stable 32?nt bistable RNA could be analyzed by the same approach at elevated temperatures, i.e. at 314 and 316?K. Finally, the dynamics of a multi-stable RNA able to fold into two hairpin- and a pseudo-knotted conformation was studied by 13C relaxation dispersion NMR spectroscopy.

Kloiber, Karin; Spitzer, Romana; Tollinger, Martin; Konrat, Robert; Kreutz, Christoph

2011-01-01

316

Broadband excitation in solid-state NMR of paramagnetic samples using Delays Alternating with Nutation for Tailored Excitation ('Para-DANTE')  

NASA Astrophysics Data System (ADS)

This Letter shows that interleaved sequences of short pulses in the manner of 'Delays Alternating with Nutation for Tailored Excitation' (DANTE) with N = 1, 2, 3 … equidistant pulses per rotor period extending over K rotor periods can be used to excite, invert or refocus a large number of spinning sidebands of spin-1/2 nuclei in paramagnetic samples where hyperfine couplings lead to very broad spectra that extend over more than 1 MHz. The breadth of the response is maintained for rf-field amplitudes as low as 30 kHz since it results from cumulative effects of individual pulses with very short durations.

Carnevale, Diego; Vitzthum, Veronika; Lafon, Olivier; Trébosc, Julien; Amoureux, Jean-Paul; Bodenhausen, Geoffrey

2012-11-01

317

Spin Hamiltonian Parameters for Cu(II)-Prion Peptide Complexes from L-Band Electron Paramagnetic Resonance Spectroscopy  

PubMed Central

Cu(II) is an essential element for life but is also associated with numerous and serious medical conditions, particularly neurodegeneration. Structural modeling of crystallization-resistant biological Cu(II) species relies on detailed spectroscopic analysis. Electron paramagnetic resonance (EPR) can, in principle, provide spin Hamiltonian parameters that contain information on the geometry and ligand atom complement of Cu(II). Unfortunately, EPR spectra of Cu(II) recorded at the traditional X-band frequency are complicated by (i) strains in the region of the spectrum corresponding to the g|| orientation and (ii) potentially very many overlapping transitions in the g? region. The rapid progress of density functional theory computation as a means to correlate EPR and structure, and the increasing need to study Cu(II) associated with biomolecules in more biologically and biomedically relevant environments such as cells and tissue, have spurred the development of a technique for the extraction of a more complete set of spin Hamiltonian parameters that is relatively straightforward and widely applicable. EPR at L-band (1–2 GHz) provides much enhanced spectral resolution and straightforward analysis via computer simulation methods. Herein, the anisotropic spin Hamiltonian parameters and the nitrogen coordination numbers for two hitherto incompletely characterized Cu(II)-bound species of a prion peptide complex are determined by analysis of their L-band EPR spectra.

Kowalski, Jason M.; Bennett, Brian

2011-01-01

318

Heterogeneous Ordered-Disordered Structure of the Mesodomain in Frozen Sucrose-Water Solutions Revealed by Multiple Electron Paramagnetic Resonance Spectroscopies  

PubMed Central

The microscopic structure of frozen aqueous sucrose solutions, over concentrations of 0–75% (w/v), is characterized by using multiple continuous-wave and pulsed electron paramagnetic resonance (EPR) spectroscopic and relaxation techniques and the paramagnetic spin probe, TEMPOL. The temperature dependence of the TEMPOL EPR lineshape anisotropy reveals a mobility transition, specified at 205 K in pure water and 255 ±5 K for >1% (w/v) added sucrose. The transition temperature is >>Tg, where Tg is the homogeneous water glass transition temperature, which shows that TEMPOL resides in the mesoscopic domain (mesodomain) at water-ice crystallite boundaries, and that the mesodomain sucrose concentrations are comparable at >1% (w/v) added sucrose. Electron spin echo envelope modulation (ESEEM) spectroscopy of TEMPOL-2H2-sucrose hyperfine interactions also indicates comparable sucrose concentrations in mesodomains at >1% (w/v) added sucrose. Electron spin echo (ESE) – detected longitudinal and phase memory relaxation times (T1 and TM, respectively) at 6 K indicate a general trend of increased mesodomain volume with added sucrose, in three stages: 1-15, 20-50, and >50% (w/v). The calibrated TEMPOL concentrations indicate that the mesodomain volume is less than the predicted maximally freeze-concentrated value [80 (w/w); 120% (w/v)], with transitions at 15-20% and 50% (w/v) starting sucrose. An ordered sucrose hydrate phase, which excludes TEMPOL, and a disordered, amorphous sucrose-water glass phase, in which TEMPOL resides, are proposed to compose a heterogeneous mesodomain. The results show that the ratio of ordered and disordered volume fractions in the mesodomain is exquisitely sensitive to the starting sucrose concentration.

Chen, Hanlin; Sun, Li; Warncke, Kurt

2013-01-01

319

Pulsed electron paramagnetic resonance spectroscopy of (33)S-labeled molybdenum cofactor in catalytically active bioengineered sulfite oxidase.  

PubMed

Molybdenum enzymes contain at least one pyranopterin dithiolate (molybdopterin, MPT) moiety that coordinates Mo through two dithiolate (dithiolene) sulfur atoms. For sulfite oxidase (SO), hyperfine interactions (hfi) and nuclear quadrupole interactions (nqi) of magnetic nuclei (I ? 0) near the Mo(V) (d(1)) center have been measured using high-resolution pulsed electron paramagnetic resonance (EPR) methods and interpreted with the help of density functional theory (DFT) calculations. These have provided important insights about the active site structure and the reaction mechanism of the enzyme. However, it has not been possible to use EPR to probe the dithiolene sulfurs directly since naturally abundant (32)S has no nuclear spin (I = 0). Here we describe direct incorporation of (33)S (I = 3/2), the only stable magnetic sulfur isotope, into MPT using controlled in vitro synthesis with purified proteins. The electron spin echo envelope modulation (ESEEM) spectra from (33)S-labeled MPT in this catalytically active SO variant are dominated by the "interdoublet" transition arising from the strong nuclear quadrupole interaction, as also occurs for the (33)S-labeled exchangeable equatorial sulfite ligand [ Klein, E. L., et al. Inorg. Chem. 2012 , 51 , 1408 - 1418 ]. The estimated experimental hfi and nqi parameters for (33)S (aiso = 3 MHz and e(2)Qq/h = 25 MHz) are in good agreement with those predicted by DFT. In addition, the DFT calculations show that the two (33)S atoms are indistinguishable by EPR and reveal a strong intermixing between their out-of-plane pz orbitals and the dxy orbital of Mo(V). PMID:24387640

Klein, Eric L; Belaidi, Abdel Ali; Raitsimring, Arnold M; Davis, Amanda C; Krämer, Tobias; Astashkin, Andrei V; Neese, Frank; Schwarz, Günter; Enemark, John H

2014-01-21

320

Direct observation of trapping and release of nitric oxide by glutathione and cysteine with electron paramagnetic resonance spectroscopy.  

PubMed Central

While the biosynthesis of nitric oxide (NO) is well established, one of the key issues that remains to be solved is whether NO participates in the biological responses right after generation through biosynthesis or there is a "secret passage" via which NO itself is trapped, transported, and released to exert its functions. It has been shown that NO reacts with thiol-containing biomolecules (RSH), like cysteine (Cys), glutathione (GSH), etc., to form S-nitrosothiols (RSNOs), which then release nitrogen compounds, including NO. The direct observation of trapping of NO and its release by RSNO has not been well documented, as most of the detection techniques measure the content of NO as well as nitrite and nitrate. Here we use spin-trapping electron paramagnetic resonance (EPR) technique to measure NO content directly in the reaction time course of samples of GSH and Cys ( approximately mM) mixed with NO ( approximately microM) in the presence of metal ion chelator, which pertains to physiological conditions. We demonstrate that NO is readily trapped by these thiols in less than 10 min and approximately 70-90% is released afterward. These data imply that approximately 10-30% of the reaction product of NO does not exist in the free radical form. The NO release versus time curves are slightly pH dependent in the presence of metal ion chelator. Because GSH and Cys exist in high molar concentrations in blood and in mammalian cells, the trapping and release passage of NO by these thiols may provide a mechanism for temporal and spatial sequestration of NO to overcome its concentration gradient-dependent diffusion, so as to exert its multiple biological effects by reacting with various targets through regeneration.

Sheu, F S; Zhu, W; Fung, P C

2000-01-01

321

Synthesis and Resolution of the Atropisomeric 1,1'-Bi-2-Naphthol: An Experiment in Organic Synthesis and 2-D NMR Spectroscopy  

ERIC Educational Resources Information Center

NMR spectroscopy is presented. It is seen that the experiment regarding the synthesis and resolution of 1,1'-Bi-2-naphtol presents a good experiment for teaching organic synthesis and NMR spectroscopy and provides a strategy for obtaining enantiopure compounds from achiral starting materials.

Mak, Kendrew K. W.

2004-01-01

322

Elucidation of meso- and microporosity in soil components with 129-Xe NMR spectroscopy of adsorbed xenon  

NASA Astrophysics Data System (ADS)

Soil meso- and micropores (2-50 nm and <2 nm) are usually studied with the use of common adsorption methods. As a complementary technique, 129-Xe NMR spectroscopy of adsorbed xenon was only recently suggested for the use in soil science. In this present study, we applied both conventional, i.e. thermally polarised (TP), and hyperpolarised (HP) 129-Xe NMR for elucidating pore environments of a series of samples representing porous soil constituents. Aluminium (hydr)oxides, Al2O3 and AlOOH, both pure and subjected to the sorption of dissolved organic matter (DOM) were chosen as model mineral systems. Charcoals were used for understanding adsorption behaviour of xenon within organic polymeric structures formed by thermally altered bio-macromolecules. Natural soil particle size fractions were obtained from a non-allophanic Andosol and from Arenosol, i.e. soils containing charred residues and also characterised by a high content of Al oxides (case of the Andosol). DOM sorption on the studied Al oxides occurred inhomogeneously as it was inferred from the existence of the "empty" pores and the pores coated with OM. The latter were evidenced by the different Xe adsorption enthalpies estimated from the temperature dependences of the chemical shift. The increased sensitivity of the HP 129-Xe NMR allowed us detecting micropores in the charcoals, where the N2 adsorption method underestimated porosity due to the restricted diffusion of N2 at 77 K. The observed differences between the HP and TP 129-Xe patterns were explained by the slow diffusion of xenon within an interconnected but highly constricted pore system of the charcoals. The estimated width of those constricted pore openings was of the order of one or two diameters of the Xe atom. Similar "bottle neck" effects may also exist in the natural soil particle size fractions, as it was inferred from the increased pore access for Xe adsorption performed at elevated pressures (2-4 bar). The unusually large 129-Xe shifts (up to 170 ppm) detected for the for the H2O2-treated clay fractions of the Andosol (Bw horizon) coincided with their large specific surface areas(up to 220 m2/g) and were attributed to the pores formed by agglomerates of the nano-sized Al - humus complexes with contribution from the charred residues. Micropores found in the Arenosol fractions were attributed to the charred residues. Briefly, 129-Xe NMR spectroscopy shows its potential for studying soil meso- and micropores due to: i) higher sensitivity for probing micropores within polymeric organic structures, e.g. charcoals, as compared to the N2 adsorption; ii) possibility to use elevated pressures of the adsorbate for increasing the pore accessibility; iii) evaluating not only the pore size range but also adsorption enthalpies that reflect the nature of Xe - pore surface interactions. On the other hand, a combination of the HP- and TP 129-Xe NMR was shown to be helpful for modelling the pore structures of solids, since relaxation phenomena determining appearance of the HP 129-Xe NMR patterns also relate to the pore attainability.

Filimonova, Svetlana; Nossov, Andrey; Knicker, Heike; Kögel-Knabner, Ingrid

2010-05-01

323

Organic solute changes with acidification in Lake Skjervatjern as shown by 1H-NMR spectroscopy  

USGS Publications Warehouse

1H-NMR spectroscopy has been found to be a useful tool to establish possible real differences and trends between all natural organic solute fractions (fulvic acids, humic acids, and XAD-4 acids) after acid-rain additions to the Lake Skjervatjern watershed. The proton NMR technique used in this study determined the spectral distribution of nonexchangeable protons among four peaks (aliphatic protons; aliphatic protons on carbon ?? or attached to electronegative groups; protons on carbons attached to O or N heteroatoms; and aromatic protons). Differences of 10% or more in the respective peak areas were considered to represent a real difference. After one year of acidification, fulvic acids decreased 13% (relative) in Peak 3 protons on carbon attached to N and O heteratoms and exhibited a decrease in aromatic protons between 27% and 31%. Humic acids also exhibited an 11% relative decrease in aromatic protons as a result of acidification. After one year of acidification, real changes were shown in three of the four proton assignments in XAD-4 acids. Peak 1 aliphatic protons increased by 14% (relative), Peak 3 protons on carbons attached to O and N heteroatoms decreased by 13% (relative), and aromatic protons (Peak 4) decreased by 35% (relative). Upon acidification, there was a trend in all solutes for aromatic protons to decrease and aliphatic protons to increase. The natural variation in organic solutes as shown in the Control Side B of the lake from 1990 to 1991 is perhaps a small limitation to the same data interpretations of acid rain changes at the Lake Skjervatjern site, but the proton NMR technique shows great promise as an independent scientific tool to detect and support other chemical techniques in establishing organic solute changes with different treatments (i.e., additions of acid rain).

