Science.gov

Sample records for parameter pair m3

  1. Hot HB Stars in Globular Clusters: Physical Parameters and Consequences for Theory. VI; The Second Parameter Pair M 3 and M 13

    NASA Technical Reports Server (NTRS)

    Moehler, S.; Landsman, W. B.; Sweigart, A. V.; Grundahl, F.

    2003-01-01

    We present the results of spectroscopic analyses of hot horizontal branch (HB) stars in M 13 and M 3, which form a famous "second parameter" pair. F rom the spectra and Stromgren photometry we derived - for the first time in M 13 - atmospheric parameters (effective temperature and surface gravity). For stars with Stromgren temperatures between 10,000 and 12,000 K we found excellent agreement between the atmospheric parameters derived from Stromgren photometry and those derived from Balmer line profile fits. However, for cooler stars there is a disagreement in the parameters derived by the two methods, for which we have no satisfactory explanation. Stars hotter than 12,000 K show evidence for helium depletion and iron enrichment, both in M 3 and M 13. Accounting for the iron enrichment substantially improves the agreement with canonical evolutionary models, although the derived gravities and masses are still somewhat too low. This remaining discrepancy may be an indication that scaled-solar metal-rich model atmospheres do not adequately represent the highly non-solar abundance ratios found in blue HB stars affected by diffusion. We discuss the effects of an enhancement in the envelope helium abundance on the atmospheric parameters of the blue HB stars, as might be caused by deep mixing on the red giant branch or primordial pollution from an earlier generation of intermediate mass asymptotic giant branch stars. Key words. Stars: atmospheres - Stars: evolution - Stars: horizontal branch - Globular clusters: individual: M 3 - Globular clusters: individual: M 13

  2. Hot HB Stars in Globular Clusters - Physical Parameters and Consequences for Theory. VI. The Second Parameter Pair M3 and M13

    NASA Technical Reports Server (NTRS)

    Moehler, S.; Landsman, W. B.; Sweigart, A. V.; Grundahl, F.

    2002-01-01

    We present the results of spectroscopic analyses of hot horizontal branch (HB) stars in M13 and M3, which form a famous second parameter pair. From the spectra we derived - for the first time in M13 - atmospheric parameters (effective temperature and surface gravity) as well as abundances of helium, magnesium, and iron. Consistent with analyses of hot HB stars in other globular clusters we find evidence for helium depletion and iron enrichment in stars hotter than about 12,000 K in both M3 and M13. Accounting for the iron enrichment substantially improves the agreement with canonical evolutionary models, although the derived gravities and masses are still somewhat too low. This remaining discrepancy may be an indication that scaled-solar metal-rich model atmospheres do not adequately represent the highly non-solar abundance ratios found in blue HB stars with radiative levitation. We discuss the effects of an enhancement in the envelope helium abundance on the atmospheric parameters of the blue HB stars, as might be caused by deep mixing on the red giant branch or primordial pollution from an earlier generation of intermediate mass asymptotic giant branch stars.

  3. Double-Mode RR LYRAE (RRd) Variables and a Blended RR LYRAE Pair in the Globular Cluster M3

    NASA Astrophysics Data System (ADS)

    Corwin, T. M.; Carney, B. W.

    1997-12-01

    Light curves are presented for the M3 variables V4, V68, V79, V87, V99, and V166, based on 183 CCD B images. The data were taken in 1992 and 1993 on the Kitt Peak 0.9-m telescope. V68 and V87 have long been known as double-mode pulsators, V79 has been recently identified as a double-mode pulsator (Clement et al. 1997), and V99 and V166 are identified here as double-mode pulsators. V4 has been previously identified as a blended RR Lyrae pair. The light curve of V4 is reproduced here by the sum of two RRab light curves of slightly different periods and different amplitudes. Clement C., Hilditch, R., Kaluzny, J., and Rucinski, S. 1997, ApJ, 489L, 55.

  4. Cultivation of Candida sp. LEB-M3 in glycerol: lipid accumulation and prediction of biodiesel quality parameters.

    PubMed

    Duarte, Susan Hartwig; Ansolin, Marina; Maugeri, Francisco

    2014-06-01

    The quality of biodiesel from lipids produced by the yeast Candida sp. LEB-M3 was predicted, by the use of mathematical models for parameters that specify quality as a function of the fatty acid profile. The lipid production was studied according to the experimental design methodology, for different cultivation conditions for agitation and aeration. Lipid compositions were affected by the cultivation conditions, and the agitation presented a positive effect for the formation of monounsaturated fatty acids and negative effect for saturated fatty acids. Aeration had a positive effect on the formation of polyunsaturated fatty acids. According to the predictions by the mathematical models, the cetane number varied from 61 to 67, the oxidative stability from 11 to 17h, the iodine index from 55 to 75gI2/100g, density from 852 to 868kg/m(3). All cultivation conditions led to lipid compositions, whose predicted bioparameter values indicate that biodiesel from this lipid source should present current standard quality. PMID:24732707

  5. Nearest-neighbor parameters for 7-deaza-adenosine·uridine base pairs in RNA duplexes.

    PubMed

    Richardson, Katherine E; Znosko, Brent M

    2016-06-01

    One of the major limitations in RNA structure prediction is the lack of information about the effect of nonstandard nucleotides on stability. The nonstandard nucleotide 7-deaza-adenosine (7DA) is a naturally occurring analog of adenosine that has been studied for medicinal purposes and is commonly referred to as tubercidin. In 7DA, the nitrogen in the 7 position of adenosine is replaced by a carbon. Differences in RNA duplex stability due to the removal of this nitrogen can be attributed to a possible change in hydration and a difference in base stacking interactions resulting from changes in the electrostatics of the ring. In order to determine how 7DA affects the stability of RNA, optical melting experiments were conducted on RNA duplexes that contain either internal or terminal 7DA·U pairs with all possible nearest-neighbor combinations. On average, duplexes containing 7DA·U pairs are 0.43 and 0.07 kcal/mol less stable than what is predicted for the same duplex containing internal and terminal A-U pairs, respectively. Thermodynamic parameters for all nearest-neighbor combinations of 7DA·U pairs were derived from the data. These parameters can be used to more accurately predict the secondary structure and stability of RNA duplexes containing 7DA·U pairs. PMID:27099368

  6. Finite Momentum Pairing and Spatially Varying Order Parameter in Proximitized HgTe Quantum Wells

    NASA Astrophysics Data System (ADS)

    Yacoby, Amir

    Conventional s-wave superconductivity is understood to arise from singlet pairing of electrons with opposite Fermi momenta, forming Cooper pairs whose net momentum is zero. Several recent studies have focused on structures where such conventional s-wave superconductors are coupled to systems with an unusual configuration of electronic spin and momentum at the Fermi surface. Under these conditions, the nature of the paired state can be modified and the system may even undergo a topological phase transition. Here we present measurements and theoretical calculations of several HgTe quantum wells coupled to either aluminum or niobium superconductors and subject to a magnetic field in the plane of the quantum well. By studying the oscillatory response of Josephson interference to the magnitude of the in-plane magnetic field, we find that the induced pairing within the quantum well oscillates between singlet and triplet pairing and is spatially varying. Cooper pairs acquire a tunable momentum that grows with magnetic field strength, directly reflecting the response of the spin-dependent Fermi surfaces to the in-plane magnetic field. Our new understanding of the interplay between spin physics and superconductivity introduces a way to spatially engineer the order parameter, as well as a general framework within which to investigate electronic spin texture at the Fermi surface of materials.

  7. Effect of Short-Term Pair Housing of Juvenile Rhesus Macaques (Macaca mulatta) on Immunologic Parameters

    PubMed Central

    Benton, Carrie G; West, Michael W; Hall, Shane M; Marko, Shannon T; Johnson, Joshua C

    2013-01-01

    Social housing of nonhuman primates (NHP) in an infectious disease setting presents unique challenges, and individual housing is often scientifically justified. At our institute, we recognized an opportunity to limit individual housing to the minimal period necessary by pair-housing NHP after quarantine and separating them just before they are moved into holding rooms for infectious disease studies. To alleviate concerns that pair-housing followed by separation affects the immune system of NHP and makes them unfit as research candidates, we designed a short-term pair-housing study. After a 3-wk baseline period, juvenile rhesus macaques (age, 3 to 4 y) were paired for 7 wk and then separated for 7 wk. During the study, serum cortisol, lymphocyte subsets, and proinflammatory cytokines were measured. The average values for all parameters were significantly lower after separation than during the baseline period. We conclude that short-term pair housing is a viable option at our institute for social housing of NHP. PMID:23849405

  8. Segregation parameters and pair-exchange mixing models for turbulent nonpremixed flames

    NASA Technical Reports Server (NTRS)

    Chen, J.-Y.; Kollman, W.

    1991-01-01

    The progress of chemical reactions in nonpremixed turbulent flows depends on the coexistence of reactants, which are brought together by mixing. The degree of mixing can strongly influence the chemical reactions and it can be quantified by segregation parameters. In this paper, the relevance of segregation parameters to turbulent mixing and chemical reactions is explored. An analysis of the pair-exchange mixing models is performed and an explanation is given for the peculiar behavior of such models in homogeneous turbulence. The nature of segregation parameters in a H2/Ar-air nonpremixed jet flame is investigated. The results show that Monte Carlo simulation with the modified Curl's mixing model predicts segregation parameters in close agreement with the experimental values, providing an indirect validation for the theoretical model.

  9. Skylab ATM/S-056 X-ray event analyzer: Instrument description, parameter determination, and analysis example (15 June 1973 1B/M3 flare)

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1976-01-01

    The Skylab ATM/S-056 X-Ray Event Analyzer, part of an X-ray telescope experiment, is described. The techniques employed in the analysis of its data to determine electron temperatures and emission measures are reviewed. The analysis of a sample event - the 15 June 1973 1B/M3 flare - is performed. Comparison of the X-Ray Event Analyzer data with that of the SolRad 9 observations indicates that the X-Ray Event Analyzer accurately monitored the sun's 2.5 to 7.25 A X-ray emission and to a lesser extent the 6.1 to 20 A emission. A mean average peak temperature of 15 million K at 1,412 UT and a mean average peak electron density (assuming a flare volume of 10 to the 13 power cu km) of 27 million/cu mm at 1,416 to 1,417 UT are deduced for the event. The X-Ray Event Analyzer data, having a 2.5 s time resolution, should be invaluable in comparisons with other high-time resolution data (e.g., radio bursts).

  10. Correlation of leptin and soluble leptin receptor levels with anthropometric parameters in mother-newborn pairs

    PubMed Central

    Marino-Ortega, Linda A; Molina-Bello, Adiel; Polanco-García, Julio C; Muñoz-Valle, José F; Salgado-Bernabé, Aralia B; Guzmán-Guzmán, Iris P; Parra-Rojas, Isela

    2015-01-01

    The aim of this study was to investigate if anthropometric parameters are associated with both leptin and soluble leptin receptor (sLEPR) levels in newborns and their mothers. This cross-sectional study was performed in 118 mother-newborn pairs. The venous blood sample of mothers was taken before delivery and immediately after delivery an umbilical cord blood sample was collected. Levels of leptin and sLEPR in maternal and umbilical cord sera were assessed by ELISA. Maternal serum concentration of leptin and sLEPR (6.2 and 25.7 ng/ml, respectively) were higher than in umbilical cord blood (2.4 and 14.2 ng/ml, respectively). However, the newborns and their mothers had higher sLEPR levels than leptin levels. In mothers was observed that leptin levels increase with weight gain in pregnancy and decreased sLEPR levels. Cord leptin levels correlated with neonatal birth weight and length, the body circumferences, placental weight and maternal leptin levels. Cord sLEPR levels correlated with maternal sLEPR and leptin levels. Maternal serum concentration of leptin correlated with pre-pregnancy BMI, weight gain, cord sLEPR and leptin levels. Maternal sLEPR concentration correlated with cord sLEPR levels. The leptin and sLEPR levels in mother-newborn pairs are related with anthropometric parameters and an inverse correlation between leptin levels and sLEPR was observed in pairs. PMID:26379933

  11. Measurement of wheel pair parameters of a rolling stock during movement

    NASA Astrophysics Data System (ADS)

    Venediktov, Anatoli Z.; Demkin, Vladimir N.; Dokov, Dmitri S.; Tireshkin, V. N.

    2003-06-01

    In work is considered the problem arising at measurement of wheel pairs parameters during the movement of a train, owing to the complex form and a brilliant surface of a rim of a wheel. The submitted device allows to expand essentially a dynamic range of a photo camera with CCD image sensor. Comparative characteristics of gauges with a feedback on intensity are given. The design of the guage and a function chart of measuring system are described on the basis of these gauges. Application of a contactless optical method of a laser triangulation is most perspective for measurement of the geometrical sizes of wheel pairs on the moving train. Its application will allow to reduce time of the control and to raise safety of transportations.

  12. Pairing and coherence order parameters in a three-component ultracold Fermi gas

    SciTech Connect

    Chung, Chun Kit; Law, C. K.

    2010-09-15

    We investigate the mean-field ground state of a homogeneous three-component attractive Fermi gas at zero temperature. This is achieved by deriving a set of Bogoliubov-de Gennes (BdG) equations of the three-component system, including pairing both order parameters {Delta}{sub ij} and coherence order parameters <{psi}{sub i}{sup {dagger}{psi}}{sub j}> (i{ne}j), where {psi}{sub j} is the field operator for spin level j. Ward-Takahashi identities are obtained to constrain these order parameters. In addition, we present an explicit analytic mean-field solution for symmetric systems and verify that the quasiparticle excitations consist of both gapped and gapless spectra, which correspond to the excitations of paired and unpaired atoms. We further point out that the omission of <{psi}{sub i}{sup {dagger}{psi}}{sub j}> in BdG equations could lead to an overestimation of {Delta}{sub ij} in the strong coupling regime.

  13. Effects of pairing correlations on the inverse level density parameter of hot rotating nuclei

    NASA Astrophysics Data System (ADS)

    Thi Quynh Huong, Le; Quang Hung, Nguyen; Thi Quynh Trang, Le

    2016-06-01

    Angular momentum dependence of the inverse level density parameter K in the excitation-energy region of ∼ 30 – 40 MeV is studied within the finite-temperature Bardeen-Cooper-Schrieffer (FTBCS) theory and the FTBCS theory that includes the effect due to quasiparticle-number fluctuations (FTBCS1). The two theories take into account the noncollective rotation of the nucleus at nonzero values of z-projection M of the total angular momentum. The comparison between the results obtained within the FTBCS and FTBCS1 as well as the case without pairing correlations and the experimental data for two medium-mass even-even nuclei 108Cd and 122Te shows that by including the pairing corrections the FTBCS and FTBCS1 reproduces quite well all the experimental data, whereas the non-pairing case always overestimates the data. Due to the effect of quasiparticle-number fluctuations, the FTBCS1 gaps at different M values do not collapse at critical temperature TC as in the FTBCS ones but monotonously decrease with increasing T and being finite even at high T. As the result, the values of K obtained within the FTBCS1 are always closer to the experimental data than those obtained within the FTBCS.

  14. Detecting non-stationary hydrologic model parameters in a paired catchment system using data assimilation

    NASA Astrophysics Data System (ADS)

    Pathiraja, S.; Marshall, L.; Sharma, A.; Moradkhani, H.

    2016-08-01

    Non-stationarity represents one of the major challenges facing hydrologists. There exists a need to develop modelling systems that are capable of accounting for potential catchment changes, in order to provide useful predictions for the future. Such changes may be due to climatic temporal variations or human induced changes to land cover. Extensive research has been undertaken on the impacts of land-use change on hydrologic behaviour, however, few studies have examined this issue in a predictive modelling context. In this paper, we investigate whether a time varying model parameter estimation framework that uses the principles of Data Assimilation can improve prediction for two pairs of experimental catchments in Western Australia. All catchments were initially forested, but after three years one catchment was fully cleared whilst another had only 50% of its area cleared. Their adjacent catchments remained unchanged as a control. Temporal variations in parameters were detected for both treated catchments, with no comparable variations for the control catchments. Improved streamflow prediction and representation of soil moisture dynamics were also seen for the time varying parameter case, compared to when a time invariant parameter set from the calibration period was used. While we use the above mentioned catchments to illustrate the usefulness of the approach, the methods are generic and equally applicable in other settings. This study serves as an important validation step to demonstrate the potential for time varying model structures to improve both predictions and modelling of changing catchments.

  15. Graph theory for analyzing pair-wise data: application to geophysical model parameters estimated from interferometric synthetic aperture radar data at Okmok volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Reinisch, Elena C.; Cardiff, Michael; Feigl, Kurt L.

    2016-07-01

    Graph theory is useful for analyzing time-dependent model parameters estimated from interferometric synthetic aperture radar (InSAR) data in the temporal domain. Plotting acquisition dates (epochs) as vertices and pair-wise interferometric combinations as edges defines an incidence graph. The edge-vertex incidence matrix and the normalized edge Laplacian matrix are factors in the covariance matrix for the pair-wise data. Using empirical measures of residual scatter in the pair-wise observations, we estimate the relative variance at each epoch by inverting the covariance of the pair-wise data. We evaluate the rank deficiency of the corresponding least-squares problem via the edge-vertex incidence matrix. We implement our method in a MATLAB software package called GraphTreeTA available on GitHub (https://github.com/feigl/gipht). We apply temporal adjustment to the data set described in Lu et al. (Geophys Res Solid Earth 110, 2005) at Okmok volcano, Alaska, which erupted most recently in 1997 and 2008. The data set contains 44 differential volumetric changes and uncertainties estimated from interferograms between 1997 and 2004. Estimates show that approximately half of the magma volume lost during the 1997 eruption was recovered by the summer of 2003. Between June 2002 and September 2003, the estimated rate of volumetric increase is (6.2 ± 0.6) × 10^6~m^3/year . Our preferred model provides a reasonable fit that is compatible with viscoelastic relaxation in the five years following the 1997 eruption. Although we demonstrate the approach using volumetric rates of change, our formulation in terms of incidence graphs applies to any quantity derived from pair-wise differences, such as range change, range gradient, or atmospheric delay.

  16. Relationship between pairing symmetries and interaction parameters in iron-based superconductors from functional renormalization group calculations

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Hu, Jiangping

    2016-03-01

    Pairing symmetries of iron-based superconductors are investigated systematically in a five-orbital model within the different regions of interaction parameters by functional renormalization group (FRG). Even for a fixed Fermi surface with both hole and electron pockets, it is found that depending on interaction parameters, a variety of pairing symmetries, including two types of d-wave and two types of s-wave pairing symmetries, can emerge. Only the dx^2-y^2 - and the s±-waves are robustly supported by the nearest-neighbor (NN) intra-orbital J 1 and the next-nearest-neighbor (NNN) intra-orbital J 2 antiferromagnetic (AFM) exchange couplings, respectively. This study suggests that the accurate initial input of the interaction parameters is essential to make FRG a useful method to determine the leading channel of superconducting instability.

  17. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  18. Calibration and data collection protocols for reliable lattice parameter values in electron pair distribution function studies

    SciTech Connect

    Abeykoon, A. M. Milinda; Hu, Hefei; Wu, Lijun; Zhu, Yimei; Billinge, Simon J. L.

    2015-01-30

    Different protocols for calibrating electron pair distribution function (ePDF) measurements are explored and described for quantitative studies on nanomaterials. It is found that the most accurate approach to determine the camera length is to use a standard calibration sample of Au nanoparticles from the National Institute of Standards and Technology. Different protocols for data collection are also explored, as are possible operational errors, to find the best approaches for accurate data collection for quantitative ePDF studies.

  19. Studying temperature dependence of pairing gap parameter in a nucleus as a small superconducting system

    NASA Astrophysics Data System (ADS)

    Rahmatinejad, A.; Razavi, R.; Kakavand, T.

    2016-07-01

    In this paper, we have taken the effect of small size of nucleus and static fluctuations into account in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity calculations of 45Ti nucleus. Thermodynamic quantities of 45Ti have been extracted within the BCS model with the inclusion of the average value of the pairing gap square, extracted by the modified Ginzburg-Landau (MGL) method for small systems. Calculated values of the excitation energy and entropy within the MGL+BCS method improve the extracted results within the usual BCS model and show a smooth behavior around the critical temperature with a very good agreement with the semi-empirical values. The result of using MGL+BCS method for the heat capacity of 45Ti is compared with the corresponding semi-empirical values and the calculated values within the BCS, static path approximation (SPA) and Modified Pairing gap BCS (MPBCS) which is a method that was proposed in our previous publications. Both MGL+BCS and MPBCS avoid the discontinuity of the heat capacity curve, which is observed in the usual BCS method, and lead to an S-shaped curve with a good agreement with the semi-empirical results.

  20. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2015-01-01

    Published two-body bond-valence parameters for cation–oxygen bonds have been evaluated via the root mean-square deviation (RMSD) from the valence-sum rule for 128 cations, using 180 194 filtered bond lengths from 31 489 coordination polyhedra. Values of the RMSD range from 0.033–2.451 v.u. (1.1–40.9% per unit of charge) with a weighted mean of 0.174 v.u. (7.34% per unit of charge). The set of best published parameters has been determined for 128 ions and used as a benchmark for the determination of new bond-valence parameters in this paper. Two common methods for the derivation of bond-valence parameters have been evaluated: (1) fixing B and solving for R o; (2) the graphical method. On a subset of 90 ions observed in more than one coordination, fixing B at 0.37 Å leads to a mean weighted-RMSD of 0.139 v.u. (6.7% per unit of charge), while graphical derivation gives 0.161 v.u. (8.0% per unit of charge). The advantages and disadvantages of these (and other) methods of derivation have been considered, leading to the conclusion that current methods of derivation of bond-valence parameters are not satisfactory. A new method of derivation is introduced, the GRG (generalized reduced gradient) method, which leads to a mean weighted-RMSD of 0.128 v.u. (6.1% per unit of charge) over the same sample of 90 multiple-coordination ions. The evaluation of 19 two-parameter equations and 7 three-parameter equations to model the bond-valence–bond-length relation indicates that: (1) many equations can adequately describe the relation; (2) a plateau has been reached in the fit for two-parameter equations; (3) the equation of Brown & Altermatt (1985 ▸) is sufficiently good that use of any of the other equations tested is not warranted. Improved bond-valence parameters have been derived for 135 ions for the equation of Brown & Altermatt (1985 ▸) in terms of both the cation and anion bond-valence sums using the GRG method and our complete data set. PMID

  1. Derivation of Pitzer Interaction Parameters for an Aqueous Species Pair of FeCitrate- and Mg2+

    NASA Astrophysics Data System (ADS)

    Jang, J.; Olivas, T.; Nemer, M.

    2013-12-01

    The Waste Isolation Pilot Plant (WIPP) is a deep underground repository for the disposal of transuranic (TRU) radioactive waste developed by the U.S. Department of Energy (DOE). The WIPP is located within the bedded salts of the Permian Salado Formation, which consists of interbedded halite and anhydrite layers overlaying the Castile Formation. The waste includes, but is not limited to, the salts of citric acid and iron. To calculate the solution chemistry for brines of WIPP-relevance, WIPP Performance Assessment (PA) employs the Pitzer formulation to determine the activity coefficients of aqueous species in brine. The current WIPP thermodynamic database, however, does not include iron species and their Pitzer parameters, in spite of the fact that there will be a large amount of iron in the WIPP. Iron would be emplaced as part of the waste, as well as the containers for the waste. The objective of this analysis is to derive the Pitzer binary interaction parameters for the pair of Mg2+ and FeCitrate-. Briefly, an aqueous model for dissolution of Fe(OH)2(s) in MgNa2Citrate solution was fitted to the experimentally measured solubility data. The aqueous model consists of several chemical reactions and related Pitzer interaction parameters. Specifically, Pitzer binary interaction parameters for the Mg2+ and FeCitrate- pair (β(0), β(1), and Cφ) were fitted to the experimental data. Anoxic gloveboxes were used to keep the oxygen level low (less than 6 ppm) throughout the experiments. Aging time was more than 800 days to ensure equilibrium. EQ3NR packaged in EQ3/6 v.8.0a calculates the aqueous speciation and saturation index using an aqueous model addressed in EQ3/6's database. The saturation index indicates how far the system is from equilibrium with respect to the solid of interest. Thus, the smaller the sum of squared saturation indices that the aqueous model calculates for the given number of experiments, the more closely the model attributes equilibrium to each

  2. PuFFIN - a parameter-free method to build nucleosome maps from paired-end reads

    PubMed Central

    2014-01-01

    Background We introduce a novel method, called PuFFIN, that takes advantage of paired-end short reads to build genome-wide nucleosome maps with larger numbers of detected nucleosomes and higher accuracy than existing tools. In contrast to other approaches that require users to optimize several parameters according to their data (e.g., the maximum allowed nucleosome overlap or legal ranges for the fragment sizes) our algorithm can accurately determine a genome-wide set of non-overlapping nucleosomes without any user-defined parameter. This feature makes PuFFIN significantly easier to use and prevents users from choosing the "wrong" parameters and obtain sub-optimal nucleosome maps. Results PuFFIN builds genome-wide nucleosome maps using a multi-scale (or multi-resolution) approach. Our algorithm relies on a set of nucleosome "landscape" functions at different resolution levels: each function represents the likelihood of each genomic location to be occupied by a nucleosome for a particular value of the smoothing parameter. After a set of candidate nucleosomes is computed for each function, PuFFIN produces a consensus set that satisfies non-overlapping constraints and maximizes the number of nucleosomes. Conclusions We report comprehensive experimental results that compares PuFFIN with recently published tools (NOrMAL, TEMPLATE FILTERING, and NucPosSimulator) on several synthetic datasets as well as real data for S. cerevisiae and P. falciparum. Experimental results show that our approach produces more accurate nucleosome maps with a higher number of non-overlapping nucleosomes than other tools. PMID:25252810

  3. Identification of the battery state-of-health parameter from input-output pairs of time series data

    NASA Astrophysics Data System (ADS)

    Li, Yue; Chattopadhyay, Pritthi; Ray, Asok; Rahn, Christopher D.

    2015-07-01

    As a paradigm of dynamic data-driven application systems (DDDAS), this paper addresses real-time identification of the State of Health (SOH) parameter over the life span of a battery that is subjected to approximately repeated cycles of discharging/recharging current. In the proposed method, finite-length data of interest are selected via wavelet-based segmentation from the time series of synchronized input-output (i.e., current-voltage) pairs in the respective two-dimensional space. Then, symbol strings are generated by partitioning the selected segments of the input-output time series to construct a special class of probabilistic finite state automata (PFSA), called D-Markov machines. Pertinent features of the statistics of battery dynamics are extracted as the state emission matrices of these PFSA. This real-time method of SOH parameter identification relies on the divergence between extracted features. The underlying concept has been validated on (approximately periodic) experimental data, generated from a commercial-scale lead-acid battery. It is demonstrated by real-time analysis of the acquired current-voltage data on in-situ computational platforms that the proposed method is capable of distinguishing battery current-voltage dynamics at different aging stages, as an alternative to computation-intensive and electrochemistry-dependent analysis via physics-based modeling.

  4. Derivation of Pitzer Interaction Parameters for an Aqueous Species Pair of Sodium and Iron(II)-Citrate Complex

    NASA Astrophysics Data System (ADS)

    Jang, J. H.; Nemer, M.

    2015-12-01

    The U.S. DOE Waste Isolation Pilot Plant (WIPP) is a deep underground repository for the permanent disposal of transuranic (TRU) radioactive waste. The WIPP is located in the Permian Delaware Basin near Carlsbad, New Mexico, U.S.A. The TRU waste includes, but is not limited to, iron-based alloys and the complexing agent, citric acid. Iron is also present from the steel used in the waste containers. The objective of this analysis is to derive the Pitzer activity coefficients for the pair of Na+ and FeCit- complex to expand current WIPP thermodynamic database. An aqueous model for the dissolution of Fe(OH)2(s) in a Na3Cit solution was fitted to the experimentally measured solubility data. The aqueous model consists of several chemical reactions and related Pitzer interaction parameters. Specifically, Pitzer interaction parameters for the Na+ and FeCit- pair (β(0), β(1), and Cφ) plus the stability constant for species of FeCit- were fitted to the experimental data. Anoxic gloveboxes were used to keep the oxygen level low (<1 ppm) throughout the experiments due to redox sensitivity. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations, packaged in EQ3/6 v.8.0a, calculates the aqueous speciation and saturation index using an aqueous model addressed in EQ3/6's database. The saturation index indicates how far the system is from equilibrium with respect to the solid of interest. Thus, the smaller the sum of squared saturation indices that the aqueous model calculates for the given number of experiments, the more closely the model attributes equilibrium to each individual experiment with respect to the solid of interest. The calculation of aqueous speciation and saturation indices was repeated by adjusting stability constant of FeCit-, β(0), β(1), and Cφ in the database until the values are found that make the sum of squared saturation indices the smallest for the given number of experiments. Results will be presented at the time of

  5. Accurate Calculation of Hydration Free Energies using Pair-Specific Lennard-Jones Parameters in the CHARMM Drude Polarizable Force Field

    PubMed Central

    Baker, Christopher M.; Lopes, Pedro E. M.; Zhu, Xiao; Roux, Benoît; MacKerell, Alexander D.

    2010-01-01

    Lennard-Jones (LJ) parameters for a variety of model compounds have previously been optimized within the CHARMM Drude polarizable force field to reproduce accurately pure liquid phase thermodynamic properties as well as additional target data. While the polarizable force field resulting from this optimization procedure has been shown to satisfactorily reproduce a wide range of experimental reference data across numerous series of small molecules, a slight but systematic overestimate of the hydration free energies has also been noted. Here, the reproduction of experimental hydration free energies is greatly improved by the introduction of pair-specific LJ parameters between solute heavy atoms and water oxygen atoms that override the standard LJ parameters obtained from combining rules. The changes are small and a systematic protocol is developed for the optimization of pair-specific LJ parameters and applied to the development of pair-specific LJ parameters for alkanes, alcohols and ethers. The resulting parameters not only yield hydration free energies in good agreement with experimental values, but also provide a framework upon which other pair-specific LJ parameters can be added as new compounds are parametrized within the CHARMM Drude polarizable force field. Detailed analysis of the contributions to the hydration free energies reveals that the dispersion interaction is the main source of the systematic errors in the hydration free energies. This information suggests that the systematic error may result from problems with the LJ combining rules and is combined with analysis of the pair-specific LJ parameters obtained in this work to identify a preliminary improved combining rule. PMID:20401166

  6. Calibration and data collection protocols for reliable lattice parameter values in electron pair distribution function (ePDF) studies

    DOE PAGESBeta

    Abeykoon, A. M. Milinda; Hu, Hefei; Wu, Lijun; Zhu, Yimei; Billinge, Simon J. L.

    2015-02-01

    We explore and describe different protocols for calibrating electron pair distribution function (ePDF) measurements for quantitative studies on nano-materials. We find the most accurate approach to determine the camera-length is to use a standard calibration sample of Au nanoparticles from National Institute of Standards and Technology. Different protocols for data collection are also explored, as are possible operational errors, to find the best approaches for accurate data collection for quantitative ePDF studies.