Malcolm, R. L.; Hayes, T.

1994-01-01

324

Characterization of filter extractables by proton NMR spectroscopy: studies on intact filters with process buffers.  

PubMed

Studies were conducted to characterize potential extractables from sterilizing grade filters. The focus of this report is the 0.22 micron Durapore (hydrophilic modified PVDF) filter which is used throughout our recovery processes. The objectives of this study are (1) to identify potential filter extractables from the hydrophilic PVDF filters; (2) to show that NMR spectroscopy may be used to detect filter extractables in the presence of product and excipients; and (3) to establish levels of filter extractables obtained by extraction with a variety of buffers. The data show that the primary source of filter extractables is the hydrophilic modification of the PVDF membrane surface. Extractables from the modified hydrophilic PVDF filter include propylene glycol (PG) and soluble oligomers of the hydroxypropyl acrylate and cross-linker. Propylene glycol, arising from the hydrolysis of the hydroxypropyl acrylate, appears to be the primary extractable in buffers above pH 11. Since the 1H-NMR method can easily detect the methyl proton signals of PG, an NMR assay was developed to detect PG in the presence of buffer excipients and final product. Propylene glycol can be used as a marker for the extractables from Durapore hydrophilic PVDF filters. Although numerous buffers were used to generate extractables from the PVDF filter, significant extractables (PG and soluble oligomers) were found only in high pH extraction buffers. As a result of this finding, only a limited number of new buffers or new PVDF filters will require testing for future validation studies. Process validation studies have shown that neither PG nor soluble oligomers are at levels that impact the quality or safety of the product. PMID:11605250

Kao, Y H; Bender, J; Hagewiesche, A; Wong, P; Huang, Y; Vanderlaan, M

2001-01-01

325

Optimization of designed armadillo repeat proteins by molecular dynamics simulations and NMR spectroscopy  

PubMed Central

A multidisciplinary approach based on molecular dynamics (MD) simulations using homology models, NMR spectroscopy, and a variety of biophysical techniques was used to efficiently improve the thermodynamic stability of armadillo repeat proteins (ArmRPs). ArmRPs can form the basis of modular peptide recognition and the ArmRP version on which synthetic libraries are based must be as stable as possible. The 42-residue internal Arm repeats had been designed previously using a sequence-consensus method. Heteronuclear NMR revealed unfavorable interactions present at neutral but absent at high pH. Two lysines per repeat were involved in repulsive interactions, and stability was increased by mutating both to glutamine. Five point mutations in the capping repeats were suggested by the analysis of positional fluctuations and configurational entropy along multiple MD simulations. The most stabilizing single C-cap mutation Q240L was inferred from explicit solvent MD simulations, in which water penetrated the ArmRP. All mutants were characterized by temperature- and denaturant-unfolding studies and the improved mutants were established as monomeric species with cooperative folding and increased stability against heat and denaturant. Importantly, the mutations tested resulted in a cumulative decrease of flexibility of the folded state in silico and a cumulative increase of thermodynamic stability in vitro. The final construct has a melting temperature of about 85°C, 14.5° higher than the starting sequence. This work indicates that in silico studies in combination with heteronuclear NMR and other biophysical tools may provide a basis for successfully selecting mutations that rapidly improve biophysical properties of the target proteins.

Alfarano, Pietro; Varadamsetty, Gautham; Ewald, Christina; Parmeggiani, Fabio; Pellarin, Riccardo; Zerbe, Oliver; Pluckthun, Andreas; Caflisch, Amedeo

2012-01-01

326

Structure of a Conserved Retroviral RNA Packaging Element by NMR Spectroscopy and Cryo-Electron Tomography  

PubMed Central

The 5?-untranslated regions (5?-UTRs) of all gammaretroviruses contain a conserved “double hairpin motif” (?CD) that is required for genome packaging. Both hairpins (SL-C and SL-D) contain GACG tetraloops that, in isolated RNAs, are capable of forming “kissing” interactions stabilized by two intermolecular G-C base pairs. We have determined the three-dimensional structure of the double hairpin from the Moloney Murine Leukemia Virus (MoMuLV) ([?CD]2, 132-nucleotides, 42.8 kDaltons) using a 2H-edited NMR spectroscopy-based approach. This approach enabled the detection of 1H-1H dipolar interactions that were not observed in previous studies of isolated SL-C and SL-D hairpin RNAs using traditional 1H-1H correlated and 1H-13C-edited NMR methods. The hairpins participate in intermolecular cross-kissing interactions (SL-C to SL-D’ and SLC’ to SL-D), and stack in an end-to-end manner (SL-C to SL-D and SL-C’ to SL-D’) that gives rise to an elongated overall shape (ca. 95 Å by 45 Å by 25 Å). The global structure was confirmed by cryo-electron tomography (cryo-ET), making [?CD]2 simultaneously the smallest RNA to be structurally characterized to date by cryo-ET and among the largest to be determined by NMR. Our findings suggest that, in addition to promoting dimerization, [?CD]2 functions as a scaffold that helps initiate virus assembly by exposing a cluster of conserved UCUG elements for binding to the cognate nucleocapsid domains of assembling viral Gag proteins.

Miyazaki, Yasuyuki; Irobalieva, Rossitza N.; Tolbert, Blanton; Smalls-Mantey, Adjoa; Iyalla, Kilali; Loeliger, Kelsey; D'Souza, Victoria; Khant, Htet; Schmid, Michael F.; Garcia, Eric; Telesnitsky, Alice; Chiu, Wah; Summers, Michael F.

2010-01-01

327

In vivo sup 31 P-NMR spectroscopy of chronically stimulated canine skeletal muscle  

SciTech Connect

Chronic stimulation converts skeletal muscle of mixed fiber type to a uniform muscle made up of type I, fatigue-resistant fibers. Here, the bioenergetic correlates of fatigue resistance in conditioned canine latissimus dorsi are assessed with in vivo phosphorus-31 nuclear magnetic resonance ({sup 31}P-NMR) spectroscopy. After chronic electrical stimulation, five dogs underwent {sup 31}P-NMR spectroscopic and isometric tension measurements on conditioned and contralateral control muscle during stimulation for 200, 300, 500, and 800 ms of an 1,100-ms duty cycle. With stimulation, phosphocreatine (PCr) fell proportional to the degree of stimulation in both conditioned and control muscle but fell significantly less in conditioned muscle at all the least intense stimulation period (200 ms). Isometric tension, expressed as a tension time index per gram muscle, was significantly greater in the conditioned muscle at the two longest stimulation periods. The overall small change in PCr and the lack of a plateau in tension observed in the conditioned muscle are similar to that seen in cardiac muscle during increased energy demand. This study indicates that the conditioned muscle's markedly enhanced resistance to fatigue is in part the result of its increased capacity for oxidative phosphorylation.

Clark, B.J. III; McCully, A.K.; Subramanian, H.V.; Hammond, R.L.; Salmons, S.; Chance, B.; Stephenson, L.W. (Children's Hospital of Philadelphia, Harrison (USA) Univ. of Pennsylvania School of Medicine, Philadelphia (USA) Univ. of Birmingham (England))

1988-02-01

328

Impurity profiling of carbocisteine by HPLC-CAD, qNMR and UV/vis spectroscopy.  

PubMed

For the impurity profiling of the mucolytic and anti-inflammatory drug carbocisteine a high performance liquid chromatographic (HPLC) method using corona charged aerosol detection (CAD) was developed and fully validated following the ICH guideline Q2(R1). The response was linear (R(2)>0.995) over a small concentration range (0.05-0.25 or 0.10-0.60% respectively) and a detection limit of at least 0.03% was registered. The separation was achieved on a mixed mode column combining hydrophobic C18 and strong cation exchange retention mechanisms using a mass spectrometer compatible volatile mobile phase consisting of trifluoroacetic acid 10mM and acetonitrile 12% (V/V). Impurities, not assessable by HPLC-CAD such as the volatile chloroacetic acid and the unstable cysteine, were determined by quantitative NMR (qNMR) with maleic acid as internal standard and UV/vis spectroscopy after reaction with Ellman's reagent, respectively. Six batches of three different manufacturers were tested by means of those methods. The purity varied from below 99.0 to higher than 99.8 per cent. The major impurities of all batches were the starting material cystine and N,S-dicarboxymethylcysteine being a synthesis by-product. PMID:24637049

Wahl, Oliver; Holzgrabe, Ulrike

2014-07-01

329

Time-domain Bayesian detection and estimation of noisy damped sinusoidal signals applied to NMR spectroscopy  

NASA Astrophysics Data System (ADS)

The problem of model detection and parameter estimation for noisy signals arises in different areas of science and engineering including audio processing, seismology, electrical engineering, and NMR spectroscopy. We have adopted the Bayesian modeling framework to jointly detect and estimate signal resonances. This considers a model of the time-domain complex free induction decay (FID) signal as a sum of exponentially damped sinusoidal components. The number of model components and component parameters are considered unknown random variables to be estimated. A Reversible Jump Markov Chain Monte Carlo technique is used to draw samples from the joint posterior distribution on the subspaces of different dimensions. The proposed algorithm has been tested on synthetic data, the 1H NMR FID of a standard of L-glutamic acid and a blood plasma sample. The detection and estimation performance is compared with Akaike information criterion (AIC), minimum description length (MDL) and the matrix pencil method. The results show the Bayesian algorithm superior in performance especially in difficult cases of detecting low-amplitude and strongly overlapping resonances in noisy signals.

Rubtsov, Denis V.; Griffin, Julian L.

2007-10-01

330

Microstructure determination of 2-hydroxy ethyl methacrylate and methyl acrylate copolymers by NMR spectroscopy  

NASA Astrophysics Data System (ADS)

Copolymers of 2-Hydroxy ethyl methacrylate and methyl acrylate (H/M) of different compositions were synthesized by free radical bulk polymerization using azobisisobutyronitrile (AIBN) as an initiator under nitrogen atmosphere. The copolymers compositions were calculated from 1H NMR spectra. The reactivity ratios for H/M copolymers obtained from a linear Kelen-Tudos method (KT) and nonlinear error-in-variables method (EVM) are rH = 3.31 ± 0.08, rM = 0.23 ± 0.00 and rH = 3.32, rM = 0.23, respectively. The complete spectral assignment of methine, methylene, methyl and carbonyl carbon regions in terms of compositional and configurational sequences of H/M copolymers was done with the help of 13C{ 1H} NMR, distortionless enhancement by polarization transfer (DEPT), two-dimensional heteronuclear single quantum coherence (HSQC) along with total correlated spectroscopy (TOCSY). Further, the assignments of carbonyl region were made with the help of heteronuclear multiple bond coherence (HMBC) spectrum.

Brar, A. S.; Hooda, Sunita; Goyal, Ashok Kumar

2007-02-01

331

Relaxation Dispersion NMR Spectroscopy as a Tool for Detailed Studies of Protein Folding  

PubMed Central

Characterization of the mechanisms by which proteins fold into their native conformations is important not only for protein structure prediction and design but also because protein misfolding intermediates may play critical roles in fibril formation that are commonplace in neurodegenerative disorders. In practice, the study of folding pathways is complicated by the fact that for the most part intermediates are low-populated and short-lived so that biophysical studies are difficult. Due to recent methodological advances, relaxation dispersion NMR spectroscopy has emerged as a particularly powerful tool to obtain high-resolution structural information about protein folding events on the millisecond timescale. Applications of the methodology to study the folding of SH3 domains have shown that folding proceeds via previously undetected on-pathway intermediates, sometimes stabilized by nonnative long-range interactions. The relaxation dispersion approach provides a detailed kinetic and thermodynamic description of the folding process as well as the promise of obtaining an atomic level structural description of intermediate states. We review the concerted application of a variety of recently developed NMR relaxation dispersion experiments to obtain a “high-resolution” picture of the folding pathway of the A39V/N53P/V55L Fyn SH3 domain.

Neudecker, Philipp; Lundstrom, Patrik; Kay, Lewis E.

2009-01-01

332

Characterization of alkyl carbon in forest soils by CPMAS 13C NMR spectroscopy and dipolar dephasing  

USGS Publications Warehouse

Samples obtained from forest soils at different stages of decomposition were treated sequentially with chloroform/methanol (extraction of lipids), sulfuric acid (hydrolysis), and sodium chlorite (delignification) to enrich them in refractory alkyl carbon. As revealed by NMR spectroscopy, this treatment yielded residues with high contents of alkyl carbon. In the NMR spectra of residues obtained from litter samples, resonances for carbohydrates are also present, indicating that these carbohydrates are tightly bound to the alkyl carbon structures. During decomposition in the soils this resistant carbohydrate fraction is lost almost completely. In the litter samples the alkyl carbon shows a dipolar dephasing behavior indicative of two structural components, a rigid and a more mobile component. As depth and decomposition increase, only the rigid component is observed. This fact could be due to selective degradation of the mobile component or to changes in molecular mobility during decomposition, e.g., because of an increase in cross linking or contact with the mineral matter of the soil.