  7. Theoretical investigations of the optical spectra and EPR parameters for the isolated and pairs of trivalent ytterbium ions in Li6Y(BO3)3 crystal

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Gang; Zheng, Wen-Chen

    2015-11-01

    The optical spectra and electron paramagnetic resonance (EPR) parameters (g factors and hyperfine structure constants A) for an isolated Yb3+ ion in Li6Y(BO3)3 (LYB) crystal are investigated first by the complete diagonalization method based on the superposition model. The obtained results are in reasonable agreement with the experimental ones. For a pair of coupled Yb3+ ions in crystals, the extensively used formulas to calculate EPR splitting lines for such pair cannot be directly adopted in the present study and thus we extend them to the case of arbitrarily directed vector R connecting the two Yb3+ ions in crystal. By these amended formulas, we find that in addition to the interacting Yb3+ pair with nearest distance R (=0.385 nm), the Yb3+ pair with next-nearest distance R (=0.662 nm) would also make contribution to experimental EPR spectra. This point which was not noticed in previous works would help us further understand the energy transfer scheme between two Yb3+ ions in crystals.

  8. MODEL-INDEPENDENT DETERMINATION OF CURVATURE PARAMETER USING H(z) AND D{sub A} (z) DATA PAIRS FROM BAO MEASUREMENTS

    SciTech Connect

    Li, Yun-Long; Li, Ti-Pei; Li, Shi-Yu; Zhang, Tong-Jie

    2014-07-01

    We present a model-independent determination of the curvature parameter Ω {sub k} using the Hubble parameter H(z) and the angular diameter distance D{sub A} (z) from recent baryon acoustic oscillation (BAO) measurements. Each H(z) and D{sub A} (z) pair from a BAO measurement can constrain a curvature parameter. The accuracy of the curvature measurement improves with increased redshift of H(z) and D{sub A} (z) data. By using the H(z) and D{sub A} (z) pair derived from a BAO Lyman α forest measurement at z = 2.36, the Ω {sub k} is confined to be –0.05 ± 0.06, which is consistent with the curvature of −0.037{sub −0.042}{sup +0.044} constrained by the nine year Wilkinson Microwave Anisotropy Probe data only. Considering future BAO measurements, at least one order of magnitude improvement of this curvature measurement can be expected.

  9. Coronal loops diagnostics using the parameters of U-burst harmonic pair at frequencies 10-70 MHz

    NASA Astrophysics Data System (ADS)

    Dorovskyy, V. V.; Melnik, V. N.; Konovalenko, A. A.; Bubnov, I. N.; Gridin, A. A.; Shevchuk, N. V.; Rucker, H. O.; Panchenko, M.

    2013-09-01

    The results of the first observations of solar sporadic radio emission using one section of the new being currently created Giant Ukrainian Radio Telescope (GURT) are presented. The parameters of inverted U-burst with harmonic structure observed with GURT are considered. The main attention is paid to the time delay between the fundamental and harmonic components. The analytical model explaining the observed time delay is proposed.

  10. Pair Identity and Smooth Variation Rules Applicable for the Spectroscopic Parameters of H2O Transitions Involving High-J States

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2010-01-01

    Two basic rules (i.e. the pair identity and the smooth variation) applicable for H2O transitions involving high-J states have been discovered. The origins of these rules are the properties of the energy levels and wavefunctions of H2O states with the quantum number J above certain boundaries. As a result, for lines involving high-J states in individually defined groups, all their spectroscopic parameters (i.e. the transition wavenumber, intensity, pressure-broadened half-width, pressure-induced shift, and temperature exponent) must follow these rules. One can use these rules to screen spectroscopic data provided by databases and to identify possible errors. In addition, by using extrapolation methods within the individual groups, one is able to predict the spectroscopic parameters for lines in this group involving very high-J states. The latter are required in developing high-temperature molecular spectroscopic databases such as HITEMP.

  11. Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - IX. Spotted pairs with red giants

    NASA Astrophysics Data System (ADS)

    Ratajczak, M.; Hełminiak, K. G.; Konacki, M.; Smith, A. M. S.; Kozłowski, S. K.; Espinoza, N.; Jordán, A.; Brahm, R.; Hempel, M.; Anderson, D. R.; Hellier, C.

    2016-09-01

    We present spectroscopic and photometric solutions for three spotted systems with red giant components. Absolute physical and orbital parameters for these double-lined detached eclipsing binary stars are presented for the first time. These were derived from the V-, and I-band ASAS and WASP photometry, and new radial velocities calculated from high quality optical spectra we obtained with a wide range of spectrographs and using the two-dimensional cross-correlation technique (TODCOR). All of the investigated systems (ASAS J184949-1518.7, BQ Aqr, and V1207 Cen) show the differential evolutionary phase of their components consisting of a main-sequence star or a subgiant and a red giant, and thus constitute very informative objects in terms of testing stellar evolution models. Additionally, the systems show significant chromospheric activity of both components. They can be also classified as classical RS CVn-type stars. Besides the standard analysis of radial velocities and photometry, we applied spectral disentangling to obtain separate spectra for both components of each analysed system which allowed for a more detailed spectroscopic study. We also compared the properties of red giant stars in binaries that show spots, with those that do not, and found that the activity phenomenon is substantially suppressed for stars with Rossby number higher than ˜1 and radii larger than ˜20 R⊙.

  12. M3 Status and Science Discussion

    NASA Technical Reports Server (NTRS)

    Pieters, Carle

    2007-01-01

    Members of the M3 Science Team will attend the Chandrayaan-I Science Team Meeting in Bangalore, India to present a brief summary of instrument status and the near-term milestones (e.g., final I&T, pre-ship review). The principal purpose of the meeting is to interact with other members of the Chandrayaan-I Science Team to prepare for successful science return. The objectives are: 1) Characterize the diversity and extent of different types of basaltic volcanism; 2) Constrain evolution over time; and 3) Examine high priority regional sites.

  13. log(MPl/m3/2)

    SciTech Connect

    Loaiza-Brito, Oscar; Martin, Johannes; Nilles, Hans Peter; Ratz, Michael

    2005-12-02

    Flux compactifications of string theory seem to require the presence of a fine-tuned constant in the superpotential. We discuss a scheme where this constant is replaced by a dynamical quantity which we argue to be a 'continuous Chern-Simons term'. In such a scheme, the gaugino condensate generates the hierarchically small scale of supersymmetry breakdown rather than adjusting its size to a constant. A crucial ingredient is the appearance of the hierarchically small quantity exp(-) which corresponds to the scale of gaugino condensation. Under rather general circumstances, this leads to a scenario of moduli stabilization, which is endowed with a hierarchy between the mass of the lightest modulus, the gravitino mass and the scale of the soft terms, mmodulus {approx} m3/2 {approx} 2 msoft. The 'little hierarchy' is given by the logarithm of the ratio of the Planck scale and the gravitino mass, {approx} log(MPl/m3/2) {approx} 4{pi}2. This exhibits a new mediation scheme of supersymmetry breakdown, called mirage mediation. We highlight the special properties of the scheme, and their consequences for phenomenology and cosmology.

  14. Reassessment of the recombination parameters of chromium in n- and p-type crystalline silicon and chromium-boron pairs in p-type crystalline silicon

    SciTech Connect

    Sun, Chang Rougieux, Fiacre E.; Macdonald, Daniel

    2014-06-07

    Injection-dependent lifetime spectroscopy of both n- and p-type, Cr-doped silicon wafers with different doping levels is used to determine the defect parameters of Cr{sub i} and CrB pairs, by simultaneously fitting the measured lifetimes with the Shockley-Read-Hall model. A combined analysis of the two defects with the lifetime data measured on both n- and p-type samples enables a significant tightening of the uncertainty ranges of the parameters. The capture cross section ratios k = σ{sub n}/σ{sub p} of Cr{sub i} and CrB are determined as 3.2 (−0.6, +0) and 5.8 (−3.4, +0.6), respectively. Courtesy of a direct experimental comparison of the recombination activity of chromium in n- and p-type silicon, and as also suggested by modelling results, we conclude that chromium has a greater negative impact on carrier lifetimes in p-type silicon than n-type silicon with similar doping levels.

  15. Detecting to secret folded composite lamina package pairs in cores related slump dump structures and seismites with high resolution sampling of physical parameters

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Cagatay, Namik; Feray Meydan, Aysegul; Eris, Kadir; Sari, Erol; Akcer, Sena; Makaroglu, Ozlem; Alkislar, Hakan; Biltekin, Demet; Nagehan Arslan, Tugce

    2016-04-01

    The core retrieved from Lake Van consists of seismites that were possibly deposited during the earthquakes around the Van region. Deformed parts of the core sediments display folded laminations that can be attributed to seismites. The problem arises that if the fold axis is deposited perpendicular to the liner and, if the hinge line is far enough, describing the true laminations might be impossible related to real age of basin evolution because extra laminae seem deposited to the area. Scientist must pay attention such problem that dating method like varve counting and basin evolution estimates can totally change due to extra laminae that explained before. For eliminate to wrong interpretations considering reversal reflected anomalies even with angularity effects to one package of pair can show significant difference than other symmetric one due to angle of the hinge line or soft sediment deformation. Considering the situation explained, p-wave is not enough to support the idea however; chemical analyses (x-ray florescence), ICP-MS (asdasd) analysis can provide appropriate results to identify laminae that appear on the limbs of the reversed micro folds. New easy designed extra U-Channel drive tray framework prepared by us. U-Channels are prepared well conditioned, saturated enough to well contact between sediment surface and plastic shield of u-channel samples from cores. Physical parameters are measured by Multi sensor core logger (MSCL) with high resolution step ratio fixed to 1mm. At the p- wave and gamma ray results, we observed together stair upwards form and reverse reflected downward data graphics, thus our interpretation of identifying the fold limbs are now visible. We understand that laminae packages are exactly the same. XRF and MSCL are totally supporting to origin of pairs generated after their sedimentation age with mechanical forces. For this reason, in this study, we attended to solve such problem to analyze deformed folded laminations that must be

  16. Aminoxyl Radicals of B/P Frustrated Lewis Pairs: Refinement of the Spin-Hamiltonian Parameters by Field- and Temperature-Dependent Pulsed EPR Spectroscopy

    PubMed Central

    de Oliveira, Marcos; Knitsch, Robert; Sajid, Muhammad; Stute, Annika; Elmer, Lisa-Maria; Kehr, Gerald; Erker, Gerhard; Magon, Claudio J.; Jeschke, Gunnar; Eckert, Hellmut

    2016-01-01

    Q-band and X-band pulsed electron paramagnetic resonance spectroscopic methods (EPR) in the solid state were employed to refine the parameters characterizing the anisotropic interactions present in six nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs). The EPR spectra are characterized by the g-anisotropy as well as by nuclear hyperfine coupling between the unpaired electron and the 11B/10B, 14N and 31P nuclear magnetic moments. It was previously shown that continuous-wave spectra measured at X-band frequency (9.5 GHz) are dominated by the magnetic hyperfine coupling to 14N and 31P, whereas the g-tensor values and the 11B hyperfine coupling parameters cannot be refined with high precision from lineshape fitting. On the other hand, the X-band electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectra are completely dominated by the nuclear hyperfine coupling to the 11B nuclei, allowing a selective determination of their interaction parameters. In the present work this analysis has been further validated by temperature dependent ESEEM measurements. In addition, pulsed EPR data measured in the Q-band (34 GHz) are reported, which present an entirely different situation: the g-tensor components can be measured with much higher precision, and the ESEEM and HYSCORE spectra contain information about all of the 10B, 11B, 14N and 31P hyperfine interaction parameters. Based on these new results, we report here high-accuracy and precision data of the EPR spin Hamiltonian parameters measured on six FLP-NO radical species embedded in their corresponding hydroxylamine host structures. While the ESEEM spectra at Q-band frequency turn out to be very complex (due to the multinuclear contribution to the overall signal) in the HYSCORE experiment the extension over two dimensions renders a better discrimination between the different nuclear species, and the signals arising from hyperfine

  17. A carbon-13 nuclear magnetic resonance spectroscopic study of inter-proton pair order parameters: a new approach to study order and dynamics in phospholipid membrane systems.

    PubMed

    Urbina, J A; Moreno, B; Arnold, W; Taron, C H; Orlean, P; Oldfield, E

    1998-09-01

    We report a simple new nuclear magnetic resonance (NMR) spectroscopic method to investigate order and dynamics in phospholipids in which inter-proton pair order parameters are derived by using high resolution 13C cross-polarization/magic angle spinning (CP/MAS) NMR combined with 1H dipolar echo preparation. The resulting two-dimensional NMR spectra permit determination of the motionally averaged interpair second moment for protons attached to each resolved 13C site, from which the corresponding interpair order parameters can be deducted. A spin-lock mixing pulse before cross-polarization enables the detection of spin diffusion amongst the different regions of the lipid molecules. The method was applied to a variety of model membrane systems, including 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/sterol and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/sterol model membranes. The results agree well with previous studies using specifically deuterium labeled or predeuterated phospholipid molecules. It was also found that efficient spin diffusion takes place within the phospholipid acyl chains, and between the glycerol backbone and choline headgroup of these molecules. The experiment was also applied to biosynthetically 13C-labeled ergosterol incorporated into phosphatidylcholine bilayers. These results indicate highly restricted motions of both the sterol nucleus and the aliphatic side chain, and efficient spin exchange between these structurally dissimilar regions of the sterol molecule. Finally, studies were carried out in the lamellar liquid crystalline (L alpha) and inverted hexagonal (HII) phases of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). These results indicated that phosphatidylethanolamine lamellar phases are more ordered than the equivalent phases of phosphatidylcholines. In the HII (inverted hexagonal) phase, despite the increased translational freedom, there is highly constrained packing of the lipid molecules, particularly in

  18. 26 CFR 1.401(m)-3 - Safe harbor requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 5 2011-04-01 2011-04-01 false Safe harbor requirements. 1.401(m)-3 Section 1.401(m)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(m)-3...

  19. 26 CFR 1.401(m)-3 - Safe harbor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Safe harbor requirements. 1.401(m)-3 Section 1.401(m)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(m)-3 Safe...

  20. Critical Schwinger Pair Production

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Torgrimsson, Greger

    2016-03-01

    We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential Berezinskii-Kosterlitz-Thouless-type scaling, and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting criticality.

  1. Critical Schwinger Pair Production.

    PubMed

    Gies, Holger; Torgrimsson, Greger

    2016-03-01

    We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential Berezinskii-Kosterlitz-Thouless-type scaling, and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting criticality. PMID:26991162

  2. Pick a Pair. Pancake Pairs

    ERIC Educational Resources Information Center

    Miller, Pat

    2005-01-01

    Cold February weather and pancakes are a traditional pairing. Pancake Day began as a way to eat up the foods that were abstained from in Lent--traditionally meat, fat, eggs and dairy products. The best-known pancake event is The Pancake Day Race in Buckinghamshire, England, which has been run since 1445. This column describes pairs of books that…

  3. Effects of an essential fatty acid deficiency, pair-feeding and level of dietary corn oil on the hypothalamic-pituitary-gonadal axis and other physiological parameters in the male chicken.

    PubMed

    Engster, H M; Carew, L B; Cunningham, F J

    1978-06-01

    Two studies were conducted to observe the effects of an essential fatty acid (EFA) deficiency, added dietary corn oil and pair-feeding on growth, reproduction and other physiological parameters in the mature cockerel. A purified, linoleic acid (LA)-deficient diet (0.01% LA), or additions of 5% (3.01% LA) or 15% (9.04% LA) corn oil, were fed ad libitum from hatching through 24 weeks of age. Reductions in growth, feed consumption, and comb, and testes size, incomplete spermatogenesis, increased tissue eicosatrienoic acid (20: 3 omega 9) and changes in weights of selected internal organs were observed in deficient cockerels. Total pituitary gonadotropic activity was measured by two bioassay procedures and blood luteinizing hormone was measured by radioimmunoassay. By maturity both of these parameters were significantly reduced in deficient chickens. When these chickens were fed diets with 5% or 15% corn oil under pair-feeding or ad libitum conditions from 20 to 24 weeks, the reduced growth, comb and testes size and gonadotropin metabolism appeared to be caused by depressions in appetite and energy intake rather than EFA per se. The degenerate testicular histology of the 20-week old deficient cockerels, while responding fully to the ad libitum intake of the diets containing corn oil, showed only partial rehabilitation of spermatogenesis when diets with either 5% or 15% corn oil were pair-fed. In general, increasing the level of dietary fat from 5% to 15% did not cause many physiological changes. PMID:650291

  4. Winning Pairs.

    ERIC Educational Resources Information Center

    Monsour, Florence

    2000-01-01

    Mentoring programs that pair experienced and first-time teachers are gaining prominence in supporting, developing, and retaining new teachers. The successful Beginning Teacher Assistance program at University of Wisconsin-River Falls was designed to give new K-12 teachers the opportunity for yearlong, structured support from mentor teachers. (MLH)

  5. Fabrication and metrology study for M3M of TMT

    NASA Astrophysics Data System (ADS)

    Luo, Xiao

    2014-09-01

    The M3M (Mirror 3 Mirror) of TMT (Thirty Meter Telescope) project is a3.5m×2.5m solid flat elliptical mirror. CIOMP is responsible for the fabrication of the M3M. A primary study on the fabrication and metrology is done in the past 2 years, and this paper introduces our work on the project. The fabrication strategy is based on large orbital tools and a plan combining with multiple measure methods is developed based on the requirement of M3M. A concept of dualsupporting system is also studied in the program to reduce the effect of gravity deformation.

  6. Tissue Regeneration in Urodela on Foton-M3

    NASA Astrophysics Data System (ADS)

    Grigoryan, E. N.; Poplinskaya, V. A.; Domaratskaya, E. I.; Novikova, Y. P.; Aleinikova, K. S.; Dvorochkin, N.; Almeida, E. A. C.

    2008-06-01

    In the experiment "Regeneration" flown on Foton-M3 in 2007 we continued our study of tissue and organ regeneration in Urodela. Special attention was given to the regulatory mechanisms that could induce peculiarities of regeneration during the spaceflight. The results obtained showed that lens regeneration in space-flown animals was synchronized and about 0.5 to 1 stage more advanced than in synchronous 1g controls. In both groups of animals cytokine FGFb expression increased in parallel with lens cell mitotic activity and was localized in the growth zone and iris of regenerating eyes. Lens regeneration was also accompanied by an increase of stress protein (HSP90) expression in retinal macroglia. Evaluation of HSP90 and FGFb expression by immuno-staining showed that it was higher in the eyes of space-flown animals than in synchronous controls. BrdU assay demonstrated incorporation of the precursor into populations of DNA synthesizing cells in both animal groups and mirrored cell growth in regenerating tissues. Tail regeneration in space-flown and synchronous control animals reached the stages IV to V. Computer morphometry showed that tail size parameters were similar though the tail area was slightly decreased in the space-flown newts. In contrast, remarkable changes in tail tip morphology were found between animal groups: flight and aquarium-control tail regenerates were identical in shape, while synchronous controls developed distinct dorsoventral asymmetry. Histological examinations suggested that morphogenetic differences were caused by different rates of epidermal cell growth in tail regenerates of newts exposed to microgravity and 1 g.

  7. The Moon mineralogy mapper (M3) on Chandrayaan-1

    USGS Publications Warehouse

    Pieters, C.M.; Boardman, J.; Buratti, B.; Chatterjee, A.; Clark, R.; Glavich, T.; Green, R.; Head, J.; Isaacson, P.; Malaret, E.; McCord, T.; Mustard, J.; Petro, N.; Runyon, C.; Staid, M.; Sunshine, J.; Taylor, L.; Tompkins, S.; Varanasi, P.; White, M.

    2009-01-01

    The Moon Mineralogy Mapper (M3) is a NASA-supported guest instrument on ISRO's remote sensing mission to Moon, Chandrayaan-1. The M3 is an imaging spectrometer that operates from the visible into the near-infrared (0.42-3.0 ??m) where highly diagnostic mineral absorption bands occur. Over the course of the mission M3 will provide low resolution spectroscopic data for the entire lunar surface at 140 m/pixel (86 spectral channels) to be used as a base-map and high spectral resolution science data (80 m/pixel; 260 spectral channels) for 25-50% of the surface. The detailed mineral assessment of different lunar terrains provided by M3 is principal information needed for understanding the geologic evolution of the lunar crust and lays the foundation for focused future in-depth exploration of the Moon.

  8. Modeling the radial distribution of blue stragglers in M3

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Davies, Melvyn B.; Bolte, Michael

    1994-01-01

    Recent surveys of the blue straggler (BS) population in the Galactic globular cluster M3 (NGC 5272) give the first complete characterization of the number density of BSs as a function of radius over an entire globular cluster. The BSs in M3 are overabundant at large radii and significantly underabundant at intermediate radii. Here we present the result of a simulation of the dynamical evolution of a population of BSs in a multimass model of M3. Assuming the BSs were formed in the core through binary interactions (Hut & Verbundt 1983; Leonard 1989; Sigurdsson & Phinney 1993; Hut et al. 1992b; Davies, Benz & Hills 1994), and given some very general assumptions about the recoil that occurs during stellar mergers in interacting binaries, we find an excellent fit to the observed radial distribution of BSs, suggesting strongly that most of the BSs in M3 were formed through binary collisions in the core.

  9. Study of tilt axis bearing arrangement for M3S of TMT project

    NASA Astrophysics Data System (ADS)

    Zhao, Hongchao; Zhang, Jingxu; Yang, Fei; An, Qichang; Su, Yanqin; Guo, Peng

    2014-09-01

    The tertiary mirror positioned assembly (M3PA) of the thirty meters telescope (TMT) is the largest tertiary mirror pointing system in the world. The tracking and pointing performance of M3PA is better than any other telescopes which have been built, and the working condition is even worse, so the designers face an enormous challenge. The tracking system includes the bottom rotator shaft and the tilt shaft. The study of this paper focuses on the tilt shaft. There are mainly three forms. The first form is one end fixed with the other unrestrained in axial direction. The second form uses two pairs of angular contact ball bearing. The last form lays two tape roller bearings. All of them can meet the requirements when the M3PA is vertical. But the first one becomes invalid when the M3PA is horizontal. We pay our attention on the study for the second arrangement method.. This bearing arrangement can produce a good stiffness, and increase the first modal frequency to 15.1Hz. In addition, some analysis were down to study the load applied on the balls. The results show that the maximum load is up to 5000N with the stress of 2300MPa.

  10. M3D project for simulation studies of plasmas

    SciTech Connect

    Park, W.; Belova, E.V.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.

    1998-12-31

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.

  11. Quality Assurance Information for R Packages "aqfig" and "M3"

    EPA Science Inventory

    R packages “aqfig" and “M3" are optional modules for use with R statistical software (http://www.r-project.org). Package “aqfig" contains functions to aid users in the preparation of publication-quality figures for the display of air quality and other environmental data (e.g., le...

  12. 26 CFR 1.401(m)-3 - Safe harbor requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... plan will not fail to satisfy the safe harbor matching contribution requirements of this section merely... rule. A plan that provides for safe harbor matching contributions will not fail to satisfy the... 26 Internal Revenue 5 2013-04-01 2013-04-01 false Safe harbor requirements. 1.401(m)-3 Section...

  13. SYN1deg-M3Hour Ed3A

    Atmospheric Science Data Center

    2016-06-08

    ... and Order:  Reverb   Reverb Tutorial Subset/Visualization Tool: CERES Order Tool Order Data:  ... Detailed CERES SYN1deg Product Information Data Products Catalog:  DPC_SYN1deg-M3Hour_R5V1 ...

  14. Measurement of charm mixing parameters and the neutral D meson decaying to a negative kaon-positive pion strong phase using quantum correlated neutral D meson-neutral anti-D meson pairs

    NASA Astrophysics Data System (ADS)

    Lincoln, Adam J.

    The decays of D0 and D0 mesons produced from e +e- annihilations at the psi'' resonance reflect quantum correlations so that decay rates are sensitive to interference between indistinguishable final states. Using the CLEO-c detector at the Cornell Electron Storage Ring, we measure the time-independent decay rates of D0 decays to K-pi +, K+pi-, several CP eigenstates, and semileptonic states. We make use of both partially and fully reconstructed D0 - D0 pairs. A chi2 minimization fitter extracts from these decay rates mixing and doubly Cabibbo suppressed decay parameters x2, y, r 2, and cos delta, along with isolated D 0 branching fractions for all input final states. By constraining the branching fractions and r2 with independent measurements, a first measurement of cos delta can be made.

  15. Higher Order Lagrange Finite Elements In M3D

    SciTech Connect

    J. Chen; H.R. Strauss; S.C. Jardin; W. Park; L.E. Sugiyama; G. Fu; J. Breslau

    2004-12-17

    The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.

  16. Extremal Positive Maps on M3(ℂ) and Idempotent Matrices

    NASA Astrophysics Data System (ADS)

    Miller, Marek; Olkiewicz, Robert

    2016-03-01

    A new method of analysing positive bistochastic maps on the algebra of complex matrices M3 has been proposed. By identifying the set of such maps with a convex set of linear operators on ℝ8, one can employ techniques from the theory of compact semigroups to obtain results concerning asymptotic properties of positive maps. It turns out that the idempotent elements play a crucial role in classifying the convex set into subsets, in which representations of extremal positive maps are to be found. It has been shown that all positive bistochastic maps, extremal in the set of all positive maps of M3, that are not Jordan isomorphisms of M3 are represented by matrices that fall into two possible categories, determined by the simplest idempotent matrices: one by the zero matrix, and the other by a one-dimensional orthogonal projection. Some norm conditions for matrices representing possible extremal maps have been specified and examples of maps from both categories have been brought up, based on the results published previously.

  17. Stromvil CCD Photometry in Globular Cluster M 3

    NASA Astrophysics Data System (ADS)

    Boyle, Richard P.; Janusz, R.; Philip, A. G. D.; Straizys, V.; Vrba, F.

    2007-12-01

    We observed the globular cluster M 3 in the 7-band Stromvil system plus Vilnius X-band at the 1.8-m Vatican Advanced Technology Telescope with a 2K CCD giving a 6-arcmin field. We observed the open cluster M 67 in the same run. Here from the residuals of many stars fit to quality CCD Vilnius photometry (Laugalys et al., 2004, Baltic Astronomy, 13, 1) we reshape and thus correct the initial flatfields. M 67 with a wide color base gives the color transformations of the run by calibrating from about 12 photoelectric standards in the Stromvil and similar Vilnius systems. In M 3 six photoelectric standards of moderate quality, all red stars of 13th magnitude in the Vilnius system calibrate the zero-point magnitude scale. Point-spread-function fitting to the stars in the crowded M 3 field resolves blends. With relatively short exposures of minutes a limiting magnitude V=15 is obtained with a signal/noise ratio about 100. So from this new photometry we subsequently can classify all types of stars and treat questions of reddening, distances, membership and metallicity at least at the horizontal branch of the cluster.

  18. Metal Matrix Microencapsulated (M3) fuel neutronics performance in PWRs

    SciTech Connect

    Fratoni, Massimiliano; Terrani, Kurt A

    2012-01-01

    Metal Matrix Microencapsulated (M3) fuel consists of TRISO or BISO coated fuel particles directly dispersed in a matrix of zirconium metal to form a solid rod (Fig. 1). In this integral fuel concept the cladding tube and the failure mechanisms associated with it have been eliminated. In this manner pellet-clad-interactions (PCI), thin tube failure due to oxidation and hydriding, and tube pressurization and burst will be absent. M3 fuel, given the high stiffness of the integral rod design, could as well improve grid-to-rod wear behavior. Overall M3 fuel, compared to existing fuel designs, is expected to provide greatly improved operational performance. Multiple barriers to fission product release (ceramic coating layers in the coated fuel particle and te metal matrix) and the high thermal conductivity zirconium alloy metal matrix contribute to the enhancement in fuel behavior. The discontinuous nature of fissile material encapsulated in coated particles provides additional assistance; for instance if the M3 fuel rod is snapped into multiple pieces, only the limited number of fuel particles at the failure cross section are susceptible to release fission products. This is in contrast to the conventional oxide fuel where the presence of a small opening in the cladding provides the pathway for release of the entire inventory of fission products from the fuel rod. While conventional metal fuels (e.g. U-Zr and U-Mo) are typically expected to experience large swelling under irradiation due to the high degree of damage from fission fragments and introduction of fission gas into the lattice, this is not the case for M3 fuels. The fissile portion of the fuel is contained within the coated particle where enough room is available to accommodate fission gases and kernel swelling. The zirconium metal matrix will not be exposed to fission products and its swelling is known to be very limited when exposed solely to neutrons. Under design basis RIA and LOCA, fuel performance will be

  19. Exploring the mineralogy of the Moon with M3

    NASA Astrophysics Data System (ADS)

    Pieters, C. M.

    From the initial era or lunar exploration we have learned that many processes active on the early Moon are common to most terrestrial planets including the record of early and late impact bombardment Since most major geologic activity ceased on the Moon sim 3 Gy ago the Moon s surface provides a record of the earliest era of terrestrial planet evolution The type and composition of minerals that comprise a planetary surface are a direct result of the initial composition and subsequent thermal and physical processing Lunar mineralogy seen today is thus a direct record of the early evolution of the lunar crust and subsequent geologic processes Specifically the distribution and concentration of specific minerals is closely tied to magma ocean products lenses of intruded or remelted plutons basaltic volcanism and fire-fountaining and any process e g cratering that might redistribute or transform primary and secondary lunar crustal materials The Moon Mineralogy Mapper M3 or m-cube is a state-of-the-art imaging spectrometer that will fly on Chandrayaan-1 the Indian Space Research Organization ISRO mission to be launched late 2007 to early 2008 M3 is one of several foreign instruments chosen by ISRO to be flown on Chandrayaan-1 to complement the strong ISRO payload package M3 was selected through a peer-review process as part of NASA s Discovery Program It is under the oversight of PI Carl e Pieters at Brown University and is being built by an experienced team at the Jet Propulsion Laboratory Data analysis and calibration are

  20. Structure and dynamics of the M3 muscarinic acetylcholine receptor

    SciTech Connect

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jürgen; Kobilka, Brian K.

    2012-03-01

    Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.

  1. The Chemical Composition Contrast between M3 and M13 Revisited: New Abundances for 28 Giant Stars in M3

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher; Kraft, Robert P.; Guhathakurta, Puragra; Peterson, Ruth C.; Fulbright, Jon P.