Kogel-Knabner, I.; Hatcher, P. G.

1989-01-01

333

Carbohydrate dynamics at a micellar surface: GD1a headgroup transformations revealed by NMR spectroscopy.  

PubMed Central

The conformational dynamics of the carbohydrate headgroup of ganglioside GD1a, NeuAc alpha 2-->3Gal beta 1-->3GalNAc beta 1-->4[NeuAc alpha 2-->3]Gal beta 1-->4Glc beta 1-->1Cer, anchored in a perdeuterated dodecylphosphocholine micelle in aqueous solution, were probed by high resolution NMR spectroscopy. The observed 1H/1H NOE interactions revealed conformational averaging of the terminal NeuAc alpha 2-->3Gal and Gal beta 1-->3GalNAc glycosidic linkages. The pronounced flexibility of this trisaccharide moiety was substantiated further by two-dimensional proton-detected 13C T1, T1 rho and 1H/13C NOE measurements. The anchoring effect of the micelle allowed the detection of conformational fluctuations of the headgroup on the time scale of a few hundred picoseconds. NMR experiments performed on the GD1a/DPC micelles in H2O at low temperatures permitted the observation of hydroxyl proton resonances, contributing valuable conformational information.

Poppe, L; van Halbeek, H; Acquotti, D; Sonnino, S

1994-01-01

334

XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass  

NASA Technical Reports Server (NTRS)

The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.

Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.

2006-01-01

335

?z/?: A transverse relaxation optimized spectroscopy NMR experiment measuring longitudinal relaxation interference  

NASA Astrophysics Data System (ADS)

NMR spin relaxation experiments provide a powerful tool for the measurement of global and local biomolecular rotational dynamics at subnanosecond time scales. Technical limitations restrict most spin relaxation studies to biomolecules weighing less than 10 kDa, considerably smaller than the average protein molecular weight of 30 kDa. In particular, experiments measuring ?z, the longitudinal 1HN-15N dipole-dipole (DD)/15N chemical shift anisotropy (CSA) cross-correlated relaxation rate, are among those least suitable for use with larger biosystems. This is unfortunate because these experiments yield valuable insight into the variability of the 15N CSA tensor over the polypeptide backbone, and this knowledge is critical to the correct interpretation of most 15N-NMR backbone relaxation experiments, including R2 and R1. In order to remedy this situation, we present a new 1HN-15N transverse relaxation optimized spectroscopy experiment measuring ?z suitable for applications with larger proteins (up to at least 30 kDa). The presented experiment also yields ?, the site-specific rate of longitudinal 1HN-1H' DD cross relaxation. We describe the ?z/? experiment's performance in protonated human ubiquitin at 30.0 °C and in protonated calcium-saturated calmodulin/peptide complex at 20.0 °C, and demonstrate preliminary experimental results for a deuterated E. coli DnaK ATPase domain construct at 34 °C.

Weaver, Daniel S.; Zuiderweg, Erik R. P.

2008-04-01

336

Coupled effect of salt and pH on proteins probed with NMR spectroscopy  

NASA Astrophysics Data System (ADS)

The coupled effect of ionic strength (50-400 mM) and pH (2-8) on ionization and conformation equilibria of lysozyme was studied using NMR spectroscopy. Observed changes in pKa values of the ionizable groups were found to originate from perturbations in the geometry of hydrogen bonds rather than screening of electric fields. Moreover, at the ionic strengths used here, salt-induced local conformational changes had a dominant effect on chemical shifts measured on 1HN and 15N amide nuclei. Accurate modeling of these localized perturbations in structure-based energy calculations is a necessary prerequisite on the way to complete understanding of any salt-induced processes in proteins.

Kukic, Predrag; O'Meara, Fergal; Hewage, Chandralal; Erik Nielsen, Jens

2013-07-01

337

Response of melanoma tumor phospholipid metabolism to chloroethyle nitrosourea: a high resolution proton NMR spectroscopy study.  

PubMed

Phospholipid metabolism is tightly involved in tumor growth regulation and tumor cell survival. The response of phospholipid metabolism to chloroethyle nitrosourea treatment is investigated in a murine B16 melanoma model. Measurements of phospholipid derivatives are performed on intact tumor tissue samples using one- and two-dimensional proton NMR spectroscopy. During the tumor growth inhibition phase under treatment, tumors overexpress phosphocholine, phosphoethanolamine, glycerophosphocholine and glycerophosphoethanolamine, whereas phosphatidylcholine and phosphatidylethanolamine levels are maintained to control levels. During re-growth, which remained quantitatively much below control growth, chloroethyle nitrosourea-treated melanoma tumors overexpress phosphocholine and phosphoethanolamine only. In treated melanoma, phosphatidylcholine levels show an inverse relationship with tumor growth rates. In conclusion, chloroethyle nitrosourea-treated melanoma tumors maintain their phosphatidylcholine levels and exhibit transformed phospholipid metabolism phenotype, by mechanisms that could participate in tumor cell survival. PMID:14567189

Morvan, Daniel; Demidem, Aïcha; Madelmont, Jean-Claude

2003-07-01

338

Stereostructure of luminamicin, an anaerobic antibiotic, via molecular dynamics, NMR spectroscopy, and the modified Mosher method.  

PubMed

The absolute stereostructure of luminamicin, an anaerobic antibiotic, has been determined by using conformational analysis via high-temperature molecular dynamics, NMR spectroscopy, and the modified Mosher method. It was found that luminamicin has the S, S, R, R, R, R, S, S, S, R, and S configurations at C2, C4, C7, C9, C10, C11, C12, C13, C16, C28, and C29, respectively. This configuration is the same as that found in nodusmicin, which has a chemical structure quite similar to luminamicin. The structure of luminamicin consists of three different rings, i.e., a decalin ring, a 10-membered macrolactone ring, and a 14-membered macrolactone ring. The resulting three-dimensional structure of luminamicin shows an interesting feature in that the maleic anhydride functionality in conjugation with the enol ether group of the 14-membered macrolactone is nearly perpendicular to the plane of the other two rings. PMID:16344486

Gouda, Hiroaki; Sunazuka, Toshiaki; Ui, Hideaki; Handa, Masaki; Sakoh, Yusuke; Iwai, Yuzuru; Hirono, Shuichi; Omura, Satoshi

2005-12-20

339

Stereostructure of luminamicin, an anaerobic antibiotic, via molecular dynamics, NMR spectroscopy, and the modified Mosher method  

PubMed Central

The absolute stereostructure of luminamicin, an anaerobic antibiotic, has been determined by using conformational analysis via high-temperature molecular dynamics, NMR spectroscopy, and the modified Mosher method. It was found that luminamicin has the S, S, R, R, R, R, S, S, S, R, and S configurations at C2, C4, C7, C9, C10, C11, C12, C13, C16, C28, and C29, respectively. This configuration is the same as that found in nodusmicin, which has a chemical structure quite similar to luminamicin. The structure of luminamicin consists of three different rings, i.e., a decalin ring, a 10-membered macrolactone ring, and a 14-membered macrolactone ring. The resulting three-dimensional structure of luminamicin shows an interesting feature in that the maleic anhydride functionality in conjugation with the enol ether group of the 14-membered macrolactone is nearly perpendicular to the plane of the other two rings.

Gouda, Hiroaki; Sunazuka, Toshiaki; Ui, Hideaki; Handa, Masaki; Sakoh, Yusuke; Iwai, Yuzuru; Hirono, Shuichi; Omura, Satoshi

2005-01-01

340

Solid-state NMR spectroscopy provides atomic-level insights into the dehydration of cartilage.  

PubMed

An atomic-level insight into the functioning of articular cartilage would be useful to develop prevention strategies and therapies for joint diseases such as osteoarthritis. However, the composition and structure of cartilage and their relationship to its unique mechanical properties are quite complex and pose tremendous challenges to most biophysical techniques. In this study, we present an investigation of the structure and dynamics of polymeric molecules of articular cartilage using time-resolved solid-state NMR spectroscopy during dehydration. Full-thickness cartilage explants were used in magic-angle spinning experiments to monitor the structural changes of rigid and mobile carbons. Our results reveal that the dehydration reduced the mobility of collagen amino acid residues and carbon sugar ring structures in glycosaminoglycans but had no effect on the trans-Xaa-Pro conformation. Equally interestingly, our results demonstrate that the dehydration effects are reversible, and the molecular structure and mobility are restored upon rehydration. PMID:21786810

Xu, Jiadi; Zhu, Peizhi; Morris, Michael D; Ramamoorthy, Ayyalusamy

2011-08-25

341

Solid-State NMR Spectroscopy Provides Atomic-level Insights Into the Dehydration of Cartilage  

PubMed Central

An atomic-level insight into the functioning of articular cartilage would be useful to develop prevention strategies and therapies for joint diseases such as osteoarthritis. However, the composition and structure of cartilage, and their relationship to its unique mechanical properties are quite complex and pose tremendous challenges to most biophysical techniques. In this study, we present an investigation of the structure and dynamics of polymeric molecules of articular cartilage using time-resolved solid-state NMR spectroscopy during dehydration. Full-thickness cartilage explants were used in magic-angle spinning experiments to monitor the structural changes of rigid and mobile carbons. Our results reveal that the dehydration reduced the mobility of collagen amino acid residues and carbon sugar ring structures in glycosaminoglycans but had no effect on the trans-Xaa-Pro conformation. Equally interestingly, our results demonstrate that the dehydration effects are reversible, and the molecular structure and mobility are restored upon rehydration.

Xu, Jiadi; Zhu, Peizhi; Morris, Michael D.; Ramamoorthy, Ayyalusamy

2011-01-01

342

Crystallization of the Bacillus subtilis RTP-DNA complex prepared using NMR spectroscopy.  

PubMed

The replication terminator protein (RTP)-DNA complex of Bacillus subtilis is responsible for the arrest of DNA replication at terminator sites in the B. subtilis chromosome. The crystallization and preliminary diffraction data analysis for the complex of an (15)N-labelled mutant form of RTP and a symmetrical form of its DNA-binding site is reported. NMR spectroscopy was used to assess the stoichiometry of complex formation, with the sample containing the most homogeneous solution of complex giving rise to diffracting crystals. Synchrotron-radiation data to 2.5 A were collected from a crystal of space group P3(2)21, unit-cell parameters a = b = 44.780, c = 395.582 A, containing an RTP dimer within the asymmetric unit. PMID:11223520

Vivian, J P; Wilce, J A; Hastings, A F; Wilce, M C

2001-03-01

343

Reverse micelles in integral membrane protein structural biology by solution NMR spectroscopy  

PubMed Central

SUMMARY Integral membrane proteins remain a significant challenge to structural studies by solution NMR spectroscopy. This is due not only to spectral complexity but also because the effects of slow molecular reorientation are exacerbated by the need to solublize the protein in aqueous detergent micelles. These assemblies can be quite large and require deuteration for use of the TROSY effect. In principle, another approach is to employ reverse micelle encapsulation to solublize the protein in a low viscosity solvent where the rapid tumbling of the resulting particle allows use of standard triple resonance methods. The preparation of such samples of membrane proteins is difficult. Using a 54 kDa construct of the homotetrameric potassium channel KcsA we demonstrate a strategy that employs a hybrid surfactant to transfer the protein to the reverse micelle system.

Kielec, Joseph M.; Valentine, Kathleen G.; Babu, Charles R.; Wand, A. Joshua

2009-01-01

344

Narrowing of the exciton lines using WAHUHA method of solid state NMR spectroscopy  

NASA Astrophysics Data System (ADS)

A method for allocating of two thermodynamic reservoirs which are not related to each other in high density exciton gas in semiconductors using the Schwinger representation for the projection operators of the effective spin (pseudospin) of the excitons is proposed. It is shown that the method of narrowing the NMR resonance lines in solids under the influence of a sequence of four electromagnetic pulses of the WAHUHA type can be applied for the line narrowing of the recombination emission and absorption of light by excitons in optical spectroscopy. We found out that, in contrast to the averaging to zero of the magnetic dipole-dipole interaction between nuclei, the exciton-exciton interaction is averaged only partially. This analysis for the excitons can be extended to other quasiparticles of boson type, i.e. biexcitons, polaritons and magnons, in solids.

Geru, I. I.

2011-10-01

345

Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA'BB' spin system of taurine at 1.5 T is discussed.

Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter

2000-08-01

346

Molecular dynamics of ethylene glycol adsorbed in NaX: NMR and broadband dielectric spectroscopy studies  

NASA Astrophysics Data System (ADS)

Proton spin relaxation and broadband dielectric spectroscopy are applied to study the dynamics of ethylene glycol adsorbed in NaX, EG/NaX. The molecular mobility strongly depends on the pore filling factor which may be controlled by high-resolution 1H MAS NMR measurements. Although EG in bulk shows a Vogel-Fulcher-Tammann type of activation, temperature dependent relaxation rate measurements for the EG/NaX systems always follow an Arrhenius plot, independent of the loading degree. There is no hint to a glass-forming behaviour of EG/NaX which could be understood in terms of the strong influence of surface-molecule interactions playing a dominant role compared to the molecule-molecule interactions.