    2004-04-01

    We report new chemical abundances of 23 bright red giant members of the globular cluster M3, based on high-resolution (R~45,000) spectra obtained with the Keck I telescope. The observations, which involve the use of multislits in the HIRES Keck I spectrograph, are described in detail. Combining these data with a previously reported small sample of M3 giants obtained with the Lick 3 m telescope, we compare metallicities and [X/Fe] ratios for 28 M3 giants with a 35-star sample in the similar-metallicity cluster M13, and with Galactic halo field stars having [Fe/H]<-1. For elements having atomic number A>=A(Si), we derive little difference in [X/Fe] ratios in the M3, M13, or halo field samples. All three groups exhibit C depletion with advancing evolutionary state beginning at the level of the red giant branch ``bump,'' but the overall depletion of about 0.7-0.9 dex seen in the clusters is larger than that associated with the field stars. The behaviors of O, Na, Mg, and Al are distinctively different among the three stellar samples. Field halo giants and subdwarfs have a positive correlation of Na with Mg, as predicted from explosive or hydrostatic carbon burning in Type II supernova sites. Both M3 and M13 show evidence of high-temperature proton-capture synthesis from the ON, NeNa, and MgAl cycles, while there is no evidence for such synthesis among halo field stars. But the degree of such extreme proton-capture synthesis in M3 is smaller than it is in M13: the M3 giants exhibit only modest deficiencies of O and corresponding enhancements of Na, less extreme overabundances of Al, fewer stars with low Mg and correspondingly high Na, and no indication that O depletions are a function of advancing evolutionary state, as has been claimed for M13. We have also considered NGC 6752, for which Mg isotopic abundances have been reported by Yong et al. Giants in NGC 6752 and M13 satisfy the same anticorrelation of O abundances with the ratio (25Mg+26Mg)/24Mg, which measures the

  2. AT on Buried LPG Tanks Over 13 m3: An Innovative and Practical Solution

    NASA Astrophysics Data System (ADS)

    Di Fratta, Crescenzo; Ferraro, Antonio; Tscheliesnig, Peter; Lackner, Gerald; Correggia, Vincenzo; Altamura, Nicola

    In Italy, since 2005, techniques based on Acoustic Emission have been introduced for testing of underground LPG tanks up to 13 m3, according to the European standard EN 12818:2004. The testing procedure for these tanks plans to install one or more pairs of sensors inside the "dome" suited for the access to the valves and fittings of the tank, directly on the accessible metal shell. This methodology is not applicable for the underground LPG buried tanks, where it is necessary to install a larger number of AE sensors, in order to cover at 100% the whole tank shell, even at very deep positions. Already in 2004, the European standard EN 12820 (Appendix C - Informative)give the possibility to use Acoustic Emission testing of LPG underground or buried tanks with a capacity exceeding 13 m3, but no technique was specified for the application. In 2008, TÜV AUSTRIA ITALIA - BLU SOLUTIONS srl - Italian company of TÜV AUSTRIA Group - has developed a technique to get access at tank shell, where tank capacity is greater than 13 m3 and its' diameter greater than 3,5 m. This methodology was fully in comply with the provisions of the European Standard EN 12819:2010, becoming an innovative solution widely appreciated and is used in Italy since this time. Currently, large companies and petrochemical plants, at the occurrence of the tank's requalification, have engaged TÜV AUSTRIA ITALIA - BLU SOLUTIONS to install such permanent predispositions, which allow access to the tank shell - test object - with diameters from 4 to 8 m. Through this access, you can install the AE sensors needed to cover at 100% the tank surface and then to perform AE test. In an economic crisis period, this technique is proving a valid and practically applicable answer, in order to reduce inspection costs and downtime by offering a technically advanced solution (AT), increasing the safety of the involved operators, protecting natural resources and the environment.

  3. Directional dark matter detection with the DMTPC m3 experiment

    NASA Astrophysics Data System (ADS)

    Leyton, Michael; DMTPC Collaboration

    2016-05-01

    Directional reconstruction provides a unique way to positively identify signal interactions induced by dark matter particles, owing to the motion of the Earth through the galactic dark matter halo. Directional information can additionally serve as a powerful discriminant against neutron (and neutrino-induced) backgrounds that have the same final-state signature as a signal interaction. The Dark Matter Time Projection Chamber (DMTPC) collaboration uses gas-based TPC technology, with both optical and charge readout, to measure the directional anisotropy of nuclear recoils induced by particles traversing the detector volume. Here, we present preliminary results from recent calibration runs of the DMTPC m3 detector in a surface laboratory, as well as a study of its projected directional sensitivity.

  4. Longitudinal analysis of 25 sequential sample-pairs using a custom multiple myeloma mutation sequencing panel (M(3)P).

    PubMed

    Kortüm, K M; Langer, C; Monge, J; Bruins, L; Zhu, Y X; Shi, C X; Jedlowski, P; Egan, J B; Ojha, J; Bullinger, L; Kull, M; Ahmann, G; Rasche, L; Knop, S; Fonseca, R; Einsele, H; Stewart, A K; Braggio, Esteban

    2015-07-01

    Recent advances in genomic sequencing technologies now allow results from deep next-generation sequencing to be obtained within clinically meaningful timeframes, making this an attractive approach to better guide personalized treatment strategies. No multiple myeloma-specific gene panel has been established so far; we therefore designed a 47-gene-targeting gene panel, containing 39 genes known to be mutated in ≥3 % of multiple myeloma cases and eight genes in pathways therapeutically targeted in multiple myeloma (MM). We performed targeted sequencing on tumor/germline DNA of 25 MM patients in which we also had a sequential sample post treatment. Mutation analysis revealed KRAS as the most commonly mutated gene (36 % in each time point), followed by NRAS (20 and 16 %), TP53 (16 and 16 %), DIS3 (16 and 16 %), FAM46C (12 and 16 %), and SP140 (12 and 12 %). We successfully tracked clonal evolution and identified mutation acquisition and/or loss in FAM46C, FAT1, KRAS, NRAS, SPEN, PRDM1, NEB, and TP53 as well as two mutations in XBP1, a gene associated with bortezomib resistance. Thus, we present the first longitudinal analysis of a MM-specific targeted sequencing gene panel that can be used for individual tumor characterization and for tracking clonal evolution over time. PMID:25743686

  5. Goldschmidt crater and the Moon's north polar region: Results from the Moon Mineralogy Mapper (M3)

    USGS Publications Warehouse

    Cheek, L.C.; Pieters, C.M.; Boardman, J.W.; Clark, R.N.; Combe, J.-P.; Head, J.W.; Isaacson, P.J.; McCord, T.B.; Moriarty, D.; Nettles, J.W.; Petro, N.E.; Sunshine, J.M.; Taylor, L.A.

    2011-01-01

    Soils within the impact crater Goldschmidt have been identified as spectrally distinct from the local highland material. High spatial and spectral resolution data from the Moon Mineralogy Mapper (M3) on the Chandrayaan-1 orbiter are used to examine the character of Goldschmidt crater in detail. Spectral parameters applied to a north polar mosaic of M3 data are used to discern large-scale compositional trends at the northern high latitudes, and spectra from three widely separated regions are compared to spectra from Goldschmidt. The results highlight the compositional diversity of the lunar nearside, in particular, where feldspathic soils with a low-Ca pyroxene component are pervasive, but exclusively feldspathic regions and small areas of basaltic composition are also observed. Additionally, we find that the relative strengths of the diagnostic OH/H2O absorption feature near 3000 nm are correlated with the mineralogy of the host material. On both global and local scales, the strongest hydrous absorptions occur on the more feldspathic surfaces. Thus, M3 data suggest that while the feldspathic soils within Goldschmidt crater are enhanced in OH/H2O compared to the relatively mafic nearside polar highlands, their hydration signatures are similar to those observed in the feldspathic highlands on the farside. Copyright 2011 by the American Geophysical Union.

  6. ESA M3 mission candidate EChO

    NASA Astrophysics Data System (ADS)

    Puig, L.; Isaak, K. G.; Escudero, I.; Martin, D.; Crouzet, P.-E.; Rando, N.

    2011-09-01

    The Exoplanet Characterisation Observatory (EChO) is a medium class mission candidate within the science program Cosmic Vision 2015-2025 of the European Space Agency. It was selected in February 2011 as one of 4 M3 mission candidates to enter an assessment phase. The assessment activities start with the definition of science and mission requirements as well as of a preliminary model payload, followed by an internal Concurrent Design Facility (CDF) study. Parallel industrial studies will follow in 2012, after which the 4 missions will be reviewed to identify candidates entering definition phase studies in 2013. EChO aims at characterising the atmosphere of known transiting exoplanets, potentially from giant Hot Jupiters down to Super-Earths orbiting in the habitable zone of M-dwarf stars. It will use a 1 m class telescope, feeding a spectrometer covering the wave lengths from 0.4 to 11 microns with a potential extension to 16 microns. While spatial differentiation of the exoplanet and its host star is not necessary, spectral differentiation will be achieved by making differential measurements of in- and out- of transit frames to cancel the star signal. This paper describes critical requirements, and gives an overview of the model payload design. It also reports on the results of the CDF.

  7. Targeting Ilmenite on the Moon Using M3 Hyperspectal Imagery

    NASA Astrophysics Data System (ADS)

    Standart, D. L.; Hurtado, J. M.

    2013-12-01

    In-situ resource utilization (ISRU) will be a key technology in sustained human exploration of the solar system. The lunar surface hosts a variety of potentially exploitable resources. For example, KREEP (potassium, rare earth elements, phosphorus) material on the Moon is shown to be relatively rich in ilmenite (FeTiO3 ) and other useful materials. By targeting areas with anomalously high Th signatures, as seen by Lunar Prospector gamma ray spectroscopy (LP-GRS), we have mapped areas with the highest concentrations of ilmenite-rich material on the nearside of the Moon. To map Th, we employ a continuum slope band depth (CSBD) technique that takes advantage of the fact that the visible-infrared reflectance spectrum of ilmenite exhibits low reflectance and a flat continuum slope. As a result, the spectra of materials bearing ilmenite will also have a lower reflectance and a flattened continuum slope. These effects may also obscure spectral absorption features indicative of other minerals, such as pyroxene, within the host rock. We use the results of the CSBD analysis to construct ilmenite classification maps that can be compared to Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) ultraviolet/visible-infrared composite imagery. The LRO-WAC and M3 images together provide strong evidence for the presence of high concentrations of ilmenite, which can then be related to the distribution of associated KREEP material. The sites of interest for analyzing ilmenite and Th in this study include Gruithuisen Domes (including the Federov feature), Hansteen Alpha, Lassell Crater, and the Compton Belkovich Thorium Anomaly (CBTA). Each of these sites is also geologically interesting because they contain what are interpreted to be non-mare silicic volcanic features.

  8. Hemopoietic tissue in newts flown aboard Foton M3

    NASA Astrophysics Data System (ADS)

    Domaratskaya, Elena I.; Almeida, Eduardo; Butorina, Nina N.; Nikonova, Tatyana M.; Grigoryan, Eleonora N.; Poplinskaya, Valentina A.; Souza, Kenneth; Skidmore, Mike

    The effect of 12-day spaceflight aboard the Foton-M3 biosatellite on the hematopoietic tissue of P. waltl newts was studied. These animals used at the same time in regeneration experiments after lens and tail tip amputation. In flight and synchronous groups there were performed video recording, temperature and radiation monitoring and continuous contact (via skin) with thymidine analog BrdU. We took differential blood counts and assessed histologically the liver in the flight (F), basal (BC) and synchronous (SC)control groups of animals. In the peripheral blood, we identified neutrophils, eosinophils, basophils, lymphocytes, and monocytes. Lymphocytes (L) and neutrophils (N) prevailed, accounting for about 60 and 20% of white blood cells, respectively. The spaceflight had no apparent effect on the differential blood count in the F group: neither the L and N contents nor the maturing to mature N - ratio differed from those in the control groups. No significant differences between F, SC and BC groups were observed with respect to the structure of hematopoietic areas and the liver morphology. As in Foton-M2, BrdU labeled cells revealed in blood as well as in the hemopoietic areas of the liver. However, in previous experiments performed at satellites Bion-10 and Foton-M2 the changes in peripheral blood contents were registered in operated F newts, and we supposed it could be the result of additive effects of spaceflight factors and stimulation of reparative potency and stress due to surgical operation. Possibly, the temperature conditions also may provide some influence on blood cell content of newts that belong to poikilothermic animals. Thus, in present experiment F and SC groups were reared in the same temperature regims, whereas it was nearly 3o C differences between SC and F groups exposed on Foton-M2. At the same time as it was found in experiments on Bion-11 and Foton-M2 spaceflight factors did not affect on differential blood counts of intact non

  9. Orbiting pairs of walking droplets

    NASA Astrophysics Data System (ADS)

    Siefert, Emmanuel; Bush, John W. M.; Oza, Anand

    2015-11-01

    Droplets may self-propel on the surface of a vibrating fluid bath, pushed forward by their own Faraday pilot-wave field. We present the results of a combined experimental and theoretical investigation of the interaction of pairs of such droplets. Particular attention is given to characterizing the system's dependence on the vibrational forcing of the bath and the impact parameter of the walking droplets. Observed criteria for the capture and stability of orbital pairs are rationalized by accompanying theoretical developments. Thanks to the NSF.

  10. A multilevel multiscale mimetic (M 3) method for two-phase flows in porous media

    NASA Astrophysics Data System (ADS)

    Lipnikov, K.; Moulton, J. D.; Svyatskiy, D.

    2008-07-01

    We describe a multilevel multiscale mimetic (M 3) method for solving two-phase flow (water and oil) in a heterogeneous reservoir. The governing equations are the elliptic equation for the reservoir pressure and the hyperbolic equation for the water saturation. On each time step, we first solve the pressure equation and then use the computed flux in an explicit upwind finite volume method to update the saturation. To reduce the computational cost, the pressure equation is solved on a much coarser grid than the saturation equation. The coarse-grid pressure discretization captures the influence of multiple scales via the subgrid modeling technique for single-phase flow recently proposed in [Yu. A. Kuznetsov. Mixed finite element method for diffusion equations on polygonal meshes with mixed cells. J. Numer. Math., 14 (4) (2006) 305-315; V. Gvozdev. discretization of the diffusion and Maxwell equations on polyhedral meshes. Technical Report Ph.D. Thesis, University of Houston, 2007; Yu. Kuznetsov. Mixed finite element methods on polyhedral meshes for diffusion equations, in: Computational Modeling with PDEs in Science and Engineering, Springer-Verlag, Berlin, in press]. We extend significantly the applicability of this technique by developing a new robust and efficient method for estimating the flux coarsening parameters. Specifically, with this advance the M 3 method can handle full permeability tensors and general coarsening strategies, which may generate polygonal meshes on the coarse grid. These problem dependent coarsening parameters also play a critical role in the interpolation of the flux, and hence, in the advection of saturation for two-phase flow. Numerical experiments for two-phase flow in highly heterogeneous permeability fields, including layer 68 of the SPE Tenth Comparative Solution Project, demonstrate that the M 3 method retains good accuracy for high coarsening factors in both directions, up to 64 for the considered models. Moreover, we demonstrate

  11. RPI-AM and RPI-AF, a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams

    PubMed Central

    Zhang, Juying; Na, Yong Hum; Caracappa, Peter F; Xu, X George

    2010-01-01

    This paper describes the development of a pair of adult male and adult female computational phantoms that are compatible with anatomical parameters for the 50th percentile population as specified by the International Commission on Radiological Protection (ICRP). The phantoms were designed entirely using polygonal mesh surfaces—a Boundary REPresentation (BREP) geometry that affords the ability to efficiently deform the shape and size of individual organs, as well as the body posture. A set of surface mesh models, from Anatomium™ 3D P1 V2.0, including 140 organs (out of 500 available) was adopted to supply the basic anatomical representation at the organ level. The organ masses were carefully adjusted to agree within 0.5% relative error with the reference values provided in the ICRP Publication 89. The finalized phantoms have been designated the RPI adult male (RPI-AM) and adult female (RPI-AF) phantoms. For the purposes of organ dose calculations using the MCNPX Monte Carlo code, these phantoms were subsequently converted to voxel formats. Monoenergetic photons between 10 keV and 10 MeV in six standard external photon source geometries were considered in this study: four parallel beams (anterior–posterior, posterior–anterior, left lateral and right lateral), one rotational and one isotropic. The results are tabulated as fluence-to-organ-absorbed-dose conversion coefficients and fluence-to-effective-dose conversion coefficients and compared against those derived from the ICRP computational phantoms, REX and REGINA. A general agreement was found for the effective dose from these two sets of phantoms for photon energies greater than about 300 keV. However, for low-energy photons and certain individual organs, the absorbed doses exhibit profound differences due to specific anatomical features. For example, the position of the arms affects the dose to the lung by more than 20% below 300 keV in the lateral source directions, and the vertical position of the testes

  12. RPI-AM and RPI-AF, a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams

    NASA Astrophysics Data System (ADS)

    Zhang, Juying; Hum Na, Yong; Caracappa, Peter F.; Xu, X. George

    2009-10-01

    This paper describes the development of a pair of adult male and adult female computational phantoms that are compatible with anatomical parameters for the 50th percentile population as specified by the International Commission on Radiological Protection (ICRP). The phantoms were designed entirely using polygonal mesh surfaces—a Boundary REPresentation (BREP) geometry that affords the ability to efficiently deform the shape and size of individual organs, as well as the body posture. A set of surface mesh models, from Anatomium™ 3D P1 V2.0, including 140 organs (out of 500 available) was adopted to supply the basic anatomical representation at the organ level. The organ masses were carefully adjusted to agree within 0.5% relative error with the reference values provided in the ICRP Publication 89. The finalized phantoms have been designated the RPI adult male (RPI-AM) and adult female (RPI-AF) phantoms. For the purposes of organ dose calculations using the MCNPX Monte Carlo code, these phantoms were subsequently converted to voxel formats. Monoenergetic photons between 10 keV and 10 MeV in six standard external photon source geometries were considered in this study: four parallel beams (anterior-posterior, posterior-anterior, left lateral and right lateral), one rotational and one isotropic. The results are tabulated as fluence-to-organ-absorbed-dose conversion coefficients and fluence-to-effective-dose conversion coefficients and compared against those derived from the ICRP computational phantoms, REX and REGINA. A general agreement was found for the effective dose from these two sets of phantoms for photon energies greater than about 300 keV. However, for low-energy photons and certain individual organs, the absorbed doses exhibit profound differences due to specific anatomical features. For example, the position of the arms affects the dose to the lung by more than 20% below 300 keV in the lateral source directions, and the vertical position of the testes

  13. Geochemical and mineralogical analysis of Gruithuisen region on Moon using M3 and DIVINER images

    NASA Astrophysics Data System (ADS)

    Kusuma, K. N.; Sebastian, N.; Murty, S. V. S.

    2012-07-01

    Spectral information from the Moon Mineralogy Mapper (M3) onboard Chandrayaan-1 and DIVINER Lunar Radiometer onboard LRO have been used for geochemical and mineralogical characterisation of the Gruithuisen region on Moon along with morphometrical information from LOLA Digital elevation model. The apparent reflectance of M3 on global mode is used for (1) spectral characterisation (2) estimating the abundance of Ti and Fe using Lucey's method and (3) discriminating non-mare region from mare regions by means of Minimum Noise Fraction (MNF) transform and Integrated Band Depth (IBD) parameters. Christensen frequency (CF) value derived from DIVINER data is used to delineate the silica saturated lithology from the undersaturated rocks as well as to delineate their spatial spread. Low values of FeO, TiO2, and IBD indicate non-mare nature of the domes and highland material, also supplemented by CF values. The highland rocks represent signatures of sodic plagioclase, the end result of plagioclase crystallisation from Lunar Magma Ocean. Compositional variations are observed among the domes. NW dome has highest silica concentration than the other two domes and in turn higher viscosity. It is most likely that the three domes tapped residual liquid from different locations of the residual magma chamber which is in constant mixing. The extrusion is probably a localised phenomenon, where urKREEP welled out along the zone of crustal weakness formed by Imbrium Impact. It is likely that δ dome has extruded over a larger time span than other two features.

  14. Pairing forces in nuclei

    SciTech Connect

    Chasman, R.R.

    1996-12-31

    In this contribution, the author mentions some features of pairing forces that are unique to nuclei and cover some areas of major interest in nuclear structure research, that involve pairing. At the level of most nuclear structure studies, nuclei are treated as consisting of two kinds of fermions (protons and neutrons) in a valence space with rather few levels. These features give rise to unique aspects of pairing forces in nuclei: (1) n-p pairing in T = 0 as well as the usual T = 1 pairing that is characteristic of like fermions; (2) a need to correct pairing calculations for the (1/N) effects that can typically be neglected in superconducting solids. An issue of current concern is the nature of the pairing interaction: several recent studies suggest a need for a density dependent form of the pairing interaction. There is a good deal of feedback between the questions of accurate calculations of pairing interactions and the form and magnitude of the pairing interaction. Finally, the authors discuss some many-body wave functions that are a generalization of the BCS wave function form, and apply them to a calculation of energy level spacings in superdeformed rotational bands.

  15. Matched-pair classification

    SciTech Connect

    Theiler, James P

    2009-01-01

    Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.

  16. Vortex pairs on surfaces

    SciTech Connect

    Koiller, Jair

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  17. Cooper Pairs in Insulators?!

    ScienceCinema

    James Valles

    2010-01-08

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  18. Pair contact process with diffusion of pairs

    NASA Astrophysics Data System (ADS)

    Santos, F. L.; Dickman, Ronald; Fulco, U. L.

    2011-03-01

    The pair contact process (PCP) is a nonequilibrium stochastic model which, like the basic contact process (CP), exhibits a phase transition to an absorbing state. The two models belong to the directed percolation (DP) universality class, despite the fact that the PCP possesses infinitely many absorbing configurations whereas the CP has but one. The critical behavior of the PCP with hopping by particles (PCPD) is as yet unclear. Here we study a version of the PCP in which nearest-neighbor particle pairs can hop but individual particles cannot. Using quasistationary simulations for three values of the diffusion probability (D = 0.1, 0.5 and 0.9), we find convincing evidence of DP-like critical behavior.

  19. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. PMID:25971511

  20. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P.; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C. Stephen; Levy, Jeremy

    2015-05-01

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity.

  1. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  2. The Swift UVOT Stars Survey. II. RR Lyrae Stars in M3 and M15

    NASA Astrophysics Data System (ADS)

    Siegel, Michael H.; Porterfield, Blair L.; Balzer, Benjamin G.; Hagen, Lea M. Z.

    2015-10-01

    We present the first results of a near-ultraviolet (NUV) survey of RR Lyrae stars from the Ultraviolet Optical Telescope (UVOT) on board the Swift Gamma-ray Burst Mission. It is well-established that RR Lyrae stars have large amplitudes in the far- and near-ultraviolet. We have used UVOT’s unique wide-field NUV imaging capability to perform the first systematic NUV survey of variable stars in the Galactic globular clusters M3 and M15. We identify 280 variable stars, comprised of 275 RR Lyrae, 2 anomalous Cepheids, 1 classical Cepheid, 1 SX Phoenicis star, and 1 possible long-period or irregular variable. Only two of these are new discoveries. We compare our results to previous investigations and find excellent agreement in the periods with significantly larger amplitudes in the NUV. We map out, for the first time, an NUV Bailey diagram from globular clusters, showing the usual loci for fundamental mode RRab and first overtone RRc pulsators. We show the unique sensitivity of NUV photometry to both the temperatures and the surface gravities of RR Lyrae stars. Finally, we show evidence of an NUV period-metallicity-luminosity relationship. Future investigations will further examine the dependence of NUV pulsation parameters on metallicity and Oosterhoff classification.

  3. Transient Simulation of the DLR M3.1 Testbench: Methods and First Results

    NASA Astrophysics Data System (ADS)

    Manfletti, C.; Sender, J.

    2009-01-01

    Analysis of transient phases in liquid rocket engines play a major role in the design of the engines, as well as in the configuration and tailoring of the transient phases themselves. Testing of existing as well as future rocket engines, must therefore consider transient aspects, such as pre-cooling, priming, as well as ignition both experimentally as well as numerically. The flow behaviour within the various engine components is strongly dictated by the existing pressure and temperature fields. Ideally the flow through the engine feed lines is a one phase-flow. This is however not necessarily the case and a two-phase flow may lead to drastic changes in the behaviour. The application of the program TLRE to the simulation of the DLR test bench M3.1 is presented. The focus lies on the two-phase flow associated phenomena and the numerical resolution of these phenomena with the implementation of the lumped parameter method (LPM). A brief introduction of the relevant LPM characteristics is given. This is followed by a description of the relevant and observed two-phase flow phenomena and regimes and the numerical solution method. In conclusion both the main results of the work performed so far, which highlights the importance of the measurement system and how this needs to be taken into account during analysis processes, and a future roadmap for subsequent program evolution and applications are outlined.

  4. Paired Straight Hearth Furnace

    SciTech Connect

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  5. Cooper Pair Insulators

    NASA Astrophysics Data System (ADS)

    Valles, James

    One of the recent advances in the field of the Superconductor to Insulator Transition (SIT) has been the discovery and characterization of the Cooper Pair Insulator phase. This bosonic insulator, which consists of localized Cooper pairs, exhibits activated transport and a giant magneto-resistance peak. These features differ markedly from the weakly localized transport that emerges as pairs break at a ``fermionic'' SIT. I will describe how our experiments on films nano-patterned with a nearly triangular array of holes have enabled us to 1) distinguish bosonic insulators from fermionic insulators, 2) show that Cooper pairs, rather than quasi-particles dominate the transport in the Cooper Pair insulator phase, 3) demonstrate that very weak, sub nano-meter thickness inhomogeneities control whether a bosonic or fermionic insulator forms at an SIT and 4) reveal that Cooper pairs disintegrate rather than becoming more tightly bound deep in the localized phase. We have also developed a method, using a magnetic field, to tune flux disorder reversibly in these films. I will present our latest results on the influence of magnetic flux disorder and random gauge fields on phenomena near bosonic SITs. This work was performed in collaboration with M. D. Stewart, Jr., Hung Q. Nguyen, Shawna M. Hollen, Jimmy Joy, Xue Zhang, Gustavo Fernandez, Jeffrey Shainline and Jimmy Xu. It was supported by NSF Grants DMR 1307290 and DMR-0907357.

  6. Retinal overexpression of Ten-m3 alters ipsilateral retinogeniculate projections in the wallaby (Macropus eugenii).

    PubMed

    Carr, Owen P; Glendining, Kelly A; Leamey, Catherine A; Marotte, Lauren R

    2014-04-30

    The dorsal lateral geniculate nucleus (dLGN) contains a retinotopic map where input from the two eyes map in register to provide a substrate for binocular vision. Ten-m3, a transmembrane protein, mediates homophilic interactions and has been implicated in the patterning of ipsilateral visual projections. Ease of access to early developmental stages in a marsupial wallaby has been used to manipulate levels of Ten-m3 during the development of retinogeniculate projections. In situ hybridisation showed a high dorsomedial to low ventrolateral gradient of Ten-m3 in the developing dLGN, matching retinotopically with the previously reported high ventral to low dorsal retinal gradient. Overexpression of Ten-m3 in ventronasal but not dorsonasal retina resulted in an extension of ipsilateral projections beyond the normal binocular zone. These results demonstrate that Ten-m3 influences ipsilateral projections and support a role for it in binocular mapping. PMID:24602979

  7. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission

    NASA Astrophysics Data System (ADS)

    Lambreva, M.; Rea, G.; Antonacci, A.; Serafini, A.; Damasso, M.; Pastorelli, S.; Margonelli, A.; Johanningmeier, U.; Bertalan, I.; Pezzotti, G.; Giardi, M. T.

    2008-09-01

    . We analysed the hourly changes and the daily light/dark trend in the maximum quantum yield of PSII photochemistry, Fv/Fm (Fig.2). Some physiological parameters that characterize the post-flight effect on algae viability and photosynthetic performance were also determined. The dose and particle flux during Foton-M3 flight were monitored in real time by the active spectrum-dosimeter Liulin- Photo, mounted on the top of Photo-II fluorimeter (Fig.2). Liulin-Photo measurements provided information on the amount of the energy released on the samples and the quality of the incident ionizing radiation [3]. The space flight results in relationship with the ground control simulation are discussed.

  8. Decrease in the Sensitivity of Myocardium to M3 Muscarinic Receptor Stimulation during Postnatal Ontogenisis.

    PubMed

    Tapilina, S V; Abramochkin, D V

    2016-01-01

    Type 3 muscarinic receptors (M3 receptors) participate in the mediation of cholinergic effects in mammalian myocardium, along with M2 receptors. However, myocardium of adult mammals demonstrates only modest electrophysiological effects in response to selective stimulation of M3 receptors which are hardly comparable to the effects produced by M2 stimulation. In the present study, the effects of selective M3 stimulation induced by application of the muscarinic agonist pilocarpine (10 μM) in the presence of the selective M2 blocker methoctramine (100 nM) on the action potential (AP) waveform were investigated in isolated atrial and ventricular preparations from newborn and 3-week-old rats and compared to those in preparations from adult rats. In the atrial myocardium, stimulation of M3 receptors produced a comparable reduction of AP duration in newborn and adult rats, while in 3-week-old rats the effect was negligible. In ventricular myocardial preparations from newborn rats, the effect of M3 stimulation was more than 3 times stronger compared to that from adult rats, while preparations from 3-week old rats demonstrated no definite effect, similarly to atrial preparations. In all studied types of cardiac preparations, the effects of M3 stimulation were eliminated by the selective M3 antagonist 4-DAMP (10 nM). The results of RT-PCR show that the amount of product of the M3 receptor gene decreases with the maturation of animals both in atrial and ventricular myocardium. We concluded that the contribution of M3 receptors to the mediation of cardiac cholinergic responses decreases during postnatal ontogenesis. These age-related changes may be associated with downregulation of M3 receptor gene expression. PMID:27437147

  9. Decrease in the Sensitivity of Myocardium to M3 Muscarinic Receptor Stimulation during Postnatal Ontogenisis

    PubMed Central

    Tapilina, S.V.; Abramochkin, D.V.

    2016-01-01

    Type 3 muscarinic receptors (M3 receptors) participate in the mediation of cholinergic effects in mammalian myocardium, along with M2 receptors. However, myocardium of adult mammals demonstrates only modest electrophysiological effects in response to selective stimulation of M3 receptors which are hardly comparable to the effects produced by M2 stimulation. In the present study, the effects of selective M3 stimulation induced by application of the muscarinic agonist pilocarpine (10 μM) in the presence of the selective M2 blocker methoctramine (100 nM) on the action potential (AP) waveform were investigated in isolated atrial and ventricular preparations from newborn and 3-week-old rats and compared to those in preparations from adult rats. In the atrial myocardium, stimulation of M3 receptors produced a comparable reduction of AP duration in newborn and adult rats, while in 3-week-old rats the effect was negligible. In ventricular myocardial preparations from newborn rats, the effect of M3 stimulation was more than 3 times stronger compared to that from adult rats, while preparations from 3-week old rats demonstrated no definite effect, similarly to atrial preparations. In all studied types of cardiac preparations, the effects of M3 stimulation were eliminated by the selective M3 antagonist 4-DAMP (10 nM). The results of RT-PCR show that the amount of product of the M3 receptor gene decreases with the maturation of animals both in atrial and ventricular myocardium. We concluded that the contribution of M3 receptors to the mediation of cardiac cholinergic responses decreases during postnatal ontogenesis. These age-related changes may be associated with downregulation of M3 receptor gene expression. PMID:27437147

  10. Drop by drop backscattered signal of a 50 × 50 × 50 m3 volume: A numerical experiment

    NASA Astrophysics Data System (ADS)

    Gires, A.; Tchiguirinskaia, I.; Schertzer, D.

    2016-09-01

    The goal of this paper is to analyse the influence of individual drop positions on a backscattered radar signal. This is achieved through a numerical experiment: a 3D rain drop field generator is developed and implemented over a volume of 50 × 50 × 50 m3, and then the sum of the electromagnetic waves backscattered by its hydrometeors is computed. Finally the temporal evolution over 1 s is modelled with simplistic assumptions. For the rainfall generator, the liquid water content (LWC) distribution is represented with the help of a multiplicative cascade down to 0.5 m, below which it is considered as homogeneous. Within each 0.5 × 0.5 × 0.5 m3 patch, liquid water is distributed into drops, located randomly uniformly according to a pre-defined drop size distribution (DSD). Such configuration is compared with the one consisting of the same drops being uniformly distributed over the entire 50 × 50 × 50 m3 volume. Due to the fact that the radar wave length is much smaller than the size of a rainfall "patch", it appears that, in agreement with the theory, we retrieve an exponential distribution for potential measures on horizontal reflectivity. Much thinner dispersion is noticed for differential reflectivity. We show that a simple ballistic assumption for drop velocities does not enable the reproduction of radar observations, and turbulence should be taken into account. Finally the sensitivity of these outputs to the various model parameters is quantified.

  11. Multiscale structures in relativistic pair plasmas

    SciTech Connect

    Iqbal, M.; Berezhiani, V. I.; Yoshida, Z.

    2008-03-15

    The steady-state solution of a pair plasma with relativistic thermal velocity of the constituent particles (electrons and positrons) is investigated. The relaxed state can be written as a superposition of three Beltrami fields. Generally, the associated scale parameters could be a complex conjugate pair and a real one. It is shown that at higher thermal energies, all the scale parameters become real. It is also observed that one component gets a large scale (system size) while the other two components appear with small scale of the order of the skin depth at relativistic temperature.

  12. Electron Pairing Without Superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy; Cheng, G.; Tomczyk, M.; Lu, S.; Veazey, J. P.; Huang, M.; Irvin, P.; Ryu, S.; Lee, H.; Eom, C.-B.; Hellberg, C. S.

    2015-03-01

    Strontium titanate (SrTiO3) exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. We describe transport experiments with nanowire-based quantum dots localized at the interface between SrTiO3 and LaAlO3. Electrostatic gating of the quantum dot reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical magnetic field Bp 1-4 Tesla, an order of magnitude larger than the superconducting critical magnetic field. For B Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as T = 900 mK, far above the superconducting transition temperature (Tc 300 mK). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by an attractive-U Hubbard model that describes real-space electron pairing as a precursor to superconductivity. This work was supported by ARO MURI W911NF-08-1-0317 (J.L.), AFOSR MURI FA9550-10-1-0524 (C.-B.E., J.L.) and FA9550-12-1-0342 (C.-B.E.), and grants from the National Science Foundation DMR-1104191 (J.L.), DMR.

  13. Inhibition of Intimal Hyperplasia in Transgenic Mice Conditionally Expressing the Chemokine-Binding Protein M3

    PubMed Central

    Pyo, Robert; Jensen, Kristian K.; Wiekowski, Maria T.; Manfra, Denise; Alcami, Antonio; Taubman, Mark B.; Lira, Sergio A.

    2004-01-01

    Chemokines have been implicated in the pathogenesis of a wide variety of diseases. This report describes the generation of transgenic mice that conditionally express M3, a herpesvirus protein that binds and inhibits chemokines. In response to doxycycline, M3 expression was induced in a variety of tissues and M3 was detectable in the blood by Western blotting. No gross or histological abnormalities were seen in mice expressing M3. To determine whether M3 expression could modify a significant pathophysiological response, we examined its effect on the development of intimal hyperplasia in response to femoral arterial injury. Intimal hyperplasia is thought to play a critical role in the development of restenosis after percutaneous transluminal coronary angioplasty and in the progression of atherosclerosis. Induction of M3 expression resulted in a 67% reduction in intimal area and a 68% reduction in intimal/medial ratio after femoral artery injury. These data support a role for chemokines in regulating intimal hyperplasia and suggest that M3 may be effective in attenuating this process. This transgenic mouse model should be a valuable tool for investigating the role of chemokines in a variety of pathological states. PMID:15161661

  14. Inhibition of intimal hyperplasia in transgenic mice conditionally expressing the chemokine-binding protein M3.

    PubMed

    Pyo, Robert; Jensen, Kristian K; Wiekowski, Maria T; Manfra, Denise; Alcami, Antonio; Taubman, Mark B; Lira, Sergio A

    2004-06-01

    Chemokines have been implicated in the pathogenesis of a wide variety of diseases. This report describes the generation of transgenic mice that conditionally express M3, a herpesvirus protein that binds and inhibits chemokines. In response to doxycycline, M3 expression was induced in a variety of tissues and M3 was detectable in the blood by Western blotting. No gross or histological abnormalities were seen in mice expressing M3. To determine whether M3 expression could modify a significant pathophysiological response, we examined its effect on the development of intimal hyperplasia in response to femoral arterial injury. Intimal hyperplasia is thought to play a critical role in the development of restenosis after percutaneous transluminal coronary angioplasty and in the progression of atherosclerosis. Induction of M3 expression resulted in a 67% reduction in intimal area and a 68% reduction in intimal/medial ratio after femoral artery injury. These data support a role for chemokines in regulating intimal hyperplasia and suggest that M3 may be effective in attenuating this process. This transgenic mouse model should be a valuable tool for investigating the role of chemokines in a variety of pathological states. PMID:15161661

  15. String pair production in non homogeneous backgrounds

    NASA Astrophysics Data System (ADS)

    Bolognesi, S.; Rabinovici, E.; Tallarita, G.

    2016-04-01

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  16. Supernovae in paired galaxies

    NASA Astrophysics Data System (ADS)

    Nazaryan, T. A.; Petrosian, A. R.; Hakobyan, A. A.; Adibekyan, V. Zh.; Kunth, D.; Mamon, G. A.; Turatto, M.; Aramyan, L. S.

    2014-07-01

    We investigate the influence of close neighbor galaxies on the properties of supernovae (SNe) and their host galaxies using 56 SNe located in pairs of galaxies with different levels of star formation (SF) and nuclear activity. The mean distance of type II SNe from nuclei of hosts is greater by about a factor of 2 than that of type Ibc SNe. The distributions and mean distances of SNe are consistent with previous results compiled with the larger sample. For the first time it is shown that SNe Ibc are located in pairs with significantly smaller difference of radial velocities between components than pairs containing SNe Ia and II. We consider this as a result of higher star formation rate (SFR) of these closer systems of galaxies.

  17. Applications of balanced pairs

    NASA Astrophysics Data System (ADS)

    Li, HuanHuan; Wang, JunFu; Huang, ZhaoYong

    2016-05-01

    Let $(\\mathscr{X}$, $\\mathscr{Y})$ be a balanced pair in an abelian category. We first introduce the notion of cotorsion pairs relative to $(\\mathscr{X}$, $\\mathscr{Y})$, and then give some equivalent characterizations when a relative cotorsion pair is hereditary or perfect. We prove that if the $\\mathscr{X}$-resolution dimension of $\\mathscr{Y}$ (resp. $\\mathscr{Y}$-coresolution dimension of $\\mathscr{X}$) is finite, then the bounded homotopy category of $\\mathscr{Y}$ (resp. $\\mathscr{X}$) is contained in that of $\\mathscr{X}$ (resp. $\\mathscr{Y}$). As a consequence, we get that the right $\\mathscr{X}$-singularity category coincides with the left $\\mathscr{Y}$-singularity category if the $\\mathscr{X}$-resolution dimension of $\\mathscr{Y}$ and the $\\mathscr{Y}$-coresolution dimension of $\\mathscr{X}$ are finite.

  18. M3S: the local network for electric wheelchairs and rehabilitation equipment.

    PubMed

    Linnman, S

    1996-09-01

    M3S is an open electric network standard for connecting rehabilitation equipment, especially electric modules in a wheelchair. It provides bidirectional communication at 250 kbaud via a CAN bus and extra safety lines for "Dead Man's Switch" and a TURN ON key. In an M3S system, the same input device may be used for controlling many different output devices in different operating modes. It provides flexible configuration tools for adapting the system for the individual user. M3S has been demonstrated and tested in more than ten different European development projects. PMID:8800222

  19. Wall-touching kink mode calculations with the M3D code

    SciTech Connect

    Breslau, J. A. Bhattacharjee, A.

    2015-06-15

    This paper seeks to address a controversy regarding the applicability of the 3D nonlinear extended MHD code M3D [W. Park et al., Phys. Plasmas 6, 1796 (1999)] and similar codes to calculations of the electromagnetic interaction of a disrupting tokamak plasma with the surrounding vessel structures. M3D is applied to a simple test problem involving an external kink mode in an ideal cylindrical plasma, used also by the Disruption Simulation Code (DSC) as a model case for illustrating the nature of transient vessel currents during a major disruption. While comparison of the results with those of the DSC is complicated by effects arising from the higher dimensionality and complexity of M3D, we verify that M3D is capable of reproducing both the correct saturation behavior of the free boundary kink and the “Hiro” currents arising when the kink interacts with a conducting tile surface interior to the ideal wall.

  20. Wall-touching kink mode calculations with the M3D code

    NASA Astrophysics Data System (ADS)

    Breslau, J. A.; Bhattacharjee, A.

    2015-06-01

    This paper seeks to address a controversy regarding the applicability of the 3D nonlinear extended MHD code M3D [W. Park et al., Phys. Plasmas 6, 1796 (1999)] and similar codes to calculations of the electromagnetic interaction of a disrupting tokamak plasma with the surrounding vessel structures. M3D is applied to a simple test problem involving an external kink mode in an ideal cylindrical plasma, used also by the Disruption Simulation Code (DSC) as a model case for illustrating the nature of transient vessel currents during a major disruption. While comparison of the results with those of the DSC is complicated by effects arising from the higher dimensionality and complexity of M3D, we verify that M3D is capable of reproducing both the correct saturation behavior of the free boundary kink and the "Hiro" currents arising when the kink interacts with a conducting tile surface interior to the ideal wall.

  1. 27. Naval Facility Engineering Command Drawing 6068752 (463M3) (1975), 'Electrolite ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Naval Facility Engineering Command Drawing 6068752 (463-M-3) (1975), 'Electrolite Aerosol Removal System' - Mare Island Naval Shipyard, Acid Mixing Facility, California Avenue & E Street, Vallejo, Solano County, CA

  2. NMR analysis of base-pair opening kinetics in DNA

    PubMed Central

    Szulik, Marta W.; Voehler, Markus; Stone, Michael P.

    2014-01-01

    Base pairing in nucleic acids plays a crucial role in their structure and function. Differences in the base pair opening and closing kinetics of individual double stranded DNA sequences or between chemically modified base pairs provide insight into the recognition of these base pairs by DNA processing enzymes. This unit describes how to quantify the kinetics for localized base pairs by observing changes in the imino proton signals by nuclear magnetic resonance spectroscopy. The determination of all relevant parameters using state of the art techniques and NMR instrumentation, including cryoprobes, is discussed. PMID:25501592

  3. Stability and size of particle pairs in complex plasmas

    SciTech Connect

    Nosenko, V.; Ivlev, A. V.; Kompaneets, R.; Morfill, G.

    2014-11-15

    Particle pairing in a complex plasma was experimentally studied with the emphasis on pair spatial extent and stability. Micron-size particles were suspended in the (pre)sheath area above the lower electrode in a capacitively coupled radio-frequency discharge in argon. They formed vertical pairs due to the ion wakes created by the flow of ions past particles. We discuss the confinement mechanism for the lower particle, resulting from a combination of the wake field and the field of non-uniform sheath. A model of particle pairs is proposed, which provides good description for the dependence of pair size and stability on experimental parameters.

  4. Transduction of Recombinant M3-p53-R12 Protein Enhances Human Leukemia Cell Apoptosis

    PubMed Central

    Lu, Tsung Chi; Zhao, Guan- Hao; Chen, Yao Yun; Chien, Chia-Ying; Huang, Chi-Hung; Lin, Kwang Hui; Chen, Shen Liang

    2016-01-01

    Tumor suppressor protein p53 plays important roles in initiating cell cycle arrest and promoting tumor cell apoptosis. Previous studies have shown that p53 is either mutated or defective in approximately 50% of human cancers; therefore restoring normal p53 activity in cancer cells might be an effective anticancer therapeutic approach. Herein, we designed a chimeric p53 protein flanked with the MyoD N-terminal transcriptional activation domain (amino acids 1-62, called M3) and a poly-arginine (R12) cell penetrating signal in its N-and C-termini respectively. This chimeric protein, M3-p53-R12, can be expressed in E. coli and purified using immobilized metal ion chromatography followed by serial refolding dialysis. The purified M3-p53-R12 protein retains DNA-binding activity and gains of cell penetrating ability. Using MTT assay, we demonstrated that M3-p53-R12 inhibited the growth of K562, Jurkat as well as HL-60 leukemia cells carrying mutant p53 genes. Results from FACS analysis also demonstrated that transduction of M3-p53-R12 protein induced cell cycle arrest of these leukemia cells. Of special note, M3-p53-R12 has no apoptotic effect on normal mesenchymal stem cells (MSC) and leukocytes, highlighting its differential effects on normal and tumor cells. To sum up, our results reveal that purified recombinant M3-p53-R12 protein has functions of suppressing the leukemia cell lines' proliferation and launching cell apoptosis, suggesting the feasibility of using M3-p53-R12 protein as an anticancer drug. In the future we will test whether this chimeric protein can preferentially trigger the death of malignant cancer cells without affecting normal cells in animals carrying endogenous or xenographic tumors. PMID:27390612

  5. Critical metabolic roles of β-cell M3 muscarinic acetylcholine receptors

    PubMed Central

    de Azua, Inigo Ruiz; Gautam, Dinesh; Jain, Shalini; Guettier, Jean-Marc; Wess, Jürgen

    2013-01-01

    Muscarinic acetylcholine (ACh) receptors (mAChRs; M1–M5) regulate the activity of an extraordinarily large number of important physiological processes. We and others previously demonstrated that pancreatic β-cells are endowed with M3 mAChRs which are linked to G proteins of the Gq family. The activation of these receptors by ACh or other muscarinic agonists leads to the augmentation of glucose-induced insulin release via multiple mechanisms. Interestingly, in humans, ACh acting on human β-cell mAChRs is released from adjacent α-cells which express both choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (vAChT), indicative of the presence of a non-neuronal cholinergic system in human pancreatic islets. In order to shed light on the physiological roles of β-cell M3 receptors, we recently generated and analyzed various mutant mouse models. Specifically, we carried out studies with mice which overexpressed M3 receptors or mutant M3 receptors in pancreatic β-cells or which selectively lacked M3 receptors or M3-receptor-associated proteins in pancreatic β-cells. Our findings indicate that β-cell M3 receptors play a key role in maintaining proper insulin release and whole body glucose homeostasis and that strategies aimed at enhancing signaling through β-cell M3 receptors may prove useful to improve β-cell function for the treatment of type 2 diabetes (T2D). PMID:22525375

  6. Multi-pair states in electron-positron pair creation

    NASA Astrophysics Data System (ADS)

    Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.

    2016-09-01

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron-positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron-positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron-positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron-positron pairs.

  7. Identification and molecular characterization of the cDNA encoding Cucumis melo allergen, Cuc m 3, a plant pathogenesis-related protein

    PubMed Central

    Sankian, Mojtaba; Hajavi, Jafar; Moghadam, Malihe; Varasteh, Abdol-Reza

    2014-01-01

    Background: Melon (Cucumis melo) allergy is one of the most common food allergies, characterized by oral allergy syndrome. To date, two allergen molecules, Cuc m 1 and Cuc m 2, have been fully characterized in melon pulp, but there are few reports about the molecular characteristics of Cuc m 3. Methods: The Cuc m 3 cDNA has been characterized by rapid amplification of cDNA ends (RACE), which revealed a 456 base-pair (bp) fragment encoding a 151-amino acid polypeptide with a predicted molecular mass of 16.97 kDa, and identified 79 and 178 bp untranslated sequences at the 5′ and 3´ ends, respectively. Results: In silico analysis showed strong similarities between Cuc m 3 and other plant pathogen-related protein 1s from cucumber, grape, bell pepper, and tomato. Conclusion: Here we report the identification and characterization of the Cuc m 3 cDNA, which will be utilized for further analyses of structural and allergenic features of this allergen. PMID:26989726

  8. Strong pairing approximation in comparison with the exact solutions to the pairing Hamiltonian

    NASA Astrophysics Data System (ADS)

    Lunyov, A. V.; Mikhajlov, V. M.

    2016-01-01

    Results of the Strong Pairing Approximation (SPA) as a method with the exact particle number conservation are compared with those of the quasiparticle method (QM). It is shown that SPA comes to the same equations as QM for the gap parameter, chemical potential and one- and two-quasiparticle states. Calculations are performed for 14864Gd84 as an example, and compared with the exact solutions to the pairing Hamiltonian.

  9. Large Impact Melt Flow Feature identified across the floor of Copernicus Crater by Moon Mineralogy Mapper (M3)

    NASA Astrophysics Data System (ADS)

    Dhingra, D.; Pieters, C. M.; Head, J. W.

    2011-12-01

    Impact melt is normally one of the primary products of a large cratering event. The production of melt, its geographic distribution and the timing of its formation in the sequence of events during the cratering process depends on several parameters including size and velocity of the impactor, angle of impact, nature of pre-existing topography and target lithology. All of these parameters influence the size of the resulting crater as well as the character and fate of the melt produced during the event. We report here a very large impact melt flow feature across the floor of Copernicus crater identified with near-infrared spectra from M3. Copernicus is a relatively young impact crater ~100 km in diameter, located on the equatorial nearside of the Moon. The NW quadrant of the crater appears to contain a thick pool of impact melt. The new flow feature, with a length of ~30 km and flow lobes ~4-6 km wide, lies across the eastern portion of this melt deposit. Principal component analysis of M3 spectral data reveals this feature prominently in the 5th principal component. Spectroscopically, the flow feature differs from its surroundings mostly at longer M3 NIR wavelengths. Further analysis of the M3 data will focus on the compositional aspects and physical properties of this flow feature and its relation to nearby regions. An interesting aspect of the flow feature is its restricted occurrence between the northern wall and central peaks of the Copernicus crater. Several hypotheses, concerning this geologic setting, sourcing of the melt in the flow feature and its flow direction, are being explored. Two hypotheses in context of the melt sourcing include: 1) accumulation of the scattered melted material and drainage along a preferred slope or 2) fallback of large volume of melt that was lofted in a preferred direction during the impact event. The occurrence of such a large sized flow feature also suggests that the impact melt was very mobile and therefore probably poor in

  10. Level of helium enhancement among M3's horizontal branch stars

    NASA Astrophysics Data System (ADS)

    Valcarce, A. A. R.; Catelan, M.; Alonso-García, J.; Contreras Ramos, R.; Alves, S.

    2016-04-01

    other words, the position of an HB star in such a CMD is exactly the same for a given chemical composition for multiple combinations of the parameters Y, MHB, and age along the HB evolutionary track. Other HST UV filters do not appear to be as severely affected by this degeneracy effect, to which visual bandpasses are also immune. On the other hand, such near-UV CMDs can be extremely useful for the hottest stars along the cool BHB end. Conclusions: Based on a reanalysis of the distribution of HB stars in the y vs. (b - y) plane, we find that the coolest BHB stars in M3 (i.e., those with Teff< 8300 K) are very likely enhanced in helium by ΔY ≈ 0.01, compared with the red HB stars in the same cluster. Using near-UV HST photometry, on the other hand, we find evidence of a progressive increase in Y with increasing temperature, reaching ΔY ≈ 0.02 at Teff ≈ 10 900 K.

  11. Level of helium enhancement among M3's horizontal branch stars

    NASA Astrophysics Data System (ADS)

    Valcarce, A. A. R.; Catelan, M.; Alonso-García, J.; Contreras Ramos, R.; Alves, S.

    2016-05-01

    other words, the position of an HB star in such a CMD is exactly the same for a given chemical composition for multiple combinations of the parameters Y, MHB, and age along the HB evolutionary track. Other HST UV filters do not appear to be as severely affected by this degeneracy effect, to which visual bandpasses are also immune. On the other hand, such near-UV CMDs can be extremely useful for the hottest stars along the cool BHB end. Conclusions: Based on a reanalysis of the distribution of HB stars in the y vs. (b - y) plane, we find that the coolest BHB stars in M3 (i.e., those with Teff< 8300 K) are very likely enhanced in helium by ΔY ≈ 0.01, compared with the red HB stars in the same cluster. Using near-UV HST photometry, on the other hand, we find evidence of a progressive increase in Y with increasing temperature, reaching ΔY ≈ 0.02 at Teff ≈ 10 900 K.

  12. Probing the tides in interacting galaxy pairs

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1990-01-01

    Detailed spectroscopic and imaging observations of colliding elliptical galaxies revealed unmistakable diagnostic signatures of the tidal interactions. It is possible to compare both the distorted luminosity distributions and the disturbed internal rotation profiles with numerical simulations in order to model the strength of the tidal gravitational field acting within a given pair of galaxies. Using the best-fit numerical model, one can then measure directly the mass of a specific interacting binary system. This technique applies to individual pairs and therefore complements the classical methods of measuring the masses of galaxy pairs in well-defined statistical samples. The 'personalized' modeling of galaxy pairs also permits the derivation of each binary's orbit, spatial orientation, and interaction timescale. Similarly, one can probe the tides in less-detailed observations of disturbed galaxies in order to estimate some of the physical parameters for larger samples of interacting galaxy pairs. These parameters are useful inputs to the more universal problems of (1) the galaxy merger rate, (2) the strength and duration of the driving forces behind tidally stimulated phenomena (e.g., starbursts and maybe quasi steller objects), and (3) the identification of long-lived signatures of interaction/merger events.

  13. Protected Flux Pairing Qubit

    NASA Astrophysics Data System (ADS)

    Bell, Matthew; Zhang, Wenyuan; Ioffe, Lev; Gershenson, Michael

    2014-03-01

    We have studied the coherent flux tunneling in a qubit containing two submicron Josephson junctions shunted by a superinductor (a dissipationless inductor with an impedance much greater than the resistance quantum). The two low energy quantum states of this device, 0 and 1, are represented by even and odd number of fluxes in the loop, respectively. This device is dual to the charge pairing Josephson rhombi qubit. The spectrum of the device, studied by microwave spectroscopy, reflects the interference between coherent quantum phase slips in the two junctions (the Aharonov-Casher effect). The time domain measurements demonstrate the suppression of the qubit's energy relaxation in the protected regime, which illustrates the potential of this flux pairing device as a protected quantum circuit. Templeton Foundation, NSF, and ARO.

  14. Isolation and characterization of rabbit anti-m3 2,2,7G antibodies.

    PubMed

    Luhrmann, R; Appel, B; Bringmann, P; Rinke, J; Reuter, R; Rothe, S; Bald, R

    1982-11-25

    Antibodies specific for intact 2,2,7-trimethylguanosine (m3 2,2,7G) were induced by immunization of rabbits with a nucleoside-human serum albumen (HSA) conjugate. Competition radioimmunoassay showed that the antibody distinguishes well between intact m3 2,2,7G and its alkali-hydrolysed form (m3 2,2,7G*). Antibody specificity is largely dependent on the presence of all three methyl groups in m3 2,2,7G: none of the less extensively methylated nucleosides m7G, m2G and m2 2,2G is able to compete efficiently with the homologous hapten. Little or no competition was observed with m1G, m1A, m6A, m5U and each of the four unmodified ribonucleosides. Binding studies with nucleoplasmic RNAs from Ehrlich ascites cells suggest that the antibody reacts specifically with the m3 2,2,7G-containing cap structure of the small nuclear U-RNAs (U-snRNAs). Thus the antibody should be a valuable tool for studying the role of the 5'-terminal regions of the U-snRNAs of eucaryotic cells. PMID:7155893

  15. Wall touching kink mode calculations with the M3D code

    NASA Astrophysics Data System (ADS)

    Breslau, J. A.

    2014-10-01

    In recent years there have been a number of results published concerning the transient vessel currents and forces occurring during a tokamak VDE, as predicted by simulations with the nonlinear MHD code M3D. The nature of the simulations is such that these currents and forces occur at the boundary of the computational domain, making the proper choice of boundary conditions critical to the reliability of the results. The M3D boundary condition includes the prescription that the normal component of the velocity vanish at the wall. It has been argued that this prescription invalidates the calculations because it would seem to rule out the possibility of advection of plasma surface currents into the wall. This claim has been tested by applying M3D to an idealized case - a kink-unstable plasma column - in order to abstract the essential physics from the complications involved in the attempt to model real devices. While comparison of the results is complicated by effects arising from the higher dimensionality and complexity of M3D, we have verified that M3D is capable of reproducing both the correct saturation behavior of the free boundary kink and the ``Hiro'' currents arising when the kink interacts with a conducting tile surface interior to the ideal wall.

  16. Impaired muscarinic type 3 (M3) receptor/PKC and PKA pathways in islets from MSG-obese rats.

    PubMed

    Ribeiro, Rosane Aparecida; Balbo, Sandra Lucinei; Roma, Letícia Prates; Camargo, Rafael Ludemann; Barella, Luiz Felipe; Vanzela, Emerielle Cristine; de Freitas Mathias, Paulo Cesar; Carneiro, Everardo Magalhães; Boschero, Antonio Carlos; Bonfleur, Maria Lúcia

    2013-07-01

    Monosodium glutamate-obese rats are glucose intolerant and insulin resistant. Their pancreatic islets secrete more insulin at increasing glucose concentrations, despite the possible imbalance in the autonomic nervous system of these rats. Here, we investigate the involvement of the cholinergic/protein kinase (PK)-C and PKA pathways in MSG β-cell function. Male newborn Wistar rats received a subcutaneous injection of MSG (4 g/kg body weight (BW)) or hyperosmotic saline solution during the first 5 days of life. At 90 days of life, plasma parameters, islet static insulin secretion and protein expression were analyzed. Monosodium glutamate rats presented lower body weight and decreased nasoanal length, but had higher body fat depots, glucose intolerance, hyperinsulinemia and hypertrigliceridemia. Their pancreatic islets secreted more insulin in the presence of increasing glucose concentrations with no modifications in the islet-protein content of the glucose-sensing proteins: the glucose transporter (GLUT)-2 and glycokinase. However, MSG islets presented a lower secretory capacity at 40 mM K(+) (P < 0.05). The MSG group also released less insulin in response to 100 μM carbachol, 10 μM forskolin and 1 mM 3-isobutyl-1-methyl-xantine (P < 0.05, P < 0.0001 and P < 0.01). These effects may be associated with a the decrease of 46 % in the acetylcholine muscarinic type 3 (M3) receptor, and a reduction of 64 % in PKCα and 36 % in PKAα protein expressions in MSG islets. Our data suggest that MSG islets, whilst showing a compensatory increase in glucose-induced insulin release, demonstrate decreased islet M3/PKC and adenylate cyclase/PKA activation, possibly predisposing these prediabetic rodents to the early development of β-cell dysfunction. PMID:23652999

  17. Breaking of Cooper pairs in 108Pd

    NASA Astrophysics Data System (ADS)

    Rahmatinejad, A.; Kakavand, T.; Razavi, R.

    2016-04-01

    In this paper, breaking of Cooper pairs in 108Pd is investigated within the canonical ensemble framework and the BCS model. Our results show an evidence of two phase transitions, which are related to neutron and proton systems. Also, with consideration of pairing interaction, the role of neutron and proton systems in entropy, spin cutoff parameter and as a result in the moment of inertia are investigated. The results show minor role for the proton system at low temperatures and approximately equal roles for both neutron and proton systems after the critical temperature. Good agreement was observed between obtained results and the experimental data.

  18. Structural Basis of M3 Muscarinic Receptor Dimer/Oligomer Formation*

    PubMed Central

    McMillin, Sara M.; Heusel, Moritz; Liu, Tong; Costanzi, Stefano; Wess, Jürgen

    2011-01-01

    Class A G protein-coupled receptors (GPCRs) are known to form dimers and/or oligomeric arrays in vitro and in vivo. These complexes are thought to play important roles in modulating class A GPCR function. Many studies suggest that residues located on the “outer” (lipid-facing) surface of the transmembrane (TM) receptor core are critically involved in the formation of class A receptor dimers (oligomers). However, no clear consensus has emerged regarding the identity of the TM helices or TM subsegments involved in this process. To shed light on this issue, we have used the M3 muscarinic acetylcholine receptor (M3R), a prototypic class A GPCR, as a model system. Using a comprehensive and unbiased approach, we subjected all outward-facing residues (70 amino acids total) of the TM helical bundle (TM1–7) of the M3R to systematic alanine substitution mutagenesis. We then characterized the resulting mutant receptors in radioligand binding and functional studies and determined their ability to form dimers (oligomers) in bioluminescence resonance energy transfer saturation assays. We found that M3R/M3R interactions are not dependent on the presence of one specific structural motif but involve the outer surfaces of multiple TM subsegments (TM1–5 and -7) located within the central and endofacial portions of the TM receptor core. Moreover, we demonstrated that the outward-facing surfaces of most TM helices play critical roles in proper receptor folding and/or function. Guided by the bioluminescence resonance energy transfer data, molecular modeling studies suggested the existence of multiple dimeric/oligomeric M3R arrangements, which may exist in a dynamic equilibrium. Given the high structural homology found among all class A GPCRs, our results should be of considerable general relevance. PMID:21685385

  19. Existence of best proximity pairs and equilibrium pairs

    NASA Astrophysics Data System (ADS)

    Kim, Won Kyu; Lee, Kyoung Hee

    2006-04-01

    In this paper, using the fixed point theorem for Kakutani factorizable multifunctions, we shall prove new existence theorems of best proximity pairs and equilibrium pairs for free abstract economies, which include the previous fixed point theorems and equilibrium existence theorems.

  20. Development of RT-components for the M-3 Strawberry Harvesting Robot

    NASA Astrophysics Data System (ADS)

    Yamashita, Tomoki; Tanaka, Motomasa; Yamamoto, Satoshi; Hayashi, Shigehiko; Saito, Sadafumi; Sugano, Shigeki

    We are now developing the strawberry harvest robot called “M-3” prototype robot system under the 4th urgent project of MAFF. In order to develop the control software of the M-3 robot more efficiently, we innovated the RT-middleware “OpenRTM-aist” software platform. In this system, we developed 9 kind of RT-Components (RTC): Robot task sequence player RTC, Proxy RTC for image processing software, DC motor controller RTC, Arm kinematics RTC, and so on. In this paper, we discuss advantages of RT-middleware developing system and problems about operating the RTC-configured robotic system by end-users.