Erdem, Özlen F.; Michel, Dieter

2006-02-01

347

Quantitative determination of glyphosate in human serum by 1H NMR spectroscopy.  

PubMed

The determination and quantification of glyphosate in serum using (1)H NMR spectroscopy is reported. This method permitted serum samples to be analysed without derivatization or any other sample pre-treatment, using 3-trimethylsilyl 2,2',3,3'-tetradeuteropropionic acid (TSP-d(4)) as a qualitative and quantitative standard. Characterization of the herbicide N-(phosphonomethyl)glycine was performed by analysing chemical shifts and coupling constant patterns. Quantification was performed by relative integration of CH(2)-P protons to the TSP-d(4) resonance peak. The method was tested for repeatability (n=5) and yielded coefficients of variation of 1% and 3%, respectively: detection and quantification limits were also determined and were 0.03 and 0.1mmol/L, respectively. The method was applied to the quantification of glyphosate in a case of acute poisoning. PMID:18371753

Cartigny, Bernard; Azaroual, Nathalie; Imbenotte, Michel; Mathieu, Daniel; Parmentier, Erika; Vermeersch, Gaston; Lhermitte, Michel

2008-01-15

348

Nondestructive size determination of thiol-stabilized gold nanoclusters in solution by diffusion ordered NMR spectroscopy.  

PubMed

Diffusion ordered NMR spectroscopy (DOSY) was used as an analytical tool to estimate the size of thiol-stabilized gold nanoclusters in solution, namely, phenylethanethiol (PET) stabilized Au25(PET)18, Au38(PET)24, and Au144(PET)60. This was achieved by determining the diffusion coefficient and hydrodynamic radius from solution samples that were confirmed to be monodispersed by electrospray ionization mass spectrometry. The average cluster diameters obtained by this technique were estimated to be 1.7, 2.2, and 3.1 nm for the Au25(PET)18, Au38(PET)24, and Au144(PET)60 nanoclusters, respectively, which were shown to agree well with the average diameters of the corresponding single crystal or theoretical structures reported in the literature. Consequently, the DOSY technique is demonstrated to be a potentially valuable nondestructive tool for characterization of nanoparticle mixtures and verifying the purity of product solutions. PMID:23506040

Salorinne, Kirsi; Lahtinen, Tanja; Koivisto, Jaakko; Kalenius, Elina; Nissinen, Maija; Pettersson, Mika; Häkkinen, Hannu

2013-04-01

349

Conformational analysis of an anti-androgenic, (E,E)-8-hydroxygermacrene B, using NOESY and dynamic NMR spectroscopy.  

PubMed

(E,E)-8-Hydroxygermacrene B was prepared by ketone reduction of germacrone, a naturally occurring compound from Curcuma aeruginosa Roxb. with NaBH4 at low temperature (4°C). This compound showed remarkable in vitro anti-androgenic activity (IC50 0.15±0.022mM) applicable to male baldness treatments. NMR analysis at -50°C indicated that there were four conformational isomers of (E,E)-8-hydroxygermacrene B in a ratio of 48:40:8:4. The major conformers were assigned by (1)H NMR and 2D-NOESY NMR spectroscopy as having methyl groups at C-10 and C-4 in up-down (UD) orientations (48% predominance) and UU (40%). (1)H NMR spectra implied another two minor conformers with these methyls having DU (8%) and DD (4%) orientations. PMID:24951332

Srivilai, Jukkarin; Khorana, Nantaka; Waranuch, Neti; Suphrom, Nungruthai; Ingkaninan, Kornkanok

2014-08-01

350

Comparison of pulsed field gradient NMR and holographic relaxation spectroscopy in the study of diffusion of photochromic molecules  

NASA Astrophysics Data System (ADS)

Pulsed field gradient NMR (PFG-NMR) and holographic relaxation spectroscopy (HRS) have been compared in a study of tracer diffusion rates for the photochromic molecules azobenzene and aminoazobenzene in acetone and 1,4-dioxane. These techniques are applicable to exactly the same range of diffusion rates but can provide complementary information. The cis and trans forms of azobenzene can be distinguished in the NMR experiment, and the tracer diffusion coefficient for the cis form is found to be 5% lower than for the trans form. In the HRS experiment a single diffusion coefficient is determined from the rate of decay of the laser-induced concentration pattern of cis azobenzene. Results obtained by the two methods agree, and the magnitudes of the errors are similar. In general HRS is a much more sensitive method, but only NMR permits the diffusing species to be identified.

Lever, Lisa S.; Bradley, Michael S.; Johnson, Charles S.

351

Aliphatic chain length by isotropic mixing (ALCHIM): determining composition of complex lipid samples by (1)H NMR spectroscopy.  

PubMed

Quantifying the amounts and types of lipids present in mixtures is important in fields as diverse as medicine, food science, and biochemistry. Nuclear magnetic resonance (NMR) spectroscopy can quantify the total amounts of saturated and unsaturated fatty acids in mixtures, but identifying the length of saturated fatty acid or the position of unsaturation by NMR is a daunting challenge. We have developed an NMR technique, aliphatic chain length by isotropic mixing, to address this problem. Using a selective total correlation spectroscopy technique to excite and transfer magnetization from a resolved resonance, we demonstrate that the time dependence of this transfer to another resolved site depends linearly on the number of aliphatic carbons separating the two sites. This technique is applied to complex natural mixtures allowing the identification and quantification of the constituent fatty acids. The method has been applied to whole adipocytes demonstrating that it will be of great use in studies of whole tissues. PMID:24831341

Sachleben, Joseph R; Yi, Ruiyang; Volden, Paul A; Conzen, Suzanne D

2014-07-01

352

Orientational order of two fluoro- and isothiocyanate-substituted nematogens by combination of 13C NMR spectroscopy and DFT calculations.  

PubMed

Orientational order properties of two nematogens containing a fluoro- and isothiocyanate-substituted biphenyl moiety have been investigated by means of (13)C NMR spectroscopy. (13)C NMR spectra acquired on static samples under high-power (1)H-decoupling allowed both (13)C chemical shift anisotropies and (13)C-(19)F couplings to be measured. These data were used to determine the local principal order parameter and biaxiality for the different rigid fragments of the molecules. To this aim, advanced DFT methods for the calculation of geometrical parameters and chemical shift tensors were used. The orientational order parameters obtained by NMR have been critically compared with those obtained by dielectric spectroscopy. Trends of order parameters with temperature have been analyzed in terms of both mean field theory and the empirical Haller equation. PMID:24605890

Calucci, Lucia; Carignani, Elisa; Geppi, Marco; Macchi, Sara; Mennucci, Benedetta; Urban, Stanislaw

2014-03-27

353

NMR and IR Spectroscopy for the Structural Characterization of Edible Fats and Oils: An Instrumental Analysis Laboratory  

ERIC Educational Resources Information Center

This article describes an upper-level instrumental laboratory for undergraduates that explores the complementary nature of IR and NMR spectroscopy for analysis of several edible fats and oils that are structurally similar but differ in physical properties and health implications. Five different fats and oils are analyzed for average chain length,…

Crowther, Molly W.

2008-01-01

354

Chemical characteristics of dissolved organic matter during composting of different organic wastes assessed by 13C CPMAS NMR spectroscopy  

Microsoft Academic Search

This research aimed at assessing the chemical changes occurring in DOM extracted from different composting substrates by means of 13C CPMAS NMR spectroscopy. During composting a reduction of carbohydrates and an increase of aromatic, phenolic, carboxylic and carbonylic C were observed. The highest increase in alkyl C and the lowest increase in aromatic C were explained by the presence of

P. Caricasole; M. R. Provenzano; P. G. Hatcher; N. Senesi

2010-01-01

355

1D- and 2D-NMR spectroscopy studies of the polysaccharide gum from Spondias purpurea var. lutea  

Microsoft Academic Search

Spondias purpurea var. lutea (Anacardiaceae) trees located in Venezuela, South America, produce a clear gum very soluble in water. The polysaccharide, from this gum, contains galactosyl, arabinosyl, xylosyl, rhamnosyl and uronic acid residues. Degraded gums A and B were prepared by mild acid hydrolysis and Smith degradation, respectively. Application of 1D- and 2D-NMR spectroscopy to the original gum and its

Omaira Gutiérrez de G; Maritza Mart??nez; Lilian Sanabria; Gladys León de Pinto; J. Manuel Igartuburu

2005-01-01

356

/sup 31/P NMR studies of enzyme-bound substrate complexes of yeast 3-phosphoglycerate kinase. 2. Structure measurements using paramagnetic relaxation effects of Mn(II) and Co(II)  

SciTech Connect

Measurements of the paramagnetic effects of two dissimilar activating paramagnetic cations, Mn(II) and Co(II), on the spin relaxation rates of the /sup 31/P nuclei in the complexes of 3-phosphoglycerate kinase with ATP, ADP, and 3-P-glycerate have been used to study the structures of these enzyme-substrate complexes. All experiments were performed on enzyme-bound complexes, so that two exchanging complexes (with and without cation) contribute to the observed relaxation rate. Measurements were made at three /sup 31/P NMR frequencies, 81, 121.5, and 190.2 MHz, and as a function of temperature in the range 5-20/sup 0/C to determine the effect of exchange on the observed relaxation rates. Relaxation rates in E-MnADP and E-MnATP were shown to be exchange-limited, and therefore bereft of structural information, both by lack of frequency dependence and by temperature dependence with activation energies (deltaE) in the range 5-8 kcal/mol. These distances were all in the range 2.7-4.1 A, appropriate for direct coordination of Co(II) to the phosphate groups. In the quaternary complex E-MnADP-3-P-glycerate, although the /sup 31/P relaxation rates of ..cap alpha..-P and ..beta..-P (ADP) were exchange-limited, that for 3-P (3-P-glycerate) was not exchanged-limited, as evidenced by its frequency dependence and an activation energy of 1.8 kcal/mol. The frequency dependence of the relaxation times of 3-P-glycerate was used to determine a Mn(II)-/sup 31/P (3-P-glycerate) distance of 11.1 +/- 0.3 A, suggesting that in E-MnADP-3-P-glycerate the enzyme is in an open conformation.

Ray, B.D.; Nageswara Rao, B.D.

1988-07-26

357

Porosity of pillared clays studied by hyperpolarized 129Xe NMR spectroscopy and Xe adsorption isotherms.  

PubMed

The influence of the layer charge on the microstructure was studied for a series of three hybrid pillared interlayered clays based on the organic dication Me(2)DABCO(2+) and charge reduced synthetic fluorohectorites. To get a detailed picture of the local arrangements within the interlayer space, multinuclear solid-state NMR spectroscopy was performed in conjunction with high-resolution (129)Xe MAS NMR, temperature-dependent wide-line 1D and 2D (129)Xe NMR, and Ar/Ar(l) and Xe/Xe(l) physisorption measurements. The resulting layer charge (x) for the three samples are 0.48, 0.44, and 0.39 per formula unit (pfu). The samples exhibit BET equivalent surfaces between 150 and 220 m(2)/g and pore volumes which increase from 0.06 to 0.11 cm(3)/g while the layer charge reduces. 1D and 2D (1)H, (13)C, (19)F, and (29)Si MAS data reveal that the postsynthetic charge reduction induces regions with higher defect concentrations within the silicate layers. Although the pillars tend to avoid these defect-rich regions, a homogeneous and regular spacing of the Me(2)DABCO(2+) pillars is established. Both the Ar/Ar(l) physisorption and (129)Xe NMR measurements reveal comparable pore dimensions. The trend of the temperature-dependent wide-line (129)Xe spectra as well as the exchange in the EXSY spectra is typical for a narrow 2D pore system. (129)Xe high-resolution experiments allow for a detailed description of the microstructure. For x = 0.48 a bimodal distribution with pore diameters between 5.9 and 6.4 Å is observed. Reducing the layer charge leads to a more homogeneous pore structure with a mean diameter of 6.6 Å (x = 0.39). The adsorption enthalpies ?H(ads) determined from the temperature-dependent (129)Xe chemical shift data fit well to the ones derived from the Xe/Xe(l) physisorption measurements in the high-pressure limit while the magnitude of ?H(ads) in the low-pressure limit is significantly larger. Thus, the (129)Xe data are influenced by adsorbate-adsorbent as well as adsorbate-adsorbate interactions. PMID:23240993

Keenan, Caroline D; Herling, Markus M; Siegel, Renée; Petzold, Nikolaus; Bowers, Clifford R; Rössler, Ernst A; Breu, Josef; Senker, Jürgen

2013-01-15

358

NMR spectroscopy study of freshwater humic material in light of supramolecular assembly.  