  1. Corrosion cracking of 03N18K1M3TYu and 02N12Kh5M3 maraging steels in chloride solutions

    SciTech Connect

    Pavlov, V.N.; Chumalo, G.V.; Vereshchagin, A.N.; Melekhov, R.K.

    1987-07-01

    The authors investigate the electrochemical behavior in 0.5% NaCl solution and 42% MgCl/sub 2/ solution and the tendency toward corrosion cracking was determined in boiling 0.5% chloride solution of the cobalt-containing maraging steels in the title. Weld specimens and specimens of the base metal of 03N18K1M3TYu steel were tested in 3% NaCl solution for resistance to corrosion cracking. Additional investigations were made of specimens of that steel with previously created fatigue cracks of the base metal and the weld specimens in 3% NaCl solutions, since that steel is a promising material for structures operating in sea water and low concentration chloride solutions.

  2. Determination of the pairing-strength constants in the isovector plus isoscalar pairing case

    NASA Astrophysics Data System (ADS)

    Mokhtari, D.; Fellah, M.; Allal, N. H.

    2016-05-01

    A method for the determination of the pairing-strength constants, in the neutron-proton (n-p) isovector plus isoscalar pairing case, is proposed in the framework of the BCS theory. It is based on the fitting of these constants to reproduce the experimentally known pairing gap parameters as well as the root-mean-squared (r.m.s) charge radii values. The method is applied to some proton-rich even-even nuclei. The single-particle energies used are those of a deformed Woods-Saxon mean field. It is shown that the obtained value of the ratio GnpT=0/G npT=1 is of the same order as the ones, arbitrary chosen, of some previous works. The effect of the inclusion of the isoscalar n-p pairing in the r.m.s matter radii is then numerically studied for the same nuclei.

  3. Complete Genome Sequence of the Novel Leech Symbiont Mucinivorans hirudinis M3T

    PubMed Central

    Bomar, Lindsey

    2015-01-01

    Mucinivorans hirudinis M3T was isolated from the digestive tract of the medicinal leech, Hirudo verbana, and is the type species of a new genus within the Rikenellaceae. Here, we report the complete annotated genome sequence of this bacterium. PMID:25657285

  4. Foton-M3 Unmanned Russian Research Satellite- Development, Implementation and Operations

    NASA Astrophysics Data System (ADS)

    Ilyin, Eugene A.; Skidmore, Michael G.

    2008-06-01

    The Foton-M3 spacecraft launched from Baikonur Cosmodrome (Kazakhstan) on 14 September 2007 and landed 12 days later approximately 130 km south of Kustanay, Northern Kazakhstan. Following the successful National Aeronautics and Space Administration (NASA) and Institute for Biomedical Problems (IMBP) collaboration on the Russian Foton-M2 spaceflight (June 2005), IMBP invited NASA to continue and broaden its participation in four Russian biomedical studies on the Foton-M3 spaceflight. Where the Foton-M2 collaboration had been accomplished without an exchange of funds, the basis for the ongoing bilateral interaction on Foton-M3 was both a cooperative Space Act Agreement and a NASA contract with IMBP. As in Foton-M2, NASA scientists agreed to focus their efforts on research that would be complementary and would facilitate the accomplishment of the original Russian science goals. Foton-M3 hardware enhancements included NASA inserts installed in the IMBP flight hardware to provide programmable in-flight video recording for newts and geckos, drinking water for the geckos, and a preflight "shower" of Bromodeoxyuridine (BrdU) for the newts.

  5. Seeing the Moon In a New Light: Educational Resources Developed in Association with M3

    NASA Astrophysics Data System (ADS)

    Runyon, C. J.; Shupla, C.; Shipp, S. S.; Hallau, K.; Boyce, K.; Pieters, C. M.

    2009-12-01

    M3 is a high spatial and spectral resolution spectrometer designed to help scientists better understand the compositional variation of the Moon’s surface. Flown on India’s first spacecraft to the Moon, Chandrayaan-1, M3 collected over 4.6 billion spectra! To facilitate student awareness and understanding of these data and resulting imagery, our team co-sponsors an on-line course, Geology of the Moon, for pre- and in-service teachers through Montana State University and has generated an educator guide: Seeing the Moon: Using Light to Investigate the Moon. This guide is a series of educational inquiry-based and hands-on activity modules created in support of the M3 science. In these modules, students investigate the physics of light and the geologic history of the Moon. Through these dynamic activities, 5th to 8th grade students experiment with light and color; collect and analyze authentic spectral data from rock samples using an ALTA hand-held reflectance spectrometer; map the rock types of the Moon; and develop theories of the Moon's history. M3 classroom loaner kits that include a lunar globe, rock samples, sets of the ALTA reflectance spectrometers, and more are available upon request.

  6. Kinetics of vortex formation in superconductors with d pairing

    NASA Astrophysics Data System (ADS)

    Filippov, A. E.; Radievsky, A. V.; Zeltser, A. S.

    1996-08-01

    We study the kinetics of vortex formation in superconductors with d pairing. We find order-parameter peculiarities and associated magnetic field maxima at intermediate stages of the evolution from the disordered to the ordered state.

  7. Experiments on a Cooper pair insulator

    NASA Astrophysics Data System (ADS)

    Nguyen, Hung Q.

    At temperatures below 1K, nm thick a-Bi/Sb films, patterned with a nanohoneycomb array of holes, exhibit a novel electronic state consisting of localized Cooper pairs[1]. The Superconductor Insulator Transition (SIT), a phenomenon where the ground state of electrons is tuned from a superconducting to an insulating state, on this patterned homogeneous system shows a clear bosonic nature with activated transport on the insulating side. To date, this homogeneous system is the only one that shows clear evidence for the localization of Cooper pairs. Experiments are described that were performed to further characterize the properties of the localized Cooper pair state and its superconductor to insulator transitions. We show that: (i) The shape of the magnetoresistance (MR) oscillations, which indicate the presence of Cooper pairs in these multiply connected systems, depends on the geometry of the underlying substrates, but not on parameters like the temperature or thickness of the films. The magnetic field tuned SITs of films that are just thick enough to superconduct at zero magnetic field exhibit a common critical sheet resistance separating the superconducting and insulating phases in the range of 3.5 to 5kO. We also report a new type of SIT, an incommensurability driven SIT, which occurs due to the interplay of magnetic field and disorder in the arrangement of the honeycomb array of holes. (ii) The Cooper pair insulator state exhibits a giant positive MR, which peaks at a field estimated to be sufficient to break the pairs. The electrical transport on the low field side of the peak is activated. At the highest fields, it resembles G ˜ log(T), which is consistent with the behavior expected for weakly localized electrons rather than strongly localized Cooper pairs. We discuss this MR peak, compare it to that observed in other amorphous systems and propose a zero temperature phase diagram for these films.

  8. Divergent evolution of the M3A family of metallopeptidases in plants.

    PubMed

    Kmiec, Beata; Teixeira, Pedro F; Murcha, Monika W; Glaser, Elzbieta

    2016-07-01

    Plants, as stationary organisms, have developed mechanisms allowing them efficient resource reallocation and a response to changing environmental conditions. One of these mechanisms is proteome remodeling via a broad peptidase network present in various cellular compartments including mitochondria and chloroplasts. The genome of the model plant Arabidopsis thaliana encodes as many as 616 putative peptidase-coding genes organized in 55 peptidase families. In this study, we describe the M3A family of peptidases, which comprises four members: mitochondrial and chloroplastic oligopeptidase (OOP), cytosolic oligopeptidase (CyOP), mitochondrial octapeptidyl aminopeptidase 1 (Oct1) and plant-specific protein of M3 family (PSPM3) of unknown function. We have analyzed the evolutionary conservation of M3A peptidases across plant species and the functional specialization of the three distinct subfamilies. We found that the subfamily-containing OOP and CyOP-like peptidases, responsible for oligopeptide degradation in the endosymbiotic organelles (OOP) or in the cytosol (CyOP), are highly conserved in all kingdoms of life. The Oct1-like peptidase subfamily involved in pre-protein maturation in mitochondria is conserved in all eukaryotes, whereas the PSPM3-like protein subfamily is strictly conserved in higher plants only and is of unknown function. Specific characteristics within PSPM3 sequences, i.e. occurrence of a N-terminal transmembrane domain and amino acid changes in distal substrate-binding motif, distinguish PSPM3 proteins from other members of M3A family. We performed peptidase activity measurements to analyze the role of substrate-binding residues in the different Arabidopsis M3A paralogs. PMID:27100569

  9. Reactor performance of a 750 m(3) anaerobic digestion plant: varied substrate input conditions impacting methanogenic community.

    PubMed

    Wagner, Andreas Otto; Malin, Cornelia; Lins, Philipp; Gstraunthaler, Gudrun; Illmer, Paul

    2014-10-01

    A 750 m(3) anaerobic digester was studied over a half year period including a shift from good reactor performance to a reduced one. Various abiotic parameters like volatile fatty acids (VFA) (formic-, acetic-, propionic-, (iso-)butyric-, (iso-)valeric-, lactic acid), total C, total N, NH4 -N, and total proteins, as well as the organic matter content and dry mass were determined. In addition several process parameters such as temperature, pH, retention time and input of substrate and the concentrations of CH4, H2, CO2 and H2S within the reactor were monitored continuously. The present study aimed at the investigation of the abundance of acetogens and total cell numbers and the microbial methanogenic community as derived from PCR-dHPLC analysis in order to put it into context with the determined abiotic parameters. An influence of substrate quantity on the efficiency of the anaerobic digestion process was found as well as a shift from a hydrogenotrophic in times of good reactor performance towards an acetoclastic dominated methanogenic community in times of reduced reactor performance. After the change in substrate conditions it took the methano-archaeal community about 5-6 weeks to be affected but then changes occurred quickly. PMID:24727280

  10. Dynamics of a vortex pair in radial flow

    SciTech Connect

    Bannikova, E. Yu. Kontorovich, V. M. Reznik, G. M.

    2007-10-15

    The problem of vortex pair motion in two-dimensional radial flow is solved. Under certain conditions for flow parameters, the vortex pair can reverse its motion within a bounded region. The vortex-pair translational velocity decreases or increases after passing through the source/sink region, depending on whether the flow is diverging or converging, respectively. The rotational motion of a corotating vortex pair in a quiescent environment transforms into motion along a logarithmic spiral in radial flow. The problem may have applications in astrophysics and geophysics.

  11. Schwinger pair production with ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kasper, V.; Hebenstreit, F.; Oberthaler, M. K.; Berges, J.

    2016-09-01

    We consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron-positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair production including the backreaction leading to plasma oscillations. Unlike previous investigations on quantum link models, we focus on the infinite-dimensional Hilbert space of QED and show that it may be well approximated by experiments employing Bose-Einstein condensates interacting with fermionic atoms. Numerical calculations based on functional integral techniques give a unique access to the physical parameters required to realize QED phenomena in a cold atom experiment. In particular, we use our approach to consider quantum link models in a yet unexplored parameter regime and give bounds for their ability to capture essential features of the physics. The results suggest a paradigmatic change towards realizations using coherent many-body states for quantum simulations of high-energy particle physics phenomena.

  12. Multiprocessor switch with selective pairing

    SciTech Connect

    Gara, Alan; Gschwind, Michael K; Salapura, Valentina

    2014-03-11

    System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus

  13. On the pairing effects in triaxial nuclei

    SciTech Connect

    Oudih, M. R.; Fellah, M.; Allal, N. H.

    2014-03-05

    Triaxial deformation effect on the pairing correlations is studied in the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Quantities such as binding energy, gap parameter and particle-number fluctuation are considered in neutron-rich Mo isotopes. The results are compared with those of axially symmetric calculation and with available experimental data. The role played by the particle-number projection is outlined.

  14. Multiple origins of asteroid pairs

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.

    2016-01-01

    Rotationally fissioned asteroids produce unbound asteroid pairs that have very similar heliocentric orbits. Backward integration of their current heliocentric orbits provides an age of closest proximity that can be used to date the rotational fission event. Most asteroid pairs follow a predicted theoretical relationship between the primary spin period and the mass ratio of the two pair members that is a direct consequence of the YORP-induced rotational fission hypothesis. If the progenitor asteroid has strength, asteroid pairs may have higher mass ratios or faster rotating primaries. However, the process of secondary fission leaves the originally predicted trend unaltered. We also describe the characteristics of pair members produced by four alternative routes from a rotational fission event to an asteroid pair. Unlike direct formation from the event itself, the age of closest proximity of these pairs cannot generally be used to date the rotational fission event since considerable time may have passed.

  15. Pair Cascades and Deathlines in Offset Magnetic Dipole Fields

    NASA Technical Reports Server (NTRS)

    Harding, Alice; Muslimov, Alex

    2010-01-01

    We investigate electron-positron pair cascades in a dipole magnetic field whose axis is offset from the neutron star center. In such a field geometry, the polar cap is displaced from the neutron star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the polar cap of an offset dipole, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset parameter. We find that the pair multiplicity can change dramatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity.

  16. The Development of M3S-Based GPS Navchair and Tele-Monitor System.

    PubMed

    Wu, Yi-Hui; Lu, Bing-Yuh; Chen, Heng-Yin; Ou-Yang, Yao; Lai, Jin-Shin; Kuo, Te-Son; Chong, Fok-Ching

    2005-01-01

    The purpose of this study is to develop a M3S- Based GPS navigation system for power wheelchair. The wheelchair steered with GPS and electronic compass can move automatically toward a specific destination through a GIS-Map in the computer. The topic of this study is to help people with disabilities regain independence of transportation in specific areas of their daily activities. This system is now designed to operate in special locations, for example, campuses or airports. Safety of the system is enhanced according to "M3S", which is an international standard for power wheelchair. In the proposed architecture, modules are easily and securely integrated to the wheelchair, which includes a tele-monitor system implemented with computer network, mobile-phone and physiological sensors. Bio-signals, wheelchair location and other information of the user are acquired by the nursing staff or any other medical personnel by using this system. PMID:17281122

  17. The Moon Mineralogy (M3) Imaging Spectrometer: Early Assessment of the Spectral, Radiometric, Spatial and Uniformity Properties

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Pieters, C. M.; Boardman, J.; Barr, D.; Bruce, C.; Bousman, J.; Chatterjee, A.; Eastwood, M.; Essandoh, V.; Geier, S.; Glavich, T.; Green, R.; Haemmerle, V.; Hyman, S.; Hovland, L.; Koch, T.; Lee, K.; Lundeen, S.; Motts, E.; Mouroulis, P.; Paulson, S.; Plourde, K.; Racho, C.; Robinson, D.; Rodriquez, J.

    2009-01-01

    The Moon Mineralogy Mapper's (M3) is a high uniformity and high signal-to-noise ratio NASA imaging spectrometer that is a guest instrument on the Indian Chandrayaan-1 Mission to the Moon. The laboratory measured spectral, radiometric, spatial, and uniformity characteristics of the M3 instrument are given. The M3 imaging spectrometer takes advantage of a suite of critical enabling capabilities to achieve its measurement requirement with a mass of 8 kg, power usage of 15 W, and volume of 25X18X12 cm. The M3 detector and spectrometer are cooled by a multi-stage passive cooler. This paper presents early M3 performance assessment results.

  18. Ten-m3 Is Required for the Development of Topography in the Ipsilateral Retinocollicular Pathway

    PubMed Central

    Dharmaratne, Nuwan; Glendining, Kelly A.; Young, Timothy R.; Tran, Heidi; Sawatari, Atomu; Leamey, Catherine A.

    2012-01-01

    Background The alignment of ipsilaterally and contralaterally projecting retinal axons that view the same part of visual space is fundamental to binocular vision. While much progress has been made regarding the mechanisms which regulate contralateral topography, very little is known of the mechanisms which regulate the mapping of ipsilateral axons such that they align with their contralateral counterparts. Results Using the advantageous model provided by the mouse retinocollicular pathway, we have performed anterograde tracing experiments which demonstrate that ipsilateral retinal axons begin to form terminal zones (TZs) in the superior colliculus (SC), within the first few postnatal days. These appear mature by postnatal day 11. Importantly, TZs formed by ipsilaterally-projecting retinal axons are spatially offset from those of contralaterally-projecting axons arising from the same retinotopic location from the outset. This pattern is consistent with that required for adult visuotopy. We further demonstrate that a member of the Ten-m/Odz/Teneurin family of homophilic transmembrane glycoproteins, Ten-m3, is an essential regulator of ipsilateral retinocollicular topography. Ten-m3 mRNA is expressed in a high-medial to low-lateral gradient in the developing SC. This corresponds topographically with its high-ventral to low-dorsal retinal gradient. In Ten-m3 knockout mice, contralateral ventrotemporal axons appropriately target rostromedial SC, whereas ipsilateral axons exhibit dramatic targeting errors along both the mediolateral and rostrocaudal axes of the SC, with a caudal shift of the primary TZ, as well as the formation of secondary, caudolaterally displaced TZs. In addition to these dramatic ipsilateral-specific mapping errors, both contralateral and ipsilateral retinocollicular TZs exhibit more subtle changes in morphology. Conclusions We conclude that important aspects of adult visuotopy are established via the differential sensitivity of ipsilateral and

  19. Stereo Pair, Honolulu, Oahu

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Honolulu, on the island of Oahu, is a large and growing urban area. This stereoscopic image pair, combining a Landsat image with topography measured by the Shuttle Radar Topography Mission (SRTM), shows how topography controls the urban pattern. This color image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    Features of interest in this scene include Diamond Head (an extinct volcano near the bottom of the image), Waikiki Beach (just above Diamond Head), the Punchbowl National Cemetary (another extinct volcano, near the image center), downtown Honolulu and Honolulu harbor (image left-center), and offshore reef patterns. The slopes of the Koolau mountain range are seen in the right half of the image. Clouds commonly hang above ridges and peaks of the Hawaiian Islands, but in this synthesized stereo rendition appear draped directly on the mountains. The clouds are actually about 1000 meters (3300 feet) above sea level.

    This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with a Landsat 7 Thematic Mapper image collected at the same time as the SRTM flight. The topography data were used to create two differing perspectives, one for each eye. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the

  20. Stereo Pair, Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown. The cluster of large buildings left of center, at the base of the mountains, is the Jet Propulsion Laboratory. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation, U. S. Geological Survey digital aerial photography provided the image detail, and the Landsat Thematic Mapper provided the color. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data and the aerial photography. The image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration

  1. M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies

    USGS Publications Warehouse

    Kramer, G.Y.; Besse, S.; Dhingra, D.; Nettles, J.; Klima, R.; Garrick-Bethell, I.; Clark, R.N.; Combe, J.-P.; Head, J. W., III; Taylor, L.A.; Pieters, C.M.; Boardman, J.; McCord, T.B.

    2011-01-01

    We examined the lunar swirls using data from the Moon Mineralogy Mapper (M3). The improved spectral and spatial resolution of M3 over previous spectral imaging data facilitates distinction of subtle spectral differences, and provides new information about the nature of these enigmatic features. We characterized spectral features of the swirls, interswirl regions (dark lanes), and surrounding terrain for each of three focus regions: Reiner Gamma, Gerasimovich, and Mare Ingenii. We used Principle Component Analysis to identify spectrally distinct surfaces at each focus region, and characterize the spectral features that distinguish them. We compared spectra from small, recent impact craters with the mature soils into which they penetrated to examine differences in maturation trends on- and off-swirl. Fresh, on-swirl crater spectra are higher albedo, exhibit a wider range in albedos and have well-preserved mafic absorption features compared with fresh off-swirl craters. Albedoand mafic absorptions are still evident in undisturbed, on-swirl surface soils, suggesting the maturation process is retarded. The spectral continuum is more concave compared with off-swirl spectra; a result of the limited spectral reddening being mostly constrained to wavelengths less than ???1500 nm. Off-swirl spectra show very little reddening or change in continuum shape across the entire M3 spectral range. Off-swirl spectra are dark, have attenuated absorption features, and the narrow range in off-swirl albedos suggests off-swirl regions mature rapidly. Spectral parameter maps depicting the relative OH surface abundance for each of our three swirl focus regions were created using the depth of the hydroxyl absorption feature at 2.82 ??m. For each of the studied regions, the 2.82 ??m absorption feature is significantly weaker on-swirl than off-swirl, indicating the swirls are depleted in OH relative to their surroundings. The spectral characteristics of the swirls and adjacent terrains from

  2. Frustrated Lewis Pairs.

    PubMed

    Stephan, Douglas W

    2015-08-19

    The articulation of the notion of "frustrated Lewis pairs" (FLPs), which emerged from the discovery that H2 can be reversibly activated by combinations of sterically encumbered Lewis acids and bases, has prompted a great deal of recent activity. Perhaps the most remarkable consequence has been the development of FLP catalysts for the hydrogenation of a range of organic substrates. In the past 9 years, the substrate scope has evolved from bulky polar species to include a wide range of unsaturated organic molecules. In addition, effective stereoselective metal-free hydrogenation catalysts have begun to emerge. The mechanism of this activation of H2 has been explored, and the nature and range of Lewis acid/base combinations capable of effecting such activation have also expanded to include a variety of non-metal species. The reactivity of FLPs with a variety of other small molecules, including olefins, alkynes, and a range of element oxides, has also been developed. Although much of this latter chemistry has uncovered unique stoichiometric transformations, metal-free catalytic hydroamination, CO2 reduction chemistry, and applications in polymerization have also been achieved. The concept is also beginning to find applications in bioinorganic and materials chemistry as well as heterogeneous catalysis. This Perspective highlights many of these developments and discusses the relationship between FLPs and established chemistry. Some of the directions and developments that are likely to emerge from FLP chemistry in the future are also presented. PMID:26214241

  3. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence. PMID:17730606

  4. Stress drop and its Uncertainty for Earthquakes M3.8-5.5 in Central California and Oklahoma

    NASA Astrophysics Data System (ADS)

    Ding, Luyuan

    Stress drop is the stress that is effectively available to drive fault motion. It is a key parameter in predicting peak ground acceleration (PGA), since PGA∝, and it is very important in estimating ground motion. However, it is difficult to get an accurate estimation of stress drop. In order to get a more stable measurement of stress drop, we test two methods in this thesis: the first one is the Brune stress drop, which is more commonly applied, and the second one is the Arms stress drop, which less applied before and theoretically should have less uncertainty. By comparing these two methods we would like to test the feasibility and stability of the Arms method. We applied these two methods to data of earthquakes M3-5.5 in California and Oklahoma. We found that, taking Oklahoma results as an example, the mean value of Brune stress drop is 0.38 MPa, with a multiplicative uncertainty of 3.12, and the mean value of Arms stress drop is 1.04, with a multiplicative uncertainty of 1.79. Therefore we concluded that the Arms method is a good estimator of stress drop, with a smaller uncertainty. We determine the path attenuation so that we can increase the source-station distance of events studied to be as much as 76 km. The path seismic attenuation is a critical parameter that must be included in the analysis.

  5. Parameter Invariance in the Rasch Model.

    ERIC Educational Resources Information Center

    Davison, Mark L.; Chen, Tsuey-Hwa

    This paper explores a logistic regression procedure for estimating item parameters in the Rasch model and testing the hypothesis of item parameter invariance across several groups/populations. Rather than using item responses directly, the procedure relies on "pseudo-paired comparisons" (PC) statistics defined over all possible pairs of items.…

  6. Lone pairs: an electrostatic viewpoint.

    PubMed

    Kumar, Anmol; Gadre, Shridhar R; Mohan, Neetha; Suresh, Cherumuttathu H

    2014-01-16

    A clear-cut definition of lone pairs has been offered in terms of characteristics of minima in molecular electrostatic potential (MESP). The largest eigenvalue and corresponding eigenvector of the Hessian at the minima are shown to distinguish lone pair regions from the other types of electron localization (such as π bonds). A comparative study of lone pairs as depicted by various other scalar fields such as the Laplacian of electron density and electron localization function is made. Further, an attempt has been made to generalize the definition of lone pairs to the case of cations. PMID:24372481

  7. Methods for Identifying Pair Halos

    NASA Astrophysics Data System (ADS)

    Wells, Brendan; Caputo, Regina; Atwood, William; Ritz, Steven M.

    2016-01-01

    The flux of very high energy gamma rays from active galactic nuclei (AGN) is attenuated via interactions with extragalactic background photons and is converted into e+e- pairs. With non-zero intergalactic magnetic fields, the electrons and positrons will deflect as they propagate and simultaneously lose energy by upscattering cosmic microwave background photons. "Pair halos," the visible consequences of these electromagnetic cascades, are faint and difficult to observe against their AGN counterparts. We investigate three methods for indirectly identifying pair halos, using a two-component approach to model the AGN core/halo image. We estimate each method's sensitivity by utilizing a new, detailed Monte Carlo pair-halo simulation.

  8. Controversies in kidney paired donation.

    PubMed

    Gentry, Sommer E; Montgomery, Robert A; Segev, Dorry L

    2012-07-01

    Kidney paired donation represented 10% of living kidney donation in the United States in 2011. National registries around the world and several separate registries in the United States arrange paired donations, although with significant variations in their practices. Concerns about ethical considerations, clinical advisability, and the quantitative effectiveness of these approaches in paired donation result in these variations. For instance, although donor travel can be burdensome and might discourage paired donation, it was nearly universal until convincing analysis showed that living donor kidneys can sustain many hours of cold ischemia time without adverse consequences. Opinions also differ about whether the last donor in a chain of paired donation transplants initiated by a nondirected donor should donate immediately to someone on the deceased donor wait-list (a domino or closed chain) or should be asked to wait some length of time and donate to start another sequence of paired donations later (an open chain); some argue that asking the donor to donate later may be coercive, and others focus on balancing the probability that the waiting donor withdraws versus the number of additional transplants if the chain can be continued. Other controversies in paired donation include simultaneous versus nonsimultaneous donor operations, whether to enroll compatible pairs, and interactions with desensitization protocols. Efforts to expand public awareness of and participation in paired donation are needed to generate more transplant opportunities. PMID:22732046

  9. Chaotic scattering of two vortex pairs

    NASA Astrophysics Data System (ADS)

    Tophøj, Laust; Aref, Hassan

    2008-11-01

    Chaotic scattering of two vortex pairs with slightly different circulations was considered by Eckhardt & Aref in 1988. A new numerical exploration suggests that the motion of two vortex pairs, with constituent vortices all of the same absolute circulation, also displays chaotic scattering regimes. The mechanisms leading to chaotic scattering are different from the ``slingshot effect'' identified by Price [Phys. Fluids A, 5, 2479 (1993)] and occur in a different region of the four-vortex phase space. They may in many cases be understood by appealing to the solutions of the three-vortex problem obtained by merging two like-signed vortices into one of twice the strength, and by assuming that the four-vortex problem has unstable, periodic solutions similar to those seen in the thereby associated three-vortex problems. The integrals of motion, linear impulse and Hamiltonian, are recast in a form appropriate for vortex pair scattering interactions that provides constraints on the parameters characterizing the outgoing vortex pairs in terms of the initial conditions.

  10. Pairs of promoter pairs in a web of transcription.

    PubMed

    Kaplan, Craig D

    2016-08-30

    A new analysis has characterized a fundamental building block of complex transcribed loci. Constellations of core promoters can generally be reduced to pairs of divergent transcription units, where the distance between the pairs of transcription units correlates with constraints on genomic context, which in turn contribute to transcript fate. PMID:27573684

  11. Describing the heavy-ion above-barrier fusion using the bare potentials resulting from Migdal and M3Y double-folding approaches

    NASA Astrophysics Data System (ADS)

    Gontchar, I. I.; Chushnyakova, M. V.

    2016-08-01

    Systematic calculations of the Coulomb barrier parameters for collisions of spherical nuclei are performed within the framework of the double folding approach. The value of the parameter {B}Z={Z}P{Z}T/({A}P{1/3}+{A}T{1/3}) (which estimates the Coulomb barrier height) varies in these calculations from 10 MeV up to 150 MeV. The nuclear densities came from the Hartree-Fock calculations which reproduce the experimental charge densities with good accuracy. For the nucleon-nucleon effective interaction two analytical approximations known in the literature are used: the M3Y and Migdal forces. The calculations show that Migdal interaction always results in the higher Coulomb barrier. Moreover, as B Z increases the difference between the M3Y and Migdal barrier heights systematically increases as well. As the result, the above barrier fusion cross sections calculated dynamically with the M3Y forces and surface friction are in agreement with the data. The cross sections calculated with the Migdal forces are always below the experimental data even without accounting for the dissipation.

  12. Galactic Bridges in Pairs

    NASA Astrophysics Data System (ADS)

    Thierjung, Brianna; Jorge Moreno, Paul Torrey, Phil Hopkins

    2016-01-01

    We employ a suite of 75 simulations of galaxies in idealized major mergers to investigate the bridges formed by interactions. These simulations are based on the Feedback in Realistic Environments (FIRE) model (Hopkins et al. 2011). Moreover, unlike past work, we have both the resolution and diversity in merging orbits to make statistically meaningful predictions. We find that very dense, star forming bridges can be characterized as strong bridges. In particular, prograde mergers with high eccentricities and high impact parameters produce the most mass of stars in the bridge.

  13. X-ray Spectroscopy of E2 and M3 Transitions in Ni-like W

    SciTech Connect

    Clementson, J; Beiersdorfer, P; Gu, M F

    2009-11-09

    The electric quadrupole (E2) and magnetic octupole (M3) ground state transitions in Ni-like W{sup 46+} have been measured using high-resolution crystal spectroscopy at the Livermore electron beam ion trap facility. The lines fall in the soft x-ray region near 7.93 {angstrom} and were originally observed as an unresolved feature in tokamak plasmas. Using flat ADP and quartz crystals the wavelengths, intensities, and polarizations of the two lines have been measured for various electron beam energies and compared to intensity and polarization calculations performed using the Flexible Atomic Code (FAC).

  14. X-ray spectroscopy of E2 and M3 transitions in Ni-like W

    SciTech Connect

    Clementson, J.; Beiersdorfer, P.; Gu, M. F.

    2010-01-15

    The electric quadrupole (E2) and magnetic octupole (M3) ground-state transitions in Ni-like W{sup 46+} have been measured using high-resolution crystal spectroscopy at the LLNL electron-beam ion trap facility. The lines fall in the soft x-ray region near 7.93 A and were originally observed as an unresolved feature in tokamak plasmas. Using flat ammonium dihydrogen phosphate and quartz crystals, the wavelengths, intensities, and polarizations of the two lines have been measured for various electron-beam energies and compared to intensity and polarization calculations performed using the Flexible Atomic Code (FAC).