PubMed

The structural similarity-dissimilarity of several humic-type derivatives, separated from a strongly colored freshwater sample by different sorbing solid techniques, tangential-flow ultrafiltration (UF), and large-scale preparative high-performance size-exclusion chromatography (HPSEC), were in detail studied with one-dimensional liquid 1H and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, especially in light of the native humic-type dissolved organic matter (DOM-HM). The results support the applicability of functional cross-linked poly(vinylpyrrolidone) (PVP) or diethylaminoethyl-cellulose (DEAE) sorbents in concentrating representative integrated wholes of aquatic humic-type material along with a conventional nonionic XAD-8/DAX-8 (polymethyl methacrylates) technique. Apart from the fact that the acidification of the original humic water before a separation procedure seems not to be so destructive to the original structural composition of the DOM-HM as expected, the refinement of aquatic humic solutes, independent of the selected sorbing solid technique, will cause structural changes in the separated humic complexes in comparison with the situation predominating in the original starting material. Tangential-flow ultrafiltration (UF) proved an overpowering reliability to concentrate the aquatic DOM-HM. Most fundamental is the combined outcome of different HPSEC experiments and determined structural functionalities which indicate that almost all original DOM-HM solutes are aggregated mixtures consisting of structurally similar associations possessing various molecular size ranges, which can be separated from their integrated whole as nearly homogeneous and uniform species. This finding permits a reasonable starting point to go on working with more advanced multidimensional NMR techniques in resolving the uncertainty about supramolecular assembly of dissolved humic material. The tested conformity between the obtained molecular NMR descriptors and the corresponding previously collected FT-IR parameters was acceptable thus speaking for the fact that the less sensitive FT-IR spectroscopy can also provide valuable information on the structural and functional properties of heterogeneous humic-type mixtures. PMID:16124285

Peuravuori, Juhani

2005-08-01

359

LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes.  

PubMed

Seeing the big picture: Asymmetric macromolecular complexes that are NMR active in only a subset of their subunits can be prepared, thus decreasing NMR spectral complexity. For the hetero heptameric LSm1-7 and LSm2-8 rings NMR spectra of the individual subunits of the complete complex are obtained, showing a conserved RNA binding site. This LEGO-NMR technique makes large asymmetric complexes accessible to detailed NMR spectroscopic studies. PMID:23946163

Mund, Markus; Overbeck, Jan H; Ullmann, Janina; Sprangers, Remco

2013-10-18

360

Probing the helical tilt and dynamic properties of membrane-bound phospholamban in magnetically aligned bicelles using electron paramagnetic resonance spectroscopy.  

PubMed

Wild-type phospholamban (WT-PLB), a Ca(2+)-ATPase (SERCA) regulator in the sarcoplasmic reticulum membrane, was studied using TOAC nitroxide spin labeling, magnetically aligned bicelles, and electron paramagnetic resonance (EPR) spectroscopy to ascertain structural and dynamic information. Different structural domains of PLB (transmembrane segment: positions 42 and 45, loop region: position 20, and cytoplasmic domain: position 10) were probed with rigid TOAC spin labels to extract the transmembrane helical tilt and structural dynamic information, which is crucial for understanding the regulatory function of PLB in modulating Ca(2+)-ATPase activity. Aligned experiments indicate that the transmembrane domain of wild-type PLB has a helical tilt of 13°±4° in DMPC/DHPC bicelles. TOAC spin labels placed on the WT-PLB transmembrane domain showed highly restricted motion with more than 100ns rotational correlation time (?(c)); whereas the loop, and the cytoplasmic regions each consists of two distinct motional dynamics: one fast component in the sub-nanosecond scale and the other component is slower dynamics in the nanosecond range. PMID:22172806

Ghimire, Harishchandra; Abu-Baker, Shadi; Sahu, Indra D; Zhou, Andy; Mayo, Daniel J; Lee, Ryan T; Lorigan, Gary A

2012-03-01

361

Investigation of Cu-doped Li2B4O7 single crystals by electron paramagnetic resonance and time-resolved optical spectroscopy  

NASA Astrophysics Data System (ADS)

A low-temperature study of the thermoluminescent dosimeter material, lithium tetraborate (Li2B4O7) doped by Cu, has been carried out by the methods of electron paramagnetic resonance (EPR) and time-resolved polarization spectroscopy using 4-20 eV synchrotron radiation and 1 µs Xe flash lamp pulses in the region 3-6 eV. The observed EPR spectra of an unpaired hole with strong d-character and characteristic hyperfine splittings can be ascribed to Cu2+ substituted at a Li lattice site and displaced due to relaxation. The results on the Cu+-related luminescence strongly support the conclusion about a low-symmetry position of copper impurity ions in the lithium tetraborate lattice. The temperature dependence of the decay kinetics of the Cu+-related 3.35 eV emission indicates a triplet nature for the relaxed excited state of the Cu+ centres. An off-centre position of the Cu+ ion in the relaxed excited state is suggested.

Corradi, G.; Nagirnyi, V.; Kotlov, A.; Watterich, A.; Kirm, M.; Polgár, K.; Hofstaetter, A.; Meyer, M.

2008-01-01

362

Probing the Helical Tilt and Dynamic Properties of Membrane-bound Phospholamban in Magnetically Aligned Bicelles Using Electron Paramagnetic Resonance Spectroscopy  

PubMed Central

Wild-type Phospholamban (WT-PLB), a Ca2+-ATPase (SERCA) regulator in the sarcoplasmic reticulum membrane, was studied using TOAC nitroxide spin labeling, magnetically aligned bicelles, and electron paramagnetic resonance (EPR) spectroscopy to ascertain structural and dynamic information. Different structural domains of PLB (transmembrane segment: positions 42 and 45, loop region: position 20, and cytoplasmic domain: position 10) were probed with rigid TOAC spin labels to extract the transmembrane helical tilt and structural dynamic information, which is crucial for understanding the regulatory function of PLB in modulating Ca2+-ATPase activity. Aligned experiments indicate that the transmembrane domain of wild-type PLB has a helical tilt of 13° ± 4° in DMPC/DHPC bicelles. TOAC spin labels placed on the WT-PLB transmembrane domain showed highly restricted motion with more than 100 ns rotational correlation time (?c); whereas the loop, and the cytoplasmic regions each consists of two distinct motional dynamics: one fast component in the sub-nanosecond scale and the other component is slower dynamics in the nanosecond range.

Ghimire, Harishchandra; Abu-Baker, Shadi; Sahu, Indra D.; Zhou, Andy; Mayo, Daniel J.; Lee, Ryan. T.; Lorigan, Gary. A.

2011-01-01

363

Analysis of paramagnetic centers in X-ray-irradiated enamel, bone, and carbonate-containing hydroxyapatite by electron spin resonance spectroscopy.  

PubMed

Carbonate-containing hydroxyapatite, enamel, and bone were irradiated by an X-ray and investigated between 77 degrees and 350 degrees K by means of electron spin resonance (ESR) spectroscopy. The ESR spectrum of enamel irradiated at 77 degrees K in vacuum and observed at the same temperature was almost the same as that of the carbonate-containing hydroxyapatite. The temperature dependence of signal intensities confirms a spin-energy exchange between the mineral and organic constituents in bone, but in enamel no or very little spin-energy exchange between the mineral and organic constituents. Considerable similarity among the ESR spectra of enamel, bone, and carbonate-containing apatite was obtained after X-ray irradiation in air at 300 degrees K with both an X-band and a Q-band ESR spectrometer. The Q-band spectrum can be interpreted in terms of two paramagnetic species. One is identified as a CO3(3-) anion radical which has an axial symmetry with g factors of 2.0029 and 1.9972. The other species is found to be centered at g = 2.0019. PMID:228815

Doi, Y; Aoba, T; Okazaki, M; Takahashi, J; Moriwaki, Y

1979-10-31

364

Scanning tunnelling spectroscopy study of paramagnetic superconducting ?''-ET4[(H3O)Fe(C2O4)3]·C6H5Br crystals  

NASA Astrophysics Data System (ADS)

Scanning tunnelling spectroscopy (STS) and microscopy (STM) were performed on the paramagnetic molecular superconductor ?''-ET4[(H3O)Fe(C2O4)3]·C6H5Br. Under ambient pressure, this compound is located near the boundary separating superconducting and insulating phases of the phase diagram. In spite of a strongly reduced critical temperature Tc (Tc = 4.0 K at the onset, zero resistance at Tc = 0.5 K), the low temperature STS spectra taken in the superconducting regions show strong similarities with the higher Tc ET ?-derivatives series. We exploited different models for the density of states (DOS), with conventional and unconventional order parameters to take into account the role played by possible magnetic and non-magnetic disorder in the superconducting order parameter. The values of the superconducting order parameter obtained by the fitting procedure are close to the ones obtained on more metallic and higher Tc organic crystals and far above the BCS values, suggesting an intrinsic role of disorder in the superconductivity of organic superconductors and a further confirmation of the non-conventional superconductivity in such compounds.

Gambardella, A.; Salluzzo, M.; Di Capua, R.; Affronte, M.; Giménez-Saiz, C.; Gòmez-Garcìa, C. J.; Coronado, E.; Vaglio, R.

2010-05-01

365

The "Beta-Clasp" model of apolipoprotein A-I - a lipid-free solution structure determined by electron paramagnetic resonance spectroscopy  

PubMed Central

Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and plays a central role in cholesterol metabolism. The lipid-free / lipid-poor form of apoA-I is the preferred substrate for the ATP-binding cassette transporter A1 (ABCA1). The interaction of apoA-I with ABCA1 leads to the formation of cholesterol laden high density lipoprotein (HDL) particles, a key step in reverse cholesterol transport and the maintenance of cholesterol homeostasis. Knowledge of the structure of lipid-free apoA-I is essential to understanding its critical interaction with ABCA1 and the molecular mechanisms underlying HDL biogenesis. We therefore examined the structure of lipid-free apoA-I by electron paramagnetic resonance spectroscopy (EPR). Through site directed spin label EPR, we mapped the secondary structure of apoA-I and identified sites of spin coupling as residues 26, 44, 64, 167, 217 and 226. We capitalize on the fact that lipid-free apoA-I self-associates in an anti-parallel manner in solution. We employed these sites of spin coupling to define the central plane in the dimeric apoA-I complex. Applying both the constraints of dipolar coupling with the EPR-derived pattern of solvent accessibility, we assembled the secondary structure into a tertiary context, providing a solution structure for lipid-free apoA-I.

Lagerstedt, Jens O.; Budamagunta, Madhu S.; Liu, Grace S.; DeValle, Nicole C.; Voss, John C.; Oda, Michael N.

2012-01-01

366

Paramagnetic NMR Relaxation and Molecular Mechanics Studies of Chloroperoxidase-Indole Complex: Insights into the Mechanism of Chloroperoxidase-Catalyzed Regioselective Oxidation of Indole  

PubMed Central

To unravel the mechanism of CPO-catalyzed regioselective oxidation of indole, the structure of the CPO-indole complex was studied using NMR relaxation measurements and computational techniques. The dissociation constant (KD) of the CPO-indole complex was calculated to be approximately 21 mM. The distances (r) between protons of indole and the heme iron calculated from NMR relaxation measurements and molecular docking revealed that the pyrrole ring of indole is oriented toward the heme with its 2-H pointing directly at the heme iron. Both KD and r values are independent of pH in the range of 3.0–6.5. The stability and structure of the CPO-indole complex are also independent of the concentration of chloride/iodide ion. Molecular docking suggests the formation of a hydrogen bond between the N–H of indole and the carboxyl O of Glu 183 in the binding of indole to CPO. Simulated annealing of the CPO-indole complex using r values from NMR experiments as distance restraints reveals that the van der Waals interactions were much stronger than the Coulomb interactions in indole binding to CPO, indicating that the association of indole with CPO is primarily governed by hydrophobic rather than electrostatic interactions. This work provides the first experimental and theoretical evidence for the long-sought mechanism that leads to the “unexpected” regioselectivity of CPO-catalyzed oxidation of indole. The structure of the CPO-indole complex will serve as a lighthouse in guiding the design of CPO mutants with tailor-made activities for biotechnological applications.

Zhang, Rui; He, Qinghao; Chatfield, David; Wang, Xiaotang

2013-01-01

367

Secondary structure, dynamics, and architecture of the p7 membrane protein from hepatitis C virus by NMR spectroscopy.  

PubMed

P7 is a small membrane protein that is essential for the infectivity of hepatitis C virus. Solution-state NMR experiments on p7 in DHPC micelles, including hydrogen/deuterium exchange, paramagnetic relaxation enhancement and bicelle 'q-titration,' demonstrate that the protein has a range of dynamic properties and distinct structural segments. These data along with residual dipolar couplings yield a secondary structure model of p7. We were able to confirm previous proposals that the protein has two transmembrane segments with a short interhelical loop containing the two basic residues K33 and R35. The 63-amino acid protein has a remarkably complex structure made up of seven identifiable sections, four of which are helical segments with different tilt angles and dynamics. A solid-state NMR two-dimensional separated local field spectrum of p7 aligned in phospholipid bilayers provided the tilt angles of two of these segments. A preliminary structural model of p7 derived from these NMR data is presented. PMID:20727850

Cook, Gabriel A; Opella, Stanley J

2011-06-01

368

High-field dipolar electron paramagnetic resonance (EPR) spectroscopy of nitroxide biradicals for determining three-dimensional structures of biomacromolecules in disordered solids.  