  15. Lunar Exploration Insights Recognized from Chandrayaan-1 M3 Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Pieters, Carle; Green, Robert O.; Boardman, Joseph

    2016-07-01

    One of the most important lessons learned from the renaissance of lunar exploration over the last decade is that new discoveries and surprises occur with every new mission to the Moon. Although the color of the Moon had been measured using Earth-based telescopes even before Apollo, modern instruments sent to orbit the Moon provide a scope of inquiry unimaginable during the last century. Spacecraft have now been successfully sent to the Moon by six different space agencies from around the world and the number is growing. The Indian Chandrayaan- 1 spacecraft carried a suite of indigenous instruments as well as several guest instruments from other countries, including the Moon Mineralogy Mapper (M-cube) supplied by NASA. Even though Chandrayaan's lifetime in orbit was shortened by technical constraints, M3 provided a taste of the power of near-infrared imaging spectroscopy used for science and exploration at the Moon. Contrary to expectations, the lunar surface was discovered to be hydrated, which is now known to result from solar wind H combining with O of rocks and soil. Surficial hydration was found to be pervasive across the Moon and the limited data hint at both local concentrations and temporal variations. The prime objective of M3 was to characterize lunar mineralogy in a spatial context. Working in tandem with related instruments on JAXA's SELENE, M3 readily recognized and mapped known minerals from mare and highland terrains (pyroxenes, olivine) at high resolution, but also detected diagnostic properties of crystalline plagioclase which, when mapped across a spatial context, enabled the unambiguous identification of a massive crustal layer of plagioclase that clearly resulted from an early magma ocean. An additional surprise came with the discovery of a new rock type on the Moon that had not been recognized in samples returned by Apollo and Luna: a Mg-rich spinel anorthosite associated with material excavated from some of the greatest lunar depths. In

  16. Three-component fermion pairing in two dimensions

    SciTech Connect

    De Silva, Theja N.

    2009-07-15

    We study pairing of an interacting three-component Fermi gas in two dimensions. By using a mean-field theory to decouple the interactions between different pairs of Fermi components, we study the free energy landscapes as a function of various system parameters including chemical potentials, binding energies, and temperature. We find that the s-wave pairing channel is determined by both chemical potentials and the interaction strengths between the three available channels. We find a second-order thermal phase transition and a series of first-order quantum phase transitions for a homogenous system as we change the parameters. In particular, for symmetric parameters, we find the simultaneous existence of three superfluid orders as well as re-entrant quantum phase transitions as we tune the parameters.

  17. Adapting a generic BEAMnrc model of the BrainLAB m3 micro-multileaf collimator to simulate a local collimation device.

    PubMed

    Kairn, T; Aland, T; Franich, R D; Johnston, P N; Kakakhel, M B; Kenny, J; Knight, R T; Langton, C M; Schlect, D; Taylor, M L; Trapp, J V

    2010-09-01

    This work is focussed on developing a commissioning procedure so that a Monte Carlo model, which uses BEAMnrc's standard VARMLC component module, can be adapted to match a specific BrainLAB m3 micro-multileaf collimator (microMLC). A set of measurements are recommended, for use as a reference against which the model can be tested and optimized. These include radiochromic film measurements of dose from small and offset fields, as well as measurements of microMLC transmission and interleaf leakage. Simulations and measurements to obtain microMLC scatter factors are shown to be insensitive to relevant model parameters and are therefore not recommended, unless the output of the linear accelerator model is in doubt. Ultimately, this note provides detailed instructions for those intending to optimize a VARMLC model to match the dose delivered by their local BrainLAB m3 microMLC device. PMID:20702922

  18. Pair Programming: Issues and Challenges

    NASA Astrophysics Data System (ADS)

    Lui, Kim Man; Barnes, Kyle Atikus; Chan, Keith C. C.

    Pair programming, two programmers collaborating on design, coding and testing, has been a controversial focus of interest as Agile Software Development continues to grow in popularity both among academics and practitioners. As a result of the many investigations into the effectiveness of pair programming in the last decade, many have come to realize that there are many hard-to-control factors in pair programming in particular and in empirical software engineering in general. Because of these factors, the results of many pair programming experiments are not easy to replicate and the relative productivity of pair and solo programming are still not fully understood. So far, it has been concluded by previous studies that pair programming productivity can vary, but few have shown how and why this is the case. In this chapter, we discuss a number of challenging factors in the adoption of pair programming and present an approach to deal with them. We discuss how different factors may affect our experimental outcomes and improve experiment design to reveal how and why pair programming can be made productive, at least, in controlled situations.

  19. Assessment Strategies for Pair Programming

    ERIC Educational Resources Information Center

    Hahn, Jan Hendrik; Mentz, Elsa; Meyer, Lukas

    2009-01-01

    Although pair programming has proved its usefulness in teaching and learning programming skills, it is difficult to assess the individual roles and abilities of students whilst programming in pairs. (Note that within this manuscript, the term assessment refers to evaluating individual student performance.) Assessing only the outcomes of a pair…

  20. ON THE MODULATION OF RR LYRAE STARS IN THE GLOBULAR CLUSTER M3

    SciTech Connect

    Jurcsik, J.; Smitola, P.; Nuspl, J.; Hajdu, G.

    2014-12-10

    New, extended time-series photometry of M3 RR Lyrae stars has revealed that 4 of the 10 double-mode stars show large-amplitude Blazhko modulation of both radial modes. The first, detailed analysis of the peculiar behavior of the unique, Blazhko RRd stars is given. While the P1/P0 period ratio is normal, and the overtone mode is dominant in the other RRd stars of the cluster, the period ratio is anomalous and the fundamental mode has a larger (or similar) mean amplitude than the overtone has in Blazhko RRd stars. The modulations of the fundamental and overtone modes are synchronized only in one of the Blazhko RRd stars. No evidence of any connection between the modulations of the modes in the other three stars is found. The Blazhko modulation accounts, at least partly, for the previously reported amplitude and period changes of these stars. Contrary to the ∼50% Blazhko statistics of RRab and RRd stars, Blazhko modulation occurs only in 10% of the overtone variables in M3. Four of the five Blazhko RRc stars are bright, evolved objects, and one has a period and brightness similar to those of Blazhko RRd stars. The regions of the instability strip with high and low occurrence rates of the Blazhko modulation overlap with the regions populated by first- and second-generation stars according to theoretical and observational studies, raising up the possibility that the Blazhko modulation occurs preferentially in first-generation RR Lyrae stars.

  1. M1-M3 muscarinic acetylcholine receptor-deficient mice: novel phenotypes.

    PubMed

    Gautam, Dinesh; Duttaroy, Alokesh; Cui, Yinghong; Han, Sung-Jun; Deng, Chuxia; Seeger, Thomas; Alzheimer, Christian; Wess, Jürgen

    2006-01-01

    The five muscarinic acetylcholine receptors (M1-M5 mAChRs) mediate a very large number of important physiological functions (Caulfield, 1993; Caulfield and Birdsall, 1998; Wess, 2004). Because of the lack of small molecule ligands endowed with a high degree of receptor subtype selectivity and the fact that most tissues or cell types express two or more mAChR subtypes, identification of the physiological and pathophysiological roles of the individual mAChR subtypes has proved to be a challenging task. To overcome these difficulties, we recently generated mutant mouse lines deficient in each of the five mAChR genes (M1R-/- mice, M2R-/- mice, M3R-/- mice, etc. [Wess, 2004]). Phenotyping studies showed that each of the five mutant mouse lines displayed characteristic physiological, pharmacological, behavioral, biochemical, or neurochemical deficits (Wess, 2004). This chapter summarizes recent findings dealing with the importance of the M2mAChR for cognitive processes and the roles of the M1 and M3 mAChRs in mediating stimulation of glandular secretion. PMID:17192665

  2. M3D: a kernel-based test for spatially correlated changes in methylation profiles

    PubMed Central

    Mayo, Tom R.; Schweikert, Gabriele; Sanguinetti, Guido

    2015-01-01

    Motivation: DNA methylation is an intensely studied epigenetic mark implicated in many biological processes of direct clinical relevance. Although sequencing-based technologies are increasingly allowing high-resolution measurements of DNA methylation, statistical modelling of such data is still challenging. In particular, statistical identification of differentially methylated regions across different conditions poses unresolved challenges in accounting for spatial correlations within the statistical testing procedure. Results: We propose a non-parametric, kernel-based method, M3D, to detect higher order changes in methylation profiles, such as shape, across pre-defined regions. The test statistic explicitly accounts for differences in coverage levels between samples, thus handling in a principled way a major confounder in the analysis of methylation data. Empirical tests on real and simulated datasets show an increased power compared to established methods, as well as considerable robustness with respect to coverage and replication levels. Availability and implementation: R/Bioconductor package M3D. Contact: G.Sanguinetti@ed.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25398611

  3. Expression of the rat muscarinic receptor gene m3 in Dictyostelium discoideum.

    PubMed

    Voith, G; Kramm, H; Zündorf, I; Winkler, T; Dingermann, T

    1998-10-01

    We functionally expressed the rat muscarinic m3 receptor (rm3) in the cellular slime mold Dictyostelium discoideum under the control of the homologous discoidin I gamma promoter. Cells transfected with the authentic rm3 receptor gene expressed about 100 functional receptor molecules per cell, corresponding to a Bmax for [3H]-NMS of 36 +/- 9 fmol/mg of protein in isolated membranes. Genetic fusion of the Dictyostelium contact site A (csA) leader peptide to the amino terminus of rm3 increased the receptor expression by about 17-fold. Remarkable, in [3H]-NMS ligand binding experiments performed with whole cells no characteristic saturable binding was observed and there was no significant difference in [3H]-NMS binding to whole cells of rm3 and csA/rm3 transformants. The recombinant rm3 receptor showed an about 10-fold higher affinity to the M3-selective antagonist p-F-HHSiD compared to the M2-selective antagonist AQ-RA 741, suggesting that membranes derived from transgenic D. discoideum cells may be useful for the search of new subtype-specific muscarinic receptor ligands. PMID:9812338

  4. Resonant tunneling of fluctuation Cooper pairs

    SciTech Connect

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool for direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.

  5. Locomotion gaits of a rotating cylinder pair

    NASA Astrophysics Data System (ADS)

    van Rees, Wim M.; Novati, Guido; Koumoutsakos, Petros; Mahadevan, L.

    2015-11-01

    Using 2D numerical simulations of the Navier-Stokes equations, we demonstrate that a simple pair of rotating cylinders can display a range of locomotion patterns of biological and engineering interest. Steadily counter-rotating the cylinders causes the pair to move akin to a vortex dipole for low rotation rates, but as the rotational velocity is increased the direction of motion reverses. Unsteady rotations lead to different locomotion gaits that resemble jellyfish (for in-phase rotations) and undulating swimmers (for out-of-phase rotations). The small number of parameters for this simple system allows us to systematically map the phase space of these gaits, and allows us to understand the underlying physical mechanisms using a minimal model with implications for biological locomotion and engineered analogs.

  6. Resonant tunneling of fluctuation Cooper pairs

    DOE PAGESBeta

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool formore » direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.« less

  7. Supernovae in paired host galaxies

    NASA Astrophysics Data System (ADS)

    Nazaryan, T. A.; Petrosian, A. R.; Hakobyan, A. A.; Adibekyan, V. Zh.; Kunth, D.; Mamon, G. A.; Turatto, M.; Aramyan, L. S.

    2014-12-01

    We investigate the influence of close neighbor galaxies on the properties of supernovae (SNe) and their host galaxies using 56 SNe located in pairs of galaxies with different levels of star formation (SF) and nuclear activity. The mean distance of type II SNe from nuclei of hosts is greater by about a factor of 2 than that of type Ibc SNe. For the first time it is shown that SNe Ibc are located in pairs with significantly smaller difference of radial velocities between components than pairs containing SNe Ia and II. We consider this as a result of higher star formation rate (SFR) of these closer systems of galaxies. SN types are not correlated with the luminosity ratio of host and neighbor galaxies in pairs. The orientation of SNe with respect to the preferred direction toward neighbor galaxy is found to be isotropic and independent of kinematical properties of the galaxy pair.

  8. Property (RD) for Hecke Pairs

    NASA Astrophysics Data System (ADS)

    Shirbisheh, Vahid

    2012-06-01

    As the first step towards developing noncommutative geometry over Hecke C ∗-algebras, we study property (RD) (Rapid Decay) for Hecke pairs. When the subgroup H in a Hecke pair ( G, H) is finite, we show that the Hecke pair ( G, H) has (RD) if and only if G has (RD). This provides us with a family of examples of Hecke pairs with property (RD). We also adapt Paul Jolissant's works in Jolissaint (J K-Theory 2:723-735, 1989; Trans Amer Math Soc 317(1):167-196, 1990) to the setting of Hecke C ∗-algebras and show that when a Hecke pair ( G, H) has property (RD), the algebra of rapidly decreasing functions on the set of double cosets is closed under holomorphic functional calculus of the associated (reduced) Hecke C ∗-algebra. Hence they have the same K 0-groups.

  9. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  10. Stereo Pair: Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, near El Cain, Argentina shows complexly eroded volcanic terrain, with basalt mesas, sinkholes, landslide debris, playas, and relatively few integrated drainage channels. Surrounding this site (but also extending far to the east) is a broad plateau capped by basalt, the Meseta de Somuncura. Here, near the western edge of the plateau, erosion has broken through the basalt cap in a variety of ways. On the mesas, water-filled sinkholes (lower left) are most likely the result of the collapse of old lava tubes. Along the edges of the mesas (several locations) the basalt seems to be sliding away from the plateau in a series of slices. Water erosion by overland flow is also evident, particularly in canyons where vegetation blankets the drainage channels (green patterns, bottom of image). However, overland water flow does not extend very far at any location. This entire site drains to local playas, some of which are seen here (blue). While the water can reach the playas and then evaporate, what becomes of the eroded rock debris? Wind might excavate some of the finer eroded debris, but the fate of much of the missing bedrock remains mysterious.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7 satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The

  11. Stereo Pair, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, at Los Menucos, Argentina shows remnants of relatively young volcanoes built upon an eroded plain of much older and contorted volcanic, granitic, and sedimentary rocks. The large purple, brown, and green 'butterfly' pattern is a single volcano that has been deeply eroded. Large holes on the volcano's flanks indicate that they may have collapsed soon after eruption, as fluid molten rock drained out from under its cooled and solidified outer shell. At the upper left, a more recent eruption occurred and produced a small volcanic cone and a long stream of lava, which flowed down a gully. At the top of the image, volcanic intrusions permeated the older rocks resulting in a chain of small dark volcanic peaks. At the top center of the image, two halves of a tan ellipse pattern are offset from each other. This feature is an old igneous intrusion that has been split by a right-lateral fault. The apparent offset is about 6.6 kilometers (4 miles). Color, tonal, and topographic discontinuities reveal the fault trace as it extends across the image to the lower left. However, young unbroken basalt flows show that the fault has not been active recently.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive

  12. Muscarinic M3 receptors on structural cells regulate cigarette smoke-induced neutrophilic airway inflammation in mice

    PubMed Central

    van Os, Ronald P.; Dethmers-Ausema, Albertina; Bos, I. Sophie T.; Hylkema, Machteld N.; van den Berge, Maarten; Hiemstra, Pieter S.; Wess, Jürgen; Meurs, Herman; Kerstjens, Huib A. M.; Gosens, Reinoud

    2014-01-01

    Anticholinergics, blocking the muscarinic M3 receptor, are effective bronchodilators for patients with chronic obstructive pulmonary disease. Recent evidence from M3 receptor-deficient mice (M3R−/−) indicates that M3 receptors also regulate neutrophilic inflammation in response to cigarette smoke (CS). M3 receptors are present on almost all cell types, and in this study we investigated the relative contribution of M3 receptors on structural cells vs. inflammatory cells to CS-induced inflammation using bone marrow chimeric mice. Bone marrow chimeras (C56Bl/6 mice) were generated, and engraftment was confirmed after 10 wk. Thereafter, irradiated and nonirradiated control animals were exposed to CS or fresh air for four consecutive days. CS induced a significant increase in neutrophil numbers in nonirradiated and irradiated control animals (4- to 35-fold). Interestingly, wild-type animals receiving M3R−/− bone marrow showed a similar increase in neutrophil number (15-fold). In contrast, no increase in the number of neutrophils was observed in M3R−/− animals receiving wild-type bone marrow. The increase in keratinocyte-derived chemokine (KC) levels was similar in all smoke-exposed groups (2.5- to 5.0-fold). Microarray analysis revealed that fibrinogen-α and CD177, both involved in neutrophil migration, were downregulated in CS-exposed M3R−/− animals receiving wild-type bone marrow compared with CS-exposed wild-type animals, which was confirmed by RT-qPCR (1.6–2.5 fold). These findings indicate that the M3 receptor on structural cells plays a proinflammatory role in CS-induced neutrophilic inflammation, whereas the M3 receptor on inflammatory cells does not. This effect is probably not mediated via KC release, but may involve altered adhesion and transmigration of neutrophils via fibrinogen-α and CD177. PMID:25381025

  13. Electron positron pair production at RHIC and LHC

    SciTech Connect

    Cem Gueclue, M.

    2008-11-11

    The STAR Collaboration at the Relativistic Heavy Ion Collider present data on electron-positron pair production accompanied by nuclear breakup at small impact parameters where the simultaneous excitation of the two ions, mainly the giant dipole resonance GDR, can occur. We calculate the electron-positron pair production cross section relevant for the STAR experimental setup, and compare our results with the other calculations. We have also predictions for the LHC energies.

  14. Ion Pair-π Interactions.

    PubMed

    Fujisawa, Kaori; Humbert-Droz, Marie; Letrun, Romain; Vauthey, Eric; Wesolowski, Tomasz A; Sakai, Naomi; Matile, Stefan

    2015-09-01

    We report that anion-π and cation-π interactions can occur on the same aromatic surface. Interactions of this type are referred to as ion pair-π interactions. Their existence, nature, and significance are elaborated in the context of spectral tuning, ion binding in solution, and activation of cell-penetrating peptides. The origin of spectral tuning by ion pair-π interactions is unraveled with energy-minimized excited-state structures: The solvent- and pH-independent red shift of absorption and emission of push-pull fluorophores originates from antiparallel ion pair-π attraction to their polarized excited state. In contrast, the complementary parallel ion pair-π repulsion is spectroscopically irrelevant, in part because of charge neutralization by intriguing proton and electron transfers on excited push-pull surfaces. With time-resolved fluorescence measurements, very important differences between antiparallel and parallel ion pair-π interactions are identified and quantitatively dissected from interference by aggregation and ion pair dissociation. Contributions from hydrogen bonding, proton transfer, π-π interactions, chromophore twisting, ion pairing, and self-assembly are systematically addressed and eliminated by concise structural modifications. Ion-exchange studies in solution, activation of cell-penetrating peptides in vesicles, and computational analysis all imply that the situation in the ground state is complementary to spectral tuning in the excited state; i.e., parallel rather than antiparallel ion pair-π interactions are preferred, despite repulsion from the push-pull dipole. The overall quite complete picture of ion pair-π interactions provided by these remarkably coherent yet complex results is expected to attract attention throughout the multiple disciplines of chemistry involved. PMID:26291550

  15. Neutron-proton pairing correlations in odd mass systems

    SciTech Connect

    Fellah, M. Allal, N. H.; Oudih, M. R.

    2015-03-30

    An expression of the ground-state which describes odd mass systems within the BCS approach in the isovector neutron-proton pairing case is proposed using the blocked level technique. The gap equations as well as the energy expression are then derived. It is shown that they exactly generalize the expressions obtained in the pairing between like-particles case. The various gap parameters and the energy are then numerically studied as a function of the pairing-strength within the schematic one-level model.

  16. Insight into the pseudo π-hole interactions in the M3H6(NCF)n (M = C, Si, Ge, Sn, Pb; n = 1, 2, 3) complexes.

    PubMed

    Li, Wei; Zeng, Yanli; Li, Xiaoyan; Sun, Zheng; Meng, Lingpeng

    2016-09-21

    For cyclopropane and its derivatives M3H6 (M = C, Si, Ge, Sn, Pb), "pseudo π-hole" regions above and below the M-M-M three-membered ring have been discovered, and pseudo π-hole interactions between M3H6 and F-CN have been designed and investigated by MP2/aug-cc-pVTZ and MP2/aug-cc-pVTZ-pp calculations. To investigate the enhancing effects of FN halogen bonds on the pseudo π-hole interactions, the termolecular and tetramolecular complexes M3H6(NCF)n (n = 2, 3) were constructed. Energy decomposition analysis shows that the dispersion term contributes the most among the three attractive components in the C3H6(NCF)n (n = 1, 2, 3) complexes while in the Si3H6(NCF)n and Ge3H6(NCF)n complexes, the electrostatic term has the largest contribution. The electrostatic and polarization energies have more effect than the dispersion energy for the enhancement of the FN halogen bond on the pseudo π-hole interactions. With the increase in the number of NCF units from 1 to 3, the VS,min values outside the nitrogen atom of NCF become increasingly negative, the electric field of the lone pair of nitrogen becomes greater and causes a further increase of electron density outside the nitrogen atom and a further decrease of electron density outside the pseudo π-hole region, resulting in a stronger pseudo π-hole interaction. PMID:27545836

  17. Pairing Correlations at High Spins

    NASA Astrophysics Data System (ADS)

    Ma, Hai-Liang; Dong, Bao-Guo; Zhang, Yan; Fan, Ping; Yuan, Da-Qing; Zhu, Shen-Yun; Zhang, Huan-Qiao; Petrache, C. M.; Ragnarsson, I.; Carlsson, B. G.

    The pairing correcting energies at high spins in 161Lu and 138Nd are studied by comparing the results of the cranked-Nilsson-Strutinsky (CNS) and cranked-Nilsson-Strutinsky-Bogoliubov (CNSB) models. It is concluded that the Coriolis effect rather than the rotational alignment effect plays a major role in the reduction of the pairing correlations in the high spin region. Then we proposed an average pairing correction method which not only better reproduces the experimental data comparing with the CNS model but also enables a clean-cut tracing of the configurations thus the full-spin-range discussion on the various rotating bands.

  18. Pairing Properties of Superheavy Nuclei

    SciTech Connect

    Staszczak, A.; Dobaczewski, J.; Nazarewicz, Witold

    2007-01-01

    Pairing properties of even-even superheavy N=184 isotones are studied within the Skyrme-Hartree-Fock+BCS approach. In the particle-hole channel we take the Skyrme energy density functional SLy4, while in the particle-particle channel we employ the seniority pairing force and zero-range delta-interactions with different forms of density dependence. We conclude that the calculated static fission trajectories weakly depend on the specific form of the delta-pairing interaction. We also investigate the impact of triaxiality on the inner fission barrier and find a rather strong Z dependence of the effect.

  19. Constraints on Helium Enhancement in the Globular Cluster M3 (NGC 5272): The Horizontal Branch Test

    NASA Technical Reports Server (NTRS)

    Catelan, M.; Grundahl, F.; Sweigart, A. V.; Valcarce, A. A. R.; Cortes, C.

    2007-01-01

    It has recently been suggested that the presence of multiple populations showing various amounts of helium enhancement is a common feature among globular star clusters. In this scenario, such a helium enhancement would be particularly apparent in the enhanced luminosity of thc blue horizontal branch (HB) stars compared to the red HB stars. In this Letter, wc test this scenario in the case of the Galactic globular cluster M3 (NGC 5272), using high-precision Stromgren photometry and spectroscopic gravities for blue HB stars. We find that any helium enhancement among the cluster's blue HB stars must be significantly less than I%, thus ruling out the much higher helium enhancements that have been proposed in the literature.

  20. Analysis of power spectral density as a performance metric for TMT M3

    NASA Astrophysics Data System (ADS)

    Yang, Fei; An, Qi-Chang; Wang, Fu-Guo; Liu, Xiang-Yi

    2014-09-01

    We investigate a new metric power spectral density (PSD),for characterizing the performance of seeing-limited large telescope such as thirty meter telescope(TMT ). As the PSD is directly related to the performance of the atmosphere which plays an important role in ground based facilities, it represents the efficiency lose due to mid and high-spatial frequency components in observing time. The metric also properly counts for the optic error of the mirror itself such as the deviations from a perfect surface, and metrology measurement errors .The metric can multiply all the errors which differentiates from the traditional ones, such as RMS. We also numerically confirm this feature for Karman model atmosphere error multiplied with the sample of our vendor and the TMT M3.Additonaly, we discuss other pertinent feature of the PSD, including its relationship to Zernike aberration ,and RMS of wave front errors.

  1. Integrated modeling and dynamics simulation for the TMT-M3 control system

    NASA Astrophysics Data System (ADS)

    Deng, Yong-ting; Li, Hong-wen; Yang, Fei; Wang, Jian-li; Su, Yan-qin; Zhao, Hong-chao

    2014-09-01

    In order to analyze the tracking performance and design the controllers for TMT-M3 control system in the design stage. This paper presents the development of the analytical model of the gear driven large telescope using the lumped mass modeling method. The analytical model includes the telescope structure, its drives, the velocity loop and position loop. First, the modal model of a flexible structure is analyzed based on the finite-element data. And the modal model is transferred into the state-space model, in continuous-time. Next, the drive model is derived, and combined into the velocity loop and position loop. Finally, the impact of the error sources on the control loop properties is simulated. According to the simulation accuracy of the analytical modeling, the analytical model can be used in implementation, such as the model-based controllers.

  2. 4 Draconis - A unique triple system containing an M3 giant and a cataclysmic binary

    NASA Technical Reports Server (NTRS)

    Reimers, D.; Griffin, R. F.; Brown, A.

    1988-01-01

    The M3 III giant 4 Dra has a UV bright companion discovered with IUE as a probable cataclysmic variable (CV). The orbit of the M giant around the center of gravity of the system that it forms with the cataclysmic binary is determined. 4 Dra B shows spectrum variations like a CV; the photometric period is 3 h 58.5 m + or - 1 m is determined. 4 Dra B is the first CV for which an independent distance estimate can be given from the spectroscopic parallax of the companion. Properties of the CV, which is probably of the magnetic type (AM Her), are briefly discussed. The age of the CV may be less than 100 million yr.

  3. M3D-K simulations of sawteeth and energetic particle transport in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Fu, G. Y.; Sheng, Zheng-Mao; Breslau, J. A.; Wang, Feng

    2014-09-01

    Nonlinear simulations of sawteeth and related energetic particle transport are carried out using the kinetic/magnetohydrodynamic (MHD) hybrid code M3D-K. MHD simulations show repeated sawtooth cycles for a model tokamak equilibrium. Furthermore, test particle simulations are carried out to study the energetic particle transport due to a sawtooth crash. The results show that energetic particles are redistributed radially in the plasma core, depending on pitch angle and energy. For trapped particles, the redistribution occurs for particle energy below a critical value in agreement with existing theories. For co-passing particles, the redistribution is strong with little dependence on particle energy. In contrast, the redistribution level of counter-passing particles decreases with increasing particle energy.

  4. M3D-K Simulations of Sawteeth and Energetic Particle Transport in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Fu, Guoyong; Sheng, Zhengmao; Breslau, Joshua; Wang, Feng

    2013-10-01

    Nonlinear simulations of Sawteeth and energetic particle transport are carried out using the kinetic/MHD hybrid code M3D-K. MHD simulations show repeated sawtooth cycles due to a resistive (1,1) internal kink mode for a model tokamak equilibrium. Furthermore, test particle simulations are carried out to study the energetic particle transport due to a sawtooth crash. The results show that energetic particles are redistributed radially in plasma core depending on pitch angle and energy. For trapped particles, the redistribution occurs for particle energy below a critical value in agreement with previous theory. For co-passing particles, the redistribution is strong with little dependence on particle energy. In contrast, the redistribution level of counter-passing particles decreases as particle energy becomes large.

  5. M3D-K simulations of sawteeth and energetic particle transport in tokamak plasmas

    SciTech Connect

    Shen, Wei; Sheng, Zheng-Mao; Fu, G. Y.; Breslau, J. A.; Wang, Feng

    2014-09-15

    Nonlinear simulations of sawteeth and related energetic particle transport are carried out using the kinetic/magnetohydrodynamic (MHD) hybrid code M3D-K. MHD simulations show repeated sawtooth cycles for a model tokamak equilibrium. Furthermore, test particle simulations are carried out to study the energetic particle transport due to a sawtooth crash. The results show that energetic particles are redistributed radially in the plasma core, depending on pitch angle and energy. For trapped particles, the redistribution occurs for particle energy below a critical value in agreement with existing theories. For co-passing particles, the redistribution is strong with little dependence on particle energy. In contrast, the redistribution level of counter-passing particles decreases with increasing particle energy.

  6. A Swift/UVOT NUV Study of RR Lyrae Stars in the Globular Cluster M3

    NASA Astrophysics Data System (ADS)

    Porterfield, Blair; Siegel, M.; Swift; UVOT

    2014-01-01

    We present the first results of a program to monitor RR Lyrae stars in globular clusters with the Swift Ultraviolet Optical Telescope. Although variable stars have their strongest pulsations in the UV, no comprehensive catalog of NUV light curves has ever been produced for RR Lyrae stars. We present uvm2 light curves for 124 variable star candidates in the globular cluster M3. We show that the RR Lyrae stars have strong pulsations in the NUV, with amplitudes up to three magnitudes. We show that the RR Lyrae follow period-amplitude relations in the NUV similar to those they follow in the optical. Our data hint at the existence of a period-metallicity-luminosity relationship in the UV that would make RR Lyrae even more useful standard candles.

  7. Magnetic, Thermal and Dynamical Evolution of AN M3.2 Two-Ribbon Flare

    NASA Astrophysics Data System (ADS)

    Collados, Manuel; Kuckein, Christoph; Manso Sainz, Rafael; Asensio Ramos, Andres

    On 2013, 17th May, a two-ribbon M3.2 flare took place in the solar atmosphere on the active region AR 11748. The flare evolution was observed at the German VTT of the Observatorio del Teide using the instrument TIP-II, with spectropolarimetric measurements of the photosphere (Si I at 1082.7 nm) and the chromosphere (Helium triplet at 1083 nm). Simultaneous spectroscopic data of the chromospheric spectral line of Ca II at 854.2 nm and filtergrams at Halpha were also obtained. The flare evolution as observed from the ground can be compared with the changes observed by AIA@SDO at different ultraviolet wavelengths. The ground observations covered several hours, including the pre-flare, impulsive, gradual and post-flare phases. We present maps of the magnetic field, thermal and dynamical properties of the region during its evolution from pre- to post-flare phase.

  8. Chemokine Binding Protein M3 of Murine Gammaherpesvirus 68 Modulates the Host Response to Infection in a Natural Host

    PubMed Central

    Hughes, David J.; Kipar, Anja; Leeming, Gail H.; Bennett, Elaine; Howarth, Deborah; Cummerson, Joanne A.; Papoula-Pereira, Rita; Flanagan, Brian F.; Sample, Jeffery T.; Stewart, James P.

    2011-01-01

    Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an attractive model of γ-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus). Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT) in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology. PMID:21445235

  9. Chemokine binding protein M3 of murine gammaherpesvirus 68 modulates the host response to infection in a natural host.