PubMed

We consider the state-of-the-art capabilities and future perspectives of electron-spin triangulation by high-field/high-frequency dipolar electron paramagnetic resonance (EPR) techniques designed for determining the three-dimensional structure of large supra-molecular complexes dissolved in disordered solids. These techniques combine double site-directed spin labeling (SDSL) with orientation-resolving pulsed electron-electron double resonance (PELDOR) spectroscopy. In particular, we appraise the prospects of angular triangulation, which extends the more familiar distance triangulation. As a model case for spin-labeled proteins, the three-dimensional structures of two nitroxide biradicals with rather stiff bridging blocks and deuterated nitroxide headgroups have been derived. To this end we applied 95 GHz high-field electron dipolar EPR spectroscopy with the microwave pulse-sequence configurations for PELDOR and relaxation-induced dipolar modulation enhancement (RIDME). Various specific spectroscopic strategies are discussed to overcome the problems of overlapping spectra of the chemically identical nitroxide labels when attached to macromolecular systems. We conclude that due to the high detection sensitivity and spectral resolution the combination of SDSL with high-field RIDME/PELDOR stands out as an extremely powerful tool for 3D structure determination of large disordered systems. The approach compares favorably with other structure-determining magnetic-resonance methods. This holds true both for stable and transient radical-pair states. Angular constraints are provided in addition to distance constraints obtained for the same sample. Thereby, the number of necessary distance constraints is strongly reduced. Since each measurement of a distance constraint requires an additional doubly spin-labeled sample, the reduction of necessary distance constraints is another appealing aspect of orientation-resolving EPR spin triangulation for protein structure determination. PMID:21879744

Savitsky, Anton; Dubinskii, Alexander A; Zimmermann, Herbert; Lubitz, Wolfgang; Möbius, Klaus

2011-10-20

369

Distinguishing Polymorphs of the Semiconducting Pigment Copper Phthalocyanine by Solid-state NMR and Raman Spectroscopy  

PubMed Central

Cu(II)(phthalocyanine) (CuPc) is broadly utilized as an archetypal molecular semiconductor and is the most widely used blue printing pigment. CuPc crystallizes in six different forms; the chemical and physical properties are substantially modulated by its molecular packing among these polymorphs. Despite the growing importance of this system, spectroscopic identification of different polymorphs for CuPc has posed difficulties. This study presents the first example of spectroscopic distinction of ?- and ?-forms of CuPc, the most widely used polymorphs, by solid-state NMR (SSNMR) and Raman spectroscopy. 13C high-resolution SSNMR spectra of ?- and ?-CuPc using very-fast magic angle spinning (VFMAS) at 20 kHz show that hyperfine shifts sensitively reflect polymorphs of CuPc. The experimental results were confirmed by ab initio chemical shift calculations. 13C and 1H SSNMR relaxation times of ?- and ?-CuPc under VFMAS also showed marked differences, presumably because of the difference in electronic spin correlation times in the two forms. Raman spectroscopy also provided another reliable method of differentiation between the two polymorphs.

Shaibat, Medhat A.; Casabianca, Leah B.; Siberio-Perez, Diana Y.; Matzger, Adam J; Ishii, Yoshitaka

2010-01-01

370

Molecular-level characterization of probucol nanocrystal in water by in situ solid-state NMR spectroscopy.  

PubMed

The molecular state of colloidal probucol nanoparticles with additives was evaluated by (13)C in situ solid-state NMR spectroscopy. The nanoparticles were obtained by dispersing a ternary co-ground mixture of probucol/polyvinylpyrrolidon (PVP)/sodium dodecyl sulfate (SDS) in water. Their mean particle size was found to be approximately 150 nm by dynamic light scattering and cryogenic-scanning electron microscopy measurements. The results of the (13)C in situ solid-state NMR spectroscopy showed that probucol existed in the crystalline state (form I) in water. (13)C liquid-state NMR results indicated that PVP and SDS interacted with probucol in water. Their broad signals suggested that the surface interaction of the probucol nanocrystal with PVP and SDS stabilized the suspension. In addition, a freeze-dried sample of the suspension was studied by (13)C solid-state NMR and powder X-ray diffraction experiments, which confirmed the presence of the probucol nanocrystals. The combination of the in situ solid-state, solid-state, and liquid-state NMR measurement results provided molecular-level insights about the role of intermolecular interactions in the design of nanoformulations. PMID:22138607

Zhang, Junying; Higashi, Kenjirou; Limwikrant, Waree; Moribe, Kunikazu; Yamamoto, Keiji

2012-02-28

371

Improvements in localized proton NMR spectroscopy of human brain. Water suppression, short echo times, and 1 ml resolution  

NASA Astrophysics Data System (ADS)

Considerable technical improvements are reported for localized proton NMR spectroscopy using stimulated echoes. When compared to previous results, proton NMR spectra of the human brain are now obtainable (i) with in vivo water suppression factors of ?1000, (ii) with only minor T2 losses and negligible distortions due to J modulation at short echo times of 10-20 ms, and (iii) from volumes of interest as small as 1-8 ml within measuring times of 1-10 min. As a consequence, the detection of cerebral metabolites is greatly facilitated. This particularly applies to the assignment of those resonances (e.g., glutamate, taurine, inositols) that suffer from strong spin-spin coupling at the field strengths commonly in use for NMR in man. Studies of regional metabolite differences, tissue heterogeneity, and focal lesions in patients benefit from the increased spatial resolution and a concomitant reduction of partial volume effects. Localized proton NMR spectroscopy was performed on young healthy volunteers. Experiments were carried out on a 2.0 T whole-body MRI/MRS system using the standard headcoil for both imaging and spectroscopy.

Frahm, J.; Michaelis, T.; Merboldt, K. D.; Bruhn, H.; Gyngell, M. L.; Hänicke, W.

372

Correlating nuclear frequencies by two-dimensional ELDOR-detected NMR spectroscopy.  

PubMed

ELDOR (Electron Double Resonance)-detected NMR (EDNMR) is a pulse EPR experiment that is used to measure the transition frequencies of nuclear spins coupled to electron spins. These frequencies are further used to determine hyperfine and quadrupolar couplings, which are signatures of the electronic and spatial structures of paramagnetic centers. In recent years, EDNMR has been shown to be particularly useful at high fields/high frequencies, such as W-band (?95 GHz, ?3.5 T), for low ? quadrupolar nuclei. Although at high fields the nuclear Larmor frequencies are usually well resolved, the limited resolution of EDNMR still remains a major concern. In this work we introduce a two dimensional, triple resonance, correlation experiment based on the EDNMR pulse sequence, which we term 2D-EDNMR. This experiment allows circumventing the resolution limitation by spreading the signals in two dimensions and the observed correlations help in the assignment of the signals. First we demonstrate the utility of the 2D-EDNMR experiment on a nitroxide spin label, where we observe correlations between (14)N nuclear frequencies. Negative cross-peaks appear between lines belonging to different MS electron spin manifolds. We resolved two independent correlation patterns for nuclear frequencies arising from the EPR transitions corresponding to the (14)N mI=0 and mI=-1 nuclear spin states, which severely overlap in the one dimensional EDNMR spectrum. The observed correlations could be accounted for by considering changes in the populations of energy levels that S=1/2, I=1 spin systems undergo during the pulse sequence. In addition to these negative cross-peaks, positive cross-peaks appear as well. We present a theoretical model based on the Liouville equation and use it to calculate the time evolution of populations of the various energy levels during the 2D-EDNMR experiment and generated simulated 2D-EDMR spectra. These calculations show that the positive cross-peaks appear due to off resonance effects and/or nuclear relaxation effects. These results suggest that the 2D-EDNMR experiment can be also useful for relaxation pathway studies. Finally we present preliminary results demonstrating that 2D-EDNMR can resolve overlapping (33)S and (14)N signals of type 1 Cu(II) center in (33)S enriched Azurin. PMID:24530956

Kaminker, Ilia; Wilson, Tiffany D; Savelieff, Masha G; Hovav, Yonatan; Zimmermann, Herbert; Lu, Yi; Goldfarb, Daniella

2014-03-01

373

Milk identification of different species: 13C-NMR spectroscopy of triacylglycerols from cows and buffaloes' milks.  

PubMed

Triacylglycerols from cows and buffaloes' milk fat were investigated by 13C nuclear magnetic resonance (NMR) spectroscopy. By the addition of pure triacylglycerols standards, we identified the resonances of both milk fats, and the peaks were used for qualitative and quantitative analysis of acyl groups. Multivariate analysis treatment of triacylglycerols distribution and composition parameters enabled us to identify milk. This study shows that NMR can safely be used to quantitate milk fatty acid content, providing unique information for milk identification of different animal species. PMID:11104260

Andreotti, G; Trivellone, E; Lamanna, R; Di Luccia, A; Motta, A

2000-11-01

374

Characterization of Cu Mordenite deNOx Catalysts at Variable Si/Al Ratios, by NMR, TPD and Optical Spectroscopy  

NASA Astrophysics Data System (ADS)

Cu mordenite is an effective catalyst for nitrogen oxide removal (deNOx), which is readily produced from H mordenite at various silica-to-alumina (Si/Al) ratios by ion exchange. We have characterized a set of H and Cu mordenite catalysts prepared from material originally supplied by the TOSOH Corp. (Japan), using NMR, TPD and optical Diffuse Reflectance Spectroscopy. The nuclei observed in NMR were Silicon-29, Aluminum-27 and protons. Resulst show strong effects of Si/Al ratio, upon both framework and extra-framework structures of the mordenites. Information about the state of the Cu ion in the catalysts will be reviewed.

Marzke, Robert F.; Petranovskii, Vitalii P.; Bogdanchikova, Nina E.

2002-03-01

375

Application of parahydrogen induced polarization techniques in NMR spectroscopy and imaging.  

PubMed

Magnetic resonance provides a versatile platform that allows scientists to examine many different types of phenomena. However, the sensitivity of both NMR spectroscopy and MRI is low because the detected signal strength depends on the population difference that exists between the probed nuclear spin states in a magnetic field. This population difference increases with the strength of the interacting magnetic field and decreases with measurement temperature. In contrast, hyperpolarization methods that chemically introduce parahydrogen (a spin isomer of hydrogen with antiparallel spins that form a singlet) based on the traditional parahydrogen induced polarization (PHIP) approach tackle this sensitivity problem with dramatic results. In recent years, the potential of this method for MRI has been recognized, and its impact on medical diagnosis is starting to be realized. In this Account, we describe the use of parahydrogen to hyperpolarize a suitable substrate. This process normally involves the introduction of a molecule of parahydrogen into a target to create large population differences between nuclear spin states. The reaction of parahydrogen breaks the original magnetic symmetry and overcomes the selection rules that prevent both NMR observation and parahydrogen/orthohydrogen interconversion, yielding access to the normally invisible hyperpolarization associated with parahydrogen. Therefore the NMR or MRI measurement delivers a marked increase in the detected signal strength over the normal Boltzmann-population derived result. Consequently, measurements can be made which would otherwise be impossible. This approach was pioneered by Weitekamp, Bargon, and Eisenberg, in the late 1980s. Since 1993, we have used this technique in York to study reaction mechanisms and to characterize normally invisible inorganic species. We also describe signal amplification by reversible exchange (SABRE), an alternative route to sensitize molecules without directly incorporating a molecule of parahydrogen. This approach widens the applicability of PHIP methods and the range of materials that can be hyperpolarized. In this Account we describe our parahydrogen studies in York over the last 20 years and place them in a wider context. We describe the characterization of organometallic reaction intermediates including those involved in catalytic reactions, either with or without hydride ligands. The collection of spectroscopic and kinetic data with rapid inverse detection methods has proved to be particularly informative. We can see enhanced signals for the organic products of catalytic reactions that are linked directly to the catalytic intermediates that form them. This method can therefore prove unequivocally that a specific metal complex is involved in a catalytic cycle, thus pinpointing the true route to catalysis. Studies where a pure nuclear spin state is detected show that it is possible to detect all of the analyte molecules present in a sample using NMR. In addition, we describe methods that achieve the selective detection of these enhanced signals, when set against a strong NMR background such as that of water. PMID:22452702

Duckett, Simon B; Mewis, Ryan E

2012-08-21

376

Binding of phenol and differently halogenated phenols to dissolved humic matter as measured by NMR spectroscopy.  