    PubMed

    Hughes, David J; Kipar, Anja; Leeming, Gail H; Bennett, Elaine; Howarth, Deborah; Cummerson, Joanne A; Papoula-Pereira, Rita; Flanagan, Brian F; Sample, Jeffery T; Stewart, James P

    2011-03-01

    Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an attractive model of γ-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus). Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT) in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology. PMID:21445235

  10. 75 FR 3471 - International Conference on Harmonisation; Guidance on M3(R2) Nonclinical Safety Studies for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... HUMAN SERVICES Food and Drug Administration International Conference on Harmonisation; Guidance on M3(R2... Pharmaceuticals; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the availability of a guidance entitled ``M3(R2)...

  11. 12 CFR Appendix M3 to Part 226 - Sample Calculations of Generic Repayment Estimates and Actual Repayment Disclosures

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Sample Calculations of Generic Repayment Estimates and Actual Repayment Disclosures M3 Appendix M3 to Part 226 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM TRUTH IN LENDING (REGULATION Z)...

  12. An Extremely Lithium-rich Bright Red Giant in the Globular Cluster M3

    NASA Astrophysics Data System (ADS)

    Kraft, Robert P.; Peterson, Ruth C.; Guhathakurta, Puragra; Sneden, Christopher; Fulbright, Jon P.; Langer, G. Edward

    1999-06-01

    We have serendipitously discovered an extremely lithium-rich star on the red giant branch of the globular cluster M3 (NGC 5272). An echelle spectrum obtained with the Keck I High-Resolution Echelle Spectrograph reveals a Li I λ6707 resonance doublet of 520 mÅ equivalent width, and our analysis places the star among the most Li-rich giants known: logε(Li)~=+3.0. We determine the elemental abundances of this star, IV-101, and three other cluster members of similar luminosity and color and conclude that IV-101 has abundance ratios typical of giants in M3 and M13 that have undergone significant mixing. We discuss mechanisms by which a low-mass star may be so enriched in Li, focusing on the mixing of material processed by the hydrogen-burning shell just below the convective envelope. While such enrichment could conceivably happen only rarely, it may in fact regularly occur during giant-branch evolution but be rarely detected because of rapid subsequent Li depletion. Based on observations obtained with the Keck I Telescope of the W. M. Keck Observatory, which is operated by the California Association for Research in Astronomy (CARA), Inc., on behalf of the University of California and the California Institute of Technology. This Letter is dedicated to the memory of our beloved colleague Ed Langer, who died after a brief illness on February 16, 1999. Ed brought a unique theoretical perspective to our globular cluster abundance studies. His career truly embodied the academic ideals of inspiration in both teaching and research. He made friends wherever he traveled, and was an inspiration to students. We will miss him greatly.

  13. The phase 0/A study of the ESA M3 mission candidate EChO

    NASA Astrophysics Data System (ADS)

    Puig, Ludovic; Isaak, Kate; Linder, Martin; Escudero, Isabel; Crouzet, Pierre-Elie; Walker, Roger; Ehle, Matthias; Hübner, Jutta; Timm, Rainer; de Vogeleer, Bram; Drossart, Pierre; Hartogh, Paul; Lovis, Christophe; Micela, Giusi; Ollivier, Marc; Ribas, Ignasi; Snellen, Ignas; Swinyard, Bruce; Tinetti, Giovanna; Eccleston, Paul

    2015-12-01

    EChO, the Exoplanet Characterisation Observatory, has been one of the five M-class mission candidates competing for the M3 launch slot within the science programme Cosmic Vision 2015-2025 of the European Space Agency (ESA). As such, EChO has been the subject of a Phase 0/A study that involved European Industry, research institutes and universities from ESA member states and that concluded in September 2013. EChO is a concept for a dedicated mission to measure the chemical composition and structure of hundreds of exoplanet atmospheres using the technique of transit spectroscopy. With simultaneous and uninterrupted spectral coverage from the visible to infrared wavelengths, EChO targets extend from gas giants (Jupiter or Neptune-like) to super-Earths in the very hot to temperate zones of F to M-type host stars, opening up the way to large-scale, comparative planetology that would place our own solar system in the context of other planetary systems in the Milky Way. A review of the performance requirements of the EChO mission was held at ESA at the end of 2013, with the objective of assessing the readiness of the mission to progress to the Phase B1 study phase. No critical issues were identified from a technical perspective, however a number of recommendations were made for future work. Since the mission was not selected for the M3 launch slot, EChO is no longer under study at ESA. In this paper we give an overview of the final mission concept for EChO as of the end of the study, from scientific, technical and operational perspectives.

  14. Soluble M3 proteins of murine gammaherpesviruses 68 and 72 expressed in Escherichia coli: analysis of chemokine-binding properties.

    PubMed

    Matúšková, R; Pančík, P; Štibrániová, I; Belvončíková, P; Režuchová, I; Kúdelová, M

    2015-12-01

    M3 protein of murine gammaherpesvirus 68 (MHV-68) was identified as a viral chemokine-binding protein 3 (vCKBP-3) capable to bind a broad spectrum of chemokines and their receptors. During both acute and latent infection MHV-68 M3 protein provides a selective advantage for the virus by inhibiting the antiviral and inflammatory response. A unique mutation Asp307Gly was identified in the M3 protein of murine gammaherpesvirus 72 (MHV-72), localized near chemokine-binding domain. Study on chemokine-binding properties of MHV-72 M3 protein purified from medium of infected cells implied reduced binding to some chemokines when compared to MHV-68 M3 protein. It was suggested that the mutation in the M3 protein might be involved in the attenuation of immune response to infection with MHV-72. Recently, Escherichia coli cells were used to prepare native recombinant M3 proteins of murine gammaherpesviruses 68 and 72 (Pančík et al., 2013). In this study, we assessed the chemokine-binding properties of three M3 proteins prepared in E. coli Rosetta-gami 2 (DE3) cells, the full length M3 protein of both MHV-68 and MHV-72 and MHV-68 M3 protein truncated in the signal sequence (the first 24 aa). They all displayed binding activity to human chemokines CCL5 (RANTES), CXCL8 (IL-8), and CCL3 (MIP-1α). The truncated MHV-68 M3 protein had more than twenty times reduced binding activity to CCL5, but only about five and three times reduced binding to CXCL8 and CCL3 when compared to its full length counterpart. Binding of the full length MHV-72 M3 protein to all chemokines was reduced when compared to MHV-68 M3 protein. Its binding to CCL5 and CCL3 was reduced over ten and seven times. However, its binding to CXCL8 was only slightly reduced (64.8 vs 91.8%). These data implied the significance of the signal sequence and also of a single mutation (at aa 307) for efficient M3 protein binding to some chemokines. PMID:26666184

  15. Matched molecular pair analysis in drug discovery.

    PubMed

    Dossetter, Alexander G; Griffen, Edward J; Leach, Andrew G

    2013-08-01

    Multiple parameter optimisation in drug discovery is difficult, but Matched Molecular Pair Analysis (MMPA) can help. Computer algorithms can process data in an unbiased way to yield design rules and suggest better molecules, cutting the number of design cycles. The approach often makes more suggestions than can be processed manually and methods to deal with this are proposed. However, there is a paucity of contextually specific design rules, which would truly make the technique powerful. By combining extracted information from multiple sources there is an opportunity to solve this problem and advance medicinal chemistry in a matter of months rather than years. PMID:23557664

  16. Pairing in hot rotating nuclei

    SciTech Connect

    Hung, N. Quang; Dang, N. Dinh

    2008-12-15

    Nuclear pairing properties are studied within an approach that includes the quasiparticle-number fluctuation (QNF) and coupling to the quasiparticle-pair vibrations at finite temperature and angular momentum. The formalism is developed to describe noncollective rotations about the symmetry axis. The numerical calculations are performed within a doubly folded equidistant multilevel model as well as several realistic nuclei. The results obtained for the pairing gap, total energy, and heat capacity show that the QNF smoothes out the sharp SN phase transition and leads to the appearance of a thermally assisted pairing gap in rotating nuclei at finite temperature. The corrections due to the dynamic coupling to SCQRPA vibrations and particle-number projection are analyzed. The effect of backbending of the momentum of inertia as a function of squared angular velocity is also discussed.

  17. Dynamical interactions of galaxy pairs

    NASA Technical Reports Server (NTRS)

    Athanassoula, E.

    1990-01-01

    Here the author briefly reviews the dynamics of sinking satellites and the effect of companions on elliptical galaxies. The author then discusses recent work on interacting disk systems, and finally focuses on a favorite interacting pair, NGC 5194/5195.

  18. Cooper pairing in non-Fermi liquids

    NASA Astrophysics Data System (ADS)

    Metlitski, Max A.; Mross, David F.; Sachdev, Subir; Senthil, T.

    2015-03-01

    States of matter with a sharp Fermi surface but no well-defined Landau quasiparticles arise in a number of physical systems. Examples include (i) quantum critical points associated with the onset of order in metals; (ii) spinon Fermi-surface [U(1) spin-liquid] state of a Mott insulator; (iii) Halperin-Lee-Read composite fermion charge liquid state of a half-filled Landau level. In this work, we use renormalization group techniques to investigate possible instabilities of such non-Fermi liquids in two spatial dimensions to Cooper pairing. We consider the Ising-nematic quantum critical point as an example of an ordering phase transition in a metal, and demonstrate that the attractive interaction mediated by the order-parameter fluctuations always leads to a superconducting instability. Moreover, in the regime where our calculation is controlled, superconductivity preempts the destruction of electronic quasiparticles. On the other hand, the spinon Fermi surface and the Halperin-Lee-Read states are stable against Cooper pairing for a sufficiently weak attractive short-range interaction; however, once the strength of attraction exceeds a critical value, pairing sets in. We describe the ensuing quantum phase transition between (i) U(1 ) and Z2 spin-liquid states; (ii) Halperin-Lee-Read and Moore-Read states.

  19. Spectral Signature of Lunar Pyroclastic Deposits in Moon Mineralogy (M3) data

    NASA Astrophysics Data System (ADS)

    Besse, Sebastien; Jawin, Erica; Mazrouei, Sara; Gaddis, Lisa; Sunshine, Jessica

    2013-04-01

    Over 100 pyroclastic deposits, or Dark Mantle Deposits (DMDs) have been identified on the Moon, with areas ranging from 10 km2 to over 50,000 km2. These regions of low-albedo, fine-grained material can vary significantly in composition. Larger DMDs such as those at Taurus-Littrow and Mare Vaporum are known to contain iron- and titanium-rich glass and devitrified beads, while smaller DMDs are typically comprised of iron-bearing mafic minerals such as pyroxene and olivine in juvenile and non-juvenile volcanic components. More recently at the large DMD in Sinus Aestuum, chromite spinel has been discovered. In this project we use spectroscopic data from the Moon Mineralogy Mapper (M3) to characterize the composition of various pyroclastic deposits across the lunar nearside. Using these data, we characterized the 1- and 2 μm mafic absorption bands for each pyroclastic region of interest, and analyzed the variation in composition between all regions. DMD compositional variations will help us to understand both the origin and mode of emplacement of these deposits. The four regions of interest chosen for this study include pyroclastic deposits in J. Herschel crater (36.6°W, 61.7°N), Alphonsus crater (3°W, 13.6°S), near the Apollo 17 landing site in the Taurus-Littrow valley (30.7°E, 20.2°N), and western Mare Vaporum (7.9°E, 10°N). There is complete or near-complete coverage of M3 data in these regions, including coverage in orbital periods OP1A, OP1B, OP2A, OP2C1, and OP2C3. Additionally, there is coverage over all four regions of interest in OP1B. This configuration allows studies of the DMDs with the same resolution and detector temperature, factors which can drastically change the spectral behavior of the M3 data. Several color composite images were created to highlight surface composition and to characterize the four pyroclastic deposits. The pyroclastic deposits within a given region of interest share similar spectral characteristics, even at sites where the

  20. Role of M3 protein in the adherence and internalization of an invasive Streptococcus pyogenes strain by epithelial cells.

    PubMed

    Eyal, Osnat; Jadoun, Jeries; Bitler, Arcady; Skutelski, Ehud; Sela, Shlomo

    2003-10-15

    Streptococcus pyogenes utilizes multiple mechanisms for adherence to and internalization by epithelial cells. One of the molecules suggested of being involved in adherence and internalization is the M protein. Although strains of the M3 serotype form the second largest group isolated from patients with severe invasive diseases and fatal infections, not much information is known regarding the interactions of M3 protein with mammalian cells. In this study we have constructed an emm3 mutant of an invasive M3 serotype (SP268), and demonstrated that the M3 protein is involved in both adherence to and internalization by HEp-2 cells. Fibronectin promoted both adherence and internalization of SP268 in an M3-independent pathway. Utilizing speB and speB/emm3 double mutants, it was found that M3 protein is not essential for the maturation of SpeB, as was reported for the M1 protein. Increased internalization efficiency observed in both the speB and emm3/speB mutants suggested that inhibition of S. pyogenes internalization by SpeB is not related to the presence of an intact M3 protein. Thus, other proteins in SP268, which serve as targets for SpeB activity, have a prominent role in the internalization process. PMID:14522456

  1. Altered ultrastructure, density and cathepsin K expression in bone of female muscarinic acetylcholine receptor M3 knockout mice.

    PubMed

    Lips, Katrin Susanne; Kneffel, Mathias; Willscheid, Fee; Mathies, Frank Martin; Kampschulte, Marian; Hartmann, Sonja; Panzer, Imke; Dürselen, Lutz; Heiss, Christian; Kauschke, Vivien

    2015-11-01

    High frequency of osteoporosis is found in postmenopausal women where several molecular components were identified to be involved in bone loss that subsequently leads to an increased fracture risk. Bone loss has already been determined in male mice with gene deficiency of muscarinic acetylcholine receptor M3 (M3R-KO). Here we asked whether bone properties of female 16-week old M3R-KO present similarities to osteoporotic bone loss by means of biomechanical, radiological, electron microscopic, cell- and molecular biological methods. Reduced biomechanical strength of M3R-KO correlated with cortical thickness and decreased bone mineral density (BMD). Femur and vertebrae of M3R-KO demonstrated a declined trabecular bone volume, surface, and a higher trabecular pattern factor and structure model index (SMI) compared to wild type (WT) mice. In M3R-KO, the number of osteoclasts as well as the cathepsin K mRNA expression was increased. Osteoclasts of M3R-KO showed an estimated increase in cytoplasmic vesicles. Further, histomorphometrical analysis revealed up-regulation of alkaline phosphatase. Osteoblasts and osteocytes showed a swollen cytoplasm with an estimated increase in the amount of rough endoplasmatic reticulum and in case of osteocytes a reduced pericellular space. Thus, current results on bone properties of 16-week old female M3R-KO are related to postmenopausal osteoporotic phenotype. Stimulation and up-regulation of muscarinic acetylcholine receptor subtype M3 expression in osteoblasts might be a possible new option for prevention and therapy of osteoporotic fractures. Pharmacological interventions and the risk of side effects have to be determined in upcoming studies. PMID:26002583

  2. Extension of RAPTOR-M3G to r-θ-z Geometry for Use in Reactor Dosimetry Applications

    NASA Astrophysics Data System (ADS)

    Hunter, Melissa A.; Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3-D Geometries) is a new deterministic radiation transport code that was originally developed for x-y-z geometry. The development of the r-θ-z version of RAPTOR-M3G and its application to determine ex-vessel neutron dosimetry responses in the cavity of a typical 2-loop pressurized water reactor is presented. The neutron dosimetry responses determined from RAPTOR-M3G and TORT 3-D r-θ-z calculations are compared to actual measured responses.

  3. Radiation environment on board Foton-M 3: the neutron component

    NASA Astrophysics Data System (ADS)

    Falzetta, Giuseppe; Zanini, Alba; Chiorra, Katia; Briccarello, Mauro; Belluco, Maurizio; Longo, Francesco; Jerse, Giovanna

    The recoverable capsule Foton-M 3 (ESA mission) was launched from Baikonur on 2007 September 14 and landed on the Russian-Kazakh border 12 days later. The spacecraft carried on board several ESA experiments. During this space mission a study has been performed on the neutron component of the radiation environment inside the capsule. Neutrons are a not avoidable component of the secondary radiation produced by interaction of primary radiation with the spacecraft shielding. Because of their high LET, neutrons could represent a main risk for both the electronic instruments and the health of the astronauts during space missions. Monte Carlo simulations performed by Geant4 code have been carried out using as input primary proton and alpha spectra, obtained by various tools (i.e. Creme 96, Omere, etc . . . ) and the neutron fluxes and doses, as a function of neutron energies, have been evaluated. The simulation results are compared with experimental data obtained by passive neutron detectors. In this study the effectiveness of various shielding materials useful in space mission has been also investigated.

  4. Discovery of a wide planetary-mass companion to the young M3 star GU PSC

    SciTech Connect

    Naud, Marie-Eve; Artigau, Étienne; Malo, Lison; Albert, Loïc; Doyon, René; Lafrenière, David; Gagné, Jonathan; Boucher, Anne; Saumon, Didier; Morley, Caroline V.; Allard, France; Homeier, Derek; Beichman, Charles A.; Gelino, Christopher R.

    2014-05-20

    We present the discovery of a comoving planetary-mass companion ∼42'' (∼2000 AU) from a young M3 star, GU Psc, a likely member of the young AB Doradus Moving Group (ABDMG). The companion was first identified via its distinctively red i – z color (>3.5) through a survey made with Gemini-S/GMOS. Follow-up Canada-France-Hawaii Telescope/WIRCam near-infrared (NIR) imaging, Gemini-N/GNIRS NIR spectroscopy and Wide-field Infrared Survey Explorer photometry indicate a spectral type of T3.5 ± 1 and reveal signs of low gravity which we attribute to youth. Keck/Adaptive Optics NIR observations did not resolve the companion as a binary. A comparison with atmosphere models indicates T {sub eff} = 1000-1100 K and log g = 4.5-5.0. Based on evolution models, this temperature corresponds to a mass of 9-13 M {sub Jup} for the age of ABDMG (70-130 Myr). The relatively well-constrained age of this companion and its very large angular separation to its host star will allow its thorough characterization and will make it a valuable comparison for planetary-mass companions that will be uncovered by forthcoming planet-finder instruments such as Gemini Planet Imager and SPHERE 9.

  5. Mass of Galaxies in Pairs

    NASA Astrophysics Data System (ADS)

    Junqueira, S.; Chan, R.

    We have compared the frequency distribution of the dynamical observed quantity log (V r), for a sample of 46 pairs of elliptical galaxies, to the distribution of this quantity obtained from numerical simulations of pairs of galaxies. From such an analysis, where we have considered the structure of the galaxies and its influence in the orbital evolution of the system, we have obtained the characteristic mass and the mass-luminosity ratio for the sample. Our results show that the hypothesis of point-mass in elliptical orbits is, for this sample, an approximation as good as the model that takes into account the structure of the galaxies. The statistical method used here gives an estimate of a more reliable mass, it minimizes the contamination of spurious pairs and it considers adequately the contribution of the physical pairs. We have obtained a characteristic mass to the 46 elliptical pairs of 1.68 × 10^12 +/- 7.01 × 10^11 M_solar with M/L = 17.6 +/- 7.3 (H_0 = 60 km s^-1 Mpc^-1).

  6. Pair extended coupled cluster doubles

    SciTech Connect

    Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.

    2015-06-07

    The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.

  7. Spectroscopy of asteroid pairs - new observations support previous conclusions

    NASA Astrophysics Data System (ADS)

    Polishook, David; Oszkiewicz, Dagmara Anna; None Kwiatkowski, Tomasz

    2015-08-01

    Asteroid pairs were split due to fast rotation of a strengthless body. Study them can reveal fundamental principles in asteroid interiors and evolution. We continue our spectroscopic survey of asteroid pairs in the near-IR range (IRTF) and work on completing the spectral coverage in the visible wavelength (SALT, NOT).Our new observations support our previous conclusions (Polishook et al. 2014):1. Primary and secondary members have very similar reflectance spectra supporting the claim that every pair originated from a single progenitor. We measured 2 more pairs that present the same taxonomy (4905-7813, 15107-291188). This increases to 22 the number of asteroid pairs with spectral similarities and supports the claim of a single progenitor for each pair to a significance of over 5 sigma.2. Rotational fission is not a function of the asteroid composition rather the asteroid’s structure. We present new reflectance spectra of S- and C-complex pairs that differ in their composition.3. Some asteroid pairs present spectral parameters that imply a fresh, non-weathered surface. This includes spectral slope, and a deep and wide absorption band at 1 micron. Among these, the asteroid 8306 can now be re-classified as a Q-type asteroid, a common class in the near-Earth environment, but rare in the main belt. 8306 is the 4th Q-type discovered within asteroid pairs (all locate in the main belt).4. A secondary member of an asteroid pair composed of ordinary chondrite (S-complex) might present a reflectance spectrum with lower spectral slope compared to its primary member. This is seen in the new measured reflectance spectrum of secondary 291188). This result supports the theory of Jacobson & Scheeres (2011) of continuous disintegration of the secondaries while still in the vicinity of their primaries.5. With time, the fresh surface becomes weathered. Dynamical calculations limit the disintegration time of the progenitor of the pair 4905-7813 to 1.65 millions years ago, what makes

  8. Study of the continuum removal method for the Moon Mineralogy Mapper (M3) and its application to Mare Humorum and Mare Nubium

    NASA Astrophysics Data System (ADS)

    Zhang, Xun-Yu; Ouyang, Zi-Yuan; Zhang, Xiao-Meng; Chen, Yuan; Tang, Xiao; Xu, Ao-Ao; Tang, Ze-Sheng; Wu, Yun-Zhao

    2016-07-01

    The absorption band center of visible and near infrared reflectance spectra is a key spectral parameter for lunar mineralogical studies, especially for the mafic minerals (olivine and pyroxene) of mare basalts, which have two obvious absorption bands at 1000 nm (Band I) and 2000nm (Band II). Removal of the continuum from spectra, which was developed by Clark and Roush and used to isolate the particular absorption feature, is necessary to estimate this parameter. The Moon Mineralogy Mapper (M3) data are widely used for lunar mineral identification. However, M3 data show a residual thermal effect, which interferes with the continuum removal, and systematic differences exist among optical data taken during different optical periods. This study investigated a suitable continuum removal method and compared the difference between two sets of M3 data taken during different optical periods, Optical Period 1B (OP1B) and Optical Period 2A (OP2A). Two programs for continuum removal are reported in this paper. Generally, a program respectively constructs two straight lines across Band I and Band II to remove the continuum, which is recommended for locating band centers, because it can find the same Band I center with different right endpoints. The optimal right endpoint for continuum removal is mainly dominated by two optical period data at approximately 2480 and 2560nm for OP1B and OP2A data, respectively. The band center values derived from OP1B data are smaller than those derived from OP2A data in Band I but larger in Band II, especially for the spectra using longer right endpoints (>2600 nm). This may be due to the spectral slopes of OP1B data being steeper than those of OP2A data in Band I but gentler in Band II. These results were applied to Mare Humorum and Mare Nubium, and the measurements were found to mainly vary from intermediate- to high-Ca pyroxene.

  9. Mineralogy of Mare Serenitatis on the near side of the Moon based on Chandrayaan-1 Moon Mineralogy Mapper (M3) observations

    NASA Astrophysics Data System (ADS)

    Kaur, Prabhjot; Bhattacharya, Satadru; Chauhan, Prakash; Ajai; Kiran Kumar, A. S.

    2013-01-01

    Spectral analysis of Mare Serenitatis has been carried out using Chandrayaan-1 Moon Mineralogy Mapper (M3) data in order to map the compositional diversity of the basaltic units that exist in the basin. Mare Serenitatis is characterized by multiple basaltic flows of different ages indicating a prolonged volcanism subsequent to the basin formation event. Reflectance spectra of fresh craters from the Mare Serenitatis have been analyzed to study the nature and location of the spectral absorption features around 1- and 2-μm respectively, arising due to the electronic charge transition of Fe2+ in the crystal lattice of pyroxenes and/or olivine. Chandrayaan-1 M3 data have been utilized to obtain an Integrated Band Depth (IBD) mosaic of the Serenitatis basin. Based on the spectral variations observed in the IBD mosaic, 13 spectral units have been mapped in the Mare Serenitatis. In the present study, we have also derived spectral band parameters, namely, band center, band strength, band area and band area ratio from the M3 data to study the mineralogical and compositional variations amongst the basaltic units of the studied basin. On the basis of spectral band parameter analysis, the pyroxene compositions of the basaltic units have been determined, which vary from low to intermediate end of the high-Ca pyroxene and probably represent a sub-calcic to calcic augite compositional range. Detailed spectral analyses reveal little variations in the mafic mineralogy of the mare basalts in terms of pyroxene chemistry. The uniformity in pyroxene composition across the basaltic units of Mare Serenitatis, therefore, suggest a probably stable basaltic source region, which might not have experienced large-scale fractionation during the prolonged volcanism that resulted in filling of the large Serenitatis basin.

  10. Non-Ideal ELM Stability and Non-Axisymmetric Field Penetration Calculations with M3D-C1

    NASA Astrophysics Data System (ADS)

    Ferraro, N. M.; Chu, M. S.; Snyder, P. B.; Jardin, S. C.; Luo, X.

    2009-11-01

    Numerical studies of ELM stability and non-axisymmetric field penetration in diverted DIII-D and NSTX equilibria are presented, with resistive and finite Larmor radius effects included. These results are obtained with the nonlinear two-fluid code M3D-C1, which has recently been extended to allow linear non-axisymmetric calculations. Benchmarks of M3D-C1 with ideal codes ELITE and GATO show good agreement for the linear stability of peeling-ballooning modes in the ideal limit. New calculations of the resistive stability of ideally stable DIII-D equilibria are presented. M3D-C1 has also been used to calculate the linear response to non-axisymmetric external fields; these calculations are benchmarked with Surfmn and MARS-F. New numerical methods implemented in M3D-C1 are presented, including the treatment of boundary conditions with C^1 elements in a non-rectangular mesh.

  11. Separable pairing force for relativistic quasiparticle random-phase approximation

    SciTech Connect

    Tian Yuan; Ma Zhongyu; Ring, Peter

    2009-06-15

    We have introduced a separable pairing force, which was adjusted to reproduce the pairing properties of the Gogny force in nuclear matter. This separable pairing force is able to describe in relativistic Hartree-Bogoliubov (RHB) calculations the pairing properties in the ground state of finite nuclei on almost the same footing as the original Gogny interaction. In this work we investigate excited states using the Relativistic Quasiparticle Random-Phase Approximation (RQRPA) with the same separable pairing force. For consistency the Goldstone modes and the convergence with various cutoff parameters in this version of RQRPA are studied. The first excited 2{sup +} states for the chain of Sn isotopes with Z=50 and the chain of isotones with N=82 isotones are calculated in RQRPA together with the 3{sup -} states of Sn isotopes. By comparing our results with experimental data and with the results of the original Gogny force we find that this simple separable pairing interaction is very successful in depicting the pairing properties of vibrational excitations.

  12. Stereo pairs from linear morphing

    NASA Astrophysics Data System (ADS)

    McAllister, David F.

    1998-04-01

    Several authors have recently investigated the ability to compute intermediate views of a scene using given 2D images from arbitrary camera positions. The methods fall under the topic of image based rendering. In the case we give here, linear morphing between two parallel views of a scene produces intermediate views that would have been produced by parallel movement of a camera. Hence, the technique produces images computed in a way that is consistent with the standard off-axis perspective projection method for computing stereo pairs. Using available commercial 2D morphing software, linear morphing can be used to produce stereo pairs from a single image with bilateral symmetry such as a human face. In our case, the second image is produced by horizontal reflection. We describe morphing and show how it can be used to provide stereo pairs from single images.

  13. Pair-Starved Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2009-01-01

    We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.

  14. Pairing effects in nuclear dynamic

    NASA Astrophysics Data System (ADS)

    Lacroix, Denis; Scamps, Guillaume; Tanimura, Yusuke

    2016-05-01

    In recent years, efforts have been made to account for super-fluidity in time-dependent mean-field description of nuclear dynamic [1-5]. Inclusion of pairing is important to achieve a realistic description of static properties of nuclei. Here,we show that pairing can also affect the nuclear motion. State of the art TDHF approach can describe from small to large amplitude collective motion as well as the collision between nuclei. Very recently, this microscopic approach has been improved to include pairing either in the BCS or HFB framework. Recent applications of the 3D TDHF + BCS (TDHF+BCS) model introduced in [4] will be presented. The role of super-fluidity on collective motion [6, 7], on one- and two-particle transfer [8] and on fission [9, 10] will be illustrated.

  15. Comparison of the activation kinetics of the M3 acetylcholine receptor and a constitutively active mutant receptor in living cells.

    PubMed

    Hoffmann, Carsten; Nuber, Susanne; Zabel, Ulrike; Ziegler, Nicole; Winkler, Christiane; Hein, Peter; Berlot, Catherine H; Bünemann, Moritz; Lohse, Martin J

    2012-08-01

    Activation of G-protein-coupled receptors is the first step of the signaling cascade triggered by binding of an agonist. Here we compare the activation kinetics of the G(q)-coupled M(3) acetylcholine receptor (M(3)-AChR) with that of a constitutively active mutant receptor (M(3)-AChR-N514Y) using M(3)-AChR constructs that report receptor activation by changes in the fluorescence resonance energy transfer (FRET) signal. We observed a leftward shift in the concentration-dependent FRET response for acetylcholine and carbachol with M(3)-AChR-N514Y. Consistent with this result, at submaximal agonist concentrations, the activation kinetics of M(3)-AChR-N514Y were significantly faster, whereas at maximal agonist concentrations the kinetics of receptor activation were identical. Receptor deactivation was significantly faster with carbachol than with acetylcholine and was significantly delayed by the N514Y mutation. Receptor-G-protein interaction was measured by FRET between M(3)-AChR-yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP)-Gγ(2). Agonist-induced receptor-G-protein coupling was of a time scale similar to that of receptor activation. As observed for receptor deactivation, receptor-G-protein dissociation was slower for acetylcholine than that for carbachol. Acetylcholine-stimulated increases in receptor-G-protein coupling of M(3)-AChR-N514Y reached only 12% of that of M(3)-AChR and thus cannot be kinetically analyzed. G-protein activation was measured using YFP-tagged Gα(q) and CFP-tagged Gγ(2). Activation of G(q) was significantly slower than receptor activation and indistinguishable for the two agonists. However, G(q) deactivation was significantly prolonged for acetylcholine compared with that for carbachol. Consistent with decreased agonist-stimulated coupling to G(q), agonist-stimulated G(q) activation by M(3)-AChR-N514Y was not detected. Taken together, these results indicate that the N514Y mutation produces constitutive activation of M(3

  16. C. Y. Chao, Pair Creation and Pair Annihilation

    NASA Astrophysics Data System (ADS)

    Li, Bing An; Yang, C. N.

    C. Y. Chao's contribution to physicists' acceptance of QED in 1933-1934 through his experiments of 1930 is analyzed. It is pointed out that Blackett and Occhialini's key suggestion of 1933 about hole theory was based on identifying Chao's "additional scattered rays" (1930) as due to pair annihilation.