PubMed

1H- and 19F-NMR measurements of spin-lattice (T1) and spin-spin (T2) relaxationtimes and diffusion ordered spectroscopy (DOSY) were applied to investigate the association of nonsubstituted (phenol (P)) and halogen-substituted (2,4-dichlorophenol (DCP); 2,4,6-trichlorophenol (TCP), and 2,4,6-trifluorophenol (TFP) phenols with a dissolved humic acid (HA). T1 and T2 values for both 1H and 19F in phenols decreased with enhancing HA concentration, indicating reduction in molecular mobility due to formation of noncovalent interactions. Moreover, correlation times (tau c) for different hydrogen and fluorine atoms in phenols showed that anisotropic mobility turned into isotropic motion with HA additions. Changes in relaxation times suggested that DCP and TCP were more extensively bound to HA than P and TFP. This was confirmed by diffusion measurements which showed full association of DCP and TCP to a less amount of HA than that required for entire complexation of P and TFP. Calculated values of binding constants (Ka) reflected the overall NMR behavior, being significantly larger for DCP- and TCP-HA (10.04 +/- 1.32 and 4.47 +/- 0.35 M(-1), respectively) than for P- and TFP-HA complexes (0.57 +/- 0.03 and 0.28 +/- 0.01 M(-1), respectively). Binding increased with decreasing solution pH, thus indicating a dependence on the fraction of protonated form (alpha) of phenols in solution. However, it was found that the hydrophobicity conferred to phenols by chlorine atoms on aromatic rings is a stronger drive than alpha for the phenols repartition within the HA hydrophobic domains. PMID:19708369

Smejkalová, Daniela; Spaccini, Riccardo; Fontaine, Barbara; Piccolo, Alessandro

2009-07-15

377

Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids  

NASA Astrophysics Data System (ADS)

We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (?, ?) in a series of selectively 13C-labeled 40-residue ?-amyloid (A?1-40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of A?1-40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16-21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ? and ? angles between the two carbonyl labels. Although the data are not sufficient to determine ? and ? uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of A?1-40 fibrils in 4 h or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples.

Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

2013-06-01

378

Intracellular free calcium concentration measured with /sup 19/F NMR spectroscopy in intact ferret hearts  

SciTech Connect

Changes in the intracellular free Ca/sup 2 +/ concentration, (Ca/sup 2 +/)/sub i/, mediate excitation-contraction coupling in the heart and contribute to cellular injury during ischemia and reperfusion. To study these processes directly, the authors measured (Ca/sup 2 +/)/sub i/ in perfused ferret (Mustela putorius furo) hearts using /sup 19/F NMR spectroscopy to detect the 5,5'-difluoro derivative of the Ca/sup 2 +/ chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). To load cells, hearts were perfused with the acetoxymethyl ester derivative of 5,5'-F/sub 2/-BAPTA. They measured /sup 19/F NMR spectra and left ventricular pressure simultaneously,at rest and during pacing at various external Ca concentrations ((Ca)/sub 0/). Although contractile force was attenuated by the Ca/sup 2 +/ buffering properties of 5,5'-F/sup 2/-BAPTA, the decrease in pressure could be overcome by raising (Ca)/sub 0/. The mean value of 104 nM for (Ca/sup 2 +/)/sub i/ at rest in the perfused heart agrees well with previous measurements in isolated ventricular muscle. During pacing at 0.6-4 Hz, time-averaged (Ca/sup 2 +/)/sub i/ increased; the effect of pacing was augmented by increasing (Ca)/sub 0/. (Ca/sup 2 +/)/sub i/ more than tripled during 10-20 min of global ischemia, and returned toward control levels upon reperfusion. This approach promises to be particularly useful in investigating the physiology of intact hearts and the pathophysiology of alterations in the coronary circulation

Marban, E.; Kitakaze, M.; Kusuoka, H.; Porterfield, J.K.; Yue, D.T.; Chacko, V.P.

1987-08-01

379

Higher order amyloid fibril structure by MAS NMR and DNP spectroscopy.  

PubMed

Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure, and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide ?-strands into ?-sheets but also the ?-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The ?-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the residues buried within the interior of the fibrils. PMID:24304221

Debelouchina, Galia T; Bayro, Marvin J; Fitzpatrick, Anthony W; Ladizhansky, Vladimir; Colvin, Michael T; Caporini, Marc A; Jaroniec, Christopher P; Bajaj, Vikram S; Rosay, Melanie; Macphee, Cait E; Vendruscolo, Michele; Maas, Werner E; Dobson, Christopher M; Griffin, Robert G

2013-12-26

380

Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids  

PubMed Central

We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (?,?) in a series of selectively 13C-labeled 40-residue ?-amyloid (A?1–40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of A?1–40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16–21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ? and ? angles between the two carbonyl labels. Although the data are not sufficient to determine ? and ? uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of A?1–40 fibrils in 4 hr or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples.

Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

2013-01-01

381

Structural models of activated ?-alumina surfaces revisited: Thermodynamics, NMR and IR spectroscopies from ab initio calculations  

NASA Astrophysics Data System (ADS)

The activation of highly catalytic ?-alumina surfaces by thermal treatment and the description of the related chemical processes at atomic scale is a topical issue. According to a recent study [J. Am. Chem. Soc. 134 (2012) 14430], the enhanced reactivity of ?-alumina has been associated to tri-coordinated aluminum sites which supposedly are exposed exclusively on the (1 1 0) surfaces of this oxide. In this work, we explore this possibility by modeling the (1 0 0) and (1 1 0) terminations using Krokidis et al. [J. Phys. Chem. B 105 (2001) 5121] bulk structure and performing an extensive search of the most stable hydrated surface models at conditions consistent with experiment. Among the 156 structures analyzed, we identify several "metastable" models for the (1 1 0) surface with a considerable probability of containing the AlIII centers at OH coverages of 9.0 and 6.0 OH/nm2. We then test the reactivity of these sites through their Lewis acidity by simulating the CO adsorbtion on the surface and our results confirm the high reactivity of AlIII centers. Based on the Gibbs free energy of the explored structures, we carry on a thermodynamical analysis at varying hydroxylation degrees and pretreatment temperatures and simulate the experimental volcano-type behavior reported in [J. Am. Chem. Soc. 134 (2012) 14430] and predict the optimum pretreatment temperature as 700 °C, in very good agreement with experimental findings. We further use infrared and solid state MAS NMR spectroscopies and reproduce the 1H MAS NMR spectra under high vacuum conditions (10-5 Torr). The strong resemblance of spectra to the experimental ones in the literature [J. Phys. Chem. C 116 (2012) 834] validate further the structural models we have generated in this study.

Ferreira, Ary R.; Küçükbenli, Emine; de Gironcoli, Stefano; Souza, Wladmir F.; Chiaro, Sandra Shirley X.; Konstantinova, Elena; Leitão, Alexandre A.

2013-09-01

382

Structural Modeling and Electron Paramagnetic Resonance Spectroscopy of the Human Na+/H+ Exchanger Isoform 1, NHE1*  

PubMed Central

We previously presented evidence that transmembrane domain (TM) IV and TM X-XI are important for inhibitor binding and ion transport by the human Na+/H+ exchanger, hNHE1 (Pedersen, S. F., King, S. A., Nygaard, E. B., Rigor, R. R., and Cala, P. M. (2007) J. Biol. Chem. 282, 19716–19727). Here, we present a structural model of the transmembrane part of hNHE1 that further supports this conclusion. The hNHE1 model was based on the crystal structure of the Escherichia coli Na+/H+ antiporter, NhaA, and previous cysteine scanning accessibility studies of hNHE1 and was validated by EPR spectroscopy of spin labels in TM IV and TM XI, as well as by functional analysis of hNHE1 mutants. Removal of all endogenous cysteines in hNHE1, introduction of the mutations A173C (TM IV) and/or I461C (TM XI), and expression of the constructs in mammalian cells resulted in functional hNHE1 proteins. The distance between these spin labels was ?15 A, confirming that TM IV and TM XI are in close proximity. This distance was decreased both at pH 5.1 and in the presence of the NHE1 inhibitor cariporide. A similar TM IV·TM XI distance and a similar change upon a pH shift were found for the cariporide-insensitive Pleuronectes americanus (pa) NHE1; however, in paNHE1, cariporide had no effect on TM IV·TM XI distance. The central role of the TM IV·TM XI arrangement was confirmed by the partial loss of function upon mutation of Arg425, which the model predicts stabilizes this arrangement. The data are consistent with a role for TM IV and TM XI rearrangements coincident with ion translocation and inhibitor binding by hNHE1.

Nygaard, Eva B.; Lagerstedt, Jens O.; Bjerre, Gabriel; Shi, Biao; Budamagunta, Madhu; Poulsen, Kristian A.; Meinild, Stine; Rigor, Robert R.; Voss, John C.; Cala, Peter M.; Pedersen, Stine F.

2011-01-01

383

Raftlike Mixtures of Sphingomyelin and Cholesterol Investigated by Solid-State 2H NMR Spectroscopy  

PubMed Central

Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance (2H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state 2H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed 2H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures. Hydrophobic matching explains the occurrence of raftlike domains in cellular membranes at intermediate cholesterol concentrations but not saturating amounts of cholesterol.

Bartels, Tim; Lankalapalli, Ravi S.; Bittman, Robert; Beyer, Klaus; Brown, Michael F.

2009-01-01

384

Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy.  

PubMed

Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state (2)H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed (2)H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures. Hydrophobic matching explains the occurrence of raftlike domains in cellular membranes at intermediate cholesterol concentrations but not saturating amounts of cholesterol. PMID:18839945

Bartels, Tim; Lankalapalli, Ravi S; Bittman, Robert; Beyer, Klaus; Brown, Michael F

2008-11-01

385

Bond covalency in perovskite oxynitrides ATaO2N (A = Ca, Sr, Ba) studied by 14N NMR spectroscopy  

NASA Astrophysics Data System (ADS)

Local geometry and bond ionicity around the nitride ions in simple perovskite oxynitrides ATaO2N (A = Ca, Sr, Ba) have been investigated by solid-state magic-angle spinning (MAS) NMR spectroscopy. From all three compounds, fairly sharp 14N NMR peaks were observed, suggestive of the symmetric coordination environment of nitride ions. The 14N chemical shifts of ATaO2N, ? = 269-272 ppm relative to NH4Cl (? = 0 ppm), are correlated to the bond ionicity, based on the N-Ta bond distances and Ta-N-Ta bond angles determined from the Rietveld refinement of neutron diffraction patterns. The 1H NMR measured for BaTaO2N presented a peak corresponding to H2O, implying that the polycrystalline surface of present oxynitride phases is covered by hydroxide terminals.

Kim, Young-Il; Paik, Younkee

2012-05-01

386

Complex mixture analysis of organic compounds in green coffee bean extract by two-dimensional NMR spectroscopy.  

PubMed

A complex mixture analysis by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy was carried out for the first time for the identification and quantification of organic compounds in green coffee bean extract (GCBE). A combination of (1)H-(1)H DQF-COSY, (1)H-(13)C HSQC, and (1)H-(13)C CT-HMBC two-dimensional sequences was used, and 16 compounds were identified. In particular, three isomers of caffeoylquinic acid were identified in the complex mixture without any separation. In addition, GCBE components were quantified by the integration of carbon signals by use of a relaxation reagent and an inverse-gated decoupling method without a nuclear Overhauser effect. This NMR methodology provides detailed information about the kinds and amounts of GCBE components, and in our study, the chemical makeup of GCBE was clarified by the NMR results. PMID:20818806

Wei, Feifei; Furihata, Kazuo; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

2010-11-01

387

17O NMR spectroscopy of substituted methyleneindanones: relationship between chemical shift and oxygen atom electron density  

NASA Astrophysics Data System (ADS)

17O NMR spectroscopic data for eigth ?-substituted methyleneindanones obtained at natural abundance in acetonitrile at 75°C are reported. 17O NMR data for ten para-substituted E-benzalindanones, enriched with 17O, were recorded in acetonitrile at 75°C. The 17O NMR data for the E-benzalindanones gave good correlations with sigma plus values, with literature carbonyl IR stretching frequencies, and with literature 17O NMR carbonyl data of chalcones and 5-aryl-2,3-furandiones. The carbonyl oxygen atom electron density (AM1) gave good correlation with the carbonyl 17O NMR chemical shift of both ?-substituted methyleneindanones and the E-benzalindanones.

Kumar, Arvind; Boykin, David W.

1993-07-01

388

Conformational Analysis of (+)-Germacrene A by Variable Temperature NMR and NOE Spectroscopy  

PubMed Central

(+)-Germacrene A, an important intermediate in sesquiterpene biosynthesis, was isolated in pure form from a genetically engineered yeast and was characterized by chromatographic properties (TLC, GC), MS, optical rotation, UV, IR, 1H NMR and 13C NMR data. Variable-temperature 500 MHz 1H NMR spectra in CDCl3 showed that this flexible cyclodecadiene ring exists as three NMR-distinguishable conformational isomers in a ratio of about 5:3:2 at or below ordinary probe temperature (25° C). The conformer structures were assigned by 1H NMR data comparisons, NOE experiments, and vicinal couplings as follows: 1a (52%, UU), 1b (29% UD), and 1c (19%, DU).

Faraldos, Juan A.; Wu, Shuiqin; Chappell, Joe

2009-01-01

389

Investigation of Local Structures in Layered Niobates by Solid-state NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

Research on ion-exchangeable layered niobates has attracted great attention due to their unique structures and corresponding variations in properties and applications, such as ion conductors, solid acids, and water splitting catalysts. Families of layered niobates include double-layered or triple-layered Dion-Jacobson type perovskites (ALaNb2O7, A = Cs, Rb, K, H; AM2Nb3O10, A = Rb, K, H; M = Sr, Ca), layered niobates with both edge and corner sharing of NbO6 octahedra (KNb3O8, HNb3O6, Nb 6O17 and H4Nb6O17) and many others. Lately, more developments in the layered niobates through a variety of topochemical manipulations have been achieved. The topochemical reactions include ion exchange, exfoliation, substitution, and etc. As a result, many new materials have been successfully prepared, for example, solid solutions (ALa2NbTi2O10, ACaLaNb2TiO 10 and ACa2Nb3-xTaxO10, etc.), nanosheets (HNb3O8, H4Nb6O17, HLaNb2O7, HCa2Nb3O10, etc., to intercalate with organic molecules such as tetrabutylammonium hydroxide or n-butylamines), and nanoscrolls (from H2K2Nb 6O17). While these structural modifications often induce improvements in properties, the fundamental mechanisms of improvements in properties upon the modifications, especially local structural arrangements are poorly understood, which is often limited by structural characterizations. Particularly, the characterizations of the exfoliated nanosheets can be difficult by conventional X-ray diffraction (XRD) method due to disordered structures. Alternatively, solid-state nuclear magnetic resonance (NMR) spectroscopy is a useful tool to study local structures in solids. The structural information can be extracted by examining intrinsic interactions, such as quadrupolar, chemical shielding, and dipolar interactions, which are all associated with local environments surrounding a specific nucleus, 1H or 93Nb in layered niobates. The ultimate goal of this dissertation is to understand the relationships between local structures of layered niobates and their chemical or physical properties, and provide insights into further modifications and improvements. The primary objectives of this work are summarized below: I. Synthesis of series of layered niobates (ALaNb2O7 , A = Cs, Rb, K; KNb3O8; K4Nb 6O17; RbLa2NbTi2O10 and RbCaLaNb2TiO10) by microwave heating or cation exchange methods, their protonated forms by acid exchange (HLaNb2O 7, H3ONb3O8 and HNb3O 8, H4Nb8O17, HLa2NbTi 2O10 and HCaLaNb2TiO10), and three nanosheet niobates by exfoliation (HNb3O8, H4Nb 6O17 and HLaNb2O7 nanosheets). II. Structural characterizations of all niobates by powder XRD and solid-state NMR spectroscopy. Powder XRD is used to determine lattice constants and long-range structural ordering. Solid-state NMR is used to determine the electric field gradient parameters, chemical shift anisotropy parameters and dipolar coupling constants. Solid-state NMR techniques include 93Nb MQMAS, wide-line VOCS echo and WURST-echo; 1H{93Nb} CP, TRAPDOR, S-RESPDOR and iS-RESPDOR experiments. III. Understanding the trends of changes in NMR parameters with respect to cation exchange, exfoliation and compositional alteration, and correlation of the NMR parameters with local environments and possible structural rearrangements. IV. Identification of proton locations in the acid-exchanged niobates and surface acidity for the exfoliated nanosheets, based on 1H chemical shifts and dipolar coupling information from CP, S-RESPDOR and iS-RESPDOR experiments.

Liu, Ting

390

Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning  

SciTech Connect

The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-{gamma} nuclei (e.g., {sup 13}C and {sup 15}N) via the sensitive high-{gamma} nuclei (e.g., {sup 1}H and {sup 19}F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for {sup 1}H-{sup 1}H homonuclear decoupling. Also presented is a simple new strategy for optimization of {sup 1}H-{sup 1}H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in {sup 1}H detected 2D {sup 1}H{l_brace}{sup 13}C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional {sup 13}C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear {sup 1}H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5{sub m}{sup {bar x}}, PMLG5{sub mm}{sup {bar x}x} and SAM3) were analyzed to maximize the performance of through-bond transfer based on decoupling efficiency as well as scaling factors. Indirect detection with assistance of PMLG{sub m}{sup {bar x}} during INEPTR transfer proved to offer the highest sensitivity gains of 3-10. In addition, the CRAMPS sequence was applied under fast MAS to increase the {sup 1}H resolution during t{sub 1} evolution in the traditional, {sup 13}C detected HETCOR scheme. Two naturally abundant solids, tripeptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (f-MLF-OH) and brown coal, with well ordered and highly disordered structures, respectively, are studied to confirm the capabilities of these techniques. Concomitantly, a simple optimization of {sup 1}H homonuclear dipolar decoupling at MAS rates exceeding 10 kHz was developed (Chapter 4). The fine-tuned decoupling efficiency can be obtained by minimizing the signal loss due to transverse relaxation in a simple spin-echo experiment, using directly the sample of interest. The excellent agreement between observed decoupling pattern and earlier theoretical predictions confirmed the utility of this strategy. The properties of naturally abundant surface-bound fluorocarbon groups in mesoporous silica nanoparticles (MSNs) were investigated by the above-mentioned multidimensional solid-state NMR experiments and theoretical modeling (Chapter 5). Two conformations of (pentafluorophenyl)propyl groups (abbreviated as PFP) were determined as PFP-prone and PFP-upright, whose aromatic rings are located above the siloxane bridges and in roughly upright position, respectively. Several 1D and 2D NMR techniques were implemented in the characterizations, including indirectly detected {sup 1}H{l_brace}{sup 13}C{r_brace} and {sup 19}F{l_brace}{sup 13}C{r_brace} 2D HETCOR, Carr-Purcell-Meiboom-Gill (CPMG) assisted {sup 29}Si direct polarization and {sup 29}Si{sup 19}F 2D experiments, 2D double-quantum (DQ) {sup 19}F MAS NMR spectra and spin-echo measurements. Furthermore, conformational details of two types of PFP were confirmed by theoretical calculation, operated by Dr. Takeshi Kobayashi. Finally, the arrangement of two surfactants, cetyltrimetylammoium bromide (CTAB) and cetylpyridinium bromide (CPB), mixed inside th

Mao, Kanmi

2011-08-15

391

Cryogenic Q-band (35 GHz) probehead featuring large excitation microwave fields for pulse and continuous wave electron paramagnetic resonance spectroscopy: Performance and applications  

Microsoft Academic Search

The construction and performance of a Q-band (35GHz) cryogenic probehead for pulse electron paramagnetic resonance and continuous wave electron paramagnetic resonance measurements with down-scaled loop gap resonators (LGRs) is presented. The advantage of the LGR in comparison to TE012 resonators lies in the large B1 microwave (mw) fields that can be generated with moderate input mw power. We demonstrated with

Jörg Forrer; Inés García-Rubio; Rolf Schuhmam; Rene Tschaggelar; Jeffrey Harmer

2008-01-01

392

Selectively Labeling the Heterologous Protein in Escherichia coli for NMR Studies: A Strategy to Speed Up NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

Nuclear magnetic resonance is an important tool for high-resolution structural studies of proteins. It demands high protein concentration and high purity; however, the expression of proteins at high levels often leads to protein aggregation and the protein purification step can correspond to a high percentage of the overall time in the structural determination process. In the present article we show that the step of sample optimization can be simplified by selective labeling the heterologous protein expressed in Escherichia coli by the use of rifampicin. Yeast thioredoxin and a coix transcription factor Opaque 2 leucine zipper (LZ) were used to show the effectiveness of the protocol. The 1H/ 15N heteronuclear correlation two-dimensional NMR spectrum (HMQC) of the selective 15N-labeled thioredoxin without any purification is remarkably similar to the spectrum of the purified protein. The method has high yields and a good 1H/ 15N HMQC spectrum can be obtained with 50 ml of M9 growth medium. Opaque 2 LZ, a difficult protein due to the lower expression level and high hydrophobicity, was also probed. The 15N-edited spectrum of Opaque 2 LZ showed only the resonances of the protein of heterologous expression (Opaque 2 LZ) while the 1H spectrum shows several other resonances from other proteins of the cell lysate. The demand for a fast methodology for structural determination is increasing with the advent of genome/proteome projects. Selective labeling the heterologous protein can speed up NMR structural studies as well as NMR-based drug screening. This methodology is especially effective for difficult proteins such as hydrophobic transcription factors, membrane proteins, and others.

Almeida, F. C. L.; Amorim, G. C.; Moreau, V. H.; Sousa, V. O.; Creazola, A. T.; Américo, T. A.; Pais, A. P. N.; Leite, A.; Netto, L. E. S.; Giordano, R. J.; Valente, A. P.

2001-01-01

393

Characterisation of commercially available linear alkylbenzenesulfonates by LC-SPE-NMR\\/MS (liquid chromatography-solid phase extraction-nuclear magnetic resonance spectroscopy-mass spectroscopy)  

Microsoft Academic Search

Commercially available linear alkylbenzenesulfonates (LASs) are a mixture of various homologues and isomers, leading to 20 major species. In this work we investigated the commercial product by liquid chromatography-solid phase extraction-nuclear magnetic resonance spectroscopy-mass spectrometry (LC-SPE-NMR\\/MS). The commercial product was separated into 17 fractions by liquid chromatography (LC). After chromatographic separation, 5% of the flow was split to a mass

S. Schmidt; C. Piechotta; M. Godejohann; T. Win; I. Nehls; C. Mügge

2010-01-01

394

The degradation of zinc dialkyldithiophosphate additives in fully formulated engine oil as studied by P-31 NMR spectroscopy  

SciTech Connect

Two fully-formulated engine oils containing zinc dialkyldithiophosphate (ZDDP) were tested at different oil temperature regimes during long distance, high speed field tests (15000 km and 145 {plus_minus} 10 km/hr). P-31 NMR spectroscopy was used to characterize the ZDDPs and the degradation products formed during the field tests. It was found that basic ZDDP degradation products were thiophosphates and phosphates, and the thiophosphates could be further oxidized to form phosphates when the oil temperature was high. The dependence of the ZDDP degradation pathway with oil temperature is discussed. The amount of ZDDP in the used oil was related to the viscosity increase of that oil, which increased dramatically when the ZDDP was exhausted. In the fresh oil, ZDDP formed some sort of complex, but the complexed ZDDP was released during the field test as observed by P-31 NMR spectroscopy. 20 refs., 11 figs., 4 tabs.

Pu Peng; Shan-Zhen Hong; Wan-Zhen Lu [SINOPEC, Beijing (China)

1994-03-01

395

Cherry tomatoes metabolic profile determined by (1)H-High Resolution-NMR spectroscopy as influenced by growing season.  

PubMed

The content of the most valuable metabolites present in the lipophilic fraction of Protected Geographical Indication cherry tomatoes produced in Pachino (Italy) was observed for 2 cultivated varieties, i.e. cv. Naomi and cv. Shiren, over a period of 3years in order to observe variations due to relevant climatic parameters, e.g. solar radiation and average temperature, characterising different seasons. (1)H-NMR spectroscopy was applied and spectral data were processed by means of Principal Component Analysis (PCA). We found that the metabolic profile was different for the two considered cultivated varieties and they were differently affected by climatic conditions. Major metabolites influenced by cropping period were ?-tocopherol and the unsaturated lipid fraction in Naomi cherry tomatoes, and chlorophylls and phospholipids in Shiren variety, respectively. These results furnished useful information on seasonal dynamics of such important nutritional metabolites contained in tomatoes, confirming also NMR spectroscopy as powerful tool to define a complete metabolic profiling. PMID:24874378

Masetti, Olimpia; Ciampa, Alessandra; Nisini, Luigi; Valentini, Massimiliano; Sequi, Paolo; Dell'Abate, Maria Teresa

2014-11-01

396

Structural studies on the oligomers from the polysaccharide of Gracilaria textorii (Rhodophyta) using ?-agarase and13C-NMR spectroscopy  

NASA Astrophysics Data System (ADS)

The 60% ethanolic extract from Gracilaria textorii (Rhodophyta) was degraded with ?-agarase, and certain charged (sulfated) and neutral oligosaccharides were separated by using DEAE Sephadex A25 and Bio- gel P6, P2 chromatographic techniques. Some of the charged oligomers were verified to be neoagarotetraose-63-sulfate (DP2), neoagarohexaose-63, 65-disulfate (DP3) and neoagarooctaose-63, 65, 67-trisulfate (DP4) by using13C- and1H-NMR spectroscopy. One neutral oligomer was assumed to be a mixture of methylated neoagarotetraoses (DP2) by1H-NMR spectroscopy. These oligomers assigned by their chemical shifts may be used as the model compounds for the structural investigation of the agar-type sulfated polysaccharides using the ?-agarase degradation method.

Ji, Minghou; Lahaye, M.; Yaphe, W.

1990-06-01

397

Analysis of Ascarosides from Caenorhabditis elegans Using Mass Spectrometry and NMR Spectroscopy  

PubMed Central

The nematode Caenorhabditis elegans secretes a family of water-soluble small molecules, known as the ascarosides, into its environment and uses these ascarosides in chemical communication. The ascarosides are derivatives of the 3,6-did