  17. C. Y. Chao, Pair Creation and Pair Annihilation

    NASA Astrophysics Data System (ADS)

    Li, Bing An; Yang, C. N.

    2013-05-01

    C. Y. Chao's contribution to physicists' acceptance of QED in 1933-1934 through his experiments of 1930 is analyzed. It is pointed out that Blackett and Occhialini's key suggestion of 1933 about hole theory was based on identifying Chao's "additional scattered rays" (1930) as due to pair annihilation.

  18. MAGNETIC AND DYNAMICAL PHOTOSPHERIC DISTURBANCES OBSERVED DURING AN M3.2 SOLAR FLARE

    SciTech Connect

    Kuckein, C.; Collados, M.; Sainz, R. Manso

    2015-02-01

    This Letter reports on a set of full-Stokes spectropolarimetric observations in the near-infrared He i 10830 Å spectral region covering the pre-flare, flare, and post-flare phases of an M3.2 class solar flare. The flare originated on 2013 May 17 and belonged to active region NOAA 11748. We detected strong He i 10830 Å emission in the flare. The red component of the He i triplet peaks at an intensity ratio to the continuum of about 1.86. During the flare, He i Stokes V is substantially larger and appears reversed compared to the usually larger Si i Stokes V profile. The photospheric Si i inversions of the four Stokes profiles reveal the following: (1) the magnetic field strength in the photosphere decreases or is even absent during the flare phase, as compared to the pre-flare phase. However, this decrease is not permanent. After the flare, the magnetic field recovers its pre-flare configuration in a short time (i.e., 30 minutes after the flare). (2) In the photosphere, the line of sight velocities show a regular granular up- and downflow pattern before the flare erupts. During the flare, upflows (blueshifts) dominate the area where the flare is produced. Evaporation rates of ∼10{sup −3} and ∼10{sup −4} g cm{sup −2} s{sup −1} have been derived in the deep and high photosphere, respectively, capable of increasing the chromospheric density by a factor of two in about 400 s.

  19. Invisibly Sanitizable Signature without Pairings

    NASA Astrophysics Data System (ADS)

    Yum, Dae Hyun; Lee, Pil Joong

    Sanitizable signatures allow sanitizers to delete some pre-determined parts of a signed document without invalidating the signature. While ordinary sanitizable signatures allow verifiers to know how many subdocuments have been sanitized, invisibly sanitizable signatures do not leave any clue to the sanitized subdocuments; verifiers do not know whether or not sanitizing has been performed. Previous invisibly sanitizable signature scheme was constructed based on aggregate signature with pairings. In this article, we present the first invisibly sanitizable signature without using pairings. Our proposed scheme is secure under the RSA assumption.

  20. Nucleon pairing in Sn isotopes

    NASA Astrophysics Data System (ADS)

    Imasheva, L.; Ishkhanov, B.; Stepanov, M.; Tretyakova, T.

    2016-01-01

    The systematics of excited states in Sn isotopes are discussed on basis of pairing interaction in nuclei. Nucleon paring leads to formation of excited states multiplets. The estimation of multiplet splitting based on experimental nuclear masses allows one to calculate the position of excited states with different seniority in δ-approximation. The wide systematics of the spectra of Sn isotopes gives a possibility to check the pairing interaction for different subshells and consider the multiplets of excited states in the neutron-rich isotopes far from stability.

  1. Negative refractive index of metallic cross-I-shaped pairs: origin and evolution with pair gap width.

    PubMed

    Ma, Y G; Wang, X C; Ong, C K

    2008-07-01

    A structured composite of the negative index of refraction was fabricated by one layer of cross-I-shaped metal pairs. In this structure, the electric and magnetic inclusions were effectively integrated into one small unit. We varied the spacing of the cross pair to control the location of the magnetic resonance mode and their intercoupling with the electric mode. The frequency dependences of permittivity, permeability, and refractive indices with different gap widths of the pairs were systematically discussed by free-space measurement as well as numerical simulation. A spacing window dependent on the geometrical parameters was found in which the real part of the refractive index could have a negative value. The one-layer cross-pair pattern proposed in this work can be extended to three-dimensional structures with well-controlled interlayer coupling that will greatly facilitate the fabrication and measurement of negative-index materials in high frequencies. PMID:18764072

  2. Electrostatic ion waves in non-Maxwellian pair-ion plasmas

    SciTech Connect

    Arshad, Kashif; Mahmood, S.

    2010-12-15

    The electrostatic ion waves are studied for non-Maxwellian or Lorentzian distributed unmagnetized pair-ion plasmas. The Vlasov equation is solved and damping rates are calculated for electrostatic waves in Lorentzian pair-ion plasmas. The damping rates of the electrostatic ion waves are studied for the equal and different ion temperatures of pair-ion species. It is found that the Landau damping rate of the ion plasma wave is increased in Lorentzian plasmas in comparison with Maxwellian pair-ion plasmas. The numerical results are also presented for illustration by taking into account the parameters reported in fullerene pair-ion plasma experiments.

  3. Pairing state with a time-reversal symmetry breaking in FeAs-based superconductors

    SciTech Connect

    Lee, Wei-Sheng

    2010-05-26

    We investigate the competition between the extended s{+-} wave and dx2-y2 -wave pairing order parameters in the iron-based superconductors. Because of the frustrating pairing interactions among the electron and the hole fermi pockets, a time-reversal symmetry breaking s + id pairing state could be favored. We analyze this pairing state within the Ginzburg-Landau theory, and explore the experimental consequences. In such a state, spatial inhomogeneity induces supercurrent near a non-magnetic impurity and the corners of a square sample. The resonance mode between the s{+-} and dx2?y2 -wave order parameters can be detected through the B1g-Raman spectroscopy.

  4. Missing energies at pair creation

    NASA Technical Reports Server (NTRS)

    El-Ela, A. A.; Bagge, E. R.; Hassan, S.

    1985-01-01

    Wilson cloud chamber measurements of the separated spectra of positrons and electrons produced by gamma quanta of 6.14 MeV differ considerably from the theoretically predicted spectra by BETHE and HEITLER, but are in good agreement with those of a modified theory of pair creation.

  5. Pairing Linguistic and Music Intelligences

    ERIC Educational Resources Information Center

    DiEdwardo, MaryAnn Pasda

    2005-01-01

    This article describes how music in the language classroom setting can be a catalyst for developing reading, writing, and understanding skills. Studies suggest that pairing music and linguistic intelligences in the college classroom improves students' grades and abilities to compose theses statements for research papers in courses that emphasize…

  6. Pick a Pair. Being Bony

    ERIC Educational Resources Information Center

    Miller, Pat

    2004-01-01

    This column suggests pairings of fiction and nonfiction books to meet curricular needs and help students to compare/contrast the texts as they may be asked on state tests. The author of this paper focuses on activities surrounding Halloween. Since many schools are discouraged from teaching about Halloween, this can be a great time to investigate…

  7. Paired Reading: Psycholinguistics in Practice.

    ERIC Educational Resources Information Center

    Barrett, James Martin

    1987-01-01

    Contends that children need to learn phonic skills, not necessarily through early direct teaching, but through reading experience. Suggests using Paired Reading, which is validated by psycholinguistic reading theory and provides opportunities to learn to read from context and use innate syntactic and semantic knowledge. (SKC)

  8. Spin-1 Heisenberg ferromagnet using pair approximation method

    NASA Astrophysics Data System (ADS)

    Mert, Murat; Kılıç, Ahmet; Mert, Gülistan

    2016-06-01

    Thermodynamic properties for Heisenberg ferromagnet with spin-1 on the simple cubic lattice have been calculated using pair approximation method. We introduce the single-ion anisotropy and the next-nearest-neighbor exchange interaction. We found that for negative single-ion anisotropy parameter, the internal energy is positive and heat capacity has two peaks.

  9. Origin of Aristarchus Olivine Deposits Based on M3, WAC, and Diviner Analyses

    NASA Astrophysics Data System (ADS)

    Wiseman, S. M.; Mustard, J. F.; Donaldson Hanna, K. L.; Isaacson, P.; Jolliff, B. L.; Besse, S.; Staid, M.; Pieters, C. M.

    2011-12-01

    The Aristarchus region contains geologically diverse deposits and the Aristarchus impact crater, located on the SE margin of the plateau near the contact between plateau materials and western Procellarum basalts, has exposed materials with variable compositions. Of particular interest is the origin of olivine-bearing deposits that occur on the SE portion of the crater rim and ejecta in association with impact melt [1]. NW portions of the rim and ejecta expose plateau materials and are spectrally dominated by pyroxene in the VNIR. Spectra of the NW rim and ejecta are consistent with a noritic composition and with the inferred origin of the plateau as uplifted upper crust [2,3,4]. Therefore, it is unlikely that the olivine- bearing materials, which exhibit a strong 1 micron olivine absorption and only minor pyroxene contributions, are derived from plateau materials similar to those exposed in the NW portion of the crater. Potential sources of the olivine-bearing material excavated by the impact include western Procellarum basalts or buried material associated with the Marius Hills volcanic complex. Alternatively, the olivine-bearing deposits could be derived from a shallow pluton that is not represented by other surface exposures or could have formed as re-crystallized impact melt. Both the western Procellarum basalts [5,6] and some units associated with the Marius Hills [7] are olivine-bearing. In order to differentiate between these hypotheses, we are integrating spectral data in the UV/VIS (LRO WAC), VIS/NIR (Chandrayaan-1 M3), and TIR (LRO Diviner) to further characterize the assemblages of minerals that occur in association with the olivine-bearing deposits in Aristarchus crater, western Procellarum, and units within the Marius Hills volcanic complex. [1] Mustard et al., 2011, JGR 116. [2] McEwen et al., 1994, Science 266. [3] Lucey et al., 1986, LPSC 16. [4] Chevrel et al., 2009, Icarus 199. [5] Staid and Pieters 2001, JGR. [6] Staid et al., 2011, JGR 116. [7

  10. Improving the Apollo 12 landing site mapping with Chandrayaan M3 data

    NASA Astrophysics Data System (ADS)

    Chemin, Yann; Crawford, Ian; Bugiolacchi, Roberto; Irfan, Huma; Alexander, Louise

    2014-05-01

    The geology of the Apollo 12 landing site has been the subject of many studies, including recently by Korotev et al. (2011) and Snape et al. (2013). This research attempts to bring additional understanding from a remote sensing perspective using the Moon Mineralogy Mapper (M3) sensor data, onboard the Chandrayaan lunar orbiter. This has a higher spatial-spectral resolution sensor than the Clementine UV-Vis sensor and provides the opportunity to study the lunar surface with detailed spectral signatures. Mapping of FeO (wt%) and TiO2 (wt%) is done using the methods of Lucey et al. (2000) and Wilcox et al. (2005). A FeO & TiO2 processing module (i.feotio2) is made specifically for this research within the Free & Open Source Software GRASS GIS. Attempts will be made to estimate the lava flow thickness using the method of Bugiolacchi et al. (2006) and individual lava layers thicknesses (Weider et al., 2010). Integration of this new information will be put in perspective and integrated with previous work. Analysis from the combined higher spatial and spectral resolutions will improve the accuracy of the geological mapping at the Apollo 12 landing site. References Bugiolacchi, R., Spudis, P.D., Guest, J.E., 2006. Stratigraphy and composition of lava flows in Mare Nubium and Mare Cognitum. Meteoritics & Planetary Science. 41(2):285-304. Korotev, R.L., Jolliff, B.L., Zeigler, R.A., Seddio, S.M., Haskin, L.A., 2011. Apollo 12 revisited. Geochimica et Cosmochimica Acta. 75(6):1540-1573. Lucey, P.G., Blewett, D.T., Jolliff, B.L., 2000. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J. Geophys. Res. 105(E8): 20297-20305. Snape, J.F., Alexander, L., Crawford, I.A., Joy, K.H., 2013. Basaltic Regolith Sample 12003,314: A New Member of the Apollo 12 Feldspathic Basalt Suite? Lunar and Planetary Institute Science Conference Abstracts 44:1044. Weider, S.Z., Crawford, I.A. and Joy, K.H., "Individual lava flow

  11. Peculiarities of lens and tail regeneration detected in newts after spaceflight aboard Foton M3

    NASA Astrophysics Data System (ADS)

    Grigoryan, Eleonora N.; Almeida, Eduardo; Poplinskaya, Valentina; Novikova, Julia; Domaratskaya, Elena; Aleinikova, Karina; Souza, Kenneth; Skidmore, Mike; Grigoryan, Eleonora N.

    In September 2007 the joint, 12 day long experiment was carried out aboard Russian satellite Foton M3. The goal of the experiment was to study eye lens, tail and forelimb toe regeneration in adult 16 newts (Pl. waltl.) operated 10 days before taking-off. In spaceflight and synchronous ground control we used video recording, temperature and irradiation control, as well as constant availability of thymidine analog BrdU for its absorption via animals' skin. New techniques allowed us to analyze animals' behavior in hyperand microgravity periods of time, to take proper account of spaceflight factors, and measure accumulated pools of DNA-synthesizing cells in regenerating tissues. All tissue specimens obtained from animals were isolated in the day of landing and then prepared for morphological, immunochemical and molecular investigations. Synchronous control was shifted for two days and reproduced flight conditions except changes of gravity influence. As a result in flown animals as compared with synchronous ground control we found lens regeneration of 0.5-1 stage speeded up and an increased BrdU+ (S-phase) cell number in eye cornea, growth zone, limbus and newly forming lens. These features of regeneration were accompanied by an increase of FGF2 expression in eye growth zone and heat shock protein (HSP90) induction purely in retinal macroglial cells of regenerating eyes. Toe regeneration rate was equal and achieved the stage of accomplished healing of amputation area in both groups - "flown" and control animals. We found no essential differences in tail regeneration rate and tail regenerate sizes in the newts exposed to space and on ground. In both groups tail regeneration reached the stage IV-V when tail length and square were around 4.4 mm and 15.5 mm2, correspondingly. However we did observe remarkable changes of tail regenerate form and some of pigmentation. Computer morphometrical analysis showed that only in ground control animals the evident dorso

  12. Muscarinic Acetylcholine Receptor M3 Modulates Odorant Receptor Activity via Inhibition of β-Arrestin-2 Recruitment

    PubMed Central

    Jiang, Yue; Li, Yun Rose; Tian, Huikai; Ma, Minghong; Matsunami, Hiroaki

    2015-01-01

    The olfactory system in rodents serves a critical function in social, reproductive, and survival behaviors. Processing of chemosensory signals in the brain is dynamically regulated in part by an animal's physiological state. We previously reported that type 3 muscarinic acetylcholine receptors (M3-Rs) physically interact with odorant receptors (ORs) to promote odor-induced responses in a heterologous expression system. However, it is not known how M3-Rs affect the ability of olfactory sensory neurons (OSNs) to respond to odors. Here, we show that an M3-R antagonist attenuates odor-induced responses in OSNs from wild-type, but not M3-R-null mice. Using a novel molecular assay, we demonstrate that the activation of M3-Rs inhibits the recruitment of β-arrestin-2 to ORs, resulting in a potentiation of odor-induced response in OSNs. These results suggest a role for acetylcholine in modulating olfactory processing at the initial stages of signal transduction in the olfactory system. PMID:25800153

  13. Hypocholesterolemic effects of Kluyveromyces marxianus M3 isolated from Tibetan mushrooms on diet-induced hypercholesterolemia in rat

    PubMed Central

    Xie, Yuanhong; Zhang, Hongxing; Liu, Hui; Xiong, Lixia; Gao, Xiuzhi; Jia, Hui; Lian, Zhengxing; Tong, Nengsheng; Han, Tao

    2015-01-01

    To investigate the effects of Kluyveromyces marxianus M3 isolated from Tibetan mushrooms on diet-induced hypercholesterolemia in rats, female Wistar rats were fed a high-cholesterol diet (HCD) for 28 d to generate hyperlipidemic models. Hyperlipidemic rats were assigned to four groups, which were individually treated with three different dosages of K. marxianus M3+HCD or physiological saline+HCD via oral gavage for 28 d. The total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels in the serum and liver of the rats were measured using commercially available enzyme kits. In addition, the liver morphology was also examined using hematoxylin and eosin staining and optical microscopy. According to our results, the serum and liver TC, TG, LDL-C levels and atherogenic index (AI) were significantly decreased in rats orally administered K. marxianus M3 (p <0.01), and the HDL-C levels and anti atherogenic index (AAI) were significantly increased (p <0.01) compared to the control group. Moreover, K. marxianus M3 treatment also reduced the build-up of lipid droplets in the liver and exhibited normal hepatocytes, suggesting a protective effect of K. marxianus M3 in hyperlipidemic rats. PMID:26273253

  14. Theoretical study of nascent solvation in Ni+ (benzene)m, m = 3 and 4, clusters.

    PubMed

    Castro, Miguel; Flores, Raul; Duncan, Michael A

    2013-11-27

    The ligand versus solvent behavior of Ni(+)(C6H6)3,4 complexes was studied using density functional theory all-electron calculations. Dispersion corrections were included with the BPW91-D2 method using the 6-311++G(2d,2p) basis set. The ground state (GS) for Ni(+)(C6H6)3 has three benzene rings 3d-π bonded to the metal. A two-layer isomer with two moieties coordinated η(3)-η(2) with Ni(+), and the other one adsorbed by van der Waals interactions to the Ni(+)(C6H6)2 subcluster, i.e., a 2 + 1 structure, is within about 8.4 kJ/mol of the GS. Structures with 3 + 1 and 2 + 2 ligand coordination were found for Ni(+)(C6H6)4. The binding energies (D0) of 28.9 and 26.0 kJ/mol for the external moieties of Ni(+)(C6H6)3,4 are much smaller than that for Ni(+)(C6H6)2, 193.0 kJ/mol, obtained also with BPW91-D2. This last D0 overestimates somehow the experimental value, of 146.7 ± 11.6 kJ/mol, for Ni(+)(C6H6)2. The abrupt fall for D0(Ni(+)(C6H6)3,4) shows that such molecules are bound externally as solvent species. These results agree with the D0(Ni(+)(C6H6)3) < 37.1 kJ/mol limit found experimentally for this kind of two-layer clusters. The ionization energies also decrease for m = 2, 3, and 4 (580.8, 573.1, and 558.6 kJ/mol). For Ni(+)(C6H6)3,4, each solvent moiety bridges the benzenes of Ni(+)(C6H6)2; their position and that of one internal ring mimics the tilted T-shape geometry of the benzene dimer (Bz2). The distances from the center of the external to the center of the internal rings for m = 3 (4.686 Å) and m = 4 (4.523 Å) are shorter than that for Bz2 (4.850 Å). This and charge transfer effects promote the (C(δ-)-H(δ+))(int) dipole-π(ext) interactions in Ni(+)(C6H6)3,4; π-π interactions also occur. The predicted IR spectra, having multiplet structure in the C-H region, provide insight into the experimental spectra of these ions. PMID:24218987

  15. Pseudopotential theory of interacting roton pairs in superfluid 4He

    NASA Astrophysics Data System (ADS)

    Bedell, K.; Pines, D.; Zawadowski, A.

    1984-01-01

    A configuration-space pseudopotential, which is closely related to that used by Aldrich and Pines to describe the effective interaction between background particles in 3He and 4He, is constructed and used to calculate the roton-roton scattering amplitude. From that amplitude we obtain a theory that is completely congruent with the roton-liquid theory of Bedell, Pines, and Fomin. We calculate two-roton bound states, roton-liquid parameters, and roton lifetimes, as well as information about the hybridization of the two-roton bound state with excitations of higher and lower energy. Excellent agreement between theory and experiment is obtained for the l=2 bound state at zero pair momentum, the roton lifetime, the roton contribution to the normal-fluid viscosity and the normal-fluid density, and the temperature variation of the roton energy. The effective roton-roton coupling parameters at large pair momentum are found to be an order of magnitude larger than those for small or vanishing pair momentum. At SVP we find that a substantial number of two-roton bound states of varying symmetry exist for pair momentum up to ~ 3 Å -1; at standard pressure, however the roton-roton interaction for momenta ~ 1 Å -1 is found to become repulsive, so that both the l=2 bound state at zero pair momentum and bound states at intermediate momenta are predicted to disappear under pressure.

  16. Theoretical electronic structures and relative stabilities of the spinel oxynitrides M3NO3 (M=B,Al,Ga,In)

    NASA Astrophysics Data System (ADS)

    Okeke, Onyekwelu U.; Lowther, J. E.

    2008-03-01

    A spinel structure of an oxynitride material in the form M3NO3 ( M=B , Al, Ga, or In) is considered to be derived from a reaction of the form MN+M2O3→M3NO3 . Various possible phases of MN and M2O3 , which could lead to the M3NO3 spinel material, are considered. The spinels containing B and Al exhibit higher resistance to compression and shear than those containing Ga and In, and these are suggested to be potentially important hard materials possibly formed under extreme conditions. Calculated energetics of the proposed reaction favor the formation of spinels containing Ga and In with such materials having potentially significant optoelectronic applications.

  17. Meeting Report: “Metagenomics, Metadata and Meta-analysis” (M3) Special Interest Group at ISMB 2009

    PubMed Central

    Field, Dawn; Friedberg, Iddo; Sterk, Peter; Kottmann, Renzo; Glöckner, Frank Oliver; Hirschman, Lynette; Garrity, George M.; Cochrane, Guy; Wooley, John; Gilbert, Jack

    2009-01-01

    This report summarizes the proceedings of the “Metagenomics, Metadata and Meta-analysis” (M3) Special Interest Group (SIG) meeting held at the Intelligent Systems for Molecular Biology 2009 conference. The Genomic Standards Consortium (GSC) hosted this meeting to explore the bottlenecks and emerging solutions for obtaining biological insights through large-scale comparative analysis of metagenomic datasets. The M3 SIG included 16 talks, half of which were selected from submitted abstracts, a poster session and a panel discussion involving members of the GSC Board. This report summarizes this one-day SIG, attempts to identify shared themes and recapitulates community recommendations for the future of this field. The GSC will also host an M3 workshop at the Pacific Symposium on Biocomputing (PSB) in January 2010. Further information about the GSC and its range of activities can be found at http://gensc.org/. PMID:21304668

  18. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission and ground irradiation experiment

    NASA Astrophysics Data System (ADS)

    Lambreva, Maya; Rea, Giuseppina; Antonacci, Amina; Serafini, Agnese; Damasso, Mario; Margonelli, Andrea; Johanningmeier, Udo; Bertalan, Ivo; Pezzotti, Gianni; Giardi, Maria Teresa

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plantsor algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stress-tolerant strains. Site-directed and random mutants of the unicellular green alga Chlamydomonas reinhardtii of Photosystem II D1 protein were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. Metabolite profiling by quantitative HPLC methods revealed the organisms and the stress conditions capable to accumulate the highest pigment levels. In order to develop a project for a rationale metabolic engineering of algal secondary metabolites overproduction, we are performing expression analyses on the carotenoid biosynthetic pathway under physiological and mimicked space conditions. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton-M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence biosensor, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device

  19. Asymmetric Ion-Pairing Catalysis

    PubMed Central

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  20. Mineralogy of the Lunar Crust in Spatial Context: First Results from the Moon Mineralogy Mapper (M3)

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Boardman, J.; Buratti, B.; Clark, R.; Combe, J-P; Green, R.; Goswami, J. N.; Head, J. W., III; Hicks, M.; Isaacson, P.; Klima, R.; Kramer, G.; Kumar, S.; Lundeen, S.; Malaret, E.; McCord, T. B.; Mustard, J.; Nettles, J.; Petro, N.; Runyon, C.; Staid, M. I.; Sunshine, J.; Taylor, L.; Tompkins, S.; Varanasi, P.

    2009-01-01

    India's Chandrayaan-1 successfully launched October 22, 2008 and went into lunar orbit a few weeks later. Commissioning of instruments began in late November and was near complete by the end of the year. Initial data for NASA's Moon Mineralogy Mapper (M3) were acquired across the Orientale Basin and the science results are discussed here. M 3 image-cube data provide mineralogy of the surface in geologic context. A major new result is that the existence and distribution of massive amounts of anorthosite as a continuous stratigraphic crustal layer is now irrefutable.

  1. Observing RR Lyrae Variables in the M3 Globular Cluster with the BYU West Mountain Observatory (Abstract)

    NASA Astrophysics Data System (ADS)

    Joner, M. D.

    2016-06-01

    (Abstract only) We have utilized the 0.9-meter telescope of the Brigham Young University West Mountain Observatory to secure data on the northern hemisphere globular cluster NGC 5272 (M3). We made 216 observations in the V filter spaced between March and August 2012. We present light curves of the M3 RR Lyrae stars using different techniques. We compare light curves produced using DAOPHOT and ISIS software packages for stars in both the halo and core regions of this globular cluster. The light curve fitting is done using FITLC.

  2. Passive estimation of the waveguide invariant per pair of modes.

    PubMed

    Le Gall, Yann; Bonnel, Julien

    2013-08-01

    In many oceanic waveguides, acoustic propagation is characterized by a parameter called waveguide invariant. This property is used in many passive and active sonar applications where knowledge of the waveguide invariant value is required. The waveguide invariant is classically considered as scalar but several studies show that it is better modeled by a distribution because of its dependence on frequency and mode pairs. This paper presents a new method for estimating the waveguide invariant distribution. Using the noise radiated by a distant ship and a single hydrophone, the proposed methodology allows estimating the waveguide invariant for each pair of modes in shallow water. Performance is evaluated on simulated data. PMID:23927230

  3. Solitary electrostatic waves are possible in unmagnetized symmetric pair plasmas

    SciTech Connect

    Dubinov, Alexander E.; Dubinova, Irina D.; Gordienko, Victor A.

    2006-08-15

    A possibility of stationary solitary electrostatic waves with large amplitude in symmetric unmagnetized symmetric pair plasmas (e{sup -}e{sup +} plasma, C{sub 60}{sup -}C{sub 60}{sup +} plasma or e{sup -}h{sup +} plasma) is proven. The main idea of the work is a thermodynamic unequilibrium of plasma species which may be created in low-density ideal pair plasmas. Ranges of parameters (Mach number M and a nonequilibrium degree {tau}=T{sub +}/T{sub -}) which lead to the possibility of solitary waves are found.

  4. SD-pair shell model study for {sup 126}Xe and {sup 128}Ba

    SciTech Connect

    Meng Xiangfei; Luo Yanan; Wang, Fu-rong; Pan Feng; Draayer, Jerry P.

    2008-04-15

    The SD-pair shell model is employed to study {sup 126}Xe and {sup 128}Ba. The results show that the spectra and electromagnetic transition strengths can be nicely described in terms of a three-parameter Hamiltonian. In our previous paper, we got a conclusion that the SD-pair approximation improves with the number of SD pairs N. This work shows that this conclusion can be extrapolated to the case with N=5.

  5. Pair interactions in red-faced warblers

    USGS Publications Warehouse

    Barber, P.M.; Martin, T.E.; Smith, Kimberly G.

    1998-01-01

    Forty pairs of breeding Red-faced Warblers (Cardellina rubrifrons) were observed in 1992 and 1993 on the Mogollon Rim, Arizona. Intrusions by extra-pair males, interactions between pair members, and other pair interaction behaviors were recorded. The majority of intrusions occurred during the building stage of the nesting cycle. Males responded to intrusions during nest building by decreasing intra-pair distance. Males maintained shorter intra-pair distances by following the female when she initiated movements and by not initiating pair movements themselves. Intra-pair distances were as short or shorter during the incubation period as during nest building, and were shorter during incubation than during egg laying. Males continued to follow females beyond the expected fertile period. Possible explanations for continued mate following include: males guard their mates against predators, males guard their paternity for future nesting attempts, and males respond to extra-pair male intrusions, which continue during incubation.

  6. Charge Aspects of Composite Pair Superconductivity

    NASA Astrophysics Data System (ADS)

    Flint, Rebecca

    2014-03-01

    Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.

  7. 1450 m^3 at 10^-9 Pa: One of the KATRIN Challenges

    SciTech Connect

    Christian Day; R. Gumbsheimer; W. Herz; J. Wolf; J. Bonn; R. Reid; G.R. Myneni

    2006-11-12

    The KATRIN project is a challenging experiment to measure the mass of the electron neutrino directly with a sensitivity of 0.2 eV. It is a next generation tritium beta-decay experiment scaling up the size and precision of previous experiments by an order of magnitude as well as the intensity of the tritium beta source. Ultrafine spectrometric analysis of the energy distribution of the decay electrons at their very endpoint of 18.57 keV is the key to derive the neutrino mass. This is provided by a high-resolution spectrometer of unique size (10 m in diameter, 22 m in length). To avoid any negative influence from residual gas, the spectrometer vessel is designed to UHV/XHV conditions (an ultimate total pressure of below 10{sup -9} Pa and a wall outgassing rate below 10{sup -13} Pam{sup 3}/scm{sup 2}). The paper shortly describes the experimental idea behind KATRIN. The emphasis will then be given to the pumping concept for how to achieve the target parameters and to the manufacturing of the spectrometer tank. Critical issues will also be discussed (surface treatment, welding, transportation). Finally, a description of the current status and an outlook on the overall KATRIN schedule completes the paper.

  8. Investigations on Sawtooth Reconnection in ASDEX Upgrade Tokamak Discharges Using the 3D Non-linear Two-fluid MHD Code M3D-C1

    NASA Astrophysics Data System (ADS)

    Krebs, Isabel; Jardin, Stephen C.; Igochine, Valentin; Guenter, Sibylle; Hoelzl, Matthias; ASDEX Upgrade Team

    2014-10-01

    We study sawtooth reconnection in ASDEX Upgrade tokamak plasmas by means of 3D non-linear two-fluid MHD simulations in toroidal geometry using the high-order finite element code M3D-C1. Parameters and equilibrium of the simulations are based on typical sawtoothing ASDEX Upgrade discharges. The simulation results are compared to features of the experimental observations such as the sawtooth crash time and frequency, the evolution of the safety factor profile and the 3D evolution of the temperature. 2D ECE imaging measurements during sawtooth crashes in ASDEX Upgrade indicate that the heat is transported out of the core through a narrow poloidally localized region. We investigate if incomplete sawtooth reconnection can be seen in the simulations which is suggested by soft X-ray tomography measurements in ASDEX Upgrade showing that an (m = 1, n = 1) perturbation is typically observed to survive the sawtooth crash and approximately maintain its radial position.

  9. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    NASA Astrophysics Data System (ADS)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  10. Kinetics of the vortex formation in the superconductors with d-pairing

    NASA Astrophysics Data System (ADS)

    Filippov, Alexander E.; Radievsky, Alexander V.; Zeltser, Alexander S.

    1996-03-01

    Heavy fermion systems and High- T c superconductors are related to the systems with d-pairing. We studied the kinetics of the vortex formation in the superconductors with d-pairing. New type of order parameter peculiarities and magnetic field maxima associated with them are found at intermediate stages of evolution from disordered to ordered state.